| 1 | /* |
| 2 | * Copyright (c) 2000-2010 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | * File: pmap.c |
| 61 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 62 | * (These guys wrote the Vax version) |
| 63 | * |
| 64 | * Physical Map management code for Intel i386, i486, and i860. |
| 65 | * |
| 66 | * Manages physical address maps. |
| 67 | * |
| 68 | * In addition to hardware address maps, this |
| 69 | * module is called upon to provide software-use-only |
| 70 | * maps which may or may not be stored in the same |
| 71 | * form as hardware maps. These pseudo-maps are |
| 72 | * used to store intermediate results from copy |
| 73 | * operations to and from address spaces. |
| 74 | * |
| 75 | * Since the information managed by this module is |
| 76 | * also stored by the logical address mapping module, |
| 77 | * this module may throw away valid virtual-to-physical |
| 78 | * mappings at almost any time. However, invalidations |
| 79 | * of virtual-to-physical mappings must be done as |
| 80 | * requested. |
| 81 | * |
| 82 | * In order to cope with hardware architectures which |
| 83 | * make virtual-to-physical map invalidates expensive, |
| 84 | * this module may delay invalidate or reduced protection |
| 85 | * operations until such time as they are actually |
| 86 | * necessary. This module is given full information as |
| 87 | * to which processors are currently using which maps, |
| 88 | * and to when physical maps must be made correct. |
| 89 | */ |
| 90 | |
| 91 | #include <string.h> |
| 92 | #include <mach_ldebug.h> |
| 93 | |
| 94 | #include <libkern/OSAtomic.h> |
| 95 | |
| 96 | #include <mach/machine/vm_types.h> |
| 97 | |
| 98 | #include <mach/boolean.h> |
| 99 | #include <kern/thread.h> |
| 100 | #include <kern/zalloc.h> |
| 101 | #include <kern/queue.h> |
| 102 | #include <kern/ledger.h> |
| 103 | #include <kern/mach_param.h> |
| 104 | |
| 105 | #include <kern/kalloc.h> |
| 106 | #include <kern/spl.h> |
| 107 | |
| 108 | #include <vm/pmap.h> |
| 109 | #include <vm/vm_map.h> |
| 110 | #include <vm/vm_kern.h> |
| 111 | #include <mach/vm_param.h> |
| 112 | #include <mach/vm_prot.h> |
| 113 | #include <vm/vm_object.h> |
| 114 | #include <vm/vm_page.h> |
| 115 | |
| 116 | #include <mach/machine/vm_param.h> |
| 117 | #include <machine/thread.h> |
| 118 | |
| 119 | #include <kern/misc_protos.h> /* prototyping */ |
| 120 | #include <i386/misc_protos.h> |
| 121 | #include <i386/i386_lowmem.h> |
| 122 | #include <x86_64/lowglobals.h> |
| 123 | |
| 124 | #include <i386/cpuid.h> |
| 125 | #include <i386/cpu_data.h> |
| 126 | #include <i386/cpu_number.h> |
| 127 | #include <i386/machine_cpu.h> |
| 128 | #include <i386/seg.h> |
| 129 | #include <i386/serial_io.h> |
| 130 | #include <i386/cpu_capabilities.h> |
| 131 | #include <i386/machine_routines.h> |
| 132 | #include <i386/proc_reg.h> |
| 133 | #include <i386/tsc.h> |
| 134 | #include <i386/pmap_internal.h> |
| 135 | #include <i386/pmap_pcid.h> |
| 136 | #if CONFIG_VMX |
| 137 | #include <i386/vmx/vmx_cpu.h> |
| 138 | #endif |
| 139 | |
| 140 | #include <vm/vm_protos.h> |
| 141 | #include <san/kasan.h> |
| 142 | |
| 143 | #include <i386/mp.h> |
| 144 | #include <i386/mp_desc.h> |
| 145 | #include <libkern/kernel_mach_header.h> |
| 146 | |
| 147 | #include <pexpert/i386/efi.h> |
| 148 | |
| 149 | #if MACH_ASSERT |
| 150 | int pmap_stats_assert = 1; |
| 151 | #endif /* MACH_ASSERT */ |
| 152 | |
| 153 | #ifdef IWANTTODEBUG |
| 154 | #undef DEBUG |
| 155 | #define DEBUG 1 |
| 156 | #define POSTCODE_DELAY 1 |
| 157 | #include <i386/postcode.h> |
| 158 | #endif /* IWANTTODEBUG */ |
| 159 | |
| 160 | #ifdef PMAP_DEBUG |
| 161 | #define DBG(x...) kprintf("DBG: " x) |
| 162 | #else |
| 163 | #define DBG(x...) |
| 164 | #endif |
| 165 | /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used |
| 166 | * in the trampolines for kernel/user boundary TLB coherency. |
| 167 | */ |
| 168 | char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1]; |
| 169 | boolean_t pmap_trace = FALSE; |
| 170 | |
| 171 | boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */ |
| 172 | |
| 173 | int nx_enabled = 1; /* enable no-execute protection -- set during boot */ |
| 174 | |
| 175 | #if DEBUG || DEVELOPMENT |
| 176 | int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */ |
| 177 | int allow_stack_exec = 0; /* No apps may execute from the stack by default */ |
| 178 | #else /* DEBUG || DEVELOPMENT */ |
| 179 | const int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */ |
| 180 | const int allow_stack_exec = 0; /* No apps may execute from the stack by default */ |
| 181 | #endif /* DEBUG || DEVELOPMENT */ |
| 182 | |
| 183 | const boolean_t cpu_64bit = TRUE; /* Mais oui! */ |
| 184 | |
| 185 | uint64_t max_preemption_latency_tsc = 0; |
| 186 | |
| 187 | pv_hashed_entry_t *pv_hash_table; /* hash lists */ |
| 188 | |
| 189 | uint32_t npvhashmask = 0, npvhashbuckets = 0; |
| 190 | |
| 191 | pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL; |
| 192 | pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL; |
| 193 | decl_simple_lock_data(,pv_hashed_free_list_lock) |
| 194 | decl_simple_lock_data(,pv_hashed_kern_free_list_lock) |
| 195 | decl_simple_lock_data(,pv_hash_table_lock) |
| 196 | |
| 197 | decl_simple_lock_data(,phys_backup_lock) |
| 198 | |
| 199 | zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */ |
| 200 | |
| 201 | /* |
| 202 | * First and last physical addresses that we maintain any information |
| 203 | * for. Initialized to zero so that pmap operations done before |
| 204 | * pmap_init won't touch any non-existent structures. |
| 205 | */ |
| 206 | boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */ |
| 207 | |
| 208 | static struct vm_object kptobj_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); |
| 209 | static struct vm_object kpml4obj_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); |
| 210 | static struct vm_object kpdptobj_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); |
| 211 | |
| 212 | /* |
| 213 | * Array of physical page attribites for managed pages. |
| 214 | * One byte per physical page. |
| 215 | */ |
| 216 | char *pmap_phys_attributes; |
| 217 | ppnum_t last_managed_page = 0; |
| 218 | |
| 219 | /* |
| 220 | * Amount of virtual memory mapped by one |
| 221 | * page-directory entry. |
| 222 | */ |
| 223 | |
| 224 | uint64_t pde_mapped_size = PDE_MAPPED_SIZE; |
| 225 | |
| 226 | unsigned pmap_memory_region_count; |
| 227 | unsigned pmap_memory_region_current; |
| 228 | |
| 229 | pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE]; |
| 230 | |
| 231 | /* |
| 232 | * Other useful macros. |
| 233 | */ |
| 234 | #define current_pmap() (vm_map_pmap(current_thread()->map)) |
| 235 | |
| 236 | struct pmap kernel_pmap_store; |
| 237 | pmap_t kernel_pmap; |
| 238 | |
| 239 | struct zone *pmap_zone; /* zone of pmap structures */ |
| 240 | |
| 241 | struct zone *pmap_anchor_zone; |
| 242 | struct zone *pmap_uanchor_zone; |
| 243 | int pmap_debug = 0; /* flag for debugging prints */ |
| 244 | |
| 245 | unsigned int inuse_ptepages_count = 0; |
| 246 | long long alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */ |
| 247 | unsigned int bootstrap_wired_pages = 0; |
| 248 | int pt_fake_zone_index = -1; |
| 249 | |
| 250 | extern long NMIPI_acks; |
| 251 | |
| 252 | boolean_t kernel_text_ps_4K = TRUE; |
| 253 | boolean_t wpkernel = TRUE; |
| 254 | |
| 255 | extern char end; |
| 256 | |
| 257 | static int nkpt; |
| 258 | |
| 259 | pt_entry_t *DMAP1, *DMAP2; |
| 260 | caddr_t DADDR1; |
| 261 | caddr_t DADDR2; |
| 262 | |
| 263 | boolean_t pmap_disable_kheap_nx = FALSE; |
| 264 | boolean_t pmap_disable_kstack_nx = FALSE; |
| 265 | |
| 266 | extern long __stack_chk_guard[]; |
| 267 | |
| 268 | static uint64_t pmap_eptp_flags = 0; |
| 269 | boolean_t pmap_ept_support_ad = FALSE; |
| 270 | |
| 271 | |
| 272 | /* |
| 273 | * Map memory at initialization. The physical addresses being |
| 274 | * mapped are not managed and are never unmapped. |
| 275 | * |
| 276 | * For now, VM is already on, we only need to map the |
| 277 | * specified memory. |
| 278 | */ |
| 279 | vm_offset_t |
| 280 | pmap_map( |
| 281 | vm_offset_t virt, |
| 282 | vm_map_offset_t start_addr, |
| 283 | vm_map_offset_t end_addr, |
| 284 | vm_prot_t prot, |
| 285 | unsigned int flags) |
| 286 | { |
| 287 | kern_return_t kr; |
| 288 | int ps; |
| 289 | |
| 290 | ps = PAGE_SIZE; |
| 291 | while (start_addr < end_addr) { |
| 292 | kr = pmap_enter(kernel_pmap, (vm_map_offset_t)virt, |
| 293 | (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, TRUE); |
| 294 | |
| 295 | if (kr != KERN_SUCCESS) { |
| 296 | panic("%s: failed pmap_enter, " |
| 297 | "virt=%p, start_addr=%p, end_addr=%p, prot=%#x, flags=%#x" , |
| 298 | __FUNCTION__, |
| 299 | (void *)virt, (void *)start_addr, (void *)end_addr, prot, flags); |
| 300 | } |
| 301 | |
| 302 | virt += ps; |
| 303 | start_addr += ps; |
| 304 | } |
| 305 | return(virt); |
| 306 | } |
| 307 | |
| 308 | extern char *first_avail; |
| 309 | extern vm_offset_t virtual_avail, virtual_end; |
| 310 | extern pmap_paddr_t avail_start, avail_end; |
| 311 | extern vm_offset_t sHIB; |
| 312 | extern vm_offset_t eHIB; |
| 313 | extern vm_offset_t stext; |
| 314 | extern vm_offset_t etext; |
| 315 | extern vm_offset_t sdata, edata; |
| 316 | extern vm_offset_t sconst, econst; |
| 317 | |
| 318 | extern void *KPTphys; |
| 319 | |
| 320 | boolean_t pmap_smep_enabled = FALSE; |
| 321 | boolean_t pmap_smap_enabled = FALSE; |
| 322 | |
| 323 | void |
| 324 | pmap_cpu_init(void) |
| 325 | { |
| 326 | cpu_data_t *cdp = current_cpu_datap(); |
| 327 | |
| 328 | set_cr4(get_cr4() | CR4_PGE); |
| 329 | |
| 330 | /* |
| 331 | * Initialize the per-cpu, TLB-related fields. |
| 332 | */ |
| 333 | cdp->cpu_kernel_cr3 = kernel_pmap->pm_cr3; |
| 334 | cpu_shadowp(cdp->cpu_number)->cpu_kernel_cr3 = cdp->cpu_kernel_cr3; |
| 335 | cdp->cpu_active_cr3 = kernel_pmap->pm_cr3; |
| 336 | cdp->cpu_tlb_invalid = FALSE; |
| 337 | cdp->cpu_task_map = TASK_MAP_64BIT; |
| 338 | |
| 339 | pmap_pcid_configure(); |
| 340 | if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP) { |
| 341 | pmap_smep_enabled = TRUE; |
| 342 | #if DEVELOPMENT || DEBUG |
| 343 | boolean_t nsmep; |
| 344 | if (PE_parse_boot_argn("-pmap_smep_disable" , &nsmep, sizeof(nsmep))) { |
| 345 | pmap_smep_enabled = FALSE; |
| 346 | } |
| 347 | #endif |
| 348 | if (pmap_smep_enabled) { |
| 349 | set_cr4(get_cr4() | CR4_SMEP); |
| 350 | } |
| 351 | |
| 352 | } |
| 353 | if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMAP) { |
| 354 | pmap_smap_enabled = TRUE; |
| 355 | #if DEVELOPMENT || DEBUG |
| 356 | boolean_t nsmap; |
| 357 | if (PE_parse_boot_argn("-pmap_smap_disable" , &nsmap, sizeof(nsmap))) { |
| 358 | pmap_smap_enabled = FALSE; |
| 359 | } |
| 360 | #endif |
| 361 | if (pmap_smap_enabled) { |
| 362 | set_cr4(get_cr4() | CR4_SMAP); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | #if !MONOTONIC |
| 367 | if (cdp->cpu_fixed_pmcs_enabled) { |
| 368 | boolean_t enable = TRUE; |
| 369 | cpu_pmc_control(&enable); |
| 370 | } |
| 371 | #endif /* !MONOTONIC */ |
| 372 | } |
| 373 | |
| 374 | static uint32_t pmap_scale_shift(void) { |
| 375 | uint32_t scale = 0; |
| 376 | |
| 377 | if (sane_size <= 8*GB) { |
| 378 | scale = (uint32_t)(sane_size / (2 * GB)); |
| 379 | } else if (sane_size <= 32*GB) { |
| 380 | scale = 4 + (uint32_t)((sane_size - (8 * GB))/ (4 * GB)); |
| 381 | } else { |
| 382 | scale = 10 + (uint32_t)MIN(4, ((sane_size - (32 * GB))/ (8 * GB))); |
| 383 | } |
| 384 | return scale; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Bootstrap the system enough to run with virtual memory. |
| 389 | * Map the kernel's code and data, and allocate the system page table. |
| 390 | * Called with mapping OFF. Page_size must already be set. |
| 391 | */ |
| 392 | |
| 393 | void |
| 394 | pmap_bootstrap( |
| 395 | __unused vm_offset_t load_start, |
| 396 | __unused boolean_t IA32e) |
| 397 | { |
| 398 | #if NCOPY_WINDOWS > 0 |
| 399 | vm_offset_t va; |
| 400 | int i; |
| 401 | #endif |
| 402 | assert(IA32e); |
| 403 | |
| 404 | vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address |
| 405 | * known to VM */ |
| 406 | /* |
| 407 | * The kernel's pmap is statically allocated so we don't |
| 408 | * have to use pmap_create, which is unlikely to work |
| 409 | * correctly at this part of the boot sequence. |
| 410 | */ |
| 411 | |
| 412 | kernel_pmap = &kernel_pmap_store; |
| 413 | kernel_pmap->ref_count = 1; |
| 414 | kernel_pmap->nx_enabled = TRUE; |
| 415 | kernel_pmap->pm_task_map = TASK_MAP_64BIT; |
| 416 | kernel_pmap->pm_obj = (vm_object_t) NULL; |
| 417 | kernel_pmap->pm_pml4 = IdlePML4; |
| 418 | kernel_pmap->pm_upml4 = IdlePML4; |
| 419 | kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4); |
| 420 | kernel_pmap->pm_ucr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4); |
| 421 | kernel_pmap->pm_eptp = 0; |
| 422 | |
| 423 | pmap_pcid_initialize_kernel(kernel_pmap); |
| 424 | |
| 425 | current_cpu_datap()->cpu_kernel_cr3 = cpu_shadowp(cpu_number())->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3; |
| 426 | |
| 427 | nkpt = NKPT; |
| 428 | OSAddAtomic(NKPT, &inuse_ptepages_count); |
| 429 | OSAddAtomic64(NKPT, &alloc_ptepages_count); |
| 430 | bootstrap_wired_pages = NKPT; |
| 431 | |
| 432 | virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail; |
| 433 | virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS); |
| 434 | |
| 435 | #if NCOPY_WINDOWS > 0 |
| 436 | /* |
| 437 | * Reserve some special page table entries/VA space for temporary |
| 438 | * mapping of pages. |
| 439 | */ |
| 440 | #define SYSMAP(c, p, v, n) \ |
| 441 | v = (c)va; va += ((n)*INTEL_PGBYTES); |
| 442 | |
| 443 | va = virtual_avail; |
| 444 | |
| 445 | for (i=0; i<PMAP_NWINDOWS; i++) { |
| 446 | #if 1 |
| 447 | kprintf("trying to do SYSMAP idx %d %p\n" , i, |
| 448 | current_cpu_datap()); |
| 449 | kprintf("cpu_pmap %p\n" , current_cpu_datap()->cpu_pmap); |
| 450 | kprintf("mapwindow %p\n" , current_cpu_datap()->cpu_pmap->mapwindow); |
| 451 | kprintf("two stuff %p %p\n" , |
| 452 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), |
| 453 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR)); |
| 454 | #endif |
| 455 | SYSMAP(caddr_t, |
| 456 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), |
| 457 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR), |
| 458 | 1); |
| 459 | current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = |
| 460 | &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store); |
| 461 | *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0; |
| 462 | } |
| 463 | |
| 464 | /* DMAP user for debugger */ |
| 465 | SYSMAP(caddr_t, DMAP1, DADDR1, 1); |
| 466 | SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */ |
| 467 | |
| 468 | virtual_avail = va; |
| 469 | #endif |
| 470 | if (!PE_parse_boot_argn("npvhash" , &npvhashmask, sizeof (npvhashmask))) { |
| 471 | npvhashmask = ((NPVHASHBUCKETS) << pmap_scale_shift()) - 1; |
| 472 | |
| 473 | } |
| 474 | |
| 475 | npvhashbuckets = npvhashmask + 1; |
| 476 | |
| 477 | if (0 != ((npvhashbuckets) & npvhashmask)) { |
| 478 | panic("invalid hash %d, must be ((2^N)-1), " |
| 479 | "using default %d\n" , npvhashmask, NPVHASHMASK); |
| 480 | } |
| 481 | |
| 482 | simple_lock_init(&kernel_pmap->lock, 0); |
| 483 | simple_lock_init(&pv_hashed_free_list_lock, 0); |
| 484 | simple_lock_init(&pv_hashed_kern_free_list_lock, 0); |
| 485 | simple_lock_init(&pv_hash_table_lock,0); |
| 486 | simple_lock_init(&phys_backup_lock, 0); |
| 487 | |
| 488 | pmap_cpu_init(); |
| 489 | |
| 490 | if (pmap_pcid_ncpus) |
| 491 | printf("PMAP: PCID enabled\n" ); |
| 492 | |
| 493 | if (pmap_smep_enabled) |
| 494 | printf("PMAP: Supervisor Mode Execute Protection enabled\n" ); |
| 495 | if (pmap_smap_enabled) |
| 496 | printf("PMAP: Supervisor Mode Access Protection enabled\n" ); |
| 497 | |
| 498 | #if DEBUG |
| 499 | printf("Stack canary: 0x%lx\n" , __stack_chk_guard[0]); |
| 500 | printf("early_random(): 0x%qx\n" , early_random()); |
| 501 | #endif |
| 502 | #if DEVELOPMENT || DEBUG |
| 503 | boolean_t ptmp; |
| 504 | /* Check if the user has requested disabling stack or heap no-execute |
| 505 | * enforcement. These are "const" variables; that qualifier is cast away |
| 506 | * when altering them. The TEXT/DATA const sections are marked |
| 507 | * write protected later in the kernel startup sequence, so altering |
| 508 | * them is possible at this point, in pmap_bootstrap(). |
| 509 | */ |
| 510 | if (PE_parse_boot_argn("-pmap_disable_kheap_nx" , &ptmp, sizeof(ptmp))) { |
| 511 | boolean_t *pdknxp = (boolean_t *) &pmap_disable_kheap_nx; |
| 512 | *pdknxp = TRUE; |
| 513 | } |
| 514 | |
| 515 | if (PE_parse_boot_argn("-pmap_disable_kstack_nx" , &ptmp, sizeof(ptmp))) { |
| 516 | boolean_t *pdknhp = (boolean_t *) &pmap_disable_kstack_nx; |
| 517 | *pdknhp = TRUE; |
| 518 | } |
| 519 | #endif /* DEVELOPMENT || DEBUG */ |
| 520 | |
| 521 | boot_args *args = (boot_args *)PE_state.bootArgs; |
| 522 | if (args->efiMode == kBootArgsEfiMode32) { |
| 523 | printf("EFI32: kernel virtual space limited to 4GB\n" ); |
| 524 | virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32; |
| 525 | } |
| 526 | kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n" , |
| 527 | (long)KERNEL_BASE, (long)virtual_end); |
| 528 | kprintf("Available physical space from 0x%llx to 0x%llx\n" , |
| 529 | avail_start, avail_end); |
| 530 | |
| 531 | /* |
| 532 | * The -no_shared_cr3 boot-arg is a debugging feature (set by default |
| 533 | * in the DEBUG kernel) to force the kernel to switch to its own map |
| 534 | * (and cr3) when control is in kernelspace. The kernel's map does not |
| 535 | * include (i.e. share) userspace so wild references will cause |
| 536 | * a panic. Only copyin and copyout are exempt from this. |
| 537 | */ |
| 538 | (void) PE_parse_boot_argn("-no_shared_cr3" , |
| 539 | &no_shared_cr3, sizeof (no_shared_cr3)); |
| 540 | if (no_shared_cr3) |
| 541 | kprintf("Kernel not sharing user map\n" ); |
| 542 | |
| 543 | #ifdef PMAP_TRACES |
| 544 | if (PE_parse_boot_argn("-pmap_trace" , &pmap_trace, sizeof (pmap_trace))) { |
| 545 | kprintf("Kernel traces for pmap operations enabled\n" ); |
| 546 | } |
| 547 | #endif /* PMAP_TRACES */ |
| 548 | |
| 549 | #if MACH_ASSERT |
| 550 | PE_parse_boot_argn("pmap_stats_assert" , |
| 551 | &pmap_stats_assert, |
| 552 | sizeof (pmap_stats_assert)); |
| 553 | #endif /* MACH_ASSERT */ |
| 554 | } |
| 555 | |
| 556 | void |
| 557 | pmap_virtual_space( |
| 558 | vm_offset_t *startp, |
| 559 | vm_offset_t *endp) |
| 560 | { |
| 561 | *startp = virtual_avail; |
| 562 | *endp = virtual_end; |
| 563 | } |
| 564 | |
| 565 | |
| 566 | |
| 567 | |
| 568 | #if HIBERNATION |
| 569 | |
| 570 | #include <IOKit/IOHibernatePrivate.h> |
| 571 | |
| 572 | int32_t pmap_npages; |
| 573 | int32_t pmap_teardown_last_valid_compact_indx = -1; |
| 574 | |
| 575 | |
| 576 | void hibernate_rebuild_pmap_structs(void); |
| 577 | void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *); |
| 578 | void pmap_pack_index(uint32_t); |
| 579 | int32_t pmap_unpack_index(pv_rooted_entry_t); |
| 580 | |
| 581 | |
| 582 | int32_t |
| 583 | pmap_unpack_index(pv_rooted_entry_t pv_h) |
| 584 | { |
| 585 | int32_t indx = 0; |
| 586 | |
| 587 | indx = (int32_t)(*((uint64_t *)(&pv_h->qlink.next)) >> 48); |
| 588 | indx = indx << 16; |
| 589 | indx |= (int32_t)(*((uint64_t *)(&pv_h->qlink.prev)) >> 48); |
| 590 | |
| 591 | *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)0xffff << 48); |
| 592 | *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)0xffff << 48); |
| 593 | |
| 594 | return (indx); |
| 595 | } |
| 596 | |
| 597 | |
| 598 | void |
| 599 | pmap_pack_index(uint32_t indx) |
| 600 | { |
| 601 | pv_rooted_entry_t pv_h; |
| 602 | |
| 603 | pv_h = &pv_head_table[indx]; |
| 604 | |
| 605 | *((uint64_t *)(&pv_h->qlink.next)) &= ~((uint64_t)0xffff << 48); |
| 606 | *((uint64_t *)(&pv_h->qlink.prev)) &= ~((uint64_t)0xffff << 48); |
| 607 | |
| 608 | *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)(indx >> 16)) << 48; |
| 609 | *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)(indx & 0xffff)) << 48; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | void |
| 614 | hibernate_teardown_pmap_structs(addr64_t *unneeded_start, addr64_t *unneeded_end) |
| 615 | { |
| 616 | int32_t i; |
| 617 | int32_t compact_target_indx; |
| 618 | |
| 619 | compact_target_indx = 0; |
| 620 | |
| 621 | for (i = 0; i < pmap_npages; i++) { |
| 622 | if (pv_head_table[i].pmap == PMAP_NULL) { |
| 623 | |
| 624 | if (pv_head_table[compact_target_indx].pmap != PMAP_NULL) |
| 625 | compact_target_indx = i; |
| 626 | } else { |
| 627 | pmap_pack_index((uint32_t)i); |
| 628 | |
| 629 | if (pv_head_table[compact_target_indx].pmap == PMAP_NULL) { |
| 630 | /* |
| 631 | * we've got a hole to fill, so |
| 632 | * move this pv_rooted_entry_t to it's new home |
| 633 | */ |
| 634 | pv_head_table[compact_target_indx] = pv_head_table[i]; |
| 635 | pv_head_table[i].pmap = PMAP_NULL; |
| 636 | |
| 637 | pmap_teardown_last_valid_compact_indx = compact_target_indx; |
| 638 | compact_target_indx++; |
| 639 | } else |
| 640 | pmap_teardown_last_valid_compact_indx = i; |
| 641 | } |
| 642 | } |
| 643 | *unneeded_start = (addr64_t)&pv_head_table[pmap_teardown_last_valid_compact_indx+1]; |
| 644 | *unneeded_end = (addr64_t)&pv_head_table[pmap_npages-1]; |
| 645 | |
| 646 | HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n" , pmap_teardown_last_valid_compact_indx); |
| 647 | } |
| 648 | |
| 649 | |
| 650 | void |
| 651 | hibernate_rebuild_pmap_structs(void) |
| 652 | { |
| 653 | int32_t cindx, eindx, rindx = 0; |
| 654 | pv_rooted_entry_t pv_h; |
| 655 | |
| 656 | eindx = (int32_t)pmap_npages; |
| 657 | |
| 658 | for (cindx = pmap_teardown_last_valid_compact_indx; cindx >= 0; cindx--) { |
| 659 | |
| 660 | pv_h = &pv_head_table[cindx]; |
| 661 | |
| 662 | rindx = pmap_unpack_index(pv_h); |
| 663 | assert(rindx < pmap_npages); |
| 664 | |
| 665 | if (rindx != cindx) { |
| 666 | /* |
| 667 | * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs, |
| 668 | * so move it back to its real location |
| 669 | */ |
| 670 | pv_head_table[rindx] = pv_head_table[cindx]; |
| 671 | } |
| 672 | if (rindx+1 != eindx) { |
| 673 | /* |
| 674 | * the 'hole' between this vm_rooted_entry_t and the previous |
| 675 | * vm_rooted_entry_t we moved needs to be initialized as |
| 676 | * a range of zero'd vm_rooted_entry_t's |
| 677 | */ |
| 678 | bzero((char *)&pv_head_table[rindx+1], (eindx - rindx - 1) * sizeof (struct pv_rooted_entry)); |
| 679 | } |
| 680 | eindx = rindx; |
| 681 | } |
| 682 | if (rindx) |
| 683 | bzero ((char *)&pv_head_table[0], rindx * sizeof (struct pv_rooted_entry)); |
| 684 | |
| 685 | HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n" , pmap_teardown_last_valid_compact_indx); |
| 686 | } |
| 687 | |
| 688 | #endif |
| 689 | |
| 690 | /* |
| 691 | * Initialize the pmap module. |
| 692 | * Called by vm_init, to initialize any structures that the pmap |
| 693 | * system needs to map virtual memory. |
| 694 | */ |
| 695 | void |
| 696 | pmap_init(void) |
| 697 | { |
| 698 | long npages; |
| 699 | vm_offset_t addr; |
| 700 | vm_size_t s, vsize; |
| 701 | vm_map_offset_t vaddr; |
| 702 | ppnum_t ppn; |
| 703 | |
| 704 | |
| 705 | kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store; |
| 706 | _vm_object_allocate((vm_object_size_t)NPML4PGS * PAGE_SIZE, &kpml4obj_object_store); |
| 707 | |
| 708 | kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store; |
| 709 | _vm_object_allocate((vm_object_size_t)NPDPTPGS * PAGE_SIZE, &kpdptobj_object_store); |
| 710 | |
| 711 | kernel_pmap->pm_obj = &kptobj_object_store; |
| 712 | _vm_object_allocate((vm_object_size_t)NPDEPGS * PAGE_SIZE, &kptobj_object_store); |
| 713 | |
| 714 | /* |
| 715 | * Allocate memory for the pv_head_table and its lock bits, |
| 716 | * the modify bit array, and the pte_page table. |
| 717 | */ |
| 718 | |
| 719 | /* |
| 720 | * zero bias all these arrays now instead of off avail_start |
| 721 | * so we cover all memory |
| 722 | */ |
| 723 | |
| 724 | npages = i386_btop(avail_end); |
| 725 | #if HIBERNATION |
| 726 | pmap_npages = (uint32_t)npages; |
| 727 | #endif |
| 728 | s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages |
| 729 | + (sizeof (struct pv_hashed_entry_t *) * (npvhashbuckets)) |
| 730 | + pv_lock_table_size(npages) |
| 731 | + pv_hash_lock_table_size((npvhashbuckets)) |
| 732 | + npages); |
| 733 | s = round_page(s); |
| 734 | if (kernel_memory_allocate(kernel_map, &addr, s, 0, |
| 735 | KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_PMAP) |
| 736 | != KERN_SUCCESS) |
| 737 | panic("pmap_init" ); |
| 738 | |
| 739 | memset((char *)addr, 0, s); |
| 740 | |
| 741 | vaddr = addr; |
| 742 | vsize = s; |
| 743 | |
| 744 | #if PV_DEBUG |
| 745 | if (0 == npvhashmask) panic("npvhashmask not initialized" ); |
| 746 | #endif |
| 747 | |
| 748 | /* |
| 749 | * Allocate the structures first to preserve word-alignment. |
| 750 | */ |
| 751 | pv_head_table = (pv_rooted_entry_t) addr; |
| 752 | addr = (vm_offset_t) (pv_head_table + npages); |
| 753 | |
| 754 | pv_hash_table = (pv_hashed_entry_t *)addr; |
| 755 | addr = (vm_offset_t) (pv_hash_table + (npvhashbuckets)); |
| 756 | |
| 757 | pv_lock_table = (char *) addr; |
| 758 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)); |
| 759 | |
| 760 | pv_hash_lock_table = (char *) addr; |
| 761 | addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhashbuckets))); |
| 762 | |
| 763 | pmap_phys_attributes = (char *) addr; |
| 764 | |
| 765 | ppnum_t last_pn = i386_btop(avail_end); |
| 766 | unsigned int i; |
| 767 | pmap_memory_region_t *pmptr = pmap_memory_regions; |
| 768 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { |
| 769 | if (pmptr->type != kEfiConventionalMemory) |
| 770 | continue; |
| 771 | ppnum_t pn; |
| 772 | for (pn = pmptr->base; pn <= pmptr->end; pn++) { |
| 773 | if (pn < last_pn) { |
| 774 | pmap_phys_attributes[pn] |= PHYS_MANAGED; |
| 775 | |
| 776 | if (pn > last_managed_page) |
| 777 | last_managed_page = pn; |
| 778 | |
| 779 | if (pn >= lowest_hi && pn <= highest_hi) |
| 780 | pmap_phys_attributes[pn] |= PHYS_NOENCRYPT; |
| 781 | } |
| 782 | } |
| 783 | } |
| 784 | while (vsize) { |
| 785 | ppn = pmap_find_phys(kernel_pmap, vaddr); |
| 786 | |
| 787 | pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT; |
| 788 | |
| 789 | vaddr += PAGE_SIZE; |
| 790 | vsize -= PAGE_SIZE; |
| 791 | } |
| 792 | /* |
| 793 | * Create the zone of physical maps, |
| 794 | * and of the physical-to-virtual entries. |
| 795 | */ |
| 796 | s = (vm_size_t) sizeof(struct pmap); |
| 797 | pmap_zone = zinit(s, 400*s, 4096, "pmap" ); /* XXX */ |
| 798 | zone_change(pmap_zone, Z_NOENCRYPT, TRUE); |
| 799 | |
| 800 | pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors" ); |
| 801 | zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE); |
| 802 | |
| 803 | /* The anchor is required to be page aligned. Zone debugging adds |
| 804 | * padding which may violate that requirement. Tell the zone |
| 805 | * subsystem that alignment is required. |
| 806 | */ |
| 807 | |
| 808 | zone_change(pmap_anchor_zone, Z_ALIGNMENT_REQUIRED, TRUE); |
| 809 | /* TODO: possible general optimisation...pre-allocate via zones commonly created |
| 810 | * level3/2 pagetables |
| 811 | */ |
| 812 | pmap_uanchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable user anchors" ); |
| 813 | zone_change(pmap_uanchor_zone, Z_NOENCRYPT, TRUE); |
| 814 | |
| 815 | /* The anchor is required to be page aligned. Zone debugging adds |
| 816 | * padding which may violate that requirement. Tell the zone |
| 817 | * subsystem that alignment is required. |
| 818 | */ |
| 819 | |
| 820 | zone_change(pmap_uanchor_zone, Z_ALIGNMENT_REQUIRED, TRUE); |
| 821 | |
| 822 | s = (vm_size_t) sizeof(struct pv_hashed_entry); |
| 823 | pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */, |
| 824 | 4096 * 3 /* LCM x86_64*/, "pv_list" ); |
| 825 | zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE); |
| 826 | zone_change(pv_hashed_list_zone, Z_GZALLOC_EXEMPT, TRUE); |
| 827 | |
| 828 | /* create pv entries for kernel pages mapped by low level |
| 829 | startup code. these have to exist so we can pmap_remove() |
| 830 | e.g. kext pages from the middle of our addr space */ |
| 831 | |
| 832 | vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS; |
| 833 | for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) { |
| 834 | pv_rooted_entry_t pv_e; |
| 835 | |
| 836 | pv_e = pai_to_pvh(ppn); |
| 837 | pv_e->va_and_flags = vaddr; |
| 838 | vaddr += PAGE_SIZE; |
| 839 | pv_e->pmap = kernel_pmap; |
| 840 | queue_init(&pv_e->qlink); |
| 841 | } |
| 842 | pmap_initialized = TRUE; |
| 843 | |
| 844 | max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t); |
| 845 | |
| 846 | /* |
| 847 | * Ensure the kernel's PML4 entry exists for the basement |
| 848 | * before this is shared with any user. |
| 849 | */ |
| 850 | pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT, PMAP_EXPAND_OPTIONS_NONE); |
| 851 | |
| 852 | #if CONFIG_VMX |
| 853 | pmap_ept_support_ad = vmx_hv_support() && (VMX_CAP(MSR_IA32_VMX_EPT_VPID_CAP, MSR_IA32_VMX_EPT_VPID_CAP_AD_SHIFT, 1) ? TRUE : FALSE); |
| 854 | pmap_eptp_flags = HV_VMX_EPTP_MEMORY_TYPE_WB | HV_VMX_EPTP_WALK_LENGTH(4) | (pmap_ept_support_ad ? HV_VMX_EPTP_ENABLE_AD_FLAGS : 0); |
| 855 | #endif /* CONFIG_VMX */ |
| 856 | } |
| 857 | |
| 858 | static |
| 859 | void pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX, boolean_t ro) { |
| 860 | uint64_t ev = sv + nxrosz, cv = sv; |
| 861 | pd_entry_t *pdep; |
| 862 | pt_entry_t *ptep = NULL; |
| 863 | |
| 864 | assert(!is_ept_pmap(npmap)); |
| 865 | |
| 866 | assert(((sv & 0xFFFULL) | (nxrosz & 0xFFFULL)) == 0); |
| 867 | |
| 868 | for (pdep = pmap_pde(npmap, cv); pdep != NULL && (cv < ev);) { |
| 869 | uint64_t pdev = (cv & ~((uint64_t)PDEMASK)); |
| 870 | |
| 871 | if (*pdep & INTEL_PTE_PS) { |
| 872 | if (NX) |
| 873 | *pdep |= INTEL_PTE_NX; |
| 874 | if (ro) |
| 875 | *pdep &= ~INTEL_PTE_WRITE; |
| 876 | cv += NBPD; |
| 877 | cv &= ~((uint64_t) PDEMASK); |
| 878 | pdep = pmap_pde(npmap, cv); |
| 879 | continue; |
| 880 | } |
| 881 | |
| 882 | for (ptep = pmap_pte(npmap, cv); ptep != NULL && (cv < (pdev + NBPD)) && (cv < ev);) { |
| 883 | if (NX) |
| 884 | *ptep |= INTEL_PTE_NX; |
| 885 | if (ro) |
| 886 | *ptep &= ~INTEL_PTE_WRITE; |
| 887 | cv += NBPT; |
| 888 | ptep = pmap_pte(npmap, cv); |
| 889 | } |
| 890 | } |
| 891 | DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n" , __FUNCTION__, sv, nxrosz, NX, ro, cv, ptep ? *ptep: 0); |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * Called once VM is fully initialized so that we can release unused |
| 896 | * sections of low memory to the general pool. |
| 897 | * Also complete the set-up of identity-mapped sections of the kernel: |
| 898 | * 1) write-protect kernel text |
| 899 | * 2) map kernel text using large pages if possible |
| 900 | * 3) read and write-protect page zero (for K32) |
| 901 | * 4) map the global page at the appropriate virtual address. |
| 902 | * |
| 903 | * Use of large pages |
| 904 | * ------------------ |
| 905 | * To effectively map and write-protect all kernel text pages, the text |
| 906 | * must be 2M-aligned at the base, and the data section above must also be |
| 907 | * 2M-aligned. That is, there's padding below and above. This is achieved |
| 908 | * through linker directives. Large pages are used only if this alignment |
| 909 | * exists (and not overriden by the -kernel_text_page_4K boot-arg). The |
| 910 | * memory layout is: |
| 911 | * |
| 912 | * : : |
| 913 | * | __DATA | |
| 914 | * sdata: ================== 2Meg |
| 915 | * | | |
| 916 | * | zero-padding | |
| 917 | * | | |
| 918 | * etext: ------------------ |
| 919 | * | | |
| 920 | * : : |
| 921 | * | | |
| 922 | * | __TEXT | |
| 923 | * | | |
| 924 | * : : |
| 925 | * | | |
| 926 | * stext: ================== 2Meg |
| 927 | * | | |
| 928 | * | zero-padding | |
| 929 | * | | |
| 930 | * eHIB: ------------------ |
| 931 | * | __HIB | |
| 932 | * : : |
| 933 | * |
| 934 | * Prior to changing the mapping from 4K to 2M, the zero-padding pages |
| 935 | * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the |
| 936 | * 4K pages covering [stext,etext] are coalesced as 2M large pages. |
| 937 | * The now unused level-1 PTE pages are also freed. |
| 938 | */ |
| 939 | extern ppnum_t vm_kernel_base_page; |
| 940 | static uint32_t constptes = 0, dataptes = 0; |
| 941 | |
| 942 | void pmap_lowmem_finalize(void) { |
| 943 | spl_t spl; |
| 944 | int i; |
| 945 | |
| 946 | /* |
| 947 | * Update wired memory statistics for early boot pages |
| 948 | */ |
| 949 | PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE); |
| 950 | |
| 951 | /* |
| 952 | * Free pages in pmap regions below the base: |
| 953 | * rdar://6332712 |
| 954 | * We can't free all the pages to VM that EFI reports available. |
| 955 | * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake. |
| 956 | * There's also a size miscalculation here: pend is one page less |
| 957 | * than it should be but this is not fixed to be backwards |
| 958 | * compatible. |
| 959 | * This is important for KASLR because up to 256*2MB = 512MB of space |
| 960 | * needs has to be released to VM. |
| 961 | */ |
| 962 | for (i = 0; |
| 963 | pmap_memory_regions[i].end < vm_kernel_base_page; |
| 964 | i++) { |
| 965 | vm_offset_t pbase = i386_ptob(pmap_memory_regions[i].base); |
| 966 | vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1); |
| 967 | |
| 968 | DBG("pmap region %d [%p..[%p\n" , |
| 969 | i, (void *) pbase, (void *) pend); |
| 970 | |
| 971 | if (pmap_memory_regions[i].attribute & EFI_MEMORY_KERN_RESERVED) |
| 972 | continue; |
| 973 | /* |
| 974 | * rdar://6332712 |
| 975 | * Adjust limits not to free pages in range 0xc0000-0xff000. |
| 976 | */ |
| 977 | if (pbase >= 0xc0000 && pend <= 0x100000) |
| 978 | continue; |
| 979 | if (pbase < 0xc0000 && pend > 0x100000) { |
| 980 | /* page range entirely within region, free lower part */ |
| 981 | DBG("- ml_static_mfree(%p,%p)\n" , |
| 982 | (void *) ml_static_ptovirt(pbase), |
| 983 | (void *) (0xc0000-pbase)); |
| 984 | ml_static_mfree(ml_static_ptovirt(pbase),0xc0000-pbase); |
| 985 | pbase = 0x100000; |
| 986 | } |
| 987 | if (pbase < 0xc0000) |
| 988 | pend = MIN(pend, 0xc0000); |
| 989 | if (pend > 0x100000) |
| 990 | pbase = MAX(pbase, 0x100000); |
| 991 | DBG("- ml_static_mfree(%p,%p)\n" , |
| 992 | (void *) ml_static_ptovirt(pbase), |
| 993 | (void *) (pend - pbase)); |
| 994 | ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase); |
| 995 | } |
| 996 | |
| 997 | /* A final pass to get rid of all initial identity mappings to |
| 998 | * low pages. |
| 999 | */ |
| 1000 | DPRINTF("%s: Removing mappings from 0->0x%lx\n" , __FUNCTION__, vm_kernel_base); |
| 1001 | |
| 1002 | /* |
| 1003 | * Remove all mappings past the boot-cpu descriptor aliases and low globals. |
| 1004 | * Non-boot-cpu GDT aliases will be remapped later as needed. |
| 1005 | */ |
| 1006 | pmap_remove(kernel_pmap, LOWGLOBAL_ALIAS + PAGE_SIZE, vm_kernel_base); |
| 1007 | |
| 1008 | /* |
| 1009 | * If text and data are both 2MB-aligned, |
| 1010 | * we can map text with large-pages, |
| 1011 | * unless the -kernel_text_ps_4K boot-arg overrides. |
| 1012 | */ |
| 1013 | if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) { |
| 1014 | kprintf("Kernel text is 2MB aligned" ); |
| 1015 | kernel_text_ps_4K = FALSE; |
| 1016 | if (PE_parse_boot_argn("-kernel_text_ps_4K" , |
| 1017 | &kernel_text_ps_4K, |
| 1018 | sizeof (kernel_text_ps_4K))) |
| 1019 | kprintf(" but will be mapped with 4K pages\n" ); |
| 1020 | else |
| 1021 | kprintf(" and will be mapped with 2M pages\n" ); |
| 1022 | } |
| 1023 | |
| 1024 | (void) PE_parse_boot_argn("wpkernel" , &wpkernel, sizeof (wpkernel)); |
| 1025 | if (wpkernel) |
| 1026 | kprintf("Kernel text %p-%p to be write-protected\n" , |
| 1027 | (void *) stext, (void *) etext); |
| 1028 | |
| 1029 | spl = splhigh(); |
| 1030 | |
| 1031 | /* |
| 1032 | * Scan over text if mappings are to be changed: |
| 1033 | * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0 |
| 1034 | * - Change to large-pages if possible and not overriden. |
| 1035 | */ |
| 1036 | if (kernel_text_ps_4K && wpkernel) { |
| 1037 | vm_offset_t myva; |
| 1038 | for (myva = stext; myva < etext; myva += PAGE_SIZE) { |
| 1039 | pt_entry_t *ptep; |
| 1040 | |
| 1041 | ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva); |
| 1042 | if (ptep) |
| 1043 | pmap_store_pte(ptep, *ptep & ~INTEL_PTE_WRITE); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if (!kernel_text_ps_4K) { |
| 1048 | vm_offset_t myva; |
| 1049 | |
| 1050 | /* |
| 1051 | * Release zero-filled page padding used for 2M-alignment. |
| 1052 | */ |
| 1053 | DBG("ml_static_mfree(%p,%p) for padding below text\n" , |
| 1054 | (void *) eHIB, (void *) (stext - eHIB)); |
| 1055 | ml_static_mfree(eHIB, stext - eHIB); |
| 1056 | DBG("ml_static_mfree(%p,%p) for padding above text\n" , |
| 1057 | (void *) etext, (void *) (sdata - etext)); |
| 1058 | ml_static_mfree(etext, sdata - etext); |
| 1059 | |
| 1060 | /* |
| 1061 | * Coalesce text pages into large pages. |
| 1062 | */ |
| 1063 | for (myva = stext; myva < sdata; myva += I386_LPGBYTES) { |
| 1064 | pt_entry_t *ptep; |
| 1065 | vm_offset_t pte_phys; |
| 1066 | pt_entry_t *pdep; |
| 1067 | pt_entry_t pde; |
| 1068 | |
| 1069 | pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva); |
| 1070 | ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva); |
| 1071 | DBG("myva: %p pdep: %p ptep: %p\n" , |
| 1072 | (void *) myva, (void *) pdep, (void *) ptep); |
| 1073 | if ((*ptep & INTEL_PTE_VALID) == 0) |
| 1074 | continue; |
| 1075 | pte_phys = (vm_offset_t)(*ptep & PG_FRAME); |
| 1076 | pde = *pdep & PTMASK; /* page attributes from pde */ |
| 1077 | pde |= INTEL_PTE_PS; /* make it a 2M entry */ |
| 1078 | pde |= pte_phys; /* take page frame from pte */ |
| 1079 | |
| 1080 | if (wpkernel) |
| 1081 | pde &= ~INTEL_PTE_WRITE; |
| 1082 | DBG("pmap_store_pte(%p,0x%llx)\n" , |
| 1083 | (void *)pdep, pde); |
| 1084 | pmap_store_pte(pdep, pde); |
| 1085 | |
| 1086 | /* |
| 1087 | * Free the now-unused level-1 pte. |
| 1088 | * Note: ptep is a virtual address to the pte in the |
| 1089 | * recursive map. We can't use this address to free |
| 1090 | * the page. Instead we need to compute its address |
| 1091 | * in the Idle PTEs in "low memory". |
| 1092 | */ |
| 1093 | vm_offset_t vm_ptep = (vm_offset_t) KPTphys |
| 1094 | + (pte_phys >> PTPGSHIFT); |
| 1095 | DBG("ml_static_mfree(%p,0x%x) for pte\n" , |
| 1096 | (void *) vm_ptep, PAGE_SIZE); |
| 1097 | ml_static_mfree(vm_ptep, PAGE_SIZE); |
| 1098 | } |
| 1099 | |
| 1100 | /* Change variable read by sysctl machdep.pmap */ |
| 1101 | pmap_kernel_text_ps = I386_LPGBYTES; |
| 1102 | } |
| 1103 | |
| 1104 | boolean_t doconstro = TRUE; |
| 1105 | #if DEVELOPMENT || DEBUG |
| 1106 | (void) PE_parse_boot_argn("dataconstro" , &doconstro, sizeof(doconstro)); |
| 1107 | #endif |
| 1108 | if (doconstro) { |
| 1109 | if (sconst & PAGE_MASK) { |
| 1110 | panic("CONST segment misaligned 0x%lx 0x%lx\n" , |
| 1111 | sconst, econst); |
| 1112 | } |
| 1113 | kprintf("Marking const DATA read-only\n" ); |
| 1114 | } |
| 1115 | |
| 1116 | vm_offset_t dva; |
| 1117 | |
| 1118 | for (dva = sdata; dva < edata; dva += I386_PGBYTES) { |
| 1119 | assert(((sdata | edata) & PAGE_MASK) == 0); |
| 1120 | pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva); |
| 1121 | |
| 1122 | dpte = *dptep; |
| 1123 | assert((dpte & INTEL_PTE_VALID)); |
| 1124 | dpte |= INTEL_PTE_NX; |
| 1125 | pmap_store_pte(dptep, dpte); |
| 1126 | dataptes++; |
| 1127 | } |
| 1128 | assert(dataptes > 0); |
| 1129 | |
| 1130 | for (dva = sconst; dva < econst; dva += I386_PGBYTES) { |
| 1131 | pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva); |
| 1132 | |
| 1133 | dpte = *dptep; |
| 1134 | |
| 1135 | assert((dpte & INTEL_PTE_VALID)); |
| 1136 | dpte |= INTEL_PTE_NX; |
| 1137 | dpte &= ~INTEL_PTE_WRITE; |
| 1138 | constptes++; |
| 1139 | pmap_store_pte(dptep, dpte); |
| 1140 | } |
| 1141 | |
| 1142 | assert(constptes > 0); |
| 1143 | |
| 1144 | kernel_segment_command_t * seg; |
| 1145 | kernel_section_t * sec; |
| 1146 | |
| 1147 | for (seg = firstseg(); seg != NULL; seg = nextsegfromheader(&_mh_execute_header, seg)) { |
| 1148 | if (!strcmp(seg->segname, "__TEXT" ) || |
| 1149 | !strcmp(seg->segname, "__DATA" )) { |
| 1150 | continue; |
| 1151 | } |
| 1152 | //XXX |
| 1153 | if (!strcmp(seg->segname, "__KLD" )) { |
| 1154 | continue; |
| 1155 | } |
| 1156 | if (!strcmp(seg->segname, "__HIB" )) { |
| 1157 | for (sec = firstsect(seg); sec != NULL; sec = nextsect(seg, sec)) { |
| 1158 | if (sec->addr & PAGE_MASK) |
| 1159 | panic("__HIB segment's sections misaligned" ); |
| 1160 | if (!strcmp(sec->sectname, "__text" )) { |
| 1161 | pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), FALSE, TRUE); |
| 1162 | } else { |
| 1163 | pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), TRUE, FALSE); |
| 1164 | } |
| 1165 | } |
| 1166 | } else { |
| 1167 | pmap_mark_range(kernel_pmap, seg->vmaddr, round_page_64(seg->vmsize), TRUE, FALSE); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * If we're debugging, map the low global vector page at the fixed |
| 1173 | * virtual address. Otherwise, remove the mapping for this. |
| 1174 | */ |
| 1175 | if (debug_boot_arg) { |
| 1176 | pt_entry_t *pte = NULL; |
| 1177 | if (0 == (pte = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS))) |
| 1178 | panic("lowmem pte" ); |
| 1179 | /* make sure it is defined on page boundary */ |
| 1180 | assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK)); |
| 1181 | pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo) |
| 1182 | | INTEL_PTE_REF |
| 1183 | | INTEL_PTE_MOD |
| 1184 | | INTEL_PTE_WIRED |
| 1185 | | INTEL_PTE_VALID |
| 1186 | | INTEL_PTE_WRITE |
| 1187 | | INTEL_PTE_NX); |
| 1188 | } else { |
| 1189 | pmap_remove(kernel_pmap, |
| 1190 | LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE); |
| 1191 | } |
| 1192 | |
| 1193 | splx(spl); |
| 1194 | if (pmap_pcid_ncpus) |
| 1195 | tlb_flush_global(); |
| 1196 | else |
| 1197 | flush_tlb_raw(); |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * this function is only used for debugging fron the vm layer |
| 1202 | */ |
| 1203 | boolean_t |
| 1204 | pmap_verify_free( |
| 1205 | ppnum_t pn) |
| 1206 | { |
| 1207 | pv_rooted_entry_t pv_h; |
| 1208 | int pai; |
| 1209 | boolean_t result; |
| 1210 | |
| 1211 | assert(pn != vm_page_fictitious_addr); |
| 1212 | |
| 1213 | if (!pmap_initialized) |
| 1214 | return(TRUE); |
| 1215 | |
| 1216 | if (pn == vm_page_guard_addr) |
| 1217 | return TRUE; |
| 1218 | |
| 1219 | pai = ppn_to_pai(pn); |
| 1220 | if (!IS_MANAGED_PAGE(pai)) |
| 1221 | return(FALSE); |
| 1222 | pv_h = pai_to_pvh(pn); |
| 1223 | result = (pv_h->pmap == PMAP_NULL); |
| 1224 | return(result); |
| 1225 | } |
| 1226 | |
| 1227 | boolean_t |
| 1228 | pmap_is_empty( |
| 1229 | pmap_t pmap, |
| 1230 | vm_map_offset_t va_start, |
| 1231 | vm_map_offset_t va_end) |
| 1232 | { |
| 1233 | vm_map_offset_t offset; |
| 1234 | ppnum_t phys_page; |
| 1235 | |
| 1236 | if (pmap == PMAP_NULL) { |
| 1237 | return TRUE; |
| 1238 | } |
| 1239 | |
| 1240 | /* |
| 1241 | * Check the resident page count |
| 1242 | * - if it's zero, the pmap is completely empty. |
| 1243 | * This short-circuit test prevents a virtual address scan which is |
| 1244 | * painfully slow for 64-bit spaces. |
| 1245 | * This assumes the count is correct |
| 1246 | * .. the debug kernel ought to be checking perhaps by page table walk. |
| 1247 | */ |
| 1248 | if (pmap->stats.resident_count == 0) |
| 1249 | return TRUE; |
| 1250 | |
| 1251 | for (offset = va_start; |
| 1252 | offset < va_end; |
| 1253 | offset += PAGE_SIZE_64) { |
| 1254 | phys_page = pmap_find_phys(pmap, offset); |
| 1255 | if (phys_page) { |
| 1256 | kprintf("pmap_is_empty(%p,0x%llx,0x%llx): " |
| 1257 | "page %d at 0x%llx\n" , |
| 1258 | pmap, va_start, va_end, phys_page, offset); |
| 1259 | return FALSE; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | return TRUE; |
| 1264 | } |
| 1265 | |
| 1266 | void |
| 1267 | hv_ept_pmap_create(void **ept_pmap, void **eptp) |
| 1268 | { |
| 1269 | pmap_t p; |
| 1270 | |
| 1271 | if ((ept_pmap == NULL) || (eptp == NULL)) { |
| 1272 | return; |
| 1273 | } |
| 1274 | |
| 1275 | p = pmap_create_options(get_task_ledger(current_task()), 0, (PMAP_CREATE_64BIT | PMAP_CREATE_EPT)); |
| 1276 | if (p == PMAP_NULL) { |
| 1277 | *ept_pmap = NULL; |
| 1278 | *eptp = NULL; |
| 1279 | return; |
| 1280 | } |
| 1281 | |
| 1282 | assert(is_ept_pmap(p)); |
| 1283 | |
| 1284 | *ept_pmap = (void*)p; |
| 1285 | *eptp = (void*)(p->pm_eptp); |
| 1286 | return; |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * Create and return a physical map. |
| 1291 | * |
| 1292 | * If the size specified for the map |
| 1293 | * is zero, the map is an actual physical |
| 1294 | * map, and may be referenced by the |
| 1295 | * hardware. |
| 1296 | * |
| 1297 | * If the size specified is non-zero, |
| 1298 | * the map will be used in software only, and |
| 1299 | * is bounded by that size. |
| 1300 | */ |
| 1301 | |
| 1302 | pmap_t |
| 1303 | pmap_create_options( |
| 1304 | ledger_t ledger, |
| 1305 | vm_map_size_t sz, |
| 1306 | int flags) |
| 1307 | { |
| 1308 | pmap_t p; |
| 1309 | vm_size_t size; |
| 1310 | pml4_entry_t *pml4; |
| 1311 | pml4_entry_t *kpml4; |
| 1312 | |
| 1313 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, sz, flags); |
| 1314 | |
| 1315 | size = (vm_size_t) sz; |
| 1316 | |
| 1317 | /* |
| 1318 | * A software use-only map doesn't even need a map. |
| 1319 | */ |
| 1320 | |
| 1321 | if (size != 0) { |
| 1322 | return(PMAP_NULL); |
| 1323 | } |
| 1324 | |
| 1325 | /* |
| 1326 | * Return error when unrecognized flags are passed. |
| 1327 | */ |
| 1328 | if (__improbable((flags & ~(PMAP_CREATE_KNOWN_FLAGS)) != 0)) { |
| 1329 | return(PMAP_NULL); |
| 1330 | } |
| 1331 | |
| 1332 | p = (pmap_t) zalloc(pmap_zone); |
| 1333 | if (PMAP_NULL == p) |
| 1334 | panic("pmap_create zalloc" ); |
| 1335 | |
| 1336 | /* Zero all fields */ |
| 1337 | bzero(p, sizeof(*p)); |
| 1338 | /* init counts now since we'll be bumping some */ |
| 1339 | simple_lock_init(&p->lock, 0); |
| 1340 | bzero(&p->stats, sizeof (p->stats)); |
| 1341 | |
| 1342 | p->ref_count = 1; |
| 1343 | p->nx_enabled = 1; |
| 1344 | p->pm_shared = FALSE; |
| 1345 | ledger_reference(ledger); |
| 1346 | p->ledger = ledger; |
| 1347 | |
| 1348 | p->pm_task_map = ((flags & PMAP_CREATE_64BIT) ? TASK_MAP_64BIT : TASK_MAP_32BIT); |
| 1349 | |
| 1350 | p->pagezero_accessible = FALSE; |
| 1351 | |
| 1352 | if (pmap_pcid_ncpus) { |
| 1353 | pmap_pcid_initialize(p); |
| 1354 | } |
| 1355 | |
| 1356 | p->pm_pml4 = zalloc(pmap_anchor_zone); |
| 1357 | p->pm_upml4 = zalloc(pmap_uanchor_zone); //cleanup for EPT |
| 1358 | |
| 1359 | pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0); |
| 1360 | pmap_assert((((uintptr_t)p->pm_upml4) & PAGE_MASK) == 0); |
| 1361 | |
| 1362 | memset((char *)p->pm_pml4, 0, PAGE_SIZE); |
| 1363 | memset((char *)p->pm_upml4, 0, PAGE_SIZE); |
| 1364 | |
| 1365 | if (flags & PMAP_CREATE_EPT) { |
| 1366 | p->pm_eptp = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4) | pmap_eptp_flags; |
| 1367 | p->pm_cr3 = 0; |
| 1368 | } else { |
| 1369 | p->pm_eptp = 0; |
| 1370 | p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4); |
| 1371 | p->pm_ucr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_upml4); |
| 1372 | } |
| 1373 | |
| 1374 | /* allocate the vm_objs to hold the pdpt, pde and pte pages */ |
| 1375 | |
| 1376 | p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS) * PAGE_SIZE); |
| 1377 | if (NULL == p->pm_obj_pml4) |
| 1378 | panic("pmap_create pdpt obj" ); |
| 1379 | |
| 1380 | p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS) * PAGE_SIZE); |
| 1381 | if (NULL == p->pm_obj_pdpt) |
| 1382 | panic("pmap_create pdpt obj" ); |
| 1383 | |
| 1384 | p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS) * PAGE_SIZE); |
| 1385 | if (NULL == p->pm_obj) |
| 1386 | panic("pmap_create pte obj" ); |
| 1387 | |
| 1388 | if (!(flags & PMAP_CREATE_EPT)) { |
| 1389 | /* All host pmaps share the kernel's pml4 */ |
| 1390 | pml4 = pmap64_pml4(p, 0ULL); |
| 1391 | kpml4 = kernel_pmap->pm_pml4; |
| 1392 | pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX]; |
| 1393 | pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX]; |
| 1394 | pml4[KERNEL_PHYSMAP_PML4_INDEX] = kpml4[KERNEL_PHYSMAP_PML4_INDEX]; |
| 1395 | pml4[KERNEL_DBLMAP_PML4_INDEX] = kpml4[KERNEL_DBLMAP_PML4_INDEX]; |
| 1396 | #if KASAN |
| 1397 | pml4[KERNEL_KASAN_PML4_INDEX0] = kpml4[KERNEL_KASAN_PML4_INDEX0]; |
| 1398 | pml4[KERNEL_KASAN_PML4_INDEX1] = kpml4[KERNEL_KASAN_PML4_INDEX1]; |
| 1399 | #endif |
| 1400 | pml4_entry_t *pml4u = pmap64_user_pml4(p, 0ULL); |
| 1401 | pml4u[KERNEL_DBLMAP_PML4_INDEX] = kpml4[KERNEL_DBLMAP_PML4_INDEX]; |
| 1402 | } |
| 1403 | |
| 1404 | #if MACH_ASSERT |
| 1405 | p->pmap_stats_assert = TRUE; |
| 1406 | p->pmap_pid = 0; |
| 1407 | strlcpy(p->pmap_procname, "<nil>" , sizeof (p->pmap_procname)); |
| 1408 | #endif /* MACH_ASSERT */ |
| 1409 | |
| 1410 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_END, |
| 1411 | VM_KERNEL_ADDRHIDE(p)); |
| 1412 | |
| 1413 | return(p); |
| 1414 | } |
| 1415 | |
| 1416 | pmap_t |
| 1417 | pmap_create( |
| 1418 | ledger_t ledger, |
| 1419 | vm_map_size_t sz, |
| 1420 | boolean_t is_64bit) |
| 1421 | { |
| 1422 | return pmap_create_options(ledger, sz, ((is_64bit) ? PMAP_CREATE_64BIT : 0)); |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * We maintain stats and ledgers so that a task's physical footprint is: |
| 1427 | * phys_footprint = ((internal - alternate_accounting) |
| 1428 | * + (internal_compressed - alternate_accounting_compressed) |
| 1429 | * + iokit_mapped |
| 1430 | * + purgeable_nonvolatile |
| 1431 | * + purgeable_nonvolatile_compressed |
| 1432 | * + page_table) |
| 1433 | * where "alternate_accounting" includes "iokit" and "purgeable" memory. |
| 1434 | */ |
| 1435 | |
| 1436 | #if MACH_ASSERT |
| 1437 | struct { |
| 1438 | uint64_t num_pmaps_checked; |
| 1439 | |
| 1440 | int phys_footprint_over; |
| 1441 | ledger_amount_t phys_footprint_over_total; |
| 1442 | ledger_amount_t phys_footprint_over_max; |
| 1443 | int phys_footprint_under; |
| 1444 | ledger_amount_t phys_footprint_under_total; |
| 1445 | ledger_amount_t phys_footprint_under_max; |
| 1446 | |
| 1447 | int internal_over; |
| 1448 | ledger_amount_t internal_over_total; |
| 1449 | ledger_amount_t internal_over_max; |
| 1450 | int internal_under; |
| 1451 | ledger_amount_t internal_under_total; |
| 1452 | ledger_amount_t internal_under_max; |
| 1453 | |
| 1454 | int internal_compressed_over; |
| 1455 | ledger_amount_t internal_compressed_over_total; |
| 1456 | ledger_amount_t internal_compressed_over_max; |
| 1457 | int internal_compressed_under; |
| 1458 | ledger_amount_t internal_compressed_under_total; |
| 1459 | ledger_amount_t internal_compressed_under_max; |
| 1460 | |
| 1461 | int iokit_mapped_over; |
| 1462 | ledger_amount_t iokit_mapped_over_total; |
| 1463 | ledger_amount_t iokit_mapped_over_max; |
| 1464 | int iokit_mapped_under; |
| 1465 | ledger_amount_t iokit_mapped_under_total; |
| 1466 | ledger_amount_t iokit_mapped_under_max; |
| 1467 | |
| 1468 | int alternate_accounting_over; |
| 1469 | ledger_amount_t alternate_accounting_over_total; |
| 1470 | ledger_amount_t alternate_accounting_over_max; |
| 1471 | int alternate_accounting_under; |
| 1472 | ledger_amount_t alternate_accounting_under_total; |
| 1473 | ledger_amount_t alternate_accounting_under_max; |
| 1474 | |
| 1475 | int alternate_accounting_compressed_over; |
| 1476 | ledger_amount_t alternate_accounting_compressed_over_total; |
| 1477 | ledger_amount_t alternate_accounting_compressed_over_max; |
| 1478 | int alternate_accounting_compressed_under; |
| 1479 | ledger_amount_t alternate_accounting_compressed_under_total; |
| 1480 | ledger_amount_t alternate_accounting_compressed_under_max; |
| 1481 | |
| 1482 | int page_table_over; |
| 1483 | ledger_amount_t page_table_over_total; |
| 1484 | ledger_amount_t page_table_over_max; |
| 1485 | int page_table_under; |
| 1486 | ledger_amount_t page_table_under_total; |
| 1487 | ledger_amount_t page_table_under_max; |
| 1488 | |
| 1489 | int purgeable_volatile_over; |
| 1490 | ledger_amount_t purgeable_volatile_over_total; |
| 1491 | ledger_amount_t purgeable_volatile_over_max; |
| 1492 | int purgeable_volatile_under; |
| 1493 | ledger_amount_t purgeable_volatile_under_total; |
| 1494 | ledger_amount_t purgeable_volatile_under_max; |
| 1495 | |
| 1496 | int purgeable_nonvolatile_over; |
| 1497 | ledger_amount_t purgeable_nonvolatile_over_total; |
| 1498 | ledger_amount_t purgeable_nonvolatile_over_max; |
| 1499 | int purgeable_nonvolatile_under; |
| 1500 | ledger_amount_t purgeable_nonvolatile_under_total; |
| 1501 | ledger_amount_t purgeable_nonvolatile_under_max; |
| 1502 | |
| 1503 | int purgeable_volatile_compressed_over; |
| 1504 | ledger_amount_t purgeable_volatile_compressed_over_total; |
| 1505 | ledger_amount_t purgeable_volatile_compressed_over_max; |
| 1506 | int purgeable_volatile_compressed_under; |
| 1507 | ledger_amount_t purgeable_volatile_compressed_under_total; |
| 1508 | ledger_amount_t purgeable_volatile_compressed_under_max; |
| 1509 | |
| 1510 | int purgeable_nonvolatile_compressed_over; |
| 1511 | ledger_amount_t purgeable_nonvolatile_compressed_over_total; |
| 1512 | ledger_amount_t purgeable_nonvolatile_compressed_over_max; |
| 1513 | int purgeable_nonvolatile_compressed_under; |
| 1514 | ledger_amount_t purgeable_nonvolatile_compressed_under_total; |
| 1515 | ledger_amount_t purgeable_nonvolatile_compressed_under_max; |
| 1516 | |
| 1517 | int network_volatile_over; |
| 1518 | ledger_amount_t network_volatile_over_total; |
| 1519 | ledger_amount_t network_volatile_over_max; |
| 1520 | int network_volatile_under; |
| 1521 | ledger_amount_t network_volatile_under_total; |
| 1522 | ledger_amount_t network_volatile_under_max; |
| 1523 | |
| 1524 | int network_nonvolatile_over; |
| 1525 | ledger_amount_t network_nonvolatile_over_total; |
| 1526 | ledger_amount_t network_nonvolatile_over_max; |
| 1527 | int network_nonvolatile_under; |
| 1528 | ledger_amount_t network_nonvolatile_under_total; |
| 1529 | ledger_amount_t network_nonvolatile_under_max; |
| 1530 | |
| 1531 | int network_volatile_compressed_over; |
| 1532 | ledger_amount_t network_volatile_compressed_over_total; |
| 1533 | ledger_amount_t network_volatile_compressed_over_max; |
| 1534 | int network_volatile_compressed_under; |
| 1535 | ledger_amount_t network_volatile_compressed_under_total; |
| 1536 | ledger_amount_t network_volatile_compressed_under_max; |
| 1537 | |
| 1538 | int network_nonvolatile_compressed_over; |
| 1539 | ledger_amount_t network_nonvolatile_compressed_over_total; |
| 1540 | ledger_amount_t network_nonvolatile_compressed_over_max; |
| 1541 | int network_nonvolatile_compressed_under; |
| 1542 | ledger_amount_t network_nonvolatile_compressed_under_total; |
| 1543 | ledger_amount_t network_nonvolatile_compressed_under_max; |
| 1544 | } pmap_ledgers_drift; |
| 1545 | static void pmap_check_ledgers(pmap_t pmap); |
| 1546 | #else /* MACH_ASSERT */ |
| 1547 | static inline void pmap_check_ledgers(__unused pmap_t pmap) {} |
| 1548 | #endif /* MACH_ASSERT */ |
| 1549 | |
| 1550 | /* |
| 1551 | * Retire the given physical map from service. |
| 1552 | * Should only be called if the map contains |
| 1553 | * no valid mappings. |
| 1554 | */ |
| 1555 | extern int vm_wired_objects_page_count; |
| 1556 | |
| 1557 | void |
| 1558 | pmap_destroy(pmap_t p) |
| 1559 | { |
| 1560 | int c; |
| 1561 | |
| 1562 | if (p == PMAP_NULL) |
| 1563 | return; |
| 1564 | |
| 1565 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START, |
| 1566 | VM_KERNEL_ADDRHIDe(p)); |
| 1567 | |
| 1568 | PMAP_LOCK(p); |
| 1569 | |
| 1570 | c = --p->ref_count; |
| 1571 | |
| 1572 | pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE); |
| 1573 | |
| 1574 | if (c == 0) { |
| 1575 | /* |
| 1576 | * If some cpu is not using the physical pmap pointer that it |
| 1577 | * is supposed to be (see set_dirbase), we might be using the |
| 1578 | * pmap that is being destroyed! Make sure we are |
| 1579 | * physically on the right pmap: |
| 1580 | */ |
| 1581 | PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL); |
| 1582 | if (pmap_pcid_ncpus) |
| 1583 | pmap_destroy_pcid_sync(p); |
| 1584 | } |
| 1585 | |
| 1586 | PMAP_UNLOCK(p); |
| 1587 | |
| 1588 | if (c != 0) { |
| 1589 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END); |
| 1590 | pmap_assert(p == kernel_pmap); |
| 1591 | return; /* still in use */ |
| 1592 | } |
| 1593 | |
| 1594 | /* |
| 1595 | * Free the memory maps, then the |
| 1596 | * pmap structure. |
| 1597 | */ |
| 1598 | int inuse_ptepages = 0; |
| 1599 | |
| 1600 | zfree(pmap_anchor_zone, p->pm_pml4); |
| 1601 | zfree(pmap_uanchor_zone, p->pm_upml4); |
| 1602 | |
| 1603 | inuse_ptepages += p->pm_obj_pml4->resident_page_count; |
| 1604 | vm_object_deallocate(p->pm_obj_pml4); |
| 1605 | |
| 1606 | inuse_ptepages += p->pm_obj_pdpt->resident_page_count; |
| 1607 | vm_object_deallocate(p->pm_obj_pdpt); |
| 1608 | |
| 1609 | inuse_ptepages += p->pm_obj->resident_page_count; |
| 1610 | vm_object_deallocate(p->pm_obj); |
| 1611 | |
| 1612 | OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count); |
| 1613 | PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE); |
| 1614 | |
| 1615 | pmap_check_ledgers(p); |
| 1616 | ledger_dereference(p->ledger); |
| 1617 | zfree(pmap_zone, p); |
| 1618 | |
| 1619 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END); |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * Add a reference to the specified pmap. |
| 1624 | */ |
| 1625 | |
| 1626 | void |
| 1627 | pmap_reference(pmap_t p) |
| 1628 | { |
| 1629 | if (p != PMAP_NULL) { |
| 1630 | PMAP_LOCK(p); |
| 1631 | p->ref_count++; |
| 1632 | PMAP_UNLOCK(p);; |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | * Remove phys addr if mapped in specified map |
| 1638 | * |
| 1639 | */ |
| 1640 | void |
| 1641 | pmap_remove_some_phys( |
| 1642 | __unused pmap_t map, |
| 1643 | __unused ppnum_t pn) |
| 1644 | { |
| 1645 | |
| 1646 | /* Implement to support working set code */ |
| 1647 | |
| 1648 | } |
| 1649 | |
| 1650 | |
| 1651 | void |
| 1652 | pmap_protect( |
| 1653 | pmap_t map, |
| 1654 | vm_map_offset_t sva, |
| 1655 | vm_map_offset_t eva, |
| 1656 | vm_prot_t prot) |
| 1657 | { |
| 1658 | pmap_protect_options(map, sva, eva, prot, 0, NULL); |
| 1659 | } |
| 1660 | |
| 1661 | |
| 1662 | /* |
| 1663 | * Set the physical protection on the |
| 1664 | * specified range of this map as requested. |
| 1665 | * |
| 1666 | * VERY IMPORTANT: Will *NOT* increase permissions. |
| 1667 | * pmap_protect_options() should protect the range against any access types |
| 1668 | * that are not in "prot" but it should never grant extra access. |
| 1669 | * For example, if "prot" is READ|EXECUTE, that means "remove write |
| 1670 | * access" but it does *not* mean "add read and execute" access. |
| 1671 | * VM relies on getting soft-faults to enforce extra checks (code |
| 1672 | * signing, for example), for example. |
| 1673 | * New access permissions are granted via pmap_enter() only. |
| 1674 | */ |
| 1675 | void |
| 1676 | pmap_protect_options( |
| 1677 | pmap_t map, |
| 1678 | vm_map_offset_t sva, |
| 1679 | vm_map_offset_t eva, |
| 1680 | vm_prot_t prot, |
| 1681 | unsigned int options, |
| 1682 | void *arg) |
| 1683 | { |
| 1684 | pt_entry_t *pde; |
| 1685 | pt_entry_t *spte, *epte; |
| 1686 | vm_map_offset_t lva; |
| 1687 | vm_map_offset_t orig_sva; |
| 1688 | boolean_t set_NX; |
| 1689 | int num_found = 0; |
| 1690 | boolean_t is_ept; |
| 1691 | |
| 1692 | pmap_intr_assert(); |
| 1693 | |
| 1694 | if (map == PMAP_NULL) |
| 1695 | return; |
| 1696 | |
| 1697 | if (prot == VM_PROT_NONE) { |
| 1698 | pmap_remove_options(map, sva, eva, options); |
| 1699 | return; |
| 1700 | } |
| 1701 | |
| 1702 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START, |
| 1703 | VM_KERNEL_ADDRHIDE(map), VM_KERNEL_ADDRHIDE(sva), |
| 1704 | VM_KERNEL_ADDRHIDE(eva)); |
| 1705 | |
| 1706 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled) |
| 1707 | set_NX = FALSE; |
| 1708 | else |
| 1709 | set_NX = TRUE; |
| 1710 | |
| 1711 | is_ept = is_ept_pmap(map); |
| 1712 | |
| 1713 | |
| 1714 | PMAP_LOCK(map); |
| 1715 | |
| 1716 | orig_sva = sva; |
| 1717 | while (sva < eva) { |
| 1718 | lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1); |
| 1719 | if (lva > eva) |
| 1720 | lva = eva; |
| 1721 | pde = pmap_pde(map, sva); |
| 1722 | if (pde && (*pde & PTE_VALID_MASK(is_ept))) { |
| 1723 | if (*pde & PTE_PS) { |
| 1724 | /* superpage */ |
| 1725 | spte = pde; |
| 1726 | epte = spte+1; /* excluded */ |
| 1727 | } else { |
| 1728 | spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1))); |
| 1729 | spte = &spte[ptenum(sva)]; |
| 1730 | epte = &spte[intel_btop(lva - sva)]; |
| 1731 | } |
| 1732 | |
| 1733 | for (; spte < epte; spte++) { |
| 1734 | if (!(*spte & PTE_VALID_MASK(is_ept))) |
| 1735 | continue; |
| 1736 | |
| 1737 | if (is_ept) { |
| 1738 | if (! (prot & VM_PROT_READ)) { |
| 1739 | pmap_update_pte(spte, PTE_READ(is_ept), 0); |
| 1740 | } |
| 1741 | } |
| 1742 | if (! (prot & VM_PROT_WRITE)) { |
| 1743 | pmap_update_pte(spte, PTE_WRITE(is_ept), 0); |
| 1744 | } |
| 1745 | #if DEVELOPMENT || DEBUG |
| 1746 | else if ((options & PMAP_OPTIONS_PROTECT_IMMEDIATE) && |
| 1747 | map == kernel_pmap) { |
| 1748 | pmap_update_pte(spte, 0, PTE_WRITE(is_ept)); |
| 1749 | } |
| 1750 | #endif /* DEVELOPMENT || DEBUG */ |
| 1751 | |
| 1752 | if (set_NX) { |
| 1753 | if (!is_ept) { |
| 1754 | pmap_update_pte(spte, 0, INTEL_PTE_NX); |
| 1755 | } else { |
| 1756 | pmap_update_pte(spte, INTEL_EPT_EX, 0); |
| 1757 | } |
| 1758 | } |
| 1759 | num_found++; |
| 1760 | } |
| 1761 | } |
| 1762 | sva = lva; |
| 1763 | } |
| 1764 | if (num_found) { |
| 1765 | if (options & PMAP_OPTIONS_NOFLUSH) |
| 1766 | PMAP_UPDATE_TLBS_DELAYED(map, orig_sva, eva, (pmap_flush_context *)arg); |
| 1767 | else |
| 1768 | PMAP_UPDATE_TLBS(map, orig_sva, eva); |
| 1769 | } |
| 1770 | PMAP_UNLOCK(map); |
| 1771 | |
| 1772 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END); |
| 1773 | |
| 1774 | } |
| 1775 | |
| 1776 | /* Map a (possibly) autogenned block */ |
| 1777 | kern_return_t |
| 1778 | pmap_map_block( |
| 1779 | pmap_t pmap, |
| 1780 | addr64_t va, |
| 1781 | ppnum_t pa, |
| 1782 | uint32_t size, |
| 1783 | vm_prot_t prot, |
| 1784 | int attr, |
| 1785 | __unused unsigned int flags) |
| 1786 | { |
| 1787 | kern_return_t kr; |
| 1788 | addr64_t original_va = va; |
| 1789 | uint32_t page; |
| 1790 | int cur_page_size; |
| 1791 | |
| 1792 | if (attr & VM_MEM_SUPERPAGE) |
| 1793 | cur_page_size = SUPERPAGE_SIZE; |
| 1794 | else |
| 1795 | cur_page_size = PAGE_SIZE; |
| 1796 | |
| 1797 | for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) { |
| 1798 | kr = pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE); |
| 1799 | |
| 1800 | if (kr != KERN_SUCCESS) { |
| 1801 | /* |
| 1802 | * This will panic for now, as it is unclear that |
| 1803 | * removing the mappings is correct. |
| 1804 | */ |
| 1805 | panic("%s: failed pmap_enter, " |
| 1806 | "pmap=%p, va=%#llx, pa=%u, size=%u, prot=%#x, flags=%#x" , |
| 1807 | __FUNCTION__, |
| 1808 | pmap, va, pa, size, prot, flags); |
| 1809 | |
| 1810 | pmap_remove(pmap, original_va, va - original_va); |
| 1811 | return kr; |
| 1812 | } |
| 1813 | |
| 1814 | va += cur_page_size; |
| 1815 | pa+=cur_page_size/PAGE_SIZE; |
| 1816 | } |
| 1817 | |
| 1818 | return KERN_SUCCESS; |
| 1819 | } |
| 1820 | |
| 1821 | kern_return_t |
| 1822 | pmap_expand_pml4( |
| 1823 | pmap_t map, |
| 1824 | vm_map_offset_t vaddr, |
| 1825 | unsigned int options) |
| 1826 | { |
| 1827 | vm_page_t m; |
| 1828 | pmap_paddr_t pa; |
| 1829 | uint64_t i; |
| 1830 | ppnum_t pn; |
| 1831 | pml4_entry_t *pml4p; |
| 1832 | boolean_t is_ept = is_ept_pmap(map); |
| 1833 | |
| 1834 | DBG("pmap_expand_pml4(%p,%p)\n" , map, (void *)vaddr); |
| 1835 | |
| 1836 | /* With the exception of the kext "basement", the kernel's level 4 |
| 1837 | * pagetables must not be dynamically expanded. |
| 1838 | */ |
| 1839 | assert(map != kernel_pmap || (vaddr == KERNEL_BASEMENT)); |
| 1840 | /* |
| 1841 | * Allocate a VM page for the pml4 page |
| 1842 | */ |
| 1843 | while ((m = vm_page_grab()) == VM_PAGE_NULL) { |
| 1844 | if (options & PMAP_EXPAND_OPTIONS_NOWAIT) |
| 1845 | return KERN_RESOURCE_SHORTAGE; |
| 1846 | VM_PAGE_WAIT(); |
| 1847 | } |
| 1848 | /* |
| 1849 | * put the page into the pmap's obj list so it |
| 1850 | * can be found later. |
| 1851 | */ |
| 1852 | pn = VM_PAGE_GET_PHYS_PAGE(m); |
| 1853 | pa = i386_ptob(pn); |
| 1854 | i = pml4idx(map, vaddr); |
| 1855 | |
| 1856 | /* |
| 1857 | * Zero the page. |
| 1858 | */ |
| 1859 | pmap_zero_page(pn); |
| 1860 | |
| 1861 | vm_page_lockspin_queues(); |
| 1862 | vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE); |
| 1863 | vm_page_unlock_queues(); |
| 1864 | |
| 1865 | OSAddAtomic(1, &inuse_ptepages_count); |
| 1866 | OSAddAtomic64(1, &alloc_ptepages_count); |
| 1867 | PMAP_ZINFO_PALLOC(map, PAGE_SIZE); |
| 1868 | |
| 1869 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ |
| 1870 | vm_object_lock(map->pm_obj_pml4); |
| 1871 | |
| 1872 | PMAP_LOCK(map); |
| 1873 | /* |
| 1874 | * See if someone else expanded us first |
| 1875 | */ |
| 1876 | if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) { |
| 1877 | PMAP_UNLOCK(map); |
| 1878 | vm_object_unlock(map->pm_obj_pml4); |
| 1879 | |
| 1880 | VM_PAGE_FREE(m); |
| 1881 | |
| 1882 | OSAddAtomic(-1, &inuse_ptepages_count); |
| 1883 | PMAP_ZINFO_PFREE(map, PAGE_SIZE); |
| 1884 | return KERN_SUCCESS; |
| 1885 | } |
| 1886 | |
| 1887 | #if 0 /* DEBUG */ |
| 1888 | if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE)) { |
| 1889 | panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n" , |
| 1890 | map, map->pm_obj_pml4, vaddr, i); |
| 1891 | } |
| 1892 | #endif |
| 1893 | vm_page_insert_wired(m, map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE); |
| 1894 | vm_object_unlock(map->pm_obj_pml4); |
| 1895 | |
| 1896 | /* |
| 1897 | * Set the page directory entry for this page table. |
| 1898 | */ |
| 1899 | pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */ |
| 1900 | |
| 1901 | pmap_store_pte(pml4p, pa_to_pte(pa) |
| 1902 | | PTE_READ(is_ept) |
| 1903 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 1904 | | PTE_WRITE(is_ept)); |
| 1905 | pml4_entry_t *upml4p; |
| 1906 | |
| 1907 | upml4p = pmap64_user_pml4(map, vaddr); |
| 1908 | pmap_store_pte(upml4p, pa_to_pte(pa) |
| 1909 | | PTE_READ(is_ept) |
| 1910 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 1911 | | PTE_WRITE(is_ept)); |
| 1912 | |
| 1913 | PMAP_UNLOCK(map); |
| 1914 | |
| 1915 | return KERN_SUCCESS; |
| 1916 | } |
| 1917 | |
| 1918 | kern_return_t |
| 1919 | pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, unsigned int options) |
| 1920 | { |
| 1921 | vm_page_t m; |
| 1922 | pmap_paddr_t pa; |
| 1923 | uint64_t i; |
| 1924 | ppnum_t pn; |
| 1925 | pdpt_entry_t *pdptp; |
| 1926 | boolean_t is_ept = is_ept_pmap(map); |
| 1927 | |
| 1928 | DBG("pmap_expand_pdpt(%p,%p)\n" , map, (void *)vaddr); |
| 1929 | |
| 1930 | while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) { |
| 1931 | kern_return_t pep4kr = pmap_expand_pml4(map, vaddr, options); |
| 1932 | if (pep4kr != KERN_SUCCESS) |
| 1933 | return pep4kr; |
| 1934 | } |
| 1935 | |
| 1936 | /* |
| 1937 | * Allocate a VM page for the pdpt page |
| 1938 | */ |
| 1939 | while ((m = vm_page_grab()) == VM_PAGE_NULL) { |
| 1940 | if (options & PMAP_EXPAND_OPTIONS_NOWAIT) |
| 1941 | return KERN_RESOURCE_SHORTAGE; |
| 1942 | VM_PAGE_WAIT(); |
| 1943 | } |
| 1944 | |
| 1945 | /* |
| 1946 | * put the page into the pmap's obj list so it |
| 1947 | * can be found later. |
| 1948 | */ |
| 1949 | pn = VM_PAGE_GET_PHYS_PAGE(m); |
| 1950 | pa = i386_ptob(pn); |
| 1951 | i = pdptidx(map, vaddr); |
| 1952 | |
| 1953 | /* |
| 1954 | * Zero the page. |
| 1955 | */ |
| 1956 | pmap_zero_page(pn); |
| 1957 | |
| 1958 | vm_page_lockspin_queues(); |
| 1959 | vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE); |
| 1960 | vm_page_unlock_queues(); |
| 1961 | |
| 1962 | OSAddAtomic(1, &inuse_ptepages_count); |
| 1963 | OSAddAtomic64(1, &alloc_ptepages_count); |
| 1964 | PMAP_ZINFO_PALLOC(map, PAGE_SIZE); |
| 1965 | |
| 1966 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ |
| 1967 | vm_object_lock(map->pm_obj_pdpt); |
| 1968 | |
| 1969 | PMAP_LOCK(map); |
| 1970 | /* |
| 1971 | * See if someone else expanded us first |
| 1972 | */ |
| 1973 | if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) { |
| 1974 | PMAP_UNLOCK(map); |
| 1975 | vm_object_unlock(map->pm_obj_pdpt); |
| 1976 | |
| 1977 | VM_PAGE_FREE(m); |
| 1978 | |
| 1979 | OSAddAtomic(-1, &inuse_ptepages_count); |
| 1980 | PMAP_ZINFO_PFREE(map, PAGE_SIZE); |
| 1981 | return KERN_SUCCESS; |
| 1982 | } |
| 1983 | |
| 1984 | #if 0 /* DEBUG */ |
| 1985 | if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE)) { |
| 1986 | panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n" , |
| 1987 | map, map->pm_obj_pdpt, vaddr, i); |
| 1988 | } |
| 1989 | #endif |
| 1990 | vm_page_insert_wired(m, map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE); |
| 1991 | vm_object_unlock(map->pm_obj_pdpt); |
| 1992 | |
| 1993 | /* |
| 1994 | * Set the page directory entry for this page table. |
| 1995 | */ |
| 1996 | pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */ |
| 1997 | |
| 1998 | pmap_store_pte(pdptp, pa_to_pte(pa) |
| 1999 | | PTE_READ(is_ept) |
| 2000 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2001 | | PTE_WRITE(is_ept)); |
| 2002 | |
| 2003 | PMAP_UNLOCK(map); |
| 2004 | |
| 2005 | return KERN_SUCCESS; |
| 2006 | |
| 2007 | } |
| 2008 | |
| 2009 | |
| 2010 | |
| 2011 | /* |
| 2012 | * Routine: pmap_expand |
| 2013 | * |
| 2014 | * Expands a pmap to be able to map the specified virtual address. |
| 2015 | * |
| 2016 | * Allocates new virtual memory for the P0 or P1 portion of the |
| 2017 | * pmap, then re-maps the physical pages that were in the old |
| 2018 | * pmap to be in the new pmap. |
| 2019 | * |
| 2020 | * Must be called with the pmap system and the pmap unlocked, |
| 2021 | * since these must be unlocked to use vm_allocate or vm_deallocate. |
| 2022 | * Thus it must be called in a loop that checks whether the map |
| 2023 | * has been expanded enough. |
| 2024 | * (We won't loop forever, since page tables aren't shrunk.) |
| 2025 | */ |
| 2026 | kern_return_t |
| 2027 | pmap_expand( |
| 2028 | pmap_t map, |
| 2029 | vm_map_offset_t vaddr, |
| 2030 | unsigned int options) |
| 2031 | { |
| 2032 | pt_entry_t *pdp; |
| 2033 | vm_page_t m; |
| 2034 | pmap_paddr_t pa; |
| 2035 | uint64_t i; |
| 2036 | ppnum_t pn; |
| 2037 | boolean_t is_ept = is_ept_pmap(map); |
| 2038 | |
| 2039 | |
| 2040 | /* |
| 2041 | * For the kernel, the virtual address must be in or above the basement |
| 2042 | * which is for kexts and is in the 512GB immediately below the kernel.. |
| 2043 | * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT |
| 2044 | */ |
| 2045 | if (__improbable(map == kernel_pmap && |
| 2046 | !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS))) { |
| 2047 | if ((options & PMAP_EXPAND_OPTIONS_ALIASMAP) == 0) { |
| 2048 | panic("pmap_expand: bad vaddr 0x%llx for kernel pmap" , vaddr); |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | |
| 2053 | while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) { |
| 2054 | assert((options & PMAP_EXPAND_OPTIONS_ALIASMAP) == 0); |
| 2055 | kern_return_t pepkr = pmap_expand_pdpt(map, vaddr, options); |
| 2056 | if (pepkr != KERN_SUCCESS) |
| 2057 | return pepkr; |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | * Allocate a VM page for the pde entries. |
| 2062 | */ |
| 2063 | while ((m = vm_page_grab()) == VM_PAGE_NULL) { |
| 2064 | if (options & PMAP_EXPAND_OPTIONS_NOWAIT) |
| 2065 | return KERN_RESOURCE_SHORTAGE; |
| 2066 | VM_PAGE_WAIT(); |
| 2067 | } |
| 2068 | |
| 2069 | /* |
| 2070 | * put the page into the pmap's obj list so it |
| 2071 | * can be found later. |
| 2072 | */ |
| 2073 | pn = VM_PAGE_GET_PHYS_PAGE(m); |
| 2074 | pa = i386_ptob(pn); |
| 2075 | i = pdeidx(map, vaddr); |
| 2076 | |
| 2077 | /* |
| 2078 | * Zero the page. |
| 2079 | */ |
| 2080 | pmap_zero_page(pn); |
| 2081 | |
| 2082 | vm_page_lockspin_queues(); |
| 2083 | vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE); |
| 2084 | vm_page_unlock_queues(); |
| 2085 | |
| 2086 | OSAddAtomic(1, &inuse_ptepages_count); |
| 2087 | OSAddAtomic64(1, &alloc_ptepages_count); |
| 2088 | PMAP_ZINFO_PALLOC(map, PAGE_SIZE); |
| 2089 | |
| 2090 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ |
| 2091 | vm_object_lock(map->pm_obj); |
| 2092 | |
| 2093 | PMAP_LOCK(map); |
| 2094 | |
| 2095 | /* |
| 2096 | * See if someone else expanded us first |
| 2097 | */ |
| 2098 | if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) { |
| 2099 | PMAP_UNLOCK(map); |
| 2100 | vm_object_unlock(map->pm_obj); |
| 2101 | |
| 2102 | VM_PAGE_FREE(m); |
| 2103 | |
| 2104 | OSAddAtomic(-1, &inuse_ptepages_count);//todo replace all with inlines |
| 2105 | PMAP_ZINFO_PFREE(map, PAGE_SIZE); |
| 2106 | return KERN_SUCCESS; |
| 2107 | } |
| 2108 | |
| 2109 | #if 0 /* DEBUG */ |
| 2110 | if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE)) { |
| 2111 | panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n" , |
| 2112 | map, map->pm_obj, vaddr, i); |
| 2113 | } |
| 2114 | #endif |
| 2115 | vm_page_insert_wired(m, map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE); |
| 2116 | vm_object_unlock(map->pm_obj); |
| 2117 | |
| 2118 | /* |
| 2119 | * Set the page directory entry for this page table. |
| 2120 | */ |
| 2121 | pdp = pmap_pde(map, vaddr); |
| 2122 | pmap_store_pte(pdp, pa_to_pte(pa) |
| 2123 | | PTE_READ(is_ept) |
| 2124 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2125 | | PTE_WRITE(is_ept)); |
| 2126 | |
| 2127 | PMAP_UNLOCK(map); |
| 2128 | |
| 2129 | return KERN_SUCCESS; |
| 2130 | } |
| 2131 | |
| 2132 | /* On K64 machines with more than 32GB of memory, pmap_steal_memory |
| 2133 | * will allocate past the 1GB of pre-expanded virtual kernel area. This |
| 2134 | * function allocates all the page tables using memory from the same pool |
| 2135 | * that pmap_steal_memory uses, rather than calling vm_page_grab (which |
| 2136 | * isn't available yet). */ |
| 2137 | void |
| 2138 | pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr) |
| 2139 | { |
| 2140 | ppnum_t pn; |
| 2141 | pt_entry_t *pte; |
| 2142 | boolean_t is_ept = is_ept_pmap(pmap); |
| 2143 | |
| 2144 | PMAP_LOCK(pmap); |
| 2145 | |
| 2146 | if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) { |
| 2147 | if (!pmap_next_page_hi(&pn)) |
| 2148 | panic("pmap_pre_expand" ); |
| 2149 | |
| 2150 | pmap_zero_page(pn); |
| 2151 | |
| 2152 | pte = pmap64_pml4(pmap, vaddr); |
| 2153 | |
| 2154 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) |
| 2155 | | PTE_READ(is_ept) |
| 2156 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2157 | | PTE_WRITE(is_ept)); |
| 2158 | |
| 2159 | pte = pmap64_user_pml4(pmap, vaddr); |
| 2160 | |
| 2161 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) |
| 2162 | | PTE_READ(is_ept) |
| 2163 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2164 | | PTE_WRITE(is_ept)); |
| 2165 | |
| 2166 | } |
| 2167 | |
| 2168 | if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) { |
| 2169 | if (!pmap_next_page_hi(&pn)) |
| 2170 | panic("pmap_pre_expand" ); |
| 2171 | |
| 2172 | pmap_zero_page(pn); |
| 2173 | |
| 2174 | pte = pmap64_pdpt(pmap, vaddr); |
| 2175 | |
| 2176 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) |
| 2177 | | PTE_READ(is_ept) |
| 2178 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2179 | | PTE_WRITE(is_ept)); |
| 2180 | } |
| 2181 | |
| 2182 | if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) { |
| 2183 | if (!pmap_next_page_hi(&pn)) |
| 2184 | panic("pmap_pre_expand" ); |
| 2185 | |
| 2186 | pmap_zero_page(pn); |
| 2187 | |
| 2188 | pte = pmap64_pde(pmap, vaddr); |
| 2189 | |
| 2190 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) |
| 2191 | | PTE_READ(is_ept) |
| 2192 | | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER) |
| 2193 | | PTE_WRITE(is_ept)); |
| 2194 | } |
| 2195 | |
| 2196 | PMAP_UNLOCK(pmap); |
| 2197 | } |
| 2198 | |
| 2199 | /* |
| 2200 | * pmap_sync_page_data_phys(ppnum_t pa) |
| 2201 | * |
| 2202 | * Invalidates all of the instruction cache on a physical page and |
| 2203 | * pushes any dirty data from the data cache for the same physical page |
| 2204 | * Not required in i386. |
| 2205 | */ |
| 2206 | void |
| 2207 | pmap_sync_page_data_phys(__unused ppnum_t pa) |
| 2208 | { |
| 2209 | return; |
| 2210 | } |
| 2211 | |
| 2212 | /* |
| 2213 | * pmap_sync_page_attributes_phys(ppnum_t pa) |
| 2214 | * |
| 2215 | * Write back and invalidate all cachelines on a physical page. |
| 2216 | */ |
| 2217 | void |
| 2218 | pmap_sync_page_attributes_phys(ppnum_t pa) |
| 2219 | { |
| 2220 | cache_flush_page_phys(pa); |
| 2221 | } |
| 2222 | |
| 2223 | |
| 2224 | |
| 2225 | #ifdef CURRENTLY_UNUSED_AND_UNTESTED |
| 2226 | |
| 2227 | int collect_ref; |
| 2228 | int collect_unref; |
| 2229 | |
| 2230 | /* |
| 2231 | * Routine: pmap_collect |
| 2232 | * Function: |
| 2233 | * Garbage collects the physical map system for |
| 2234 | * pages which are no longer used. |
| 2235 | * Success need not be guaranteed -- that is, there |
| 2236 | * may well be pages which are not referenced, but |
| 2237 | * others may be collected. |
| 2238 | * Usage: |
| 2239 | * Called by the pageout daemon when pages are scarce. |
| 2240 | */ |
| 2241 | void |
| 2242 | pmap_collect( |
| 2243 | pmap_t p) |
| 2244 | { |
| 2245 | pt_entry_t *pdp, *ptp; |
| 2246 | pt_entry_t *eptp; |
| 2247 | int wired; |
| 2248 | boolean_t is_ept; |
| 2249 | |
| 2250 | if (p == PMAP_NULL) |
| 2251 | return; |
| 2252 | |
| 2253 | if (p == kernel_pmap) |
| 2254 | return; |
| 2255 | |
| 2256 | is_ept = is_ept_pmap(p); |
| 2257 | |
| 2258 | /* |
| 2259 | * Garbage collect map. |
| 2260 | */ |
| 2261 | PMAP_LOCK(p); |
| 2262 | |
| 2263 | for (pdp = (pt_entry_t *)p->dirbase; |
| 2264 | pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)]; |
| 2265 | pdp++) |
| 2266 | { |
| 2267 | if (*pdp & PTE_VALID_MASK(is_ept)) { |
| 2268 | if (*pdp & PTE_REF(is_ept)) { |
| 2269 | pmap_store_pte(pdp, *pdp & ~PTE_REF(is_ept)); |
| 2270 | collect_ref++; |
| 2271 | } else { |
| 2272 | collect_unref++; |
| 2273 | ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase)); |
| 2274 | eptp = ptp + NPTEPG; |
| 2275 | |
| 2276 | /* |
| 2277 | * If the pte page has any wired mappings, we cannot |
| 2278 | * free it. |
| 2279 | */ |
| 2280 | wired = 0; |
| 2281 | { |
| 2282 | pt_entry_t *ptep; |
| 2283 | for (ptep = ptp; ptep < eptp; ptep++) { |
| 2284 | if (iswired(*ptep)) { |
| 2285 | wired = 1; |
| 2286 | break; |
| 2287 | } |
| 2288 | } |
| 2289 | } |
| 2290 | if (!wired) { |
| 2291 | /* |
| 2292 | * Remove the virtual addresses mapped by this pte page. |
| 2293 | */ |
| 2294 | pmap_remove_range(p, |
| 2295 | pdetova(pdp - (pt_entry_t *)p->dirbase), |
| 2296 | ptp, |
| 2297 | eptp); |
| 2298 | |
| 2299 | /* |
| 2300 | * Invalidate the page directory pointer. |
| 2301 | */ |
| 2302 | pmap_store_pte(pdp, 0x0); |
| 2303 | |
| 2304 | PMAP_UNLOCK(p); |
| 2305 | |
| 2306 | /* |
| 2307 | * And free the pte page itself. |
| 2308 | */ |
| 2309 | { |
| 2310 | vm_page_t m; |
| 2311 | |
| 2312 | vm_object_lock(p->pm_obj); |
| 2313 | |
| 2314 | m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]) * PAGE_SIZE); |
| 2315 | if (m == VM_PAGE_NULL) |
| 2316 | panic("pmap_collect: pte page not in object" ); |
| 2317 | |
| 2318 | vm_object_unlock(p->pm_obj); |
| 2319 | |
| 2320 | VM_PAGE_FREE(m); |
| 2321 | |
| 2322 | OSAddAtomic(-1, &inuse_ptepages_count); |
| 2323 | PMAP_ZINFO_PFREE(p, PAGE_SIZE); |
| 2324 | } |
| 2325 | |
| 2326 | PMAP_LOCK(p); |
| 2327 | } |
| 2328 | } |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL); |
| 2333 | PMAP_UNLOCK(p); |
| 2334 | return; |
| 2335 | } |
| 2336 | #endif |
| 2337 | |
| 2338 | |
| 2339 | void |
| 2340 | pmap_copy_page(ppnum_t src, ppnum_t dst) |
| 2341 | { |
| 2342 | bcopy_phys((addr64_t)i386_ptob(src), |
| 2343 | (addr64_t)i386_ptob(dst), |
| 2344 | PAGE_SIZE); |
| 2345 | } |
| 2346 | |
| 2347 | |
| 2348 | /* |
| 2349 | * Routine: pmap_pageable |
| 2350 | * Function: |
| 2351 | * Make the specified pages (by pmap, offset) |
| 2352 | * pageable (or not) as requested. |
| 2353 | * |
| 2354 | * A page which is not pageable may not take |
| 2355 | * a fault; therefore, its page table entry |
| 2356 | * must remain valid for the duration. |
| 2357 | * |
| 2358 | * This routine is merely advisory; pmap_enter |
| 2359 | * will specify that these pages are to be wired |
| 2360 | * down (or not) as appropriate. |
| 2361 | */ |
| 2362 | void |
| 2363 | pmap_pageable( |
| 2364 | __unused pmap_t pmap, |
| 2365 | __unused vm_map_offset_t start_addr, |
| 2366 | __unused vm_map_offset_t end_addr, |
| 2367 | __unused boolean_t pageable) |
| 2368 | { |
| 2369 | #ifdef lint |
| 2370 | pmap++; start_addr++; end_addr++; pageable++; |
| 2371 | #endif /* lint */ |
| 2372 | } |
| 2373 | |
| 2374 | void |
| 2375 | invalidate_icache(__unused vm_offset_t addr, |
| 2376 | __unused unsigned cnt, |
| 2377 | __unused int phys) |
| 2378 | { |
| 2379 | return; |
| 2380 | } |
| 2381 | |
| 2382 | void |
| 2383 | flush_dcache(__unused vm_offset_t addr, |
| 2384 | __unused unsigned count, |
| 2385 | __unused int phys) |
| 2386 | { |
| 2387 | return; |
| 2388 | } |
| 2389 | |
| 2390 | #if CONFIG_DTRACE |
| 2391 | /* |
| 2392 | * Constrain DTrace copyin/copyout actions |
| 2393 | */ |
| 2394 | extern kern_return_t dtrace_copyio_preflight(addr64_t); |
| 2395 | extern kern_return_t dtrace_copyio_postflight(addr64_t); |
| 2396 | |
| 2397 | kern_return_t dtrace_copyio_preflight(__unused addr64_t va) |
| 2398 | { |
| 2399 | thread_t thread = current_thread(); |
| 2400 | uint64_t ccr3; |
| 2401 | if (current_map() == kernel_map) |
| 2402 | return KERN_FAILURE; |
| 2403 | else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE)) |
| 2404 | return KERN_FAILURE; |
| 2405 | else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3)) |
| 2406 | return KERN_FAILURE; |
| 2407 | else |
| 2408 | return KERN_SUCCESS; |
| 2409 | } |
| 2410 | |
| 2411 | kern_return_t dtrace_copyio_postflight(__unused addr64_t va) |
| 2412 | { |
| 2413 | return KERN_SUCCESS; |
| 2414 | } |
| 2415 | #endif /* CONFIG_DTRACE */ |
| 2416 | |
| 2417 | #include <mach_vm_debug.h> |
| 2418 | #if MACH_VM_DEBUG |
| 2419 | #include <vm/vm_debug.h> |
| 2420 | |
| 2421 | int |
| 2422 | pmap_list_resident_pages( |
| 2423 | __unused pmap_t pmap, |
| 2424 | __unused vm_offset_t *listp, |
| 2425 | __unused int space) |
| 2426 | { |
| 2427 | return 0; |
| 2428 | } |
| 2429 | #endif /* MACH_VM_DEBUG */ |
| 2430 | |
| 2431 | |
| 2432 | #if CONFIG_COREDUMP |
| 2433 | /* temporary workaround */ |
| 2434 | boolean_t |
| 2435 | coredumpok(__unused vm_map_t map, __unused vm_offset_t va) |
| 2436 | { |
| 2437 | #if 0 |
| 2438 | pt_entry_t *ptep; |
| 2439 | |
| 2440 | ptep = pmap_pte(map->pmap, va); |
| 2441 | if (0 == ptep) |
| 2442 | return FALSE; |
| 2443 | return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)); |
| 2444 | #else |
| 2445 | return TRUE; |
| 2446 | #endif |
| 2447 | } |
| 2448 | #endif |
| 2449 | |
| 2450 | boolean_t |
| 2451 | phys_page_exists(ppnum_t pn) |
| 2452 | { |
| 2453 | assert(pn != vm_page_fictitious_addr); |
| 2454 | |
| 2455 | if (!pmap_initialized) |
| 2456 | return TRUE; |
| 2457 | |
| 2458 | if (pn == vm_page_guard_addr) |
| 2459 | return FALSE; |
| 2460 | |
| 2461 | if (!IS_MANAGED_PAGE(ppn_to_pai(pn))) |
| 2462 | return FALSE; |
| 2463 | |
| 2464 | return TRUE; |
| 2465 | } |
| 2466 | |
| 2467 | |
| 2468 | |
| 2469 | void |
| 2470 | pmap_switch(pmap_t tpmap) |
| 2471 | { |
| 2472 | spl_t s; |
| 2473 | |
| 2474 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__SWITCH) | DBG_FUNC_START, VM_KERNEL_ADDRHIDE(tpmap)); |
| 2475 | s = splhigh(); /* Make sure interruptions are disabled */ |
| 2476 | set_dirbase(tpmap, current_thread(), cpu_number()); |
| 2477 | splx(s); |
| 2478 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__SWITCH) | DBG_FUNC_END); |
| 2479 | } |
| 2480 | |
| 2481 | |
| 2482 | /* |
| 2483 | * disable no-execute capability on |
| 2484 | * the specified pmap |
| 2485 | */ |
| 2486 | void |
| 2487 | pmap_disable_NX(pmap_t pmap) |
| 2488 | { |
| 2489 | pmap->nx_enabled = 0; |
| 2490 | } |
| 2491 | |
| 2492 | void |
| 2493 | pt_fake_zone_init(int zone_index) |
| 2494 | { |
| 2495 | pt_fake_zone_index = zone_index; |
| 2496 | } |
| 2497 | |
| 2498 | void |
| 2499 | pt_fake_zone_info( |
| 2500 | int *count, |
| 2501 | vm_size_t *cur_size, |
| 2502 | vm_size_t *max_size, |
| 2503 | vm_size_t *elem_size, |
| 2504 | vm_size_t *alloc_size, |
| 2505 | uint64_t *sum_size, |
| 2506 | int *collectable, |
| 2507 | int *exhaustable, |
| 2508 | int *caller_acct) |
| 2509 | { |
| 2510 | *count = inuse_ptepages_count; |
| 2511 | *cur_size = PAGE_SIZE * inuse_ptepages_count; |
| 2512 | *max_size = PAGE_SIZE * (inuse_ptepages_count + |
| 2513 | vm_page_inactive_count + |
| 2514 | vm_page_active_count + |
| 2515 | vm_page_free_count); |
| 2516 | *elem_size = PAGE_SIZE; |
| 2517 | *alloc_size = PAGE_SIZE; |
| 2518 | *sum_size = alloc_ptepages_count * PAGE_SIZE; |
| 2519 | |
| 2520 | *collectable = 1; |
| 2521 | *exhaustable = 0; |
| 2522 | *caller_acct = 1; |
| 2523 | } |
| 2524 | |
| 2525 | |
| 2526 | void |
| 2527 | pmap_flush_context_init(pmap_flush_context *pfc) |
| 2528 | { |
| 2529 | pfc->pfc_cpus = 0; |
| 2530 | pfc->pfc_invalid_global = 0; |
| 2531 | } |
| 2532 | |
| 2533 | extern uint64_t TLBTimeOut; |
| 2534 | void |
| 2535 | pmap_flush( |
| 2536 | pmap_flush_context *pfc) |
| 2537 | { |
| 2538 | unsigned int my_cpu; |
| 2539 | unsigned int cpu; |
| 2540 | cpumask_t cpu_bit; |
| 2541 | cpumask_t cpus_to_respond = 0; |
| 2542 | cpumask_t cpus_to_signal = 0; |
| 2543 | cpumask_t cpus_signaled = 0; |
| 2544 | boolean_t flush_self = FALSE; |
| 2545 | uint64_t deadline; |
| 2546 | |
| 2547 | mp_disable_preemption(); |
| 2548 | |
| 2549 | my_cpu = cpu_number(); |
| 2550 | cpus_to_signal = pfc->pfc_cpus; |
| 2551 | |
| 2552 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_START, |
| 2553 | NULL, cpus_to_signal); |
| 2554 | |
| 2555 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus && cpus_to_signal; cpu++, cpu_bit <<= 1) { |
| 2556 | |
| 2557 | if (cpus_to_signal & cpu_bit) { |
| 2558 | |
| 2559 | cpus_to_signal &= ~cpu_bit; |
| 2560 | |
| 2561 | if (!cpu_is_running(cpu)) |
| 2562 | continue; |
| 2563 | |
| 2564 | if (pfc->pfc_invalid_global & cpu_bit) |
| 2565 | cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE; |
| 2566 | else |
| 2567 | cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE; |
| 2568 | mfence(); |
| 2569 | |
| 2570 | if (cpu == my_cpu) { |
| 2571 | flush_self = TRUE; |
| 2572 | continue; |
| 2573 | } |
| 2574 | if (CPU_CR3_IS_ACTIVE(cpu)) { |
| 2575 | cpus_to_respond |= cpu_bit; |
| 2576 | i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC); |
| 2577 | } |
| 2578 | } |
| 2579 | } |
| 2580 | cpus_signaled = cpus_to_respond; |
| 2581 | |
| 2582 | /* |
| 2583 | * Flush local tlb if required. |
| 2584 | * Do this now to overlap with other processors responding. |
| 2585 | */ |
| 2586 | if (flush_self && cpu_datap(my_cpu)->cpu_tlb_invalid != FALSE) |
| 2587 | process_pmap_updates(); |
| 2588 | |
| 2589 | if (cpus_to_respond) { |
| 2590 | |
| 2591 | deadline = mach_absolute_time() + |
| 2592 | (TLBTimeOut ? TLBTimeOut : LockTimeOut); |
| 2593 | boolean_t is_timeout_traced = FALSE; |
| 2594 | |
| 2595 | /* |
| 2596 | * Wait for those other cpus to acknowledge |
| 2597 | */ |
| 2598 | while (cpus_to_respond != 0) { |
| 2599 | long orig_acks = 0; |
| 2600 | |
| 2601 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { |
| 2602 | /* Consider checking local/global invalidity |
| 2603 | * as appropriate in the PCID case. |
| 2604 | */ |
| 2605 | if ((cpus_to_respond & cpu_bit) != 0) { |
| 2606 | if (!cpu_is_running(cpu) || |
| 2607 | cpu_datap(cpu)->cpu_tlb_invalid == FALSE || |
| 2608 | !CPU_CR3_IS_ACTIVE(cpu)) { |
| 2609 | cpus_to_respond &= ~cpu_bit; |
| 2610 | } |
| 2611 | cpu_pause(); |
| 2612 | } |
| 2613 | if (cpus_to_respond == 0) |
| 2614 | break; |
| 2615 | } |
| 2616 | if (cpus_to_respond && (mach_absolute_time() > deadline)) { |
| 2617 | if (machine_timeout_suspended()) |
| 2618 | continue; |
| 2619 | if (TLBTimeOut == 0) { |
| 2620 | if (is_timeout_traced) |
| 2621 | continue; |
| 2622 | |
| 2623 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS_TO), |
| 2624 | NULL, cpus_to_signal, cpus_to_respond); |
| 2625 | |
| 2626 | is_timeout_traced = TRUE; |
| 2627 | continue; |
| 2628 | } |
| 2629 | orig_acks = NMIPI_acks; |
| 2630 | NMIPI_panic(cpus_to_respond, TLB_FLUSH_TIMEOUT); |
| 2631 | panic("Uninterruptible processor(s): CPU bitmap: 0x%llx, NMIPI acks: 0x%lx, now: 0x%lx, deadline: %llu" , |
| 2632 | cpus_to_respond, orig_acks, NMIPI_acks, deadline); |
| 2633 | } |
| 2634 | } |
| 2635 | } |
| 2636 | |
| 2637 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_END, |
| 2638 | NULL, cpus_signaled, flush_self); |
| 2639 | |
| 2640 | mp_enable_preemption(); |
| 2641 | } |
| 2642 | |
| 2643 | |
| 2644 | static void |
| 2645 | invept(void *eptp) |
| 2646 | { |
| 2647 | struct { |
| 2648 | uint64_t eptp; |
| 2649 | uint64_t reserved; |
| 2650 | } __attribute__((aligned(16), packed)) invept_descriptor = {(uint64_t)eptp, 0}; |
| 2651 | |
| 2652 | __asm__ volatile("invept (%%rax), %%rcx" |
| 2653 | : : "c" (PMAP_INVEPT_SINGLE_CONTEXT), "a" (&invept_descriptor) |
| 2654 | : "cc" , "memory" ); |
| 2655 | } |
| 2656 | |
| 2657 | /* |
| 2658 | * Called with pmap locked, we: |
| 2659 | * - scan through per-cpu data to see which other cpus need to flush |
| 2660 | * - send an IPI to each non-idle cpu to be flushed |
| 2661 | * - wait for all to signal back that they are inactive or we see that |
| 2662 | * they are at a safe point (idle). |
| 2663 | * - flush the local tlb if active for this pmap |
| 2664 | * - return ... the caller will unlock the pmap |
| 2665 | */ |
| 2666 | |
| 2667 | void |
| 2668 | pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv, int options, pmap_flush_context *pfc) |
| 2669 | { |
| 2670 | unsigned int cpu; |
| 2671 | cpumask_t cpu_bit; |
| 2672 | cpumask_t cpus_to_signal = 0; |
| 2673 | unsigned int my_cpu = cpu_number(); |
| 2674 | pmap_paddr_t pmap_cr3 = pmap->pm_cr3; |
| 2675 | boolean_t flush_self = FALSE; |
| 2676 | uint64_t deadline; |
| 2677 | boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap)); |
| 2678 | boolean_t need_global_flush = FALSE; |
| 2679 | uint32_t event_code; |
| 2680 | vm_map_offset_t event_startv, event_endv; |
| 2681 | boolean_t is_ept = is_ept_pmap(pmap); |
| 2682 | |
| 2683 | assert((processor_avail_count < 2) || |
| 2684 | (ml_get_interrupts_enabled() && get_preemption_level() != 0)); |
| 2685 | |
| 2686 | if (pmap == kernel_pmap) { |
| 2687 | event_code = PMAP_CODE(PMAP__FLUSH_KERN_TLBS); |
| 2688 | event_startv = VM_KERNEL_UNSLIDE_OR_PERM(startv); |
| 2689 | event_endv = VM_KERNEL_UNSLIDE_OR_PERM(endv); |
| 2690 | } else if (is_ept) { |
| 2691 | event_code = PMAP_CODE(PMAP__FLUSH_EPT); |
| 2692 | event_startv = startv; |
| 2693 | event_endv = endv; |
| 2694 | } else { |
| 2695 | event_code = PMAP_CODE(PMAP__FLUSH_TLBS); |
| 2696 | event_startv = startv; |
| 2697 | event_endv = endv; |
| 2698 | } |
| 2699 | |
| 2700 | PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_START, |
| 2701 | VM_KERNEL_UNSLIDE_OR_PERM(pmap), options, |
| 2702 | event_startv, event_endv); |
| 2703 | |
| 2704 | if (is_ept) { |
| 2705 | mp_cpus_call(CPUMASK_ALL, ASYNC, invept, (void*)pmap->pm_eptp); |
| 2706 | goto out; |
| 2707 | } |
| 2708 | |
| 2709 | /* |
| 2710 | * Scan other cpus for matching active or task CR3. |
| 2711 | * For idle cpus (with no active map) we mark them invalid but |
| 2712 | * don't signal -- they'll check as they go busy. |
| 2713 | */ |
| 2714 | if (pmap_pcid_ncpus) { |
| 2715 | if (pmap_is_shared) |
| 2716 | need_global_flush = TRUE; |
| 2717 | pmap_pcid_invalidate_all_cpus(pmap); |
| 2718 | mfence(); |
| 2719 | } |
| 2720 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { |
| 2721 | if (!cpu_is_running(cpu)) |
| 2722 | continue; |
| 2723 | uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu); |
| 2724 | uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu); |
| 2725 | //recall that the shadowed task cr3 is pre-composed |
| 2726 | if ((pmap_cr3 == cpu_task_cr3) || |
| 2727 | (pmap_cr3 == cpu_active_cr3) || |
| 2728 | (pmap_is_shared)) { |
| 2729 | |
| 2730 | if (options & PMAP_DELAY_TLB_FLUSH) { |
| 2731 | if (need_global_flush == TRUE) |
| 2732 | pfc->pfc_invalid_global |= cpu_bit; |
| 2733 | pfc->pfc_cpus |= cpu_bit; |
| 2734 | |
| 2735 | continue; |
| 2736 | } |
| 2737 | if (cpu == my_cpu) { |
| 2738 | flush_self = TRUE; |
| 2739 | continue; |
| 2740 | } |
| 2741 | if (need_global_flush == TRUE) |
| 2742 | cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE; |
| 2743 | else |
| 2744 | cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE; |
| 2745 | mfence(); |
| 2746 | |
| 2747 | /* |
| 2748 | * We don't need to signal processors which will flush |
| 2749 | * lazily at the idle state or kernel boundary. |
| 2750 | * For example, if we're invalidating the kernel pmap, |
| 2751 | * processors currently in userspace don't need to flush |
| 2752 | * their TLBs until the next time they enter the kernel. |
| 2753 | * Alterations to the address space of a task active |
| 2754 | * on a remote processor result in a signal, to |
| 2755 | * account for copy operations. (There may be room |
| 2756 | * for optimization in such cases). |
| 2757 | * The order of the loads below with respect |
| 2758 | * to the store to the "cpu_tlb_invalid" field above |
| 2759 | * is important--hence the barrier. |
| 2760 | */ |
| 2761 | if (CPU_CR3_IS_ACTIVE(cpu) && |
| 2762 | (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) || |
| 2763 | pmap->pm_shared || |
| 2764 | (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) { |
| 2765 | cpus_to_signal |= cpu_bit; |
| 2766 | i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC); |
| 2767 | } |
| 2768 | } |
| 2769 | } |
| 2770 | if ((options & PMAP_DELAY_TLB_FLUSH)) |
| 2771 | goto out; |
| 2772 | |
| 2773 | /* |
| 2774 | * Flush local tlb if required. |
| 2775 | * Do this now to overlap with other processors responding. |
| 2776 | */ |
| 2777 | if (flush_self) { |
| 2778 | if (pmap_pcid_ncpus) { |
| 2779 | pmap_pcid_validate_cpu(pmap, my_cpu); |
| 2780 | if (pmap_is_shared) |
| 2781 | tlb_flush_global(); |
| 2782 | else |
| 2783 | flush_tlb_raw(); |
| 2784 | } |
| 2785 | else |
| 2786 | flush_tlb_raw(); |
| 2787 | } |
| 2788 | |
| 2789 | if (cpus_to_signal) { |
| 2790 | cpumask_t cpus_to_respond = cpus_to_signal; |
| 2791 | |
| 2792 | deadline = mach_absolute_time() + |
| 2793 | (TLBTimeOut ? TLBTimeOut : LockTimeOut); |
| 2794 | boolean_t is_timeout_traced = FALSE; |
| 2795 | |
| 2796 | /* |
| 2797 | * Wait for those other cpus to acknowledge |
| 2798 | */ |
| 2799 | while (cpus_to_respond != 0) { |
| 2800 | long orig_acks = 0; |
| 2801 | |
| 2802 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { |
| 2803 | /* Consider checking local/global invalidity |
| 2804 | * as appropriate in the PCID case. |
| 2805 | */ |
| 2806 | if ((cpus_to_respond & cpu_bit) != 0) { |
| 2807 | if (!cpu_is_running(cpu) || |
| 2808 | cpu_datap(cpu)->cpu_tlb_invalid == FALSE || |
| 2809 | !CPU_CR3_IS_ACTIVE(cpu)) { |
| 2810 | cpus_to_respond &= ~cpu_bit; |
| 2811 | } |
| 2812 | cpu_pause(); |
| 2813 | } |
| 2814 | if (cpus_to_respond == 0) |
| 2815 | break; |
| 2816 | } |
| 2817 | if (cpus_to_respond && (mach_absolute_time() > deadline)) { |
| 2818 | if (machine_timeout_suspended()) |
| 2819 | continue; |
| 2820 | if (TLBTimeOut == 0) { |
| 2821 | /* cut tracepoint but don't panic */ |
| 2822 | if (is_timeout_traced) |
| 2823 | continue; |
| 2824 | |
| 2825 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS_TO), |
| 2826 | VM_KERNEL_UNSLIDE_OR_PERM(pmap), |
| 2827 | cpus_to_signal, |
| 2828 | cpus_to_respond); |
| 2829 | |
| 2830 | is_timeout_traced = TRUE; |
| 2831 | continue; |
| 2832 | } |
| 2833 | orig_acks = NMIPI_acks; |
| 2834 | |
| 2835 | NMIPI_panic(cpus_to_respond, TLB_FLUSH_TIMEOUT); |
| 2836 | panic("TLB invalidation IPI timeout, unresponsive CPU bitmap: 0x%llx, NMIPI acks: 0x%lx, now: 0x%lx, deadline: %llu" , |
| 2837 | cpus_to_respond, orig_acks, NMIPI_acks, deadline); |
| 2838 | } |
| 2839 | } |
| 2840 | } |
| 2841 | |
| 2842 | if (__improbable((pmap == kernel_pmap) && (flush_self != TRUE))) { |
| 2843 | panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d" , kernel_pmap->pm_cr3, pmap_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map); |
| 2844 | } |
| 2845 | |
| 2846 | out: |
| 2847 | PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_END, |
| 2848 | VM_KERNEL_UNSLIDE_OR_PERM(pmap), cpus_to_signal, |
| 2849 | event_startv, event_endv); |
| 2850 | |
| 2851 | } |
| 2852 | |
| 2853 | void |
| 2854 | process_pmap_updates(void) |
| 2855 | { |
| 2856 | int ccpu = cpu_number(); |
| 2857 | pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); |
| 2858 | if (pmap_pcid_ncpus) { |
| 2859 | pmap_pcid_validate_current(); |
| 2860 | cpu_datap(ccpu)->cpu_tlb_invalid = FALSE; |
| 2861 | tlb_flush_global(); |
| 2862 | } else { |
| 2863 | current_cpu_datap()->cpu_tlb_invalid = FALSE; |
| 2864 | flush_tlb_raw(); |
| 2865 | } |
| 2866 | |
| 2867 | mfence(); |
| 2868 | } |
| 2869 | |
| 2870 | void |
| 2871 | pmap_update_interrupt(void) |
| 2872 | { |
| 2873 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START); |
| 2874 | |
| 2875 | if (current_cpu_datap()->cpu_tlb_invalid) |
| 2876 | process_pmap_updates(); |
| 2877 | |
| 2878 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END); |
| 2879 | } |
| 2880 | |
| 2881 | #include <mach/mach_vm.h> /* mach_vm_region_recurse() */ |
| 2882 | /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries |
| 2883 | * and identify ranges with mismatched VM permissions and PTE permissions |
| 2884 | */ |
| 2885 | kern_return_t |
| 2886 | pmap_permissions_verify(pmap_t ipmap, vm_map_t ivmmap, vm_offset_t sv, vm_offset_t ev) { |
| 2887 | vm_offset_t cv = sv; |
| 2888 | kern_return_t rv = KERN_SUCCESS; |
| 2889 | uint64_t skip4 = 0, skip2 = 0; |
| 2890 | |
| 2891 | assert(!is_ept_pmap(ipmap)); |
| 2892 | |
| 2893 | sv &= ~PAGE_MASK_64; |
| 2894 | ev &= ~PAGE_MASK_64; |
| 2895 | while (cv < ev) { |
| 2896 | if (__improbable((cv > 0x00007FFFFFFFFFFFULL) && |
| 2897 | (cv < 0xFFFF800000000000ULL))) { |
| 2898 | cv = 0xFFFF800000000000ULL; |
| 2899 | } |
| 2900 | /* Potential inconsistencies from not holding pmap lock |
| 2901 | * but harmless for the moment. |
| 2902 | */ |
| 2903 | if (((cv & PML4MASK) == 0) && (pmap64_pml4(ipmap, cv) == 0)) { |
| 2904 | if ((cv + NBPML4) > cv) |
| 2905 | cv += NBPML4; |
| 2906 | else |
| 2907 | break; |
| 2908 | skip4++; |
| 2909 | continue; |
| 2910 | } |
| 2911 | if (((cv & PDMASK) == 0) && (pmap_pde(ipmap, cv) == 0)) { |
| 2912 | if ((cv + NBPD) > cv) |
| 2913 | cv += NBPD; |
| 2914 | else |
| 2915 | break; |
| 2916 | skip2++; |
| 2917 | continue; |
| 2918 | } |
| 2919 | |
| 2920 | pt_entry_t *ptep = pmap_pte(ipmap, cv); |
| 2921 | if (ptep && (*ptep & INTEL_PTE_VALID)) { |
| 2922 | if (*ptep & INTEL_PTE_WRITE) { |
| 2923 | if (!(*ptep & INTEL_PTE_NX)) { |
| 2924 | kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n" , cv, *pmap64_pml4(ipmap, cv), *pmap64_pdpt(ipmap, cv), *pmap64_pde(ipmap, cv), *ptep, pmap_valid_page((ppnum_t)(i386_btop(pte_to_pa(*ptep))))); |
| 2925 | rv = KERN_FAILURE; |
| 2926 | } |
| 2927 | } |
| 2928 | } |
| 2929 | cv += PAGE_SIZE; |
| 2930 | } |
| 2931 | kprintf("Completed pmap scan\n" ); |
| 2932 | cv = sv; |
| 2933 | |
| 2934 | struct vm_region_submap_info_64 vbr; |
| 2935 | mach_msg_type_number_t vbrcount = 0; |
| 2936 | mach_vm_size_t vmsize; |
| 2937 | vm_prot_t prot; |
| 2938 | uint32_t nesting_depth = 0; |
| 2939 | kern_return_t kret; |
| 2940 | |
| 2941 | while (cv < ev) { |
| 2942 | |
| 2943 | for (;;) { |
| 2944 | vbrcount = VM_REGION_SUBMAP_INFO_COUNT_64; |
| 2945 | if((kret = mach_vm_region_recurse(ivmmap, |
| 2946 | (mach_vm_address_t *) &cv, &vmsize, &nesting_depth, |
| 2947 | (vm_region_recurse_info_t)&vbr, |
| 2948 | &vbrcount)) != KERN_SUCCESS) { |
| 2949 | break; |
| 2950 | } |
| 2951 | |
| 2952 | if(vbr.is_submap) { |
| 2953 | nesting_depth++; |
| 2954 | continue; |
| 2955 | } else { |
| 2956 | break; |
| 2957 | } |
| 2958 | } |
| 2959 | |
| 2960 | if(kret != KERN_SUCCESS) |
| 2961 | break; |
| 2962 | |
| 2963 | prot = vbr.protection; |
| 2964 | |
| 2965 | if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) { |
| 2966 | kprintf("W+X map entry at address 0x%lx\n" , cv); |
| 2967 | rv = KERN_FAILURE; |
| 2968 | } |
| 2969 | |
| 2970 | if (prot) { |
| 2971 | vm_offset_t pcv; |
| 2972 | for (pcv = cv; pcv < cv + vmsize; pcv += PAGE_SIZE) { |
| 2973 | pt_entry_t *ptep = pmap_pte(ipmap, pcv); |
| 2974 | vm_prot_t tprot; |
| 2975 | |
| 2976 | if ((ptep == NULL) || !(*ptep & INTEL_PTE_VALID)) |
| 2977 | continue; |
| 2978 | tprot = VM_PROT_READ; |
| 2979 | if (*ptep & INTEL_PTE_WRITE) |
| 2980 | tprot |= VM_PROT_WRITE; |
| 2981 | if ((*ptep & INTEL_PTE_NX) == 0) |
| 2982 | tprot |= VM_PROT_EXECUTE; |
| 2983 | if (tprot != prot) { |
| 2984 | kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n" , pcv, *ptep, prot); |
| 2985 | rv = KERN_FAILURE; |
| 2986 | } |
| 2987 | } |
| 2988 | } |
| 2989 | cv += vmsize; |
| 2990 | } |
| 2991 | return rv; |
| 2992 | } |
| 2993 | |
| 2994 | #if MACH_ASSERT |
| 2995 | extern int pmap_ledgers_panic; |
| 2996 | extern int pmap_ledgers_panic_leeway; |
| 2997 | |
| 2998 | static void |
| 2999 | pmap_check_ledgers( |
| 3000 | pmap_t pmap) |
| 3001 | { |
| 3002 | ledger_amount_t bal; |
| 3003 | int pid; |
| 3004 | char *procname; |
| 3005 | boolean_t do_panic; |
| 3006 | |
| 3007 | if (pmap->pmap_pid == 0) { |
| 3008 | /* |
| 3009 | * This pmap was not or is no longer fully associated |
| 3010 | * with a task (e.g. the old pmap after a fork()/exec() or |
| 3011 | * spawn()). Its "ledger" still points at a task that is |
| 3012 | * now using a different (and active) address space, so |
| 3013 | * we can't check that all the pmap ledgers are balanced here. |
| 3014 | * |
| 3015 | * If the "pid" is set, that means that we went through |
| 3016 | * pmap_set_process() in task_terminate_internal(), so |
| 3017 | * this task's ledger should not have been re-used and |
| 3018 | * all the pmap ledgers should be back to 0. |
| 3019 | */ |
| 3020 | return; |
| 3021 | } |
| 3022 | |
| 3023 | do_panic = FALSE; |
| 3024 | pid = pmap->pmap_pid; |
| 3025 | procname = pmap->pmap_procname; |
| 3026 | |
| 3027 | pmap_ledgers_drift.num_pmaps_checked++; |
| 3028 | |
| 3029 | #define LEDGER_CHECK_BALANCE(__LEDGER) \ |
| 3030 | MACRO_BEGIN \ |
| 3031 | int panic_on_negative = TRUE; \ |
| 3032 | ledger_get_balance(pmap->ledger, \ |
| 3033 | task_ledgers.__LEDGER, \ |
| 3034 | &bal); \ |
| 3035 | ledger_get_panic_on_negative(pmap->ledger, \ |
| 3036 | task_ledgers.__LEDGER, \ |
| 3037 | &panic_on_negative); \ |
| 3038 | if (bal != 0) { \ |
| 3039 | if (panic_on_negative || \ |
| 3040 | (pmap_ledgers_panic && \ |
| 3041 | pmap_ledgers_panic_leeway > 0 && \ |
| 3042 | (bal > (pmap_ledgers_panic_leeway * PAGE_SIZE) || \ |
| 3043 | bal < (pmap_ledgers_panic_leeway * PAGE_SIZE)))) { \ |
| 3044 | do_panic = TRUE; \ |
| 3045 | } \ |
| 3046 | printf("LEDGER BALANCE proc %d (%s) " \ |
| 3047 | "\"%s\" = %lld\n", \ |
| 3048 | pid, procname, #__LEDGER, bal); \ |
| 3049 | if (bal > 0) { \ |
| 3050 | pmap_ledgers_drift.__LEDGER##_over++; \ |
| 3051 | pmap_ledgers_drift.__LEDGER##_over_total += bal; \ |
| 3052 | if (bal > pmap_ledgers_drift.__LEDGER##_over_max) { \ |
| 3053 | pmap_ledgers_drift.__LEDGER##_over_max = bal; \ |
| 3054 | } \ |
| 3055 | } else if (bal < 0) { \ |
| 3056 | pmap_ledgers_drift.__LEDGER##_under++; \ |
| 3057 | pmap_ledgers_drift.__LEDGER##_under_total += bal; \ |
| 3058 | if (bal < pmap_ledgers_drift.__LEDGER##_under_max) { \ |
| 3059 | pmap_ledgers_drift.__LEDGER##_under_max = bal; \ |
| 3060 | } \ |
| 3061 | } \ |
| 3062 | } \ |
| 3063 | MACRO_END |
| 3064 | |
| 3065 | LEDGER_CHECK_BALANCE(phys_footprint); |
| 3066 | LEDGER_CHECK_BALANCE(internal); |
| 3067 | LEDGER_CHECK_BALANCE(internal_compressed); |
| 3068 | LEDGER_CHECK_BALANCE(iokit_mapped); |
| 3069 | LEDGER_CHECK_BALANCE(alternate_accounting); |
| 3070 | LEDGER_CHECK_BALANCE(alternate_accounting_compressed); |
| 3071 | LEDGER_CHECK_BALANCE(page_table); |
| 3072 | LEDGER_CHECK_BALANCE(purgeable_volatile); |
| 3073 | LEDGER_CHECK_BALANCE(purgeable_nonvolatile); |
| 3074 | LEDGER_CHECK_BALANCE(purgeable_volatile_compressed); |
| 3075 | LEDGER_CHECK_BALANCE(purgeable_nonvolatile_compressed); |
| 3076 | LEDGER_CHECK_BALANCE(network_volatile); |
| 3077 | LEDGER_CHECK_BALANCE(network_nonvolatile); |
| 3078 | LEDGER_CHECK_BALANCE(network_volatile_compressed); |
| 3079 | LEDGER_CHECK_BALANCE(network_nonvolatile_compressed); |
| 3080 | |
| 3081 | if (do_panic) { |
| 3082 | if (pmap_ledgers_panic) { |
| 3083 | panic("pmap_destroy(%p) %d[%s] has imbalanced ledgers\n" , |
| 3084 | pmap, pid, procname); |
| 3085 | } else { |
| 3086 | printf("pmap_destroy(%p) %d[%s] has imbalanced ledgers\n" , |
| 3087 | pmap, pid, procname); |
| 3088 | } |
| 3089 | } |
| 3090 | |
| 3091 | if (pmap->stats.resident_count != 0 || |
| 3092 | #if 35156815 |
| 3093 | /* |
| 3094 | * "wired_count" is unfortunately a bit inaccurate, so let's |
| 3095 | * tolerate some slight deviation to limit the amount of |
| 3096 | * somewhat-spurious assertion failures. |
| 3097 | */ |
| 3098 | pmap->stats.wired_count > 10 || |
| 3099 | #else /* 35156815 */ |
| 3100 | pmap->stats.wired_count != 0 || |
| 3101 | #endif /* 35156815 */ |
| 3102 | pmap->stats.device != 0 || |
| 3103 | pmap->stats.internal != 0 || |
| 3104 | pmap->stats.external != 0 || |
| 3105 | pmap->stats.reusable != 0 || |
| 3106 | pmap->stats.compressed != 0) { |
| 3107 | if (pmap_stats_assert && |
| 3108 | pmap->pmap_stats_assert) { |
| 3109 | panic("pmap_destroy(%p) %d[%s] imbalanced stats: resident=%d wired=%d device=%d internal=%d external=%d reusable=%d compressed=%lld" , |
| 3110 | pmap, pid, procname, |
| 3111 | pmap->stats.resident_count, |
| 3112 | pmap->stats.wired_count, |
| 3113 | pmap->stats.device, |
| 3114 | pmap->stats.internal, |
| 3115 | pmap->stats.external, |
| 3116 | pmap->stats.reusable, |
| 3117 | pmap->stats.compressed); |
| 3118 | } else { |
| 3119 | printf("pmap_destroy(%p) %d[%s] imbalanced stats: resident=%d wired=%d device=%d internal=%d external=%d reusable=%d compressed=%lld" , |
| 3120 | pmap, pid, procname, |
| 3121 | pmap->stats.resident_count, |
| 3122 | pmap->stats.wired_count, |
| 3123 | pmap->stats.device, |
| 3124 | pmap->stats.internal, |
| 3125 | pmap->stats.external, |
| 3126 | pmap->stats.reusable, |
| 3127 | pmap->stats.compressed); |
| 3128 | } |
| 3129 | } |
| 3130 | } |
| 3131 | |
| 3132 | void |
| 3133 | pmap_set_process( |
| 3134 | pmap_t pmap, |
| 3135 | int pid, |
| 3136 | char *procname) |
| 3137 | { |
| 3138 | if (pmap == NULL) |
| 3139 | return; |
| 3140 | |
| 3141 | pmap->pmap_pid = pid; |
| 3142 | strlcpy(pmap->pmap_procname, procname, sizeof (pmap->pmap_procname)); |
| 3143 | if (pmap_ledgers_panic_leeway) { |
| 3144 | /* |
| 3145 | * XXX FBDP |
| 3146 | * Some processes somehow trigger some issues that make |
| 3147 | * the pmap stats and ledgers go off track, causing |
| 3148 | * some assertion failures and ledger panics. |
| 3149 | * Turn off the sanity checks if we allow some ledger leeway |
| 3150 | * because of that. We'll still do a final check in |
| 3151 | * pmap_check_ledgers() for discrepancies larger than the |
| 3152 | * allowed leeway after the address space has been fully |
| 3153 | * cleaned up. |
| 3154 | */ |
| 3155 | pmap->pmap_stats_assert = FALSE; |
| 3156 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3157 | task_ledgers.phys_footprint); |
| 3158 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3159 | task_ledgers.internal); |
| 3160 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3161 | task_ledgers.internal_compressed); |
| 3162 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3163 | task_ledgers.iokit_mapped); |
| 3164 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3165 | task_ledgers.alternate_accounting); |
| 3166 | ledger_disable_panic_on_negative(pmap->ledger, |
| 3167 | task_ledgers.alternate_accounting_compressed); |
| 3168 | } |
| 3169 | } |
| 3170 | #endif /* MACH_ASSERT */ |
| 3171 | |
| 3172 | |
| 3173 | #if DEVELOPMENT || DEBUG |
| 3174 | int pmap_pagezero_mitigation = 1; |
| 3175 | #endif |
| 3176 | |
| 3177 | void pmap_advise_pagezero_range(pmap_t lpmap, uint64_t low_bound) { |
| 3178 | #if DEVELOPMENT || DEBUG |
| 3179 | if (pmap_pagezero_mitigation == 0) { |
| 3180 | lpmap->pagezero_accessible = FALSE; |
| 3181 | return; |
| 3182 | } |
| 3183 | #endif |
| 3184 | lpmap->pagezero_accessible = ((pmap_smap_enabled == FALSE) && (low_bound < 0x1000)); |
| 3185 | if (lpmap == current_pmap()) { |
| 3186 | mp_disable_preemption(); |
| 3187 | current_cpu_datap()->cpu_pagezero_mapped = lpmap->pagezero_accessible; |
| 3188 | mp_enable_preemption(); |
| 3189 | } |
| 3190 | } |
| 3191 | |
| 3192 | void pmap_verify_noncacheable(uintptr_t vaddr) { |
| 3193 | pt_entry_t *ptep = NULL; |
| 3194 | ptep = pmap_pte(kernel_pmap, vaddr); |
| 3195 | if (ptep == NULL) { |
| 3196 | panic("pmap_verify_noncacheable: no translation for 0x%lx" , vaddr); |
| 3197 | } |
| 3198 | /* Non-cacheable OK */ |
| 3199 | if (*ptep & (INTEL_PTE_NCACHE)) |
| 3200 | return; |
| 3201 | /* Write-combined OK */ |
| 3202 | if (*ptep & (INTEL_PTE_PTA)) |
| 3203 | return; |
| 3204 | panic("pmap_verify_noncacheable: IO read from a cacheable address? address: 0x%lx, PTE: %p, *PTE: 0x%llx" , vaddr, ptep, *ptep); |
| 3205 | } |
| 3206 | |
| 3207 | bool pmap_is_trust_cache_loaded(void); |
| 3208 | bool pmap_is_trust_cache_loaded(void) { return false; } |
| 3209 | int pmap_load_image4_trust_cache(void); |
| 3210 | int pmap_load_image4_trust_cache(void) { return -1; } |
| 3211 | kern_return_t pmap_load_legacy_trust_cache(void); |
| 3212 | kern_return_t pmap_load_legacy_trust_cache(void) { return KERN_NOT_SUPPORTED; } |
| 3213 | |