| 1 | /* |
| 2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_map.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * Date: 1985 |
| 62 | * |
| 63 | * Virtual memory mapping module. |
| 64 | */ |
| 65 | |
| 66 | #include <task_swapper.h> |
| 67 | #include <mach_assert.h> |
| 68 | |
| 69 | #include <vm/vm_options.h> |
| 70 | |
| 71 | #include <libkern/OSAtomic.h> |
| 72 | |
| 73 | #include <mach/kern_return.h> |
| 74 | #include <mach/port.h> |
| 75 | #include <mach/vm_attributes.h> |
| 76 | #include <mach/vm_param.h> |
| 77 | #include <mach/vm_behavior.h> |
| 78 | #include <mach/vm_statistics.h> |
| 79 | #include <mach/memory_object.h> |
| 80 | #include <mach/mach_vm.h> |
| 81 | #include <machine/cpu_capabilities.h> |
| 82 | #include <mach/sdt.h> |
| 83 | |
| 84 | #include <kern/assert.h> |
| 85 | #include <kern/backtrace.h> |
| 86 | #include <kern/counters.h> |
| 87 | #include <kern/exc_guard.h> |
| 88 | #include <kern/kalloc.h> |
| 89 | #include <kern/zalloc.h> |
| 90 | |
| 91 | #include <vm/cpm.h> |
| 92 | #include <vm/vm_compressor.h> |
| 93 | #include <vm/vm_compressor_pager.h> |
| 94 | #include <vm/vm_init.h> |
| 95 | #include <vm/vm_fault.h> |
| 96 | #include <vm/vm_map.h> |
| 97 | #include <vm/vm_object.h> |
| 98 | #include <vm/vm_page.h> |
| 99 | #include <vm/vm_pageout.h> |
| 100 | #include <vm/pmap.h> |
| 101 | #include <vm/vm_kern.h> |
| 102 | #include <ipc/ipc_port.h> |
| 103 | #include <kern/sched_prim.h> |
| 104 | #include <kern/misc_protos.h> |
| 105 | #include <kern/xpr.h> |
| 106 | |
| 107 | #include <mach/vm_map_server.h> |
| 108 | #include <mach/mach_host_server.h> |
| 109 | #include <vm/vm_protos.h> |
| 110 | #include <vm/vm_purgeable_internal.h> |
| 111 | |
| 112 | #include <vm/vm_protos.h> |
| 113 | #include <vm/vm_shared_region.h> |
| 114 | #include <vm/vm_map_store.h> |
| 115 | |
| 116 | #include <san/kasan.h> |
| 117 | |
| 118 | #include <sys/codesign.h> |
| 119 | #include <libkern/section_keywords.h> |
| 120 | #if DEVELOPMENT || DEBUG |
| 121 | extern int proc_selfcsflags(void); |
| 122 | #if CONFIG_EMBEDDED |
| 123 | extern int panic_on_unsigned_execute; |
| 124 | #endif /* CONFIG_EMBEDDED */ |
| 125 | #endif /* DEVELOPMENT || DEBUG */ |
| 126 | |
| 127 | #if __arm64__ |
| 128 | extern const int fourk_binary_compatibility_unsafe; |
| 129 | extern const int fourk_binary_compatibility_allow_wx; |
| 130 | #endif /* __arm64__ */ |
| 131 | extern int proc_selfpid(void); |
| 132 | extern char *proc_name_address(void *p); |
| 133 | |
| 134 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 135 | int vm_map_debug_apple_protect = 0; |
| 136 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 137 | #if VM_MAP_DEBUG_FOURK |
| 138 | int vm_map_debug_fourk = 0; |
| 139 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 140 | |
| 141 | SECURITY_READ_ONLY_LATE(int) vm_map_executable_immutable = 1; |
| 142 | int vm_map_executable_immutable_verbose = 0; |
| 143 | |
| 144 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ |
| 145 | /* Internal prototypes |
| 146 | */ |
| 147 | |
| 148 | static void vm_map_simplify_range( |
| 149 | vm_map_t map, |
| 150 | vm_map_offset_t start, |
| 151 | vm_map_offset_t end); /* forward */ |
| 152 | |
| 153 | static boolean_t vm_map_range_check( |
| 154 | vm_map_t map, |
| 155 | vm_map_offset_t start, |
| 156 | vm_map_offset_t end, |
| 157 | vm_map_entry_t *entry); |
| 158 | |
| 159 | static vm_map_entry_t _vm_map_entry_create( |
| 160 | struct vm_map_header *, boolean_t map_locked); |
| 161 | |
| 162 | static void _vm_map_entry_dispose( |
| 163 | struct vm_map_header *, |
| 164 | vm_map_entry_t entry); |
| 165 | |
| 166 | static void vm_map_pmap_enter( |
| 167 | vm_map_t map, |
| 168 | vm_map_offset_t addr, |
| 169 | vm_map_offset_t end_addr, |
| 170 | vm_object_t object, |
| 171 | vm_object_offset_t offset, |
| 172 | vm_prot_t protection); |
| 173 | |
| 174 | static void _vm_map_clip_end( |
| 175 | struct vm_map_header *, |
| 176 | vm_map_entry_t entry, |
| 177 | vm_map_offset_t end); |
| 178 | |
| 179 | static void _vm_map_clip_start( |
| 180 | struct vm_map_header *, |
| 181 | vm_map_entry_t entry, |
| 182 | vm_map_offset_t start); |
| 183 | |
| 184 | static void vm_map_entry_delete( |
| 185 | vm_map_t map, |
| 186 | vm_map_entry_t entry); |
| 187 | |
| 188 | static kern_return_t vm_map_delete( |
| 189 | vm_map_t map, |
| 190 | vm_map_offset_t start, |
| 191 | vm_map_offset_t end, |
| 192 | int flags, |
| 193 | vm_map_t zap_map); |
| 194 | |
| 195 | static void vm_map_copy_insert( |
| 196 | vm_map_t map, |
| 197 | vm_map_entry_t after_where, |
| 198 | vm_map_copy_t copy); |
| 199 | |
| 200 | static kern_return_t vm_map_copy_overwrite_unaligned( |
| 201 | vm_map_t dst_map, |
| 202 | vm_map_entry_t entry, |
| 203 | vm_map_copy_t copy, |
| 204 | vm_map_address_t start, |
| 205 | boolean_t discard_on_success); |
| 206 | |
| 207 | static kern_return_t vm_map_copy_overwrite_aligned( |
| 208 | vm_map_t dst_map, |
| 209 | vm_map_entry_t tmp_entry, |
| 210 | vm_map_copy_t copy, |
| 211 | vm_map_offset_t start, |
| 212 | pmap_t pmap); |
| 213 | |
| 214 | static kern_return_t vm_map_copyin_kernel_buffer( |
| 215 | vm_map_t src_map, |
| 216 | vm_map_address_t src_addr, |
| 217 | vm_map_size_t len, |
| 218 | boolean_t src_destroy, |
| 219 | vm_map_copy_t *copy_result); /* OUT */ |
| 220 | |
| 221 | static kern_return_t vm_map_copyout_kernel_buffer( |
| 222 | vm_map_t map, |
| 223 | vm_map_address_t *addr, /* IN/OUT */ |
| 224 | vm_map_copy_t copy, |
| 225 | vm_map_size_t copy_size, |
| 226 | boolean_t overwrite, |
| 227 | boolean_t consume_on_success); |
| 228 | |
| 229 | static void vm_map_fork_share( |
| 230 | vm_map_t old_map, |
| 231 | vm_map_entry_t old_entry, |
| 232 | vm_map_t new_map); |
| 233 | |
| 234 | static boolean_t vm_map_fork_copy( |
| 235 | vm_map_t old_map, |
| 236 | vm_map_entry_t *old_entry_p, |
| 237 | vm_map_t new_map, |
| 238 | int vm_map_copyin_flags); |
| 239 | |
| 240 | static kern_return_t vm_map_wire_nested( |
| 241 | vm_map_t map, |
| 242 | vm_map_offset_t start, |
| 243 | vm_map_offset_t end, |
| 244 | vm_prot_t caller_prot, |
| 245 | vm_tag_t tag, |
| 246 | boolean_t user_wire, |
| 247 | pmap_t map_pmap, |
| 248 | vm_map_offset_t pmap_addr, |
| 249 | ppnum_t *physpage_p); |
| 250 | |
| 251 | static kern_return_t vm_map_unwire_nested( |
| 252 | vm_map_t map, |
| 253 | vm_map_offset_t start, |
| 254 | vm_map_offset_t end, |
| 255 | boolean_t user_wire, |
| 256 | pmap_t map_pmap, |
| 257 | vm_map_offset_t pmap_addr); |
| 258 | |
| 259 | static kern_return_t vm_map_overwrite_submap_recurse( |
| 260 | vm_map_t dst_map, |
| 261 | vm_map_offset_t dst_addr, |
| 262 | vm_map_size_t dst_size); |
| 263 | |
| 264 | static kern_return_t vm_map_copy_overwrite_nested( |
| 265 | vm_map_t dst_map, |
| 266 | vm_map_offset_t dst_addr, |
| 267 | vm_map_copy_t copy, |
| 268 | boolean_t interruptible, |
| 269 | pmap_t pmap, |
| 270 | boolean_t discard_on_success); |
| 271 | |
| 272 | static kern_return_t vm_map_remap_extract( |
| 273 | vm_map_t map, |
| 274 | vm_map_offset_t addr, |
| 275 | vm_map_size_t size, |
| 276 | boolean_t copy, |
| 277 | struct vm_map_header *, |
| 278 | vm_prot_t *cur_protection, |
| 279 | vm_prot_t *max_protection, |
| 280 | vm_inherit_t inheritance, |
| 281 | boolean_t pageable, |
| 282 | boolean_t same_map, |
| 283 | vm_map_kernel_flags_t vmk_flags); |
| 284 | |
| 285 | static kern_return_t vm_map_remap_range_allocate( |
| 286 | vm_map_t map, |
| 287 | vm_map_address_t *address, |
| 288 | vm_map_size_t size, |
| 289 | vm_map_offset_t mask, |
| 290 | int flags, |
| 291 | vm_map_kernel_flags_t vmk_flags, |
| 292 | vm_tag_t tag, |
| 293 | vm_map_entry_t *map_entry); |
| 294 | |
| 295 | static void vm_map_region_look_for_page( |
| 296 | vm_map_t map, |
| 297 | vm_map_offset_t va, |
| 298 | vm_object_t object, |
| 299 | vm_object_offset_t offset, |
| 300 | int max_refcnt, |
| 301 | int depth, |
| 302 | vm_region_extended_info_t extended, |
| 303 | mach_msg_type_number_t count); |
| 304 | |
| 305 | static int vm_map_region_count_obj_refs( |
| 306 | vm_map_entry_t entry, |
| 307 | vm_object_t object); |
| 308 | |
| 309 | |
| 310 | static kern_return_t vm_map_willneed( |
| 311 | vm_map_t map, |
| 312 | vm_map_offset_t start, |
| 313 | vm_map_offset_t end); |
| 314 | |
| 315 | static kern_return_t vm_map_reuse_pages( |
| 316 | vm_map_t map, |
| 317 | vm_map_offset_t start, |
| 318 | vm_map_offset_t end); |
| 319 | |
| 320 | static kern_return_t vm_map_reusable_pages( |
| 321 | vm_map_t map, |
| 322 | vm_map_offset_t start, |
| 323 | vm_map_offset_t end); |
| 324 | |
| 325 | static kern_return_t vm_map_can_reuse( |
| 326 | vm_map_t map, |
| 327 | vm_map_offset_t start, |
| 328 | vm_map_offset_t end); |
| 329 | |
| 330 | #if MACH_ASSERT |
| 331 | static kern_return_t vm_map_pageout( |
| 332 | vm_map_t map, |
| 333 | vm_map_offset_t start, |
| 334 | vm_map_offset_t end); |
| 335 | #endif /* MACH_ASSERT */ |
| 336 | |
| 337 | static void vm_map_corpse_footprint_destroy( |
| 338 | vm_map_t map); |
| 339 | |
| 340 | pid_t find_largest_process_vm_map_entries(void); |
| 341 | |
| 342 | /* |
| 343 | * Macros to copy a vm_map_entry. We must be careful to correctly |
| 344 | * manage the wired page count. vm_map_entry_copy() creates a new |
| 345 | * map entry to the same memory - the wired count in the new entry |
| 346 | * must be set to zero. vm_map_entry_copy_full() creates a new |
| 347 | * entry that is identical to the old entry. This preserves the |
| 348 | * wire count; it's used for map splitting and zone changing in |
| 349 | * vm_map_copyout. |
| 350 | */ |
| 351 | |
| 352 | #if CONFIG_EMBEDDED |
| 353 | |
| 354 | /* |
| 355 | * The "used_for_jit" flag was copied from OLD to NEW in vm_map_entry_copy(). |
| 356 | * But for security reasons on embedded platforms, we don't want the |
| 357 | * new mapping to be "used for jit", so we always reset the flag here. |
| 358 | * Same for "pmap_cs_associated". |
| 359 | */ |
| 360 | #define VM_MAP_ENTRY_COPY_CODE_SIGNING(NEW,OLD) \ |
| 361 | MACRO_BEGIN \ |
| 362 | (NEW)->used_for_jit = FALSE; \ |
| 363 | (NEW)->pmap_cs_associated = FALSE; \ |
| 364 | MACRO_END |
| 365 | |
| 366 | #else /* CONFIG_EMBEDDED */ |
| 367 | |
| 368 | /* |
| 369 | * The "used_for_jit" flag was copied from OLD to NEW in vm_map_entry_copy(). |
| 370 | * On macOS, the new mapping can be "used for jit". |
| 371 | */ |
| 372 | #define VM_MAP_ENTRY_COPY_CODE_SIGNING(NEW,OLD) \ |
| 373 | MACRO_BEGIN \ |
| 374 | assert((NEW)->used_for_jit == (OLD)->used_for_jit); \ |
| 375 | assert((NEW)->pmap_cs_associated == FALSE); \ |
| 376 | MACRO_END |
| 377 | |
| 378 | #endif /* CONFIG_EMBEDDED */ |
| 379 | |
| 380 | #define vm_map_entry_copy(NEW,OLD) \ |
| 381 | MACRO_BEGIN \ |
| 382 | boolean_t _vmec_reserved = (NEW)->from_reserved_zone; \ |
| 383 | *(NEW) = *(OLD); \ |
| 384 | (NEW)->is_shared = FALSE; \ |
| 385 | (NEW)->needs_wakeup = FALSE; \ |
| 386 | (NEW)->in_transition = FALSE; \ |
| 387 | (NEW)->wired_count = 0; \ |
| 388 | (NEW)->user_wired_count = 0; \ |
| 389 | (NEW)->permanent = FALSE; \ |
| 390 | VM_MAP_ENTRY_COPY_CODE_SIGNING((NEW),(OLD)); \ |
| 391 | (NEW)->from_reserved_zone = _vmec_reserved; \ |
| 392 | if ((NEW)->iokit_acct) { \ |
| 393 | assertf(!(NEW)->use_pmap, "old %p new %p\n", (OLD), (NEW)); \ |
| 394 | (NEW)->iokit_acct = FALSE; \ |
| 395 | (NEW)->use_pmap = TRUE; \ |
| 396 | } \ |
| 397 | (NEW)->vme_resilient_codesign = FALSE; \ |
| 398 | (NEW)->vme_resilient_media = FALSE; \ |
| 399 | (NEW)->vme_atomic = FALSE; \ |
| 400 | MACRO_END |
| 401 | |
| 402 | #define vm_map_entry_copy_full(NEW,OLD) \ |
| 403 | MACRO_BEGIN \ |
| 404 | boolean_t _vmecf_reserved = (NEW)->from_reserved_zone; \ |
| 405 | (*(NEW) = *(OLD)); \ |
| 406 | (NEW)->from_reserved_zone = _vmecf_reserved; \ |
| 407 | MACRO_END |
| 408 | |
| 409 | /* |
| 410 | * Decide if we want to allow processes to execute from their data or stack areas. |
| 411 | * override_nx() returns true if we do. Data/stack execution can be enabled independently |
| 412 | * for 32 and 64 bit processes. Set the VM_ABI_32 or VM_ABI_64 flags in allow_data_exec |
| 413 | * or allow_stack_exec to enable data execution for that type of data area for that particular |
| 414 | * ABI (or both by or'ing the flags together). These are initialized in the architecture |
| 415 | * specific pmap files since the default behavior varies according to architecture. The |
| 416 | * main reason it varies is because of the need to provide binary compatibility with old |
| 417 | * applications that were written before these restrictions came into being. In the old |
| 418 | * days, an app could execute anything it could read, but this has slowly been tightened |
| 419 | * up over time. The default behavior is: |
| 420 | * |
| 421 | * 32-bit PPC apps may execute from both stack and data areas |
| 422 | * 32-bit Intel apps may exeucte from data areas but not stack |
| 423 | * 64-bit PPC/Intel apps may not execute from either data or stack |
| 424 | * |
| 425 | * An application on any architecture may override these defaults by explicitly |
| 426 | * adding PROT_EXEC permission to the page in question with the mprotect(2) |
| 427 | * system call. This code here just determines what happens when an app tries to |
| 428 | * execute from a page that lacks execute permission. |
| 429 | * |
| 430 | * Note that allow_data_exec or allow_stack_exec may also be modified by sysctl to change the |
| 431 | * default behavior for both 32 and 64 bit apps on a system-wide basis. Furthermore, |
| 432 | * a Mach-O header flag bit (MH_NO_HEAP_EXECUTION) can be used to forcibly disallow |
| 433 | * execution from data areas for a particular binary even if the arch normally permits it. As |
| 434 | * a final wrinkle, a posix_spawn attribute flag can be used to negate this opt-in header bit |
| 435 | * to support some complicated use cases, notably browsers with out-of-process plugins that |
| 436 | * are not all NX-safe. |
| 437 | */ |
| 438 | |
| 439 | extern int allow_data_exec, allow_stack_exec; |
| 440 | |
| 441 | int |
| 442 | override_nx(vm_map_t map, uint32_t user_tag) /* map unused on arm */ |
| 443 | { |
| 444 | int current_abi; |
| 445 | |
| 446 | if (map->pmap == kernel_pmap) return FALSE; |
| 447 | |
| 448 | /* |
| 449 | * Determine if the app is running in 32 or 64 bit mode. |
| 450 | */ |
| 451 | |
| 452 | if (vm_map_is_64bit(map)) |
| 453 | current_abi = VM_ABI_64; |
| 454 | else |
| 455 | current_abi = VM_ABI_32; |
| 456 | |
| 457 | /* |
| 458 | * Determine if we should allow the execution based on whether it's a |
| 459 | * stack or data area and the current architecture. |
| 460 | */ |
| 461 | |
| 462 | if (user_tag == VM_MEMORY_STACK) |
| 463 | return allow_stack_exec & current_abi; |
| 464 | |
| 465 | return (allow_data_exec & current_abi) && (map->map_disallow_data_exec == FALSE); |
| 466 | } |
| 467 | |
| 468 | |
| 469 | /* |
| 470 | * Virtual memory maps provide for the mapping, protection, |
| 471 | * and sharing of virtual memory objects. In addition, |
| 472 | * this module provides for an efficient virtual copy of |
| 473 | * memory from one map to another. |
| 474 | * |
| 475 | * Synchronization is required prior to most operations. |
| 476 | * |
| 477 | * Maps consist of an ordered doubly-linked list of simple |
| 478 | * entries; a single hint is used to speed up lookups. |
| 479 | * |
| 480 | * Sharing maps have been deleted from this version of Mach. |
| 481 | * All shared objects are now mapped directly into the respective |
| 482 | * maps. This requires a change in the copy on write strategy; |
| 483 | * the asymmetric (delayed) strategy is used for shared temporary |
| 484 | * objects instead of the symmetric (shadow) strategy. All maps |
| 485 | * are now "top level" maps (either task map, kernel map or submap |
| 486 | * of the kernel map). |
| 487 | * |
| 488 | * Since portions of maps are specified by start/end addreses, |
| 489 | * which may not align with existing map entries, all |
| 490 | * routines merely "clip" entries to these start/end values. |
| 491 | * [That is, an entry is split into two, bordering at a |
| 492 | * start or end value.] Note that these clippings may not |
| 493 | * always be necessary (as the two resulting entries are then |
| 494 | * not changed); however, the clipping is done for convenience. |
| 495 | * No attempt is currently made to "glue back together" two |
| 496 | * abutting entries. |
| 497 | * |
| 498 | * The symmetric (shadow) copy strategy implements virtual copy |
| 499 | * by copying VM object references from one map to |
| 500 | * another, and then marking both regions as copy-on-write. |
| 501 | * It is important to note that only one writeable reference |
| 502 | * to a VM object region exists in any map when this strategy |
| 503 | * is used -- this means that shadow object creation can be |
| 504 | * delayed until a write operation occurs. The symmetric (delayed) |
| 505 | * strategy allows multiple maps to have writeable references to |
| 506 | * the same region of a vm object, and hence cannot delay creating |
| 507 | * its copy objects. See vm_object_copy_quickly() in vm_object.c. |
| 508 | * Copying of permanent objects is completely different; see |
| 509 | * vm_object_copy_strategically() in vm_object.c. |
| 510 | */ |
| 511 | |
| 512 | static zone_t vm_map_zone; /* zone for vm_map structures */ |
| 513 | zone_t vm_map_entry_zone; /* zone for vm_map_entry structures */ |
| 514 | static zone_t vm_map_entry_reserved_zone; /* zone with reserve for non-blocking allocations */ |
| 515 | static zone_t vm_map_copy_zone; /* zone for vm_map_copy structures */ |
| 516 | zone_t vm_map_holes_zone; /* zone for vm map holes (vm_map_links) structures */ |
| 517 | |
| 518 | |
| 519 | /* |
| 520 | * Placeholder object for submap operations. This object is dropped |
| 521 | * into the range by a call to vm_map_find, and removed when |
| 522 | * vm_map_submap creates the submap. |
| 523 | */ |
| 524 | |
| 525 | vm_object_t vm_submap_object; |
| 526 | |
| 527 | static void *map_data; |
| 528 | static vm_size_t map_data_size; |
| 529 | static void *kentry_data; |
| 530 | static vm_size_t kentry_data_size; |
| 531 | static void *map_holes_data; |
| 532 | static vm_size_t map_holes_data_size; |
| 533 | |
| 534 | #if CONFIG_EMBEDDED |
| 535 | #define NO_COALESCE_LIMIT 0 |
| 536 | #else |
| 537 | #define NO_COALESCE_LIMIT ((1024 * 128) - 1) |
| 538 | #endif |
| 539 | |
| 540 | /* Skip acquiring locks if we're in the midst of a kernel core dump */ |
| 541 | unsigned int not_in_kdp = 1; |
| 542 | |
| 543 | unsigned int vm_map_set_cache_attr_count = 0; |
| 544 | |
| 545 | kern_return_t |
| 546 | vm_map_set_cache_attr( |
| 547 | vm_map_t map, |
| 548 | vm_map_offset_t va) |
| 549 | { |
| 550 | vm_map_entry_t map_entry; |
| 551 | vm_object_t object; |
| 552 | kern_return_t kr = KERN_SUCCESS; |
| 553 | |
| 554 | vm_map_lock_read(map); |
| 555 | |
| 556 | if (!vm_map_lookup_entry(map, va, &map_entry) || |
| 557 | map_entry->is_sub_map) { |
| 558 | /* |
| 559 | * that memory is not properly mapped |
| 560 | */ |
| 561 | kr = KERN_INVALID_ARGUMENT; |
| 562 | goto done; |
| 563 | } |
| 564 | object = VME_OBJECT(map_entry); |
| 565 | |
| 566 | if (object == VM_OBJECT_NULL) { |
| 567 | /* |
| 568 | * there should be a VM object here at this point |
| 569 | */ |
| 570 | kr = KERN_INVALID_ARGUMENT; |
| 571 | goto done; |
| 572 | } |
| 573 | vm_object_lock(object); |
| 574 | object->set_cache_attr = TRUE; |
| 575 | vm_object_unlock(object); |
| 576 | |
| 577 | vm_map_set_cache_attr_count++; |
| 578 | done: |
| 579 | vm_map_unlock_read(map); |
| 580 | |
| 581 | return kr; |
| 582 | } |
| 583 | |
| 584 | |
| 585 | #if CONFIG_CODE_DECRYPTION |
| 586 | /* |
| 587 | * vm_map_apple_protected: |
| 588 | * This remaps the requested part of the object with an object backed by |
| 589 | * the decrypting pager. |
| 590 | * crypt_info contains entry points and session data for the crypt module. |
| 591 | * The crypt_info block will be copied by vm_map_apple_protected. The data structures |
| 592 | * referenced in crypt_info must remain valid until crypt_info->crypt_end() is called. |
| 593 | */ |
| 594 | kern_return_t |
| 595 | vm_map_apple_protected( |
| 596 | vm_map_t map, |
| 597 | vm_map_offset_t start, |
| 598 | vm_map_offset_t end, |
| 599 | vm_object_offset_t crypto_backing_offset, |
| 600 | struct pager_crypt_info *crypt_info) |
| 601 | { |
| 602 | boolean_t map_locked; |
| 603 | kern_return_t kr; |
| 604 | vm_map_entry_t map_entry; |
| 605 | struct vm_map_entry tmp_entry; |
| 606 | memory_object_t unprotected_mem_obj; |
| 607 | vm_object_t protected_object; |
| 608 | vm_map_offset_t map_addr; |
| 609 | vm_map_offset_t start_aligned, end_aligned; |
| 610 | vm_object_offset_t crypto_start, crypto_end; |
| 611 | int vm_flags; |
| 612 | vm_map_kernel_flags_t vmk_flags; |
| 613 | |
| 614 | vm_flags = 0; |
| 615 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 616 | |
| 617 | map_locked = FALSE; |
| 618 | unprotected_mem_obj = MEMORY_OBJECT_NULL; |
| 619 | |
| 620 | start_aligned = vm_map_trunc_page(start, PAGE_MASK_64); |
| 621 | end_aligned = vm_map_round_page(end, PAGE_MASK_64); |
| 622 | start_aligned = vm_map_trunc_page(start_aligned, VM_MAP_PAGE_MASK(map)); |
| 623 | end_aligned = vm_map_round_page(end_aligned, VM_MAP_PAGE_MASK(map)); |
| 624 | |
| 625 | #if __arm64__ |
| 626 | /* |
| 627 | * "start" and "end" might be 4K-aligned but not 16K-aligned, |
| 628 | * so we might have to loop and establish up to 3 mappings: |
| 629 | * |
| 630 | * + the first 16K-page, which might overlap with the previous |
| 631 | * 4K-aligned mapping, |
| 632 | * + the center, |
| 633 | * + the last 16K-page, which might overlap with the next |
| 634 | * 4K-aligned mapping. |
| 635 | * Each of these mapping might be backed by a vnode pager (if |
| 636 | * properly page-aligned) or a "fourk_pager", itself backed by a |
| 637 | * vnode pager (if 4K-aligned but not page-aligned). |
| 638 | */ |
| 639 | #else /* __arm64__ */ |
| 640 | assert(start_aligned == start); |
| 641 | assert(end_aligned == end); |
| 642 | #endif /* __arm64__ */ |
| 643 | |
| 644 | map_addr = start_aligned; |
| 645 | for (map_addr = start_aligned; |
| 646 | map_addr < end; |
| 647 | map_addr = tmp_entry.vme_end) { |
| 648 | vm_map_lock(map); |
| 649 | map_locked = TRUE; |
| 650 | |
| 651 | /* lookup the protected VM object */ |
| 652 | if (!vm_map_lookup_entry(map, |
| 653 | map_addr, |
| 654 | &map_entry) || |
| 655 | map_entry->is_sub_map || |
| 656 | VME_OBJECT(map_entry) == VM_OBJECT_NULL || |
| 657 | !(map_entry->protection & VM_PROT_EXECUTE)) { |
| 658 | /* that memory is not properly mapped */ |
| 659 | kr = KERN_INVALID_ARGUMENT; |
| 660 | goto done; |
| 661 | } |
| 662 | |
| 663 | /* get the protected object to be decrypted */ |
| 664 | protected_object = VME_OBJECT(map_entry); |
| 665 | if (protected_object == VM_OBJECT_NULL) { |
| 666 | /* there should be a VM object here at this point */ |
| 667 | kr = KERN_INVALID_ARGUMENT; |
| 668 | goto done; |
| 669 | } |
| 670 | /* ensure protected object stays alive while map is unlocked */ |
| 671 | vm_object_reference(protected_object); |
| 672 | |
| 673 | /* limit the map entry to the area we want to cover */ |
| 674 | vm_map_clip_start(map, map_entry, start_aligned); |
| 675 | vm_map_clip_end(map, map_entry, end_aligned); |
| 676 | |
| 677 | tmp_entry = *map_entry; |
| 678 | map_entry = VM_MAP_ENTRY_NULL; /* not valid after unlocking map */ |
| 679 | vm_map_unlock(map); |
| 680 | map_locked = FALSE; |
| 681 | |
| 682 | /* |
| 683 | * This map entry might be only partially encrypted |
| 684 | * (if not fully "page-aligned"). |
| 685 | */ |
| 686 | crypto_start = 0; |
| 687 | crypto_end = tmp_entry.vme_end - tmp_entry.vme_start; |
| 688 | if (tmp_entry.vme_start < start) { |
| 689 | if (tmp_entry.vme_start != start_aligned) { |
| 690 | kr = KERN_INVALID_ADDRESS; |
| 691 | } |
| 692 | crypto_start += (start - tmp_entry.vme_start); |
| 693 | } |
| 694 | if (tmp_entry.vme_end > end) { |
| 695 | if (tmp_entry.vme_end != end_aligned) { |
| 696 | kr = KERN_INVALID_ADDRESS; |
| 697 | } |
| 698 | crypto_end -= (tmp_entry.vme_end - end); |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * This "extra backing offset" is needed to get the decryption |
| 703 | * routine to use the right key. It adjusts for the possibly |
| 704 | * relative offset of an interposed "4K" pager... |
| 705 | */ |
| 706 | if (crypto_backing_offset == (vm_object_offset_t) -1) { |
| 707 | crypto_backing_offset = VME_OFFSET(&tmp_entry); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Lookup (and create if necessary) the protected memory object |
| 712 | * matching that VM object. |
| 713 | * If successful, this also grabs a reference on the memory object, |
| 714 | * to guarantee that it doesn't go away before we get a chance to map |
| 715 | * it. |
| 716 | */ |
| 717 | unprotected_mem_obj = apple_protect_pager_setup( |
| 718 | protected_object, |
| 719 | VME_OFFSET(&tmp_entry), |
| 720 | crypto_backing_offset, |
| 721 | crypt_info, |
| 722 | crypto_start, |
| 723 | crypto_end); |
| 724 | |
| 725 | /* release extra ref on protected object */ |
| 726 | vm_object_deallocate(protected_object); |
| 727 | |
| 728 | if (unprotected_mem_obj == NULL) { |
| 729 | kr = KERN_FAILURE; |
| 730 | goto done; |
| 731 | } |
| 732 | |
| 733 | vm_flags = VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE; |
| 734 | /* can overwrite an immutable mapping */ |
| 735 | vmk_flags.vmkf_overwrite_immutable = TRUE; |
| 736 | #if __arm64__ |
| 737 | if (tmp_entry.used_for_jit && |
| 738 | (VM_MAP_PAGE_SHIFT(map) != FOURK_PAGE_SHIFT || |
| 739 | PAGE_SHIFT != FOURK_PAGE_SHIFT) && |
| 740 | fourk_binary_compatibility_unsafe && |
| 741 | fourk_binary_compatibility_allow_wx) { |
| 742 | printf("** FOURK_COMPAT [%d]: " |
| 743 | "allowing write+execute at 0x%llx\n" , |
| 744 | proc_selfpid(), tmp_entry.vme_start); |
| 745 | vmk_flags.vmkf_map_jit = TRUE; |
| 746 | } |
| 747 | #endif /* __arm64__ */ |
| 748 | |
| 749 | /* map this memory object in place of the current one */ |
| 750 | map_addr = tmp_entry.vme_start; |
| 751 | kr = vm_map_enter_mem_object(map, |
| 752 | &map_addr, |
| 753 | (tmp_entry.vme_end - |
| 754 | tmp_entry.vme_start), |
| 755 | (mach_vm_offset_t) 0, |
| 756 | vm_flags, |
| 757 | vmk_flags, |
| 758 | VM_KERN_MEMORY_NONE, |
| 759 | (ipc_port_t)(uintptr_t) unprotected_mem_obj, |
| 760 | 0, |
| 761 | TRUE, |
| 762 | tmp_entry.protection, |
| 763 | tmp_entry.max_protection, |
| 764 | tmp_entry.inheritance); |
| 765 | assertf(kr == KERN_SUCCESS, |
| 766 | "kr = 0x%x\n" , kr); |
| 767 | assertf(map_addr == tmp_entry.vme_start, |
| 768 | "map_addr=0x%llx vme_start=0x%llx tmp_entry=%p\n" , |
| 769 | (uint64_t)map_addr, |
| 770 | (uint64_t) tmp_entry.vme_start, |
| 771 | &tmp_entry); |
| 772 | |
| 773 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 774 | if (vm_map_debug_apple_protect) { |
| 775 | printf("APPLE_PROTECT: map %p [0x%llx:0x%llx] pager %p:" |
| 776 | " backing:[object:%p,offset:0x%llx," |
| 777 | "crypto_backing_offset:0x%llx," |
| 778 | "crypto_start:0x%llx,crypto_end:0x%llx]\n" , |
| 779 | map, |
| 780 | (uint64_t) map_addr, |
| 781 | (uint64_t) (map_addr + (tmp_entry.vme_end - |
| 782 | tmp_entry.vme_start)), |
| 783 | unprotected_mem_obj, |
| 784 | protected_object, |
| 785 | VME_OFFSET(&tmp_entry), |
| 786 | crypto_backing_offset, |
| 787 | crypto_start, |
| 788 | crypto_end); |
| 789 | } |
| 790 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 791 | |
| 792 | /* |
| 793 | * Release the reference obtained by |
| 794 | * apple_protect_pager_setup(). |
| 795 | * The mapping (if it succeeded) is now holding a reference on |
| 796 | * the memory object. |
| 797 | */ |
| 798 | memory_object_deallocate(unprotected_mem_obj); |
| 799 | unprotected_mem_obj = MEMORY_OBJECT_NULL; |
| 800 | |
| 801 | /* continue with next map entry */ |
| 802 | crypto_backing_offset += (tmp_entry.vme_end - |
| 803 | tmp_entry.vme_start); |
| 804 | crypto_backing_offset -= crypto_start; |
| 805 | } |
| 806 | kr = KERN_SUCCESS; |
| 807 | |
| 808 | done: |
| 809 | if (map_locked) { |
| 810 | vm_map_unlock(map); |
| 811 | } |
| 812 | return kr; |
| 813 | } |
| 814 | #endif /* CONFIG_CODE_DECRYPTION */ |
| 815 | |
| 816 | |
| 817 | lck_grp_t vm_map_lck_grp; |
| 818 | lck_grp_attr_t vm_map_lck_grp_attr; |
| 819 | lck_attr_t vm_map_lck_attr; |
| 820 | lck_attr_t vm_map_lck_rw_attr; |
| 821 | |
| 822 | #if CONFIG_EMBEDDED |
| 823 | int malloc_no_cow = 1; |
| 824 | #define VM_PROTECT_WX_FAIL 0 |
| 825 | #else /* CONFIG_EMBEDDED */ |
| 826 | int malloc_no_cow = 0; |
| 827 | #define VM_PROTECT_WX_FAIL 1 |
| 828 | #endif /* CONFIG_EMBEDDED */ |
| 829 | uint64_t vm_memory_malloc_no_cow_mask = 0ULL; |
| 830 | |
| 831 | /* |
| 832 | * vm_map_init: |
| 833 | * |
| 834 | * Initialize the vm_map module. Must be called before |
| 835 | * any other vm_map routines. |
| 836 | * |
| 837 | * Map and entry structures are allocated from zones -- we must |
| 838 | * initialize those zones. |
| 839 | * |
| 840 | * There are three zones of interest: |
| 841 | * |
| 842 | * vm_map_zone: used to allocate maps. |
| 843 | * vm_map_entry_zone: used to allocate map entries. |
| 844 | * vm_map_entry_reserved_zone: fallback zone for kernel map entries |
| 845 | * |
| 846 | * The kernel allocates map entries from a special zone that is initially |
| 847 | * "crammed" with memory. It would be difficult (perhaps impossible) for |
| 848 | * the kernel to allocate more memory to a entry zone when it became |
| 849 | * empty since the very act of allocating memory implies the creation |
| 850 | * of a new entry. |
| 851 | */ |
| 852 | void |
| 853 | vm_map_init( |
| 854 | void) |
| 855 | { |
| 856 | vm_size_t entry_zone_alloc_size; |
| 857 | const char *mez_name = "VM map entries" ; |
| 858 | |
| 859 | vm_map_zone = zinit((vm_map_size_t) sizeof(struct _vm_map), 40*1024, |
| 860 | PAGE_SIZE, "maps" ); |
| 861 | zone_change(vm_map_zone, Z_NOENCRYPT, TRUE); |
| 862 | #if defined(__LP64__) |
| 863 | entry_zone_alloc_size = PAGE_SIZE * 5; |
| 864 | #else |
| 865 | entry_zone_alloc_size = PAGE_SIZE * 6; |
| 866 | #endif |
| 867 | vm_map_entry_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry), |
| 868 | 1024*1024, entry_zone_alloc_size, |
| 869 | mez_name); |
| 870 | zone_change(vm_map_entry_zone, Z_NOENCRYPT, TRUE); |
| 871 | zone_change(vm_map_entry_zone, Z_NOCALLOUT, TRUE); |
| 872 | zone_change(vm_map_entry_zone, Z_GZALLOC_EXEMPT, TRUE); |
| 873 | |
| 874 | vm_map_entry_reserved_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry), |
| 875 | kentry_data_size * 64, kentry_data_size, |
| 876 | "Reserved VM map entries" ); |
| 877 | zone_change(vm_map_entry_reserved_zone, Z_NOENCRYPT, TRUE); |
| 878 | /* Don't quarantine because we always need elements available */ |
| 879 | zone_change(vm_map_entry_reserved_zone, Z_KASAN_QUARANTINE, FALSE); |
| 880 | |
| 881 | vm_map_copy_zone = zinit((vm_map_size_t) sizeof(struct vm_map_copy), |
| 882 | 16*1024, PAGE_SIZE, "VM map copies" ); |
| 883 | zone_change(vm_map_copy_zone, Z_NOENCRYPT, TRUE); |
| 884 | |
| 885 | vm_map_holes_zone = zinit((vm_map_size_t) sizeof(struct vm_map_links), |
| 886 | 16*1024, PAGE_SIZE, "VM map holes" ); |
| 887 | zone_change(vm_map_holes_zone, Z_NOENCRYPT, TRUE); |
| 888 | |
| 889 | /* |
| 890 | * Cram the map and kentry zones with initial data. |
| 891 | * Set reserved_zone non-collectible to aid zone_gc(). |
| 892 | */ |
| 893 | zone_change(vm_map_zone, Z_COLLECT, FALSE); |
| 894 | zone_change(vm_map_zone, Z_FOREIGN, TRUE); |
| 895 | zone_change(vm_map_zone, Z_GZALLOC_EXEMPT, TRUE); |
| 896 | |
| 897 | zone_change(vm_map_entry_reserved_zone, Z_COLLECT, FALSE); |
| 898 | zone_change(vm_map_entry_reserved_zone, Z_EXPAND, FALSE); |
| 899 | zone_change(vm_map_entry_reserved_zone, Z_FOREIGN, TRUE); |
| 900 | zone_change(vm_map_entry_reserved_zone, Z_NOCALLOUT, TRUE); |
| 901 | zone_change(vm_map_entry_reserved_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ |
| 902 | zone_change(vm_map_copy_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ |
| 903 | zone_change(vm_map_entry_reserved_zone, Z_GZALLOC_EXEMPT, TRUE); |
| 904 | |
| 905 | zone_change(vm_map_holes_zone, Z_COLLECT, TRUE); |
| 906 | zone_change(vm_map_holes_zone, Z_EXPAND, TRUE); |
| 907 | zone_change(vm_map_holes_zone, Z_FOREIGN, TRUE); |
| 908 | zone_change(vm_map_holes_zone, Z_NOCALLOUT, TRUE); |
| 909 | zone_change(vm_map_holes_zone, Z_CALLERACCT, TRUE); |
| 910 | zone_change(vm_map_holes_zone, Z_GZALLOC_EXEMPT, TRUE); |
| 911 | |
| 912 | /* |
| 913 | * Add the stolen memory to zones, adjust zone size and stolen counts. |
| 914 | * zcram only up to the maximum number of pages for each zone chunk. |
| 915 | */ |
| 916 | zcram(vm_map_zone, (vm_offset_t)map_data, map_data_size); |
| 917 | |
| 918 | const vm_size_t stride = ZONE_CHUNK_MAXPAGES * PAGE_SIZE; |
| 919 | for (vm_offset_t off = 0; off < kentry_data_size; off += stride) { |
| 920 | zcram(vm_map_entry_reserved_zone, |
| 921 | (vm_offset_t)kentry_data + off, |
| 922 | MIN(kentry_data_size - off, stride)); |
| 923 | } |
| 924 | for (vm_offset_t off = 0; off < map_holes_data_size; off += stride) { |
| 925 | zcram(vm_map_holes_zone, |
| 926 | (vm_offset_t)map_holes_data + off, |
| 927 | MIN(map_holes_data_size - off, stride)); |
| 928 | } |
| 929 | |
| 930 | VM_PAGE_MOVE_STOLEN(atop_64(map_data_size) + atop_64(kentry_data_size) + atop_64(map_holes_data_size)); |
| 931 | |
| 932 | lck_grp_attr_setdefault(&vm_map_lck_grp_attr); |
| 933 | lck_grp_init(&vm_map_lck_grp, "vm_map" , &vm_map_lck_grp_attr); |
| 934 | lck_attr_setdefault(&vm_map_lck_attr); |
| 935 | |
| 936 | lck_attr_setdefault(&vm_map_lck_rw_attr); |
| 937 | lck_attr_cleardebug(&vm_map_lck_rw_attr); |
| 938 | |
| 939 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 940 | PE_parse_boot_argn("vm_map_debug_apple_protect" , |
| 941 | &vm_map_debug_apple_protect, |
| 942 | sizeof(vm_map_debug_apple_protect)); |
| 943 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 944 | #if VM_MAP_DEBUG_APPLE_FOURK |
| 945 | PE_parse_boot_argn("vm_map_debug_fourk" , |
| 946 | &vm_map_debug_fourk, |
| 947 | sizeof(vm_map_debug_fourk)); |
| 948 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 949 | PE_parse_boot_argn("vm_map_executable_immutable" , |
| 950 | &vm_map_executable_immutable, |
| 951 | sizeof(vm_map_executable_immutable)); |
| 952 | PE_parse_boot_argn("vm_map_executable_immutable_verbose" , |
| 953 | &vm_map_executable_immutable_verbose, |
| 954 | sizeof(vm_map_executable_immutable_verbose)); |
| 955 | |
| 956 | PE_parse_boot_argn("malloc_no_cow" , |
| 957 | &malloc_no_cow, |
| 958 | sizeof(malloc_no_cow)); |
| 959 | if (malloc_no_cow) { |
| 960 | vm_memory_malloc_no_cow_mask = 0ULL; |
| 961 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC; |
| 962 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_SMALL; |
| 963 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE; |
| 964 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_HUGE; |
| 965 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_REALLOC; |
| 966 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_TINY; |
| 967 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE_REUSABLE; |
| 968 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE_REUSED; |
| 969 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_NANO; |
| 970 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_TCMALLOC; |
| 971 | PE_parse_boot_argn("vm_memory_malloc_no_cow_mask" , |
| 972 | &vm_memory_malloc_no_cow_mask, |
| 973 | sizeof(vm_memory_malloc_no_cow_mask)); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | void |
| 978 | vm_map_steal_memory( |
| 979 | void) |
| 980 | { |
| 981 | uint32_t kentry_initial_pages; |
| 982 | |
| 983 | map_data_size = round_page(10 * sizeof(struct _vm_map)); |
| 984 | map_data = pmap_steal_memory(map_data_size); |
| 985 | |
| 986 | /* |
| 987 | * kentry_initial_pages corresponds to the number of kernel map entries |
| 988 | * required during bootstrap until the asynchronous replenishment |
| 989 | * scheme is activated and/or entries are available from the general |
| 990 | * map entry pool. |
| 991 | */ |
| 992 | #if defined(__LP64__) |
| 993 | kentry_initial_pages = 10; |
| 994 | #else |
| 995 | kentry_initial_pages = 6; |
| 996 | #endif |
| 997 | |
| 998 | #if CONFIG_GZALLOC |
| 999 | /* If using the guard allocator, reserve more memory for the kernel |
| 1000 | * reserved map entry pool. |
| 1001 | */ |
| 1002 | if (gzalloc_enabled()) |
| 1003 | kentry_initial_pages *= 1024; |
| 1004 | #endif |
| 1005 | |
| 1006 | kentry_data_size = kentry_initial_pages * PAGE_SIZE; |
| 1007 | kentry_data = pmap_steal_memory(kentry_data_size); |
| 1008 | |
| 1009 | map_holes_data_size = kentry_data_size; |
| 1010 | map_holes_data = pmap_steal_memory(map_holes_data_size); |
| 1011 | } |
| 1012 | |
| 1013 | boolean_t vm_map_supports_hole_optimization = FALSE; |
| 1014 | |
| 1015 | void |
| 1016 | vm_kernel_reserved_entry_init(void) { |
| 1017 | zone_prio_refill_configure(vm_map_entry_reserved_zone, (6*PAGE_SIZE)/sizeof(struct vm_map_entry)); |
| 1018 | |
| 1019 | /* |
| 1020 | * Once we have our replenish thread set up, we can start using the vm_map_holes zone. |
| 1021 | */ |
| 1022 | zone_prio_refill_configure(vm_map_holes_zone, (6*PAGE_SIZE)/sizeof(struct vm_map_links)); |
| 1023 | vm_map_supports_hole_optimization = TRUE; |
| 1024 | } |
| 1025 | |
| 1026 | void |
| 1027 | vm_map_disable_hole_optimization(vm_map_t map) |
| 1028 | { |
| 1029 | vm_map_entry_t head_entry, hole_entry, next_hole_entry; |
| 1030 | |
| 1031 | if (map->holelistenabled) { |
| 1032 | |
| 1033 | head_entry = hole_entry = CAST_TO_VM_MAP_ENTRY(map->holes_list); |
| 1034 | |
| 1035 | while (hole_entry != NULL) { |
| 1036 | |
| 1037 | next_hole_entry = hole_entry->vme_next; |
| 1038 | |
| 1039 | hole_entry->vme_next = NULL; |
| 1040 | hole_entry->vme_prev = NULL; |
| 1041 | zfree(vm_map_holes_zone, hole_entry); |
| 1042 | |
| 1043 | if (next_hole_entry == head_entry) { |
| 1044 | hole_entry = NULL; |
| 1045 | } else { |
| 1046 | hole_entry = next_hole_entry; |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | map->holes_list = NULL; |
| 1051 | map->holelistenabled = FALSE; |
| 1052 | |
| 1053 | map->first_free = vm_map_first_entry(map); |
| 1054 | SAVE_HINT_HOLE_WRITE(map, NULL); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | boolean_t |
| 1059 | vm_kernel_map_is_kernel(vm_map_t map) { |
| 1060 | return (map->pmap == kernel_pmap); |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * vm_map_create: |
| 1065 | * |
| 1066 | * Creates and returns a new empty VM map with |
| 1067 | * the given physical map structure, and having |
| 1068 | * the given lower and upper address bounds. |
| 1069 | */ |
| 1070 | |
| 1071 | vm_map_t |
| 1072 | vm_map_create( |
| 1073 | pmap_t pmap, |
| 1074 | vm_map_offset_t min, |
| 1075 | vm_map_offset_t max, |
| 1076 | boolean_t pageable) |
| 1077 | { |
| 1078 | int options; |
| 1079 | |
| 1080 | options = 0; |
| 1081 | if (pageable) { |
| 1082 | options |= VM_MAP_CREATE_PAGEABLE; |
| 1083 | } |
| 1084 | return vm_map_create_options(pmap, min, max, options); |
| 1085 | } |
| 1086 | |
| 1087 | vm_map_t |
| 1088 | vm_map_create_options( |
| 1089 | pmap_t pmap, |
| 1090 | vm_map_offset_t min, |
| 1091 | vm_map_offset_t max, |
| 1092 | int options) |
| 1093 | { |
| 1094 | vm_map_t result; |
| 1095 | struct vm_map_links *hole_entry = NULL; |
| 1096 | |
| 1097 | if (options & ~(VM_MAP_CREATE_ALL_OPTIONS)) { |
| 1098 | /* unknown option */ |
| 1099 | return VM_MAP_NULL; |
| 1100 | } |
| 1101 | |
| 1102 | result = (vm_map_t) zalloc(vm_map_zone); |
| 1103 | if (result == VM_MAP_NULL) |
| 1104 | panic("vm_map_create" ); |
| 1105 | |
| 1106 | vm_map_first_entry(result) = vm_map_to_entry(result); |
| 1107 | vm_map_last_entry(result) = vm_map_to_entry(result); |
| 1108 | result->hdr.nentries = 0; |
| 1109 | if (options & VM_MAP_CREATE_PAGEABLE) { |
| 1110 | result->hdr.entries_pageable = TRUE; |
| 1111 | } else { |
| 1112 | result->hdr.entries_pageable = FALSE; |
| 1113 | } |
| 1114 | |
| 1115 | vm_map_store_init( &(result->hdr) ); |
| 1116 | |
| 1117 | result->hdr.page_shift = PAGE_SHIFT; |
| 1118 | |
| 1119 | result->size = 0; |
| 1120 | result->user_wire_limit = MACH_VM_MAX_ADDRESS; /* default limit is unlimited */ |
| 1121 | result->user_wire_size = 0; |
| 1122 | #if __x86_64__ |
| 1123 | result->vmmap_high_start = 0; |
| 1124 | #endif /* __x86_64__ */ |
| 1125 | result->map_refcnt = 1; |
| 1126 | #if TASK_SWAPPER |
| 1127 | result->res_count = 1; |
| 1128 | result->sw_state = MAP_SW_IN; |
| 1129 | #endif /* TASK_SWAPPER */ |
| 1130 | result->pmap = pmap; |
| 1131 | result->min_offset = min; |
| 1132 | result->max_offset = max; |
| 1133 | result->wiring_required = FALSE; |
| 1134 | result->no_zero_fill = FALSE; |
| 1135 | result->mapped_in_other_pmaps = FALSE; |
| 1136 | result->wait_for_space = FALSE; |
| 1137 | result->switch_protect = FALSE; |
| 1138 | result->disable_vmentry_reuse = FALSE; |
| 1139 | result->map_disallow_data_exec = FALSE; |
| 1140 | result->is_nested_map = FALSE; |
| 1141 | result->map_disallow_new_exec = FALSE; |
| 1142 | result->highest_entry_end = 0; |
| 1143 | result->first_free = vm_map_to_entry(result); |
| 1144 | result->hint = vm_map_to_entry(result); |
| 1145 | result->jit_entry_exists = FALSE; |
| 1146 | |
| 1147 | /* "has_corpse_footprint" and "holelistenabled" are mutually exclusive */ |
| 1148 | if (options & VM_MAP_CREATE_CORPSE_FOOTPRINT) { |
| 1149 | result->has_corpse_footprint = TRUE; |
| 1150 | result->holelistenabled = FALSE; |
| 1151 | result->vmmap_corpse_footprint = NULL; |
| 1152 | } else { |
| 1153 | result->has_corpse_footprint = FALSE; |
| 1154 | if (vm_map_supports_hole_optimization) { |
| 1155 | hole_entry = zalloc(vm_map_holes_zone); |
| 1156 | |
| 1157 | hole_entry->start = min; |
| 1158 | #if defined(__arm__) || defined(__arm64__) |
| 1159 | hole_entry->end = result->max_offset; |
| 1160 | #else |
| 1161 | hole_entry->end = (max > (vm_map_offset_t)MACH_VM_MAX_ADDRESS) ? max : (vm_map_offset_t)MACH_VM_MAX_ADDRESS; |
| 1162 | #endif |
| 1163 | result->holes_list = result->hole_hint = hole_entry; |
| 1164 | hole_entry->prev = hole_entry->next = CAST_TO_VM_MAP_ENTRY(hole_entry); |
| 1165 | result->holelistenabled = TRUE; |
| 1166 | } else { |
| 1167 | result->holelistenabled = FALSE; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | vm_map_lock_init(result); |
| 1172 | lck_mtx_init_ext(&result->s_lock, &result->s_lock_ext, &vm_map_lck_grp, &vm_map_lck_attr); |
| 1173 | |
| 1174 | return(result); |
| 1175 | } |
| 1176 | |
| 1177 | /* |
| 1178 | * vm_map_entry_create: [ internal use only ] |
| 1179 | * |
| 1180 | * Allocates a VM map entry for insertion in the |
| 1181 | * given map (or map copy). No fields are filled. |
| 1182 | */ |
| 1183 | #define vm_map_entry_create(map, map_locked) _vm_map_entry_create(&(map)->hdr, map_locked) |
| 1184 | |
| 1185 | #define vm_map_copy_entry_create(copy, map_locked) \ |
| 1186 | _vm_map_entry_create(&(copy)->cpy_hdr, map_locked) |
| 1187 | unsigned reserved_zalloc_count, nonreserved_zalloc_count; |
| 1188 | |
| 1189 | static vm_map_entry_t |
| 1190 | _vm_map_entry_create( |
| 1191 | struct vm_map_header *, boolean_t __unused map_locked) |
| 1192 | { |
| 1193 | zone_t zone; |
| 1194 | vm_map_entry_t entry; |
| 1195 | |
| 1196 | zone = vm_map_entry_zone; |
| 1197 | |
| 1198 | assert(map_header->entries_pageable ? !map_locked : TRUE); |
| 1199 | |
| 1200 | if (map_header->entries_pageable) { |
| 1201 | entry = (vm_map_entry_t) zalloc(zone); |
| 1202 | } |
| 1203 | else { |
| 1204 | entry = (vm_map_entry_t) zalloc_canblock(zone, FALSE); |
| 1205 | |
| 1206 | if (entry == VM_MAP_ENTRY_NULL) { |
| 1207 | zone = vm_map_entry_reserved_zone; |
| 1208 | entry = (vm_map_entry_t) zalloc(zone); |
| 1209 | OSAddAtomic(1, &reserved_zalloc_count); |
| 1210 | } else |
| 1211 | OSAddAtomic(1, &nonreserved_zalloc_count); |
| 1212 | } |
| 1213 | |
| 1214 | if (entry == VM_MAP_ENTRY_NULL) |
| 1215 | panic("vm_map_entry_create" ); |
| 1216 | entry->from_reserved_zone = (zone == vm_map_entry_reserved_zone); |
| 1217 | |
| 1218 | vm_map_store_update( (vm_map_t) NULL, entry, VM_MAP_ENTRY_CREATE); |
| 1219 | #if MAP_ENTRY_CREATION_DEBUG |
| 1220 | entry->vme_creation_maphdr = map_header; |
| 1221 | backtrace(&entry->vme_creation_bt[0], |
| 1222 | (sizeof(entry->vme_creation_bt)/sizeof(uintptr_t))); |
| 1223 | #endif |
| 1224 | return(entry); |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * vm_map_entry_dispose: [ internal use only ] |
| 1229 | * |
| 1230 | * Inverse of vm_map_entry_create. |
| 1231 | * |
| 1232 | * write map lock held so no need to |
| 1233 | * do anything special to insure correctness |
| 1234 | * of the stores |
| 1235 | */ |
| 1236 | #define vm_map_entry_dispose(map, entry) \ |
| 1237 | _vm_map_entry_dispose(&(map)->hdr, (entry)) |
| 1238 | |
| 1239 | #define vm_map_copy_entry_dispose(map, entry) \ |
| 1240 | _vm_map_entry_dispose(&(copy)->cpy_hdr, (entry)) |
| 1241 | |
| 1242 | static void |
| 1243 | _vm_map_entry_dispose( |
| 1244 | struct vm_map_header *, |
| 1245 | vm_map_entry_t entry) |
| 1246 | { |
| 1247 | zone_t zone; |
| 1248 | |
| 1249 | if (map_header->entries_pageable || !(entry->from_reserved_zone)) |
| 1250 | zone = vm_map_entry_zone; |
| 1251 | else |
| 1252 | zone = vm_map_entry_reserved_zone; |
| 1253 | |
| 1254 | if (!map_header->entries_pageable) { |
| 1255 | if (zone == vm_map_entry_zone) |
| 1256 | OSAddAtomic(-1, &nonreserved_zalloc_count); |
| 1257 | else |
| 1258 | OSAddAtomic(-1, &reserved_zalloc_count); |
| 1259 | } |
| 1260 | |
| 1261 | zfree(zone, entry); |
| 1262 | } |
| 1263 | |
| 1264 | #if MACH_ASSERT |
| 1265 | static boolean_t first_free_check = FALSE; |
| 1266 | boolean_t |
| 1267 | first_free_is_valid( |
| 1268 | vm_map_t map) |
| 1269 | { |
| 1270 | if (!first_free_check) |
| 1271 | return TRUE; |
| 1272 | |
| 1273 | return( first_free_is_valid_store( map )); |
| 1274 | } |
| 1275 | #endif /* MACH_ASSERT */ |
| 1276 | |
| 1277 | |
| 1278 | #define vm_map_copy_entry_link(copy, after_where, entry) \ |
| 1279 | _vm_map_store_entry_link(&(copy)->cpy_hdr, after_where, (entry)) |
| 1280 | |
| 1281 | #define vm_map_copy_entry_unlink(copy, entry) \ |
| 1282 | _vm_map_store_entry_unlink(&(copy)->cpy_hdr, (entry)) |
| 1283 | |
| 1284 | #if MACH_ASSERT && TASK_SWAPPER |
| 1285 | /* |
| 1286 | * vm_map_res_reference: |
| 1287 | * |
| 1288 | * Adds another valid residence count to the given map. |
| 1289 | * |
| 1290 | * Map is locked so this function can be called from |
| 1291 | * vm_map_swapin. |
| 1292 | * |
| 1293 | */ |
| 1294 | void vm_map_res_reference(vm_map_t map) |
| 1295 | { |
| 1296 | /* assert map is locked */ |
| 1297 | assert(map->res_count >= 0); |
| 1298 | assert(map->map_refcnt >= map->res_count); |
| 1299 | if (map->res_count == 0) { |
| 1300 | lck_mtx_unlock(&map->s_lock); |
| 1301 | vm_map_lock(map); |
| 1302 | vm_map_swapin(map); |
| 1303 | lck_mtx_lock(&map->s_lock); |
| 1304 | ++map->res_count; |
| 1305 | vm_map_unlock(map); |
| 1306 | } else |
| 1307 | ++map->res_count; |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | * vm_map_reference_swap: |
| 1312 | * |
| 1313 | * Adds valid reference and residence counts to the given map. |
| 1314 | * |
| 1315 | * The map may not be in memory (i.e. zero residence count). |
| 1316 | * |
| 1317 | */ |
| 1318 | void vm_map_reference_swap(vm_map_t map) |
| 1319 | { |
| 1320 | assert(map != VM_MAP_NULL); |
| 1321 | lck_mtx_lock(&map->s_lock); |
| 1322 | assert(map->res_count >= 0); |
| 1323 | assert(map->map_refcnt >= map->res_count); |
| 1324 | map->map_refcnt++; |
| 1325 | vm_map_res_reference(map); |
| 1326 | lck_mtx_unlock(&map->s_lock); |
| 1327 | } |
| 1328 | |
| 1329 | /* |
| 1330 | * vm_map_res_deallocate: |
| 1331 | * |
| 1332 | * Decrement residence count on a map; possibly causing swapout. |
| 1333 | * |
| 1334 | * The map must be in memory (i.e. non-zero residence count). |
| 1335 | * |
| 1336 | * The map is locked, so this function is callable from vm_map_deallocate. |
| 1337 | * |
| 1338 | */ |
| 1339 | void vm_map_res_deallocate(vm_map_t map) |
| 1340 | { |
| 1341 | assert(map->res_count > 0); |
| 1342 | if (--map->res_count == 0) { |
| 1343 | lck_mtx_unlock(&map->s_lock); |
| 1344 | vm_map_lock(map); |
| 1345 | vm_map_swapout(map); |
| 1346 | vm_map_unlock(map); |
| 1347 | lck_mtx_lock(&map->s_lock); |
| 1348 | } |
| 1349 | assert(map->map_refcnt >= map->res_count); |
| 1350 | } |
| 1351 | #endif /* MACH_ASSERT && TASK_SWAPPER */ |
| 1352 | |
| 1353 | /* |
| 1354 | * vm_map_destroy: |
| 1355 | * |
| 1356 | * Actually destroy a map. |
| 1357 | */ |
| 1358 | void |
| 1359 | vm_map_destroy( |
| 1360 | vm_map_t map, |
| 1361 | int flags) |
| 1362 | { |
| 1363 | vm_map_lock(map); |
| 1364 | |
| 1365 | /* final cleanup: no need to unnest shared region */ |
| 1366 | flags |= VM_MAP_REMOVE_NO_UNNESTING; |
| 1367 | /* final cleanup: ok to remove immutable mappings */ |
| 1368 | flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 1369 | /* final cleanup: allow gaps in range */ |
| 1370 | flags |= VM_MAP_REMOVE_GAPS_OK; |
| 1371 | |
| 1372 | /* clean up regular map entries */ |
| 1373 | (void) vm_map_delete(map, map->min_offset, map->max_offset, |
| 1374 | flags, VM_MAP_NULL); |
| 1375 | /* clean up leftover special mappings (commpage, etc...) */ |
| 1376 | #if !defined(__arm__) && !defined(__arm64__) |
| 1377 | (void) vm_map_delete(map, 0x0, 0xFFFFFFFFFFFFF000ULL, |
| 1378 | flags, VM_MAP_NULL); |
| 1379 | #endif /* !__arm__ && !__arm64__ */ |
| 1380 | |
| 1381 | vm_map_disable_hole_optimization(map); |
| 1382 | vm_map_corpse_footprint_destroy(map); |
| 1383 | |
| 1384 | vm_map_unlock(map); |
| 1385 | |
| 1386 | assert(map->hdr.nentries == 0); |
| 1387 | |
| 1388 | if(map->pmap) |
| 1389 | pmap_destroy(map->pmap); |
| 1390 | |
| 1391 | if (vm_map_lck_attr.lck_attr_val & LCK_ATTR_DEBUG) { |
| 1392 | /* |
| 1393 | * If lock debugging is enabled the mutexes get tagged as LCK_MTX_TAG_INDIRECT. |
| 1394 | * And this is regardless of whether the lck_mtx_ext_t is embedded in the |
| 1395 | * structure or kalloc'ed via lck_mtx_init. |
| 1396 | * An example is s_lock_ext within struct _vm_map. |
| 1397 | * |
| 1398 | * A lck_mtx_destroy on such a mutex will attempt a kfree and panic. We |
| 1399 | * can add another tag to detect embedded vs alloc'ed indirect external |
| 1400 | * mutexes but that'll be additional checks in the lock path and require |
| 1401 | * updating dependencies for the old vs new tag. |
| 1402 | * |
| 1403 | * Since the kfree() is for LCK_MTX_TAG_INDIRECT mutexes and that tag is applied |
| 1404 | * just when lock debugging is ON, we choose to forego explicitly destroying |
| 1405 | * the vm_map mutex and rw lock and, as a consequence, will overflow the reference |
| 1406 | * count on vm_map_lck_grp, which has no serious side-effect. |
| 1407 | */ |
| 1408 | } else { |
| 1409 | lck_rw_destroy(&(map)->lock, &vm_map_lck_grp); |
| 1410 | lck_mtx_destroy(&(map)->s_lock, &vm_map_lck_grp); |
| 1411 | } |
| 1412 | |
| 1413 | zfree(vm_map_zone, map); |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * Returns pid of the task with the largest number of VM map entries. |
| 1418 | * Used in the zone-map-exhaustion jetsam path. |
| 1419 | */ |
| 1420 | pid_t |
| 1421 | find_largest_process_vm_map_entries(void) |
| 1422 | { |
| 1423 | pid_t victim_pid = -1; |
| 1424 | int max_vm_map_entries = 0; |
| 1425 | task_t task = TASK_NULL; |
| 1426 | queue_head_t *task_list = &tasks; |
| 1427 | |
| 1428 | lck_mtx_lock(&tasks_threads_lock); |
| 1429 | queue_iterate(task_list, task, task_t, tasks) { |
| 1430 | if (task == kernel_task || !task->active) |
| 1431 | continue; |
| 1432 | |
| 1433 | vm_map_t task_map = task->map; |
| 1434 | if (task_map != VM_MAP_NULL) { |
| 1435 | int task_vm_map_entries = task_map->hdr.nentries; |
| 1436 | if (task_vm_map_entries > max_vm_map_entries) { |
| 1437 | max_vm_map_entries = task_vm_map_entries; |
| 1438 | victim_pid = pid_from_task(task); |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | lck_mtx_unlock(&tasks_threads_lock); |
| 1443 | |
| 1444 | printf("zone_map_exhaustion: victim pid %d, vm region count: %d\n" , victim_pid, max_vm_map_entries); |
| 1445 | return victim_pid; |
| 1446 | } |
| 1447 | |
| 1448 | #if TASK_SWAPPER |
| 1449 | /* |
| 1450 | * vm_map_swapin/vm_map_swapout |
| 1451 | * |
| 1452 | * Swap a map in and out, either referencing or releasing its resources. |
| 1453 | * These functions are internal use only; however, they must be exported |
| 1454 | * because they may be called from macros, which are exported. |
| 1455 | * |
| 1456 | * In the case of swapout, there could be races on the residence count, |
| 1457 | * so if the residence count is up, we return, assuming that a |
| 1458 | * vm_map_deallocate() call in the near future will bring us back. |
| 1459 | * |
| 1460 | * Locking: |
| 1461 | * -- We use the map write lock for synchronization among races. |
| 1462 | * -- The map write lock, and not the simple s_lock, protects the |
| 1463 | * swap state of the map. |
| 1464 | * -- If a map entry is a share map, then we hold both locks, in |
| 1465 | * hierarchical order. |
| 1466 | * |
| 1467 | * Synchronization Notes: |
| 1468 | * 1) If a vm_map_swapin() call happens while swapout in progress, it |
| 1469 | * will block on the map lock and proceed when swapout is through. |
| 1470 | * 2) A vm_map_reference() call at this time is illegal, and will |
| 1471 | * cause a panic. vm_map_reference() is only allowed on resident |
| 1472 | * maps, since it refuses to block. |
| 1473 | * 3) A vm_map_swapin() call during a swapin will block, and |
| 1474 | * proceeed when the first swapin is done, turning into a nop. |
| 1475 | * This is the reason the res_count is not incremented until |
| 1476 | * after the swapin is complete. |
| 1477 | * 4) There is a timing hole after the checks of the res_count, before |
| 1478 | * the map lock is taken, during which a swapin may get the lock |
| 1479 | * before a swapout about to happen. If this happens, the swapin |
| 1480 | * will detect the state and increment the reference count, causing |
| 1481 | * the swapout to be a nop, thereby delaying it until a later |
| 1482 | * vm_map_deallocate. If the swapout gets the lock first, then |
| 1483 | * the swapin will simply block until the swapout is done, and |
| 1484 | * then proceed. |
| 1485 | * |
| 1486 | * Because vm_map_swapin() is potentially an expensive operation, it |
| 1487 | * should be used with caution. |
| 1488 | * |
| 1489 | * Invariants: |
| 1490 | * 1) A map with a residence count of zero is either swapped, or |
| 1491 | * being swapped. |
| 1492 | * 2) A map with a non-zero residence count is either resident, |
| 1493 | * or being swapped in. |
| 1494 | */ |
| 1495 | |
| 1496 | int vm_map_swap_enable = 1; |
| 1497 | |
| 1498 | void vm_map_swapin (vm_map_t map) |
| 1499 | { |
| 1500 | vm_map_entry_t entry; |
| 1501 | |
| 1502 | if (!vm_map_swap_enable) /* debug */ |
| 1503 | return; |
| 1504 | |
| 1505 | /* |
| 1506 | * Map is locked |
| 1507 | * First deal with various races. |
| 1508 | */ |
| 1509 | if (map->sw_state == MAP_SW_IN) |
| 1510 | /* |
| 1511 | * we raced with swapout and won. Returning will incr. |
| 1512 | * the res_count, turning the swapout into a nop. |
| 1513 | */ |
| 1514 | return; |
| 1515 | |
| 1516 | /* |
| 1517 | * The residence count must be zero. If we raced with another |
| 1518 | * swapin, the state would have been IN; if we raced with a |
| 1519 | * swapout (after another competing swapin), we must have lost |
| 1520 | * the race to get here (see above comment), in which case |
| 1521 | * res_count is still 0. |
| 1522 | */ |
| 1523 | assert(map->res_count == 0); |
| 1524 | |
| 1525 | /* |
| 1526 | * There are no intermediate states of a map going out or |
| 1527 | * coming in, since the map is locked during the transition. |
| 1528 | */ |
| 1529 | assert(map->sw_state == MAP_SW_OUT); |
| 1530 | |
| 1531 | /* |
| 1532 | * We now operate upon each map entry. If the entry is a sub- |
| 1533 | * or share-map, we call vm_map_res_reference upon it. |
| 1534 | * If the entry is an object, we call vm_object_res_reference |
| 1535 | * (this may iterate through the shadow chain). |
| 1536 | * Note that we hold the map locked the entire time, |
| 1537 | * even if we get back here via a recursive call in |
| 1538 | * vm_map_res_reference. |
| 1539 | */ |
| 1540 | entry = vm_map_first_entry(map); |
| 1541 | |
| 1542 | while (entry != vm_map_to_entry(map)) { |
| 1543 | if (VME_OBJECT(entry) != VM_OBJECT_NULL) { |
| 1544 | if (entry->is_sub_map) { |
| 1545 | vm_map_t lmap = VME_SUBMAP(entry); |
| 1546 | lck_mtx_lock(&lmap->s_lock); |
| 1547 | vm_map_res_reference(lmap); |
| 1548 | lck_mtx_unlock(&lmap->s_lock); |
| 1549 | } else { |
| 1550 | vm_object_t object = VME_OBEJCT(entry); |
| 1551 | vm_object_lock(object); |
| 1552 | /* |
| 1553 | * This call may iterate through the |
| 1554 | * shadow chain. |
| 1555 | */ |
| 1556 | vm_object_res_reference(object); |
| 1557 | vm_object_unlock(object); |
| 1558 | } |
| 1559 | } |
| 1560 | entry = entry->vme_next; |
| 1561 | } |
| 1562 | assert(map->sw_state == MAP_SW_OUT); |
| 1563 | map->sw_state = MAP_SW_IN; |
| 1564 | } |
| 1565 | |
| 1566 | void vm_map_swapout(vm_map_t map) |
| 1567 | { |
| 1568 | vm_map_entry_t entry; |
| 1569 | |
| 1570 | /* |
| 1571 | * Map is locked |
| 1572 | * First deal with various races. |
| 1573 | * If we raced with a swapin and lost, the residence count |
| 1574 | * will have been incremented to 1, and we simply return. |
| 1575 | */ |
| 1576 | lck_mtx_lock(&map->s_lock); |
| 1577 | if (map->res_count != 0) { |
| 1578 | lck_mtx_unlock(&map->s_lock); |
| 1579 | return; |
| 1580 | } |
| 1581 | lck_mtx_unlock(&map->s_lock); |
| 1582 | |
| 1583 | /* |
| 1584 | * There are no intermediate states of a map going out or |
| 1585 | * coming in, since the map is locked during the transition. |
| 1586 | */ |
| 1587 | assert(map->sw_state == MAP_SW_IN); |
| 1588 | |
| 1589 | if (!vm_map_swap_enable) |
| 1590 | return; |
| 1591 | |
| 1592 | /* |
| 1593 | * We now operate upon each map entry. If the entry is a sub- |
| 1594 | * or share-map, we call vm_map_res_deallocate upon it. |
| 1595 | * If the entry is an object, we call vm_object_res_deallocate |
| 1596 | * (this may iterate through the shadow chain). |
| 1597 | * Note that we hold the map locked the entire time, |
| 1598 | * even if we get back here via a recursive call in |
| 1599 | * vm_map_res_deallocate. |
| 1600 | */ |
| 1601 | entry = vm_map_first_entry(map); |
| 1602 | |
| 1603 | while (entry != vm_map_to_entry(map)) { |
| 1604 | if (VME_OBJECT(entry) != VM_OBJECT_NULL) { |
| 1605 | if (entry->is_sub_map) { |
| 1606 | vm_map_t lmap = VME_SUBMAP(entry); |
| 1607 | lck_mtx_lock(&lmap->s_lock); |
| 1608 | vm_map_res_deallocate(lmap); |
| 1609 | lck_mtx_unlock(&lmap->s_lock); |
| 1610 | } else { |
| 1611 | vm_object_t object = VME_OBJECT(entry); |
| 1612 | vm_object_lock(object); |
| 1613 | /* |
| 1614 | * This call may take a long time, |
| 1615 | * since it could actively push |
| 1616 | * out pages (if we implement it |
| 1617 | * that way). |
| 1618 | */ |
| 1619 | vm_object_res_deallocate(object); |
| 1620 | vm_object_unlock(object); |
| 1621 | } |
| 1622 | } |
| 1623 | entry = entry->vme_next; |
| 1624 | } |
| 1625 | assert(map->sw_state == MAP_SW_IN); |
| 1626 | map->sw_state = MAP_SW_OUT; |
| 1627 | } |
| 1628 | |
| 1629 | #endif /* TASK_SWAPPER */ |
| 1630 | |
| 1631 | /* |
| 1632 | * vm_map_lookup_entry: [ internal use only ] |
| 1633 | * |
| 1634 | * Calls into the vm map store layer to find the map |
| 1635 | * entry containing (or immediately preceding) the |
| 1636 | * specified address in the given map; the entry is returned |
| 1637 | * in the "entry" parameter. The boolean |
| 1638 | * result indicates whether the address is |
| 1639 | * actually contained in the map. |
| 1640 | */ |
| 1641 | boolean_t |
| 1642 | vm_map_lookup_entry( |
| 1643 | vm_map_t map, |
| 1644 | vm_map_offset_t address, |
| 1645 | vm_map_entry_t *entry) /* OUT */ |
| 1646 | { |
| 1647 | return ( vm_map_store_lookup_entry( map, address, entry )); |
| 1648 | } |
| 1649 | |
| 1650 | /* |
| 1651 | * Routine: vm_map_find_space |
| 1652 | * Purpose: |
| 1653 | * Allocate a range in the specified virtual address map, |
| 1654 | * returning the entry allocated for that range. |
| 1655 | * Used by kmem_alloc, etc. |
| 1656 | * |
| 1657 | * The map must be NOT be locked. It will be returned locked |
| 1658 | * on KERN_SUCCESS, unlocked on failure. |
| 1659 | * |
| 1660 | * If an entry is allocated, the object/offset fields |
| 1661 | * are initialized to zero. |
| 1662 | */ |
| 1663 | kern_return_t |
| 1664 | vm_map_find_space( |
| 1665 | vm_map_t map, |
| 1666 | vm_map_offset_t *address, /* OUT */ |
| 1667 | vm_map_size_t size, |
| 1668 | vm_map_offset_t mask, |
| 1669 | int flags __unused, |
| 1670 | vm_map_kernel_flags_t vmk_flags, |
| 1671 | vm_tag_t tag, |
| 1672 | vm_map_entry_t *o_entry) /* OUT */ |
| 1673 | { |
| 1674 | vm_map_entry_t entry, new_entry; |
| 1675 | vm_map_offset_t start; |
| 1676 | vm_map_offset_t end; |
| 1677 | vm_map_entry_t hole_entry; |
| 1678 | |
| 1679 | if (size == 0) { |
| 1680 | *address = 0; |
| 1681 | return KERN_INVALID_ARGUMENT; |
| 1682 | } |
| 1683 | |
| 1684 | if (vmk_flags.vmkf_guard_after) { |
| 1685 | /* account for the back guard page in the size */ |
| 1686 | size += VM_MAP_PAGE_SIZE(map); |
| 1687 | } |
| 1688 | |
| 1689 | new_entry = vm_map_entry_create(map, FALSE); |
| 1690 | |
| 1691 | /* |
| 1692 | * Look for the first possible address; if there's already |
| 1693 | * something at this address, we have to start after it. |
| 1694 | */ |
| 1695 | |
| 1696 | vm_map_lock(map); |
| 1697 | |
| 1698 | if( map->disable_vmentry_reuse == TRUE) { |
| 1699 | VM_MAP_HIGHEST_ENTRY(map, entry, start); |
| 1700 | } else { |
| 1701 | if (map->holelistenabled) { |
| 1702 | hole_entry = CAST_TO_VM_MAP_ENTRY(map->holes_list); |
| 1703 | |
| 1704 | if (hole_entry == NULL) { |
| 1705 | /* |
| 1706 | * No more space in the map? |
| 1707 | */ |
| 1708 | vm_map_entry_dispose(map, new_entry); |
| 1709 | vm_map_unlock(map); |
| 1710 | return(KERN_NO_SPACE); |
| 1711 | } |
| 1712 | |
| 1713 | entry = hole_entry; |
| 1714 | start = entry->vme_start; |
| 1715 | } else { |
| 1716 | assert(first_free_is_valid(map)); |
| 1717 | if ((entry = map->first_free) == vm_map_to_entry(map)) |
| 1718 | start = map->min_offset; |
| 1719 | else |
| 1720 | start = entry->vme_end; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | /* |
| 1725 | * In any case, the "entry" always precedes |
| 1726 | * the proposed new region throughout the loop: |
| 1727 | */ |
| 1728 | |
| 1729 | while (TRUE) { |
| 1730 | vm_map_entry_t next; |
| 1731 | |
| 1732 | /* |
| 1733 | * Find the end of the proposed new region. |
| 1734 | * Be sure we didn't go beyond the end, or |
| 1735 | * wrap around the address. |
| 1736 | */ |
| 1737 | |
| 1738 | if (vmk_flags.vmkf_guard_before) { |
| 1739 | /* reserve space for the front guard page */ |
| 1740 | start += VM_MAP_PAGE_SIZE(map); |
| 1741 | } |
| 1742 | end = ((start + mask) & ~mask); |
| 1743 | |
| 1744 | if (end < start) { |
| 1745 | vm_map_entry_dispose(map, new_entry); |
| 1746 | vm_map_unlock(map); |
| 1747 | return(KERN_NO_SPACE); |
| 1748 | } |
| 1749 | start = end; |
| 1750 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 1751 | end += size; |
| 1752 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 1753 | |
| 1754 | if ((end > map->max_offset) || (end < start)) { |
| 1755 | vm_map_entry_dispose(map, new_entry); |
| 1756 | vm_map_unlock(map); |
| 1757 | return(KERN_NO_SPACE); |
| 1758 | } |
| 1759 | |
| 1760 | next = entry->vme_next; |
| 1761 | |
| 1762 | if (map->holelistenabled) { |
| 1763 | if (entry->vme_end >= end) |
| 1764 | break; |
| 1765 | } else { |
| 1766 | /* |
| 1767 | * If there are no more entries, we must win. |
| 1768 | * |
| 1769 | * OR |
| 1770 | * |
| 1771 | * If there is another entry, it must be |
| 1772 | * after the end of the potential new region. |
| 1773 | */ |
| 1774 | |
| 1775 | if (next == vm_map_to_entry(map)) |
| 1776 | break; |
| 1777 | |
| 1778 | if (next->vme_start >= end) |
| 1779 | break; |
| 1780 | } |
| 1781 | |
| 1782 | /* |
| 1783 | * Didn't fit -- move to the next entry. |
| 1784 | */ |
| 1785 | |
| 1786 | entry = next; |
| 1787 | |
| 1788 | if (map->holelistenabled) { |
| 1789 | if (entry == CAST_TO_VM_MAP_ENTRY(map->holes_list)) { |
| 1790 | /* |
| 1791 | * Wrapped around |
| 1792 | */ |
| 1793 | vm_map_entry_dispose(map, new_entry); |
| 1794 | vm_map_unlock(map); |
| 1795 | return(KERN_NO_SPACE); |
| 1796 | } |
| 1797 | start = entry->vme_start; |
| 1798 | } else { |
| 1799 | start = entry->vme_end; |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | if (map->holelistenabled) { |
| 1804 | if (vm_map_lookup_entry(map, entry->vme_start, &entry)) { |
| 1805 | panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n" , entry, (unsigned long long)entry->vme_start); |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | /* |
| 1810 | * At this point, |
| 1811 | * "start" and "end" should define the endpoints of the |
| 1812 | * available new range, and |
| 1813 | * "entry" should refer to the region before the new |
| 1814 | * range, and |
| 1815 | * |
| 1816 | * the map should be locked. |
| 1817 | */ |
| 1818 | |
| 1819 | if (vmk_flags.vmkf_guard_before) { |
| 1820 | /* go back for the front guard page */ |
| 1821 | start -= VM_MAP_PAGE_SIZE(map); |
| 1822 | } |
| 1823 | *address = start; |
| 1824 | |
| 1825 | assert(start < end); |
| 1826 | new_entry->vme_start = start; |
| 1827 | new_entry->vme_end = end; |
| 1828 | assert(page_aligned(new_entry->vme_start)); |
| 1829 | assert(page_aligned(new_entry->vme_end)); |
| 1830 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start, |
| 1831 | VM_MAP_PAGE_MASK(map))); |
| 1832 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end, |
| 1833 | VM_MAP_PAGE_MASK(map))); |
| 1834 | |
| 1835 | new_entry->is_shared = FALSE; |
| 1836 | new_entry->is_sub_map = FALSE; |
| 1837 | new_entry->use_pmap = TRUE; |
| 1838 | VME_OBJECT_SET(new_entry, VM_OBJECT_NULL); |
| 1839 | VME_OFFSET_SET(new_entry, (vm_object_offset_t) 0); |
| 1840 | |
| 1841 | new_entry->needs_copy = FALSE; |
| 1842 | |
| 1843 | new_entry->inheritance = VM_INHERIT_DEFAULT; |
| 1844 | new_entry->protection = VM_PROT_DEFAULT; |
| 1845 | new_entry->max_protection = VM_PROT_ALL; |
| 1846 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; |
| 1847 | new_entry->wired_count = 0; |
| 1848 | new_entry->user_wired_count = 0; |
| 1849 | |
| 1850 | new_entry->in_transition = FALSE; |
| 1851 | new_entry->needs_wakeup = FALSE; |
| 1852 | new_entry->no_cache = FALSE; |
| 1853 | new_entry->permanent = FALSE; |
| 1854 | new_entry->superpage_size = FALSE; |
| 1855 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { |
| 1856 | new_entry->map_aligned = TRUE; |
| 1857 | } else { |
| 1858 | new_entry->map_aligned = FALSE; |
| 1859 | } |
| 1860 | |
| 1861 | new_entry->used_for_jit = FALSE; |
| 1862 | new_entry->pmap_cs_associated = FALSE; |
| 1863 | new_entry->zero_wired_pages = FALSE; |
| 1864 | new_entry->iokit_acct = FALSE; |
| 1865 | new_entry->vme_resilient_codesign = FALSE; |
| 1866 | new_entry->vme_resilient_media = FALSE; |
| 1867 | if (vmk_flags.vmkf_atomic_entry) |
| 1868 | new_entry->vme_atomic = TRUE; |
| 1869 | else |
| 1870 | new_entry->vme_atomic = FALSE; |
| 1871 | |
| 1872 | VME_ALIAS_SET(new_entry, tag); |
| 1873 | |
| 1874 | /* |
| 1875 | * Insert the new entry into the list |
| 1876 | */ |
| 1877 | |
| 1878 | vm_map_store_entry_link(map, entry, new_entry, VM_MAP_KERNEL_FLAGS_NONE); |
| 1879 | |
| 1880 | map->size += size; |
| 1881 | |
| 1882 | /* |
| 1883 | * Update the lookup hint |
| 1884 | */ |
| 1885 | SAVE_HINT_MAP_WRITE(map, new_entry); |
| 1886 | |
| 1887 | *o_entry = new_entry; |
| 1888 | return(KERN_SUCCESS); |
| 1889 | } |
| 1890 | |
| 1891 | int vm_map_pmap_enter_print = FALSE; |
| 1892 | int vm_map_pmap_enter_enable = FALSE; |
| 1893 | |
| 1894 | /* |
| 1895 | * Routine: vm_map_pmap_enter [internal only] |
| 1896 | * |
| 1897 | * Description: |
| 1898 | * Force pages from the specified object to be entered into |
| 1899 | * the pmap at the specified address if they are present. |
| 1900 | * As soon as a page not found in the object the scan ends. |
| 1901 | * |
| 1902 | * Returns: |
| 1903 | * Nothing. |
| 1904 | * |
| 1905 | * In/out conditions: |
| 1906 | * The source map should not be locked on entry. |
| 1907 | */ |
| 1908 | __unused static void |
| 1909 | vm_map_pmap_enter( |
| 1910 | vm_map_t map, |
| 1911 | vm_map_offset_t addr, |
| 1912 | vm_map_offset_t end_addr, |
| 1913 | vm_object_t object, |
| 1914 | vm_object_offset_t offset, |
| 1915 | vm_prot_t protection) |
| 1916 | { |
| 1917 | int type_of_fault; |
| 1918 | kern_return_t kr; |
| 1919 | struct vm_object_fault_info fault_info = {}; |
| 1920 | |
| 1921 | if(map->pmap == 0) |
| 1922 | return; |
| 1923 | |
| 1924 | while (addr < end_addr) { |
| 1925 | vm_page_t m; |
| 1926 | |
| 1927 | |
| 1928 | /* |
| 1929 | * TODO: |
| 1930 | * From vm_map_enter(), we come into this function without the map |
| 1931 | * lock held or the object lock held. |
| 1932 | * We haven't taken a reference on the object either. |
| 1933 | * We should do a proper lookup on the map to make sure |
| 1934 | * that things are sane before we go locking objects that |
| 1935 | * could have been deallocated from under us. |
| 1936 | */ |
| 1937 | |
| 1938 | vm_object_lock(object); |
| 1939 | |
| 1940 | m = vm_page_lookup(object, offset); |
| 1941 | |
| 1942 | if (m == VM_PAGE_NULL || m->vmp_busy || m->vmp_fictitious || |
| 1943 | (m->vmp_unusual && ( m->vmp_error || m->vmp_restart || m->vmp_absent))) { |
| 1944 | vm_object_unlock(object); |
| 1945 | return; |
| 1946 | } |
| 1947 | |
| 1948 | if (vm_map_pmap_enter_print) { |
| 1949 | printf("vm_map_pmap_enter:" ); |
| 1950 | printf("map: %p, addr: %llx, object: %p, offset: %llx\n" , |
| 1951 | map, (unsigned long long)addr, object, (unsigned long long)offset); |
| 1952 | } |
| 1953 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 1954 | kr = vm_fault_enter(m, map->pmap, |
| 1955 | addr, protection, protection, |
| 1956 | VM_PAGE_WIRED(m), |
| 1957 | FALSE, /* change_wiring */ |
| 1958 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 1959 | &fault_info, |
| 1960 | NULL, /* need_retry */ |
| 1961 | &type_of_fault); |
| 1962 | |
| 1963 | vm_object_unlock(object); |
| 1964 | |
| 1965 | offset += PAGE_SIZE_64; |
| 1966 | addr += PAGE_SIZE; |
| 1967 | } |
| 1968 | } |
| 1969 | |
| 1970 | boolean_t vm_map_pmap_is_empty( |
| 1971 | vm_map_t map, |
| 1972 | vm_map_offset_t start, |
| 1973 | vm_map_offset_t end); |
| 1974 | boolean_t vm_map_pmap_is_empty( |
| 1975 | vm_map_t map, |
| 1976 | vm_map_offset_t start, |
| 1977 | vm_map_offset_t end) |
| 1978 | { |
| 1979 | #ifdef MACHINE_PMAP_IS_EMPTY |
| 1980 | return pmap_is_empty(map->pmap, start, end); |
| 1981 | #else /* MACHINE_PMAP_IS_EMPTY */ |
| 1982 | vm_map_offset_t offset; |
| 1983 | ppnum_t phys_page; |
| 1984 | |
| 1985 | if (map->pmap == NULL) { |
| 1986 | return TRUE; |
| 1987 | } |
| 1988 | |
| 1989 | for (offset = start; |
| 1990 | offset < end; |
| 1991 | offset += PAGE_SIZE) { |
| 1992 | phys_page = pmap_find_phys(map->pmap, offset); |
| 1993 | if (phys_page) { |
| 1994 | kprintf("vm_map_pmap_is_empty(%p,0x%llx,0x%llx): " |
| 1995 | "page %d at 0x%llx\n" , |
| 1996 | map, (long long)start, (long long)end, |
| 1997 | phys_page, (long long)offset); |
| 1998 | return FALSE; |
| 1999 | } |
| 2000 | } |
| 2001 | return TRUE; |
| 2002 | #endif /* MACHINE_PMAP_IS_EMPTY */ |
| 2003 | } |
| 2004 | |
| 2005 | #define MAX_TRIES_TO_GET_RANDOM_ADDRESS 1000 |
| 2006 | kern_return_t |
| 2007 | vm_map_random_address_for_size( |
| 2008 | vm_map_t map, |
| 2009 | vm_map_offset_t *address, |
| 2010 | vm_map_size_t size) |
| 2011 | { |
| 2012 | kern_return_t kr = KERN_SUCCESS; |
| 2013 | int tries = 0; |
| 2014 | vm_map_offset_t random_addr = 0; |
| 2015 | vm_map_offset_t hole_end; |
| 2016 | |
| 2017 | vm_map_entry_t next_entry = VM_MAP_ENTRY_NULL; |
| 2018 | vm_map_entry_t prev_entry = VM_MAP_ENTRY_NULL; |
| 2019 | vm_map_size_t vm_hole_size = 0; |
| 2020 | vm_map_size_t addr_space_size; |
| 2021 | |
| 2022 | addr_space_size = vm_map_max(map) - vm_map_min(map); |
| 2023 | |
| 2024 | assert(page_aligned(size)); |
| 2025 | |
| 2026 | while (tries < MAX_TRIES_TO_GET_RANDOM_ADDRESS) { |
| 2027 | random_addr = ((vm_map_offset_t)random()) << PAGE_SHIFT; |
| 2028 | random_addr = vm_map_trunc_page( |
| 2029 | vm_map_min(map) +(random_addr % addr_space_size), |
| 2030 | VM_MAP_PAGE_MASK(map)); |
| 2031 | |
| 2032 | if (vm_map_lookup_entry(map, random_addr, &prev_entry) == FALSE) { |
| 2033 | if (prev_entry == vm_map_to_entry(map)) { |
| 2034 | next_entry = vm_map_first_entry(map); |
| 2035 | } else { |
| 2036 | next_entry = prev_entry->vme_next; |
| 2037 | } |
| 2038 | if (next_entry == vm_map_to_entry(map)) { |
| 2039 | hole_end = vm_map_max(map); |
| 2040 | } else { |
| 2041 | hole_end = next_entry->vme_start; |
| 2042 | } |
| 2043 | vm_hole_size = hole_end - random_addr; |
| 2044 | if (vm_hole_size >= size) { |
| 2045 | *address = random_addr; |
| 2046 | break; |
| 2047 | } |
| 2048 | } |
| 2049 | tries++; |
| 2050 | } |
| 2051 | |
| 2052 | if (tries == MAX_TRIES_TO_GET_RANDOM_ADDRESS) { |
| 2053 | kr = KERN_NO_SPACE; |
| 2054 | } |
| 2055 | return kr; |
| 2056 | } |
| 2057 | |
| 2058 | static boolean_t |
| 2059 | vm_memory_malloc_no_cow( |
| 2060 | int alias) |
| 2061 | { |
| 2062 | uint64_t alias_mask; |
| 2063 | |
| 2064 | alias_mask = 1ULL << alias; |
| 2065 | if (alias_mask & vm_memory_malloc_no_cow_mask) { |
| 2066 | return TRUE; |
| 2067 | } |
| 2068 | return FALSE; |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * Routine: vm_map_enter |
| 2073 | * |
| 2074 | * Description: |
| 2075 | * Allocate a range in the specified virtual address map. |
| 2076 | * The resulting range will refer to memory defined by |
| 2077 | * the given memory object and offset into that object. |
| 2078 | * |
| 2079 | * Arguments are as defined in the vm_map call. |
| 2080 | */ |
| 2081 | int _map_enter_debug = 0; |
| 2082 | static unsigned int vm_map_enter_restore_successes = 0; |
| 2083 | static unsigned int vm_map_enter_restore_failures = 0; |
| 2084 | kern_return_t |
| 2085 | vm_map_enter( |
| 2086 | vm_map_t map, |
| 2087 | vm_map_offset_t *address, /* IN/OUT */ |
| 2088 | vm_map_size_t size, |
| 2089 | vm_map_offset_t mask, |
| 2090 | int flags, |
| 2091 | vm_map_kernel_flags_t vmk_flags, |
| 2092 | vm_tag_t alias, |
| 2093 | vm_object_t object, |
| 2094 | vm_object_offset_t offset, |
| 2095 | boolean_t needs_copy, |
| 2096 | vm_prot_t cur_protection, |
| 2097 | vm_prot_t max_protection, |
| 2098 | vm_inherit_t inheritance) |
| 2099 | { |
| 2100 | vm_map_entry_t entry, new_entry; |
| 2101 | vm_map_offset_t start, tmp_start, tmp_offset; |
| 2102 | vm_map_offset_t end, tmp_end; |
| 2103 | vm_map_offset_t tmp2_start, tmp2_end; |
| 2104 | vm_map_offset_t desired_empty_end; |
| 2105 | vm_map_offset_t step; |
| 2106 | kern_return_t result = KERN_SUCCESS; |
| 2107 | vm_map_t zap_old_map = VM_MAP_NULL; |
| 2108 | vm_map_t zap_new_map = VM_MAP_NULL; |
| 2109 | boolean_t map_locked = FALSE; |
| 2110 | boolean_t pmap_empty = TRUE; |
| 2111 | boolean_t new_mapping_established = FALSE; |
| 2112 | boolean_t keep_map_locked = vmk_flags.vmkf_keep_map_locked; |
| 2113 | boolean_t anywhere = ((flags & VM_FLAGS_ANYWHERE) != 0); |
| 2114 | boolean_t purgable = ((flags & VM_FLAGS_PURGABLE) != 0); |
| 2115 | boolean_t overwrite = ((flags & VM_FLAGS_OVERWRITE) != 0); |
| 2116 | boolean_t no_cache = ((flags & VM_FLAGS_NO_CACHE) != 0); |
| 2117 | boolean_t is_submap = vmk_flags.vmkf_submap; |
| 2118 | boolean_t permanent = vmk_flags.vmkf_permanent; |
| 2119 | boolean_t entry_for_jit = vmk_flags.vmkf_map_jit; |
| 2120 | boolean_t iokit_acct = vmk_flags.vmkf_iokit_acct; |
| 2121 | boolean_t resilient_codesign = ((flags & VM_FLAGS_RESILIENT_CODESIGN) != 0); |
| 2122 | boolean_t resilient_media = ((flags & VM_FLAGS_RESILIENT_MEDIA) != 0); |
| 2123 | boolean_t random_address = ((flags & VM_FLAGS_RANDOM_ADDR) != 0); |
| 2124 | unsigned int superpage_size = ((flags & VM_FLAGS_SUPERPAGE_MASK) >> VM_FLAGS_SUPERPAGE_SHIFT); |
| 2125 | vm_tag_t user_alias; |
| 2126 | vm_map_offset_t effective_min_offset, effective_max_offset; |
| 2127 | kern_return_t kr; |
| 2128 | boolean_t clear_map_aligned = FALSE; |
| 2129 | vm_map_entry_t hole_entry; |
| 2130 | vm_map_size_t chunk_size = 0; |
| 2131 | |
| 2132 | assertf(vmk_flags.__vmkf_unused == 0, "vmk_flags unused=0x%x\n" , vmk_flags.__vmkf_unused); |
| 2133 | |
| 2134 | if (flags & VM_FLAGS_4GB_CHUNK) { |
| 2135 | #if defined(__LP64__) |
| 2136 | chunk_size = (4ULL * 1024 * 1024 * 1024); /* max. 4GB chunks for the new allocation */ |
| 2137 | #else /* __LP64__ */ |
| 2138 | chunk_size = ANON_CHUNK_SIZE; |
| 2139 | #endif /* __LP64__ */ |
| 2140 | } else { |
| 2141 | chunk_size = ANON_CHUNK_SIZE; |
| 2142 | } |
| 2143 | |
| 2144 | if (superpage_size) { |
| 2145 | switch (superpage_size) { |
| 2146 | /* |
| 2147 | * Note that the current implementation only supports |
| 2148 | * a single size for superpages, SUPERPAGE_SIZE, per |
| 2149 | * architecture. As soon as more sizes are supposed |
| 2150 | * to be supported, SUPERPAGE_SIZE has to be replaced |
| 2151 | * with a lookup of the size depending on superpage_size. |
| 2152 | */ |
| 2153 | #ifdef __x86_64__ |
| 2154 | case SUPERPAGE_SIZE_ANY: |
| 2155 | /* handle it like 2 MB and round up to page size */ |
| 2156 | size = (size + 2*1024*1024 - 1) & ~(2*1024*1024 - 1); |
| 2157 | case SUPERPAGE_SIZE_2MB: |
| 2158 | break; |
| 2159 | #endif |
| 2160 | default: |
| 2161 | return KERN_INVALID_ARGUMENT; |
| 2162 | } |
| 2163 | mask = SUPERPAGE_SIZE-1; |
| 2164 | if (size & (SUPERPAGE_SIZE-1)) |
| 2165 | return KERN_INVALID_ARGUMENT; |
| 2166 | inheritance = VM_INHERIT_NONE; /* fork() children won't inherit superpages */ |
| 2167 | } |
| 2168 | |
| 2169 | |
| 2170 | if ((cur_protection & VM_PROT_WRITE) && |
| 2171 | (cur_protection & VM_PROT_EXECUTE) && |
| 2172 | #if !CONFIG_EMBEDDED |
| 2173 | map != kernel_map && |
| 2174 | (cs_process_global_enforcement() || |
| 2175 | (vmk_flags.vmkf_cs_enforcement_override |
| 2176 | ? vmk_flags.vmkf_cs_enforcement |
| 2177 | : cs_process_enforcement(NULL))) && |
| 2178 | #endif /* !CONFIG_EMBEDDED */ |
| 2179 | !entry_for_jit) { |
| 2180 | DTRACE_VM3(cs_wx, |
| 2181 | uint64_t, 0, |
| 2182 | uint64_t, 0, |
| 2183 | vm_prot_t, cur_protection); |
| 2184 | printf("CODE SIGNING: %d[%s] %s: curprot cannot be write+execute. " |
| 2185 | #if VM_PROTECT_WX_FAIL |
| 2186 | "failing\n" , |
| 2187 | #else /* VM_PROTECT_WX_FAIL */ |
| 2188 | "turning off execute\n" , |
| 2189 | #endif /* VM_PROTECT_WX_FAIL */ |
| 2190 | proc_selfpid(), |
| 2191 | (current_task()->bsd_info |
| 2192 | ? proc_name_address(current_task()->bsd_info) |
| 2193 | : "?" ), |
| 2194 | __FUNCTION__); |
| 2195 | cur_protection &= ~VM_PROT_EXECUTE; |
| 2196 | #if VM_PROTECT_WX_FAIL |
| 2197 | return KERN_PROTECTION_FAILURE; |
| 2198 | #endif /* VM_PROTECT_WX_FAIL */ |
| 2199 | } |
| 2200 | |
| 2201 | /* |
| 2202 | * If the task has requested executable lockdown, |
| 2203 | * deny any new executable mapping. |
| 2204 | */ |
| 2205 | if (map->map_disallow_new_exec == TRUE) { |
| 2206 | if (cur_protection & VM_PROT_EXECUTE) { |
| 2207 | return KERN_PROTECTION_FAILURE; |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | if (resilient_codesign || resilient_media) { |
| 2212 | if ((cur_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE)) || |
| 2213 | (max_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE))) { |
| 2214 | return KERN_PROTECTION_FAILURE; |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | if (is_submap) { |
| 2219 | if (purgable) { |
| 2220 | /* submaps can not be purgeable */ |
| 2221 | return KERN_INVALID_ARGUMENT; |
| 2222 | } |
| 2223 | if (object == VM_OBJECT_NULL) { |
| 2224 | /* submaps can not be created lazily */ |
| 2225 | return KERN_INVALID_ARGUMENT; |
| 2226 | } |
| 2227 | } |
| 2228 | if (vmk_flags.vmkf_already) { |
| 2229 | /* |
| 2230 | * VM_FLAGS_ALREADY says that it's OK if the same mapping |
| 2231 | * is already present. For it to be meaningul, the requested |
| 2232 | * mapping has to be at a fixed address (!VM_FLAGS_ANYWHERE) and |
| 2233 | * we shouldn't try and remove what was mapped there first |
| 2234 | * (!VM_FLAGS_OVERWRITE). |
| 2235 | */ |
| 2236 | if ((flags & VM_FLAGS_ANYWHERE) || |
| 2237 | (flags & VM_FLAGS_OVERWRITE)) { |
| 2238 | return KERN_INVALID_ARGUMENT; |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | effective_min_offset = map->min_offset; |
| 2243 | |
| 2244 | if (vmk_flags.vmkf_beyond_max) { |
| 2245 | /* |
| 2246 | * Allow an insertion beyond the map's max offset. |
| 2247 | */ |
| 2248 | #if !defined(__arm__) && !defined(__arm64__) |
| 2249 | if (vm_map_is_64bit(map)) |
| 2250 | effective_max_offset = 0xFFFFFFFFFFFFF000ULL; |
| 2251 | else |
| 2252 | #endif /* __arm__ */ |
| 2253 | effective_max_offset = 0x00000000FFFFF000ULL; |
| 2254 | } else { |
| 2255 | effective_max_offset = map->max_offset; |
| 2256 | } |
| 2257 | |
| 2258 | if (size == 0 || |
| 2259 | (offset & PAGE_MASK_64) != 0) { |
| 2260 | *address = 0; |
| 2261 | return KERN_INVALID_ARGUMENT; |
| 2262 | } |
| 2263 | |
| 2264 | if (map->pmap == kernel_pmap) { |
| 2265 | user_alias = VM_KERN_MEMORY_NONE; |
| 2266 | } else { |
| 2267 | user_alias = alias; |
| 2268 | } |
| 2269 | |
| 2270 | #define RETURN(value) { result = value; goto BailOut; } |
| 2271 | |
| 2272 | assert(page_aligned(*address)); |
| 2273 | assert(page_aligned(size)); |
| 2274 | |
| 2275 | if (!VM_MAP_PAGE_ALIGNED(size, VM_MAP_PAGE_MASK(map))) { |
| 2276 | /* |
| 2277 | * In most cases, the caller rounds the size up to the |
| 2278 | * map's page size. |
| 2279 | * If we get a size that is explicitly not map-aligned here, |
| 2280 | * we'll have to respect the caller's wish and mark the |
| 2281 | * mapping as "not map-aligned" to avoid tripping the |
| 2282 | * map alignment checks later. |
| 2283 | */ |
| 2284 | clear_map_aligned = TRUE; |
| 2285 | } |
| 2286 | if (!anywhere && |
| 2287 | !VM_MAP_PAGE_ALIGNED(*address, VM_MAP_PAGE_MASK(map))) { |
| 2288 | /* |
| 2289 | * We've been asked to map at a fixed address and that |
| 2290 | * address is not aligned to the map's specific alignment. |
| 2291 | * The caller should know what it's doing (i.e. most likely |
| 2292 | * mapping some fragmented copy map, transferring memory from |
| 2293 | * a VM map with a different alignment), so clear map_aligned |
| 2294 | * for this new VM map entry and proceed. |
| 2295 | */ |
| 2296 | clear_map_aligned = TRUE; |
| 2297 | } |
| 2298 | |
| 2299 | /* |
| 2300 | * Only zero-fill objects are allowed to be purgable. |
| 2301 | * LP64todo - limit purgable objects to 32-bits for now |
| 2302 | */ |
| 2303 | if (purgable && |
| 2304 | (offset != 0 || |
| 2305 | (object != VM_OBJECT_NULL && |
| 2306 | (object->vo_size != size || |
| 2307 | object->purgable == VM_PURGABLE_DENY)) |
| 2308 | || size > ANON_MAX_SIZE)) /* LP64todo: remove when dp capable */ |
| 2309 | return KERN_INVALID_ARGUMENT; |
| 2310 | |
| 2311 | if (!anywhere && overwrite) { |
| 2312 | /* |
| 2313 | * Create a temporary VM map to hold the old mappings in the |
| 2314 | * affected area while we create the new one. |
| 2315 | * This avoids releasing the VM map lock in |
| 2316 | * vm_map_entry_delete() and allows atomicity |
| 2317 | * when we want to replace some mappings with a new one. |
| 2318 | * It also allows us to restore the old VM mappings if the |
| 2319 | * new mapping fails. |
| 2320 | */ |
| 2321 | zap_old_map = vm_map_create(PMAP_NULL, |
| 2322 | *address, |
| 2323 | *address + size, |
| 2324 | map->hdr.entries_pageable); |
| 2325 | vm_map_set_page_shift(zap_old_map, VM_MAP_PAGE_SHIFT(map)); |
| 2326 | vm_map_disable_hole_optimization(zap_old_map); |
| 2327 | } |
| 2328 | |
| 2329 | StartAgain: ; |
| 2330 | |
| 2331 | start = *address; |
| 2332 | |
| 2333 | if (anywhere) { |
| 2334 | vm_map_lock(map); |
| 2335 | map_locked = TRUE; |
| 2336 | |
| 2337 | if (entry_for_jit) { |
| 2338 | #if CONFIG_EMBEDDED |
| 2339 | if (map->jit_entry_exists) { |
| 2340 | result = KERN_INVALID_ARGUMENT; |
| 2341 | goto BailOut; |
| 2342 | } |
| 2343 | random_address = TRUE; |
| 2344 | #endif /* CONFIG_EMBEDDED */ |
| 2345 | } |
| 2346 | |
| 2347 | if (random_address) { |
| 2348 | /* |
| 2349 | * Get a random start address. |
| 2350 | */ |
| 2351 | result = vm_map_random_address_for_size(map, address, size); |
| 2352 | if (result != KERN_SUCCESS) { |
| 2353 | goto BailOut; |
| 2354 | } |
| 2355 | start = *address; |
| 2356 | } |
| 2357 | #if __x86_64__ |
| 2358 | else if ((start == 0 || start == vm_map_min(map)) && |
| 2359 | !map->disable_vmentry_reuse && |
| 2360 | map->vmmap_high_start != 0) { |
| 2361 | start = map->vmmap_high_start; |
| 2362 | } |
| 2363 | #endif /* __x86_64__ */ |
| 2364 | |
| 2365 | |
| 2366 | /* |
| 2367 | * Calculate the first possible address. |
| 2368 | */ |
| 2369 | |
| 2370 | if (start < effective_min_offset) |
| 2371 | start = effective_min_offset; |
| 2372 | if (start > effective_max_offset) |
| 2373 | RETURN(KERN_NO_SPACE); |
| 2374 | |
| 2375 | /* |
| 2376 | * Look for the first possible address; |
| 2377 | * if there's already something at this |
| 2378 | * address, we have to start after it. |
| 2379 | */ |
| 2380 | |
| 2381 | if( map->disable_vmentry_reuse == TRUE) { |
| 2382 | VM_MAP_HIGHEST_ENTRY(map, entry, start); |
| 2383 | } else { |
| 2384 | |
| 2385 | if (map->holelistenabled) { |
| 2386 | hole_entry = CAST_TO_VM_MAP_ENTRY(map->holes_list); |
| 2387 | |
| 2388 | if (hole_entry == NULL) { |
| 2389 | /* |
| 2390 | * No more space in the map? |
| 2391 | */ |
| 2392 | result = KERN_NO_SPACE; |
| 2393 | goto BailOut; |
| 2394 | } else { |
| 2395 | |
| 2396 | boolean_t found_hole = FALSE; |
| 2397 | |
| 2398 | do { |
| 2399 | if (hole_entry->vme_start >= start) { |
| 2400 | start = hole_entry->vme_start; |
| 2401 | found_hole = TRUE; |
| 2402 | break; |
| 2403 | } |
| 2404 | |
| 2405 | if (hole_entry->vme_end > start) { |
| 2406 | found_hole = TRUE; |
| 2407 | break; |
| 2408 | } |
| 2409 | hole_entry = hole_entry->vme_next; |
| 2410 | |
| 2411 | } while (hole_entry != CAST_TO_VM_MAP_ENTRY(map->holes_list)); |
| 2412 | |
| 2413 | if (found_hole == FALSE) { |
| 2414 | result = KERN_NO_SPACE; |
| 2415 | goto BailOut; |
| 2416 | } |
| 2417 | |
| 2418 | entry = hole_entry; |
| 2419 | |
| 2420 | if (start == 0) |
| 2421 | start += PAGE_SIZE_64; |
| 2422 | } |
| 2423 | } else { |
| 2424 | assert(first_free_is_valid(map)); |
| 2425 | |
| 2426 | entry = map->first_free; |
| 2427 | |
| 2428 | if (entry == vm_map_to_entry(map)) { |
| 2429 | entry = NULL; |
| 2430 | } else { |
| 2431 | if (entry->vme_next == vm_map_to_entry(map)){ |
| 2432 | /* |
| 2433 | * Hole at the end of the map. |
| 2434 | */ |
| 2435 | entry = NULL; |
| 2436 | } else { |
| 2437 | if (start < (entry->vme_next)->vme_start ) { |
| 2438 | start = entry->vme_end; |
| 2439 | start = vm_map_round_page(start, |
| 2440 | VM_MAP_PAGE_MASK(map)); |
| 2441 | } else { |
| 2442 | /* |
| 2443 | * Need to do a lookup. |
| 2444 | */ |
| 2445 | entry = NULL; |
| 2446 | } |
| 2447 | } |
| 2448 | } |
| 2449 | |
| 2450 | if (entry == NULL) { |
| 2451 | vm_map_entry_t tmp_entry; |
| 2452 | if (vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 2453 | assert(!entry_for_jit); |
| 2454 | start = tmp_entry->vme_end; |
| 2455 | start = vm_map_round_page(start, |
| 2456 | VM_MAP_PAGE_MASK(map)); |
| 2457 | } |
| 2458 | entry = tmp_entry; |
| 2459 | } |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | /* |
| 2464 | * In any case, the "entry" always precedes |
| 2465 | * the proposed new region throughout the |
| 2466 | * loop: |
| 2467 | */ |
| 2468 | |
| 2469 | while (TRUE) { |
| 2470 | vm_map_entry_t next; |
| 2471 | |
| 2472 | /* |
| 2473 | * Find the end of the proposed new region. |
| 2474 | * Be sure we didn't go beyond the end, or |
| 2475 | * wrap around the address. |
| 2476 | */ |
| 2477 | |
| 2478 | end = ((start + mask) & ~mask); |
| 2479 | end = vm_map_round_page(end, |
| 2480 | VM_MAP_PAGE_MASK(map)); |
| 2481 | if (end < start) |
| 2482 | RETURN(KERN_NO_SPACE); |
| 2483 | start = end; |
| 2484 | assert(VM_MAP_PAGE_ALIGNED(start, |
| 2485 | VM_MAP_PAGE_MASK(map))); |
| 2486 | end += size; |
| 2487 | |
| 2488 | /* We want an entire page of empty space, but don't increase the allocation size. */ |
| 2489 | desired_empty_end = vm_map_round_page(end, VM_MAP_PAGE_MASK(map)); |
| 2490 | |
| 2491 | if ((desired_empty_end > effective_max_offset) || (desired_empty_end < start)) { |
| 2492 | if (map->wait_for_space) { |
| 2493 | assert(!keep_map_locked); |
| 2494 | if (size <= (effective_max_offset - |
| 2495 | effective_min_offset)) { |
| 2496 | assert_wait((event_t)map, |
| 2497 | THREAD_ABORTSAFE); |
| 2498 | vm_map_unlock(map); |
| 2499 | map_locked = FALSE; |
| 2500 | thread_block(THREAD_CONTINUE_NULL); |
| 2501 | goto StartAgain; |
| 2502 | } |
| 2503 | } |
| 2504 | RETURN(KERN_NO_SPACE); |
| 2505 | } |
| 2506 | |
| 2507 | next = entry->vme_next; |
| 2508 | |
| 2509 | if (map->holelistenabled) { |
| 2510 | if (entry->vme_end >= desired_empty_end) |
| 2511 | break; |
| 2512 | } else { |
| 2513 | /* |
| 2514 | * If there are no more entries, we must win. |
| 2515 | * |
| 2516 | * OR |
| 2517 | * |
| 2518 | * If there is another entry, it must be |
| 2519 | * after the end of the potential new region. |
| 2520 | */ |
| 2521 | |
| 2522 | if (next == vm_map_to_entry(map)) |
| 2523 | break; |
| 2524 | |
| 2525 | if (next->vme_start >= desired_empty_end) |
| 2526 | break; |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * Didn't fit -- move to the next entry. |
| 2531 | */ |
| 2532 | |
| 2533 | entry = next; |
| 2534 | |
| 2535 | if (map->holelistenabled) { |
| 2536 | if (entry == CAST_TO_VM_MAP_ENTRY(map->holes_list)) { |
| 2537 | /* |
| 2538 | * Wrapped around |
| 2539 | */ |
| 2540 | result = KERN_NO_SPACE; |
| 2541 | goto BailOut; |
| 2542 | } |
| 2543 | start = entry->vme_start; |
| 2544 | } else { |
| 2545 | start = entry->vme_end; |
| 2546 | } |
| 2547 | |
| 2548 | start = vm_map_round_page(start, |
| 2549 | VM_MAP_PAGE_MASK(map)); |
| 2550 | } |
| 2551 | |
| 2552 | if (map->holelistenabled) { |
| 2553 | if (vm_map_lookup_entry(map, entry->vme_start, &entry)) { |
| 2554 | panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n" , entry, (unsigned long long)entry->vme_start); |
| 2555 | } |
| 2556 | } |
| 2557 | |
| 2558 | *address = start; |
| 2559 | assert(VM_MAP_PAGE_ALIGNED(*address, |
| 2560 | VM_MAP_PAGE_MASK(map))); |
| 2561 | } else { |
| 2562 | /* |
| 2563 | * Verify that: |
| 2564 | * the address doesn't itself violate |
| 2565 | * the mask requirement. |
| 2566 | */ |
| 2567 | |
| 2568 | vm_map_lock(map); |
| 2569 | map_locked = TRUE; |
| 2570 | if ((start & mask) != 0) |
| 2571 | RETURN(KERN_NO_SPACE); |
| 2572 | |
| 2573 | /* |
| 2574 | * ... the address is within bounds |
| 2575 | */ |
| 2576 | |
| 2577 | end = start + size; |
| 2578 | |
| 2579 | if ((start < effective_min_offset) || |
| 2580 | (end > effective_max_offset) || |
| 2581 | (start >= end)) { |
| 2582 | RETURN(KERN_INVALID_ADDRESS); |
| 2583 | } |
| 2584 | |
| 2585 | if (overwrite && zap_old_map != VM_MAP_NULL) { |
| 2586 | int remove_flags; |
| 2587 | /* |
| 2588 | * Fixed mapping and "overwrite" flag: attempt to |
| 2589 | * remove all existing mappings in the specified |
| 2590 | * address range, saving them in our "zap_old_map". |
| 2591 | */ |
| 2592 | remove_flags = VM_MAP_REMOVE_SAVE_ENTRIES; |
| 2593 | remove_flags |= VM_MAP_REMOVE_NO_MAP_ALIGN; |
| 2594 | if (vmk_flags.vmkf_overwrite_immutable) { |
| 2595 | /* we can overwrite immutable mappings */ |
| 2596 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 2597 | } |
| 2598 | (void) vm_map_delete(map, start, end, |
| 2599 | remove_flags, |
| 2600 | zap_old_map); |
| 2601 | } |
| 2602 | |
| 2603 | /* |
| 2604 | * ... the starting address isn't allocated |
| 2605 | */ |
| 2606 | |
| 2607 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 2608 | if (! (vmk_flags.vmkf_already)) { |
| 2609 | RETURN(KERN_NO_SPACE); |
| 2610 | } |
| 2611 | /* |
| 2612 | * Check if what's already there is what we want. |
| 2613 | */ |
| 2614 | tmp_start = start; |
| 2615 | tmp_offset = offset; |
| 2616 | if (entry->vme_start < start) { |
| 2617 | tmp_start -= start - entry->vme_start; |
| 2618 | tmp_offset -= start - entry->vme_start; |
| 2619 | |
| 2620 | } |
| 2621 | for (; entry->vme_start < end; |
| 2622 | entry = entry->vme_next) { |
| 2623 | /* |
| 2624 | * Check if the mapping's attributes |
| 2625 | * match the existing map entry. |
| 2626 | */ |
| 2627 | if (entry == vm_map_to_entry(map) || |
| 2628 | entry->vme_start != tmp_start || |
| 2629 | entry->is_sub_map != is_submap || |
| 2630 | VME_OFFSET(entry) != tmp_offset || |
| 2631 | entry->needs_copy != needs_copy || |
| 2632 | entry->protection != cur_protection || |
| 2633 | entry->max_protection != max_protection || |
| 2634 | entry->inheritance != inheritance || |
| 2635 | entry->iokit_acct != iokit_acct || |
| 2636 | VME_ALIAS(entry) != alias) { |
| 2637 | /* not the same mapping ! */ |
| 2638 | RETURN(KERN_NO_SPACE); |
| 2639 | } |
| 2640 | /* |
| 2641 | * Check if the same object is being mapped. |
| 2642 | */ |
| 2643 | if (is_submap) { |
| 2644 | if (VME_SUBMAP(entry) != |
| 2645 | (vm_map_t) object) { |
| 2646 | /* not the same submap */ |
| 2647 | RETURN(KERN_NO_SPACE); |
| 2648 | } |
| 2649 | } else { |
| 2650 | if (VME_OBJECT(entry) != object) { |
| 2651 | /* not the same VM object... */ |
| 2652 | vm_object_t obj2; |
| 2653 | |
| 2654 | obj2 = VME_OBJECT(entry); |
| 2655 | if ((obj2 == VM_OBJECT_NULL || |
| 2656 | obj2->internal) && |
| 2657 | (object == VM_OBJECT_NULL || |
| 2658 | object->internal)) { |
| 2659 | /* |
| 2660 | * ... but both are |
| 2661 | * anonymous memory, |
| 2662 | * so equivalent. |
| 2663 | */ |
| 2664 | } else { |
| 2665 | RETURN(KERN_NO_SPACE); |
| 2666 | } |
| 2667 | } |
| 2668 | } |
| 2669 | |
| 2670 | tmp_offset += entry->vme_end - entry->vme_start; |
| 2671 | tmp_start += entry->vme_end - entry->vme_start; |
| 2672 | if (entry->vme_end >= end) { |
| 2673 | /* reached the end of our mapping */ |
| 2674 | break; |
| 2675 | } |
| 2676 | } |
| 2677 | /* it all matches: let's use what's already there ! */ |
| 2678 | RETURN(KERN_MEMORY_PRESENT); |
| 2679 | } |
| 2680 | |
| 2681 | /* |
| 2682 | * ... the next region doesn't overlap the |
| 2683 | * end point. |
| 2684 | */ |
| 2685 | |
| 2686 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 2687 | (entry->vme_next->vme_start < end)) |
| 2688 | RETURN(KERN_NO_SPACE); |
| 2689 | } |
| 2690 | |
| 2691 | /* |
| 2692 | * At this point, |
| 2693 | * "start" and "end" should define the endpoints of the |
| 2694 | * available new range, and |
| 2695 | * "entry" should refer to the region before the new |
| 2696 | * range, and |
| 2697 | * |
| 2698 | * the map should be locked. |
| 2699 | */ |
| 2700 | |
| 2701 | /* |
| 2702 | * See whether we can avoid creating a new entry (and object) by |
| 2703 | * extending one of our neighbors. [So far, we only attempt to |
| 2704 | * extend from below.] Note that we can never extend/join |
| 2705 | * purgable objects because they need to remain distinct |
| 2706 | * entities in order to implement their "volatile object" |
| 2707 | * semantics. |
| 2708 | */ |
| 2709 | |
| 2710 | if (purgable || |
| 2711 | entry_for_jit || |
| 2712 | vm_memory_malloc_no_cow(user_alias)) { |
| 2713 | if (object == VM_OBJECT_NULL) { |
| 2714 | |
| 2715 | object = vm_object_allocate(size); |
| 2716 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 2717 | object->true_share = FALSE; |
| 2718 | if (purgable) { |
| 2719 | task_t owner; |
| 2720 | object->purgable = VM_PURGABLE_NONVOLATILE; |
| 2721 | if (map->pmap == kernel_pmap) { |
| 2722 | /* |
| 2723 | * Purgeable mappings made in a kernel |
| 2724 | * map are "owned" by the kernel itself |
| 2725 | * rather than the current user task |
| 2726 | * because they're likely to be used by |
| 2727 | * more than this user task (see |
| 2728 | * execargs_purgeable_allocate(), for |
| 2729 | * example). |
| 2730 | */ |
| 2731 | owner = kernel_task; |
| 2732 | } else { |
| 2733 | owner = current_task(); |
| 2734 | } |
| 2735 | assert(object->vo_owner == NULL); |
| 2736 | assert(object->resident_page_count == 0); |
| 2737 | assert(object->wired_page_count == 0); |
| 2738 | vm_object_lock(object); |
| 2739 | vm_purgeable_nonvolatile_enqueue(object, owner); |
| 2740 | vm_object_unlock(object); |
| 2741 | } |
| 2742 | offset = (vm_object_offset_t)0; |
| 2743 | } |
| 2744 | } else if ((is_submap == FALSE) && |
| 2745 | (object == VM_OBJECT_NULL) && |
| 2746 | (entry != vm_map_to_entry(map)) && |
| 2747 | (entry->vme_end == start) && |
| 2748 | (!entry->is_shared) && |
| 2749 | (!entry->is_sub_map) && |
| 2750 | (!entry->in_transition) && |
| 2751 | (!entry->needs_wakeup) && |
| 2752 | (entry->behavior == VM_BEHAVIOR_DEFAULT) && |
| 2753 | (entry->protection == cur_protection) && |
| 2754 | (entry->max_protection == max_protection) && |
| 2755 | (entry->inheritance == inheritance) && |
| 2756 | ((user_alias == VM_MEMORY_REALLOC) || |
| 2757 | (VME_ALIAS(entry) == alias)) && |
| 2758 | (entry->no_cache == no_cache) && |
| 2759 | (entry->permanent == permanent) && |
| 2760 | /* no coalescing for immutable executable mappings */ |
| 2761 | !((entry->protection & VM_PROT_EXECUTE) && |
| 2762 | entry->permanent) && |
| 2763 | (!entry->superpage_size && !superpage_size) && |
| 2764 | /* |
| 2765 | * No coalescing if not map-aligned, to avoid propagating |
| 2766 | * that condition any further than needed: |
| 2767 | */ |
| 2768 | (!entry->map_aligned || !clear_map_aligned) && |
| 2769 | (!entry->zero_wired_pages) && |
| 2770 | (!entry->used_for_jit && !entry_for_jit) && |
| 2771 | (!entry->pmap_cs_associated) && |
| 2772 | (entry->iokit_acct == iokit_acct) && |
| 2773 | (!entry->vme_resilient_codesign) && |
| 2774 | (!entry->vme_resilient_media) && |
| 2775 | (!entry->vme_atomic) && |
| 2776 | |
| 2777 | ((entry->vme_end - entry->vme_start) + size <= |
| 2778 | (user_alias == VM_MEMORY_REALLOC ? |
| 2779 | ANON_CHUNK_SIZE : |
| 2780 | NO_COALESCE_LIMIT)) && |
| 2781 | |
| 2782 | (entry->wired_count == 0)) { /* implies user_wired_count == 0 */ |
| 2783 | if (vm_object_coalesce(VME_OBJECT(entry), |
| 2784 | VM_OBJECT_NULL, |
| 2785 | VME_OFFSET(entry), |
| 2786 | (vm_object_offset_t) 0, |
| 2787 | (vm_map_size_t)(entry->vme_end - entry->vme_start), |
| 2788 | (vm_map_size_t)(end - entry->vme_end))) { |
| 2789 | |
| 2790 | /* |
| 2791 | * Coalesced the two objects - can extend |
| 2792 | * the previous map entry to include the |
| 2793 | * new range. |
| 2794 | */ |
| 2795 | map->size += (end - entry->vme_end); |
| 2796 | assert(entry->vme_start < end); |
| 2797 | assert(VM_MAP_PAGE_ALIGNED(end, |
| 2798 | VM_MAP_PAGE_MASK(map))); |
| 2799 | if (__improbable(vm_debug_events)) |
| 2800 | DTRACE_VM5(map_entry_extend, vm_map_t, map, vm_map_entry_t, entry, vm_address_t, entry->vme_start, vm_address_t, entry->vme_end, vm_address_t, end); |
| 2801 | entry->vme_end = end; |
| 2802 | if (map->holelistenabled) { |
| 2803 | vm_map_store_update_first_free(map, entry, TRUE); |
| 2804 | } else { |
| 2805 | vm_map_store_update_first_free(map, map->first_free, TRUE); |
| 2806 | } |
| 2807 | new_mapping_established = TRUE; |
| 2808 | RETURN(KERN_SUCCESS); |
| 2809 | } |
| 2810 | } |
| 2811 | |
| 2812 | step = superpage_size ? SUPERPAGE_SIZE : (end - start); |
| 2813 | new_entry = NULL; |
| 2814 | |
| 2815 | for (tmp2_start = start; tmp2_start<end; tmp2_start += step) { |
| 2816 | tmp2_end = tmp2_start + step; |
| 2817 | /* |
| 2818 | * Create a new entry |
| 2819 | * |
| 2820 | * XXX FBDP |
| 2821 | * The reserved "page zero" in each process's address space can |
| 2822 | * be arbitrarily large. Splitting it into separate objects and |
| 2823 | * therefore different VM map entries serves no purpose and just |
| 2824 | * slows down operations on the VM map, so let's not split the |
| 2825 | * allocation into chunks if the max protection is NONE. That |
| 2826 | * memory should never be accessible, so it will never get to the |
| 2827 | * default pager. |
| 2828 | */ |
| 2829 | tmp_start = tmp2_start; |
| 2830 | if (object == VM_OBJECT_NULL && |
| 2831 | size > chunk_size && |
| 2832 | max_protection != VM_PROT_NONE && |
| 2833 | superpage_size == 0) |
| 2834 | tmp_end = tmp_start + chunk_size; |
| 2835 | else |
| 2836 | tmp_end = tmp2_end; |
| 2837 | do { |
| 2838 | new_entry = vm_map_entry_insert( |
| 2839 | map, entry, tmp_start, tmp_end, |
| 2840 | object, offset, needs_copy, |
| 2841 | FALSE, FALSE, |
| 2842 | cur_protection, max_protection, |
| 2843 | VM_BEHAVIOR_DEFAULT, |
| 2844 | (entry_for_jit)? VM_INHERIT_NONE: inheritance, |
| 2845 | 0, |
| 2846 | no_cache, |
| 2847 | permanent, |
| 2848 | superpage_size, |
| 2849 | clear_map_aligned, |
| 2850 | is_submap, |
| 2851 | entry_for_jit, |
| 2852 | alias); |
| 2853 | |
| 2854 | assert((object != kernel_object) || (VM_KERN_MEMORY_NONE != alias)); |
| 2855 | |
| 2856 | if (resilient_codesign && |
| 2857 | ! ((cur_protection | max_protection) & |
| 2858 | (VM_PROT_WRITE | VM_PROT_EXECUTE))) { |
| 2859 | new_entry->vme_resilient_codesign = TRUE; |
| 2860 | } |
| 2861 | |
| 2862 | if (resilient_media && |
| 2863 | ! ((cur_protection | max_protection) & |
| 2864 | (VM_PROT_WRITE | VM_PROT_EXECUTE))) { |
| 2865 | new_entry->vme_resilient_media = TRUE; |
| 2866 | } |
| 2867 | |
| 2868 | assert(!new_entry->iokit_acct); |
| 2869 | if (!is_submap && |
| 2870 | object != VM_OBJECT_NULL && |
| 2871 | (object->purgable != VM_PURGABLE_DENY || |
| 2872 | object->vo_ledger_tag)) { |
| 2873 | assert(new_entry->use_pmap); |
| 2874 | assert(!new_entry->iokit_acct); |
| 2875 | /* |
| 2876 | * Turn off pmap accounting since |
| 2877 | * purgeable (or tagged) objects have their |
| 2878 | * own ledgers. |
| 2879 | */ |
| 2880 | new_entry->use_pmap = FALSE; |
| 2881 | } else if (!is_submap && |
| 2882 | iokit_acct && |
| 2883 | object != VM_OBJECT_NULL && |
| 2884 | object->internal) { |
| 2885 | /* alternate accounting */ |
| 2886 | assert(!new_entry->iokit_acct); |
| 2887 | assert(new_entry->use_pmap); |
| 2888 | new_entry->iokit_acct = TRUE; |
| 2889 | new_entry->use_pmap = FALSE; |
| 2890 | DTRACE_VM4( |
| 2891 | vm_map_iokit_mapped_region, |
| 2892 | vm_map_t, map, |
| 2893 | vm_map_offset_t, new_entry->vme_start, |
| 2894 | vm_map_offset_t, new_entry->vme_end, |
| 2895 | int, VME_ALIAS(new_entry)); |
| 2896 | vm_map_iokit_mapped_region( |
| 2897 | map, |
| 2898 | (new_entry->vme_end - |
| 2899 | new_entry->vme_start)); |
| 2900 | } else if (!is_submap) { |
| 2901 | assert(!new_entry->iokit_acct); |
| 2902 | assert(new_entry->use_pmap); |
| 2903 | } |
| 2904 | |
| 2905 | if (is_submap) { |
| 2906 | vm_map_t submap; |
| 2907 | boolean_t submap_is_64bit; |
| 2908 | boolean_t use_pmap; |
| 2909 | |
| 2910 | assert(new_entry->is_sub_map); |
| 2911 | assert(!new_entry->use_pmap); |
| 2912 | assert(!new_entry->iokit_acct); |
| 2913 | submap = (vm_map_t) object; |
| 2914 | submap_is_64bit = vm_map_is_64bit(submap); |
| 2915 | use_pmap = (user_alias == VM_MEMORY_SHARED_PMAP); |
| 2916 | #ifndef NO_NESTED_PMAP |
| 2917 | if (use_pmap && submap->pmap == NULL) { |
| 2918 | ledger_t ledger = map->pmap->ledger; |
| 2919 | /* we need a sub pmap to nest... */ |
| 2920 | submap->pmap = pmap_create(ledger, 0, |
| 2921 | submap_is_64bit); |
| 2922 | if (submap->pmap == NULL) { |
| 2923 | /* let's proceed without nesting... */ |
| 2924 | } |
| 2925 | #if defined(__arm__) || defined(__arm64__) |
| 2926 | else { |
| 2927 | pmap_set_nested(submap->pmap); |
| 2928 | } |
| 2929 | #endif |
| 2930 | } |
| 2931 | if (use_pmap && submap->pmap != NULL) { |
| 2932 | kr = pmap_nest(map->pmap, |
| 2933 | submap->pmap, |
| 2934 | tmp_start, |
| 2935 | tmp_start, |
| 2936 | tmp_end - tmp_start); |
| 2937 | if (kr != KERN_SUCCESS) { |
| 2938 | printf("vm_map_enter: " |
| 2939 | "pmap_nest(0x%llx,0x%llx) " |
| 2940 | "error 0x%x\n" , |
| 2941 | (long long)tmp_start, |
| 2942 | (long long)tmp_end, |
| 2943 | kr); |
| 2944 | } else { |
| 2945 | /* we're now nested ! */ |
| 2946 | new_entry->use_pmap = TRUE; |
| 2947 | pmap_empty = FALSE; |
| 2948 | } |
| 2949 | } |
| 2950 | #endif /* NO_NESTED_PMAP */ |
| 2951 | } |
| 2952 | entry = new_entry; |
| 2953 | |
| 2954 | if (superpage_size) { |
| 2955 | vm_page_t pages, m; |
| 2956 | vm_object_t sp_object; |
| 2957 | vm_object_offset_t sp_offset; |
| 2958 | |
| 2959 | VME_OFFSET_SET(entry, 0); |
| 2960 | |
| 2961 | /* allocate one superpage */ |
| 2962 | kr = cpm_allocate(SUPERPAGE_SIZE, &pages, 0, SUPERPAGE_NBASEPAGES-1, TRUE, 0); |
| 2963 | if (kr != KERN_SUCCESS) { |
| 2964 | /* deallocate whole range... */ |
| 2965 | new_mapping_established = TRUE; |
| 2966 | /* ... but only up to "tmp_end" */ |
| 2967 | size -= end - tmp_end; |
| 2968 | RETURN(kr); |
| 2969 | } |
| 2970 | |
| 2971 | /* create one vm_object per superpage */ |
| 2972 | sp_object = vm_object_allocate((vm_map_size_t)(entry->vme_end - entry->vme_start)); |
| 2973 | sp_object->phys_contiguous = TRUE; |
| 2974 | sp_object->vo_shadow_offset = (vm_object_offset_t)VM_PAGE_GET_PHYS_PAGE(pages)*PAGE_SIZE; |
| 2975 | VME_OBJECT_SET(entry, sp_object); |
| 2976 | assert(entry->use_pmap); |
| 2977 | |
| 2978 | /* enter the base pages into the object */ |
| 2979 | vm_object_lock(sp_object); |
| 2980 | for (sp_offset = 0; |
| 2981 | sp_offset < SUPERPAGE_SIZE; |
| 2982 | sp_offset += PAGE_SIZE) { |
| 2983 | m = pages; |
| 2984 | pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m)); |
| 2985 | pages = NEXT_PAGE(m); |
| 2986 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
| 2987 | vm_page_insert_wired(m, sp_object, sp_offset, VM_KERN_MEMORY_OSFMK); |
| 2988 | } |
| 2989 | vm_object_unlock(sp_object); |
| 2990 | } |
| 2991 | } while (tmp_end != tmp2_end && |
| 2992 | (tmp_start = tmp_end) && |
| 2993 | (tmp_end = (tmp2_end - tmp_end > chunk_size) ? |
| 2994 | tmp_end + chunk_size : tmp2_end)); |
| 2995 | } |
| 2996 | |
| 2997 | new_mapping_established = TRUE; |
| 2998 | |
| 2999 | BailOut: |
| 3000 | assert(map_locked == TRUE); |
| 3001 | |
| 3002 | if (result == KERN_SUCCESS) { |
| 3003 | vm_prot_t ; |
| 3004 | memory_object_t ; |
| 3005 | |
| 3006 | #if DEBUG |
| 3007 | if (pmap_empty && |
| 3008 | !(vmk_flags.vmkf_no_pmap_check)) { |
| 3009 | assert(vm_map_pmap_is_empty(map, |
| 3010 | *address, |
| 3011 | *address+size)); |
| 3012 | } |
| 3013 | #endif /* DEBUG */ |
| 3014 | |
| 3015 | /* |
| 3016 | * For "named" VM objects, let the pager know that the |
| 3017 | * memory object is being mapped. Some pagers need to keep |
| 3018 | * track of this, to know when they can reclaim the memory |
| 3019 | * object, for example. |
| 3020 | * VM calls memory_object_map() for each mapping (specifying |
| 3021 | * the protection of each mapping) and calls |
| 3022 | * memory_object_last_unmap() when all the mappings are gone. |
| 3023 | */ |
| 3024 | pager_prot = max_protection; |
| 3025 | if (needs_copy) { |
| 3026 | /* |
| 3027 | * Copy-On-Write mapping: won't modify |
| 3028 | * the memory object. |
| 3029 | */ |
| 3030 | pager_prot &= ~VM_PROT_WRITE; |
| 3031 | } |
| 3032 | if (!is_submap && |
| 3033 | object != VM_OBJECT_NULL && |
| 3034 | object->named && |
| 3035 | object->pager != MEMORY_OBJECT_NULL) { |
| 3036 | vm_object_lock(object); |
| 3037 | pager = object->pager; |
| 3038 | if (object->named && |
| 3039 | pager != MEMORY_OBJECT_NULL) { |
| 3040 | assert(object->pager_ready); |
| 3041 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 3042 | vm_object_mapping_begin(object); |
| 3043 | vm_object_unlock(object); |
| 3044 | |
| 3045 | kr = memory_object_map(pager, pager_prot); |
| 3046 | assert(kr == KERN_SUCCESS); |
| 3047 | |
| 3048 | vm_object_lock(object); |
| 3049 | vm_object_mapping_end(object); |
| 3050 | } |
| 3051 | vm_object_unlock(object); |
| 3052 | } |
| 3053 | } |
| 3054 | |
| 3055 | assert(map_locked == TRUE); |
| 3056 | |
| 3057 | if (!keep_map_locked) { |
| 3058 | vm_map_unlock(map); |
| 3059 | map_locked = FALSE; |
| 3060 | } |
| 3061 | |
| 3062 | /* |
| 3063 | * We can't hold the map lock if we enter this block. |
| 3064 | */ |
| 3065 | |
| 3066 | if (result == KERN_SUCCESS) { |
| 3067 | |
| 3068 | /* Wire down the new entry if the user |
| 3069 | * requested all new map entries be wired. |
| 3070 | */ |
| 3071 | if ((map->wiring_required)||(superpage_size)) { |
| 3072 | assert(!keep_map_locked); |
| 3073 | pmap_empty = FALSE; /* pmap won't be empty */ |
| 3074 | kr = vm_map_wire_kernel(map, start, end, |
| 3075 | new_entry->protection, VM_KERN_MEMORY_MLOCK, |
| 3076 | TRUE); |
| 3077 | result = kr; |
| 3078 | } |
| 3079 | |
| 3080 | } |
| 3081 | |
| 3082 | if (result != KERN_SUCCESS) { |
| 3083 | if (new_mapping_established) { |
| 3084 | /* |
| 3085 | * We have to get rid of the new mappings since we |
| 3086 | * won't make them available to the user. |
| 3087 | * Try and do that atomically, to minimize the risk |
| 3088 | * that someone else create new mappings that range. |
| 3089 | */ |
| 3090 | zap_new_map = vm_map_create(PMAP_NULL, |
| 3091 | *address, |
| 3092 | *address + size, |
| 3093 | map->hdr.entries_pageable); |
| 3094 | vm_map_set_page_shift(zap_new_map, |
| 3095 | VM_MAP_PAGE_SHIFT(map)); |
| 3096 | vm_map_disable_hole_optimization(zap_new_map); |
| 3097 | |
| 3098 | if (!map_locked) { |
| 3099 | vm_map_lock(map); |
| 3100 | map_locked = TRUE; |
| 3101 | } |
| 3102 | (void) vm_map_delete(map, *address, *address+size, |
| 3103 | (VM_MAP_REMOVE_SAVE_ENTRIES | |
| 3104 | VM_MAP_REMOVE_NO_MAP_ALIGN), |
| 3105 | zap_new_map); |
| 3106 | } |
| 3107 | if (zap_old_map != VM_MAP_NULL && |
| 3108 | zap_old_map->hdr.nentries != 0) { |
| 3109 | vm_map_entry_t entry1, entry2; |
| 3110 | |
| 3111 | /* |
| 3112 | * The new mapping failed. Attempt to restore |
| 3113 | * the old mappings, saved in the "zap_old_map". |
| 3114 | */ |
| 3115 | if (!map_locked) { |
| 3116 | vm_map_lock(map); |
| 3117 | map_locked = TRUE; |
| 3118 | } |
| 3119 | |
| 3120 | /* first check if the coast is still clear */ |
| 3121 | start = vm_map_first_entry(zap_old_map)->vme_start; |
| 3122 | end = vm_map_last_entry(zap_old_map)->vme_end; |
| 3123 | if (vm_map_lookup_entry(map, start, &entry1) || |
| 3124 | vm_map_lookup_entry(map, end, &entry2) || |
| 3125 | entry1 != entry2) { |
| 3126 | /* |
| 3127 | * Part of that range has already been |
| 3128 | * re-mapped: we can't restore the old |
| 3129 | * mappings... |
| 3130 | */ |
| 3131 | vm_map_enter_restore_failures++; |
| 3132 | } else { |
| 3133 | /* |
| 3134 | * Transfer the saved map entries from |
| 3135 | * "zap_old_map" to the original "map", |
| 3136 | * inserting them all after "entry1". |
| 3137 | */ |
| 3138 | for (entry2 = vm_map_first_entry(zap_old_map); |
| 3139 | entry2 != vm_map_to_entry(zap_old_map); |
| 3140 | entry2 = vm_map_first_entry(zap_old_map)) { |
| 3141 | vm_map_size_t entry_size; |
| 3142 | |
| 3143 | entry_size = (entry2->vme_end - |
| 3144 | entry2->vme_start); |
| 3145 | vm_map_store_entry_unlink(zap_old_map, |
| 3146 | entry2); |
| 3147 | zap_old_map->size -= entry_size; |
| 3148 | vm_map_store_entry_link(map, entry1, entry2, |
| 3149 | VM_MAP_KERNEL_FLAGS_NONE); |
| 3150 | map->size += entry_size; |
| 3151 | entry1 = entry2; |
| 3152 | } |
| 3153 | if (map->wiring_required) { |
| 3154 | /* |
| 3155 | * XXX TODO: we should rewire the |
| 3156 | * old pages here... |
| 3157 | */ |
| 3158 | } |
| 3159 | vm_map_enter_restore_successes++; |
| 3160 | } |
| 3161 | } |
| 3162 | } |
| 3163 | |
| 3164 | /* |
| 3165 | * The caller is responsible for releasing the lock if it requested to |
| 3166 | * keep the map locked. |
| 3167 | */ |
| 3168 | if (map_locked && !keep_map_locked) { |
| 3169 | vm_map_unlock(map); |
| 3170 | } |
| 3171 | |
| 3172 | /* |
| 3173 | * Get rid of the "zap_maps" and all the map entries that |
| 3174 | * they may still contain. |
| 3175 | */ |
| 3176 | if (zap_old_map != VM_MAP_NULL) { |
| 3177 | vm_map_destroy(zap_old_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 3178 | zap_old_map = VM_MAP_NULL; |
| 3179 | } |
| 3180 | if (zap_new_map != VM_MAP_NULL) { |
| 3181 | vm_map_destroy(zap_new_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 3182 | zap_new_map = VM_MAP_NULL; |
| 3183 | } |
| 3184 | |
| 3185 | return result; |
| 3186 | |
| 3187 | #undef RETURN |
| 3188 | } |
| 3189 | |
| 3190 | #if __arm64__ |
| 3191 | extern const struct memory_object_pager_ops fourk_pager_ops; |
| 3192 | kern_return_t |
| 3193 | vm_map_enter_fourk( |
| 3194 | vm_map_t map, |
| 3195 | vm_map_offset_t *address, /* IN/OUT */ |
| 3196 | vm_map_size_t size, |
| 3197 | vm_map_offset_t mask, |
| 3198 | int flags, |
| 3199 | vm_map_kernel_flags_t vmk_flags, |
| 3200 | vm_tag_t alias, |
| 3201 | vm_object_t object, |
| 3202 | vm_object_offset_t offset, |
| 3203 | boolean_t needs_copy, |
| 3204 | vm_prot_t cur_protection, |
| 3205 | vm_prot_t max_protection, |
| 3206 | vm_inherit_t inheritance) |
| 3207 | { |
| 3208 | vm_map_entry_t entry, new_entry; |
| 3209 | vm_map_offset_t start, fourk_start; |
| 3210 | vm_map_offset_t end, fourk_end; |
| 3211 | vm_map_size_t fourk_size; |
| 3212 | kern_return_t result = KERN_SUCCESS; |
| 3213 | vm_map_t zap_old_map = VM_MAP_NULL; |
| 3214 | vm_map_t zap_new_map = VM_MAP_NULL; |
| 3215 | boolean_t map_locked = FALSE; |
| 3216 | boolean_t pmap_empty = TRUE; |
| 3217 | boolean_t new_mapping_established = FALSE; |
| 3218 | boolean_t keep_map_locked = vmk_flags.vmkf_keep_map_locked; |
| 3219 | boolean_t anywhere = ((flags & VM_FLAGS_ANYWHERE) != 0); |
| 3220 | boolean_t purgable = ((flags & VM_FLAGS_PURGABLE) != 0); |
| 3221 | boolean_t overwrite = ((flags & VM_FLAGS_OVERWRITE) != 0); |
| 3222 | boolean_t no_cache = ((flags & VM_FLAGS_NO_CACHE) != 0); |
| 3223 | boolean_t is_submap = vmk_flags.vmkf_submap; |
| 3224 | boolean_t permanent = vmk_flags.vmkf_permanent; |
| 3225 | boolean_t entry_for_jit = vmk_flags.vmkf_map_jit; |
| 3226 | // boolean_t iokit_acct = vmk_flags.vmkf_iokit_acct; |
| 3227 | unsigned int superpage_size = ((flags & VM_FLAGS_SUPERPAGE_MASK) >> VM_FLAGS_SUPERPAGE_SHIFT); |
| 3228 | vm_map_offset_t effective_min_offset, effective_max_offset; |
| 3229 | kern_return_t kr; |
| 3230 | boolean_t clear_map_aligned = FALSE; |
| 3231 | memory_object_t fourk_mem_obj; |
| 3232 | vm_object_t fourk_object; |
| 3233 | vm_map_offset_t fourk_pager_offset; |
| 3234 | int fourk_pager_index_start, fourk_pager_index_num; |
| 3235 | int cur_idx; |
| 3236 | boolean_t fourk_copy; |
| 3237 | vm_object_t copy_object; |
| 3238 | vm_object_offset_t copy_offset; |
| 3239 | |
| 3240 | fourk_mem_obj = MEMORY_OBJECT_NULL; |
| 3241 | fourk_object = VM_OBJECT_NULL; |
| 3242 | |
| 3243 | if (superpage_size) { |
| 3244 | return KERN_NOT_SUPPORTED; |
| 3245 | } |
| 3246 | |
| 3247 | if ((cur_protection & VM_PROT_WRITE) && |
| 3248 | (cur_protection & VM_PROT_EXECUTE) && |
| 3249 | #if !CONFIG_EMBEDDED |
| 3250 | map != kernel_map && |
| 3251 | cs_process_enforcement(NULL) && |
| 3252 | #endif /* !CONFIG_EMBEDDED */ |
| 3253 | !entry_for_jit) { |
| 3254 | DTRACE_VM3(cs_wx, |
| 3255 | uint64_t, 0, |
| 3256 | uint64_t, 0, |
| 3257 | vm_prot_t, cur_protection); |
| 3258 | printf("CODE SIGNING: %d[%s] %s: curprot cannot be write+execute. " |
| 3259 | "turning off execute\n" , |
| 3260 | proc_selfpid(), |
| 3261 | (current_task()->bsd_info |
| 3262 | ? proc_name_address(current_task()->bsd_info) |
| 3263 | : "?" ), |
| 3264 | __FUNCTION__); |
| 3265 | cur_protection &= ~VM_PROT_EXECUTE; |
| 3266 | } |
| 3267 | |
| 3268 | /* |
| 3269 | * If the task has requested executable lockdown, |
| 3270 | * deny any new executable mapping. |
| 3271 | */ |
| 3272 | if (map->map_disallow_new_exec == TRUE) { |
| 3273 | if (cur_protection & VM_PROT_EXECUTE) { |
| 3274 | return KERN_PROTECTION_FAILURE; |
| 3275 | } |
| 3276 | } |
| 3277 | |
| 3278 | if (is_submap) { |
| 3279 | return KERN_NOT_SUPPORTED; |
| 3280 | } |
| 3281 | if (vmk_flags.vmkf_already) { |
| 3282 | return KERN_NOT_SUPPORTED; |
| 3283 | } |
| 3284 | if (purgable || entry_for_jit) { |
| 3285 | return KERN_NOT_SUPPORTED; |
| 3286 | } |
| 3287 | |
| 3288 | effective_min_offset = map->min_offset; |
| 3289 | |
| 3290 | if (vmk_flags.vmkf_beyond_max) { |
| 3291 | return KERN_NOT_SUPPORTED; |
| 3292 | } else { |
| 3293 | effective_max_offset = map->max_offset; |
| 3294 | } |
| 3295 | |
| 3296 | if (size == 0 || |
| 3297 | (offset & FOURK_PAGE_MASK) != 0) { |
| 3298 | *address = 0; |
| 3299 | return KERN_INVALID_ARGUMENT; |
| 3300 | } |
| 3301 | |
| 3302 | #define RETURN(value) { result = value; goto BailOut; } |
| 3303 | |
| 3304 | assert(VM_MAP_PAGE_ALIGNED(*address, FOURK_PAGE_MASK)); |
| 3305 | assert(VM_MAP_PAGE_ALIGNED(size, FOURK_PAGE_MASK)); |
| 3306 | |
| 3307 | if (!anywhere && overwrite) { |
| 3308 | return KERN_NOT_SUPPORTED; |
| 3309 | } |
| 3310 | if (!anywhere && overwrite) { |
| 3311 | /* |
| 3312 | * Create a temporary VM map to hold the old mappings in the |
| 3313 | * affected area while we create the new one. |
| 3314 | * This avoids releasing the VM map lock in |
| 3315 | * vm_map_entry_delete() and allows atomicity |
| 3316 | * when we want to replace some mappings with a new one. |
| 3317 | * It also allows us to restore the old VM mappings if the |
| 3318 | * new mapping fails. |
| 3319 | */ |
| 3320 | zap_old_map = vm_map_create(PMAP_NULL, |
| 3321 | *address, |
| 3322 | *address + size, |
| 3323 | map->hdr.entries_pageable); |
| 3324 | vm_map_set_page_shift(zap_old_map, VM_MAP_PAGE_SHIFT(map)); |
| 3325 | vm_map_disable_hole_optimization(zap_old_map); |
| 3326 | } |
| 3327 | |
| 3328 | fourk_start = *address; |
| 3329 | fourk_size = size; |
| 3330 | fourk_end = fourk_start + fourk_size; |
| 3331 | |
| 3332 | start = vm_map_trunc_page(*address, VM_MAP_PAGE_MASK(map)); |
| 3333 | end = vm_map_round_page(fourk_end, VM_MAP_PAGE_MASK(map)); |
| 3334 | size = end - start; |
| 3335 | |
| 3336 | if (anywhere) { |
| 3337 | return KERN_NOT_SUPPORTED; |
| 3338 | } else { |
| 3339 | /* |
| 3340 | * Verify that: |
| 3341 | * the address doesn't itself violate |
| 3342 | * the mask requirement. |
| 3343 | */ |
| 3344 | |
| 3345 | vm_map_lock(map); |
| 3346 | map_locked = TRUE; |
| 3347 | if ((start & mask) != 0) { |
| 3348 | RETURN(KERN_NO_SPACE); |
| 3349 | } |
| 3350 | |
| 3351 | /* |
| 3352 | * ... the address is within bounds |
| 3353 | */ |
| 3354 | |
| 3355 | end = start + size; |
| 3356 | |
| 3357 | if ((start < effective_min_offset) || |
| 3358 | (end > effective_max_offset) || |
| 3359 | (start >= end)) { |
| 3360 | RETURN(KERN_INVALID_ADDRESS); |
| 3361 | } |
| 3362 | |
| 3363 | if (overwrite && zap_old_map != VM_MAP_NULL) { |
| 3364 | /* |
| 3365 | * Fixed mapping and "overwrite" flag: attempt to |
| 3366 | * remove all existing mappings in the specified |
| 3367 | * address range, saving them in our "zap_old_map". |
| 3368 | */ |
| 3369 | (void) vm_map_delete(map, start, end, |
| 3370 | (VM_MAP_REMOVE_SAVE_ENTRIES | |
| 3371 | VM_MAP_REMOVE_NO_MAP_ALIGN), |
| 3372 | zap_old_map); |
| 3373 | } |
| 3374 | |
| 3375 | /* |
| 3376 | * ... the starting address isn't allocated |
| 3377 | */ |
| 3378 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 3379 | vm_object_t cur_object, shadow_object; |
| 3380 | |
| 3381 | /* |
| 3382 | * We might already some 4K mappings |
| 3383 | * in a 16K page here. |
| 3384 | */ |
| 3385 | |
| 3386 | if (entry->vme_end - entry->vme_start |
| 3387 | != SIXTEENK_PAGE_SIZE) { |
| 3388 | RETURN(KERN_NO_SPACE); |
| 3389 | } |
| 3390 | if (entry->is_sub_map) { |
| 3391 | RETURN(KERN_NO_SPACE); |
| 3392 | } |
| 3393 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 3394 | RETURN(KERN_NO_SPACE); |
| 3395 | } |
| 3396 | |
| 3397 | /* go all the way down the shadow chain */ |
| 3398 | cur_object = VME_OBJECT(entry); |
| 3399 | vm_object_lock(cur_object); |
| 3400 | while (cur_object->shadow != VM_OBJECT_NULL) { |
| 3401 | shadow_object = cur_object->shadow; |
| 3402 | vm_object_lock(shadow_object); |
| 3403 | vm_object_unlock(cur_object); |
| 3404 | cur_object = shadow_object; |
| 3405 | shadow_object = VM_OBJECT_NULL; |
| 3406 | } |
| 3407 | if (cur_object->internal || |
| 3408 | cur_object->pager == NULL) { |
| 3409 | vm_object_unlock(cur_object); |
| 3410 | RETURN(KERN_NO_SPACE); |
| 3411 | } |
| 3412 | if (cur_object->pager->mo_pager_ops |
| 3413 | != &fourk_pager_ops) { |
| 3414 | vm_object_unlock(cur_object); |
| 3415 | RETURN(KERN_NO_SPACE); |
| 3416 | } |
| 3417 | fourk_object = cur_object; |
| 3418 | fourk_mem_obj = fourk_object->pager; |
| 3419 | |
| 3420 | /* keep the "4K" object alive */ |
| 3421 | vm_object_reference_locked(fourk_object); |
| 3422 | vm_object_unlock(fourk_object); |
| 3423 | |
| 3424 | /* merge permissions */ |
| 3425 | entry->protection |= cur_protection; |
| 3426 | entry->max_protection |= max_protection; |
| 3427 | if ((entry->protection & (VM_PROT_WRITE | |
| 3428 | VM_PROT_EXECUTE)) == |
| 3429 | (VM_PROT_WRITE | VM_PROT_EXECUTE) && |
| 3430 | fourk_binary_compatibility_unsafe && |
| 3431 | fourk_binary_compatibility_allow_wx) { |
| 3432 | /* write+execute: need to be "jit" */ |
| 3433 | entry->used_for_jit = TRUE; |
| 3434 | } |
| 3435 | |
| 3436 | goto map_in_fourk_pager; |
| 3437 | } |
| 3438 | |
| 3439 | /* |
| 3440 | * ... the next region doesn't overlap the |
| 3441 | * end point. |
| 3442 | */ |
| 3443 | |
| 3444 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 3445 | (entry->vme_next->vme_start < end)) { |
| 3446 | RETURN(KERN_NO_SPACE); |
| 3447 | } |
| 3448 | } |
| 3449 | |
| 3450 | /* |
| 3451 | * At this point, |
| 3452 | * "start" and "end" should define the endpoints of the |
| 3453 | * available new range, and |
| 3454 | * "entry" should refer to the region before the new |
| 3455 | * range, and |
| 3456 | * |
| 3457 | * the map should be locked. |
| 3458 | */ |
| 3459 | |
| 3460 | /* create a new "4K" pager */ |
| 3461 | fourk_mem_obj = fourk_pager_create(); |
| 3462 | fourk_object = fourk_pager_to_vm_object(fourk_mem_obj); |
| 3463 | assert(fourk_object); |
| 3464 | |
| 3465 | /* keep the "4" object alive */ |
| 3466 | vm_object_reference(fourk_object); |
| 3467 | |
| 3468 | /* create a "copy" object, to map the "4K" object copy-on-write */ |
| 3469 | fourk_copy = TRUE; |
| 3470 | result = vm_object_copy_strategically(fourk_object, |
| 3471 | 0, |
| 3472 | end - start, |
| 3473 | ©_object, |
| 3474 | ©_offset, |
| 3475 | &fourk_copy); |
| 3476 | assert(result == KERN_SUCCESS); |
| 3477 | assert(copy_object != VM_OBJECT_NULL); |
| 3478 | assert(copy_offset == 0); |
| 3479 | |
| 3480 | /* take a reference on the copy object, for this mapping */ |
| 3481 | vm_object_reference(copy_object); |
| 3482 | |
| 3483 | /* map the "4K" pager's copy object */ |
| 3484 | new_entry = |
| 3485 | vm_map_entry_insert(map, entry, |
| 3486 | vm_map_trunc_page(start, |
| 3487 | VM_MAP_PAGE_MASK(map)), |
| 3488 | vm_map_round_page(end, |
| 3489 | VM_MAP_PAGE_MASK(map)), |
| 3490 | copy_object, |
| 3491 | 0, /* offset */ |
| 3492 | FALSE, /* needs_copy */ |
| 3493 | FALSE, FALSE, |
| 3494 | cur_protection, max_protection, |
| 3495 | VM_BEHAVIOR_DEFAULT, |
| 3496 | ((entry_for_jit) |
| 3497 | ? VM_INHERIT_NONE |
| 3498 | : inheritance), |
| 3499 | 0, |
| 3500 | no_cache, |
| 3501 | permanent, |
| 3502 | superpage_size, |
| 3503 | clear_map_aligned, |
| 3504 | is_submap, |
| 3505 | FALSE, /* jit */ |
| 3506 | alias); |
| 3507 | entry = new_entry; |
| 3508 | |
| 3509 | #if VM_MAP_DEBUG_FOURK |
| 3510 | if (vm_map_debug_fourk) { |
| 3511 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] new pager %p\n" , |
| 3512 | map, |
| 3513 | (uint64_t) entry->vme_start, |
| 3514 | (uint64_t) entry->vme_end, |
| 3515 | fourk_mem_obj); |
| 3516 | } |
| 3517 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 3518 | |
| 3519 | new_mapping_established = TRUE; |
| 3520 | |
| 3521 | map_in_fourk_pager: |
| 3522 | /* "map" the original "object" where it belongs in the "4K" pager */ |
| 3523 | fourk_pager_offset = (fourk_start & SIXTEENK_PAGE_MASK); |
| 3524 | fourk_pager_index_start = (int) (fourk_pager_offset / FOURK_PAGE_SIZE); |
| 3525 | if (fourk_size > SIXTEENK_PAGE_SIZE) { |
| 3526 | fourk_pager_index_num = 4; |
| 3527 | } else { |
| 3528 | fourk_pager_index_num = (int) (fourk_size / FOURK_PAGE_SIZE); |
| 3529 | } |
| 3530 | if (fourk_pager_index_start + fourk_pager_index_num > 4) { |
| 3531 | fourk_pager_index_num = 4 - fourk_pager_index_start; |
| 3532 | } |
| 3533 | for (cur_idx = 0; |
| 3534 | cur_idx < fourk_pager_index_num; |
| 3535 | cur_idx++) { |
| 3536 | vm_object_t old_object; |
| 3537 | vm_object_offset_t old_offset; |
| 3538 | |
| 3539 | kr = fourk_pager_populate(fourk_mem_obj, |
| 3540 | TRUE, /* overwrite */ |
| 3541 | fourk_pager_index_start + cur_idx, |
| 3542 | object, |
| 3543 | (object |
| 3544 | ? (offset + |
| 3545 | (cur_idx * FOURK_PAGE_SIZE)) |
| 3546 | : 0), |
| 3547 | &old_object, |
| 3548 | &old_offset); |
| 3549 | #if VM_MAP_DEBUG_FOURK |
| 3550 | if (vm_map_debug_fourk) { |
| 3551 | if (old_object == (vm_object_t) -1 && |
| 3552 | old_offset == (vm_object_offset_t) -1) { |
| 3553 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] " |
| 3554 | "pager [%p:0x%llx] " |
| 3555 | "populate[%d] " |
| 3556 | "[object:%p,offset:0x%llx]\n" , |
| 3557 | map, |
| 3558 | (uint64_t) entry->vme_start, |
| 3559 | (uint64_t) entry->vme_end, |
| 3560 | fourk_mem_obj, |
| 3561 | VME_OFFSET(entry), |
| 3562 | fourk_pager_index_start + cur_idx, |
| 3563 | object, |
| 3564 | (object |
| 3565 | ? (offset + (cur_idx * FOURK_PAGE_SIZE)) |
| 3566 | : 0)); |
| 3567 | } else { |
| 3568 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] " |
| 3569 | "pager [%p:0x%llx] " |
| 3570 | "populate[%d] [object:%p,offset:0x%llx] " |
| 3571 | "old [%p:0x%llx]\n" , |
| 3572 | map, |
| 3573 | (uint64_t) entry->vme_start, |
| 3574 | (uint64_t) entry->vme_end, |
| 3575 | fourk_mem_obj, |
| 3576 | VME_OFFSET(entry), |
| 3577 | fourk_pager_index_start + cur_idx, |
| 3578 | object, |
| 3579 | (object |
| 3580 | ? (offset + (cur_idx * FOURK_PAGE_SIZE)) |
| 3581 | : 0), |
| 3582 | old_object, |
| 3583 | old_offset); |
| 3584 | } |
| 3585 | } |
| 3586 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 3587 | |
| 3588 | assert(kr == KERN_SUCCESS); |
| 3589 | if (object != old_object && |
| 3590 | object != VM_OBJECT_NULL && |
| 3591 | object != (vm_object_t) -1) { |
| 3592 | vm_object_reference(object); |
| 3593 | } |
| 3594 | if (object != old_object && |
| 3595 | old_object != VM_OBJECT_NULL && |
| 3596 | old_object != (vm_object_t) -1) { |
| 3597 | vm_object_deallocate(old_object); |
| 3598 | } |
| 3599 | } |
| 3600 | |
| 3601 | BailOut: |
| 3602 | assert(map_locked == TRUE); |
| 3603 | |
| 3604 | if (fourk_object != VM_OBJECT_NULL) { |
| 3605 | vm_object_deallocate(fourk_object); |
| 3606 | fourk_object = VM_OBJECT_NULL; |
| 3607 | fourk_mem_obj = MEMORY_OBJECT_NULL; |
| 3608 | } |
| 3609 | |
| 3610 | if (result == KERN_SUCCESS) { |
| 3611 | vm_prot_t pager_prot; |
| 3612 | memory_object_t pager; |
| 3613 | |
| 3614 | #if DEBUG |
| 3615 | if (pmap_empty && |
| 3616 | !(vmk_flags.vmkf_no_pmap_check)) { |
| 3617 | assert(vm_map_pmap_is_empty(map, |
| 3618 | *address, |
| 3619 | *address+size)); |
| 3620 | } |
| 3621 | #endif /* DEBUG */ |
| 3622 | |
| 3623 | /* |
| 3624 | * For "named" VM objects, let the pager know that the |
| 3625 | * memory object is being mapped. Some pagers need to keep |
| 3626 | * track of this, to know when they can reclaim the memory |
| 3627 | * object, for example. |
| 3628 | * VM calls memory_object_map() for each mapping (specifying |
| 3629 | * the protection of each mapping) and calls |
| 3630 | * memory_object_last_unmap() when all the mappings are gone. |
| 3631 | */ |
| 3632 | pager_prot = max_protection; |
| 3633 | if (needs_copy) { |
| 3634 | /* |
| 3635 | * Copy-On-Write mapping: won't modify |
| 3636 | * the memory object. |
| 3637 | */ |
| 3638 | pager_prot &= ~VM_PROT_WRITE; |
| 3639 | } |
| 3640 | if (!is_submap && |
| 3641 | object != VM_OBJECT_NULL && |
| 3642 | object->named && |
| 3643 | object->pager != MEMORY_OBJECT_NULL) { |
| 3644 | vm_object_lock(object); |
| 3645 | pager = object->pager; |
| 3646 | if (object->named && |
| 3647 | pager != MEMORY_OBJECT_NULL) { |
| 3648 | assert(object->pager_ready); |
| 3649 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 3650 | vm_object_mapping_begin(object); |
| 3651 | vm_object_unlock(object); |
| 3652 | |
| 3653 | kr = memory_object_map(pager, pager_prot); |
| 3654 | assert(kr == KERN_SUCCESS); |
| 3655 | |
| 3656 | vm_object_lock(object); |
| 3657 | vm_object_mapping_end(object); |
| 3658 | } |
| 3659 | vm_object_unlock(object); |
| 3660 | } |
| 3661 | if (!is_submap && |
| 3662 | fourk_object != VM_OBJECT_NULL && |
| 3663 | fourk_object->named && |
| 3664 | fourk_object->pager != MEMORY_OBJECT_NULL) { |
| 3665 | vm_object_lock(fourk_object); |
| 3666 | pager = fourk_object->pager; |
| 3667 | if (fourk_object->named && |
| 3668 | pager != MEMORY_OBJECT_NULL) { |
| 3669 | assert(fourk_object->pager_ready); |
| 3670 | vm_object_mapping_wait(fourk_object, |
| 3671 | THREAD_UNINT); |
| 3672 | vm_object_mapping_begin(fourk_object); |
| 3673 | vm_object_unlock(fourk_object); |
| 3674 | |
| 3675 | kr = memory_object_map(pager, VM_PROT_READ); |
| 3676 | assert(kr == KERN_SUCCESS); |
| 3677 | |
| 3678 | vm_object_lock(fourk_object); |
| 3679 | vm_object_mapping_end(fourk_object); |
| 3680 | } |
| 3681 | vm_object_unlock(fourk_object); |
| 3682 | } |
| 3683 | } |
| 3684 | |
| 3685 | assert(map_locked == TRUE); |
| 3686 | |
| 3687 | if (!keep_map_locked) { |
| 3688 | vm_map_unlock(map); |
| 3689 | map_locked = FALSE; |
| 3690 | } |
| 3691 | |
| 3692 | /* |
| 3693 | * We can't hold the map lock if we enter this block. |
| 3694 | */ |
| 3695 | |
| 3696 | if (result == KERN_SUCCESS) { |
| 3697 | |
| 3698 | /* Wire down the new entry if the user |
| 3699 | * requested all new map entries be wired. |
| 3700 | */ |
| 3701 | if ((map->wiring_required)||(superpage_size)) { |
| 3702 | assert(!keep_map_locked); |
| 3703 | pmap_empty = FALSE; /* pmap won't be empty */ |
| 3704 | kr = vm_map_wire_kernel(map, start, end, |
| 3705 | new_entry->protection, VM_KERN_MEMORY_MLOCK, |
| 3706 | TRUE); |
| 3707 | result = kr; |
| 3708 | } |
| 3709 | |
| 3710 | } |
| 3711 | |
| 3712 | if (result != KERN_SUCCESS) { |
| 3713 | if (new_mapping_established) { |
| 3714 | /* |
| 3715 | * We have to get rid of the new mappings since we |
| 3716 | * won't make them available to the user. |
| 3717 | * Try and do that atomically, to minimize the risk |
| 3718 | * that someone else create new mappings that range. |
| 3719 | */ |
| 3720 | zap_new_map = vm_map_create(PMAP_NULL, |
| 3721 | *address, |
| 3722 | *address + size, |
| 3723 | map->hdr.entries_pageable); |
| 3724 | vm_map_set_page_shift(zap_new_map, |
| 3725 | VM_MAP_PAGE_SHIFT(map)); |
| 3726 | vm_map_disable_hole_optimization(zap_new_map); |
| 3727 | |
| 3728 | if (!map_locked) { |
| 3729 | vm_map_lock(map); |
| 3730 | map_locked = TRUE; |
| 3731 | } |
| 3732 | (void) vm_map_delete(map, *address, *address+size, |
| 3733 | (VM_MAP_REMOVE_SAVE_ENTRIES | |
| 3734 | VM_MAP_REMOVE_NO_MAP_ALIGN), |
| 3735 | zap_new_map); |
| 3736 | } |
| 3737 | if (zap_old_map != VM_MAP_NULL && |
| 3738 | zap_old_map->hdr.nentries != 0) { |
| 3739 | vm_map_entry_t entry1, entry2; |
| 3740 | |
| 3741 | /* |
| 3742 | * The new mapping failed. Attempt to restore |
| 3743 | * the old mappings, saved in the "zap_old_map". |
| 3744 | */ |
| 3745 | if (!map_locked) { |
| 3746 | vm_map_lock(map); |
| 3747 | map_locked = TRUE; |
| 3748 | } |
| 3749 | |
| 3750 | /* first check if the coast is still clear */ |
| 3751 | start = vm_map_first_entry(zap_old_map)->vme_start; |
| 3752 | end = vm_map_last_entry(zap_old_map)->vme_end; |
| 3753 | if (vm_map_lookup_entry(map, start, &entry1) || |
| 3754 | vm_map_lookup_entry(map, end, &entry2) || |
| 3755 | entry1 != entry2) { |
| 3756 | /* |
| 3757 | * Part of that range has already been |
| 3758 | * re-mapped: we can't restore the old |
| 3759 | * mappings... |
| 3760 | */ |
| 3761 | vm_map_enter_restore_failures++; |
| 3762 | } else { |
| 3763 | /* |
| 3764 | * Transfer the saved map entries from |
| 3765 | * "zap_old_map" to the original "map", |
| 3766 | * inserting them all after "entry1". |
| 3767 | */ |
| 3768 | for (entry2 = vm_map_first_entry(zap_old_map); |
| 3769 | entry2 != vm_map_to_entry(zap_old_map); |
| 3770 | entry2 = vm_map_first_entry(zap_old_map)) { |
| 3771 | vm_map_size_t entry_size; |
| 3772 | |
| 3773 | entry_size = (entry2->vme_end - |
| 3774 | entry2->vme_start); |
| 3775 | vm_map_store_entry_unlink(zap_old_map, |
| 3776 | entry2); |
| 3777 | zap_old_map->size -= entry_size; |
| 3778 | vm_map_store_entry_link(map, entry1, entry2, |
| 3779 | VM_MAP_KERNEL_FLAGS_NONE); |
| 3780 | map->size += entry_size; |
| 3781 | entry1 = entry2; |
| 3782 | } |
| 3783 | if (map->wiring_required) { |
| 3784 | /* |
| 3785 | * XXX TODO: we should rewire the |
| 3786 | * old pages here... |
| 3787 | */ |
| 3788 | } |
| 3789 | vm_map_enter_restore_successes++; |
| 3790 | } |
| 3791 | } |
| 3792 | } |
| 3793 | |
| 3794 | /* |
| 3795 | * The caller is responsible for releasing the lock if it requested to |
| 3796 | * keep the map locked. |
| 3797 | */ |
| 3798 | if (map_locked && !keep_map_locked) { |
| 3799 | vm_map_unlock(map); |
| 3800 | } |
| 3801 | |
| 3802 | /* |
| 3803 | * Get rid of the "zap_maps" and all the map entries that |
| 3804 | * they may still contain. |
| 3805 | */ |
| 3806 | if (zap_old_map != VM_MAP_NULL) { |
| 3807 | vm_map_destroy(zap_old_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 3808 | zap_old_map = VM_MAP_NULL; |
| 3809 | } |
| 3810 | if (zap_new_map != VM_MAP_NULL) { |
| 3811 | vm_map_destroy(zap_new_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 3812 | zap_new_map = VM_MAP_NULL; |
| 3813 | } |
| 3814 | |
| 3815 | return result; |
| 3816 | |
| 3817 | #undef RETURN |
| 3818 | } |
| 3819 | #endif /* __arm64__ */ |
| 3820 | |
| 3821 | /* |
| 3822 | * Counters for the prefault optimization. |
| 3823 | */ |
| 3824 | int64_t vm_prefault_nb_pages = 0; |
| 3825 | int64_t vm_prefault_nb_bailout = 0; |
| 3826 | |
| 3827 | static kern_return_t |
| 3828 | vm_map_enter_mem_object_helper( |
| 3829 | vm_map_t target_map, |
| 3830 | vm_map_offset_t *address, |
| 3831 | vm_map_size_t initial_size, |
| 3832 | vm_map_offset_t mask, |
| 3833 | int flags, |
| 3834 | vm_map_kernel_flags_t vmk_flags, |
| 3835 | vm_tag_t tag, |
| 3836 | ipc_port_t port, |
| 3837 | vm_object_offset_t offset, |
| 3838 | boolean_t copy, |
| 3839 | vm_prot_t cur_protection, |
| 3840 | vm_prot_t max_protection, |
| 3841 | vm_inherit_t inheritance, |
| 3842 | upl_page_list_ptr_t page_list, |
| 3843 | unsigned int page_list_count) |
| 3844 | { |
| 3845 | vm_map_address_t map_addr; |
| 3846 | vm_map_size_t map_size; |
| 3847 | vm_object_t object; |
| 3848 | vm_object_size_t size; |
| 3849 | kern_return_t result; |
| 3850 | boolean_t mask_cur_protection, mask_max_protection; |
| 3851 | boolean_t kernel_prefault, try_prefault = (page_list_count != 0); |
| 3852 | vm_map_offset_t offset_in_mapping = 0; |
| 3853 | #if __arm64__ |
| 3854 | boolean_t fourk = vmk_flags.vmkf_fourk; |
| 3855 | #endif /* __arm64__ */ |
| 3856 | |
| 3857 | assertf(vmk_flags.__vmkf_unused == 0, "vmk_flags unused=0x%x\n" , vmk_flags.__vmkf_unused); |
| 3858 | |
| 3859 | mask_cur_protection = cur_protection & VM_PROT_IS_MASK; |
| 3860 | mask_max_protection = max_protection & VM_PROT_IS_MASK; |
| 3861 | cur_protection &= ~VM_PROT_IS_MASK; |
| 3862 | max_protection &= ~VM_PROT_IS_MASK; |
| 3863 | |
| 3864 | /* |
| 3865 | * Check arguments for validity |
| 3866 | */ |
| 3867 | if ((target_map == VM_MAP_NULL) || |
| 3868 | (cur_protection & ~VM_PROT_ALL) || |
| 3869 | (max_protection & ~VM_PROT_ALL) || |
| 3870 | (inheritance > VM_INHERIT_LAST_VALID) || |
| 3871 | (try_prefault && (copy || !page_list)) || |
| 3872 | initial_size == 0) { |
| 3873 | return KERN_INVALID_ARGUMENT; |
| 3874 | } |
| 3875 | |
| 3876 | #if __arm64__ |
| 3877 | if (fourk) { |
| 3878 | map_addr = vm_map_trunc_page(*address, FOURK_PAGE_MASK); |
| 3879 | map_size = vm_map_round_page(initial_size, FOURK_PAGE_MASK); |
| 3880 | } else |
| 3881 | #endif /* __arm64__ */ |
| 3882 | { |
| 3883 | map_addr = vm_map_trunc_page(*address, |
| 3884 | VM_MAP_PAGE_MASK(target_map)); |
| 3885 | map_size = vm_map_round_page(initial_size, |
| 3886 | VM_MAP_PAGE_MASK(target_map)); |
| 3887 | } |
| 3888 | size = vm_object_round_page(initial_size); |
| 3889 | |
| 3890 | /* |
| 3891 | * Find the vm object (if any) corresponding to this port. |
| 3892 | */ |
| 3893 | if (!IP_VALID(port)) { |
| 3894 | object = VM_OBJECT_NULL; |
| 3895 | offset = 0; |
| 3896 | copy = FALSE; |
| 3897 | } else if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
| 3898 | vm_named_entry_t named_entry; |
| 3899 | |
| 3900 | named_entry = (vm_named_entry_t) port->ip_kobject; |
| 3901 | |
| 3902 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 3903 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 3904 | offset += named_entry->data_offset; |
| 3905 | } |
| 3906 | |
| 3907 | /* a few checks to make sure user is obeying rules */ |
| 3908 | if (size == 0) { |
| 3909 | if (offset >= named_entry->size) |
| 3910 | return KERN_INVALID_RIGHT; |
| 3911 | size = named_entry->size - offset; |
| 3912 | } |
| 3913 | if (mask_max_protection) { |
| 3914 | max_protection &= named_entry->protection; |
| 3915 | } |
| 3916 | if (mask_cur_protection) { |
| 3917 | cur_protection &= named_entry->protection; |
| 3918 | } |
| 3919 | if ((named_entry->protection & max_protection) != |
| 3920 | max_protection) |
| 3921 | return KERN_INVALID_RIGHT; |
| 3922 | if ((named_entry->protection & cur_protection) != |
| 3923 | cur_protection) |
| 3924 | return KERN_INVALID_RIGHT; |
| 3925 | if (offset + size < offset) { |
| 3926 | /* overflow */ |
| 3927 | return KERN_INVALID_ARGUMENT; |
| 3928 | } |
| 3929 | if (named_entry->size < (offset + initial_size)) { |
| 3930 | return KERN_INVALID_ARGUMENT; |
| 3931 | } |
| 3932 | |
| 3933 | if (named_entry->is_copy) { |
| 3934 | /* for a vm_map_copy, we can only map it whole */ |
| 3935 | if ((size != named_entry->size) && |
| 3936 | (vm_map_round_page(size, |
| 3937 | VM_MAP_PAGE_MASK(target_map)) == |
| 3938 | named_entry->size)) { |
| 3939 | /* XXX FBDP use the rounded size... */ |
| 3940 | size = vm_map_round_page( |
| 3941 | size, |
| 3942 | VM_MAP_PAGE_MASK(target_map)); |
| 3943 | } |
| 3944 | |
| 3945 | if (!(flags & VM_FLAGS_ANYWHERE) && |
| 3946 | (offset != 0 || |
| 3947 | size != named_entry->size)) { |
| 3948 | /* |
| 3949 | * XXX for a mapping at a "fixed" address, |
| 3950 | * we can't trim after mapping the whole |
| 3951 | * memory entry, so reject a request for a |
| 3952 | * partial mapping. |
| 3953 | */ |
| 3954 | return KERN_INVALID_ARGUMENT; |
| 3955 | } |
| 3956 | } |
| 3957 | |
| 3958 | /* the callers parameter offset is defined to be the */ |
| 3959 | /* offset from beginning of named entry offset in object */ |
| 3960 | offset = offset + named_entry->offset; |
| 3961 | |
| 3962 | if (! VM_MAP_PAGE_ALIGNED(size, |
| 3963 | VM_MAP_PAGE_MASK(target_map))) { |
| 3964 | /* |
| 3965 | * Let's not map more than requested; |
| 3966 | * vm_map_enter() will handle this "not map-aligned" |
| 3967 | * case. |
| 3968 | */ |
| 3969 | map_size = size; |
| 3970 | } |
| 3971 | |
| 3972 | named_entry_lock(named_entry); |
| 3973 | if (named_entry->is_sub_map) { |
| 3974 | vm_map_t submap; |
| 3975 | |
| 3976 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 3977 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 3978 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap." ); |
| 3979 | } |
| 3980 | |
| 3981 | submap = named_entry->backing.map; |
| 3982 | vm_map_lock(submap); |
| 3983 | vm_map_reference(submap); |
| 3984 | vm_map_unlock(submap); |
| 3985 | named_entry_unlock(named_entry); |
| 3986 | |
| 3987 | vmk_flags.vmkf_submap = TRUE; |
| 3988 | |
| 3989 | result = vm_map_enter(target_map, |
| 3990 | &map_addr, |
| 3991 | map_size, |
| 3992 | mask, |
| 3993 | flags, |
| 3994 | vmk_flags, |
| 3995 | tag, |
| 3996 | (vm_object_t)(uintptr_t) submap, |
| 3997 | offset, |
| 3998 | copy, |
| 3999 | cur_protection, |
| 4000 | max_protection, |
| 4001 | inheritance); |
| 4002 | if (result != KERN_SUCCESS) { |
| 4003 | vm_map_deallocate(submap); |
| 4004 | } else { |
| 4005 | /* |
| 4006 | * No need to lock "submap" just to check its |
| 4007 | * "mapped" flag: that flag is never reset |
| 4008 | * once it's been set and if we race, we'll |
| 4009 | * just end up setting it twice, which is OK. |
| 4010 | */ |
| 4011 | if (submap->mapped_in_other_pmaps == FALSE && |
| 4012 | vm_map_pmap(submap) != PMAP_NULL && |
| 4013 | vm_map_pmap(submap) != |
| 4014 | vm_map_pmap(target_map)) { |
| 4015 | /* |
| 4016 | * This submap is being mapped in a map |
| 4017 | * that uses a different pmap. |
| 4018 | * Set its "mapped_in_other_pmaps" flag |
| 4019 | * to indicate that we now need to |
| 4020 | * remove mappings from all pmaps rather |
| 4021 | * than just the submap's pmap. |
| 4022 | */ |
| 4023 | vm_map_lock(submap); |
| 4024 | submap->mapped_in_other_pmaps = TRUE; |
| 4025 | vm_map_unlock(submap); |
| 4026 | } |
| 4027 | *address = map_addr; |
| 4028 | } |
| 4029 | return result; |
| 4030 | |
| 4031 | } else if (named_entry->is_copy) { |
| 4032 | kern_return_t kr; |
| 4033 | vm_map_copy_t copy_map; |
| 4034 | vm_map_entry_t copy_entry; |
| 4035 | vm_map_offset_t copy_addr; |
| 4036 | |
| 4037 | if (flags & ~(VM_FLAGS_FIXED | |
| 4038 | VM_FLAGS_ANYWHERE | |
| 4039 | VM_FLAGS_OVERWRITE | |
| 4040 | VM_FLAGS_RETURN_4K_DATA_ADDR | |
| 4041 | VM_FLAGS_RETURN_DATA_ADDR | |
| 4042 | VM_FLAGS_ALIAS_MASK)) { |
| 4043 | named_entry_unlock(named_entry); |
| 4044 | return KERN_INVALID_ARGUMENT; |
| 4045 | } |
| 4046 | |
| 4047 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 4048 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 4049 | offset_in_mapping = offset - vm_object_trunc_page(offset); |
| 4050 | if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR) |
| 4051 | offset_in_mapping &= ~((signed)(0xFFF)); |
| 4052 | offset = vm_object_trunc_page(offset); |
| 4053 | map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset; |
| 4054 | } |
| 4055 | |
| 4056 | copy_map = named_entry->backing.copy; |
| 4057 | assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST); |
| 4058 | if (copy_map->type != VM_MAP_COPY_ENTRY_LIST) { |
| 4059 | /* unsupported type; should not happen */ |
| 4060 | printf("vm_map_enter_mem_object: " |
| 4061 | "memory_entry->backing.copy " |
| 4062 | "unsupported type 0x%x\n" , |
| 4063 | copy_map->type); |
| 4064 | named_entry_unlock(named_entry); |
| 4065 | return KERN_INVALID_ARGUMENT; |
| 4066 | } |
| 4067 | |
| 4068 | /* reserve a contiguous range */ |
| 4069 | kr = vm_map_enter(target_map, |
| 4070 | &map_addr, |
| 4071 | /* map whole mem entry, trim later: */ |
| 4072 | named_entry->size, |
| 4073 | mask, |
| 4074 | flags & (VM_FLAGS_ANYWHERE | |
| 4075 | VM_FLAGS_OVERWRITE | |
| 4076 | VM_FLAGS_RETURN_4K_DATA_ADDR | |
| 4077 | VM_FLAGS_RETURN_DATA_ADDR), |
| 4078 | vmk_flags, |
| 4079 | tag, |
| 4080 | VM_OBJECT_NULL, |
| 4081 | 0, |
| 4082 | FALSE, /* copy */ |
| 4083 | cur_protection, |
| 4084 | max_protection, |
| 4085 | inheritance); |
| 4086 | if (kr != KERN_SUCCESS) { |
| 4087 | named_entry_unlock(named_entry); |
| 4088 | return kr; |
| 4089 | } |
| 4090 | |
| 4091 | copy_addr = map_addr; |
| 4092 | |
| 4093 | for (copy_entry = vm_map_copy_first_entry(copy_map); |
| 4094 | copy_entry != vm_map_copy_to_entry(copy_map); |
| 4095 | copy_entry = copy_entry->vme_next) { |
| 4096 | int remap_flags; |
| 4097 | vm_map_kernel_flags_t vmk_remap_flags; |
| 4098 | vm_map_t copy_submap; |
| 4099 | vm_object_t copy_object; |
| 4100 | vm_map_size_t copy_size; |
| 4101 | vm_object_offset_t copy_offset; |
| 4102 | int copy_vm_alias; |
| 4103 | |
| 4104 | remap_flags = 0; |
| 4105 | vmk_remap_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 4106 | |
| 4107 | copy_object = VME_OBJECT(copy_entry); |
| 4108 | copy_offset = VME_OFFSET(copy_entry); |
| 4109 | copy_size = (copy_entry->vme_end - |
| 4110 | copy_entry->vme_start); |
| 4111 | VM_GET_FLAGS_ALIAS(flags, copy_vm_alias); |
| 4112 | if (copy_vm_alias == 0) { |
| 4113 | /* |
| 4114 | * Caller does not want a specific |
| 4115 | * alias for this new mapping: use |
| 4116 | * the alias of the original mapping. |
| 4117 | */ |
| 4118 | copy_vm_alias = VME_ALIAS(copy_entry); |
| 4119 | } |
| 4120 | |
| 4121 | /* sanity check */ |
| 4122 | if ((copy_addr + copy_size) > |
| 4123 | (map_addr + |
| 4124 | named_entry->size /* XXX full size */ )) { |
| 4125 | /* over-mapping too much !? */ |
| 4126 | kr = KERN_INVALID_ARGUMENT; |
| 4127 | /* abort */ |
| 4128 | break; |
| 4129 | } |
| 4130 | |
| 4131 | /* take a reference on the object */ |
| 4132 | if (copy_entry->is_sub_map) { |
| 4133 | vmk_remap_flags.vmkf_submap = TRUE; |
| 4134 | copy_submap = VME_SUBMAP(copy_entry); |
| 4135 | vm_map_lock(copy_submap); |
| 4136 | vm_map_reference(copy_submap); |
| 4137 | vm_map_unlock(copy_submap); |
| 4138 | copy_object = (vm_object_t)(uintptr_t) copy_submap; |
| 4139 | } else if (!copy && |
| 4140 | copy_object != VM_OBJECT_NULL && |
| 4141 | (copy_entry->needs_copy || |
| 4142 | copy_object->shadowed || |
| 4143 | (!copy_object->true_share && |
| 4144 | !copy_entry->is_shared && |
| 4145 | copy_object->vo_size > copy_size))) { |
| 4146 | /* |
| 4147 | * We need to resolve our side of this |
| 4148 | * "symmetric" copy-on-write now; we |
| 4149 | * need a new object to map and share, |
| 4150 | * instead of the current one which |
| 4151 | * might still be shared with the |
| 4152 | * original mapping. |
| 4153 | * |
| 4154 | * Note: A "vm_map_copy_t" does not |
| 4155 | * have a lock but we're protected by |
| 4156 | * the named entry's lock here. |
| 4157 | */ |
| 4158 | // assert(copy_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
| 4159 | VME_OBJECT_SHADOW(copy_entry, copy_size); |
| 4160 | if (!copy_entry->needs_copy && |
| 4161 | copy_entry->protection & VM_PROT_WRITE) { |
| 4162 | vm_prot_t prot; |
| 4163 | |
| 4164 | prot = copy_entry->protection & ~VM_PROT_WRITE; |
| 4165 | vm_object_pmap_protect(copy_object, |
| 4166 | copy_offset, |
| 4167 | copy_size, |
| 4168 | PMAP_NULL, |
| 4169 | 0, |
| 4170 | prot); |
| 4171 | } |
| 4172 | |
| 4173 | copy_entry->needs_copy = FALSE; |
| 4174 | copy_entry->is_shared = TRUE; |
| 4175 | copy_object = VME_OBJECT(copy_entry); |
| 4176 | copy_offset = VME_OFFSET(copy_entry); |
| 4177 | vm_object_lock(copy_object); |
| 4178 | vm_object_reference_locked(copy_object); |
| 4179 | if (copy_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 4180 | /* we're about to make a shared mapping of this object */ |
| 4181 | copy_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 4182 | copy_object->true_share = TRUE; |
| 4183 | } |
| 4184 | vm_object_unlock(copy_object); |
| 4185 | } else { |
| 4186 | /* |
| 4187 | * We already have the right object |
| 4188 | * to map. |
| 4189 | */ |
| 4190 | copy_object = VME_OBJECT(copy_entry); |
| 4191 | vm_object_reference(copy_object); |
| 4192 | } |
| 4193 | |
| 4194 | /* over-map the object into destination */ |
| 4195 | remap_flags |= flags; |
| 4196 | remap_flags |= VM_FLAGS_FIXED; |
| 4197 | remap_flags |= VM_FLAGS_OVERWRITE; |
| 4198 | remap_flags &= ~VM_FLAGS_ANYWHERE; |
| 4199 | if (!copy && !copy_entry->is_sub_map) { |
| 4200 | /* |
| 4201 | * copy-on-write should have been |
| 4202 | * resolved at this point, or we would |
| 4203 | * end up sharing instead of copying. |
| 4204 | */ |
| 4205 | assert(!copy_entry->needs_copy); |
| 4206 | } |
| 4207 | #if !CONFIG_EMBEDDED |
| 4208 | if (copy_entry->used_for_jit) { |
| 4209 | vmk_remap_flags.vmkf_map_jit = TRUE; |
| 4210 | } |
| 4211 | #endif /* !CONFIG_EMBEDDED */ |
| 4212 | kr = vm_map_enter(target_map, |
| 4213 | ©_addr, |
| 4214 | copy_size, |
| 4215 | (vm_map_offset_t) 0, |
| 4216 | remap_flags, |
| 4217 | vmk_remap_flags, |
| 4218 | copy_vm_alias, |
| 4219 | copy_object, |
| 4220 | copy_offset, |
| 4221 | copy, |
| 4222 | cur_protection, |
| 4223 | max_protection, |
| 4224 | inheritance); |
| 4225 | if (kr != KERN_SUCCESS) { |
| 4226 | if (copy_entry->is_sub_map) { |
| 4227 | vm_map_deallocate(copy_submap); |
| 4228 | } else { |
| 4229 | vm_object_deallocate(copy_object); |
| 4230 | } |
| 4231 | /* abort */ |
| 4232 | break; |
| 4233 | } |
| 4234 | |
| 4235 | /* next mapping */ |
| 4236 | copy_addr += copy_size; |
| 4237 | } |
| 4238 | |
| 4239 | if (kr == KERN_SUCCESS) { |
| 4240 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 4241 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 4242 | *address = map_addr + offset_in_mapping; |
| 4243 | } else { |
| 4244 | *address = map_addr; |
| 4245 | } |
| 4246 | |
| 4247 | if (offset) { |
| 4248 | /* |
| 4249 | * Trim in front, from 0 to "offset". |
| 4250 | */ |
| 4251 | vm_map_remove(target_map, |
| 4252 | map_addr, |
| 4253 | map_addr + offset, |
| 4254 | VM_MAP_REMOVE_NO_FLAGS); |
| 4255 | *address += offset; |
| 4256 | } |
| 4257 | if (offset + map_size < named_entry->size) { |
| 4258 | /* |
| 4259 | * Trim in back, from |
| 4260 | * "offset + map_size" to |
| 4261 | * "named_entry->size". |
| 4262 | */ |
| 4263 | vm_map_remove(target_map, |
| 4264 | (map_addr + |
| 4265 | offset + map_size), |
| 4266 | (map_addr + |
| 4267 | named_entry->size), |
| 4268 | VM_MAP_REMOVE_NO_FLAGS); |
| 4269 | } |
| 4270 | } |
| 4271 | named_entry_unlock(named_entry); |
| 4272 | |
| 4273 | if (kr != KERN_SUCCESS) { |
| 4274 | if (! (flags & VM_FLAGS_OVERWRITE)) { |
| 4275 | /* deallocate the contiguous range */ |
| 4276 | (void) vm_deallocate(target_map, |
| 4277 | map_addr, |
| 4278 | map_size); |
| 4279 | } |
| 4280 | } |
| 4281 | |
| 4282 | return kr; |
| 4283 | |
| 4284 | } else { |
| 4285 | unsigned int access; |
| 4286 | vm_prot_t protections; |
| 4287 | unsigned int wimg_mode; |
| 4288 | |
| 4289 | /* we are mapping a VM object */ |
| 4290 | |
| 4291 | protections = named_entry->protection & VM_PROT_ALL; |
| 4292 | access = GET_MAP_MEM(named_entry->protection); |
| 4293 | |
| 4294 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 4295 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 4296 | offset_in_mapping = offset - vm_object_trunc_page(offset); |
| 4297 | if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR) |
| 4298 | offset_in_mapping &= ~((signed)(0xFFF)); |
| 4299 | offset = vm_object_trunc_page(offset); |
| 4300 | map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset; |
| 4301 | } |
| 4302 | |
| 4303 | object = named_entry->backing.object; |
| 4304 | assert(object != VM_OBJECT_NULL); |
| 4305 | vm_object_lock(object); |
| 4306 | named_entry_unlock(named_entry); |
| 4307 | |
| 4308 | vm_object_reference_locked(object); |
| 4309 | |
| 4310 | wimg_mode = object->wimg_bits; |
| 4311 | vm_prot_to_wimg(access, &wimg_mode); |
| 4312 | if (object->wimg_bits != wimg_mode) |
| 4313 | vm_object_change_wimg_mode(object, wimg_mode); |
| 4314 | |
| 4315 | vm_object_unlock(object); |
| 4316 | } |
| 4317 | } else if (ip_kotype(port) == IKOT_MEMORY_OBJECT) { |
| 4318 | /* |
| 4319 | * JMM - This is temporary until we unify named entries |
| 4320 | * and raw memory objects. |
| 4321 | * |
| 4322 | * Detected fake ip_kotype for a memory object. In |
| 4323 | * this case, the port isn't really a port at all, but |
| 4324 | * instead is just a raw memory object. |
| 4325 | */ |
| 4326 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 4327 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 4328 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for raw memory object." ); |
| 4329 | } |
| 4330 | |
| 4331 | object = memory_object_to_vm_object((memory_object_t)port); |
| 4332 | if (object == VM_OBJECT_NULL) |
| 4333 | return KERN_INVALID_OBJECT; |
| 4334 | vm_object_reference(object); |
| 4335 | |
| 4336 | /* wait for object (if any) to be ready */ |
| 4337 | if (object != VM_OBJECT_NULL) { |
| 4338 | if (object == kernel_object) { |
| 4339 | printf("Warning: Attempt to map kernel object" |
| 4340 | " by a non-private kernel entity\n" ); |
| 4341 | return KERN_INVALID_OBJECT; |
| 4342 | } |
| 4343 | if (!object->pager_ready) { |
| 4344 | vm_object_lock(object); |
| 4345 | |
| 4346 | while (!object->pager_ready) { |
| 4347 | vm_object_wait(object, |
| 4348 | VM_OBJECT_EVENT_PAGER_READY, |
| 4349 | THREAD_UNINT); |
| 4350 | vm_object_lock(object); |
| 4351 | } |
| 4352 | vm_object_unlock(object); |
| 4353 | } |
| 4354 | } |
| 4355 | } else { |
| 4356 | return KERN_INVALID_OBJECT; |
| 4357 | } |
| 4358 | |
| 4359 | if (object != VM_OBJECT_NULL && |
| 4360 | object->named && |
| 4361 | object->pager != MEMORY_OBJECT_NULL && |
| 4362 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4363 | memory_object_t ; |
| 4364 | vm_prot_t ; |
| 4365 | kern_return_t kr; |
| 4366 | |
| 4367 | /* |
| 4368 | * For "named" VM objects, let the pager know that the |
| 4369 | * memory object is being mapped. Some pagers need to keep |
| 4370 | * track of this, to know when they can reclaim the memory |
| 4371 | * object, for example. |
| 4372 | * VM calls memory_object_map() for each mapping (specifying |
| 4373 | * the protection of each mapping) and calls |
| 4374 | * memory_object_last_unmap() when all the mappings are gone. |
| 4375 | */ |
| 4376 | pager_prot = max_protection; |
| 4377 | if (copy) { |
| 4378 | /* |
| 4379 | * Copy-On-Write mapping: won't modify the |
| 4380 | * memory object. |
| 4381 | */ |
| 4382 | pager_prot &= ~VM_PROT_WRITE; |
| 4383 | } |
| 4384 | vm_object_lock(object); |
| 4385 | pager = object->pager; |
| 4386 | if (object->named && |
| 4387 | pager != MEMORY_OBJECT_NULL && |
| 4388 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4389 | assert(object->pager_ready); |
| 4390 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 4391 | vm_object_mapping_begin(object); |
| 4392 | vm_object_unlock(object); |
| 4393 | |
| 4394 | kr = memory_object_map(pager, pager_prot); |
| 4395 | assert(kr == KERN_SUCCESS); |
| 4396 | |
| 4397 | vm_object_lock(object); |
| 4398 | vm_object_mapping_end(object); |
| 4399 | } |
| 4400 | vm_object_unlock(object); |
| 4401 | } |
| 4402 | |
| 4403 | /* |
| 4404 | * Perform the copy if requested |
| 4405 | */ |
| 4406 | |
| 4407 | if (copy) { |
| 4408 | vm_object_t new_object; |
| 4409 | vm_object_offset_t new_offset; |
| 4410 | |
| 4411 | result = vm_object_copy_strategically(object, offset, |
| 4412 | map_size, |
| 4413 | &new_object, &new_offset, |
| 4414 | ©); |
| 4415 | |
| 4416 | |
| 4417 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 4418 | boolean_t success; |
| 4419 | boolean_t src_needs_copy; |
| 4420 | |
| 4421 | /* |
| 4422 | * XXX |
| 4423 | * We currently ignore src_needs_copy. |
| 4424 | * This really is the issue of how to make |
| 4425 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for |
| 4426 | * non-kernel users to use. Solution forthcoming. |
| 4427 | * In the meantime, since we don't allow non-kernel |
| 4428 | * memory managers to specify symmetric copy, |
| 4429 | * we won't run into problems here. |
| 4430 | */ |
| 4431 | new_object = object; |
| 4432 | new_offset = offset; |
| 4433 | success = vm_object_copy_quickly(&new_object, |
| 4434 | new_offset, |
| 4435 | map_size, |
| 4436 | &src_needs_copy, |
| 4437 | ©); |
| 4438 | assert(success); |
| 4439 | result = KERN_SUCCESS; |
| 4440 | } |
| 4441 | /* |
| 4442 | * Throw away the reference to the |
| 4443 | * original object, as it won't be mapped. |
| 4444 | */ |
| 4445 | |
| 4446 | vm_object_deallocate(object); |
| 4447 | |
| 4448 | if (result != KERN_SUCCESS) { |
| 4449 | return result; |
| 4450 | } |
| 4451 | |
| 4452 | object = new_object; |
| 4453 | offset = new_offset; |
| 4454 | } |
| 4455 | |
| 4456 | /* |
| 4457 | * If non-kernel users want to try to prefault pages, the mapping and prefault |
| 4458 | * needs to be atomic. |
| 4459 | */ |
| 4460 | kernel_prefault = (try_prefault && vm_kernel_map_is_kernel(target_map)); |
| 4461 | vmk_flags.vmkf_keep_map_locked = (try_prefault && !kernel_prefault); |
| 4462 | |
| 4463 | #if __arm64__ |
| 4464 | if (fourk) { |
| 4465 | /* map this object in a "4K" pager */ |
| 4466 | result = vm_map_enter_fourk(target_map, |
| 4467 | &map_addr, |
| 4468 | map_size, |
| 4469 | (vm_map_offset_t) mask, |
| 4470 | flags, |
| 4471 | vmk_flags, |
| 4472 | tag, |
| 4473 | object, |
| 4474 | offset, |
| 4475 | copy, |
| 4476 | cur_protection, |
| 4477 | max_protection, |
| 4478 | inheritance); |
| 4479 | } else |
| 4480 | #endif /* __arm64__ */ |
| 4481 | { |
| 4482 | result = vm_map_enter(target_map, |
| 4483 | &map_addr, map_size, |
| 4484 | (vm_map_offset_t)mask, |
| 4485 | flags, |
| 4486 | vmk_flags, |
| 4487 | tag, |
| 4488 | object, offset, |
| 4489 | copy, |
| 4490 | cur_protection, max_protection, |
| 4491 | inheritance); |
| 4492 | } |
| 4493 | if (result != KERN_SUCCESS) |
| 4494 | vm_object_deallocate(object); |
| 4495 | |
| 4496 | /* |
| 4497 | * Try to prefault, and do not forget to release the vm map lock. |
| 4498 | */ |
| 4499 | if (result == KERN_SUCCESS && try_prefault) { |
| 4500 | mach_vm_address_t va = map_addr; |
| 4501 | kern_return_t kr = KERN_SUCCESS; |
| 4502 | unsigned int i = 0; |
| 4503 | int pmap_options; |
| 4504 | |
| 4505 | pmap_options = kernel_prefault ? 0 : PMAP_OPTIONS_NOWAIT; |
| 4506 | if (object->internal) { |
| 4507 | pmap_options |= PMAP_OPTIONS_INTERNAL; |
| 4508 | } |
| 4509 | |
| 4510 | for (i = 0; i < page_list_count; ++i) { |
| 4511 | if (!UPL_VALID_PAGE(page_list, i)) { |
| 4512 | if (kernel_prefault) { |
| 4513 | assertf(FALSE, "kernel_prefault && !UPL_VALID_PAGE" ); |
| 4514 | result = KERN_MEMORY_ERROR; |
| 4515 | break; |
| 4516 | } |
| 4517 | } else { |
| 4518 | /* |
| 4519 | * If this function call failed, we should stop |
| 4520 | * trying to optimize, other calls are likely |
| 4521 | * going to fail too. |
| 4522 | * |
| 4523 | * We are not gonna report an error for such |
| 4524 | * failure though. That's an optimization, not |
| 4525 | * something critical. |
| 4526 | */ |
| 4527 | kr = pmap_enter_options(target_map->pmap, |
| 4528 | va, UPL_PHYS_PAGE(page_list, i), |
| 4529 | cur_protection, VM_PROT_NONE, |
| 4530 | 0, TRUE, pmap_options, NULL); |
| 4531 | if (kr != KERN_SUCCESS) { |
| 4532 | OSIncrementAtomic64(&vm_prefault_nb_bailout); |
| 4533 | if (kernel_prefault) { |
| 4534 | result = kr; |
| 4535 | } |
| 4536 | break; |
| 4537 | } |
| 4538 | OSIncrementAtomic64(&vm_prefault_nb_pages); |
| 4539 | } |
| 4540 | |
| 4541 | /* Next virtual address */ |
| 4542 | va += PAGE_SIZE; |
| 4543 | } |
| 4544 | if (vmk_flags.vmkf_keep_map_locked) { |
| 4545 | vm_map_unlock(target_map); |
| 4546 | } |
| 4547 | } |
| 4548 | |
| 4549 | if (flags & (VM_FLAGS_RETURN_DATA_ADDR | |
| 4550 | VM_FLAGS_RETURN_4K_DATA_ADDR)) { |
| 4551 | *address = map_addr + offset_in_mapping; |
| 4552 | } else { |
| 4553 | *address = map_addr; |
| 4554 | } |
| 4555 | return result; |
| 4556 | } |
| 4557 | |
| 4558 | kern_return_t |
| 4559 | vm_map_enter_mem_object( |
| 4560 | vm_map_t target_map, |
| 4561 | vm_map_offset_t *address, |
| 4562 | vm_map_size_t initial_size, |
| 4563 | vm_map_offset_t mask, |
| 4564 | int flags, |
| 4565 | vm_map_kernel_flags_t vmk_flags, |
| 4566 | vm_tag_t tag, |
| 4567 | ipc_port_t port, |
| 4568 | vm_object_offset_t offset, |
| 4569 | boolean_t copy, |
| 4570 | vm_prot_t cur_protection, |
| 4571 | vm_prot_t max_protection, |
| 4572 | vm_inherit_t inheritance) |
| 4573 | { |
| 4574 | kern_return_t ret; |
| 4575 | |
| 4576 | ret = vm_map_enter_mem_object_helper(target_map, |
| 4577 | address, |
| 4578 | initial_size, |
| 4579 | mask, |
| 4580 | flags, |
| 4581 | vmk_flags, |
| 4582 | tag, |
| 4583 | port, |
| 4584 | offset, |
| 4585 | copy, |
| 4586 | cur_protection, |
| 4587 | max_protection, |
| 4588 | inheritance, |
| 4589 | NULL, |
| 4590 | 0); |
| 4591 | |
| 4592 | #if KASAN |
| 4593 | if (ret == KERN_SUCCESS && address && target_map->pmap == kernel_pmap) { |
| 4594 | kasan_notify_address(*address, initial_size); |
| 4595 | } |
| 4596 | #endif |
| 4597 | |
| 4598 | return ret; |
| 4599 | } |
| 4600 | |
| 4601 | kern_return_t |
| 4602 | vm_map_enter_mem_object_prefault( |
| 4603 | vm_map_t target_map, |
| 4604 | vm_map_offset_t *address, |
| 4605 | vm_map_size_t initial_size, |
| 4606 | vm_map_offset_t mask, |
| 4607 | int flags, |
| 4608 | vm_map_kernel_flags_t vmk_flags, |
| 4609 | vm_tag_t tag, |
| 4610 | ipc_port_t port, |
| 4611 | vm_object_offset_t offset, |
| 4612 | vm_prot_t cur_protection, |
| 4613 | vm_prot_t max_protection, |
| 4614 | upl_page_list_ptr_t page_list, |
| 4615 | unsigned int page_list_count) |
| 4616 | { |
| 4617 | kern_return_t ret; |
| 4618 | |
| 4619 | ret = vm_map_enter_mem_object_helper(target_map, |
| 4620 | address, |
| 4621 | initial_size, |
| 4622 | mask, |
| 4623 | flags, |
| 4624 | vmk_flags, |
| 4625 | tag, |
| 4626 | port, |
| 4627 | offset, |
| 4628 | FALSE, |
| 4629 | cur_protection, |
| 4630 | max_protection, |
| 4631 | VM_INHERIT_DEFAULT, |
| 4632 | page_list, |
| 4633 | page_list_count); |
| 4634 | |
| 4635 | #if KASAN |
| 4636 | if (ret == KERN_SUCCESS && address && target_map->pmap == kernel_pmap) { |
| 4637 | kasan_notify_address(*address, initial_size); |
| 4638 | } |
| 4639 | #endif |
| 4640 | |
| 4641 | return ret; |
| 4642 | } |
| 4643 | |
| 4644 | |
| 4645 | kern_return_t |
| 4646 | vm_map_enter_mem_object_control( |
| 4647 | vm_map_t target_map, |
| 4648 | vm_map_offset_t *address, |
| 4649 | vm_map_size_t initial_size, |
| 4650 | vm_map_offset_t mask, |
| 4651 | int flags, |
| 4652 | vm_map_kernel_flags_t vmk_flags, |
| 4653 | vm_tag_t tag, |
| 4654 | memory_object_control_t control, |
| 4655 | vm_object_offset_t offset, |
| 4656 | boolean_t copy, |
| 4657 | vm_prot_t cur_protection, |
| 4658 | vm_prot_t max_protection, |
| 4659 | vm_inherit_t inheritance) |
| 4660 | { |
| 4661 | vm_map_address_t map_addr; |
| 4662 | vm_map_size_t map_size; |
| 4663 | vm_object_t object; |
| 4664 | vm_object_size_t size; |
| 4665 | kern_return_t result; |
| 4666 | memory_object_t ; |
| 4667 | vm_prot_t ; |
| 4668 | kern_return_t kr; |
| 4669 | #if __arm64__ |
| 4670 | boolean_t fourk = vmk_flags.vmkf_fourk; |
| 4671 | #endif /* __arm64__ */ |
| 4672 | |
| 4673 | /* |
| 4674 | * Check arguments for validity |
| 4675 | */ |
| 4676 | if ((target_map == VM_MAP_NULL) || |
| 4677 | (cur_protection & ~VM_PROT_ALL) || |
| 4678 | (max_protection & ~VM_PROT_ALL) || |
| 4679 | (inheritance > VM_INHERIT_LAST_VALID) || |
| 4680 | initial_size == 0) { |
| 4681 | return KERN_INVALID_ARGUMENT; |
| 4682 | } |
| 4683 | |
| 4684 | #if __arm64__ |
| 4685 | if (fourk) { |
| 4686 | map_addr = vm_map_trunc_page(*address, |
| 4687 | FOURK_PAGE_MASK); |
| 4688 | map_size = vm_map_round_page(initial_size, |
| 4689 | FOURK_PAGE_MASK); |
| 4690 | } else |
| 4691 | #endif /* __arm64__ */ |
| 4692 | { |
| 4693 | map_addr = vm_map_trunc_page(*address, |
| 4694 | VM_MAP_PAGE_MASK(target_map)); |
| 4695 | map_size = vm_map_round_page(initial_size, |
| 4696 | VM_MAP_PAGE_MASK(target_map)); |
| 4697 | } |
| 4698 | size = vm_object_round_page(initial_size); |
| 4699 | |
| 4700 | object = memory_object_control_to_vm_object(control); |
| 4701 | |
| 4702 | if (object == VM_OBJECT_NULL) |
| 4703 | return KERN_INVALID_OBJECT; |
| 4704 | |
| 4705 | if (object == kernel_object) { |
| 4706 | printf("Warning: Attempt to map kernel object" |
| 4707 | " by a non-private kernel entity\n" ); |
| 4708 | return KERN_INVALID_OBJECT; |
| 4709 | } |
| 4710 | |
| 4711 | vm_object_lock(object); |
| 4712 | object->ref_count++; |
| 4713 | vm_object_res_reference(object); |
| 4714 | |
| 4715 | /* |
| 4716 | * For "named" VM objects, let the pager know that the |
| 4717 | * memory object is being mapped. Some pagers need to keep |
| 4718 | * track of this, to know when they can reclaim the memory |
| 4719 | * object, for example. |
| 4720 | * VM calls memory_object_map() for each mapping (specifying |
| 4721 | * the protection of each mapping) and calls |
| 4722 | * memory_object_last_unmap() when all the mappings are gone. |
| 4723 | */ |
| 4724 | pager_prot = max_protection; |
| 4725 | if (copy) { |
| 4726 | pager_prot &= ~VM_PROT_WRITE; |
| 4727 | } |
| 4728 | pager = object->pager; |
| 4729 | if (object->named && |
| 4730 | pager != MEMORY_OBJECT_NULL && |
| 4731 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4732 | assert(object->pager_ready); |
| 4733 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 4734 | vm_object_mapping_begin(object); |
| 4735 | vm_object_unlock(object); |
| 4736 | |
| 4737 | kr = memory_object_map(pager, pager_prot); |
| 4738 | assert(kr == KERN_SUCCESS); |
| 4739 | |
| 4740 | vm_object_lock(object); |
| 4741 | vm_object_mapping_end(object); |
| 4742 | } |
| 4743 | vm_object_unlock(object); |
| 4744 | |
| 4745 | /* |
| 4746 | * Perform the copy if requested |
| 4747 | */ |
| 4748 | |
| 4749 | if (copy) { |
| 4750 | vm_object_t new_object; |
| 4751 | vm_object_offset_t new_offset; |
| 4752 | |
| 4753 | result = vm_object_copy_strategically(object, offset, size, |
| 4754 | &new_object, &new_offset, |
| 4755 | ©); |
| 4756 | |
| 4757 | |
| 4758 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 4759 | boolean_t success; |
| 4760 | boolean_t src_needs_copy; |
| 4761 | |
| 4762 | /* |
| 4763 | * XXX |
| 4764 | * We currently ignore src_needs_copy. |
| 4765 | * This really is the issue of how to make |
| 4766 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for |
| 4767 | * non-kernel users to use. Solution forthcoming. |
| 4768 | * In the meantime, since we don't allow non-kernel |
| 4769 | * memory managers to specify symmetric copy, |
| 4770 | * we won't run into problems here. |
| 4771 | */ |
| 4772 | new_object = object; |
| 4773 | new_offset = offset; |
| 4774 | success = vm_object_copy_quickly(&new_object, |
| 4775 | new_offset, size, |
| 4776 | &src_needs_copy, |
| 4777 | ©); |
| 4778 | assert(success); |
| 4779 | result = KERN_SUCCESS; |
| 4780 | } |
| 4781 | /* |
| 4782 | * Throw away the reference to the |
| 4783 | * original object, as it won't be mapped. |
| 4784 | */ |
| 4785 | |
| 4786 | vm_object_deallocate(object); |
| 4787 | |
| 4788 | if (result != KERN_SUCCESS) { |
| 4789 | return result; |
| 4790 | } |
| 4791 | |
| 4792 | object = new_object; |
| 4793 | offset = new_offset; |
| 4794 | } |
| 4795 | |
| 4796 | #if __arm64__ |
| 4797 | if (fourk) { |
| 4798 | result = vm_map_enter_fourk(target_map, |
| 4799 | &map_addr, |
| 4800 | map_size, |
| 4801 | (vm_map_offset_t)mask, |
| 4802 | flags, |
| 4803 | vmk_flags, |
| 4804 | tag, |
| 4805 | object, offset, |
| 4806 | copy, |
| 4807 | cur_protection, max_protection, |
| 4808 | inheritance); |
| 4809 | } else |
| 4810 | #endif /* __arm64__ */ |
| 4811 | { |
| 4812 | result = vm_map_enter(target_map, |
| 4813 | &map_addr, map_size, |
| 4814 | (vm_map_offset_t)mask, |
| 4815 | flags, |
| 4816 | vmk_flags, |
| 4817 | tag, |
| 4818 | object, offset, |
| 4819 | copy, |
| 4820 | cur_protection, max_protection, |
| 4821 | inheritance); |
| 4822 | } |
| 4823 | if (result != KERN_SUCCESS) |
| 4824 | vm_object_deallocate(object); |
| 4825 | *address = map_addr; |
| 4826 | |
| 4827 | return result; |
| 4828 | } |
| 4829 | |
| 4830 | |
| 4831 | #if VM_CPM |
| 4832 | |
| 4833 | #ifdef MACH_ASSERT |
| 4834 | extern pmap_paddr_t avail_start, avail_end; |
| 4835 | #endif |
| 4836 | |
| 4837 | /* |
| 4838 | * Allocate memory in the specified map, with the caveat that |
| 4839 | * the memory is physically contiguous. This call may fail |
| 4840 | * if the system can't find sufficient contiguous memory. |
| 4841 | * This call may cause or lead to heart-stopping amounts of |
| 4842 | * paging activity. |
| 4843 | * |
| 4844 | * Memory obtained from this call should be freed in the |
| 4845 | * normal way, viz., via vm_deallocate. |
| 4846 | */ |
| 4847 | kern_return_t |
| 4848 | vm_map_enter_cpm( |
| 4849 | vm_map_t map, |
| 4850 | vm_map_offset_t *addr, |
| 4851 | vm_map_size_t size, |
| 4852 | int flags) |
| 4853 | { |
| 4854 | vm_object_t cpm_obj; |
| 4855 | pmap_t pmap; |
| 4856 | vm_page_t m, pages; |
| 4857 | kern_return_t kr; |
| 4858 | vm_map_offset_t va, start, end, offset; |
| 4859 | #if MACH_ASSERT |
| 4860 | vm_map_offset_t prev_addr = 0; |
| 4861 | #endif /* MACH_ASSERT */ |
| 4862 | |
| 4863 | boolean_t anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); |
| 4864 | vm_tag_t tag; |
| 4865 | |
| 4866 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 4867 | |
| 4868 | if (size == 0) { |
| 4869 | *addr = 0; |
| 4870 | return KERN_SUCCESS; |
| 4871 | } |
| 4872 | if (anywhere) |
| 4873 | *addr = vm_map_min(map); |
| 4874 | else |
| 4875 | *addr = vm_map_trunc_page(*addr, |
| 4876 | VM_MAP_PAGE_MASK(map)); |
| 4877 | size = vm_map_round_page(size, |
| 4878 | VM_MAP_PAGE_MASK(map)); |
| 4879 | |
| 4880 | /* |
| 4881 | * LP64todo - cpm_allocate should probably allow |
| 4882 | * allocations of >4GB, but not with the current |
| 4883 | * algorithm, so just cast down the size for now. |
| 4884 | */ |
| 4885 | if (size > VM_MAX_ADDRESS) |
| 4886 | return KERN_RESOURCE_SHORTAGE; |
| 4887 | if ((kr = cpm_allocate(CAST_DOWN(vm_size_t, size), |
| 4888 | &pages, 0, 0, TRUE, flags)) != KERN_SUCCESS) |
| 4889 | return kr; |
| 4890 | |
| 4891 | cpm_obj = vm_object_allocate((vm_object_size_t)size); |
| 4892 | assert(cpm_obj != VM_OBJECT_NULL); |
| 4893 | assert(cpm_obj->internal); |
| 4894 | assert(cpm_obj->vo_size == (vm_object_size_t)size); |
| 4895 | assert(cpm_obj->can_persist == FALSE); |
| 4896 | assert(cpm_obj->pager_created == FALSE); |
| 4897 | assert(cpm_obj->pageout == FALSE); |
| 4898 | assert(cpm_obj->shadow == VM_OBJECT_NULL); |
| 4899 | |
| 4900 | /* |
| 4901 | * Insert pages into object. |
| 4902 | */ |
| 4903 | |
| 4904 | vm_object_lock(cpm_obj); |
| 4905 | for (offset = 0; offset < size; offset += PAGE_SIZE) { |
| 4906 | m = pages; |
| 4907 | pages = NEXT_PAGE(m); |
| 4908 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
| 4909 | |
| 4910 | assert(!m->vmp_gobbled); |
| 4911 | assert(!m->vmp_wanted); |
| 4912 | assert(!m->vmp_pageout); |
| 4913 | assert(!m->vmp_tabled); |
| 4914 | assert(VM_PAGE_WIRED(m)); |
| 4915 | assert(m->vmp_busy); |
| 4916 | assert(VM_PAGE_GET_PHYS_PAGE(m)>=(avail_start>>PAGE_SHIFT) && VM_PAGE_GET_PHYS_PAGE(m)<=(avail_end>>PAGE_SHIFT)); |
| 4917 | |
| 4918 | m->vmp_busy = FALSE; |
| 4919 | vm_page_insert(m, cpm_obj, offset); |
| 4920 | } |
| 4921 | assert(cpm_obj->resident_page_count == size / PAGE_SIZE); |
| 4922 | vm_object_unlock(cpm_obj); |
| 4923 | |
| 4924 | /* |
| 4925 | * Hang onto a reference on the object in case a |
| 4926 | * multi-threaded application for some reason decides |
| 4927 | * to deallocate the portion of the address space into |
| 4928 | * which we will insert this object. |
| 4929 | * |
| 4930 | * Unfortunately, we must insert the object now before |
| 4931 | * we can talk to the pmap module about which addresses |
| 4932 | * must be wired down. Hence, the race with a multi- |
| 4933 | * threaded app. |
| 4934 | */ |
| 4935 | vm_object_reference(cpm_obj); |
| 4936 | |
| 4937 | /* |
| 4938 | * Insert object into map. |
| 4939 | */ |
| 4940 | |
| 4941 | kr = vm_map_enter( |
| 4942 | map, |
| 4943 | addr, |
| 4944 | size, |
| 4945 | (vm_map_offset_t)0, |
| 4946 | flags, |
| 4947 | VM_MAP_KERNEL_FLAGS_NONE, |
| 4948 | cpm_obj, |
| 4949 | (vm_object_offset_t)0, |
| 4950 | FALSE, |
| 4951 | VM_PROT_ALL, |
| 4952 | VM_PROT_ALL, |
| 4953 | VM_INHERIT_DEFAULT); |
| 4954 | |
| 4955 | if (kr != KERN_SUCCESS) { |
| 4956 | /* |
| 4957 | * A CPM object doesn't have can_persist set, |
| 4958 | * so all we have to do is deallocate it to |
| 4959 | * free up these pages. |
| 4960 | */ |
| 4961 | assert(cpm_obj->pager_created == FALSE); |
| 4962 | assert(cpm_obj->can_persist == FALSE); |
| 4963 | assert(cpm_obj->pageout == FALSE); |
| 4964 | assert(cpm_obj->shadow == VM_OBJECT_NULL); |
| 4965 | vm_object_deallocate(cpm_obj); /* kill acquired ref */ |
| 4966 | vm_object_deallocate(cpm_obj); /* kill creation ref */ |
| 4967 | } |
| 4968 | |
| 4969 | /* |
| 4970 | * Inform the physical mapping system that the |
| 4971 | * range of addresses may not fault, so that |
| 4972 | * page tables and such can be locked down as well. |
| 4973 | */ |
| 4974 | start = *addr; |
| 4975 | end = start + size; |
| 4976 | pmap = vm_map_pmap(map); |
| 4977 | pmap_pageable(pmap, start, end, FALSE); |
| 4978 | |
| 4979 | /* |
| 4980 | * Enter each page into the pmap, to avoid faults. |
| 4981 | * Note that this loop could be coded more efficiently, |
| 4982 | * if the need arose, rather than looking up each page |
| 4983 | * again. |
| 4984 | */ |
| 4985 | for (offset = 0, va = start; offset < size; |
| 4986 | va += PAGE_SIZE, offset += PAGE_SIZE) { |
| 4987 | int type_of_fault; |
| 4988 | |
| 4989 | vm_object_lock(cpm_obj); |
| 4990 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); |
| 4991 | assert(m != VM_PAGE_NULL); |
| 4992 | |
| 4993 | vm_page_zero_fill(m); |
| 4994 | |
| 4995 | type_of_fault = DBG_ZERO_FILL_FAULT; |
| 4996 | |
| 4997 | vm_fault_enter(m, pmap, va, VM_PROT_ALL, VM_PROT_WRITE, |
| 4998 | VM_PAGE_WIRED(m), |
| 4999 | FALSE, /* change_wiring */ |
| 5000 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 5001 | FALSE, /* no_cache */ |
| 5002 | FALSE, /* cs_bypass */ |
| 5003 | 0, /* user_tag */ |
| 5004 | 0, /* pmap_options */ |
| 5005 | NULL, /* need_retry */ |
| 5006 | &type_of_fault); |
| 5007 | |
| 5008 | vm_object_unlock(cpm_obj); |
| 5009 | } |
| 5010 | |
| 5011 | #if MACH_ASSERT |
| 5012 | /* |
| 5013 | * Verify ordering in address space. |
| 5014 | */ |
| 5015 | for (offset = 0; offset < size; offset += PAGE_SIZE) { |
| 5016 | vm_object_lock(cpm_obj); |
| 5017 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); |
| 5018 | vm_object_unlock(cpm_obj); |
| 5019 | if (m == VM_PAGE_NULL) |
| 5020 | panic("vm_allocate_cpm: obj %p off 0x%llx no page" , |
| 5021 | cpm_obj, (uint64_t)offset); |
| 5022 | assert(m->vmp_tabled); |
| 5023 | assert(!m->vmp_busy); |
| 5024 | assert(!m->vmp_wanted); |
| 5025 | assert(!m->vmp_fictitious); |
| 5026 | assert(!m->vmp_private); |
| 5027 | assert(!m->vmp_absent); |
| 5028 | assert(!m->vmp_error); |
| 5029 | assert(!m->vmp_cleaning); |
| 5030 | assert(!m->vmp_laundry); |
| 5031 | assert(!m->vmp_precious); |
| 5032 | assert(!m->vmp_clustered); |
| 5033 | if (offset != 0) { |
| 5034 | if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) { |
| 5035 | printf("start 0x%llx end 0x%llx va 0x%llx\n" , |
| 5036 | (uint64_t)start, (uint64_t)end, (uint64_t)va); |
| 5037 | printf("obj %p off 0x%llx\n" , cpm_obj, (uint64_t)offset); |
| 5038 | printf("m %p prev_address 0x%llx\n" , m, (uint64_t)prev_addr); |
| 5039 | panic("vm_allocate_cpm: pages not contig!" ); |
| 5040 | } |
| 5041 | } |
| 5042 | prev_addr = VM_PAGE_GET_PHYS_PAGE(m); |
| 5043 | } |
| 5044 | #endif /* MACH_ASSERT */ |
| 5045 | |
| 5046 | vm_object_deallocate(cpm_obj); /* kill extra ref */ |
| 5047 | |
| 5048 | return kr; |
| 5049 | } |
| 5050 | |
| 5051 | |
| 5052 | #else /* VM_CPM */ |
| 5053 | |
| 5054 | /* |
| 5055 | * Interface is defined in all cases, but unless the kernel |
| 5056 | * is built explicitly for this option, the interface does |
| 5057 | * nothing. |
| 5058 | */ |
| 5059 | |
| 5060 | kern_return_t |
| 5061 | vm_map_enter_cpm( |
| 5062 | __unused vm_map_t map, |
| 5063 | __unused vm_map_offset_t *addr, |
| 5064 | __unused vm_map_size_t size, |
| 5065 | __unused int flags) |
| 5066 | { |
| 5067 | return KERN_FAILURE; |
| 5068 | } |
| 5069 | #endif /* VM_CPM */ |
| 5070 | |
| 5071 | /* Not used without nested pmaps */ |
| 5072 | #ifndef NO_NESTED_PMAP |
| 5073 | /* |
| 5074 | * Clip and unnest a portion of a nested submap mapping. |
| 5075 | */ |
| 5076 | |
| 5077 | |
| 5078 | static void |
| 5079 | vm_map_clip_unnest( |
| 5080 | vm_map_t map, |
| 5081 | vm_map_entry_t entry, |
| 5082 | vm_map_offset_t start_unnest, |
| 5083 | vm_map_offset_t end_unnest) |
| 5084 | { |
| 5085 | vm_map_offset_t old_start_unnest = start_unnest; |
| 5086 | vm_map_offset_t old_end_unnest = end_unnest; |
| 5087 | |
| 5088 | assert(entry->is_sub_map); |
| 5089 | assert(VME_SUBMAP(entry) != NULL); |
| 5090 | assert(entry->use_pmap); |
| 5091 | |
| 5092 | /* |
| 5093 | * Query the platform for the optimal unnest range. |
| 5094 | * DRK: There's some duplication of effort here, since |
| 5095 | * callers may have adjusted the range to some extent. This |
| 5096 | * routine was introduced to support 1GiB subtree nesting |
| 5097 | * for x86 platforms, which can also nest on 2MiB boundaries |
| 5098 | * depending on size/alignment. |
| 5099 | */ |
| 5100 | if (pmap_adjust_unnest_parameters(map->pmap, &start_unnest, &end_unnest)) { |
| 5101 | assert(VME_SUBMAP(entry)->is_nested_map); |
| 5102 | assert(!VME_SUBMAP(entry)->disable_vmentry_reuse); |
| 5103 | log_unnest_badness(map, |
| 5104 | old_start_unnest, |
| 5105 | old_end_unnest, |
| 5106 | VME_SUBMAP(entry)->is_nested_map, |
| 5107 | (entry->vme_start + |
| 5108 | VME_SUBMAP(entry)->lowest_unnestable_start - |
| 5109 | VME_OFFSET(entry))); |
| 5110 | } |
| 5111 | |
| 5112 | if (entry->vme_start > start_unnest || |
| 5113 | entry->vme_end < end_unnest) { |
| 5114 | panic("vm_map_clip_unnest(0x%llx,0x%llx): " |
| 5115 | "bad nested entry: start=0x%llx end=0x%llx\n" , |
| 5116 | (long long)start_unnest, (long long)end_unnest, |
| 5117 | (long long)entry->vme_start, (long long)entry->vme_end); |
| 5118 | } |
| 5119 | |
| 5120 | if (start_unnest > entry->vme_start) { |
| 5121 | _vm_map_clip_start(&map->hdr, |
| 5122 | entry, |
| 5123 | start_unnest); |
| 5124 | if (map->holelistenabled) { |
| 5125 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5126 | } else { |
| 5127 | vm_map_store_update_first_free(map, map->first_free, FALSE); |
| 5128 | } |
| 5129 | } |
| 5130 | if (entry->vme_end > end_unnest) { |
| 5131 | _vm_map_clip_end(&map->hdr, |
| 5132 | entry, |
| 5133 | end_unnest); |
| 5134 | if (map->holelistenabled) { |
| 5135 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5136 | } else { |
| 5137 | vm_map_store_update_first_free(map, map->first_free, FALSE); |
| 5138 | } |
| 5139 | } |
| 5140 | |
| 5141 | pmap_unnest(map->pmap, |
| 5142 | entry->vme_start, |
| 5143 | entry->vme_end - entry->vme_start); |
| 5144 | if ((map->mapped_in_other_pmaps) && (map->map_refcnt)) { |
| 5145 | /* clean up parent map/maps */ |
| 5146 | vm_map_submap_pmap_clean( |
| 5147 | map, entry->vme_start, |
| 5148 | entry->vme_end, |
| 5149 | VME_SUBMAP(entry), |
| 5150 | VME_OFFSET(entry)); |
| 5151 | } |
| 5152 | entry->use_pmap = FALSE; |
| 5153 | if ((map->pmap != kernel_pmap) && |
| 5154 | (VME_ALIAS(entry) == VM_MEMORY_SHARED_PMAP)) { |
| 5155 | VME_ALIAS_SET(entry, VM_MEMORY_UNSHARED_PMAP); |
| 5156 | } |
| 5157 | } |
| 5158 | #endif /* NO_NESTED_PMAP */ |
| 5159 | |
| 5160 | /* |
| 5161 | * vm_map_clip_start: [ internal use only ] |
| 5162 | * |
| 5163 | * Asserts that the given entry begins at or after |
| 5164 | * the specified address; if necessary, |
| 5165 | * it splits the entry into two. |
| 5166 | */ |
| 5167 | void |
| 5168 | vm_map_clip_start( |
| 5169 | vm_map_t map, |
| 5170 | vm_map_entry_t entry, |
| 5171 | vm_map_offset_t startaddr) |
| 5172 | { |
| 5173 | #ifndef NO_NESTED_PMAP |
| 5174 | if (entry->is_sub_map && |
| 5175 | entry->use_pmap && |
| 5176 | startaddr >= entry->vme_start) { |
| 5177 | vm_map_offset_t start_unnest, end_unnest; |
| 5178 | |
| 5179 | /* |
| 5180 | * Make sure "startaddr" is no longer in a nested range |
| 5181 | * before we clip. Unnest only the minimum range the platform |
| 5182 | * can handle. |
| 5183 | * vm_map_clip_unnest may perform additional adjustments to |
| 5184 | * the unnest range. |
| 5185 | */ |
| 5186 | start_unnest = startaddr & ~(pmap_nesting_size_min - 1); |
| 5187 | end_unnest = start_unnest + pmap_nesting_size_min; |
| 5188 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); |
| 5189 | } |
| 5190 | #endif /* NO_NESTED_PMAP */ |
| 5191 | if (startaddr > entry->vme_start) { |
| 5192 | if (VME_OBJECT(entry) && |
| 5193 | !entry->is_sub_map && |
| 5194 | VME_OBJECT(entry)->phys_contiguous) { |
| 5195 | pmap_remove(map->pmap, |
| 5196 | (addr64_t)(entry->vme_start), |
| 5197 | (addr64_t)(entry->vme_end)); |
| 5198 | } |
| 5199 | if (entry->vme_atomic) { |
| 5200 | panic("Attempting to clip an atomic VM entry! (map: %p, entry: %p)\n" , map, entry); |
| 5201 | } |
| 5202 | |
| 5203 | DTRACE_VM5( |
| 5204 | vm_map_clip_start, |
| 5205 | vm_map_t, map, |
| 5206 | vm_map_offset_t, entry->vme_start, |
| 5207 | vm_map_offset_t, entry->vme_end, |
| 5208 | vm_map_offset_t, startaddr, |
| 5209 | int, VME_ALIAS(entry)); |
| 5210 | |
| 5211 | _vm_map_clip_start(&map->hdr, entry, startaddr); |
| 5212 | if (map->holelistenabled) { |
| 5213 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5214 | } else { |
| 5215 | vm_map_store_update_first_free(map, map->first_free, FALSE); |
| 5216 | } |
| 5217 | } |
| 5218 | } |
| 5219 | |
| 5220 | |
| 5221 | #define vm_map_copy_clip_start(copy, entry, startaddr) \ |
| 5222 | MACRO_BEGIN \ |
| 5223 | if ((startaddr) > (entry)->vme_start) \ |
| 5224 | _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \ |
| 5225 | MACRO_END |
| 5226 | |
| 5227 | /* |
| 5228 | * This routine is called only when it is known that |
| 5229 | * the entry must be split. |
| 5230 | */ |
| 5231 | static void |
| 5232 | _vm_map_clip_start( |
| 5233 | struct vm_map_header *, |
| 5234 | vm_map_entry_t entry, |
| 5235 | vm_map_offset_t start) |
| 5236 | { |
| 5237 | vm_map_entry_t new_entry; |
| 5238 | |
| 5239 | /* |
| 5240 | * Split off the front portion -- |
| 5241 | * note that we must insert the new |
| 5242 | * entry BEFORE this one, so that |
| 5243 | * this entry has the specified starting |
| 5244 | * address. |
| 5245 | */ |
| 5246 | |
| 5247 | if (entry->map_aligned) { |
| 5248 | assert(VM_MAP_PAGE_ALIGNED(start, |
| 5249 | VM_MAP_HDR_PAGE_MASK(map_header))); |
| 5250 | } |
| 5251 | |
| 5252 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); |
| 5253 | vm_map_entry_copy_full(new_entry, entry); |
| 5254 | |
| 5255 | new_entry->vme_end = start; |
| 5256 | assert(new_entry->vme_start < new_entry->vme_end); |
| 5257 | VME_OFFSET_SET(entry, VME_OFFSET(entry) + (start - entry->vme_start)); |
| 5258 | assert(start < entry->vme_end); |
| 5259 | entry->vme_start = start; |
| 5260 | |
| 5261 | _vm_map_store_entry_link(map_header, entry->vme_prev, new_entry); |
| 5262 | |
| 5263 | if (entry->is_sub_map) |
| 5264 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 5265 | else |
| 5266 | vm_object_reference(VME_OBJECT(new_entry)); |
| 5267 | } |
| 5268 | |
| 5269 | |
| 5270 | /* |
| 5271 | * vm_map_clip_end: [ internal use only ] |
| 5272 | * |
| 5273 | * Asserts that the given entry ends at or before |
| 5274 | * the specified address; if necessary, |
| 5275 | * it splits the entry into two. |
| 5276 | */ |
| 5277 | void |
| 5278 | vm_map_clip_end( |
| 5279 | vm_map_t map, |
| 5280 | vm_map_entry_t entry, |
| 5281 | vm_map_offset_t endaddr) |
| 5282 | { |
| 5283 | if (endaddr > entry->vme_end) { |
| 5284 | /* |
| 5285 | * Within the scope of this clipping, limit "endaddr" to |
| 5286 | * the end of this map entry... |
| 5287 | */ |
| 5288 | endaddr = entry->vme_end; |
| 5289 | } |
| 5290 | #ifndef NO_NESTED_PMAP |
| 5291 | if (entry->is_sub_map && entry->use_pmap) { |
| 5292 | vm_map_offset_t start_unnest, end_unnest; |
| 5293 | |
| 5294 | /* |
| 5295 | * Make sure the range between the start of this entry and |
| 5296 | * the new "endaddr" is no longer nested before we clip. |
| 5297 | * Unnest only the minimum range the platform can handle. |
| 5298 | * vm_map_clip_unnest may perform additional adjustments to |
| 5299 | * the unnest range. |
| 5300 | */ |
| 5301 | start_unnest = entry->vme_start; |
| 5302 | end_unnest = |
| 5303 | (endaddr + pmap_nesting_size_min - 1) & |
| 5304 | ~(pmap_nesting_size_min - 1); |
| 5305 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); |
| 5306 | } |
| 5307 | #endif /* NO_NESTED_PMAP */ |
| 5308 | if (endaddr < entry->vme_end) { |
| 5309 | if (VME_OBJECT(entry) && |
| 5310 | !entry->is_sub_map && |
| 5311 | VME_OBJECT(entry)->phys_contiguous) { |
| 5312 | pmap_remove(map->pmap, |
| 5313 | (addr64_t)(entry->vme_start), |
| 5314 | (addr64_t)(entry->vme_end)); |
| 5315 | } |
| 5316 | if (entry->vme_atomic) { |
| 5317 | panic("Attempting to clip an atomic VM entry! (map: %p, entry: %p)\n" , map, entry); |
| 5318 | } |
| 5319 | DTRACE_VM5( |
| 5320 | vm_map_clip_end, |
| 5321 | vm_map_t, map, |
| 5322 | vm_map_offset_t, entry->vme_start, |
| 5323 | vm_map_offset_t, entry->vme_end, |
| 5324 | vm_map_offset_t, endaddr, |
| 5325 | int, VME_ALIAS(entry)); |
| 5326 | |
| 5327 | _vm_map_clip_end(&map->hdr, entry, endaddr); |
| 5328 | if (map->holelistenabled) { |
| 5329 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5330 | } else { |
| 5331 | vm_map_store_update_first_free(map, map->first_free, FALSE); |
| 5332 | } |
| 5333 | } |
| 5334 | } |
| 5335 | |
| 5336 | |
| 5337 | #define vm_map_copy_clip_end(copy, entry, endaddr) \ |
| 5338 | MACRO_BEGIN \ |
| 5339 | if ((endaddr) < (entry)->vme_end) \ |
| 5340 | _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \ |
| 5341 | MACRO_END |
| 5342 | |
| 5343 | /* |
| 5344 | * This routine is called only when it is known that |
| 5345 | * the entry must be split. |
| 5346 | */ |
| 5347 | static void |
| 5348 | _vm_map_clip_end( |
| 5349 | struct vm_map_header *, |
| 5350 | vm_map_entry_t entry, |
| 5351 | vm_map_offset_t end) |
| 5352 | { |
| 5353 | vm_map_entry_t new_entry; |
| 5354 | |
| 5355 | /* |
| 5356 | * Create a new entry and insert it |
| 5357 | * AFTER the specified entry |
| 5358 | */ |
| 5359 | |
| 5360 | if (entry->map_aligned) { |
| 5361 | assert(VM_MAP_PAGE_ALIGNED(end, |
| 5362 | VM_MAP_HDR_PAGE_MASK(map_header))); |
| 5363 | } |
| 5364 | |
| 5365 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); |
| 5366 | vm_map_entry_copy_full(new_entry, entry); |
| 5367 | |
| 5368 | assert(entry->vme_start < end); |
| 5369 | new_entry->vme_start = entry->vme_end = end; |
| 5370 | VME_OFFSET_SET(new_entry, |
| 5371 | VME_OFFSET(new_entry) + (end - entry->vme_start)); |
| 5372 | assert(new_entry->vme_start < new_entry->vme_end); |
| 5373 | |
| 5374 | _vm_map_store_entry_link(map_header, entry, new_entry); |
| 5375 | |
| 5376 | if (entry->is_sub_map) |
| 5377 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 5378 | else |
| 5379 | vm_object_reference(VME_OBJECT(new_entry)); |
| 5380 | } |
| 5381 | |
| 5382 | |
| 5383 | /* |
| 5384 | * VM_MAP_RANGE_CHECK: [ internal use only ] |
| 5385 | * |
| 5386 | * Asserts that the starting and ending region |
| 5387 | * addresses fall within the valid range of the map. |
| 5388 | */ |
| 5389 | #define VM_MAP_RANGE_CHECK(map, start, end) \ |
| 5390 | MACRO_BEGIN \ |
| 5391 | if (start < vm_map_min(map)) \ |
| 5392 | start = vm_map_min(map); \ |
| 5393 | if (end > vm_map_max(map)) \ |
| 5394 | end = vm_map_max(map); \ |
| 5395 | if (start > end) \ |
| 5396 | start = end; \ |
| 5397 | MACRO_END |
| 5398 | |
| 5399 | /* |
| 5400 | * vm_map_range_check: [ internal use only ] |
| 5401 | * |
| 5402 | * Check that the region defined by the specified start and |
| 5403 | * end addresses are wholly contained within a single map |
| 5404 | * entry or set of adjacent map entries of the spacified map, |
| 5405 | * i.e. the specified region contains no unmapped space. |
| 5406 | * If any or all of the region is unmapped, FALSE is returned. |
| 5407 | * Otherwise, TRUE is returned and if the output argument 'entry' |
| 5408 | * is not NULL it points to the map entry containing the start |
| 5409 | * of the region. |
| 5410 | * |
| 5411 | * The map is locked for reading on entry and is left locked. |
| 5412 | */ |
| 5413 | static boolean_t |
| 5414 | vm_map_range_check( |
| 5415 | vm_map_t map, |
| 5416 | vm_map_offset_t start, |
| 5417 | vm_map_offset_t end, |
| 5418 | vm_map_entry_t *entry) |
| 5419 | { |
| 5420 | vm_map_entry_t cur; |
| 5421 | vm_map_offset_t prev; |
| 5422 | |
| 5423 | /* |
| 5424 | * Basic sanity checks first |
| 5425 | */ |
| 5426 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) |
| 5427 | return (FALSE); |
| 5428 | |
| 5429 | /* |
| 5430 | * Check first if the region starts within a valid |
| 5431 | * mapping for the map. |
| 5432 | */ |
| 5433 | if (!vm_map_lookup_entry(map, start, &cur)) |
| 5434 | return (FALSE); |
| 5435 | |
| 5436 | /* |
| 5437 | * Optimize for the case that the region is contained |
| 5438 | * in a single map entry. |
| 5439 | */ |
| 5440 | if (entry != (vm_map_entry_t *) NULL) |
| 5441 | *entry = cur; |
| 5442 | if (end <= cur->vme_end) |
| 5443 | return (TRUE); |
| 5444 | |
| 5445 | /* |
| 5446 | * If the region is not wholly contained within a |
| 5447 | * single entry, walk the entries looking for holes. |
| 5448 | */ |
| 5449 | prev = cur->vme_end; |
| 5450 | cur = cur->vme_next; |
| 5451 | while ((cur != vm_map_to_entry(map)) && (prev == cur->vme_start)) { |
| 5452 | if (end <= cur->vme_end) |
| 5453 | return (TRUE); |
| 5454 | prev = cur->vme_end; |
| 5455 | cur = cur->vme_next; |
| 5456 | } |
| 5457 | return (FALSE); |
| 5458 | } |
| 5459 | |
| 5460 | /* |
| 5461 | * vm_map_submap: [ kernel use only ] |
| 5462 | * |
| 5463 | * Mark the given range as handled by a subordinate map. |
| 5464 | * |
| 5465 | * This range must have been created with vm_map_find using |
| 5466 | * the vm_submap_object, and no other operations may have been |
| 5467 | * performed on this range prior to calling vm_map_submap. |
| 5468 | * |
| 5469 | * Only a limited number of operations can be performed |
| 5470 | * within this rage after calling vm_map_submap: |
| 5471 | * vm_fault |
| 5472 | * [Don't try vm_map_copyin!] |
| 5473 | * |
| 5474 | * To remove a submapping, one must first remove the |
| 5475 | * range from the superior map, and then destroy the |
| 5476 | * submap (if desired). [Better yet, don't try it.] |
| 5477 | */ |
| 5478 | kern_return_t |
| 5479 | vm_map_submap( |
| 5480 | vm_map_t map, |
| 5481 | vm_map_offset_t start, |
| 5482 | vm_map_offset_t end, |
| 5483 | vm_map_t submap, |
| 5484 | vm_map_offset_t offset, |
| 5485 | #ifdef NO_NESTED_PMAP |
| 5486 | __unused |
| 5487 | #endif /* NO_NESTED_PMAP */ |
| 5488 | boolean_t use_pmap) |
| 5489 | { |
| 5490 | vm_map_entry_t entry; |
| 5491 | kern_return_t result = KERN_INVALID_ARGUMENT; |
| 5492 | vm_object_t object; |
| 5493 | |
| 5494 | vm_map_lock(map); |
| 5495 | |
| 5496 | if (! vm_map_lookup_entry(map, start, &entry)) { |
| 5497 | entry = entry->vme_next; |
| 5498 | } |
| 5499 | |
| 5500 | if (entry == vm_map_to_entry(map) || |
| 5501 | entry->is_sub_map) { |
| 5502 | vm_map_unlock(map); |
| 5503 | return KERN_INVALID_ARGUMENT; |
| 5504 | } |
| 5505 | |
| 5506 | vm_map_clip_start(map, entry, start); |
| 5507 | vm_map_clip_end(map, entry, end); |
| 5508 | |
| 5509 | if ((entry->vme_start == start) && (entry->vme_end == end) && |
| 5510 | (!entry->is_sub_map) && |
| 5511 | ((object = VME_OBJECT(entry)) == vm_submap_object) && |
| 5512 | (object->resident_page_count == 0) && |
| 5513 | (object->copy == VM_OBJECT_NULL) && |
| 5514 | (object->shadow == VM_OBJECT_NULL) && |
| 5515 | (!object->pager_created)) { |
| 5516 | VME_OFFSET_SET(entry, (vm_object_offset_t)offset); |
| 5517 | VME_OBJECT_SET(entry, VM_OBJECT_NULL); |
| 5518 | vm_object_deallocate(object); |
| 5519 | entry->is_sub_map = TRUE; |
| 5520 | entry->use_pmap = FALSE; |
| 5521 | VME_SUBMAP_SET(entry, submap); |
| 5522 | vm_map_reference(submap); |
| 5523 | if (submap->mapped_in_other_pmaps == FALSE && |
| 5524 | vm_map_pmap(submap) != PMAP_NULL && |
| 5525 | vm_map_pmap(submap) != vm_map_pmap(map)) { |
| 5526 | /* |
| 5527 | * This submap is being mapped in a map |
| 5528 | * that uses a different pmap. |
| 5529 | * Set its "mapped_in_other_pmaps" flag |
| 5530 | * to indicate that we now need to |
| 5531 | * remove mappings from all pmaps rather |
| 5532 | * than just the submap's pmap. |
| 5533 | */ |
| 5534 | submap->mapped_in_other_pmaps = TRUE; |
| 5535 | } |
| 5536 | |
| 5537 | #ifndef NO_NESTED_PMAP |
| 5538 | if (use_pmap) { |
| 5539 | /* nest if platform code will allow */ |
| 5540 | if(submap->pmap == NULL) { |
| 5541 | ledger_t ledger = map->pmap->ledger; |
| 5542 | submap->pmap = pmap_create(ledger, |
| 5543 | (vm_map_size_t) 0, FALSE); |
| 5544 | if(submap->pmap == PMAP_NULL) { |
| 5545 | vm_map_unlock(map); |
| 5546 | return(KERN_NO_SPACE); |
| 5547 | } |
| 5548 | #if defined(__arm__) || defined(__arm64__) |
| 5549 | pmap_set_nested(submap->pmap); |
| 5550 | #endif |
| 5551 | } |
| 5552 | result = pmap_nest(map->pmap, |
| 5553 | (VME_SUBMAP(entry))->pmap, |
| 5554 | (addr64_t)start, |
| 5555 | (addr64_t)start, |
| 5556 | (uint64_t)(end - start)); |
| 5557 | if(result) |
| 5558 | panic("vm_map_submap: pmap_nest failed, rc = %08X\n" , result); |
| 5559 | entry->use_pmap = TRUE; |
| 5560 | } |
| 5561 | #else /* NO_NESTED_PMAP */ |
| 5562 | pmap_remove(map->pmap, (addr64_t)start, (addr64_t)end); |
| 5563 | #endif /* NO_NESTED_PMAP */ |
| 5564 | result = KERN_SUCCESS; |
| 5565 | } |
| 5566 | vm_map_unlock(map); |
| 5567 | |
| 5568 | return(result); |
| 5569 | } |
| 5570 | |
| 5571 | /* |
| 5572 | * vm_map_protect: |
| 5573 | * |
| 5574 | * Sets the protection of the specified address |
| 5575 | * region in the target map. If "set_max" is |
| 5576 | * specified, the maximum protection is to be set; |
| 5577 | * otherwise, only the current protection is affected. |
| 5578 | */ |
| 5579 | kern_return_t |
| 5580 | vm_map_protect( |
| 5581 | vm_map_t map, |
| 5582 | vm_map_offset_t start, |
| 5583 | vm_map_offset_t end, |
| 5584 | vm_prot_t new_prot, |
| 5585 | boolean_t set_max) |
| 5586 | { |
| 5587 | vm_map_entry_t current; |
| 5588 | vm_map_offset_t prev; |
| 5589 | vm_map_entry_t entry; |
| 5590 | vm_prot_t new_max; |
| 5591 | int pmap_options = 0; |
| 5592 | kern_return_t kr; |
| 5593 | |
| 5594 | XPR(XPR_VM_MAP, |
| 5595 | "vm_map_protect, 0x%X start 0x%X end 0x%X, new 0x%X %d" , |
| 5596 | map, start, end, new_prot, set_max); |
| 5597 | |
| 5598 | if (new_prot & VM_PROT_COPY) { |
| 5599 | vm_map_offset_t new_start; |
| 5600 | vm_prot_t cur_prot, max_prot; |
| 5601 | vm_map_kernel_flags_t kflags; |
| 5602 | |
| 5603 | /* LP64todo - see below */ |
| 5604 | if (start >= map->max_offset) { |
| 5605 | return KERN_INVALID_ADDRESS; |
| 5606 | } |
| 5607 | |
| 5608 | #if VM_PROTECT_WX_FAIL |
| 5609 | if ((new_prot & VM_PROT_EXECUTE) && |
| 5610 | map != kernel_map && |
| 5611 | cs_process_enforcement(NULL)) { |
| 5612 | DTRACE_VM3(cs_wx, |
| 5613 | uint64_t, (uint64_t) start, |
| 5614 | uint64_t, (uint64_t) end, |
| 5615 | vm_prot_t, new_prot); |
| 5616 | printf("CODE SIGNING: %d[%s] %s can't have both write and exec at the same time\n" , |
| 5617 | proc_selfpid(), |
| 5618 | (current_task()->bsd_info |
| 5619 | ? proc_name_address(current_task()->bsd_info) |
| 5620 | : "?" ), |
| 5621 | __FUNCTION__); |
| 5622 | return KERN_PROTECTION_FAILURE; |
| 5623 | } |
| 5624 | #endif /* VM_PROTECT_WX_FAIL */ |
| 5625 | |
| 5626 | /* |
| 5627 | * Let vm_map_remap_extract() know that it will need to: |
| 5628 | * + make a copy of the mapping |
| 5629 | * + add VM_PROT_WRITE to the max protections |
| 5630 | * + remove any protections that are no longer allowed from the |
| 5631 | * max protections (to avoid any WRITE/EXECUTE conflict, for |
| 5632 | * example). |
| 5633 | * Note that "max_prot" is an IN/OUT parameter only for this |
| 5634 | * specific (VM_PROT_COPY) case. It's usually an OUT parameter |
| 5635 | * only. |
| 5636 | */ |
| 5637 | max_prot = new_prot & VM_PROT_ALL; |
| 5638 | kflags = VM_MAP_KERNEL_FLAGS_NONE; |
| 5639 | kflags.vmkf_remap_prot_copy = TRUE; |
| 5640 | kflags.vmkf_overwrite_immutable = TRUE; |
| 5641 | new_start = start; |
| 5642 | kr = vm_map_remap(map, |
| 5643 | &new_start, |
| 5644 | end - start, |
| 5645 | 0, /* mask */ |
| 5646 | VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, |
| 5647 | kflags, |
| 5648 | 0, |
| 5649 | map, |
| 5650 | start, |
| 5651 | TRUE, /* copy-on-write remapping! */ |
| 5652 | &cur_prot, |
| 5653 | &max_prot, |
| 5654 | VM_INHERIT_DEFAULT); |
| 5655 | if (kr != KERN_SUCCESS) { |
| 5656 | return kr; |
| 5657 | } |
| 5658 | new_prot &= ~VM_PROT_COPY; |
| 5659 | } |
| 5660 | |
| 5661 | vm_map_lock(map); |
| 5662 | |
| 5663 | /* LP64todo - remove this check when vm_map_commpage64() |
| 5664 | * no longer has to stuff in a map_entry for the commpage |
| 5665 | * above the map's max_offset. |
| 5666 | */ |
| 5667 | if (start >= map->max_offset) { |
| 5668 | vm_map_unlock(map); |
| 5669 | return(KERN_INVALID_ADDRESS); |
| 5670 | } |
| 5671 | |
| 5672 | while(1) { |
| 5673 | /* |
| 5674 | * Lookup the entry. If it doesn't start in a valid |
| 5675 | * entry, return an error. |
| 5676 | */ |
| 5677 | if (! vm_map_lookup_entry(map, start, &entry)) { |
| 5678 | vm_map_unlock(map); |
| 5679 | return(KERN_INVALID_ADDRESS); |
| 5680 | } |
| 5681 | |
| 5682 | if (entry->superpage_size && (start & (SUPERPAGE_SIZE-1))) { /* extend request to whole entry */ |
| 5683 | start = SUPERPAGE_ROUND_DOWN(start); |
| 5684 | continue; |
| 5685 | } |
| 5686 | break; |
| 5687 | } |
| 5688 | if (entry->superpage_size) |
| 5689 | end = SUPERPAGE_ROUND_UP(end); |
| 5690 | |
| 5691 | /* |
| 5692 | * Make a first pass to check for protection and address |
| 5693 | * violations. |
| 5694 | */ |
| 5695 | |
| 5696 | current = entry; |
| 5697 | prev = current->vme_start; |
| 5698 | while ((current != vm_map_to_entry(map)) && |
| 5699 | (current->vme_start < end)) { |
| 5700 | |
| 5701 | /* |
| 5702 | * If there is a hole, return an error. |
| 5703 | */ |
| 5704 | if (current->vme_start != prev) { |
| 5705 | vm_map_unlock(map); |
| 5706 | return(KERN_INVALID_ADDRESS); |
| 5707 | } |
| 5708 | |
| 5709 | new_max = current->max_protection; |
| 5710 | if ((new_prot & new_max) != new_prot) { |
| 5711 | vm_map_unlock(map); |
| 5712 | return(KERN_PROTECTION_FAILURE); |
| 5713 | } |
| 5714 | |
| 5715 | if ((new_prot & VM_PROT_WRITE) && |
| 5716 | (new_prot & VM_PROT_EXECUTE) && |
| 5717 | #if !CONFIG_EMBEDDED |
| 5718 | map != kernel_map && |
| 5719 | cs_process_enforcement(NULL) && |
| 5720 | #endif /* !CONFIG_EMBEDDED */ |
| 5721 | !(current->used_for_jit)) { |
| 5722 | DTRACE_VM3(cs_wx, |
| 5723 | uint64_t, (uint64_t) current->vme_start, |
| 5724 | uint64_t, (uint64_t) current->vme_end, |
| 5725 | vm_prot_t, new_prot); |
| 5726 | printf("CODE SIGNING: %d[%s] %s can't have both write and exec at the same time\n" , |
| 5727 | proc_selfpid(), |
| 5728 | (current_task()->bsd_info |
| 5729 | ? proc_name_address(current_task()->bsd_info) |
| 5730 | : "?" ), |
| 5731 | __FUNCTION__); |
| 5732 | new_prot &= ~VM_PROT_EXECUTE; |
| 5733 | #if VM_PROTECT_WX_FAIL |
| 5734 | vm_map_unlock(map); |
| 5735 | return KERN_PROTECTION_FAILURE; |
| 5736 | #endif /* VM_PROTECT_WX_FAIL */ |
| 5737 | } |
| 5738 | |
| 5739 | /* |
| 5740 | * If the task has requested executable lockdown, |
| 5741 | * deny both: |
| 5742 | * - adding executable protections OR |
| 5743 | * - adding write protections to an existing executable mapping. |
| 5744 | */ |
| 5745 | if (map->map_disallow_new_exec == TRUE) { |
| 5746 | if ((new_prot & VM_PROT_EXECUTE) || |
| 5747 | ((current->protection & VM_PROT_EXECUTE) && (new_prot & VM_PROT_WRITE))) { |
| 5748 | vm_map_unlock(map); |
| 5749 | return(KERN_PROTECTION_FAILURE); |
| 5750 | } |
| 5751 | } |
| 5752 | |
| 5753 | prev = current->vme_end; |
| 5754 | current = current->vme_next; |
| 5755 | } |
| 5756 | |
| 5757 | #if __arm64__ |
| 5758 | if (end > prev && |
| 5759 | end == vm_map_round_page(prev, VM_MAP_PAGE_MASK(map))) { |
| 5760 | vm_map_entry_t prev_entry; |
| 5761 | |
| 5762 | prev_entry = current->vme_prev; |
| 5763 | if (prev_entry != vm_map_to_entry(map) && |
| 5764 | !prev_entry->map_aligned && |
| 5765 | (vm_map_round_page(prev_entry->vme_end, |
| 5766 | VM_MAP_PAGE_MASK(map)) |
| 5767 | == end)) { |
| 5768 | /* |
| 5769 | * The last entry in our range is not "map-aligned" |
| 5770 | * but it would have reached all the way to "end" |
| 5771 | * if it had been map-aligned, so this is not really |
| 5772 | * a hole in the range and we can proceed. |
| 5773 | */ |
| 5774 | prev = end; |
| 5775 | } |
| 5776 | } |
| 5777 | #endif /* __arm64__ */ |
| 5778 | |
| 5779 | if (end > prev) { |
| 5780 | vm_map_unlock(map); |
| 5781 | return(KERN_INVALID_ADDRESS); |
| 5782 | } |
| 5783 | |
| 5784 | /* |
| 5785 | * Go back and fix up protections. |
| 5786 | * Clip to start here if the range starts within |
| 5787 | * the entry. |
| 5788 | */ |
| 5789 | |
| 5790 | current = entry; |
| 5791 | if (current != vm_map_to_entry(map)) { |
| 5792 | /* clip and unnest if necessary */ |
| 5793 | vm_map_clip_start(map, current, start); |
| 5794 | } |
| 5795 | |
| 5796 | while ((current != vm_map_to_entry(map)) && |
| 5797 | (current->vme_start < end)) { |
| 5798 | |
| 5799 | vm_prot_t old_prot; |
| 5800 | |
| 5801 | vm_map_clip_end(map, current, end); |
| 5802 | |
| 5803 | if (current->is_sub_map) { |
| 5804 | /* clipping did unnest if needed */ |
| 5805 | assert(!current->use_pmap); |
| 5806 | } |
| 5807 | |
| 5808 | old_prot = current->protection; |
| 5809 | |
| 5810 | if (set_max) { |
| 5811 | current->max_protection = new_prot; |
| 5812 | current->protection = new_prot & old_prot; |
| 5813 | } else { |
| 5814 | current->protection = new_prot; |
| 5815 | } |
| 5816 | |
| 5817 | /* |
| 5818 | * Update physical map if necessary. |
| 5819 | * If the request is to turn off write protection, |
| 5820 | * we won't do it for real (in pmap). This is because |
| 5821 | * it would cause copy-on-write to fail. We've already |
| 5822 | * set, the new protection in the map, so if a |
| 5823 | * write-protect fault occurred, it will be fixed up |
| 5824 | * properly, COW or not. |
| 5825 | */ |
| 5826 | if (current->protection != old_prot) { |
| 5827 | /* Look one level in we support nested pmaps */ |
| 5828 | /* from mapped submaps which are direct entries */ |
| 5829 | /* in our map */ |
| 5830 | |
| 5831 | vm_prot_t prot; |
| 5832 | |
| 5833 | prot = current->protection; |
| 5834 | if (current->is_sub_map || (VME_OBJECT(current) == NULL) || (VME_OBJECT(current) != compressor_object)) { |
| 5835 | prot &= ~VM_PROT_WRITE; |
| 5836 | } else { |
| 5837 | assert(!VME_OBJECT(current)->code_signed); |
| 5838 | assert(VME_OBJECT(current)->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 5839 | } |
| 5840 | |
| 5841 | if (override_nx(map, VME_ALIAS(current)) && prot) |
| 5842 | prot |= VM_PROT_EXECUTE; |
| 5843 | |
| 5844 | #if CONFIG_EMBEDDED && (DEVELOPMENT || DEBUG) |
| 5845 | if (!(old_prot & VM_PROT_EXECUTE) && |
| 5846 | (prot & VM_PROT_EXECUTE) && |
| 5847 | panic_on_unsigned_execute && |
| 5848 | (proc_selfcsflags() & CS_KILL)) { |
| 5849 | panic("vm_map_protect(%p,0x%llx,0x%llx) old=0x%x new=0x%x - <rdar://23770418> code-signing bypass?\n" , map, (uint64_t)current->vme_start, (uint64_t)current->vme_end, old_prot, prot); |
| 5850 | } |
| 5851 | #endif /* CONFIG_EMBEDDED && (DEVELOPMENT || DEBUG) */ |
| 5852 | |
| 5853 | if (pmap_has_prot_policy(prot)) { |
| 5854 | if (current->wired_count) { |
| 5855 | panic("vm_map_protect(%p,0x%llx,0x%llx) new=0x%x wired=%x\n" , |
| 5856 | map, (uint64_t)current->vme_start, (uint64_t)current->vme_end, prot, current->wired_count); |
| 5857 | } |
| 5858 | |
| 5859 | /* If the pmap layer cares about this |
| 5860 | * protection type, force a fault for |
| 5861 | * each page so that vm_fault will |
| 5862 | * repopulate the page with the full |
| 5863 | * set of protections. |
| 5864 | */ |
| 5865 | /* |
| 5866 | * TODO: We don't seem to need this, |
| 5867 | * but this is due to an internal |
| 5868 | * implementation detail of |
| 5869 | * pmap_protect. Do we want to rely |
| 5870 | * on this? |
| 5871 | */ |
| 5872 | prot = VM_PROT_NONE; |
| 5873 | } |
| 5874 | |
| 5875 | if (current->is_sub_map && current->use_pmap) { |
| 5876 | pmap_protect(VME_SUBMAP(current)->pmap, |
| 5877 | current->vme_start, |
| 5878 | current->vme_end, |
| 5879 | prot); |
| 5880 | } else { |
| 5881 | if (prot & VM_PROT_WRITE) { |
| 5882 | if (VME_OBJECT(current) == compressor_object) { |
| 5883 | /* |
| 5884 | * For write requests on the |
| 5885 | * compressor, we wil ask the |
| 5886 | * pmap layer to prevent us from |
| 5887 | * taking a write fault when we |
| 5888 | * attempt to access the mapping |
| 5889 | * next. |
| 5890 | */ |
| 5891 | pmap_options |= PMAP_OPTIONS_PROTECT_IMMEDIATE; |
| 5892 | } |
| 5893 | } |
| 5894 | |
| 5895 | pmap_protect_options(map->pmap, |
| 5896 | current->vme_start, |
| 5897 | current->vme_end, |
| 5898 | prot, |
| 5899 | pmap_options, |
| 5900 | NULL); |
| 5901 | } |
| 5902 | } |
| 5903 | current = current->vme_next; |
| 5904 | } |
| 5905 | |
| 5906 | current = entry; |
| 5907 | while ((current != vm_map_to_entry(map)) && |
| 5908 | (current->vme_start <= end)) { |
| 5909 | vm_map_simplify_entry(map, current); |
| 5910 | current = current->vme_next; |
| 5911 | } |
| 5912 | |
| 5913 | vm_map_unlock(map); |
| 5914 | return(KERN_SUCCESS); |
| 5915 | } |
| 5916 | |
| 5917 | /* |
| 5918 | * vm_map_inherit: |
| 5919 | * |
| 5920 | * Sets the inheritance of the specified address |
| 5921 | * range in the target map. Inheritance |
| 5922 | * affects how the map will be shared with |
| 5923 | * child maps at the time of vm_map_fork. |
| 5924 | */ |
| 5925 | kern_return_t |
| 5926 | vm_map_inherit( |
| 5927 | vm_map_t map, |
| 5928 | vm_map_offset_t start, |
| 5929 | vm_map_offset_t end, |
| 5930 | vm_inherit_t new_inheritance) |
| 5931 | { |
| 5932 | vm_map_entry_t entry; |
| 5933 | vm_map_entry_t temp_entry; |
| 5934 | |
| 5935 | vm_map_lock(map); |
| 5936 | |
| 5937 | VM_MAP_RANGE_CHECK(map, start, end); |
| 5938 | |
| 5939 | if (vm_map_lookup_entry(map, start, &temp_entry)) { |
| 5940 | entry = temp_entry; |
| 5941 | } |
| 5942 | else { |
| 5943 | temp_entry = temp_entry->vme_next; |
| 5944 | entry = temp_entry; |
| 5945 | } |
| 5946 | |
| 5947 | /* first check entire range for submaps which can't support the */ |
| 5948 | /* given inheritance. */ |
| 5949 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 5950 | if(entry->is_sub_map) { |
| 5951 | if(new_inheritance == VM_INHERIT_COPY) { |
| 5952 | vm_map_unlock(map); |
| 5953 | return(KERN_INVALID_ARGUMENT); |
| 5954 | } |
| 5955 | } |
| 5956 | |
| 5957 | entry = entry->vme_next; |
| 5958 | } |
| 5959 | |
| 5960 | entry = temp_entry; |
| 5961 | if (entry != vm_map_to_entry(map)) { |
| 5962 | /* clip and unnest if necessary */ |
| 5963 | vm_map_clip_start(map, entry, start); |
| 5964 | } |
| 5965 | |
| 5966 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 5967 | vm_map_clip_end(map, entry, end); |
| 5968 | if (entry->is_sub_map) { |
| 5969 | /* clip did unnest if needed */ |
| 5970 | assert(!entry->use_pmap); |
| 5971 | } |
| 5972 | |
| 5973 | entry->inheritance = new_inheritance; |
| 5974 | |
| 5975 | entry = entry->vme_next; |
| 5976 | } |
| 5977 | |
| 5978 | vm_map_unlock(map); |
| 5979 | return(KERN_SUCCESS); |
| 5980 | } |
| 5981 | |
| 5982 | /* |
| 5983 | * Update the accounting for the amount of wired memory in this map. If the user has |
| 5984 | * exceeded the defined limits, then we fail. Wiring on behalf of the kernel never fails. |
| 5985 | */ |
| 5986 | |
| 5987 | static kern_return_t |
| 5988 | add_wire_counts( |
| 5989 | vm_map_t map, |
| 5990 | vm_map_entry_t entry, |
| 5991 | boolean_t user_wire) |
| 5992 | { |
| 5993 | vm_map_size_t size; |
| 5994 | |
| 5995 | if (user_wire) { |
| 5996 | unsigned int total_wire_count = vm_page_wire_count + vm_lopage_free_count; |
| 5997 | |
| 5998 | /* |
| 5999 | * We're wiring memory at the request of the user. Check if this is the first time the user is wiring |
| 6000 | * this map entry. |
| 6001 | */ |
| 6002 | |
| 6003 | if (entry->user_wired_count == 0) { |
| 6004 | size = entry->vme_end - entry->vme_start; |
| 6005 | |
| 6006 | /* |
| 6007 | * Since this is the first time the user is wiring this map entry, check to see if we're |
| 6008 | * exceeding the user wire limits. There is a per map limit which is the smaller of either |
| 6009 | * the process's rlimit or the global vm_user_wire_limit which caps this value. There is also |
| 6010 | * a system-wide limit on the amount of memory all users can wire. If the user is over either |
| 6011 | * limit, then we fail. |
| 6012 | */ |
| 6013 | |
| 6014 | if(size + map->user_wire_size > MIN(map->user_wire_limit, vm_user_wire_limit) || |
| 6015 | size + ptoa_64(total_wire_count) > vm_global_user_wire_limit || |
| 6016 | size + ptoa_64(total_wire_count) > max_mem - vm_global_no_user_wire_amount) |
| 6017 | return KERN_RESOURCE_SHORTAGE; |
| 6018 | |
| 6019 | /* |
| 6020 | * The first time the user wires an entry, we also increment the wired_count and add this to |
| 6021 | * the total that has been wired in the map. |
| 6022 | */ |
| 6023 | |
| 6024 | if (entry->wired_count >= MAX_WIRE_COUNT) |
| 6025 | return KERN_FAILURE; |
| 6026 | |
| 6027 | entry->wired_count++; |
| 6028 | map->user_wire_size += size; |
| 6029 | } |
| 6030 | |
| 6031 | if (entry->user_wired_count >= MAX_WIRE_COUNT) |
| 6032 | return KERN_FAILURE; |
| 6033 | |
| 6034 | entry->user_wired_count++; |
| 6035 | |
| 6036 | } else { |
| 6037 | |
| 6038 | /* |
| 6039 | * The kernel's wiring the memory. Just bump the count and continue. |
| 6040 | */ |
| 6041 | |
| 6042 | if (entry->wired_count >= MAX_WIRE_COUNT) |
| 6043 | panic("vm_map_wire: too many wirings" ); |
| 6044 | |
| 6045 | entry->wired_count++; |
| 6046 | } |
| 6047 | |
| 6048 | return KERN_SUCCESS; |
| 6049 | } |
| 6050 | |
| 6051 | /* |
| 6052 | * Update the memory wiring accounting now that the given map entry is being unwired. |
| 6053 | */ |
| 6054 | |
| 6055 | static void |
| 6056 | subtract_wire_counts( |
| 6057 | vm_map_t map, |
| 6058 | vm_map_entry_t entry, |
| 6059 | boolean_t user_wire) |
| 6060 | { |
| 6061 | |
| 6062 | if (user_wire) { |
| 6063 | |
| 6064 | /* |
| 6065 | * We're unwiring memory at the request of the user. See if we're removing the last user wire reference. |
| 6066 | */ |
| 6067 | |
| 6068 | if (entry->user_wired_count == 1) { |
| 6069 | |
| 6070 | /* |
| 6071 | * We're removing the last user wire reference. Decrement the wired_count and the total |
| 6072 | * user wired memory for this map. |
| 6073 | */ |
| 6074 | |
| 6075 | assert(entry->wired_count >= 1); |
| 6076 | entry->wired_count--; |
| 6077 | map->user_wire_size -= entry->vme_end - entry->vme_start; |
| 6078 | } |
| 6079 | |
| 6080 | assert(entry->user_wired_count >= 1); |
| 6081 | entry->user_wired_count--; |
| 6082 | |
| 6083 | } else { |
| 6084 | |
| 6085 | /* |
| 6086 | * The kernel is unwiring the memory. Just update the count. |
| 6087 | */ |
| 6088 | |
| 6089 | assert(entry->wired_count >= 1); |
| 6090 | entry->wired_count--; |
| 6091 | } |
| 6092 | } |
| 6093 | |
| 6094 | int cs_executable_wire = 0; |
| 6095 | |
| 6096 | /* |
| 6097 | * vm_map_wire: |
| 6098 | * |
| 6099 | * Sets the pageability of the specified address range in the |
| 6100 | * target map as wired. Regions specified as not pageable require |
| 6101 | * locked-down physical memory and physical page maps. The |
| 6102 | * access_type variable indicates types of accesses that must not |
| 6103 | * generate page faults. This is checked against protection of |
| 6104 | * memory being locked-down. |
| 6105 | * |
| 6106 | * The map must not be locked, but a reference must remain to the |
| 6107 | * map throughout the call. |
| 6108 | */ |
| 6109 | static kern_return_t |
| 6110 | vm_map_wire_nested( |
| 6111 | vm_map_t map, |
| 6112 | vm_map_offset_t start, |
| 6113 | vm_map_offset_t end, |
| 6114 | vm_prot_t caller_prot, |
| 6115 | vm_tag_t tag, |
| 6116 | boolean_t user_wire, |
| 6117 | pmap_t map_pmap, |
| 6118 | vm_map_offset_t pmap_addr, |
| 6119 | ppnum_t *physpage_p) |
| 6120 | { |
| 6121 | vm_map_entry_t entry; |
| 6122 | vm_prot_t access_type; |
| 6123 | struct vm_map_entry *first_entry, tmp_entry; |
| 6124 | vm_map_t real_map; |
| 6125 | vm_map_offset_t s,e; |
| 6126 | kern_return_t rc; |
| 6127 | boolean_t need_wakeup; |
| 6128 | boolean_t main_map = FALSE; |
| 6129 | wait_interrupt_t interruptible_state; |
| 6130 | thread_t cur_thread; |
| 6131 | unsigned int last_timestamp; |
| 6132 | vm_map_size_t size; |
| 6133 | boolean_t wire_and_extract; |
| 6134 | |
| 6135 | access_type = (caller_prot & VM_PROT_ALL); |
| 6136 | |
| 6137 | wire_and_extract = FALSE; |
| 6138 | if (physpage_p != NULL) { |
| 6139 | /* |
| 6140 | * The caller wants the physical page number of the |
| 6141 | * wired page. We return only one physical page number |
| 6142 | * so this works for only one page at a time. |
| 6143 | */ |
| 6144 | if ((end - start) != PAGE_SIZE) { |
| 6145 | return KERN_INVALID_ARGUMENT; |
| 6146 | } |
| 6147 | wire_and_extract = TRUE; |
| 6148 | *physpage_p = 0; |
| 6149 | } |
| 6150 | |
| 6151 | vm_map_lock(map); |
| 6152 | if(map_pmap == NULL) |
| 6153 | main_map = TRUE; |
| 6154 | last_timestamp = map->timestamp; |
| 6155 | |
| 6156 | VM_MAP_RANGE_CHECK(map, start, end); |
| 6157 | assert(page_aligned(start)); |
| 6158 | assert(page_aligned(end)); |
| 6159 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 6160 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 6161 | if (start == end) { |
| 6162 | /* We wired what the caller asked for, zero pages */ |
| 6163 | vm_map_unlock(map); |
| 6164 | return KERN_SUCCESS; |
| 6165 | } |
| 6166 | |
| 6167 | need_wakeup = FALSE; |
| 6168 | cur_thread = current_thread(); |
| 6169 | |
| 6170 | s = start; |
| 6171 | rc = KERN_SUCCESS; |
| 6172 | |
| 6173 | if (vm_map_lookup_entry(map, s, &first_entry)) { |
| 6174 | entry = first_entry; |
| 6175 | /* |
| 6176 | * vm_map_clip_start will be done later. |
| 6177 | * We don't want to unnest any nested submaps here ! |
| 6178 | */ |
| 6179 | } else { |
| 6180 | /* Start address is not in map */ |
| 6181 | rc = KERN_INVALID_ADDRESS; |
| 6182 | goto done; |
| 6183 | } |
| 6184 | |
| 6185 | while ((entry != vm_map_to_entry(map)) && (s < end)) { |
| 6186 | /* |
| 6187 | * At this point, we have wired from "start" to "s". |
| 6188 | * We still need to wire from "s" to "end". |
| 6189 | * |
| 6190 | * "entry" hasn't been clipped, so it could start before "s" |
| 6191 | * and/or end after "end". |
| 6192 | */ |
| 6193 | |
| 6194 | /* "e" is how far we want to wire in this entry */ |
| 6195 | e = entry->vme_end; |
| 6196 | if (e > end) |
| 6197 | e = end; |
| 6198 | |
| 6199 | /* |
| 6200 | * If another thread is wiring/unwiring this entry then |
| 6201 | * block after informing other thread to wake us up. |
| 6202 | */ |
| 6203 | if (entry->in_transition) { |
| 6204 | wait_result_t wait_result; |
| 6205 | |
| 6206 | /* |
| 6207 | * We have not clipped the entry. Make sure that |
| 6208 | * the start address is in range so that the lookup |
| 6209 | * below will succeed. |
| 6210 | * "s" is the current starting point: we've already |
| 6211 | * wired from "start" to "s" and we still have |
| 6212 | * to wire from "s" to "end". |
| 6213 | */ |
| 6214 | |
| 6215 | entry->needs_wakeup = TRUE; |
| 6216 | |
| 6217 | /* |
| 6218 | * wake up anybody waiting on entries that we have |
| 6219 | * already wired. |
| 6220 | */ |
| 6221 | if (need_wakeup) { |
| 6222 | vm_map_entry_wakeup(map); |
| 6223 | need_wakeup = FALSE; |
| 6224 | } |
| 6225 | /* |
| 6226 | * User wiring is interruptible |
| 6227 | */ |
| 6228 | wait_result = vm_map_entry_wait(map, |
| 6229 | (user_wire) ? THREAD_ABORTSAFE : |
| 6230 | THREAD_UNINT); |
| 6231 | if (user_wire && wait_result == THREAD_INTERRUPTED) { |
| 6232 | /* |
| 6233 | * undo the wirings we have done so far |
| 6234 | * We do not clear the needs_wakeup flag, |
| 6235 | * because we cannot tell if we were the |
| 6236 | * only one waiting. |
| 6237 | */ |
| 6238 | rc = KERN_FAILURE; |
| 6239 | goto done; |
| 6240 | } |
| 6241 | |
| 6242 | /* |
| 6243 | * Cannot avoid a lookup here. reset timestamp. |
| 6244 | */ |
| 6245 | last_timestamp = map->timestamp; |
| 6246 | |
| 6247 | /* |
| 6248 | * The entry could have been clipped, look it up again. |
| 6249 | * Worse that can happen is, it may not exist anymore. |
| 6250 | */ |
| 6251 | if (!vm_map_lookup_entry(map, s, &first_entry)) { |
| 6252 | /* |
| 6253 | * User: undo everything upto the previous |
| 6254 | * entry. let vm_map_unwire worry about |
| 6255 | * checking the validity of the range. |
| 6256 | */ |
| 6257 | rc = KERN_FAILURE; |
| 6258 | goto done; |
| 6259 | } |
| 6260 | entry = first_entry; |
| 6261 | continue; |
| 6262 | } |
| 6263 | |
| 6264 | if (entry->is_sub_map) { |
| 6265 | vm_map_offset_t sub_start; |
| 6266 | vm_map_offset_t sub_end; |
| 6267 | vm_map_offset_t local_start; |
| 6268 | vm_map_offset_t local_end; |
| 6269 | pmap_t pmap; |
| 6270 | |
| 6271 | if (wire_and_extract) { |
| 6272 | /* |
| 6273 | * Wiring would result in copy-on-write |
| 6274 | * which would not be compatible with |
| 6275 | * the sharing we have with the original |
| 6276 | * provider of this memory. |
| 6277 | */ |
| 6278 | rc = KERN_INVALID_ARGUMENT; |
| 6279 | goto done; |
| 6280 | } |
| 6281 | |
| 6282 | vm_map_clip_start(map, entry, s); |
| 6283 | vm_map_clip_end(map, entry, end); |
| 6284 | |
| 6285 | sub_start = VME_OFFSET(entry); |
| 6286 | sub_end = entry->vme_end; |
| 6287 | sub_end += VME_OFFSET(entry) - entry->vme_start; |
| 6288 | |
| 6289 | local_end = entry->vme_end; |
| 6290 | if(map_pmap == NULL) { |
| 6291 | vm_object_t object; |
| 6292 | vm_object_offset_t offset; |
| 6293 | vm_prot_t prot; |
| 6294 | boolean_t wired; |
| 6295 | vm_map_entry_t local_entry; |
| 6296 | vm_map_version_t version; |
| 6297 | vm_map_t lookup_map; |
| 6298 | |
| 6299 | if(entry->use_pmap) { |
| 6300 | pmap = VME_SUBMAP(entry)->pmap; |
| 6301 | /* ppc implementation requires that */ |
| 6302 | /* submaps pmap address ranges line */ |
| 6303 | /* up with parent map */ |
| 6304 | #ifdef notdef |
| 6305 | pmap_addr = sub_start; |
| 6306 | #endif |
| 6307 | pmap_addr = s; |
| 6308 | } else { |
| 6309 | pmap = map->pmap; |
| 6310 | pmap_addr = s; |
| 6311 | } |
| 6312 | |
| 6313 | if (entry->wired_count) { |
| 6314 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) |
| 6315 | goto done; |
| 6316 | |
| 6317 | /* |
| 6318 | * The map was not unlocked: |
| 6319 | * no need to goto re-lookup. |
| 6320 | * Just go directly to next entry. |
| 6321 | */ |
| 6322 | entry = entry->vme_next; |
| 6323 | s = entry->vme_start; |
| 6324 | continue; |
| 6325 | |
| 6326 | } |
| 6327 | |
| 6328 | /* call vm_map_lookup_locked to */ |
| 6329 | /* cause any needs copy to be */ |
| 6330 | /* evaluated */ |
| 6331 | local_start = entry->vme_start; |
| 6332 | lookup_map = map; |
| 6333 | vm_map_lock_write_to_read(map); |
| 6334 | if(vm_map_lookup_locked( |
| 6335 | &lookup_map, local_start, |
| 6336 | access_type | VM_PROT_COPY, |
| 6337 | OBJECT_LOCK_EXCLUSIVE, |
| 6338 | &version, &object, |
| 6339 | &offset, &prot, &wired, |
| 6340 | NULL, |
| 6341 | &real_map)) { |
| 6342 | |
| 6343 | vm_map_unlock_read(lookup_map); |
| 6344 | assert(map_pmap == NULL); |
| 6345 | vm_map_unwire(map, start, |
| 6346 | s, user_wire); |
| 6347 | return(KERN_FAILURE); |
| 6348 | } |
| 6349 | vm_object_unlock(object); |
| 6350 | if(real_map != lookup_map) |
| 6351 | vm_map_unlock(real_map); |
| 6352 | vm_map_unlock_read(lookup_map); |
| 6353 | vm_map_lock(map); |
| 6354 | |
| 6355 | /* we unlocked, so must re-lookup */ |
| 6356 | if (!vm_map_lookup_entry(map, |
| 6357 | local_start, |
| 6358 | &local_entry)) { |
| 6359 | rc = KERN_FAILURE; |
| 6360 | goto done; |
| 6361 | } |
| 6362 | |
| 6363 | /* |
| 6364 | * entry could have been "simplified", |
| 6365 | * so re-clip |
| 6366 | */ |
| 6367 | entry = local_entry; |
| 6368 | assert(s == local_start); |
| 6369 | vm_map_clip_start(map, entry, s); |
| 6370 | vm_map_clip_end(map, entry, end); |
| 6371 | /* re-compute "e" */ |
| 6372 | e = entry->vme_end; |
| 6373 | if (e > end) |
| 6374 | e = end; |
| 6375 | |
| 6376 | /* did we have a change of type? */ |
| 6377 | if (!entry->is_sub_map) { |
| 6378 | last_timestamp = map->timestamp; |
| 6379 | continue; |
| 6380 | } |
| 6381 | } else { |
| 6382 | local_start = entry->vme_start; |
| 6383 | pmap = map_pmap; |
| 6384 | } |
| 6385 | |
| 6386 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) |
| 6387 | goto done; |
| 6388 | |
| 6389 | entry->in_transition = TRUE; |
| 6390 | |
| 6391 | vm_map_unlock(map); |
| 6392 | rc = vm_map_wire_nested(VME_SUBMAP(entry), |
| 6393 | sub_start, sub_end, |
| 6394 | caller_prot, tag, |
| 6395 | user_wire, pmap, pmap_addr, |
| 6396 | NULL); |
| 6397 | vm_map_lock(map); |
| 6398 | |
| 6399 | /* |
| 6400 | * Find the entry again. It could have been clipped |
| 6401 | * after we unlocked the map. |
| 6402 | */ |
| 6403 | if (!vm_map_lookup_entry(map, local_start, |
| 6404 | &first_entry)) |
| 6405 | panic("vm_map_wire: re-lookup failed" ); |
| 6406 | entry = first_entry; |
| 6407 | |
| 6408 | assert(local_start == s); |
| 6409 | /* re-compute "e" */ |
| 6410 | e = entry->vme_end; |
| 6411 | if (e > end) |
| 6412 | e = end; |
| 6413 | |
| 6414 | last_timestamp = map->timestamp; |
| 6415 | while ((entry != vm_map_to_entry(map)) && |
| 6416 | (entry->vme_start < e)) { |
| 6417 | assert(entry->in_transition); |
| 6418 | entry->in_transition = FALSE; |
| 6419 | if (entry->needs_wakeup) { |
| 6420 | entry->needs_wakeup = FALSE; |
| 6421 | need_wakeup = TRUE; |
| 6422 | } |
| 6423 | if (rc != KERN_SUCCESS) {/* from vm_*_wire */ |
| 6424 | subtract_wire_counts(map, entry, user_wire); |
| 6425 | } |
| 6426 | entry = entry->vme_next; |
| 6427 | } |
| 6428 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 6429 | goto done; |
| 6430 | } |
| 6431 | |
| 6432 | /* no need to relookup again */ |
| 6433 | s = entry->vme_start; |
| 6434 | continue; |
| 6435 | } |
| 6436 | |
| 6437 | /* |
| 6438 | * If this entry is already wired then increment |
| 6439 | * the appropriate wire reference count. |
| 6440 | */ |
| 6441 | if (entry->wired_count) { |
| 6442 | |
| 6443 | if ((entry->protection & access_type) != access_type) { |
| 6444 | /* found a protection problem */ |
| 6445 | |
| 6446 | /* |
| 6447 | * XXX FBDP |
| 6448 | * We should always return an error |
| 6449 | * in this case but since we didn't |
| 6450 | * enforce it before, let's do |
| 6451 | * it only for the new "wire_and_extract" |
| 6452 | * code path for now... |
| 6453 | */ |
| 6454 | if (wire_and_extract) { |
| 6455 | rc = KERN_PROTECTION_FAILURE; |
| 6456 | goto done; |
| 6457 | } |
| 6458 | } |
| 6459 | |
| 6460 | /* |
| 6461 | * entry is already wired down, get our reference |
| 6462 | * after clipping to our range. |
| 6463 | */ |
| 6464 | vm_map_clip_start(map, entry, s); |
| 6465 | vm_map_clip_end(map, entry, end); |
| 6466 | |
| 6467 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) |
| 6468 | goto done; |
| 6469 | |
| 6470 | if (wire_and_extract) { |
| 6471 | vm_object_t object; |
| 6472 | vm_object_offset_t offset; |
| 6473 | vm_page_t m; |
| 6474 | |
| 6475 | /* |
| 6476 | * We don't have to "wire" the page again |
| 6477 | * bit we still have to "extract" its |
| 6478 | * physical page number, after some sanity |
| 6479 | * checks. |
| 6480 | */ |
| 6481 | assert((entry->vme_end - entry->vme_start) |
| 6482 | == PAGE_SIZE); |
| 6483 | assert(!entry->needs_copy); |
| 6484 | assert(!entry->is_sub_map); |
| 6485 | assert(VME_OBJECT(entry)); |
| 6486 | if (((entry->vme_end - entry->vme_start) |
| 6487 | != PAGE_SIZE) || |
| 6488 | entry->needs_copy || |
| 6489 | entry->is_sub_map || |
| 6490 | VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 6491 | rc = KERN_INVALID_ARGUMENT; |
| 6492 | goto done; |
| 6493 | } |
| 6494 | |
| 6495 | object = VME_OBJECT(entry); |
| 6496 | offset = VME_OFFSET(entry); |
| 6497 | /* need exclusive lock to update m->dirty */ |
| 6498 | if (entry->protection & VM_PROT_WRITE) { |
| 6499 | vm_object_lock(object); |
| 6500 | } else { |
| 6501 | vm_object_lock_shared(object); |
| 6502 | } |
| 6503 | m = vm_page_lookup(object, offset); |
| 6504 | assert(m != VM_PAGE_NULL); |
| 6505 | assert(VM_PAGE_WIRED(m)); |
| 6506 | if (m != VM_PAGE_NULL && VM_PAGE_WIRED(m)) { |
| 6507 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
| 6508 | if (entry->protection & VM_PROT_WRITE) { |
| 6509 | vm_object_lock_assert_exclusive( |
| 6510 | object); |
| 6511 | m->vmp_dirty = TRUE; |
| 6512 | } |
| 6513 | } else { |
| 6514 | /* not already wired !? */ |
| 6515 | *physpage_p = 0; |
| 6516 | } |
| 6517 | vm_object_unlock(object); |
| 6518 | } |
| 6519 | |
| 6520 | /* map was not unlocked: no need to relookup */ |
| 6521 | entry = entry->vme_next; |
| 6522 | s = entry->vme_start; |
| 6523 | continue; |
| 6524 | } |
| 6525 | |
| 6526 | /* |
| 6527 | * Unwired entry or wire request transmitted via submap |
| 6528 | */ |
| 6529 | |
| 6530 | /* |
| 6531 | * Wiring would copy the pages to the shadow object. |
| 6532 | * The shadow object would not be code-signed so |
| 6533 | * attempting to execute code from these copied pages |
| 6534 | * would trigger a code-signing violation. |
| 6535 | */ |
| 6536 | |
| 6537 | if ((entry->protection & VM_PROT_EXECUTE) |
| 6538 | #if !CONFIG_EMBEDDED |
| 6539 | && |
| 6540 | map != kernel_map && |
| 6541 | cs_process_enforcement(NULL) |
| 6542 | #endif /* !CONFIG_EMBEDDED */ |
| 6543 | ) { |
| 6544 | #if MACH_ASSERT |
| 6545 | printf("pid %d[%s] wiring executable range from " |
| 6546 | "0x%llx to 0x%llx: rejected to preserve " |
| 6547 | "code-signing\n" , |
| 6548 | proc_selfpid(), |
| 6549 | (current_task()->bsd_info |
| 6550 | ? proc_name_address(current_task()->bsd_info) |
| 6551 | : "?" ), |
| 6552 | (uint64_t) entry->vme_start, |
| 6553 | (uint64_t) entry->vme_end); |
| 6554 | #endif /* MACH_ASSERT */ |
| 6555 | DTRACE_VM2(cs_executable_wire, |
| 6556 | uint64_t, (uint64_t)entry->vme_start, |
| 6557 | uint64_t, (uint64_t)entry->vme_end); |
| 6558 | cs_executable_wire++; |
| 6559 | rc = KERN_PROTECTION_FAILURE; |
| 6560 | goto done; |
| 6561 | } |
| 6562 | |
| 6563 | /* |
| 6564 | * Perform actions of vm_map_lookup that need the write |
| 6565 | * lock on the map: create a shadow object for a |
| 6566 | * copy-on-write region, or an object for a zero-fill |
| 6567 | * region. |
| 6568 | */ |
| 6569 | size = entry->vme_end - entry->vme_start; |
| 6570 | /* |
| 6571 | * If wiring a copy-on-write page, we need to copy it now |
| 6572 | * even if we're only (currently) requesting read access. |
| 6573 | * This is aggressive, but once it's wired we can't move it. |
| 6574 | */ |
| 6575 | if (entry->needs_copy) { |
| 6576 | if (wire_and_extract) { |
| 6577 | /* |
| 6578 | * We're supposed to share with the original |
| 6579 | * provider so should not be "needs_copy" |
| 6580 | */ |
| 6581 | rc = KERN_INVALID_ARGUMENT; |
| 6582 | goto done; |
| 6583 | } |
| 6584 | |
| 6585 | VME_OBJECT_SHADOW(entry, size); |
| 6586 | entry->needs_copy = FALSE; |
| 6587 | } else if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 6588 | if (wire_and_extract) { |
| 6589 | /* |
| 6590 | * We're supposed to share with the original |
| 6591 | * provider so should already have an object. |
| 6592 | */ |
| 6593 | rc = KERN_INVALID_ARGUMENT; |
| 6594 | goto done; |
| 6595 | } |
| 6596 | VME_OBJECT_SET(entry, vm_object_allocate(size)); |
| 6597 | VME_OFFSET_SET(entry, (vm_object_offset_t)0); |
| 6598 | assert(entry->use_pmap); |
| 6599 | } |
| 6600 | |
| 6601 | vm_map_clip_start(map, entry, s); |
| 6602 | vm_map_clip_end(map, entry, end); |
| 6603 | |
| 6604 | /* re-compute "e" */ |
| 6605 | e = entry->vme_end; |
| 6606 | if (e > end) |
| 6607 | e = end; |
| 6608 | |
| 6609 | /* |
| 6610 | * Check for holes and protection mismatch. |
| 6611 | * Holes: Next entry should be contiguous unless this |
| 6612 | * is the end of the region. |
| 6613 | * Protection: Access requested must be allowed, unless |
| 6614 | * wiring is by protection class |
| 6615 | */ |
| 6616 | if ((entry->vme_end < end) && |
| 6617 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 6618 | (entry->vme_next->vme_start > entry->vme_end))) { |
| 6619 | /* found a hole */ |
| 6620 | rc = KERN_INVALID_ADDRESS; |
| 6621 | goto done; |
| 6622 | } |
| 6623 | if ((entry->protection & access_type) != access_type) { |
| 6624 | /* found a protection problem */ |
| 6625 | rc = KERN_PROTECTION_FAILURE; |
| 6626 | goto done; |
| 6627 | } |
| 6628 | |
| 6629 | assert(entry->wired_count == 0 && entry->user_wired_count == 0); |
| 6630 | |
| 6631 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) |
| 6632 | goto done; |
| 6633 | |
| 6634 | entry->in_transition = TRUE; |
| 6635 | |
| 6636 | /* |
| 6637 | * This entry might get split once we unlock the map. |
| 6638 | * In vm_fault_wire(), we need the current range as |
| 6639 | * defined by this entry. In order for this to work |
| 6640 | * along with a simultaneous clip operation, we make a |
| 6641 | * temporary copy of this entry and use that for the |
| 6642 | * wiring. Note that the underlying objects do not |
| 6643 | * change during a clip. |
| 6644 | */ |
| 6645 | tmp_entry = *entry; |
| 6646 | |
| 6647 | /* |
| 6648 | * The in_transition state guarentees that the entry |
| 6649 | * (or entries for this range, if split occured) will be |
| 6650 | * there when the map lock is acquired for the second time. |
| 6651 | */ |
| 6652 | vm_map_unlock(map); |
| 6653 | |
| 6654 | if (!user_wire && cur_thread != THREAD_NULL) |
| 6655 | interruptible_state = thread_interrupt_level(THREAD_UNINT); |
| 6656 | else |
| 6657 | interruptible_state = THREAD_UNINT; |
| 6658 | |
| 6659 | if(map_pmap) |
| 6660 | rc = vm_fault_wire(map, |
| 6661 | &tmp_entry, caller_prot, tag, map_pmap, pmap_addr, |
| 6662 | physpage_p); |
| 6663 | else |
| 6664 | rc = vm_fault_wire(map, |
| 6665 | &tmp_entry, caller_prot, tag, map->pmap, |
| 6666 | tmp_entry.vme_start, |
| 6667 | physpage_p); |
| 6668 | |
| 6669 | if (!user_wire && cur_thread != THREAD_NULL) |
| 6670 | thread_interrupt_level(interruptible_state); |
| 6671 | |
| 6672 | vm_map_lock(map); |
| 6673 | |
| 6674 | if (last_timestamp+1 != map->timestamp) { |
| 6675 | /* |
| 6676 | * Find the entry again. It could have been clipped |
| 6677 | * after we unlocked the map. |
| 6678 | */ |
| 6679 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, |
| 6680 | &first_entry)) |
| 6681 | panic("vm_map_wire: re-lookup failed" ); |
| 6682 | |
| 6683 | entry = first_entry; |
| 6684 | } |
| 6685 | |
| 6686 | last_timestamp = map->timestamp; |
| 6687 | |
| 6688 | while ((entry != vm_map_to_entry(map)) && |
| 6689 | (entry->vme_start < tmp_entry.vme_end)) { |
| 6690 | assert(entry->in_transition); |
| 6691 | entry->in_transition = FALSE; |
| 6692 | if (entry->needs_wakeup) { |
| 6693 | entry->needs_wakeup = FALSE; |
| 6694 | need_wakeup = TRUE; |
| 6695 | } |
| 6696 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 6697 | subtract_wire_counts(map, entry, user_wire); |
| 6698 | } |
| 6699 | entry = entry->vme_next; |
| 6700 | } |
| 6701 | |
| 6702 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 6703 | goto done; |
| 6704 | } |
| 6705 | |
| 6706 | if ((entry != vm_map_to_entry(map)) && /* we still have entries in the map */ |
| 6707 | (tmp_entry.vme_end != end) && /* AND, we are not at the end of the requested range */ |
| 6708 | (entry->vme_start != tmp_entry.vme_end)) { /* AND, the next entry is not contiguous. */ |
| 6709 | /* found a "new" hole */ |
| 6710 | s = tmp_entry.vme_end; |
| 6711 | rc = KERN_INVALID_ADDRESS; |
| 6712 | goto done; |
| 6713 | } |
| 6714 | |
| 6715 | s = entry->vme_start; |
| 6716 | |
| 6717 | } /* end while loop through map entries */ |
| 6718 | |
| 6719 | done: |
| 6720 | if (rc == KERN_SUCCESS) { |
| 6721 | /* repair any damage we may have made to the VM map */ |
| 6722 | vm_map_simplify_range(map, start, end); |
| 6723 | } |
| 6724 | |
| 6725 | vm_map_unlock(map); |
| 6726 | |
| 6727 | /* |
| 6728 | * wake up anybody waiting on entries we wired. |
| 6729 | */ |
| 6730 | if (need_wakeup) |
| 6731 | vm_map_entry_wakeup(map); |
| 6732 | |
| 6733 | if (rc != KERN_SUCCESS) { |
| 6734 | /* undo what has been wired so far */ |
| 6735 | vm_map_unwire_nested(map, start, s, user_wire, |
| 6736 | map_pmap, pmap_addr); |
| 6737 | if (physpage_p) { |
| 6738 | *physpage_p = 0; |
| 6739 | } |
| 6740 | } |
| 6741 | |
| 6742 | return rc; |
| 6743 | |
| 6744 | } |
| 6745 | |
| 6746 | kern_return_t |
| 6747 | vm_map_wire_external( |
| 6748 | vm_map_t map, |
| 6749 | vm_map_offset_t start, |
| 6750 | vm_map_offset_t end, |
| 6751 | vm_prot_t caller_prot, |
| 6752 | boolean_t user_wire) |
| 6753 | { |
| 6754 | kern_return_t kret; |
| 6755 | |
| 6756 | kret = vm_map_wire_nested(map, start, end, caller_prot, vm_tag_bt(), |
| 6757 | user_wire, (pmap_t)NULL, 0, NULL); |
| 6758 | return kret; |
| 6759 | } |
| 6760 | |
| 6761 | kern_return_t |
| 6762 | vm_map_wire_kernel( |
| 6763 | vm_map_t map, |
| 6764 | vm_map_offset_t start, |
| 6765 | vm_map_offset_t end, |
| 6766 | vm_prot_t caller_prot, |
| 6767 | vm_tag_t tag, |
| 6768 | boolean_t user_wire) |
| 6769 | { |
| 6770 | kern_return_t kret; |
| 6771 | |
| 6772 | kret = vm_map_wire_nested(map, start, end, caller_prot, tag, |
| 6773 | user_wire, (pmap_t)NULL, 0, NULL); |
| 6774 | return kret; |
| 6775 | } |
| 6776 | |
| 6777 | kern_return_t |
| 6778 | vm_map_wire_and_extract_external( |
| 6779 | vm_map_t map, |
| 6780 | vm_map_offset_t start, |
| 6781 | vm_prot_t caller_prot, |
| 6782 | boolean_t user_wire, |
| 6783 | ppnum_t *physpage_p) |
| 6784 | { |
| 6785 | kern_return_t kret; |
| 6786 | |
| 6787 | kret = vm_map_wire_nested(map, |
| 6788 | start, |
| 6789 | start+VM_MAP_PAGE_SIZE(map), |
| 6790 | caller_prot, |
| 6791 | vm_tag_bt(), |
| 6792 | user_wire, |
| 6793 | (pmap_t)NULL, |
| 6794 | 0, |
| 6795 | physpage_p); |
| 6796 | if (kret != KERN_SUCCESS && |
| 6797 | physpage_p != NULL) { |
| 6798 | *physpage_p = 0; |
| 6799 | } |
| 6800 | return kret; |
| 6801 | } |
| 6802 | |
| 6803 | kern_return_t |
| 6804 | vm_map_wire_and_extract_kernel( |
| 6805 | vm_map_t map, |
| 6806 | vm_map_offset_t start, |
| 6807 | vm_prot_t caller_prot, |
| 6808 | vm_tag_t tag, |
| 6809 | boolean_t user_wire, |
| 6810 | ppnum_t *physpage_p) |
| 6811 | { |
| 6812 | kern_return_t kret; |
| 6813 | |
| 6814 | kret = vm_map_wire_nested(map, |
| 6815 | start, |
| 6816 | start+VM_MAP_PAGE_SIZE(map), |
| 6817 | caller_prot, |
| 6818 | tag, |
| 6819 | user_wire, |
| 6820 | (pmap_t)NULL, |
| 6821 | 0, |
| 6822 | physpage_p); |
| 6823 | if (kret != KERN_SUCCESS && |
| 6824 | physpage_p != NULL) { |
| 6825 | *physpage_p = 0; |
| 6826 | } |
| 6827 | return kret; |
| 6828 | } |
| 6829 | |
| 6830 | /* |
| 6831 | * vm_map_unwire: |
| 6832 | * |
| 6833 | * Sets the pageability of the specified address range in the target |
| 6834 | * as pageable. Regions specified must have been wired previously. |
| 6835 | * |
| 6836 | * The map must not be locked, but a reference must remain to the map |
| 6837 | * throughout the call. |
| 6838 | * |
| 6839 | * Kernel will panic on failures. User unwire ignores holes and |
| 6840 | * unwired and intransition entries to avoid losing memory by leaving |
| 6841 | * it unwired. |
| 6842 | */ |
| 6843 | static kern_return_t |
| 6844 | vm_map_unwire_nested( |
| 6845 | vm_map_t map, |
| 6846 | vm_map_offset_t start, |
| 6847 | vm_map_offset_t end, |
| 6848 | boolean_t user_wire, |
| 6849 | pmap_t map_pmap, |
| 6850 | vm_map_offset_t pmap_addr) |
| 6851 | { |
| 6852 | vm_map_entry_t entry; |
| 6853 | struct vm_map_entry *first_entry, tmp_entry; |
| 6854 | boolean_t need_wakeup; |
| 6855 | boolean_t main_map = FALSE; |
| 6856 | unsigned int last_timestamp; |
| 6857 | |
| 6858 | vm_map_lock(map); |
| 6859 | if(map_pmap == NULL) |
| 6860 | main_map = TRUE; |
| 6861 | last_timestamp = map->timestamp; |
| 6862 | |
| 6863 | VM_MAP_RANGE_CHECK(map, start, end); |
| 6864 | assert(page_aligned(start)); |
| 6865 | assert(page_aligned(end)); |
| 6866 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 6867 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 6868 | |
| 6869 | if (start == end) { |
| 6870 | /* We unwired what the caller asked for: zero pages */ |
| 6871 | vm_map_unlock(map); |
| 6872 | return KERN_SUCCESS; |
| 6873 | } |
| 6874 | |
| 6875 | if (vm_map_lookup_entry(map, start, &first_entry)) { |
| 6876 | entry = first_entry; |
| 6877 | /* |
| 6878 | * vm_map_clip_start will be done later. |
| 6879 | * We don't want to unnest any nested sub maps here ! |
| 6880 | */ |
| 6881 | } |
| 6882 | else { |
| 6883 | if (!user_wire) { |
| 6884 | panic("vm_map_unwire: start not found" ); |
| 6885 | } |
| 6886 | /* Start address is not in map. */ |
| 6887 | vm_map_unlock(map); |
| 6888 | return(KERN_INVALID_ADDRESS); |
| 6889 | } |
| 6890 | |
| 6891 | if (entry->superpage_size) { |
| 6892 | /* superpages are always wired */ |
| 6893 | vm_map_unlock(map); |
| 6894 | return KERN_INVALID_ADDRESS; |
| 6895 | } |
| 6896 | |
| 6897 | need_wakeup = FALSE; |
| 6898 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 6899 | if (entry->in_transition) { |
| 6900 | /* |
| 6901 | * 1) |
| 6902 | * Another thread is wiring down this entry. Note |
| 6903 | * that if it is not for the other thread we would |
| 6904 | * be unwiring an unwired entry. This is not |
| 6905 | * permitted. If we wait, we will be unwiring memory |
| 6906 | * we did not wire. |
| 6907 | * |
| 6908 | * 2) |
| 6909 | * Another thread is unwiring this entry. We did not |
| 6910 | * have a reference to it, because if we did, this |
| 6911 | * entry will not be getting unwired now. |
| 6912 | */ |
| 6913 | if (!user_wire) { |
| 6914 | /* |
| 6915 | * XXX FBDP |
| 6916 | * This could happen: there could be some |
| 6917 | * overlapping vslock/vsunlock operations |
| 6918 | * going on. |
| 6919 | * We should probably just wait and retry, |
| 6920 | * but then we have to be careful that this |
| 6921 | * entry could get "simplified" after |
| 6922 | * "in_transition" gets unset and before |
| 6923 | * we re-lookup the entry, so we would |
| 6924 | * have to re-clip the entry to avoid |
| 6925 | * re-unwiring what we have already unwired... |
| 6926 | * See vm_map_wire_nested(). |
| 6927 | * |
| 6928 | * Or we could just ignore "in_transition" |
| 6929 | * here and proceed to decement the wired |
| 6930 | * count(s) on this entry. That should be fine |
| 6931 | * as long as "wired_count" doesn't drop all |
| 6932 | * the way to 0 (and we should panic if THAT |
| 6933 | * happens). |
| 6934 | */ |
| 6935 | panic("vm_map_unwire: in_transition entry" ); |
| 6936 | } |
| 6937 | |
| 6938 | entry = entry->vme_next; |
| 6939 | continue; |
| 6940 | } |
| 6941 | |
| 6942 | if (entry->is_sub_map) { |
| 6943 | vm_map_offset_t sub_start; |
| 6944 | vm_map_offset_t sub_end; |
| 6945 | vm_map_offset_t local_end; |
| 6946 | pmap_t pmap; |
| 6947 | |
| 6948 | vm_map_clip_start(map, entry, start); |
| 6949 | vm_map_clip_end(map, entry, end); |
| 6950 | |
| 6951 | sub_start = VME_OFFSET(entry); |
| 6952 | sub_end = entry->vme_end - entry->vme_start; |
| 6953 | sub_end += VME_OFFSET(entry); |
| 6954 | local_end = entry->vme_end; |
| 6955 | if(map_pmap == NULL) { |
| 6956 | if(entry->use_pmap) { |
| 6957 | pmap = VME_SUBMAP(entry)->pmap; |
| 6958 | pmap_addr = sub_start; |
| 6959 | } else { |
| 6960 | pmap = map->pmap; |
| 6961 | pmap_addr = start; |
| 6962 | } |
| 6963 | if (entry->wired_count == 0 || |
| 6964 | (user_wire && entry->user_wired_count == 0)) { |
| 6965 | if (!user_wire) |
| 6966 | panic("vm_map_unwire: entry is unwired" ); |
| 6967 | entry = entry->vme_next; |
| 6968 | continue; |
| 6969 | } |
| 6970 | |
| 6971 | /* |
| 6972 | * Check for holes |
| 6973 | * Holes: Next entry should be contiguous unless |
| 6974 | * this is the end of the region. |
| 6975 | */ |
| 6976 | if (((entry->vme_end < end) && |
| 6977 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 6978 | (entry->vme_next->vme_start |
| 6979 | > entry->vme_end)))) { |
| 6980 | if (!user_wire) |
| 6981 | panic("vm_map_unwire: non-contiguous region" ); |
| 6982 | /* |
| 6983 | entry = entry->vme_next; |
| 6984 | continue; |
| 6985 | */ |
| 6986 | } |
| 6987 | |
| 6988 | subtract_wire_counts(map, entry, user_wire); |
| 6989 | |
| 6990 | if (entry->wired_count != 0) { |
| 6991 | entry = entry->vme_next; |
| 6992 | continue; |
| 6993 | } |
| 6994 | |
| 6995 | entry->in_transition = TRUE; |
| 6996 | tmp_entry = *entry;/* see comment in vm_map_wire() */ |
| 6997 | |
| 6998 | /* |
| 6999 | * We can unlock the map now. The in_transition state |
| 7000 | * guarantees existance of the entry. |
| 7001 | */ |
| 7002 | vm_map_unlock(map); |
| 7003 | vm_map_unwire_nested(VME_SUBMAP(entry), |
| 7004 | sub_start, sub_end, user_wire, pmap, pmap_addr); |
| 7005 | vm_map_lock(map); |
| 7006 | |
| 7007 | if (last_timestamp+1 != map->timestamp) { |
| 7008 | /* |
| 7009 | * Find the entry again. It could have been |
| 7010 | * clipped or deleted after we unlocked the map. |
| 7011 | */ |
| 7012 | if (!vm_map_lookup_entry(map, |
| 7013 | tmp_entry.vme_start, |
| 7014 | &first_entry)) { |
| 7015 | if (!user_wire) |
| 7016 | panic("vm_map_unwire: re-lookup failed" ); |
| 7017 | entry = first_entry->vme_next; |
| 7018 | } else |
| 7019 | entry = first_entry; |
| 7020 | } |
| 7021 | last_timestamp = map->timestamp; |
| 7022 | |
| 7023 | /* |
| 7024 | * clear transition bit for all constituent entries |
| 7025 | * that were in the original entry (saved in |
| 7026 | * tmp_entry). Also check for waiters. |
| 7027 | */ |
| 7028 | while ((entry != vm_map_to_entry(map)) && |
| 7029 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7030 | assert(entry->in_transition); |
| 7031 | entry->in_transition = FALSE; |
| 7032 | if (entry->needs_wakeup) { |
| 7033 | entry->needs_wakeup = FALSE; |
| 7034 | need_wakeup = TRUE; |
| 7035 | } |
| 7036 | entry = entry->vme_next; |
| 7037 | } |
| 7038 | continue; |
| 7039 | } else { |
| 7040 | vm_map_unlock(map); |
| 7041 | vm_map_unwire_nested(VME_SUBMAP(entry), |
| 7042 | sub_start, sub_end, user_wire, map_pmap, |
| 7043 | pmap_addr); |
| 7044 | vm_map_lock(map); |
| 7045 | |
| 7046 | if (last_timestamp+1 != map->timestamp) { |
| 7047 | /* |
| 7048 | * Find the entry again. It could have been |
| 7049 | * clipped or deleted after we unlocked the map. |
| 7050 | */ |
| 7051 | if (!vm_map_lookup_entry(map, |
| 7052 | tmp_entry.vme_start, |
| 7053 | &first_entry)) { |
| 7054 | if (!user_wire) |
| 7055 | panic("vm_map_unwire: re-lookup failed" ); |
| 7056 | entry = first_entry->vme_next; |
| 7057 | } else |
| 7058 | entry = first_entry; |
| 7059 | } |
| 7060 | last_timestamp = map->timestamp; |
| 7061 | } |
| 7062 | } |
| 7063 | |
| 7064 | |
| 7065 | if ((entry->wired_count == 0) || |
| 7066 | (user_wire && entry->user_wired_count == 0)) { |
| 7067 | if (!user_wire) |
| 7068 | panic("vm_map_unwire: entry is unwired" ); |
| 7069 | |
| 7070 | entry = entry->vme_next; |
| 7071 | continue; |
| 7072 | } |
| 7073 | |
| 7074 | assert(entry->wired_count > 0 && |
| 7075 | (!user_wire || entry->user_wired_count > 0)); |
| 7076 | |
| 7077 | vm_map_clip_start(map, entry, start); |
| 7078 | vm_map_clip_end(map, entry, end); |
| 7079 | |
| 7080 | /* |
| 7081 | * Check for holes |
| 7082 | * Holes: Next entry should be contiguous unless |
| 7083 | * this is the end of the region. |
| 7084 | */ |
| 7085 | if (((entry->vme_end < end) && |
| 7086 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 7087 | (entry->vme_next->vme_start > entry->vme_end)))) { |
| 7088 | |
| 7089 | if (!user_wire) |
| 7090 | panic("vm_map_unwire: non-contiguous region" ); |
| 7091 | entry = entry->vme_next; |
| 7092 | continue; |
| 7093 | } |
| 7094 | |
| 7095 | subtract_wire_counts(map, entry, user_wire); |
| 7096 | |
| 7097 | if (entry->wired_count != 0) { |
| 7098 | entry = entry->vme_next; |
| 7099 | continue; |
| 7100 | } |
| 7101 | |
| 7102 | if(entry->zero_wired_pages) { |
| 7103 | entry->zero_wired_pages = FALSE; |
| 7104 | } |
| 7105 | |
| 7106 | entry->in_transition = TRUE; |
| 7107 | tmp_entry = *entry; /* see comment in vm_map_wire() */ |
| 7108 | |
| 7109 | /* |
| 7110 | * We can unlock the map now. The in_transition state |
| 7111 | * guarantees existance of the entry. |
| 7112 | */ |
| 7113 | vm_map_unlock(map); |
| 7114 | if(map_pmap) { |
| 7115 | vm_fault_unwire(map, |
| 7116 | &tmp_entry, FALSE, map_pmap, pmap_addr); |
| 7117 | } else { |
| 7118 | vm_fault_unwire(map, |
| 7119 | &tmp_entry, FALSE, map->pmap, |
| 7120 | tmp_entry.vme_start); |
| 7121 | } |
| 7122 | vm_map_lock(map); |
| 7123 | |
| 7124 | if (last_timestamp+1 != map->timestamp) { |
| 7125 | /* |
| 7126 | * Find the entry again. It could have been clipped |
| 7127 | * or deleted after we unlocked the map. |
| 7128 | */ |
| 7129 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, |
| 7130 | &first_entry)) { |
| 7131 | if (!user_wire) |
| 7132 | panic("vm_map_unwire: re-lookup failed" ); |
| 7133 | entry = first_entry->vme_next; |
| 7134 | } else |
| 7135 | entry = first_entry; |
| 7136 | } |
| 7137 | last_timestamp = map->timestamp; |
| 7138 | |
| 7139 | /* |
| 7140 | * clear transition bit for all constituent entries that |
| 7141 | * were in the original entry (saved in tmp_entry). Also |
| 7142 | * check for waiters. |
| 7143 | */ |
| 7144 | while ((entry != vm_map_to_entry(map)) && |
| 7145 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7146 | assert(entry->in_transition); |
| 7147 | entry->in_transition = FALSE; |
| 7148 | if (entry->needs_wakeup) { |
| 7149 | entry->needs_wakeup = FALSE; |
| 7150 | need_wakeup = TRUE; |
| 7151 | } |
| 7152 | entry = entry->vme_next; |
| 7153 | } |
| 7154 | } |
| 7155 | |
| 7156 | /* |
| 7157 | * We might have fragmented the address space when we wired this |
| 7158 | * range of addresses. Attempt to re-coalesce these VM map entries |
| 7159 | * with their neighbors now that they're no longer wired. |
| 7160 | * Under some circumstances, address space fragmentation can |
| 7161 | * prevent VM object shadow chain collapsing, which can cause |
| 7162 | * swap space leaks. |
| 7163 | */ |
| 7164 | vm_map_simplify_range(map, start, end); |
| 7165 | |
| 7166 | vm_map_unlock(map); |
| 7167 | /* |
| 7168 | * wake up anybody waiting on entries that we have unwired. |
| 7169 | */ |
| 7170 | if (need_wakeup) |
| 7171 | vm_map_entry_wakeup(map); |
| 7172 | return(KERN_SUCCESS); |
| 7173 | |
| 7174 | } |
| 7175 | |
| 7176 | kern_return_t |
| 7177 | vm_map_unwire( |
| 7178 | vm_map_t map, |
| 7179 | vm_map_offset_t start, |
| 7180 | vm_map_offset_t end, |
| 7181 | boolean_t user_wire) |
| 7182 | { |
| 7183 | return vm_map_unwire_nested(map, start, end, |
| 7184 | user_wire, (pmap_t)NULL, 0); |
| 7185 | } |
| 7186 | |
| 7187 | |
| 7188 | /* |
| 7189 | * vm_map_entry_delete: [ internal use only ] |
| 7190 | * |
| 7191 | * Deallocate the given entry from the target map. |
| 7192 | */ |
| 7193 | static void |
| 7194 | vm_map_entry_delete( |
| 7195 | vm_map_t map, |
| 7196 | vm_map_entry_t entry) |
| 7197 | { |
| 7198 | vm_map_offset_t s, e; |
| 7199 | vm_object_t object; |
| 7200 | vm_map_t submap; |
| 7201 | |
| 7202 | s = entry->vme_start; |
| 7203 | e = entry->vme_end; |
| 7204 | assert(page_aligned(s)); |
| 7205 | assert(page_aligned(e)); |
| 7206 | if (entry->map_aligned == TRUE) { |
| 7207 | assert(VM_MAP_PAGE_ALIGNED(s, VM_MAP_PAGE_MASK(map))); |
| 7208 | assert(VM_MAP_PAGE_ALIGNED(e, VM_MAP_PAGE_MASK(map))); |
| 7209 | } |
| 7210 | assert(entry->wired_count == 0); |
| 7211 | assert(entry->user_wired_count == 0); |
| 7212 | assert(!entry->permanent); |
| 7213 | |
| 7214 | if (entry->is_sub_map) { |
| 7215 | object = NULL; |
| 7216 | submap = VME_SUBMAP(entry); |
| 7217 | } else { |
| 7218 | submap = NULL; |
| 7219 | object = VME_OBJECT(entry); |
| 7220 | } |
| 7221 | |
| 7222 | vm_map_store_entry_unlink(map, entry); |
| 7223 | map->size -= e - s; |
| 7224 | |
| 7225 | vm_map_entry_dispose(map, entry); |
| 7226 | |
| 7227 | vm_map_unlock(map); |
| 7228 | /* |
| 7229 | * Deallocate the object only after removing all |
| 7230 | * pmap entries pointing to its pages. |
| 7231 | */ |
| 7232 | if (submap) |
| 7233 | vm_map_deallocate(submap); |
| 7234 | else |
| 7235 | vm_object_deallocate(object); |
| 7236 | |
| 7237 | } |
| 7238 | |
| 7239 | void |
| 7240 | vm_map_submap_pmap_clean( |
| 7241 | vm_map_t map, |
| 7242 | vm_map_offset_t start, |
| 7243 | vm_map_offset_t end, |
| 7244 | vm_map_t sub_map, |
| 7245 | vm_map_offset_t offset) |
| 7246 | { |
| 7247 | vm_map_offset_t submap_start; |
| 7248 | vm_map_offset_t submap_end; |
| 7249 | vm_map_size_t remove_size; |
| 7250 | vm_map_entry_t entry; |
| 7251 | |
| 7252 | submap_end = offset + (end - start); |
| 7253 | submap_start = offset; |
| 7254 | |
| 7255 | vm_map_lock_read(sub_map); |
| 7256 | if(vm_map_lookup_entry(sub_map, offset, &entry)) { |
| 7257 | |
| 7258 | remove_size = (entry->vme_end - entry->vme_start); |
| 7259 | if(offset > entry->vme_start) |
| 7260 | remove_size -= offset - entry->vme_start; |
| 7261 | |
| 7262 | |
| 7263 | if(submap_end < entry->vme_end) { |
| 7264 | remove_size -= |
| 7265 | entry->vme_end - submap_end; |
| 7266 | } |
| 7267 | if(entry->is_sub_map) { |
| 7268 | vm_map_submap_pmap_clean( |
| 7269 | sub_map, |
| 7270 | start, |
| 7271 | start + remove_size, |
| 7272 | VME_SUBMAP(entry), |
| 7273 | VME_OFFSET(entry)); |
| 7274 | } else { |
| 7275 | |
| 7276 | if((map->mapped_in_other_pmaps) && (map->map_refcnt) |
| 7277 | && (VME_OBJECT(entry) != NULL)) { |
| 7278 | vm_object_pmap_protect_options( |
| 7279 | VME_OBJECT(entry), |
| 7280 | (VME_OFFSET(entry) + |
| 7281 | offset - |
| 7282 | entry->vme_start), |
| 7283 | remove_size, |
| 7284 | PMAP_NULL, |
| 7285 | entry->vme_start, |
| 7286 | VM_PROT_NONE, |
| 7287 | PMAP_OPTIONS_REMOVE); |
| 7288 | } else { |
| 7289 | pmap_remove(map->pmap, |
| 7290 | (addr64_t)start, |
| 7291 | (addr64_t)(start + remove_size)); |
| 7292 | } |
| 7293 | } |
| 7294 | } |
| 7295 | |
| 7296 | entry = entry->vme_next; |
| 7297 | |
| 7298 | while((entry != vm_map_to_entry(sub_map)) |
| 7299 | && (entry->vme_start < submap_end)) { |
| 7300 | remove_size = (entry->vme_end - entry->vme_start); |
| 7301 | if(submap_end < entry->vme_end) { |
| 7302 | remove_size -= entry->vme_end - submap_end; |
| 7303 | } |
| 7304 | if(entry->is_sub_map) { |
| 7305 | vm_map_submap_pmap_clean( |
| 7306 | sub_map, |
| 7307 | (start + entry->vme_start) - offset, |
| 7308 | ((start + entry->vme_start) - offset) + remove_size, |
| 7309 | VME_SUBMAP(entry), |
| 7310 | VME_OFFSET(entry)); |
| 7311 | } else { |
| 7312 | if((map->mapped_in_other_pmaps) && (map->map_refcnt) |
| 7313 | && (VME_OBJECT(entry) != NULL)) { |
| 7314 | vm_object_pmap_protect_options( |
| 7315 | VME_OBJECT(entry), |
| 7316 | VME_OFFSET(entry), |
| 7317 | remove_size, |
| 7318 | PMAP_NULL, |
| 7319 | entry->vme_start, |
| 7320 | VM_PROT_NONE, |
| 7321 | PMAP_OPTIONS_REMOVE); |
| 7322 | } else { |
| 7323 | pmap_remove(map->pmap, |
| 7324 | (addr64_t)((start + entry->vme_start) |
| 7325 | - offset), |
| 7326 | (addr64_t)(((start + entry->vme_start) |
| 7327 | - offset) + remove_size)); |
| 7328 | } |
| 7329 | } |
| 7330 | entry = entry->vme_next; |
| 7331 | } |
| 7332 | vm_map_unlock_read(sub_map); |
| 7333 | return; |
| 7334 | } |
| 7335 | |
| 7336 | /* |
| 7337 | * virt_memory_guard_ast: |
| 7338 | * |
| 7339 | * Handle the AST callout for a virtual memory guard. |
| 7340 | * raise an EXC_GUARD exception and terminate the task |
| 7341 | * if configured to do so. |
| 7342 | */ |
| 7343 | void |
| 7344 | virt_memory_guard_ast( |
| 7345 | thread_t thread, |
| 7346 | mach_exception_data_type_t code, |
| 7347 | mach_exception_data_type_t subcode) |
| 7348 | { |
| 7349 | task_t task = thread->task; |
| 7350 | assert(task != kernel_task); |
| 7351 | assert(task == current_task()); |
| 7352 | uint32_t behavior; |
| 7353 | |
| 7354 | behavior = task->task_exc_guard; |
| 7355 | |
| 7356 | /* Is delivery enabled */ |
| 7357 | if ((behavior & TASK_EXC_GUARD_VM_DELIVER) == 0) { |
| 7358 | return; |
| 7359 | } |
| 7360 | |
| 7361 | /* If only once, make sure we're that once */ |
| 7362 | while (behavior & TASK_EXC_GUARD_VM_ONCE) { |
| 7363 | uint32_t new_behavior = behavior & ~TASK_EXC_GUARD_VM_DELIVER; |
| 7364 | |
| 7365 | if (OSCompareAndSwap(behavior, new_behavior, &task->task_exc_guard)) { |
| 7366 | break; |
| 7367 | } |
| 7368 | behavior = task->task_exc_guard; |
| 7369 | if ((behavior & TASK_EXC_GUARD_VM_DELIVER) == 0) { |
| 7370 | return; |
| 7371 | } |
| 7372 | } |
| 7373 | |
| 7374 | /* Raise exception via corpse fork or synchronously */ |
| 7375 | if ((task->task_exc_guard & TASK_EXC_GUARD_VM_CORPSE) && |
| 7376 | (task->task_exc_guard & TASK_EXC_GUARD_VM_FATAL) == 0) { |
| 7377 | task_violated_guard(code, subcode, NULL); |
| 7378 | } else { |
| 7379 | task_exception_notify(EXC_GUARD, code, subcode); |
| 7380 | } |
| 7381 | |
| 7382 | /* Terminate the task if desired */ |
| 7383 | if (task->task_exc_guard & TASK_EXC_GUARD_VM_FATAL) { |
| 7384 | task_bsdtask_kill(current_task()); |
| 7385 | } |
| 7386 | } |
| 7387 | |
| 7388 | /* |
| 7389 | * vm_map_guard_exception: |
| 7390 | * |
| 7391 | * Generate a GUARD_TYPE_VIRTUAL_MEMORY EXC_GUARD exception. |
| 7392 | * |
| 7393 | * Right now, we do this when we find nothing mapped, or a |
| 7394 | * gap in the mapping when a user address space deallocate |
| 7395 | * was requested. We report the address of the first gap found. |
| 7396 | */ |
| 7397 | static void |
| 7398 | vm_map_guard_exception( |
| 7399 | vm_map_offset_t gap_start, |
| 7400 | unsigned reason) |
| 7401 | { |
| 7402 | mach_exception_code_t code = 0; |
| 7403 | unsigned int guard_type = GUARD_TYPE_VIRT_MEMORY; |
| 7404 | unsigned int target = 0; /* should we pass in pid associated with map? */ |
| 7405 | mach_exception_data_type_t subcode = (uint64_t)gap_start; |
| 7406 | |
| 7407 | /* Can't deliver exceptions to kernel task */ |
| 7408 | if (current_task() == kernel_task) |
| 7409 | return; |
| 7410 | |
| 7411 | EXC_GUARD_ENCODE_TYPE(code, guard_type); |
| 7412 | EXC_GUARD_ENCODE_FLAVOR(code, reason); |
| 7413 | EXC_GUARD_ENCODE_TARGET(code, target); |
| 7414 | thread_guard_violation(current_thread(), code, subcode); |
| 7415 | } |
| 7416 | |
| 7417 | /* |
| 7418 | * vm_map_delete: [ internal use only ] |
| 7419 | * |
| 7420 | * Deallocates the given address range from the target map. |
| 7421 | * Removes all user wirings. Unwires one kernel wiring if |
| 7422 | * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go |
| 7423 | * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps |
| 7424 | * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set. |
| 7425 | * |
| 7426 | * This routine is called with map locked and leaves map locked. |
| 7427 | */ |
| 7428 | static kern_return_t |
| 7429 | vm_map_delete( |
| 7430 | vm_map_t map, |
| 7431 | vm_map_offset_t start, |
| 7432 | vm_map_offset_t end, |
| 7433 | int flags, |
| 7434 | vm_map_t zap_map) |
| 7435 | { |
| 7436 | vm_map_entry_t entry, next; |
| 7437 | struct vm_map_entry *first_entry, tmp_entry; |
| 7438 | vm_map_offset_t s; |
| 7439 | vm_object_t object; |
| 7440 | boolean_t need_wakeup; |
| 7441 | unsigned int last_timestamp = ~0; /* unlikely value */ |
| 7442 | int interruptible; |
| 7443 | vm_map_offset_t gap_start; |
| 7444 | vm_map_offset_t save_start = start; |
| 7445 | vm_map_offset_t save_end = end; |
| 7446 | const vm_map_offset_t FIND_GAP = 1; /* a not page aligned value */ |
| 7447 | const vm_map_offset_t GAPS_OK = 2; /* a different not page aligned value */ |
| 7448 | |
| 7449 | if (map != kernel_map && !(flags & VM_MAP_REMOVE_GAPS_OK)) |
| 7450 | gap_start = FIND_GAP; |
| 7451 | else |
| 7452 | gap_start = GAPS_OK; |
| 7453 | |
| 7454 | interruptible = (flags & VM_MAP_REMOVE_INTERRUPTIBLE) ? |
| 7455 | THREAD_ABORTSAFE : THREAD_UNINT; |
| 7456 | |
| 7457 | /* |
| 7458 | * All our DMA I/O operations in IOKit are currently done by |
| 7459 | * wiring through the map entries of the task requesting the I/O. |
| 7460 | * Because of this, we must always wait for kernel wirings |
| 7461 | * to go away on the entries before deleting them. |
| 7462 | * |
| 7463 | * Any caller who wants to actually remove a kernel wiring |
| 7464 | * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to |
| 7465 | * properly remove one wiring instead of blasting through |
| 7466 | * them all. |
| 7467 | */ |
| 7468 | flags |= VM_MAP_REMOVE_WAIT_FOR_KWIRE; |
| 7469 | |
| 7470 | while(1) { |
| 7471 | /* |
| 7472 | * Find the start of the region, and clip it |
| 7473 | */ |
| 7474 | if (vm_map_lookup_entry(map, start, &first_entry)) { |
| 7475 | entry = first_entry; |
| 7476 | if (map == kalloc_map && |
| 7477 | (entry->vme_start != start || |
| 7478 | entry->vme_end != end)) { |
| 7479 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 7480 | "mismatched entry %p [0x%llx:0x%llx]\n" , |
| 7481 | map, |
| 7482 | (uint64_t)start, |
| 7483 | (uint64_t)end, |
| 7484 | entry, |
| 7485 | (uint64_t)entry->vme_start, |
| 7486 | (uint64_t)entry->vme_end); |
| 7487 | } |
| 7488 | |
| 7489 | /* |
| 7490 | * If in a superpage, extend the range to include the start of the mapping. |
| 7491 | */ |
| 7492 | if (entry->superpage_size && (start & ~SUPERPAGE_MASK)) { |
| 7493 | start = SUPERPAGE_ROUND_DOWN(start); |
| 7494 | continue; |
| 7495 | } |
| 7496 | |
| 7497 | if (start == entry->vme_start) { |
| 7498 | /* |
| 7499 | * No need to clip. We don't want to cause |
| 7500 | * any unnecessary unnesting in this case... |
| 7501 | */ |
| 7502 | } else { |
| 7503 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && |
| 7504 | entry->map_aligned && |
| 7505 | !VM_MAP_PAGE_ALIGNED( |
| 7506 | start, |
| 7507 | VM_MAP_PAGE_MASK(map))) { |
| 7508 | /* |
| 7509 | * The entry will no longer be |
| 7510 | * map-aligned after clipping |
| 7511 | * and the caller said it's OK. |
| 7512 | */ |
| 7513 | entry->map_aligned = FALSE; |
| 7514 | } |
| 7515 | if (map == kalloc_map) { |
| 7516 | panic("vm_map_delete(%p,0x%llx,0x%llx):" |
| 7517 | " clipping %p at 0x%llx\n" , |
| 7518 | map, |
| 7519 | (uint64_t)start, |
| 7520 | (uint64_t)end, |
| 7521 | entry, |
| 7522 | (uint64_t)start); |
| 7523 | } |
| 7524 | vm_map_clip_start(map, entry, start); |
| 7525 | } |
| 7526 | |
| 7527 | /* |
| 7528 | * Fix the lookup hint now, rather than each |
| 7529 | * time through the loop. |
| 7530 | */ |
| 7531 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 7532 | |
| 7533 | } else { |
| 7534 | |
| 7535 | if (map->pmap == kernel_pmap && |
| 7536 | map->map_refcnt != 0) { |
| 7537 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 7538 | "no map entry at 0x%llx\n" , |
| 7539 | map, |
| 7540 | (uint64_t)start, |
| 7541 | (uint64_t)end, |
| 7542 | (uint64_t)start); |
| 7543 | } |
| 7544 | entry = first_entry->vme_next; |
| 7545 | if (gap_start == FIND_GAP) |
| 7546 | gap_start = start; |
| 7547 | } |
| 7548 | break; |
| 7549 | } |
| 7550 | if (entry->superpage_size) |
| 7551 | end = SUPERPAGE_ROUND_UP(end); |
| 7552 | |
| 7553 | need_wakeup = FALSE; |
| 7554 | /* |
| 7555 | * Step through all entries in this region |
| 7556 | */ |
| 7557 | s = entry->vme_start; |
| 7558 | while ((entry != vm_map_to_entry(map)) && (s < end)) { |
| 7559 | /* |
| 7560 | * At this point, we have deleted all the memory entries |
| 7561 | * between "start" and "s". We still need to delete |
| 7562 | * all memory entries between "s" and "end". |
| 7563 | * While we were blocked and the map was unlocked, some |
| 7564 | * new memory entries could have been re-allocated between |
| 7565 | * "start" and "s" and we don't want to mess with those. |
| 7566 | * Some of those entries could even have been re-assembled |
| 7567 | * with an entry after "s" (in vm_map_simplify_entry()), so |
| 7568 | * we may have to vm_map_clip_start() again. |
| 7569 | */ |
| 7570 | |
| 7571 | if (entry->vme_start >= s) { |
| 7572 | /* |
| 7573 | * This entry starts on or after "s" |
| 7574 | * so no need to clip its start. |
| 7575 | */ |
| 7576 | } else { |
| 7577 | /* |
| 7578 | * This entry has been re-assembled by a |
| 7579 | * vm_map_simplify_entry(). We need to |
| 7580 | * re-clip its start. |
| 7581 | */ |
| 7582 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && |
| 7583 | entry->map_aligned && |
| 7584 | !VM_MAP_PAGE_ALIGNED(s, |
| 7585 | VM_MAP_PAGE_MASK(map))) { |
| 7586 | /* |
| 7587 | * The entry will no longer be map-aligned |
| 7588 | * after clipping and the caller said it's OK. |
| 7589 | */ |
| 7590 | entry->map_aligned = FALSE; |
| 7591 | } |
| 7592 | if (map == kalloc_map) { |
| 7593 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 7594 | "clipping %p at 0x%llx\n" , |
| 7595 | map, |
| 7596 | (uint64_t)start, |
| 7597 | (uint64_t)end, |
| 7598 | entry, |
| 7599 | (uint64_t)s); |
| 7600 | } |
| 7601 | vm_map_clip_start(map, entry, s); |
| 7602 | } |
| 7603 | if (entry->vme_end <= end) { |
| 7604 | /* |
| 7605 | * This entry is going away completely, so no need |
| 7606 | * to clip and possibly cause an unnecessary unnesting. |
| 7607 | */ |
| 7608 | } else { |
| 7609 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && |
| 7610 | entry->map_aligned && |
| 7611 | !VM_MAP_PAGE_ALIGNED(end, |
| 7612 | VM_MAP_PAGE_MASK(map))) { |
| 7613 | /* |
| 7614 | * The entry will no longer be map-aligned |
| 7615 | * after clipping and the caller said it's OK. |
| 7616 | */ |
| 7617 | entry->map_aligned = FALSE; |
| 7618 | } |
| 7619 | if (map == kalloc_map) { |
| 7620 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 7621 | "clipping %p at 0x%llx\n" , |
| 7622 | map, |
| 7623 | (uint64_t)start, |
| 7624 | (uint64_t)end, |
| 7625 | entry, |
| 7626 | (uint64_t)end); |
| 7627 | } |
| 7628 | vm_map_clip_end(map, entry, end); |
| 7629 | } |
| 7630 | |
| 7631 | if (entry->permanent) { |
| 7632 | if (map->pmap == kernel_pmap) { |
| 7633 | panic("%s(%p,0x%llx,0x%llx): " |
| 7634 | "attempt to remove permanent " |
| 7635 | "VM map entry " |
| 7636 | "%p [0x%llx:0x%llx]\n" , |
| 7637 | __FUNCTION__, |
| 7638 | map, |
| 7639 | (uint64_t) start, |
| 7640 | (uint64_t) end, |
| 7641 | entry, |
| 7642 | (uint64_t) entry->vme_start, |
| 7643 | (uint64_t) entry->vme_end); |
| 7644 | } else if (flags & VM_MAP_REMOVE_IMMUTABLE) { |
| 7645 | // printf("FBDP %d[%s] removing permanent entry %p [0x%llx:0x%llx] prot 0x%x/0x%x\n", proc_selfpid(), (current_task()->bsd_info ? proc_name_address(current_task()->bsd_info) : "?"), entry, (uint64_t)entry->vme_start, (uint64_t)entry->vme_end, entry->protection, entry->max_protection); |
| 7646 | entry->permanent = FALSE; |
| 7647 | #if PMAP_CS |
| 7648 | } else if ((entry->protection & VM_PROT_EXECUTE) && !pmap_cs_enforced(map->pmap)) { |
| 7649 | entry->permanent = FALSE; |
| 7650 | |
| 7651 | printf("%d[%s] %s(0x%llx,0x%llx): " |
| 7652 | "pmap_cs disabled, allowing for permanent executable entry [0x%llx:0x%llx] " |
| 7653 | "prot 0x%x/0x%x\n" , |
| 7654 | proc_selfpid(), |
| 7655 | (current_task()->bsd_info |
| 7656 | ? proc_name_address(current_task()->bsd_info) |
| 7657 | : "?" ), |
| 7658 | __FUNCTION__, |
| 7659 | (uint64_t) start, |
| 7660 | (uint64_t) end, |
| 7661 | (uint64_t)entry->vme_start, |
| 7662 | (uint64_t)entry->vme_end, |
| 7663 | entry->protection, |
| 7664 | entry->max_protection); |
| 7665 | #endif |
| 7666 | } else { |
| 7667 | if (vm_map_executable_immutable_verbose) { |
| 7668 | printf("%d[%s] %s(0x%llx,0x%llx): " |
| 7669 | "permanent entry [0x%llx:0x%llx] " |
| 7670 | "prot 0x%x/0x%x\n" , |
| 7671 | proc_selfpid(), |
| 7672 | (current_task()->bsd_info |
| 7673 | ? proc_name_address(current_task()->bsd_info) |
| 7674 | : "?" ), |
| 7675 | __FUNCTION__, |
| 7676 | (uint64_t) start, |
| 7677 | (uint64_t) end, |
| 7678 | (uint64_t)entry->vme_start, |
| 7679 | (uint64_t)entry->vme_end, |
| 7680 | entry->protection, |
| 7681 | entry->max_protection); |
| 7682 | } |
| 7683 | /* |
| 7684 | * dtrace -n 'vm_map_delete_permanent { print("start=0x%llx end=0x%llx prot=0x%x/0x%x\n", arg0, arg1, arg2, arg3); stack(); ustack(); }' |
| 7685 | */ |
| 7686 | DTRACE_VM5(vm_map_delete_permanent, |
| 7687 | vm_map_offset_t, entry->vme_start, |
| 7688 | vm_map_offset_t, entry->vme_end, |
| 7689 | vm_prot_t, entry->protection, |
| 7690 | vm_prot_t, entry->max_protection, |
| 7691 | int, VME_ALIAS(entry)); |
| 7692 | } |
| 7693 | } |
| 7694 | |
| 7695 | |
| 7696 | if (entry->in_transition) { |
| 7697 | wait_result_t wait_result; |
| 7698 | |
| 7699 | /* |
| 7700 | * Another thread is wiring/unwiring this entry. |
| 7701 | * Let the other thread know we are waiting. |
| 7702 | */ |
| 7703 | assert(s == entry->vme_start); |
| 7704 | entry->needs_wakeup = TRUE; |
| 7705 | |
| 7706 | /* |
| 7707 | * wake up anybody waiting on entries that we have |
| 7708 | * already unwired/deleted. |
| 7709 | */ |
| 7710 | if (need_wakeup) { |
| 7711 | vm_map_entry_wakeup(map); |
| 7712 | need_wakeup = FALSE; |
| 7713 | } |
| 7714 | |
| 7715 | wait_result = vm_map_entry_wait(map, interruptible); |
| 7716 | |
| 7717 | if (interruptible && |
| 7718 | wait_result == THREAD_INTERRUPTED) { |
| 7719 | /* |
| 7720 | * We do not clear the needs_wakeup flag, |
| 7721 | * since we cannot tell if we were the only one. |
| 7722 | */ |
| 7723 | return KERN_ABORTED; |
| 7724 | } |
| 7725 | |
| 7726 | /* |
| 7727 | * The entry could have been clipped or it |
| 7728 | * may not exist anymore. Look it up again. |
| 7729 | */ |
| 7730 | if (!vm_map_lookup_entry(map, s, &first_entry)) { |
| 7731 | /* |
| 7732 | * User: use the next entry |
| 7733 | */ |
| 7734 | if (gap_start == FIND_GAP) |
| 7735 | gap_start = s; |
| 7736 | entry = first_entry->vme_next; |
| 7737 | s = entry->vme_start; |
| 7738 | } else { |
| 7739 | entry = first_entry; |
| 7740 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 7741 | } |
| 7742 | last_timestamp = map->timestamp; |
| 7743 | continue; |
| 7744 | } /* end in_transition */ |
| 7745 | |
| 7746 | if (entry->wired_count) { |
| 7747 | boolean_t user_wire; |
| 7748 | |
| 7749 | user_wire = entry->user_wired_count > 0; |
| 7750 | |
| 7751 | /* |
| 7752 | * Remove a kernel wiring if requested |
| 7753 | */ |
| 7754 | if (flags & VM_MAP_REMOVE_KUNWIRE) { |
| 7755 | entry->wired_count--; |
| 7756 | } |
| 7757 | |
| 7758 | /* |
| 7759 | * Remove all user wirings for proper accounting |
| 7760 | */ |
| 7761 | if (entry->user_wired_count > 0) { |
| 7762 | while (entry->user_wired_count) |
| 7763 | subtract_wire_counts(map, entry, user_wire); |
| 7764 | } |
| 7765 | |
| 7766 | if (entry->wired_count != 0) { |
| 7767 | assert(map != kernel_map); |
| 7768 | /* |
| 7769 | * Cannot continue. Typical case is when |
| 7770 | * a user thread has physical io pending on |
| 7771 | * on this page. Either wait for the |
| 7772 | * kernel wiring to go away or return an |
| 7773 | * error. |
| 7774 | */ |
| 7775 | if (flags & VM_MAP_REMOVE_WAIT_FOR_KWIRE) { |
| 7776 | wait_result_t wait_result; |
| 7777 | |
| 7778 | assert(s == entry->vme_start); |
| 7779 | entry->needs_wakeup = TRUE; |
| 7780 | wait_result = vm_map_entry_wait(map, |
| 7781 | interruptible); |
| 7782 | |
| 7783 | if (interruptible && |
| 7784 | wait_result == THREAD_INTERRUPTED) { |
| 7785 | /* |
| 7786 | * We do not clear the |
| 7787 | * needs_wakeup flag, since we |
| 7788 | * cannot tell if we were the |
| 7789 | * only one. |
| 7790 | */ |
| 7791 | return KERN_ABORTED; |
| 7792 | } |
| 7793 | |
| 7794 | /* |
| 7795 | * The entry could have been clipped or |
| 7796 | * it may not exist anymore. Look it |
| 7797 | * up again. |
| 7798 | */ |
| 7799 | if (!vm_map_lookup_entry(map, s, |
| 7800 | &first_entry)) { |
| 7801 | assert(map != kernel_map); |
| 7802 | /* |
| 7803 | * User: use the next entry |
| 7804 | */ |
| 7805 | if (gap_start == FIND_GAP) |
| 7806 | gap_start = s; |
| 7807 | entry = first_entry->vme_next; |
| 7808 | s = entry->vme_start; |
| 7809 | } else { |
| 7810 | entry = first_entry; |
| 7811 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 7812 | } |
| 7813 | last_timestamp = map->timestamp; |
| 7814 | continue; |
| 7815 | } |
| 7816 | else { |
| 7817 | return KERN_FAILURE; |
| 7818 | } |
| 7819 | } |
| 7820 | |
| 7821 | entry->in_transition = TRUE; |
| 7822 | /* |
| 7823 | * copy current entry. see comment in vm_map_wire() |
| 7824 | */ |
| 7825 | tmp_entry = *entry; |
| 7826 | assert(s == entry->vme_start); |
| 7827 | |
| 7828 | /* |
| 7829 | * We can unlock the map now. The in_transition |
| 7830 | * state guarentees existance of the entry. |
| 7831 | */ |
| 7832 | vm_map_unlock(map); |
| 7833 | |
| 7834 | if (tmp_entry.is_sub_map) { |
| 7835 | vm_map_t sub_map; |
| 7836 | vm_map_offset_t sub_start, sub_end; |
| 7837 | pmap_t pmap; |
| 7838 | vm_map_offset_t pmap_addr; |
| 7839 | |
| 7840 | |
| 7841 | sub_map = VME_SUBMAP(&tmp_entry); |
| 7842 | sub_start = VME_OFFSET(&tmp_entry); |
| 7843 | sub_end = sub_start + (tmp_entry.vme_end - |
| 7844 | tmp_entry.vme_start); |
| 7845 | if (tmp_entry.use_pmap) { |
| 7846 | pmap = sub_map->pmap; |
| 7847 | pmap_addr = tmp_entry.vme_start; |
| 7848 | } else { |
| 7849 | pmap = map->pmap; |
| 7850 | pmap_addr = tmp_entry.vme_start; |
| 7851 | } |
| 7852 | (void) vm_map_unwire_nested(sub_map, |
| 7853 | sub_start, sub_end, |
| 7854 | user_wire, |
| 7855 | pmap, pmap_addr); |
| 7856 | } else { |
| 7857 | |
| 7858 | if (VME_OBJECT(&tmp_entry) == kernel_object) { |
| 7859 | pmap_protect_options( |
| 7860 | map->pmap, |
| 7861 | tmp_entry.vme_start, |
| 7862 | tmp_entry.vme_end, |
| 7863 | VM_PROT_NONE, |
| 7864 | PMAP_OPTIONS_REMOVE, |
| 7865 | NULL); |
| 7866 | } |
| 7867 | vm_fault_unwire(map, &tmp_entry, |
| 7868 | VME_OBJECT(&tmp_entry) == kernel_object, |
| 7869 | map->pmap, tmp_entry.vme_start); |
| 7870 | } |
| 7871 | |
| 7872 | vm_map_lock(map); |
| 7873 | |
| 7874 | if (last_timestamp+1 != map->timestamp) { |
| 7875 | /* |
| 7876 | * Find the entry again. It could have |
| 7877 | * been clipped after we unlocked the map. |
| 7878 | */ |
| 7879 | if (!vm_map_lookup_entry(map, s, &first_entry)){ |
| 7880 | assert((map != kernel_map) && |
| 7881 | (!entry->is_sub_map)); |
| 7882 | if (gap_start == FIND_GAP) |
| 7883 | gap_start = s; |
| 7884 | first_entry = first_entry->vme_next; |
| 7885 | s = first_entry->vme_start; |
| 7886 | } else { |
| 7887 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 7888 | } |
| 7889 | } else { |
| 7890 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 7891 | first_entry = entry; |
| 7892 | } |
| 7893 | |
| 7894 | last_timestamp = map->timestamp; |
| 7895 | |
| 7896 | entry = first_entry; |
| 7897 | while ((entry != vm_map_to_entry(map)) && |
| 7898 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7899 | assert(entry->in_transition); |
| 7900 | entry->in_transition = FALSE; |
| 7901 | if (entry->needs_wakeup) { |
| 7902 | entry->needs_wakeup = FALSE; |
| 7903 | need_wakeup = TRUE; |
| 7904 | } |
| 7905 | entry = entry->vme_next; |
| 7906 | } |
| 7907 | /* |
| 7908 | * We have unwired the entry(s). Go back and |
| 7909 | * delete them. |
| 7910 | */ |
| 7911 | entry = first_entry; |
| 7912 | continue; |
| 7913 | } |
| 7914 | |
| 7915 | /* entry is unwired */ |
| 7916 | assert(entry->wired_count == 0); |
| 7917 | assert(entry->user_wired_count == 0); |
| 7918 | |
| 7919 | assert(s == entry->vme_start); |
| 7920 | |
| 7921 | if (flags & VM_MAP_REMOVE_NO_PMAP_CLEANUP) { |
| 7922 | /* |
| 7923 | * XXX with the VM_MAP_REMOVE_SAVE_ENTRIES flag to |
| 7924 | * vm_map_delete(), some map entries might have been |
| 7925 | * transferred to a "zap_map", which doesn't have a |
| 7926 | * pmap. The original pmap has already been flushed |
| 7927 | * in the vm_map_delete() call targeting the original |
| 7928 | * map, but when we get to destroying the "zap_map", |
| 7929 | * we don't have any pmap to flush, so let's just skip |
| 7930 | * all this. |
| 7931 | */ |
| 7932 | } else if (entry->is_sub_map) { |
| 7933 | if (entry->use_pmap) { |
| 7934 | #ifndef NO_NESTED_PMAP |
| 7935 | int pmap_flags; |
| 7936 | |
| 7937 | if (flags & VM_MAP_REMOVE_NO_UNNESTING) { |
| 7938 | /* |
| 7939 | * This is the final cleanup of the |
| 7940 | * address space being terminated. |
| 7941 | * No new mappings are expected and |
| 7942 | * we don't really need to unnest the |
| 7943 | * shared region (and lose the "global" |
| 7944 | * pmap mappings, if applicable). |
| 7945 | * |
| 7946 | * Tell the pmap layer that we're |
| 7947 | * "clean" wrt nesting. |
| 7948 | */ |
| 7949 | pmap_flags = PMAP_UNNEST_CLEAN; |
| 7950 | } else { |
| 7951 | /* |
| 7952 | * We're unmapping part of the nested |
| 7953 | * shared region, so we can't keep the |
| 7954 | * nested pmap. |
| 7955 | */ |
| 7956 | pmap_flags = 0; |
| 7957 | } |
| 7958 | pmap_unnest_options( |
| 7959 | map->pmap, |
| 7960 | (addr64_t)entry->vme_start, |
| 7961 | entry->vme_end - entry->vme_start, |
| 7962 | pmap_flags); |
| 7963 | #endif /* NO_NESTED_PMAP */ |
| 7964 | if ((map->mapped_in_other_pmaps) && (map->map_refcnt)) { |
| 7965 | /* clean up parent map/maps */ |
| 7966 | vm_map_submap_pmap_clean( |
| 7967 | map, entry->vme_start, |
| 7968 | entry->vme_end, |
| 7969 | VME_SUBMAP(entry), |
| 7970 | VME_OFFSET(entry)); |
| 7971 | } |
| 7972 | } else { |
| 7973 | vm_map_submap_pmap_clean( |
| 7974 | map, entry->vme_start, entry->vme_end, |
| 7975 | VME_SUBMAP(entry), |
| 7976 | VME_OFFSET(entry)); |
| 7977 | } |
| 7978 | } else if (VME_OBJECT(entry) != kernel_object && |
| 7979 | VME_OBJECT(entry) != compressor_object) { |
| 7980 | object = VME_OBJECT(entry); |
| 7981 | if ((map->mapped_in_other_pmaps) && (map->map_refcnt)) { |
| 7982 | vm_object_pmap_protect_options( |
| 7983 | object, VME_OFFSET(entry), |
| 7984 | entry->vme_end - entry->vme_start, |
| 7985 | PMAP_NULL, |
| 7986 | entry->vme_start, |
| 7987 | VM_PROT_NONE, |
| 7988 | PMAP_OPTIONS_REMOVE); |
| 7989 | } else if ((VME_OBJECT(entry) != VM_OBJECT_NULL) || |
| 7990 | (map->pmap == kernel_pmap)) { |
| 7991 | /* Remove translations associated |
| 7992 | * with this range unless the entry |
| 7993 | * does not have an object, or |
| 7994 | * it's the kernel map or a descendant |
| 7995 | * since the platform could potentially |
| 7996 | * create "backdoor" mappings invisible |
| 7997 | * to the VM. It is expected that |
| 7998 | * objectless, non-kernel ranges |
| 7999 | * do not have such VM invisible |
| 8000 | * translations. |
| 8001 | */ |
| 8002 | pmap_remove_options(map->pmap, |
| 8003 | (addr64_t)entry->vme_start, |
| 8004 | (addr64_t)entry->vme_end, |
| 8005 | PMAP_OPTIONS_REMOVE); |
| 8006 | } |
| 8007 | } |
| 8008 | |
| 8009 | if (entry->iokit_acct) { |
| 8010 | /* alternate accounting */ |
| 8011 | DTRACE_VM4(vm_map_iokit_unmapped_region, |
| 8012 | vm_map_t, map, |
| 8013 | vm_map_offset_t, entry->vme_start, |
| 8014 | vm_map_offset_t, entry->vme_end, |
| 8015 | int, VME_ALIAS(entry)); |
| 8016 | vm_map_iokit_unmapped_region(map, |
| 8017 | (entry->vme_end - |
| 8018 | entry->vme_start)); |
| 8019 | entry->iokit_acct = FALSE; |
| 8020 | entry->use_pmap = FALSE; |
| 8021 | } |
| 8022 | |
| 8023 | /* |
| 8024 | * All pmap mappings for this map entry must have been |
| 8025 | * cleared by now. |
| 8026 | */ |
| 8027 | #if DEBUG |
| 8028 | assert(vm_map_pmap_is_empty(map, |
| 8029 | entry->vme_start, |
| 8030 | entry->vme_end)); |
| 8031 | #endif /* DEBUG */ |
| 8032 | |
| 8033 | next = entry->vme_next; |
| 8034 | |
| 8035 | if (map->pmap == kernel_pmap && |
| 8036 | map->map_refcnt != 0 && |
| 8037 | entry->vme_end < end && |
| 8038 | (next == vm_map_to_entry(map) || |
| 8039 | next->vme_start != entry->vme_end)) { |
| 8040 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 8041 | "hole after %p at 0x%llx\n" , |
| 8042 | map, |
| 8043 | (uint64_t)start, |
| 8044 | (uint64_t)end, |
| 8045 | entry, |
| 8046 | (uint64_t)entry->vme_end); |
| 8047 | } |
| 8048 | |
| 8049 | /* |
| 8050 | * If the desired range didn't end with "entry", then there is a gap if |
| 8051 | * we wrapped around to the start of the map or if "entry" and "next" |
| 8052 | * aren't contiguous. |
| 8053 | * |
| 8054 | * The vm_map_round_page() is needed since an entry can be less than VM_MAP_PAGE_MASK() sized. |
| 8055 | * For example, devices which have h/w 4K pages, but entry sizes are all now 16K. |
| 8056 | */ |
| 8057 | if (gap_start == FIND_GAP && |
| 8058 | vm_map_round_page(entry->vme_end, VM_MAP_PAGE_MASK(map)) < end && |
| 8059 | (next == vm_map_to_entry(map) || entry->vme_end != next->vme_start)) { |
| 8060 | gap_start = entry->vme_end; |
| 8061 | } |
| 8062 | s = next->vme_start; |
| 8063 | last_timestamp = map->timestamp; |
| 8064 | |
| 8065 | if (entry->permanent) { |
| 8066 | /* |
| 8067 | * A permanent entry can not be removed, so leave it |
| 8068 | * in place but remove all access permissions. |
| 8069 | */ |
| 8070 | entry->protection = VM_PROT_NONE; |
| 8071 | entry->max_protection = VM_PROT_NONE; |
| 8072 | } else if ((flags & VM_MAP_REMOVE_SAVE_ENTRIES) && |
| 8073 | zap_map != VM_MAP_NULL) { |
| 8074 | vm_map_size_t entry_size; |
| 8075 | /* |
| 8076 | * The caller wants to save the affected VM map entries |
| 8077 | * into the "zap_map". The caller will take care of |
| 8078 | * these entries. |
| 8079 | */ |
| 8080 | /* unlink the entry from "map" ... */ |
| 8081 | vm_map_store_entry_unlink(map, entry); |
| 8082 | /* ... and add it to the end of the "zap_map" */ |
| 8083 | vm_map_store_entry_link(zap_map, |
| 8084 | vm_map_last_entry(zap_map), |
| 8085 | entry, |
| 8086 | VM_MAP_KERNEL_FLAGS_NONE); |
| 8087 | entry_size = entry->vme_end - entry->vme_start; |
| 8088 | map->size -= entry_size; |
| 8089 | zap_map->size += entry_size; |
| 8090 | /* we didn't unlock the map, so no timestamp increase */ |
| 8091 | last_timestamp--; |
| 8092 | } else { |
| 8093 | vm_map_entry_delete(map, entry); |
| 8094 | /* vm_map_entry_delete unlocks the map */ |
| 8095 | vm_map_lock(map); |
| 8096 | } |
| 8097 | |
| 8098 | entry = next; |
| 8099 | |
| 8100 | if(entry == vm_map_to_entry(map)) { |
| 8101 | break; |
| 8102 | } |
| 8103 | if (last_timestamp + 1 != map->timestamp) { |
| 8104 | /* |
| 8105 | * We are responsible for deleting everything |
| 8106 | * from the given space. If someone has interfered, |
| 8107 | * we pick up where we left off. Back fills should |
| 8108 | * be all right for anyone, except map_delete, and |
| 8109 | * we have to assume that the task has been fully |
| 8110 | * disabled before we get here |
| 8111 | */ |
| 8112 | if (!vm_map_lookup_entry(map, s, &entry)){ |
| 8113 | entry = entry->vme_next; |
| 8114 | |
| 8115 | /* |
| 8116 | * Nothing found for s. If we weren't already done, then there is a gap. |
| 8117 | */ |
| 8118 | if (gap_start == FIND_GAP && s < end) |
| 8119 | gap_start = s; |
| 8120 | s = entry->vme_start; |
| 8121 | } else { |
| 8122 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 8123 | } |
| 8124 | /* |
| 8125 | * others can not only allocate behind us, we can |
| 8126 | * also see coalesce while we don't have the map lock |
| 8127 | */ |
| 8128 | if (entry == vm_map_to_entry(map)) { |
| 8129 | break; |
| 8130 | } |
| 8131 | } |
| 8132 | last_timestamp = map->timestamp; |
| 8133 | } |
| 8134 | |
| 8135 | if (map->wait_for_space) |
| 8136 | thread_wakeup((event_t) map); |
| 8137 | /* |
| 8138 | * wake up anybody waiting on entries that we have already deleted. |
| 8139 | */ |
| 8140 | if (need_wakeup) |
| 8141 | vm_map_entry_wakeup(map); |
| 8142 | |
| 8143 | if (gap_start != FIND_GAP && gap_start != GAPS_OK) { |
| 8144 | DTRACE_VM3(kern_vm_deallocate_gap, |
| 8145 | vm_map_offset_t, gap_start, |
| 8146 | vm_map_offset_t, save_start, |
| 8147 | vm_map_offset_t, save_end); |
| 8148 | if (!(flags & VM_MAP_REMOVE_GAPS_OK)) { |
| 8149 | #if defined(DEVELOPMENT) || defined(DEBUG) |
| 8150 | /* log just once if not checking, otherwise log each one */ |
| 8151 | if (!map->warned_delete_gap || |
| 8152 | (task_exc_guard_default & TASK_EXC_GUARD_VM_ALL) != 0) { |
| 8153 | printf("vm_map_delete: map %p [%p...%p] nothing at %p\n" , |
| 8154 | (void *)map, (void *)save_start, (void *)save_end, |
| 8155 | (void *)gap_start); |
| 8156 | if (!map->warned_delete_gap) { |
| 8157 | map->warned_delete_gap = 1; |
| 8158 | } |
| 8159 | } |
| 8160 | #endif |
| 8161 | vm_map_guard_exception(gap_start, kGUARD_EXC_DEALLOC_GAP); |
| 8162 | } |
| 8163 | } |
| 8164 | |
| 8165 | return KERN_SUCCESS; |
| 8166 | } |
| 8167 | |
| 8168 | /* |
| 8169 | * vm_map_remove: |
| 8170 | * |
| 8171 | * Remove the given address range from the target map. |
| 8172 | * This is the exported form of vm_map_delete. |
| 8173 | */ |
| 8174 | kern_return_t |
| 8175 | vm_map_remove( |
| 8176 | vm_map_t map, |
| 8177 | vm_map_offset_t start, |
| 8178 | vm_map_offset_t end, |
| 8179 | boolean_t flags) |
| 8180 | { |
| 8181 | kern_return_t result; |
| 8182 | |
| 8183 | vm_map_lock(map); |
| 8184 | VM_MAP_RANGE_CHECK(map, start, end); |
| 8185 | /* |
| 8186 | * For the zone_map, the kernel controls the allocation/freeing of memory. |
| 8187 | * Any free to the zone_map should be within the bounds of the map and |
| 8188 | * should free up memory. If the VM_MAP_RANGE_CHECK() silently converts a |
| 8189 | * free to the zone_map into a no-op, there is a problem and we should |
| 8190 | * panic. |
| 8191 | */ |
| 8192 | if ((map == zone_map) && (start == end)) |
| 8193 | panic("Nothing being freed to the zone_map. start = end = %p\n" , (void *)start); |
| 8194 | result = vm_map_delete(map, start, end, flags, VM_MAP_NULL); |
| 8195 | vm_map_unlock(map); |
| 8196 | |
| 8197 | return(result); |
| 8198 | } |
| 8199 | |
| 8200 | /* |
| 8201 | * vm_map_remove_locked: |
| 8202 | * |
| 8203 | * Remove the given address range from the target locked map. |
| 8204 | * This is the exported form of vm_map_delete. |
| 8205 | */ |
| 8206 | kern_return_t |
| 8207 | vm_map_remove_locked( |
| 8208 | vm_map_t map, |
| 8209 | vm_map_offset_t start, |
| 8210 | vm_map_offset_t end, |
| 8211 | boolean_t flags) |
| 8212 | { |
| 8213 | kern_return_t result; |
| 8214 | |
| 8215 | VM_MAP_RANGE_CHECK(map, start, end); |
| 8216 | result = vm_map_delete(map, start, end, flags, VM_MAP_NULL); |
| 8217 | return(result); |
| 8218 | } |
| 8219 | |
| 8220 | |
| 8221 | /* |
| 8222 | * Routine: vm_map_copy_allocate |
| 8223 | * |
| 8224 | * Description: |
| 8225 | * Allocates and initializes a map copy object. |
| 8226 | */ |
| 8227 | static vm_map_copy_t |
| 8228 | vm_map_copy_allocate(void) |
| 8229 | { |
| 8230 | vm_map_copy_t new_copy; |
| 8231 | |
| 8232 | new_copy = zalloc(vm_map_copy_zone); |
| 8233 | bzero(new_copy, sizeof (*new_copy)); |
| 8234 | new_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; |
| 8235 | vm_map_copy_first_entry(new_copy) = vm_map_copy_to_entry(new_copy); |
| 8236 | vm_map_copy_last_entry(new_copy) = vm_map_copy_to_entry(new_copy); |
| 8237 | return new_copy; |
| 8238 | } |
| 8239 | |
| 8240 | /* |
| 8241 | * Routine: vm_map_copy_discard |
| 8242 | * |
| 8243 | * Description: |
| 8244 | * Dispose of a map copy object (returned by |
| 8245 | * vm_map_copyin). |
| 8246 | */ |
| 8247 | void |
| 8248 | vm_map_copy_discard( |
| 8249 | vm_map_copy_t copy) |
| 8250 | { |
| 8251 | if (copy == VM_MAP_COPY_NULL) |
| 8252 | return; |
| 8253 | |
| 8254 | switch (copy->type) { |
| 8255 | case VM_MAP_COPY_ENTRY_LIST: |
| 8256 | while (vm_map_copy_first_entry(copy) != |
| 8257 | vm_map_copy_to_entry(copy)) { |
| 8258 | vm_map_entry_t entry = vm_map_copy_first_entry(copy); |
| 8259 | |
| 8260 | vm_map_copy_entry_unlink(copy, entry); |
| 8261 | if (entry->is_sub_map) { |
| 8262 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 8263 | } else { |
| 8264 | vm_object_deallocate(VME_OBJECT(entry)); |
| 8265 | } |
| 8266 | vm_map_copy_entry_dispose(copy, entry); |
| 8267 | } |
| 8268 | break; |
| 8269 | case VM_MAP_COPY_OBJECT: |
| 8270 | vm_object_deallocate(copy->cpy_object); |
| 8271 | break; |
| 8272 | case VM_MAP_COPY_KERNEL_BUFFER: |
| 8273 | |
| 8274 | /* |
| 8275 | * The vm_map_copy_t and possibly the data buffer were |
| 8276 | * allocated by a single call to kalloc(), i.e. the |
| 8277 | * vm_map_copy_t was not allocated out of the zone. |
| 8278 | */ |
| 8279 | if (copy->size > msg_ool_size_small || copy->offset) |
| 8280 | panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld" , |
| 8281 | (long long)copy->size, (long long)copy->offset); |
| 8282 | kfree(copy, copy->size + cpy_kdata_hdr_sz); |
| 8283 | return; |
| 8284 | } |
| 8285 | zfree(vm_map_copy_zone, copy); |
| 8286 | } |
| 8287 | |
| 8288 | /* |
| 8289 | * Routine: vm_map_copy_copy |
| 8290 | * |
| 8291 | * Description: |
| 8292 | * Move the information in a map copy object to |
| 8293 | * a new map copy object, leaving the old one |
| 8294 | * empty. |
| 8295 | * |
| 8296 | * This is used by kernel routines that need |
| 8297 | * to look at out-of-line data (in copyin form) |
| 8298 | * before deciding whether to return SUCCESS. |
| 8299 | * If the routine returns FAILURE, the original |
| 8300 | * copy object will be deallocated; therefore, |
| 8301 | * these routines must make a copy of the copy |
| 8302 | * object and leave the original empty so that |
| 8303 | * deallocation will not fail. |
| 8304 | */ |
| 8305 | vm_map_copy_t |
| 8306 | vm_map_copy_copy( |
| 8307 | vm_map_copy_t copy) |
| 8308 | { |
| 8309 | vm_map_copy_t new_copy; |
| 8310 | |
| 8311 | if (copy == VM_MAP_COPY_NULL) |
| 8312 | return VM_MAP_COPY_NULL; |
| 8313 | |
| 8314 | /* |
| 8315 | * Allocate a new copy object, and copy the information |
| 8316 | * from the old one into it. |
| 8317 | */ |
| 8318 | |
| 8319 | new_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); |
| 8320 | *new_copy = *copy; |
| 8321 | |
| 8322 | if (copy->type == VM_MAP_COPY_ENTRY_LIST) { |
| 8323 | /* |
| 8324 | * The links in the entry chain must be |
| 8325 | * changed to point to the new copy object. |
| 8326 | */ |
| 8327 | vm_map_copy_first_entry(copy)->vme_prev |
| 8328 | = vm_map_copy_to_entry(new_copy); |
| 8329 | vm_map_copy_last_entry(copy)->vme_next |
| 8330 | = vm_map_copy_to_entry(new_copy); |
| 8331 | } |
| 8332 | |
| 8333 | /* |
| 8334 | * Change the old copy object into one that contains |
| 8335 | * nothing to be deallocated. |
| 8336 | */ |
| 8337 | copy->type = VM_MAP_COPY_OBJECT; |
| 8338 | copy->cpy_object = VM_OBJECT_NULL; |
| 8339 | |
| 8340 | /* |
| 8341 | * Return the new object. |
| 8342 | */ |
| 8343 | return new_copy; |
| 8344 | } |
| 8345 | |
| 8346 | static kern_return_t |
| 8347 | vm_map_overwrite_submap_recurse( |
| 8348 | vm_map_t dst_map, |
| 8349 | vm_map_offset_t dst_addr, |
| 8350 | vm_map_size_t dst_size) |
| 8351 | { |
| 8352 | vm_map_offset_t dst_end; |
| 8353 | vm_map_entry_t tmp_entry; |
| 8354 | vm_map_entry_t entry; |
| 8355 | kern_return_t result; |
| 8356 | boolean_t encountered_sub_map = FALSE; |
| 8357 | |
| 8358 | |
| 8359 | |
| 8360 | /* |
| 8361 | * Verify that the destination is all writeable |
| 8362 | * initially. We have to trunc the destination |
| 8363 | * address and round the copy size or we'll end up |
| 8364 | * splitting entries in strange ways. |
| 8365 | */ |
| 8366 | |
| 8367 | dst_end = vm_map_round_page(dst_addr + dst_size, |
| 8368 | VM_MAP_PAGE_MASK(dst_map)); |
| 8369 | vm_map_lock(dst_map); |
| 8370 | |
| 8371 | start_pass_1: |
| 8372 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { |
| 8373 | vm_map_unlock(dst_map); |
| 8374 | return(KERN_INVALID_ADDRESS); |
| 8375 | } |
| 8376 | |
| 8377 | vm_map_clip_start(dst_map, |
| 8378 | tmp_entry, |
| 8379 | vm_map_trunc_page(dst_addr, |
| 8380 | VM_MAP_PAGE_MASK(dst_map))); |
| 8381 | if (tmp_entry->is_sub_map) { |
| 8382 | /* clipping did unnest if needed */ |
| 8383 | assert(!tmp_entry->use_pmap); |
| 8384 | } |
| 8385 | |
| 8386 | for (entry = tmp_entry;;) { |
| 8387 | vm_map_entry_t next; |
| 8388 | |
| 8389 | next = entry->vme_next; |
| 8390 | while(entry->is_sub_map) { |
| 8391 | vm_map_offset_t sub_start; |
| 8392 | vm_map_offset_t sub_end; |
| 8393 | vm_map_offset_t local_end; |
| 8394 | |
| 8395 | if (entry->in_transition) { |
| 8396 | /* |
| 8397 | * Say that we are waiting, and wait for entry. |
| 8398 | */ |
| 8399 | entry->needs_wakeup = TRUE; |
| 8400 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 8401 | |
| 8402 | goto start_pass_1; |
| 8403 | } |
| 8404 | |
| 8405 | encountered_sub_map = TRUE; |
| 8406 | sub_start = VME_OFFSET(entry); |
| 8407 | |
| 8408 | if(entry->vme_end < dst_end) |
| 8409 | sub_end = entry->vme_end; |
| 8410 | else |
| 8411 | sub_end = dst_end; |
| 8412 | sub_end -= entry->vme_start; |
| 8413 | sub_end += VME_OFFSET(entry); |
| 8414 | local_end = entry->vme_end; |
| 8415 | vm_map_unlock(dst_map); |
| 8416 | |
| 8417 | result = vm_map_overwrite_submap_recurse( |
| 8418 | VME_SUBMAP(entry), |
| 8419 | sub_start, |
| 8420 | sub_end - sub_start); |
| 8421 | |
| 8422 | if(result != KERN_SUCCESS) |
| 8423 | return result; |
| 8424 | if (dst_end <= entry->vme_end) |
| 8425 | return KERN_SUCCESS; |
| 8426 | vm_map_lock(dst_map); |
| 8427 | if(!vm_map_lookup_entry(dst_map, local_end, |
| 8428 | &tmp_entry)) { |
| 8429 | vm_map_unlock(dst_map); |
| 8430 | return(KERN_INVALID_ADDRESS); |
| 8431 | } |
| 8432 | entry = tmp_entry; |
| 8433 | next = entry->vme_next; |
| 8434 | } |
| 8435 | |
| 8436 | if ( ! (entry->protection & VM_PROT_WRITE)) { |
| 8437 | vm_map_unlock(dst_map); |
| 8438 | return(KERN_PROTECTION_FAILURE); |
| 8439 | } |
| 8440 | |
| 8441 | /* |
| 8442 | * If the entry is in transition, we must wait |
| 8443 | * for it to exit that state. Anything could happen |
| 8444 | * when we unlock the map, so start over. |
| 8445 | */ |
| 8446 | if (entry->in_transition) { |
| 8447 | |
| 8448 | /* |
| 8449 | * Say that we are waiting, and wait for entry. |
| 8450 | */ |
| 8451 | entry->needs_wakeup = TRUE; |
| 8452 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 8453 | |
| 8454 | goto start_pass_1; |
| 8455 | } |
| 8456 | |
| 8457 | /* |
| 8458 | * our range is contained completely within this map entry |
| 8459 | */ |
| 8460 | if (dst_end <= entry->vme_end) { |
| 8461 | vm_map_unlock(dst_map); |
| 8462 | return KERN_SUCCESS; |
| 8463 | } |
| 8464 | /* |
| 8465 | * check that range specified is contiguous region |
| 8466 | */ |
| 8467 | if ((next == vm_map_to_entry(dst_map)) || |
| 8468 | (next->vme_start != entry->vme_end)) { |
| 8469 | vm_map_unlock(dst_map); |
| 8470 | return(KERN_INVALID_ADDRESS); |
| 8471 | } |
| 8472 | |
| 8473 | /* |
| 8474 | * Check for permanent objects in the destination. |
| 8475 | */ |
| 8476 | if ((VME_OBJECT(entry) != VM_OBJECT_NULL) && |
| 8477 | ((!VME_OBJECT(entry)->internal) || |
| 8478 | (VME_OBJECT(entry)->true_share))) { |
| 8479 | if(encountered_sub_map) { |
| 8480 | vm_map_unlock(dst_map); |
| 8481 | return(KERN_FAILURE); |
| 8482 | } |
| 8483 | } |
| 8484 | |
| 8485 | |
| 8486 | entry = next; |
| 8487 | }/* for */ |
| 8488 | vm_map_unlock(dst_map); |
| 8489 | return(KERN_SUCCESS); |
| 8490 | } |
| 8491 | |
| 8492 | /* |
| 8493 | * Routine: vm_map_copy_overwrite |
| 8494 | * |
| 8495 | * Description: |
| 8496 | * Copy the memory described by the map copy |
| 8497 | * object (copy; returned by vm_map_copyin) onto |
| 8498 | * the specified destination region (dst_map, dst_addr). |
| 8499 | * The destination must be writeable. |
| 8500 | * |
| 8501 | * Unlike vm_map_copyout, this routine actually |
| 8502 | * writes over previously-mapped memory. If the |
| 8503 | * previous mapping was to a permanent (user-supplied) |
| 8504 | * memory object, it is preserved. |
| 8505 | * |
| 8506 | * The attributes (protection and inheritance) of the |
| 8507 | * destination region are preserved. |
| 8508 | * |
| 8509 | * If successful, consumes the copy object. |
| 8510 | * Otherwise, the caller is responsible for it. |
| 8511 | * |
| 8512 | * Implementation notes: |
| 8513 | * To overwrite aligned temporary virtual memory, it is |
| 8514 | * sufficient to remove the previous mapping and insert |
| 8515 | * the new copy. This replacement is done either on |
| 8516 | * the whole region (if no permanent virtual memory |
| 8517 | * objects are embedded in the destination region) or |
| 8518 | * in individual map entries. |
| 8519 | * |
| 8520 | * To overwrite permanent virtual memory , it is necessary |
| 8521 | * to copy each page, as the external memory management |
| 8522 | * interface currently does not provide any optimizations. |
| 8523 | * |
| 8524 | * Unaligned memory also has to be copied. It is possible |
| 8525 | * to use 'vm_trickery' to copy the aligned data. This is |
| 8526 | * not done but not hard to implement. |
| 8527 | * |
| 8528 | * Once a page of permanent memory has been overwritten, |
| 8529 | * it is impossible to interrupt this function; otherwise, |
| 8530 | * the call would be neither atomic nor location-independent. |
| 8531 | * The kernel-state portion of a user thread must be |
| 8532 | * interruptible. |
| 8533 | * |
| 8534 | * It may be expensive to forward all requests that might |
| 8535 | * overwrite permanent memory (vm_write, vm_copy) to |
| 8536 | * uninterruptible kernel threads. This routine may be |
| 8537 | * called by interruptible threads; however, success is |
| 8538 | * not guaranteed -- if the request cannot be performed |
| 8539 | * atomically and interruptibly, an error indication is |
| 8540 | * returned. |
| 8541 | */ |
| 8542 | |
| 8543 | static kern_return_t |
| 8544 | vm_map_copy_overwrite_nested( |
| 8545 | vm_map_t dst_map, |
| 8546 | vm_map_address_t dst_addr, |
| 8547 | vm_map_copy_t copy, |
| 8548 | boolean_t interruptible, |
| 8549 | pmap_t pmap, |
| 8550 | boolean_t discard_on_success) |
| 8551 | { |
| 8552 | vm_map_offset_t dst_end; |
| 8553 | vm_map_entry_t tmp_entry; |
| 8554 | vm_map_entry_t entry; |
| 8555 | kern_return_t kr; |
| 8556 | boolean_t aligned = TRUE; |
| 8557 | boolean_t contains_permanent_objects = FALSE; |
| 8558 | boolean_t encountered_sub_map = FALSE; |
| 8559 | vm_map_offset_t base_addr; |
| 8560 | vm_map_size_t copy_size; |
| 8561 | vm_map_size_t total_size; |
| 8562 | |
| 8563 | |
| 8564 | /* |
| 8565 | * Check for null copy object. |
| 8566 | */ |
| 8567 | |
| 8568 | if (copy == VM_MAP_COPY_NULL) |
| 8569 | return(KERN_SUCCESS); |
| 8570 | |
| 8571 | /* |
| 8572 | * Check for special kernel buffer allocated |
| 8573 | * by new_ipc_kmsg_copyin. |
| 8574 | */ |
| 8575 | |
| 8576 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { |
| 8577 | return(vm_map_copyout_kernel_buffer( |
| 8578 | dst_map, &dst_addr, |
| 8579 | copy, copy->size, TRUE, discard_on_success)); |
| 8580 | } |
| 8581 | |
| 8582 | /* |
| 8583 | * Only works for entry lists at the moment. Will |
| 8584 | * support page lists later. |
| 8585 | */ |
| 8586 | |
| 8587 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); |
| 8588 | |
| 8589 | if (copy->size == 0) { |
| 8590 | if (discard_on_success) |
| 8591 | vm_map_copy_discard(copy); |
| 8592 | return(KERN_SUCCESS); |
| 8593 | } |
| 8594 | |
| 8595 | /* |
| 8596 | * Verify that the destination is all writeable |
| 8597 | * initially. We have to trunc the destination |
| 8598 | * address and round the copy size or we'll end up |
| 8599 | * splitting entries in strange ways. |
| 8600 | */ |
| 8601 | |
| 8602 | if (!VM_MAP_PAGE_ALIGNED(copy->size, |
| 8603 | VM_MAP_PAGE_MASK(dst_map)) || |
| 8604 | !VM_MAP_PAGE_ALIGNED(copy->offset, |
| 8605 | VM_MAP_PAGE_MASK(dst_map)) || |
| 8606 | !VM_MAP_PAGE_ALIGNED(dst_addr, |
| 8607 | VM_MAP_PAGE_MASK(dst_map))) |
| 8608 | { |
| 8609 | aligned = FALSE; |
| 8610 | dst_end = vm_map_round_page(dst_addr + copy->size, |
| 8611 | VM_MAP_PAGE_MASK(dst_map)); |
| 8612 | } else { |
| 8613 | dst_end = dst_addr + copy->size; |
| 8614 | } |
| 8615 | |
| 8616 | vm_map_lock(dst_map); |
| 8617 | |
| 8618 | /* LP64todo - remove this check when vm_map_commpage64() |
| 8619 | * no longer has to stuff in a map_entry for the commpage |
| 8620 | * above the map's max_offset. |
| 8621 | */ |
| 8622 | if (dst_addr >= dst_map->max_offset) { |
| 8623 | vm_map_unlock(dst_map); |
| 8624 | return(KERN_INVALID_ADDRESS); |
| 8625 | } |
| 8626 | |
| 8627 | start_pass_1: |
| 8628 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { |
| 8629 | vm_map_unlock(dst_map); |
| 8630 | return(KERN_INVALID_ADDRESS); |
| 8631 | } |
| 8632 | vm_map_clip_start(dst_map, |
| 8633 | tmp_entry, |
| 8634 | vm_map_trunc_page(dst_addr, |
| 8635 | VM_MAP_PAGE_MASK(dst_map))); |
| 8636 | for (entry = tmp_entry;;) { |
| 8637 | vm_map_entry_t next = entry->vme_next; |
| 8638 | |
| 8639 | while(entry->is_sub_map) { |
| 8640 | vm_map_offset_t sub_start; |
| 8641 | vm_map_offset_t sub_end; |
| 8642 | vm_map_offset_t local_end; |
| 8643 | |
| 8644 | if (entry->in_transition) { |
| 8645 | |
| 8646 | /* |
| 8647 | * Say that we are waiting, and wait for entry. |
| 8648 | */ |
| 8649 | entry->needs_wakeup = TRUE; |
| 8650 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 8651 | |
| 8652 | goto start_pass_1; |
| 8653 | } |
| 8654 | |
| 8655 | local_end = entry->vme_end; |
| 8656 | if (!(entry->needs_copy)) { |
| 8657 | /* if needs_copy we are a COW submap */ |
| 8658 | /* in such a case we just replace so */ |
| 8659 | /* there is no need for the follow- */ |
| 8660 | /* ing check. */ |
| 8661 | encountered_sub_map = TRUE; |
| 8662 | sub_start = VME_OFFSET(entry); |
| 8663 | |
| 8664 | if(entry->vme_end < dst_end) |
| 8665 | sub_end = entry->vme_end; |
| 8666 | else |
| 8667 | sub_end = dst_end; |
| 8668 | sub_end -= entry->vme_start; |
| 8669 | sub_end += VME_OFFSET(entry); |
| 8670 | vm_map_unlock(dst_map); |
| 8671 | |
| 8672 | kr = vm_map_overwrite_submap_recurse( |
| 8673 | VME_SUBMAP(entry), |
| 8674 | sub_start, |
| 8675 | sub_end - sub_start); |
| 8676 | if(kr != KERN_SUCCESS) |
| 8677 | return kr; |
| 8678 | vm_map_lock(dst_map); |
| 8679 | } |
| 8680 | |
| 8681 | if (dst_end <= entry->vme_end) |
| 8682 | goto start_overwrite; |
| 8683 | if(!vm_map_lookup_entry(dst_map, local_end, |
| 8684 | &entry)) { |
| 8685 | vm_map_unlock(dst_map); |
| 8686 | return(KERN_INVALID_ADDRESS); |
| 8687 | } |
| 8688 | next = entry->vme_next; |
| 8689 | } |
| 8690 | |
| 8691 | if ( ! (entry->protection & VM_PROT_WRITE)) { |
| 8692 | vm_map_unlock(dst_map); |
| 8693 | return(KERN_PROTECTION_FAILURE); |
| 8694 | } |
| 8695 | |
| 8696 | /* |
| 8697 | * If the entry is in transition, we must wait |
| 8698 | * for it to exit that state. Anything could happen |
| 8699 | * when we unlock the map, so start over. |
| 8700 | */ |
| 8701 | if (entry->in_transition) { |
| 8702 | |
| 8703 | /* |
| 8704 | * Say that we are waiting, and wait for entry. |
| 8705 | */ |
| 8706 | entry->needs_wakeup = TRUE; |
| 8707 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 8708 | |
| 8709 | goto start_pass_1; |
| 8710 | } |
| 8711 | |
| 8712 | /* |
| 8713 | * our range is contained completely within this map entry |
| 8714 | */ |
| 8715 | if (dst_end <= entry->vme_end) |
| 8716 | break; |
| 8717 | /* |
| 8718 | * check that range specified is contiguous region |
| 8719 | */ |
| 8720 | if ((next == vm_map_to_entry(dst_map)) || |
| 8721 | (next->vme_start != entry->vme_end)) { |
| 8722 | vm_map_unlock(dst_map); |
| 8723 | return(KERN_INVALID_ADDRESS); |
| 8724 | } |
| 8725 | |
| 8726 | |
| 8727 | /* |
| 8728 | * Check for permanent objects in the destination. |
| 8729 | */ |
| 8730 | if ((VME_OBJECT(entry) != VM_OBJECT_NULL) && |
| 8731 | ((!VME_OBJECT(entry)->internal) || |
| 8732 | (VME_OBJECT(entry)->true_share))) { |
| 8733 | contains_permanent_objects = TRUE; |
| 8734 | } |
| 8735 | |
| 8736 | entry = next; |
| 8737 | }/* for */ |
| 8738 | |
| 8739 | start_overwrite: |
| 8740 | /* |
| 8741 | * If there are permanent objects in the destination, then |
| 8742 | * the copy cannot be interrupted. |
| 8743 | */ |
| 8744 | |
| 8745 | if (interruptible && contains_permanent_objects) { |
| 8746 | vm_map_unlock(dst_map); |
| 8747 | return(KERN_FAILURE); /* XXX */ |
| 8748 | } |
| 8749 | |
| 8750 | /* |
| 8751 | * |
| 8752 | * Make a second pass, overwriting the data |
| 8753 | * At the beginning of each loop iteration, |
| 8754 | * the next entry to be overwritten is "tmp_entry" |
| 8755 | * (initially, the value returned from the lookup above), |
| 8756 | * and the starting address expected in that entry |
| 8757 | * is "start". |
| 8758 | */ |
| 8759 | |
| 8760 | total_size = copy->size; |
| 8761 | if(encountered_sub_map) { |
| 8762 | copy_size = 0; |
| 8763 | /* re-calculate tmp_entry since we've had the map */ |
| 8764 | /* unlocked */ |
| 8765 | if (!vm_map_lookup_entry( dst_map, dst_addr, &tmp_entry)) { |
| 8766 | vm_map_unlock(dst_map); |
| 8767 | return(KERN_INVALID_ADDRESS); |
| 8768 | } |
| 8769 | } else { |
| 8770 | copy_size = copy->size; |
| 8771 | } |
| 8772 | |
| 8773 | base_addr = dst_addr; |
| 8774 | while(TRUE) { |
| 8775 | /* deconstruct the copy object and do in parts */ |
| 8776 | /* only in sub_map, interruptable case */ |
| 8777 | vm_map_entry_t copy_entry; |
| 8778 | vm_map_entry_t previous_prev = VM_MAP_ENTRY_NULL; |
| 8779 | vm_map_entry_t next_copy = VM_MAP_ENTRY_NULL; |
| 8780 | int nentries; |
| 8781 | int remaining_entries = 0; |
| 8782 | vm_map_offset_t new_offset = 0; |
| 8783 | |
| 8784 | for (entry = tmp_entry; copy_size == 0;) { |
| 8785 | vm_map_entry_t next; |
| 8786 | |
| 8787 | next = entry->vme_next; |
| 8788 | |
| 8789 | /* tmp_entry and base address are moved along */ |
| 8790 | /* each time we encounter a sub-map. Otherwise */ |
| 8791 | /* entry can outpase tmp_entry, and the copy_size */ |
| 8792 | /* may reflect the distance between them */ |
| 8793 | /* if the current entry is found to be in transition */ |
| 8794 | /* we will start over at the beginning or the last */ |
| 8795 | /* encounter of a submap as dictated by base_addr */ |
| 8796 | /* we will zero copy_size accordingly. */ |
| 8797 | if (entry->in_transition) { |
| 8798 | /* |
| 8799 | * Say that we are waiting, and wait for entry. |
| 8800 | */ |
| 8801 | entry->needs_wakeup = TRUE; |
| 8802 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 8803 | |
| 8804 | if(!vm_map_lookup_entry(dst_map, base_addr, |
| 8805 | &tmp_entry)) { |
| 8806 | vm_map_unlock(dst_map); |
| 8807 | return(KERN_INVALID_ADDRESS); |
| 8808 | } |
| 8809 | copy_size = 0; |
| 8810 | entry = tmp_entry; |
| 8811 | continue; |
| 8812 | } |
| 8813 | if (entry->is_sub_map) { |
| 8814 | vm_map_offset_t sub_start; |
| 8815 | vm_map_offset_t sub_end; |
| 8816 | vm_map_offset_t local_end; |
| 8817 | |
| 8818 | if (entry->needs_copy) { |
| 8819 | /* if this is a COW submap */ |
| 8820 | /* just back the range with a */ |
| 8821 | /* anonymous entry */ |
| 8822 | if(entry->vme_end < dst_end) |
| 8823 | sub_end = entry->vme_end; |
| 8824 | else |
| 8825 | sub_end = dst_end; |
| 8826 | if(entry->vme_start < base_addr) |
| 8827 | sub_start = base_addr; |
| 8828 | else |
| 8829 | sub_start = entry->vme_start; |
| 8830 | vm_map_clip_end( |
| 8831 | dst_map, entry, sub_end); |
| 8832 | vm_map_clip_start( |
| 8833 | dst_map, entry, sub_start); |
| 8834 | assert(!entry->use_pmap); |
| 8835 | assert(!entry->iokit_acct); |
| 8836 | entry->use_pmap = TRUE; |
| 8837 | entry->is_sub_map = FALSE; |
| 8838 | vm_map_deallocate( |
| 8839 | VME_SUBMAP(entry)); |
| 8840 | VME_OBJECT_SET(entry, NULL); |
| 8841 | VME_OFFSET_SET(entry, 0); |
| 8842 | entry->is_shared = FALSE; |
| 8843 | entry->needs_copy = FALSE; |
| 8844 | entry->protection = VM_PROT_DEFAULT; |
| 8845 | entry->max_protection = VM_PROT_ALL; |
| 8846 | entry->wired_count = 0; |
| 8847 | entry->user_wired_count = 0; |
| 8848 | if(entry->inheritance |
| 8849 | == VM_INHERIT_SHARE) |
| 8850 | entry->inheritance = VM_INHERIT_COPY; |
| 8851 | continue; |
| 8852 | } |
| 8853 | /* first take care of any non-sub_map */ |
| 8854 | /* entries to send */ |
| 8855 | if(base_addr < entry->vme_start) { |
| 8856 | /* stuff to send */ |
| 8857 | copy_size = |
| 8858 | entry->vme_start - base_addr; |
| 8859 | break; |
| 8860 | } |
| 8861 | sub_start = VME_OFFSET(entry); |
| 8862 | |
| 8863 | if(entry->vme_end < dst_end) |
| 8864 | sub_end = entry->vme_end; |
| 8865 | else |
| 8866 | sub_end = dst_end; |
| 8867 | sub_end -= entry->vme_start; |
| 8868 | sub_end += VME_OFFSET(entry); |
| 8869 | local_end = entry->vme_end; |
| 8870 | vm_map_unlock(dst_map); |
| 8871 | copy_size = sub_end - sub_start; |
| 8872 | |
| 8873 | /* adjust the copy object */ |
| 8874 | if (total_size > copy_size) { |
| 8875 | vm_map_size_t local_size = 0; |
| 8876 | vm_map_size_t entry_size; |
| 8877 | |
| 8878 | nentries = 1; |
| 8879 | new_offset = copy->offset; |
| 8880 | copy_entry = vm_map_copy_first_entry(copy); |
| 8881 | while(copy_entry != |
| 8882 | vm_map_copy_to_entry(copy)){ |
| 8883 | entry_size = copy_entry->vme_end - |
| 8884 | copy_entry->vme_start; |
| 8885 | if((local_size < copy_size) && |
| 8886 | ((local_size + entry_size) |
| 8887 | >= copy_size)) { |
| 8888 | vm_map_copy_clip_end(copy, |
| 8889 | copy_entry, |
| 8890 | copy_entry->vme_start + |
| 8891 | (copy_size - local_size)); |
| 8892 | entry_size = copy_entry->vme_end - |
| 8893 | copy_entry->vme_start; |
| 8894 | local_size += entry_size; |
| 8895 | new_offset += entry_size; |
| 8896 | } |
| 8897 | if(local_size >= copy_size) { |
| 8898 | next_copy = copy_entry->vme_next; |
| 8899 | copy_entry->vme_next = |
| 8900 | vm_map_copy_to_entry(copy); |
| 8901 | previous_prev = |
| 8902 | copy->cpy_hdr.links.prev; |
| 8903 | copy->cpy_hdr.links.prev = copy_entry; |
| 8904 | copy->size = copy_size; |
| 8905 | remaining_entries = |
| 8906 | copy->cpy_hdr.nentries; |
| 8907 | remaining_entries -= nentries; |
| 8908 | copy->cpy_hdr.nentries = nentries; |
| 8909 | break; |
| 8910 | } else { |
| 8911 | local_size += entry_size; |
| 8912 | new_offset += entry_size; |
| 8913 | nentries++; |
| 8914 | } |
| 8915 | copy_entry = copy_entry->vme_next; |
| 8916 | } |
| 8917 | } |
| 8918 | |
| 8919 | if((entry->use_pmap) && (pmap == NULL)) { |
| 8920 | kr = vm_map_copy_overwrite_nested( |
| 8921 | VME_SUBMAP(entry), |
| 8922 | sub_start, |
| 8923 | copy, |
| 8924 | interruptible, |
| 8925 | VME_SUBMAP(entry)->pmap, |
| 8926 | TRUE); |
| 8927 | } else if (pmap != NULL) { |
| 8928 | kr = vm_map_copy_overwrite_nested( |
| 8929 | VME_SUBMAP(entry), |
| 8930 | sub_start, |
| 8931 | copy, |
| 8932 | interruptible, pmap, |
| 8933 | TRUE); |
| 8934 | } else { |
| 8935 | kr = vm_map_copy_overwrite_nested( |
| 8936 | VME_SUBMAP(entry), |
| 8937 | sub_start, |
| 8938 | copy, |
| 8939 | interruptible, |
| 8940 | dst_map->pmap, |
| 8941 | TRUE); |
| 8942 | } |
| 8943 | if(kr != KERN_SUCCESS) { |
| 8944 | if(next_copy != NULL) { |
| 8945 | copy->cpy_hdr.nentries += |
| 8946 | remaining_entries; |
| 8947 | copy->cpy_hdr.links.prev->vme_next = |
| 8948 | next_copy; |
| 8949 | copy->cpy_hdr.links.prev |
| 8950 | = previous_prev; |
| 8951 | copy->size = total_size; |
| 8952 | } |
| 8953 | return kr; |
| 8954 | } |
| 8955 | if (dst_end <= local_end) { |
| 8956 | return(KERN_SUCCESS); |
| 8957 | } |
| 8958 | /* otherwise copy no longer exists, it was */ |
| 8959 | /* destroyed after successful copy_overwrite */ |
| 8960 | copy = vm_map_copy_allocate(); |
| 8961 | copy->type = VM_MAP_COPY_ENTRY_LIST; |
| 8962 | copy->offset = new_offset; |
| 8963 | |
| 8964 | /* |
| 8965 | * XXX FBDP |
| 8966 | * this does not seem to deal with |
| 8967 | * the VM map store (R&B tree) |
| 8968 | */ |
| 8969 | |
| 8970 | total_size -= copy_size; |
| 8971 | copy_size = 0; |
| 8972 | /* put back remainder of copy in container */ |
| 8973 | if(next_copy != NULL) { |
| 8974 | copy->cpy_hdr.nentries = remaining_entries; |
| 8975 | copy->cpy_hdr.links.next = next_copy; |
| 8976 | copy->cpy_hdr.links.prev = previous_prev; |
| 8977 | copy->size = total_size; |
| 8978 | next_copy->vme_prev = |
| 8979 | vm_map_copy_to_entry(copy); |
| 8980 | next_copy = NULL; |
| 8981 | } |
| 8982 | base_addr = local_end; |
| 8983 | vm_map_lock(dst_map); |
| 8984 | if(!vm_map_lookup_entry(dst_map, |
| 8985 | local_end, &tmp_entry)) { |
| 8986 | vm_map_unlock(dst_map); |
| 8987 | return(KERN_INVALID_ADDRESS); |
| 8988 | } |
| 8989 | entry = tmp_entry; |
| 8990 | continue; |
| 8991 | } |
| 8992 | if (dst_end <= entry->vme_end) { |
| 8993 | copy_size = dst_end - base_addr; |
| 8994 | break; |
| 8995 | } |
| 8996 | |
| 8997 | if ((next == vm_map_to_entry(dst_map)) || |
| 8998 | (next->vme_start != entry->vme_end)) { |
| 8999 | vm_map_unlock(dst_map); |
| 9000 | return(KERN_INVALID_ADDRESS); |
| 9001 | } |
| 9002 | |
| 9003 | entry = next; |
| 9004 | }/* for */ |
| 9005 | |
| 9006 | next_copy = NULL; |
| 9007 | nentries = 1; |
| 9008 | |
| 9009 | /* adjust the copy object */ |
| 9010 | if (total_size > copy_size) { |
| 9011 | vm_map_size_t local_size = 0; |
| 9012 | vm_map_size_t entry_size; |
| 9013 | |
| 9014 | new_offset = copy->offset; |
| 9015 | copy_entry = vm_map_copy_first_entry(copy); |
| 9016 | while(copy_entry != vm_map_copy_to_entry(copy)) { |
| 9017 | entry_size = copy_entry->vme_end - |
| 9018 | copy_entry->vme_start; |
| 9019 | if((local_size < copy_size) && |
| 9020 | ((local_size + entry_size) |
| 9021 | >= copy_size)) { |
| 9022 | vm_map_copy_clip_end(copy, copy_entry, |
| 9023 | copy_entry->vme_start + |
| 9024 | (copy_size - local_size)); |
| 9025 | entry_size = copy_entry->vme_end - |
| 9026 | copy_entry->vme_start; |
| 9027 | local_size += entry_size; |
| 9028 | new_offset += entry_size; |
| 9029 | } |
| 9030 | if(local_size >= copy_size) { |
| 9031 | next_copy = copy_entry->vme_next; |
| 9032 | copy_entry->vme_next = |
| 9033 | vm_map_copy_to_entry(copy); |
| 9034 | previous_prev = |
| 9035 | copy->cpy_hdr.links.prev; |
| 9036 | copy->cpy_hdr.links.prev = copy_entry; |
| 9037 | copy->size = copy_size; |
| 9038 | remaining_entries = |
| 9039 | copy->cpy_hdr.nentries; |
| 9040 | remaining_entries -= nentries; |
| 9041 | copy->cpy_hdr.nentries = nentries; |
| 9042 | break; |
| 9043 | } else { |
| 9044 | local_size += entry_size; |
| 9045 | new_offset += entry_size; |
| 9046 | nentries++; |
| 9047 | } |
| 9048 | copy_entry = copy_entry->vme_next; |
| 9049 | } |
| 9050 | } |
| 9051 | |
| 9052 | if (aligned) { |
| 9053 | pmap_t local_pmap; |
| 9054 | |
| 9055 | if(pmap) |
| 9056 | local_pmap = pmap; |
| 9057 | else |
| 9058 | local_pmap = dst_map->pmap; |
| 9059 | |
| 9060 | if ((kr = vm_map_copy_overwrite_aligned( |
| 9061 | dst_map, tmp_entry, copy, |
| 9062 | base_addr, local_pmap)) != KERN_SUCCESS) { |
| 9063 | if(next_copy != NULL) { |
| 9064 | copy->cpy_hdr.nentries += |
| 9065 | remaining_entries; |
| 9066 | copy->cpy_hdr.links.prev->vme_next = |
| 9067 | next_copy; |
| 9068 | copy->cpy_hdr.links.prev = |
| 9069 | previous_prev; |
| 9070 | copy->size += copy_size; |
| 9071 | } |
| 9072 | return kr; |
| 9073 | } |
| 9074 | vm_map_unlock(dst_map); |
| 9075 | } else { |
| 9076 | /* |
| 9077 | * Performance gain: |
| 9078 | * |
| 9079 | * if the copy and dst address are misaligned but the same |
| 9080 | * offset within the page we can copy_not_aligned the |
| 9081 | * misaligned parts and copy aligned the rest. If they are |
| 9082 | * aligned but len is unaligned we simply need to copy |
| 9083 | * the end bit unaligned. We'll need to split the misaligned |
| 9084 | * bits of the region in this case ! |
| 9085 | */ |
| 9086 | /* ALWAYS UNLOCKS THE dst_map MAP */ |
| 9087 | kr = vm_map_copy_overwrite_unaligned( |
| 9088 | dst_map, |
| 9089 | tmp_entry, |
| 9090 | copy, |
| 9091 | base_addr, |
| 9092 | discard_on_success); |
| 9093 | if (kr != KERN_SUCCESS) { |
| 9094 | if(next_copy != NULL) { |
| 9095 | copy->cpy_hdr.nentries += |
| 9096 | remaining_entries; |
| 9097 | copy->cpy_hdr.links.prev->vme_next = |
| 9098 | next_copy; |
| 9099 | copy->cpy_hdr.links.prev = |
| 9100 | previous_prev; |
| 9101 | copy->size += copy_size; |
| 9102 | } |
| 9103 | return kr; |
| 9104 | } |
| 9105 | } |
| 9106 | total_size -= copy_size; |
| 9107 | if(total_size == 0) |
| 9108 | break; |
| 9109 | base_addr += copy_size; |
| 9110 | copy_size = 0; |
| 9111 | copy->offset = new_offset; |
| 9112 | if(next_copy != NULL) { |
| 9113 | copy->cpy_hdr.nentries = remaining_entries; |
| 9114 | copy->cpy_hdr.links.next = next_copy; |
| 9115 | copy->cpy_hdr.links.prev = previous_prev; |
| 9116 | next_copy->vme_prev = vm_map_copy_to_entry(copy); |
| 9117 | copy->size = total_size; |
| 9118 | } |
| 9119 | vm_map_lock(dst_map); |
| 9120 | while(TRUE) { |
| 9121 | if (!vm_map_lookup_entry(dst_map, |
| 9122 | base_addr, &tmp_entry)) { |
| 9123 | vm_map_unlock(dst_map); |
| 9124 | return(KERN_INVALID_ADDRESS); |
| 9125 | } |
| 9126 | if (tmp_entry->in_transition) { |
| 9127 | entry->needs_wakeup = TRUE; |
| 9128 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9129 | } else { |
| 9130 | break; |
| 9131 | } |
| 9132 | } |
| 9133 | vm_map_clip_start(dst_map, |
| 9134 | tmp_entry, |
| 9135 | vm_map_trunc_page(base_addr, |
| 9136 | VM_MAP_PAGE_MASK(dst_map))); |
| 9137 | |
| 9138 | entry = tmp_entry; |
| 9139 | } /* while */ |
| 9140 | |
| 9141 | /* |
| 9142 | * Throw away the vm_map_copy object |
| 9143 | */ |
| 9144 | if (discard_on_success) |
| 9145 | vm_map_copy_discard(copy); |
| 9146 | |
| 9147 | return(KERN_SUCCESS); |
| 9148 | }/* vm_map_copy_overwrite */ |
| 9149 | |
| 9150 | kern_return_t |
| 9151 | vm_map_copy_overwrite( |
| 9152 | vm_map_t dst_map, |
| 9153 | vm_map_offset_t dst_addr, |
| 9154 | vm_map_copy_t copy, |
| 9155 | boolean_t interruptible) |
| 9156 | { |
| 9157 | vm_map_size_t head_size, tail_size; |
| 9158 | vm_map_copy_t head_copy, tail_copy; |
| 9159 | vm_map_offset_t head_addr, tail_addr; |
| 9160 | vm_map_entry_t entry; |
| 9161 | kern_return_t kr; |
| 9162 | vm_map_offset_t effective_page_mask, effective_page_size; |
| 9163 | |
| 9164 | head_size = 0; |
| 9165 | tail_size = 0; |
| 9166 | head_copy = NULL; |
| 9167 | tail_copy = NULL; |
| 9168 | head_addr = 0; |
| 9169 | tail_addr = 0; |
| 9170 | |
| 9171 | if (interruptible || |
| 9172 | copy == VM_MAP_COPY_NULL || |
| 9173 | copy->type != VM_MAP_COPY_ENTRY_LIST) { |
| 9174 | /* |
| 9175 | * We can't split the "copy" map if we're interruptible |
| 9176 | * or if we don't have a "copy" map... |
| 9177 | */ |
| 9178 | blunt_copy: |
| 9179 | return vm_map_copy_overwrite_nested(dst_map, |
| 9180 | dst_addr, |
| 9181 | copy, |
| 9182 | interruptible, |
| 9183 | (pmap_t) NULL, |
| 9184 | TRUE); |
| 9185 | } |
| 9186 | |
| 9187 | effective_page_mask = MAX(VM_MAP_PAGE_MASK(dst_map), PAGE_MASK); |
| 9188 | effective_page_mask = MAX(VM_MAP_COPY_PAGE_MASK(copy), |
| 9189 | effective_page_mask); |
| 9190 | effective_page_size = effective_page_mask + 1; |
| 9191 | |
| 9192 | if (copy->size < 3 * effective_page_size) { |
| 9193 | /* |
| 9194 | * Too small to bother with optimizing... |
| 9195 | */ |
| 9196 | goto blunt_copy; |
| 9197 | } |
| 9198 | |
| 9199 | if ((dst_addr & effective_page_mask) != |
| 9200 | (copy->offset & effective_page_mask)) { |
| 9201 | /* |
| 9202 | * Incompatible mis-alignment of source and destination... |
| 9203 | */ |
| 9204 | goto blunt_copy; |
| 9205 | } |
| 9206 | |
| 9207 | /* |
| 9208 | * Proper alignment or identical mis-alignment at the beginning. |
| 9209 | * Let's try and do a small unaligned copy first (if needed) |
| 9210 | * and then an aligned copy for the rest. |
| 9211 | */ |
| 9212 | if (!vm_map_page_aligned(dst_addr, effective_page_mask)) { |
| 9213 | head_addr = dst_addr; |
| 9214 | head_size = (effective_page_size - |
| 9215 | (copy->offset & effective_page_mask)); |
| 9216 | head_size = MIN(head_size, copy->size); |
| 9217 | } |
| 9218 | if (!vm_map_page_aligned(copy->offset + copy->size, |
| 9219 | effective_page_mask)) { |
| 9220 | /* |
| 9221 | * Mis-alignment at the end. |
| 9222 | * Do an aligned copy up to the last page and |
| 9223 | * then an unaligned copy for the remaining bytes. |
| 9224 | */ |
| 9225 | tail_size = ((copy->offset + copy->size) & |
| 9226 | effective_page_mask); |
| 9227 | tail_size = MIN(tail_size, copy->size); |
| 9228 | tail_addr = dst_addr + copy->size - tail_size; |
| 9229 | assert(tail_addr >= head_addr + head_size); |
| 9230 | } |
| 9231 | assert(head_size + tail_size <= copy->size); |
| 9232 | |
| 9233 | if (head_size + tail_size == copy->size) { |
| 9234 | /* |
| 9235 | * It's all unaligned, no optimization possible... |
| 9236 | */ |
| 9237 | goto blunt_copy; |
| 9238 | } |
| 9239 | |
| 9240 | /* |
| 9241 | * Can't optimize if there are any submaps in the |
| 9242 | * destination due to the way we free the "copy" map |
| 9243 | * progressively in vm_map_copy_overwrite_nested() |
| 9244 | * in that case. |
| 9245 | */ |
| 9246 | vm_map_lock_read(dst_map); |
| 9247 | if (! vm_map_lookup_entry(dst_map, dst_addr, &entry)) { |
| 9248 | vm_map_unlock_read(dst_map); |
| 9249 | goto blunt_copy; |
| 9250 | } |
| 9251 | for (; |
| 9252 | (entry != vm_map_copy_to_entry(copy) && |
| 9253 | entry->vme_start < dst_addr + copy->size); |
| 9254 | entry = entry->vme_next) { |
| 9255 | if (entry->is_sub_map) { |
| 9256 | vm_map_unlock_read(dst_map); |
| 9257 | goto blunt_copy; |
| 9258 | } |
| 9259 | } |
| 9260 | vm_map_unlock_read(dst_map); |
| 9261 | |
| 9262 | if (head_size) { |
| 9263 | /* |
| 9264 | * Unaligned copy of the first "head_size" bytes, to reach |
| 9265 | * a page boundary. |
| 9266 | */ |
| 9267 | |
| 9268 | /* |
| 9269 | * Extract "head_copy" out of "copy". |
| 9270 | */ |
| 9271 | head_copy = vm_map_copy_allocate(); |
| 9272 | head_copy->type = VM_MAP_COPY_ENTRY_LIST; |
| 9273 | head_copy->cpy_hdr.entries_pageable = |
| 9274 | copy->cpy_hdr.entries_pageable; |
| 9275 | vm_map_store_init(&head_copy->cpy_hdr); |
| 9276 | |
| 9277 | entry = vm_map_copy_first_entry(copy); |
| 9278 | if (entry->vme_end < copy->offset + head_size) { |
| 9279 | head_size = entry->vme_end - copy->offset; |
| 9280 | } |
| 9281 | |
| 9282 | head_copy->offset = copy->offset; |
| 9283 | head_copy->size = head_size; |
| 9284 | copy->offset += head_size; |
| 9285 | copy->size -= head_size; |
| 9286 | |
| 9287 | vm_map_copy_clip_end(copy, entry, copy->offset); |
| 9288 | vm_map_copy_entry_unlink(copy, entry); |
| 9289 | vm_map_copy_entry_link(head_copy, |
| 9290 | vm_map_copy_to_entry(head_copy), |
| 9291 | entry); |
| 9292 | |
| 9293 | /* |
| 9294 | * Do the unaligned copy. |
| 9295 | */ |
| 9296 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 9297 | head_addr, |
| 9298 | head_copy, |
| 9299 | interruptible, |
| 9300 | (pmap_t) NULL, |
| 9301 | FALSE); |
| 9302 | if (kr != KERN_SUCCESS) |
| 9303 | goto done; |
| 9304 | } |
| 9305 | |
| 9306 | if (tail_size) { |
| 9307 | /* |
| 9308 | * Extract "tail_copy" out of "copy". |
| 9309 | */ |
| 9310 | tail_copy = vm_map_copy_allocate(); |
| 9311 | tail_copy->type = VM_MAP_COPY_ENTRY_LIST; |
| 9312 | tail_copy->cpy_hdr.entries_pageable = |
| 9313 | copy->cpy_hdr.entries_pageable; |
| 9314 | vm_map_store_init(&tail_copy->cpy_hdr); |
| 9315 | |
| 9316 | tail_copy->offset = copy->offset + copy->size - tail_size; |
| 9317 | tail_copy->size = tail_size; |
| 9318 | |
| 9319 | copy->size -= tail_size; |
| 9320 | |
| 9321 | entry = vm_map_copy_last_entry(copy); |
| 9322 | vm_map_copy_clip_start(copy, entry, tail_copy->offset); |
| 9323 | entry = vm_map_copy_last_entry(copy); |
| 9324 | vm_map_copy_entry_unlink(copy, entry); |
| 9325 | vm_map_copy_entry_link(tail_copy, |
| 9326 | vm_map_copy_last_entry(tail_copy), |
| 9327 | entry); |
| 9328 | } |
| 9329 | |
| 9330 | /* |
| 9331 | * Copy most (or possibly all) of the data. |
| 9332 | */ |
| 9333 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 9334 | dst_addr + head_size, |
| 9335 | copy, |
| 9336 | interruptible, |
| 9337 | (pmap_t) NULL, |
| 9338 | FALSE); |
| 9339 | if (kr != KERN_SUCCESS) { |
| 9340 | goto done; |
| 9341 | } |
| 9342 | |
| 9343 | if (tail_size) { |
| 9344 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 9345 | tail_addr, |
| 9346 | tail_copy, |
| 9347 | interruptible, |
| 9348 | (pmap_t) NULL, |
| 9349 | FALSE); |
| 9350 | } |
| 9351 | |
| 9352 | done: |
| 9353 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); |
| 9354 | if (kr == KERN_SUCCESS) { |
| 9355 | /* |
| 9356 | * Discard all the copy maps. |
| 9357 | */ |
| 9358 | if (head_copy) { |
| 9359 | vm_map_copy_discard(head_copy); |
| 9360 | head_copy = NULL; |
| 9361 | } |
| 9362 | vm_map_copy_discard(copy); |
| 9363 | if (tail_copy) { |
| 9364 | vm_map_copy_discard(tail_copy); |
| 9365 | tail_copy = NULL; |
| 9366 | } |
| 9367 | } else { |
| 9368 | /* |
| 9369 | * Re-assemble the original copy map. |
| 9370 | */ |
| 9371 | if (head_copy) { |
| 9372 | entry = vm_map_copy_first_entry(head_copy); |
| 9373 | vm_map_copy_entry_unlink(head_copy, entry); |
| 9374 | vm_map_copy_entry_link(copy, |
| 9375 | vm_map_copy_to_entry(copy), |
| 9376 | entry); |
| 9377 | copy->offset -= head_size; |
| 9378 | copy->size += head_size; |
| 9379 | vm_map_copy_discard(head_copy); |
| 9380 | head_copy = NULL; |
| 9381 | } |
| 9382 | if (tail_copy) { |
| 9383 | entry = vm_map_copy_last_entry(tail_copy); |
| 9384 | vm_map_copy_entry_unlink(tail_copy, entry); |
| 9385 | vm_map_copy_entry_link(copy, |
| 9386 | vm_map_copy_last_entry(copy), |
| 9387 | entry); |
| 9388 | copy->size += tail_size; |
| 9389 | vm_map_copy_discard(tail_copy); |
| 9390 | tail_copy = NULL; |
| 9391 | } |
| 9392 | } |
| 9393 | return kr; |
| 9394 | } |
| 9395 | |
| 9396 | |
| 9397 | /* |
| 9398 | * Routine: vm_map_copy_overwrite_unaligned [internal use only] |
| 9399 | * |
| 9400 | * Decription: |
| 9401 | * Physically copy unaligned data |
| 9402 | * |
| 9403 | * Implementation: |
| 9404 | * Unaligned parts of pages have to be physically copied. We use |
| 9405 | * a modified form of vm_fault_copy (which understands none-aligned |
| 9406 | * page offsets and sizes) to do the copy. We attempt to copy as |
| 9407 | * much memory in one go as possibly, however vm_fault_copy copies |
| 9408 | * within 1 memory object so we have to find the smaller of "amount left" |
| 9409 | * "source object data size" and "target object data size". With |
| 9410 | * unaligned data we don't need to split regions, therefore the source |
| 9411 | * (copy) object should be one map entry, the target range may be split |
| 9412 | * over multiple map entries however. In any event we are pessimistic |
| 9413 | * about these assumptions. |
| 9414 | * |
| 9415 | * Assumptions: |
| 9416 | * dst_map is locked on entry and is return locked on success, |
| 9417 | * unlocked on error. |
| 9418 | */ |
| 9419 | |
| 9420 | static kern_return_t |
| 9421 | vm_map_copy_overwrite_unaligned( |
| 9422 | vm_map_t dst_map, |
| 9423 | vm_map_entry_t entry, |
| 9424 | vm_map_copy_t copy, |
| 9425 | vm_map_offset_t start, |
| 9426 | boolean_t discard_on_success) |
| 9427 | { |
| 9428 | vm_map_entry_t copy_entry; |
| 9429 | vm_map_entry_t copy_entry_next; |
| 9430 | vm_map_version_t version; |
| 9431 | vm_object_t dst_object; |
| 9432 | vm_object_offset_t dst_offset; |
| 9433 | vm_object_offset_t src_offset; |
| 9434 | vm_object_offset_t entry_offset; |
| 9435 | vm_map_offset_t entry_end; |
| 9436 | vm_map_size_t src_size, |
| 9437 | dst_size, |
| 9438 | copy_size, |
| 9439 | amount_left; |
| 9440 | kern_return_t kr = KERN_SUCCESS; |
| 9441 | |
| 9442 | |
| 9443 | copy_entry = vm_map_copy_first_entry(copy); |
| 9444 | |
| 9445 | vm_map_lock_write_to_read(dst_map); |
| 9446 | |
| 9447 | src_offset = copy->offset - vm_object_trunc_page(copy->offset); |
| 9448 | amount_left = copy->size; |
| 9449 | /* |
| 9450 | * unaligned so we never clipped this entry, we need the offset into |
| 9451 | * the vm_object not just the data. |
| 9452 | */ |
| 9453 | while (amount_left > 0) { |
| 9454 | |
| 9455 | if (entry == vm_map_to_entry(dst_map)) { |
| 9456 | vm_map_unlock_read(dst_map); |
| 9457 | return KERN_INVALID_ADDRESS; |
| 9458 | } |
| 9459 | |
| 9460 | /* "start" must be within the current map entry */ |
| 9461 | assert ((start>=entry->vme_start) && (start<entry->vme_end)); |
| 9462 | |
| 9463 | dst_offset = start - entry->vme_start; |
| 9464 | |
| 9465 | dst_size = entry->vme_end - start; |
| 9466 | |
| 9467 | src_size = copy_entry->vme_end - |
| 9468 | (copy_entry->vme_start + src_offset); |
| 9469 | |
| 9470 | if (dst_size < src_size) { |
| 9471 | /* |
| 9472 | * we can only copy dst_size bytes before |
| 9473 | * we have to get the next destination entry |
| 9474 | */ |
| 9475 | copy_size = dst_size; |
| 9476 | } else { |
| 9477 | /* |
| 9478 | * we can only copy src_size bytes before |
| 9479 | * we have to get the next source copy entry |
| 9480 | */ |
| 9481 | copy_size = src_size; |
| 9482 | } |
| 9483 | |
| 9484 | if (copy_size > amount_left) { |
| 9485 | copy_size = amount_left; |
| 9486 | } |
| 9487 | /* |
| 9488 | * Entry needs copy, create a shadow shadow object for |
| 9489 | * Copy on write region. |
| 9490 | */ |
| 9491 | if (entry->needs_copy && |
| 9492 | ((entry->protection & VM_PROT_WRITE) != 0)) |
| 9493 | { |
| 9494 | if (vm_map_lock_read_to_write(dst_map)) { |
| 9495 | vm_map_lock_read(dst_map); |
| 9496 | goto RetryLookup; |
| 9497 | } |
| 9498 | VME_OBJECT_SHADOW(entry, |
| 9499 | (vm_map_size_t)(entry->vme_end |
| 9500 | - entry->vme_start)); |
| 9501 | entry->needs_copy = FALSE; |
| 9502 | vm_map_lock_write_to_read(dst_map); |
| 9503 | } |
| 9504 | dst_object = VME_OBJECT(entry); |
| 9505 | /* |
| 9506 | * unlike with the virtual (aligned) copy we're going |
| 9507 | * to fault on it therefore we need a target object. |
| 9508 | */ |
| 9509 | if (dst_object == VM_OBJECT_NULL) { |
| 9510 | if (vm_map_lock_read_to_write(dst_map)) { |
| 9511 | vm_map_lock_read(dst_map); |
| 9512 | goto RetryLookup; |
| 9513 | } |
| 9514 | dst_object = vm_object_allocate((vm_map_size_t) |
| 9515 | entry->vme_end - entry->vme_start); |
| 9516 | VME_OBJECT(entry) = dst_object; |
| 9517 | VME_OFFSET_SET(entry, 0); |
| 9518 | assert(entry->use_pmap); |
| 9519 | vm_map_lock_write_to_read(dst_map); |
| 9520 | } |
| 9521 | /* |
| 9522 | * Take an object reference and unlock map. The "entry" may |
| 9523 | * disappear or change when the map is unlocked. |
| 9524 | */ |
| 9525 | vm_object_reference(dst_object); |
| 9526 | version.main_timestamp = dst_map->timestamp; |
| 9527 | entry_offset = VME_OFFSET(entry); |
| 9528 | entry_end = entry->vme_end; |
| 9529 | vm_map_unlock_read(dst_map); |
| 9530 | /* |
| 9531 | * Copy as much as possible in one pass |
| 9532 | */ |
| 9533 | kr = vm_fault_copy( |
| 9534 | VME_OBJECT(copy_entry), |
| 9535 | VME_OFFSET(copy_entry) + src_offset, |
| 9536 | ©_size, |
| 9537 | dst_object, |
| 9538 | entry_offset + dst_offset, |
| 9539 | dst_map, |
| 9540 | &version, |
| 9541 | THREAD_UNINT ); |
| 9542 | |
| 9543 | start += copy_size; |
| 9544 | src_offset += copy_size; |
| 9545 | amount_left -= copy_size; |
| 9546 | /* |
| 9547 | * Release the object reference |
| 9548 | */ |
| 9549 | vm_object_deallocate(dst_object); |
| 9550 | /* |
| 9551 | * If a hard error occurred, return it now |
| 9552 | */ |
| 9553 | if (kr != KERN_SUCCESS) |
| 9554 | return kr; |
| 9555 | |
| 9556 | if ((copy_entry->vme_start + src_offset) == copy_entry->vme_end |
| 9557 | || amount_left == 0) |
| 9558 | { |
| 9559 | /* |
| 9560 | * all done with this copy entry, dispose. |
| 9561 | */ |
| 9562 | copy_entry_next = copy_entry->vme_next; |
| 9563 | |
| 9564 | if (discard_on_success) { |
| 9565 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 9566 | assert(!copy_entry->is_sub_map); |
| 9567 | vm_object_deallocate(VME_OBJECT(copy_entry)); |
| 9568 | vm_map_copy_entry_dispose(copy, copy_entry); |
| 9569 | } |
| 9570 | |
| 9571 | if (copy_entry_next == vm_map_copy_to_entry(copy) && |
| 9572 | amount_left) { |
| 9573 | /* |
| 9574 | * not finished copying but run out of source |
| 9575 | */ |
| 9576 | return KERN_INVALID_ADDRESS; |
| 9577 | } |
| 9578 | |
| 9579 | copy_entry = copy_entry_next; |
| 9580 | |
| 9581 | src_offset = 0; |
| 9582 | } |
| 9583 | |
| 9584 | if (amount_left == 0) |
| 9585 | return KERN_SUCCESS; |
| 9586 | |
| 9587 | vm_map_lock_read(dst_map); |
| 9588 | if (version.main_timestamp == dst_map->timestamp) { |
| 9589 | if (start == entry_end) { |
| 9590 | /* |
| 9591 | * destination region is split. Use the version |
| 9592 | * information to avoid a lookup in the normal |
| 9593 | * case. |
| 9594 | */ |
| 9595 | entry = entry->vme_next; |
| 9596 | /* |
| 9597 | * should be contiguous. Fail if we encounter |
| 9598 | * a hole in the destination. |
| 9599 | */ |
| 9600 | if (start != entry->vme_start) { |
| 9601 | vm_map_unlock_read(dst_map); |
| 9602 | return KERN_INVALID_ADDRESS ; |
| 9603 | } |
| 9604 | } |
| 9605 | } else { |
| 9606 | /* |
| 9607 | * Map version check failed. |
| 9608 | * we must lookup the entry because somebody |
| 9609 | * might have changed the map behind our backs. |
| 9610 | */ |
| 9611 | RetryLookup: |
| 9612 | if (!vm_map_lookup_entry(dst_map, start, &entry)) |
| 9613 | { |
| 9614 | vm_map_unlock_read(dst_map); |
| 9615 | return KERN_INVALID_ADDRESS ; |
| 9616 | } |
| 9617 | } |
| 9618 | }/* while */ |
| 9619 | |
| 9620 | return KERN_SUCCESS; |
| 9621 | }/* vm_map_copy_overwrite_unaligned */ |
| 9622 | |
| 9623 | /* |
| 9624 | * Routine: vm_map_copy_overwrite_aligned [internal use only] |
| 9625 | * |
| 9626 | * Description: |
| 9627 | * Does all the vm_trickery possible for whole pages. |
| 9628 | * |
| 9629 | * Implementation: |
| 9630 | * |
| 9631 | * If there are no permanent objects in the destination, |
| 9632 | * and the source and destination map entry zones match, |
| 9633 | * and the destination map entry is not shared, |
| 9634 | * then the map entries can be deleted and replaced |
| 9635 | * with those from the copy. The following code is the |
| 9636 | * basic idea of what to do, but there are lots of annoying |
| 9637 | * little details about getting protection and inheritance |
| 9638 | * right. Should add protection, inheritance, and sharing checks |
| 9639 | * to the above pass and make sure that no wiring is involved. |
| 9640 | */ |
| 9641 | |
| 9642 | int vm_map_copy_overwrite_aligned_src_not_internal = 0; |
| 9643 | int vm_map_copy_overwrite_aligned_src_not_symmetric = 0; |
| 9644 | int vm_map_copy_overwrite_aligned_src_large = 0; |
| 9645 | |
| 9646 | static kern_return_t |
| 9647 | vm_map_copy_overwrite_aligned( |
| 9648 | vm_map_t dst_map, |
| 9649 | vm_map_entry_t tmp_entry, |
| 9650 | vm_map_copy_t copy, |
| 9651 | vm_map_offset_t start, |
| 9652 | __unused pmap_t pmap) |
| 9653 | { |
| 9654 | vm_object_t object; |
| 9655 | vm_map_entry_t copy_entry; |
| 9656 | vm_map_size_t copy_size; |
| 9657 | vm_map_size_t size; |
| 9658 | vm_map_entry_t entry; |
| 9659 | |
| 9660 | while ((copy_entry = vm_map_copy_first_entry(copy)) |
| 9661 | != vm_map_copy_to_entry(copy)) |
| 9662 | { |
| 9663 | copy_size = (copy_entry->vme_end - copy_entry->vme_start); |
| 9664 | |
| 9665 | entry = tmp_entry; |
| 9666 | if (entry->is_sub_map) { |
| 9667 | /* unnested when clipped earlier */ |
| 9668 | assert(!entry->use_pmap); |
| 9669 | } |
| 9670 | if (entry == vm_map_to_entry(dst_map)) { |
| 9671 | vm_map_unlock(dst_map); |
| 9672 | return KERN_INVALID_ADDRESS; |
| 9673 | } |
| 9674 | size = (entry->vme_end - entry->vme_start); |
| 9675 | /* |
| 9676 | * Make sure that no holes popped up in the |
| 9677 | * address map, and that the protection is |
| 9678 | * still valid, in case the map was unlocked |
| 9679 | * earlier. |
| 9680 | */ |
| 9681 | |
| 9682 | if ((entry->vme_start != start) || ((entry->is_sub_map) |
| 9683 | && !entry->needs_copy)) { |
| 9684 | vm_map_unlock(dst_map); |
| 9685 | return(KERN_INVALID_ADDRESS); |
| 9686 | } |
| 9687 | assert(entry != vm_map_to_entry(dst_map)); |
| 9688 | |
| 9689 | /* |
| 9690 | * Check protection again |
| 9691 | */ |
| 9692 | |
| 9693 | if ( ! (entry->protection & VM_PROT_WRITE)) { |
| 9694 | vm_map_unlock(dst_map); |
| 9695 | return(KERN_PROTECTION_FAILURE); |
| 9696 | } |
| 9697 | |
| 9698 | /* |
| 9699 | * Adjust to source size first |
| 9700 | */ |
| 9701 | |
| 9702 | if (copy_size < size) { |
| 9703 | if (entry->map_aligned && |
| 9704 | !VM_MAP_PAGE_ALIGNED(entry->vme_start + copy_size, |
| 9705 | VM_MAP_PAGE_MASK(dst_map))) { |
| 9706 | /* no longer map-aligned */ |
| 9707 | entry->map_aligned = FALSE; |
| 9708 | } |
| 9709 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size); |
| 9710 | size = copy_size; |
| 9711 | } |
| 9712 | |
| 9713 | /* |
| 9714 | * Adjust to destination size |
| 9715 | */ |
| 9716 | |
| 9717 | if (size < copy_size) { |
| 9718 | vm_map_copy_clip_end(copy, copy_entry, |
| 9719 | copy_entry->vme_start + size); |
| 9720 | copy_size = size; |
| 9721 | } |
| 9722 | |
| 9723 | assert((entry->vme_end - entry->vme_start) == size); |
| 9724 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size); |
| 9725 | assert((copy_entry->vme_end - copy_entry->vme_start) == size); |
| 9726 | |
| 9727 | /* |
| 9728 | * If the destination contains temporary unshared memory, |
| 9729 | * we can perform the copy by throwing it away and |
| 9730 | * installing the source data. |
| 9731 | */ |
| 9732 | |
| 9733 | object = VME_OBJECT(entry); |
| 9734 | if ((!entry->is_shared && |
| 9735 | ((object == VM_OBJECT_NULL) || |
| 9736 | (object->internal && !object->true_share))) || |
| 9737 | entry->needs_copy) { |
| 9738 | vm_object_t old_object = VME_OBJECT(entry); |
| 9739 | vm_object_offset_t old_offset = VME_OFFSET(entry); |
| 9740 | vm_object_offset_t offset; |
| 9741 | |
| 9742 | /* |
| 9743 | * Ensure that the source and destination aren't |
| 9744 | * identical |
| 9745 | */ |
| 9746 | if (old_object == VME_OBJECT(copy_entry) && |
| 9747 | old_offset == VME_OFFSET(copy_entry)) { |
| 9748 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 9749 | vm_map_copy_entry_dispose(copy, copy_entry); |
| 9750 | |
| 9751 | if (old_object != VM_OBJECT_NULL) |
| 9752 | vm_object_deallocate(old_object); |
| 9753 | |
| 9754 | start = tmp_entry->vme_end; |
| 9755 | tmp_entry = tmp_entry->vme_next; |
| 9756 | continue; |
| 9757 | } |
| 9758 | |
| 9759 | #if !CONFIG_EMBEDDED |
| 9760 | #define __TRADEOFF1_OBJ_SIZE (64 * 1024 * 1024) /* 64 MB */ |
| 9761 | #define __TRADEOFF1_COPY_SIZE (128 * 1024) /* 128 KB */ |
| 9762 | if (VME_OBJECT(copy_entry) != VM_OBJECT_NULL && |
| 9763 | VME_OBJECT(copy_entry)->vo_size >= __TRADEOFF1_OBJ_SIZE && |
| 9764 | copy_size <= __TRADEOFF1_COPY_SIZE) { |
| 9765 | /* |
| 9766 | * Virtual vs. Physical copy tradeoff #1. |
| 9767 | * |
| 9768 | * Copying only a few pages out of a large |
| 9769 | * object: do a physical copy instead of |
| 9770 | * a virtual copy, to avoid possibly keeping |
| 9771 | * the entire large object alive because of |
| 9772 | * those few copy-on-write pages. |
| 9773 | */ |
| 9774 | vm_map_copy_overwrite_aligned_src_large++; |
| 9775 | goto slow_copy; |
| 9776 | } |
| 9777 | #endif /* !CONFIG_EMBEDDED */ |
| 9778 | |
| 9779 | if ((dst_map->pmap != kernel_pmap) && |
| 9780 | (VME_ALIAS(entry) >= VM_MEMORY_MALLOC) && |
| 9781 | (VME_ALIAS(entry) <= VM_MEMORY_MALLOC_LARGE_REUSED)) { |
| 9782 | vm_object_t new_object, new_shadow; |
| 9783 | |
| 9784 | /* |
| 9785 | * We're about to map something over a mapping |
| 9786 | * established by malloc()... |
| 9787 | */ |
| 9788 | new_object = VME_OBJECT(copy_entry); |
| 9789 | if (new_object != VM_OBJECT_NULL) { |
| 9790 | vm_object_lock_shared(new_object); |
| 9791 | } |
| 9792 | while (new_object != VM_OBJECT_NULL && |
| 9793 | #if !CONFIG_EMBEDDED |
| 9794 | !new_object->true_share && |
| 9795 | new_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && |
| 9796 | #endif /* !CONFIG_EMBEDDED */ |
| 9797 | new_object->internal) { |
| 9798 | new_shadow = new_object->shadow; |
| 9799 | if (new_shadow == VM_OBJECT_NULL) { |
| 9800 | break; |
| 9801 | } |
| 9802 | vm_object_lock_shared(new_shadow); |
| 9803 | vm_object_unlock(new_object); |
| 9804 | new_object = new_shadow; |
| 9805 | } |
| 9806 | if (new_object != VM_OBJECT_NULL) { |
| 9807 | if (!new_object->internal) { |
| 9808 | /* |
| 9809 | * The new mapping is backed |
| 9810 | * by an external object. We |
| 9811 | * don't want malloc'ed memory |
| 9812 | * to be replaced with such a |
| 9813 | * non-anonymous mapping, so |
| 9814 | * let's go off the optimized |
| 9815 | * path... |
| 9816 | */ |
| 9817 | vm_map_copy_overwrite_aligned_src_not_internal++; |
| 9818 | vm_object_unlock(new_object); |
| 9819 | goto slow_copy; |
| 9820 | } |
| 9821 | #if !CONFIG_EMBEDDED |
| 9822 | if (new_object->true_share || |
| 9823 | new_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 9824 | /* |
| 9825 | * Same if there's a "true_share" |
| 9826 | * object in the shadow chain, or |
| 9827 | * an object with a non-default |
| 9828 | * (SYMMETRIC) copy strategy. |
| 9829 | */ |
| 9830 | vm_map_copy_overwrite_aligned_src_not_symmetric++; |
| 9831 | vm_object_unlock(new_object); |
| 9832 | goto slow_copy; |
| 9833 | } |
| 9834 | #endif /* !CONFIG_EMBEDDED */ |
| 9835 | vm_object_unlock(new_object); |
| 9836 | } |
| 9837 | /* |
| 9838 | * The new mapping is still backed by |
| 9839 | * anonymous (internal) memory, so it's |
| 9840 | * OK to substitute it for the original |
| 9841 | * malloc() mapping. |
| 9842 | */ |
| 9843 | } |
| 9844 | |
| 9845 | if (old_object != VM_OBJECT_NULL) { |
| 9846 | if(entry->is_sub_map) { |
| 9847 | if(entry->use_pmap) { |
| 9848 | #ifndef NO_NESTED_PMAP |
| 9849 | pmap_unnest(dst_map->pmap, |
| 9850 | (addr64_t)entry->vme_start, |
| 9851 | entry->vme_end - entry->vme_start); |
| 9852 | #endif /* NO_NESTED_PMAP */ |
| 9853 | if(dst_map->mapped_in_other_pmaps) { |
| 9854 | /* clean up parent */ |
| 9855 | /* map/maps */ |
| 9856 | vm_map_submap_pmap_clean( |
| 9857 | dst_map, entry->vme_start, |
| 9858 | entry->vme_end, |
| 9859 | VME_SUBMAP(entry), |
| 9860 | VME_OFFSET(entry)); |
| 9861 | } |
| 9862 | } else { |
| 9863 | vm_map_submap_pmap_clean( |
| 9864 | dst_map, entry->vme_start, |
| 9865 | entry->vme_end, |
| 9866 | VME_SUBMAP(entry), |
| 9867 | VME_OFFSET(entry)); |
| 9868 | } |
| 9869 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 9870 | } else { |
| 9871 | if(dst_map->mapped_in_other_pmaps) { |
| 9872 | vm_object_pmap_protect_options( |
| 9873 | VME_OBJECT(entry), |
| 9874 | VME_OFFSET(entry), |
| 9875 | entry->vme_end |
| 9876 | - entry->vme_start, |
| 9877 | PMAP_NULL, |
| 9878 | entry->vme_start, |
| 9879 | VM_PROT_NONE, |
| 9880 | PMAP_OPTIONS_REMOVE); |
| 9881 | } else { |
| 9882 | pmap_remove_options( |
| 9883 | dst_map->pmap, |
| 9884 | (addr64_t)(entry->vme_start), |
| 9885 | (addr64_t)(entry->vme_end), |
| 9886 | PMAP_OPTIONS_REMOVE); |
| 9887 | } |
| 9888 | vm_object_deallocate(old_object); |
| 9889 | } |
| 9890 | } |
| 9891 | |
| 9892 | if (entry->iokit_acct) { |
| 9893 | /* keep using iokit accounting */ |
| 9894 | entry->use_pmap = FALSE; |
| 9895 | } else { |
| 9896 | /* use pmap accounting */ |
| 9897 | entry->use_pmap = TRUE; |
| 9898 | } |
| 9899 | entry->is_sub_map = FALSE; |
| 9900 | VME_OBJECT_SET(entry, VME_OBJECT(copy_entry)); |
| 9901 | object = VME_OBJECT(entry); |
| 9902 | entry->needs_copy = copy_entry->needs_copy; |
| 9903 | entry->wired_count = 0; |
| 9904 | entry->user_wired_count = 0; |
| 9905 | offset = VME_OFFSET(copy_entry); |
| 9906 | VME_OFFSET_SET(entry, offset); |
| 9907 | |
| 9908 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 9909 | vm_map_copy_entry_dispose(copy, copy_entry); |
| 9910 | |
| 9911 | /* |
| 9912 | * we could try to push pages into the pmap at this point, BUT |
| 9913 | * this optimization only saved on average 2 us per page if ALL |
| 9914 | * the pages in the source were currently mapped |
| 9915 | * and ALL the pages in the dest were touched, if there were fewer |
| 9916 | * than 2/3 of the pages touched, this optimization actually cost more cycles |
| 9917 | * it also puts a lot of pressure on the pmap layer w/r to mapping structures |
| 9918 | */ |
| 9919 | |
| 9920 | /* |
| 9921 | * Set up for the next iteration. The map |
| 9922 | * has not been unlocked, so the next |
| 9923 | * address should be at the end of this |
| 9924 | * entry, and the next map entry should be |
| 9925 | * the one following it. |
| 9926 | */ |
| 9927 | |
| 9928 | start = tmp_entry->vme_end; |
| 9929 | tmp_entry = tmp_entry->vme_next; |
| 9930 | } else { |
| 9931 | vm_map_version_t version; |
| 9932 | vm_object_t dst_object; |
| 9933 | vm_object_offset_t dst_offset; |
| 9934 | kern_return_t r; |
| 9935 | |
| 9936 | slow_copy: |
| 9937 | if (entry->needs_copy) { |
| 9938 | VME_OBJECT_SHADOW(entry, |
| 9939 | (entry->vme_end - |
| 9940 | entry->vme_start)); |
| 9941 | entry->needs_copy = FALSE; |
| 9942 | } |
| 9943 | |
| 9944 | dst_object = VME_OBJECT(entry); |
| 9945 | dst_offset = VME_OFFSET(entry); |
| 9946 | |
| 9947 | /* |
| 9948 | * Take an object reference, and record |
| 9949 | * the map version information so that the |
| 9950 | * map can be safely unlocked. |
| 9951 | */ |
| 9952 | |
| 9953 | if (dst_object == VM_OBJECT_NULL) { |
| 9954 | /* |
| 9955 | * We would usually have just taken the |
| 9956 | * optimized path above if the destination |
| 9957 | * object has not been allocated yet. But we |
| 9958 | * now disable that optimization if the copy |
| 9959 | * entry's object is not backed by anonymous |
| 9960 | * memory to avoid replacing malloc'ed |
| 9961 | * (i.e. re-usable) anonymous memory with a |
| 9962 | * not-so-anonymous mapping. |
| 9963 | * So we have to handle this case here and |
| 9964 | * allocate a new VM object for this map entry. |
| 9965 | */ |
| 9966 | dst_object = vm_object_allocate( |
| 9967 | entry->vme_end - entry->vme_start); |
| 9968 | dst_offset = 0; |
| 9969 | VME_OBJECT_SET(entry, dst_object); |
| 9970 | VME_OFFSET_SET(entry, dst_offset); |
| 9971 | assert(entry->use_pmap); |
| 9972 | |
| 9973 | } |
| 9974 | |
| 9975 | vm_object_reference(dst_object); |
| 9976 | |
| 9977 | /* account for unlock bumping up timestamp */ |
| 9978 | version.main_timestamp = dst_map->timestamp + 1; |
| 9979 | |
| 9980 | vm_map_unlock(dst_map); |
| 9981 | |
| 9982 | /* |
| 9983 | * Copy as much as possible in one pass |
| 9984 | */ |
| 9985 | |
| 9986 | copy_size = size; |
| 9987 | r = vm_fault_copy( |
| 9988 | VME_OBJECT(copy_entry), |
| 9989 | VME_OFFSET(copy_entry), |
| 9990 | ©_size, |
| 9991 | dst_object, |
| 9992 | dst_offset, |
| 9993 | dst_map, |
| 9994 | &version, |
| 9995 | THREAD_UNINT ); |
| 9996 | |
| 9997 | /* |
| 9998 | * Release the object reference |
| 9999 | */ |
| 10000 | |
| 10001 | vm_object_deallocate(dst_object); |
| 10002 | |
| 10003 | /* |
| 10004 | * If a hard error occurred, return it now |
| 10005 | */ |
| 10006 | |
| 10007 | if (r != KERN_SUCCESS) |
| 10008 | return(r); |
| 10009 | |
| 10010 | if (copy_size != 0) { |
| 10011 | /* |
| 10012 | * Dispose of the copied region |
| 10013 | */ |
| 10014 | |
| 10015 | vm_map_copy_clip_end(copy, copy_entry, |
| 10016 | copy_entry->vme_start + copy_size); |
| 10017 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 10018 | vm_object_deallocate(VME_OBJECT(copy_entry)); |
| 10019 | vm_map_copy_entry_dispose(copy, copy_entry); |
| 10020 | } |
| 10021 | |
| 10022 | /* |
| 10023 | * Pick up in the destination map where we left off. |
| 10024 | * |
| 10025 | * Use the version information to avoid a lookup |
| 10026 | * in the normal case. |
| 10027 | */ |
| 10028 | |
| 10029 | start += copy_size; |
| 10030 | vm_map_lock(dst_map); |
| 10031 | if (version.main_timestamp == dst_map->timestamp && |
| 10032 | copy_size != 0) { |
| 10033 | /* We can safely use saved tmp_entry value */ |
| 10034 | |
| 10035 | if (tmp_entry->map_aligned && |
| 10036 | !VM_MAP_PAGE_ALIGNED( |
| 10037 | start, |
| 10038 | VM_MAP_PAGE_MASK(dst_map))) { |
| 10039 | /* no longer map-aligned */ |
| 10040 | tmp_entry->map_aligned = FALSE; |
| 10041 | } |
| 10042 | vm_map_clip_end(dst_map, tmp_entry, start); |
| 10043 | tmp_entry = tmp_entry->vme_next; |
| 10044 | } else { |
| 10045 | /* Must do lookup of tmp_entry */ |
| 10046 | |
| 10047 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { |
| 10048 | vm_map_unlock(dst_map); |
| 10049 | return(KERN_INVALID_ADDRESS); |
| 10050 | } |
| 10051 | if (tmp_entry->map_aligned && |
| 10052 | !VM_MAP_PAGE_ALIGNED( |
| 10053 | start, |
| 10054 | VM_MAP_PAGE_MASK(dst_map))) { |
| 10055 | /* no longer map-aligned */ |
| 10056 | tmp_entry->map_aligned = FALSE; |
| 10057 | } |
| 10058 | vm_map_clip_start(dst_map, tmp_entry, start); |
| 10059 | } |
| 10060 | } |
| 10061 | }/* while */ |
| 10062 | |
| 10063 | return(KERN_SUCCESS); |
| 10064 | }/* vm_map_copy_overwrite_aligned */ |
| 10065 | |
| 10066 | /* |
| 10067 | * Routine: vm_map_copyin_kernel_buffer [internal use only] |
| 10068 | * |
| 10069 | * Description: |
| 10070 | * Copy in data to a kernel buffer from space in the |
| 10071 | * source map. The original space may be optionally |
| 10072 | * deallocated. |
| 10073 | * |
| 10074 | * If successful, returns a new copy object. |
| 10075 | */ |
| 10076 | static kern_return_t |
| 10077 | vm_map_copyin_kernel_buffer( |
| 10078 | vm_map_t src_map, |
| 10079 | vm_map_offset_t src_addr, |
| 10080 | vm_map_size_t len, |
| 10081 | boolean_t src_destroy, |
| 10082 | vm_map_copy_t *copy_result) |
| 10083 | { |
| 10084 | kern_return_t kr; |
| 10085 | vm_map_copy_t copy; |
| 10086 | vm_size_t kalloc_size; |
| 10087 | |
| 10088 | if (len > msg_ool_size_small) |
| 10089 | return KERN_INVALID_ARGUMENT; |
| 10090 | |
| 10091 | kalloc_size = (vm_size_t)(cpy_kdata_hdr_sz + len); |
| 10092 | |
| 10093 | copy = (vm_map_copy_t)kalloc(kalloc_size); |
| 10094 | if (copy == VM_MAP_COPY_NULL) |
| 10095 | return KERN_RESOURCE_SHORTAGE; |
| 10096 | copy->type = VM_MAP_COPY_KERNEL_BUFFER; |
| 10097 | copy->size = len; |
| 10098 | copy->offset = 0; |
| 10099 | |
| 10100 | kr = copyinmap(src_map, src_addr, copy->cpy_kdata, (vm_size_t)len); |
| 10101 | if (kr != KERN_SUCCESS) { |
| 10102 | kfree(copy, kalloc_size); |
| 10103 | return kr; |
| 10104 | } |
| 10105 | if (src_destroy) { |
| 10106 | (void) vm_map_remove( |
| 10107 | src_map, |
| 10108 | vm_map_trunc_page(src_addr, |
| 10109 | VM_MAP_PAGE_MASK(src_map)), |
| 10110 | vm_map_round_page(src_addr + len, |
| 10111 | VM_MAP_PAGE_MASK(src_map)), |
| 10112 | (VM_MAP_REMOVE_INTERRUPTIBLE | |
| 10113 | VM_MAP_REMOVE_WAIT_FOR_KWIRE | |
| 10114 | ((src_map == kernel_map) ? VM_MAP_REMOVE_KUNWIRE : VM_MAP_REMOVE_NO_FLAGS))); |
| 10115 | } |
| 10116 | *copy_result = copy; |
| 10117 | return KERN_SUCCESS; |
| 10118 | } |
| 10119 | |
| 10120 | /* |
| 10121 | * Routine: vm_map_copyout_kernel_buffer [internal use only] |
| 10122 | * |
| 10123 | * Description: |
| 10124 | * Copy out data from a kernel buffer into space in the |
| 10125 | * destination map. The space may be otpionally dynamically |
| 10126 | * allocated. |
| 10127 | * |
| 10128 | * If successful, consumes the copy object. |
| 10129 | * Otherwise, the caller is responsible for it. |
| 10130 | */ |
| 10131 | static int vm_map_copyout_kernel_buffer_failures = 0; |
| 10132 | static kern_return_t |
| 10133 | vm_map_copyout_kernel_buffer( |
| 10134 | vm_map_t map, |
| 10135 | vm_map_address_t *addr, /* IN/OUT */ |
| 10136 | vm_map_copy_t copy, |
| 10137 | vm_map_size_t copy_size, |
| 10138 | boolean_t overwrite, |
| 10139 | boolean_t consume_on_success) |
| 10140 | { |
| 10141 | kern_return_t kr = KERN_SUCCESS; |
| 10142 | thread_t thread = current_thread(); |
| 10143 | |
| 10144 | assert(copy->size == copy_size); |
| 10145 | |
| 10146 | /* |
| 10147 | * check for corrupted vm_map_copy structure |
| 10148 | */ |
| 10149 | if (copy_size > msg_ool_size_small || copy->offset) |
| 10150 | panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld" , |
| 10151 | (long long)copy->size, (long long)copy->offset); |
| 10152 | |
| 10153 | if (!overwrite) { |
| 10154 | |
| 10155 | /* |
| 10156 | * Allocate space in the target map for the data |
| 10157 | */ |
| 10158 | *addr = 0; |
| 10159 | kr = vm_map_enter(map, |
| 10160 | addr, |
| 10161 | vm_map_round_page(copy_size, |
| 10162 | VM_MAP_PAGE_MASK(map)), |
| 10163 | (vm_map_offset_t) 0, |
| 10164 | VM_FLAGS_ANYWHERE, |
| 10165 | VM_MAP_KERNEL_FLAGS_NONE, |
| 10166 | VM_KERN_MEMORY_NONE, |
| 10167 | VM_OBJECT_NULL, |
| 10168 | (vm_object_offset_t) 0, |
| 10169 | FALSE, |
| 10170 | VM_PROT_DEFAULT, |
| 10171 | VM_PROT_ALL, |
| 10172 | VM_INHERIT_DEFAULT); |
| 10173 | if (kr != KERN_SUCCESS) |
| 10174 | return kr; |
| 10175 | #if KASAN |
| 10176 | if (map->pmap == kernel_pmap) { |
| 10177 | kasan_notify_address(*addr, copy->size); |
| 10178 | } |
| 10179 | #endif |
| 10180 | } |
| 10181 | |
| 10182 | /* |
| 10183 | * Copyout the data from the kernel buffer to the target map. |
| 10184 | */ |
| 10185 | if (thread->map == map) { |
| 10186 | |
| 10187 | /* |
| 10188 | * If the target map is the current map, just do |
| 10189 | * the copy. |
| 10190 | */ |
| 10191 | assert((vm_size_t)copy_size == copy_size); |
| 10192 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t)copy_size)) { |
| 10193 | kr = KERN_INVALID_ADDRESS; |
| 10194 | } |
| 10195 | } |
| 10196 | else { |
| 10197 | vm_map_t oldmap; |
| 10198 | |
| 10199 | /* |
| 10200 | * If the target map is another map, assume the |
| 10201 | * target's address space identity for the duration |
| 10202 | * of the copy. |
| 10203 | */ |
| 10204 | vm_map_reference(map); |
| 10205 | oldmap = vm_map_switch(map); |
| 10206 | |
| 10207 | assert((vm_size_t)copy_size == copy_size); |
| 10208 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t)copy_size)) { |
| 10209 | vm_map_copyout_kernel_buffer_failures++; |
| 10210 | kr = KERN_INVALID_ADDRESS; |
| 10211 | } |
| 10212 | |
| 10213 | (void) vm_map_switch(oldmap); |
| 10214 | vm_map_deallocate(map); |
| 10215 | } |
| 10216 | |
| 10217 | if (kr != KERN_SUCCESS) { |
| 10218 | /* the copy failed, clean up */ |
| 10219 | if (!overwrite) { |
| 10220 | /* |
| 10221 | * Deallocate the space we allocated in the target map. |
| 10222 | */ |
| 10223 | (void) vm_map_remove( |
| 10224 | map, |
| 10225 | vm_map_trunc_page(*addr, |
| 10226 | VM_MAP_PAGE_MASK(map)), |
| 10227 | vm_map_round_page((*addr + |
| 10228 | vm_map_round_page(copy_size, |
| 10229 | VM_MAP_PAGE_MASK(map))), |
| 10230 | VM_MAP_PAGE_MASK(map)), |
| 10231 | VM_MAP_REMOVE_NO_FLAGS); |
| 10232 | *addr = 0; |
| 10233 | } |
| 10234 | } else { |
| 10235 | /* copy was successful, dicard the copy structure */ |
| 10236 | if (consume_on_success) { |
| 10237 | kfree(copy, copy_size + cpy_kdata_hdr_sz); |
| 10238 | } |
| 10239 | } |
| 10240 | |
| 10241 | return kr; |
| 10242 | } |
| 10243 | |
| 10244 | /* |
| 10245 | * Routine: vm_map_copy_insert [internal use only] |
| 10246 | * |
| 10247 | * Description: |
| 10248 | * Link a copy chain ("copy") into a map at the |
| 10249 | * specified location (after "where"). |
| 10250 | * Side effects: |
| 10251 | * The copy chain is destroyed. |
| 10252 | */ |
| 10253 | static void |
| 10254 | vm_map_copy_insert( |
| 10255 | vm_map_t map, |
| 10256 | vm_map_entry_t after_where, |
| 10257 | vm_map_copy_t copy) |
| 10258 | { |
| 10259 | vm_map_entry_t entry; |
| 10260 | |
| 10261 | while (vm_map_copy_first_entry(copy) != vm_map_copy_to_entry(copy)) { |
| 10262 | entry = vm_map_copy_first_entry(copy); |
| 10263 | vm_map_copy_entry_unlink(copy, entry); |
| 10264 | vm_map_store_entry_link(map, after_where, entry, |
| 10265 | VM_MAP_KERNEL_FLAGS_NONE); |
| 10266 | after_where = entry; |
| 10267 | } |
| 10268 | zfree(vm_map_copy_zone, copy); |
| 10269 | } |
| 10270 | |
| 10271 | void |
| 10272 | vm_map_copy_remap( |
| 10273 | vm_map_t map, |
| 10274 | vm_map_entry_t where, |
| 10275 | vm_map_copy_t copy, |
| 10276 | vm_map_offset_t adjustment, |
| 10277 | vm_prot_t cur_prot, |
| 10278 | vm_prot_t max_prot, |
| 10279 | vm_inherit_t inheritance) |
| 10280 | { |
| 10281 | vm_map_entry_t copy_entry, new_entry; |
| 10282 | |
| 10283 | for (copy_entry = vm_map_copy_first_entry(copy); |
| 10284 | copy_entry != vm_map_copy_to_entry(copy); |
| 10285 | copy_entry = copy_entry->vme_next) { |
| 10286 | /* get a new VM map entry for the map */ |
| 10287 | new_entry = vm_map_entry_create(map, |
| 10288 | !map->hdr.entries_pageable); |
| 10289 | /* copy the "copy entry" to the new entry */ |
| 10290 | vm_map_entry_copy(new_entry, copy_entry); |
| 10291 | /* adjust "start" and "end" */ |
| 10292 | new_entry->vme_start += adjustment; |
| 10293 | new_entry->vme_end += adjustment; |
| 10294 | /* clear some attributes */ |
| 10295 | new_entry->inheritance = inheritance; |
| 10296 | new_entry->protection = cur_prot; |
| 10297 | new_entry->max_protection = max_prot; |
| 10298 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; |
| 10299 | /* take an extra reference on the entry's "object" */ |
| 10300 | if (new_entry->is_sub_map) { |
| 10301 | assert(!new_entry->use_pmap); /* not nested */ |
| 10302 | vm_map_lock(VME_SUBMAP(new_entry)); |
| 10303 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 10304 | vm_map_unlock(VME_SUBMAP(new_entry)); |
| 10305 | } else { |
| 10306 | vm_object_reference(VME_OBJECT(new_entry)); |
| 10307 | } |
| 10308 | /* insert the new entry in the map */ |
| 10309 | vm_map_store_entry_link(map, where, new_entry, |
| 10310 | VM_MAP_KERNEL_FLAGS_NONE); |
| 10311 | /* continue inserting the "copy entries" after the new entry */ |
| 10312 | where = new_entry; |
| 10313 | } |
| 10314 | } |
| 10315 | |
| 10316 | |
| 10317 | /* |
| 10318 | * Returns true if *size matches (or is in the range of) copy->size. |
| 10319 | * Upon returning true, the *size field is updated with the actual size of the |
| 10320 | * copy object (may be different for VM_MAP_COPY_ENTRY_LIST types) |
| 10321 | */ |
| 10322 | boolean_t |
| 10323 | vm_map_copy_validate_size( |
| 10324 | vm_map_t dst_map, |
| 10325 | vm_map_copy_t copy, |
| 10326 | vm_map_size_t *size) |
| 10327 | { |
| 10328 | if (copy == VM_MAP_COPY_NULL) |
| 10329 | return FALSE; |
| 10330 | vm_map_size_t copy_sz = copy->size; |
| 10331 | vm_map_size_t sz = *size; |
| 10332 | switch (copy->type) { |
| 10333 | case VM_MAP_COPY_OBJECT: |
| 10334 | case VM_MAP_COPY_KERNEL_BUFFER: |
| 10335 | if (sz == copy_sz) |
| 10336 | return TRUE; |
| 10337 | break; |
| 10338 | case VM_MAP_COPY_ENTRY_LIST: |
| 10339 | /* |
| 10340 | * potential page-size rounding prevents us from exactly |
| 10341 | * validating this flavor of vm_map_copy, but we can at least |
| 10342 | * assert that it's within a range. |
| 10343 | */ |
| 10344 | if (copy_sz >= sz && |
| 10345 | copy_sz <= vm_map_round_page(sz, VM_MAP_PAGE_MASK(dst_map))) { |
| 10346 | *size = copy_sz; |
| 10347 | return TRUE; |
| 10348 | } |
| 10349 | break; |
| 10350 | default: |
| 10351 | break; |
| 10352 | } |
| 10353 | return FALSE; |
| 10354 | } |
| 10355 | |
| 10356 | /* |
| 10357 | * Routine: vm_map_copyout_size |
| 10358 | * |
| 10359 | * Description: |
| 10360 | * Copy out a copy chain ("copy") into newly-allocated |
| 10361 | * space in the destination map. Uses a prevalidated |
| 10362 | * size for the copy object (vm_map_copy_validate_size). |
| 10363 | * |
| 10364 | * If successful, consumes the copy object. |
| 10365 | * Otherwise, the caller is responsible for it. |
| 10366 | */ |
| 10367 | kern_return_t |
| 10368 | vm_map_copyout_size( |
| 10369 | vm_map_t dst_map, |
| 10370 | vm_map_address_t *dst_addr, /* OUT */ |
| 10371 | vm_map_copy_t copy, |
| 10372 | vm_map_size_t copy_size) |
| 10373 | { |
| 10374 | return vm_map_copyout_internal(dst_map, dst_addr, copy, copy_size, |
| 10375 | TRUE, /* consume_on_success */ |
| 10376 | VM_PROT_DEFAULT, |
| 10377 | VM_PROT_ALL, |
| 10378 | VM_INHERIT_DEFAULT); |
| 10379 | } |
| 10380 | |
| 10381 | /* |
| 10382 | * Routine: vm_map_copyout |
| 10383 | * |
| 10384 | * Description: |
| 10385 | * Copy out a copy chain ("copy") into newly-allocated |
| 10386 | * space in the destination map. |
| 10387 | * |
| 10388 | * If successful, consumes the copy object. |
| 10389 | * Otherwise, the caller is responsible for it. |
| 10390 | */ |
| 10391 | kern_return_t |
| 10392 | vm_map_copyout( |
| 10393 | vm_map_t dst_map, |
| 10394 | vm_map_address_t *dst_addr, /* OUT */ |
| 10395 | vm_map_copy_t copy) |
| 10396 | { |
| 10397 | return vm_map_copyout_internal(dst_map, dst_addr, copy, copy ? copy->size : 0, |
| 10398 | TRUE, /* consume_on_success */ |
| 10399 | VM_PROT_DEFAULT, |
| 10400 | VM_PROT_ALL, |
| 10401 | VM_INHERIT_DEFAULT); |
| 10402 | } |
| 10403 | |
| 10404 | kern_return_t |
| 10405 | vm_map_copyout_internal( |
| 10406 | vm_map_t dst_map, |
| 10407 | vm_map_address_t *dst_addr, /* OUT */ |
| 10408 | vm_map_copy_t copy, |
| 10409 | vm_map_size_t copy_size, |
| 10410 | boolean_t consume_on_success, |
| 10411 | vm_prot_t cur_protection, |
| 10412 | vm_prot_t max_protection, |
| 10413 | vm_inherit_t inheritance) |
| 10414 | { |
| 10415 | vm_map_size_t size; |
| 10416 | vm_map_size_t adjustment; |
| 10417 | vm_map_offset_t start; |
| 10418 | vm_object_offset_t vm_copy_start; |
| 10419 | vm_map_entry_t last; |
| 10420 | vm_map_entry_t entry; |
| 10421 | vm_map_entry_t hole_entry; |
| 10422 | |
| 10423 | /* |
| 10424 | * Check for null copy object. |
| 10425 | */ |
| 10426 | |
| 10427 | if (copy == VM_MAP_COPY_NULL) { |
| 10428 | *dst_addr = 0; |
| 10429 | return(KERN_SUCCESS); |
| 10430 | } |
| 10431 | |
| 10432 | if (copy->size != copy_size) { |
| 10433 | *dst_addr = 0; |
| 10434 | return KERN_FAILURE; |
| 10435 | } |
| 10436 | |
| 10437 | /* |
| 10438 | * Check for special copy object, created |
| 10439 | * by vm_map_copyin_object. |
| 10440 | */ |
| 10441 | |
| 10442 | if (copy->type == VM_MAP_COPY_OBJECT) { |
| 10443 | vm_object_t object = copy->cpy_object; |
| 10444 | kern_return_t kr; |
| 10445 | vm_object_offset_t offset; |
| 10446 | |
| 10447 | offset = vm_object_trunc_page(copy->offset); |
| 10448 | size = vm_map_round_page((copy_size + |
| 10449 | (vm_map_size_t)(copy->offset - |
| 10450 | offset)), |
| 10451 | VM_MAP_PAGE_MASK(dst_map)); |
| 10452 | *dst_addr = 0; |
| 10453 | kr = vm_map_enter(dst_map, dst_addr, size, |
| 10454 | (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE, |
| 10455 | VM_MAP_KERNEL_FLAGS_NONE, |
| 10456 | VM_KERN_MEMORY_NONE, |
| 10457 | object, offset, FALSE, |
| 10458 | VM_PROT_DEFAULT, VM_PROT_ALL, |
| 10459 | VM_INHERIT_DEFAULT); |
| 10460 | if (kr != KERN_SUCCESS) |
| 10461 | return(kr); |
| 10462 | /* Account for non-pagealigned copy object */ |
| 10463 | *dst_addr += (vm_map_offset_t)(copy->offset - offset); |
| 10464 | if (consume_on_success) |
| 10465 | zfree(vm_map_copy_zone, copy); |
| 10466 | return(KERN_SUCCESS); |
| 10467 | } |
| 10468 | |
| 10469 | /* |
| 10470 | * Check for special kernel buffer allocated |
| 10471 | * by new_ipc_kmsg_copyin. |
| 10472 | */ |
| 10473 | |
| 10474 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { |
| 10475 | return vm_map_copyout_kernel_buffer(dst_map, dst_addr, |
| 10476 | copy, copy_size, FALSE, |
| 10477 | consume_on_success); |
| 10478 | } |
| 10479 | |
| 10480 | |
| 10481 | /* |
| 10482 | * Find space for the data |
| 10483 | */ |
| 10484 | |
| 10485 | vm_copy_start = vm_map_trunc_page((vm_map_size_t)copy->offset, |
| 10486 | VM_MAP_COPY_PAGE_MASK(copy)); |
| 10487 | size = vm_map_round_page((vm_map_size_t)copy->offset + copy_size, |
| 10488 | VM_MAP_COPY_PAGE_MASK(copy)) |
| 10489 | - vm_copy_start; |
| 10490 | |
| 10491 | |
| 10492 | StartAgain: ; |
| 10493 | |
| 10494 | vm_map_lock(dst_map); |
| 10495 | if( dst_map->disable_vmentry_reuse == TRUE) { |
| 10496 | VM_MAP_HIGHEST_ENTRY(dst_map, entry, start); |
| 10497 | last = entry; |
| 10498 | } else { |
| 10499 | if (dst_map->holelistenabled) { |
| 10500 | hole_entry = CAST_TO_VM_MAP_ENTRY(dst_map->holes_list); |
| 10501 | |
| 10502 | if (hole_entry == NULL) { |
| 10503 | /* |
| 10504 | * No more space in the map? |
| 10505 | */ |
| 10506 | vm_map_unlock(dst_map); |
| 10507 | return(KERN_NO_SPACE); |
| 10508 | } |
| 10509 | |
| 10510 | last = hole_entry; |
| 10511 | start = last->vme_start; |
| 10512 | } else { |
| 10513 | assert(first_free_is_valid(dst_map)); |
| 10514 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)) ? |
| 10515 | vm_map_min(dst_map) : last->vme_end; |
| 10516 | } |
| 10517 | start = vm_map_round_page(start, |
| 10518 | VM_MAP_PAGE_MASK(dst_map)); |
| 10519 | } |
| 10520 | |
| 10521 | while (TRUE) { |
| 10522 | vm_map_entry_t next = last->vme_next; |
| 10523 | vm_map_offset_t end = start + size; |
| 10524 | |
| 10525 | if ((end > dst_map->max_offset) || (end < start)) { |
| 10526 | if (dst_map->wait_for_space) { |
| 10527 | if (size <= (dst_map->max_offset - dst_map->min_offset)) { |
| 10528 | assert_wait((event_t) dst_map, |
| 10529 | THREAD_INTERRUPTIBLE); |
| 10530 | vm_map_unlock(dst_map); |
| 10531 | thread_block(THREAD_CONTINUE_NULL); |
| 10532 | goto StartAgain; |
| 10533 | } |
| 10534 | } |
| 10535 | vm_map_unlock(dst_map); |
| 10536 | return(KERN_NO_SPACE); |
| 10537 | } |
| 10538 | |
| 10539 | if (dst_map->holelistenabled) { |
| 10540 | if (last->vme_end >= end) |
| 10541 | break; |
| 10542 | } else { |
| 10543 | /* |
| 10544 | * If there are no more entries, we must win. |
| 10545 | * |
| 10546 | * OR |
| 10547 | * |
| 10548 | * If there is another entry, it must be |
| 10549 | * after the end of the potential new region. |
| 10550 | */ |
| 10551 | |
| 10552 | if (next == vm_map_to_entry(dst_map)) |
| 10553 | break; |
| 10554 | |
| 10555 | if (next->vme_start >= end) |
| 10556 | break; |
| 10557 | } |
| 10558 | |
| 10559 | last = next; |
| 10560 | |
| 10561 | if (dst_map->holelistenabled) { |
| 10562 | if (last == CAST_TO_VM_MAP_ENTRY(dst_map->holes_list)) { |
| 10563 | /* |
| 10564 | * Wrapped around |
| 10565 | */ |
| 10566 | vm_map_unlock(dst_map); |
| 10567 | return(KERN_NO_SPACE); |
| 10568 | } |
| 10569 | start = last->vme_start; |
| 10570 | } else { |
| 10571 | start = last->vme_end; |
| 10572 | } |
| 10573 | start = vm_map_round_page(start, |
| 10574 | VM_MAP_PAGE_MASK(dst_map)); |
| 10575 | } |
| 10576 | |
| 10577 | if (dst_map->holelistenabled) { |
| 10578 | if (vm_map_lookup_entry(dst_map, last->vme_start, &last)) { |
| 10579 | panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n" , last, (unsigned long long)last->vme_start); |
| 10580 | } |
| 10581 | } |
| 10582 | |
| 10583 | |
| 10584 | adjustment = start - vm_copy_start; |
| 10585 | if (! consume_on_success) { |
| 10586 | /* |
| 10587 | * We're not allowed to consume "copy", so we'll have to |
| 10588 | * copy its map entries into the destination map below. |
| 10589 | * No need to re-allocate map entries from the correct |
| 10590 | * (pageable or not) zone, since we'll get new map entries |
| 10591 | * during the transfer. |
| 10592 | * We'll also adjust the map entries's "start" and "end" |
| 10593 | * during the transfer, to keep "copy"'s entries consistent |
| 10594 | * with its "offset". |
| 10595 | */ |
| 10596 | goto after_adjustments; |
| 10597 | } |
| 10598 | |
| 10599 | /* |
| 10600 | * Since we're going to just drop the map |
| 10601 | * entries from the copy into the destination |
| 10602 | * map, they must come from the same pool. |
| 10603 | */ |
| 10604 | |
| 10605 | if (copy->cpy_hdr.entries_pageable != dst_map->hdr.entries_pageable) { |
| 10606 | /* |
| 10607 | * Mismatches occur when dealing with the default |
| 10608 | * pager. |
| 10609 | */ |
| 10610 | zone_t old_zone; |
| 10611 | vm_map_entry_t next, new; |
| 10612 | |
| 10613 | /* |
| 10614 | * Find the zone that the copies were allocated from |
| 10615 | */ |
| 10616 | |
| 10617 | entry = vm_map_copy_first_entry(copy); |
| 10618 | |
| 10619 | /* |
| 10620 | * Reinitialize the copy so that vm_map_copy_entry_link |
| 10621 | * will work. |
| 10622 | */ |
| 10623 | vm_map_store_copy_reset(copy, entry); |
| 10624 | copy->cpy_hdr.entries_pageable = dst_map->hdr.entries_pageable; |
| 10625 | |
| 10626 | /* |
| 10627 | * Copy each entry. |
| 10628 | */ |
| 10629 | while (entry != vm_map_copy_to_entry(copy)) { |
| 10630 | new = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); |
| 10631 | vm_map_entry_copy_full(new, entry); |
| 10632 | assert(!new->iokit_acct); |
| 10633 | if (new->is_sub_map) { |
| 10634 | /* clr address space specifics */ |
| 10635 | new->use_pmap = FALSE; |
| 10636 | } |
| 10637 | vm_map_copy_entry_link(copy, |
| 10638 | vm_map_copy_last_entry(copy), |
| 10639 | new); |
| 10640 | next = entry->vme_next; |
| 10641 | old_zone = entry->from_reserved_zone ? vm_map_entry_reserved_zone : vm_map_entry_zone; |
| 10642 | zfree(old_zone, entry); |
| 10643 | entry = next; |
| 10644 | } |
| 10645 | } |
| 10646 | |
| 10647 | /* |
| 10648 | * Adjust the addresses in the copy chain, and |
| 10649 | * reset the region attributes. |
| 10650 | */ |
| 10651 | |
| 10652 | for (entry = vm_map_copy_first_entry(copy); |
| 10653 | entry != vm_map_copy_to_entry(copy); |
| 10654 | entry = entry->vme_next) { |
| 10655 | if (VM_MAP_PAGE_SHIFT(dst_map) == PAGE_SHIFT) { |
| 10656 | /* |
| 10657 | * We're injecting this copy entry into a map that |
| 10658 | * has the standard page alignment, so clear |
| 10659 | * "map_aligned" (which might have been inherited |
| 10660 | * from the original map entry). |
| 10661 | */ |
| 10662 | entry->map_aligned = FALSE; |
| 10663 | } |
| 10664 | |
| 10665 | entry->vme_start += adjustment; |
| 10666 | entry->vme_end += adjustment; |
| 10667 | |
| 10668 | if (entry->map_aligned) { |
| 10669 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_start, |
| 10670 | VM_MAP_PAGE_MASK(dst_map))); |
| 10671 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_end, |
| 10672 | VM_MAP_PAGE_MASK(dst_map))); |
| 10673 | } |
| 10674 | |
| 10675 | entry->inheritance = VM_INHERIT_DEFAULT; |
| 10676 | entry->protection = VM_PROT_DEFAULT; |
| 10677 | entry->max_protection = VM_PROT_ALL; |
| 10678 | entry->behavior = VM_BEHAVIOR_DEFAULT; |
| 10679 | |
| 10680 | /* |
| 10681 | * If the entry is now wired, |
| 10682 | * map the pages into the destination map. |
| 10683 | */ |
| 10684 | if (entry->wired_count != 0) { |
| 10685 | vm_map_offset_t va; |
| 10686 | vm_object_offset_t offset; |
| 10687 | vm_object_t object; |
| 10688 | vm_prot_t prot; |
| 10689 | int type_of_fault; |
| 10690 | |
| 10691 | object = VME_OBJECT(entry); |
| 10692 | offset = VME_OFFSET(entry); |
| 10693 | va = entry->vme_start; |
| 10694 | |
| 10695 | pmap_pageable(dst_map->pmap, |
| 10696 | entry->vme_start, |
| 10697 | entry->vme_end, |
| 10698 | TRUE); |
| 10699 | |
| 10700 | while (va < entry->vme_end) { |
| 10701 | vm_page_t m; |
| 10702 | struct vm_object_fault_info fault_info = {}; |
| 10703 | |
| 10704 | /* |
| 10705 | * Look up the page in the object. |
| 10706 | * Assert that the page will be found in the |
| 10707 | * top object: |
| 10708 | * either |
| 10709 | * the object was newly created by |
| 10710 | * vm_object_copy_slowly, and has |
| 10711 | * copies of all of the pages from |
| 10712 | * the source object |
| 10713 | * or |
| 10714 | * the object was moved from the old |
| 10715 | * map entry; because the old map |
| 10716 | * entry was wired, all of the pages |
| 10717 | * were in the top-level object. |
| 10718 | * (XXX not true if we wire pages for |
| 10719 | * reading) |
| 10720 | */ |
| 10721 | vm_object_lock(object); |
| 10722 | |
| 10723 | m = vm_page_lookup(object, offset); |
| 10724 | if (m == VM_PAGE_NULL || !VM_PAGE_WIRED(m) || |
| 10725 | m->vmp_absent) |
| 10726 | panic("vm_map_copyout: wiring %p" , m); |
| 10727 | |
| 10728 | prot = entry->protection; |
| 10729 | |
| 10730 | if (override_nx(dst_map, VME_ALIAS(entry)) && |
| 10731 | prot) |
| 10732 | prot |= VM_PROT_EXECUTE; |
| 10733 | |
| 10734 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 10735 | |
| 10736 | fault_info.user_tag = VME_ALIAS(entry); |
| 10737 | fault_info.pmap_options = 0; |
| 10738 | if (entry->iokit_acct || |
| 10739 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 10740 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 10741 | } |
| 10742 | |
| 10743 | vm_fault_enter(m, |
| 10744 | dst_map->pmap, |
| 10745 | va, |
| 10746 | prot, |
| 10747 | prot, |
| 10748 | VM_PAGE_WIRED(m), |
| 10749 | FALSE, /* change_wiring */ |
| 10750 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 10751 | &fault_info, |
| 10752 | NULL, /* need_retry */ |
| 10753 | &type_of_fault); |
| 10754 | |
| 10755 | vm_object_unlock(object); |
| 10756 | |
| 10757 | offset += PAGE_SIZE_64; |
| 10758 | va += PAGE_SIZE; |
| 10759 | } |
| 10760 | } |
| 10761 | } |
| 10762 | |
| 10763 | after_adjustments: |
| 10764 | |
| 10765 | /* |
| 10766 | * Correct the page alignment for the result |
| 10767 | */ |
| 10768 | |
| 10769 | *dst_addr = start + (copy->offset - vm_copy_start); |
| 10770 | |
| 10771 | #if KASAN |
| 10772 | kasan_notify_address(*dst_addr, size); |
| 10773 | #endif |
| 10774 | |
| 10775 | /* |
| 10776 | * Update the hints and the map size |
| 10777 | */ |
| 10778 | |
| 10779 | if (consume_on_success) { |
| 10780 | SAVE_HINT_MAP_WRITE(dst_map, vm_map_copy_last_entry(copy)); |
| 10781 | } else { |
| 10782 | SAVE_HINT_MAP_WRITE(dst_map, last); |
| 10783 | } |
| 10784 | |
| 10785 | dst_map->size += size; |
| 10786 | |
| 10787 | /* |
| 10788 | * Link in the copy |
| 10789 | */ |
| 10790 | |
| 10791 | if (consume_on_success) { |
| 10792 | vm_map_copy_insert(dst_map, last, copy); |
| 10793 | } else { |
| 10794 | vm_map_copy_remap(dst_map, last, copy, adjustment, |
| 10795 | cur_protection, max_protection, |
| 10796 | inheritance); |
| 10797 | } |
| 10798 | |
| 10799 | vm_map_unlock(dst_map); |
| 10800 | |
| 10801 | /* |
| 10802 | * XXX If wiring_required, call vm_map_pageable |
| 10803 | */ |
| 10804 | |
| 10805 | return(KERN_SUCCESS); |
| 10806 | } |
| 10807 | |
| 10808 | /* |
| 10809 | * Routine: vm_map_copyin |
| 10810 | * |
| 10811 | * Description: |
| 10812 | * see vm_map_copyin_common. Exported via Unsupported.exports. |
| 10813 | * |
| 10814 | */ |
| 10815 | |
| 10816 | #undef vm_map_copyin |
| 10817 | |
| 10818 | kern_return_t |
| 10819 | vm_map_copyin( |
| 10820 | vm_map_t src_map, |
| 10821 | vm_map_address_t src_addr, |
| 10822 | vm_map_size_t len, |
| 10823 | boolean_t src_destroy, |
| 10824 | vm_map_copy_t *copy_result) /* OUT */ |
| 10825 | { |
| 10826 | return(vm_map_copyin_common(src_map, src_addr, len, src_destroy, |
| 10827 | FALSE, copy_result, FALSE)); |
| 10828 | } |
| 10829 | |
| 10830 | /* |
| 10831 | * Routine: vm_map_copyin_common |
| 10832 | * |
| 10833 | * Description: |
| 10834 | * Copy the specified region (src_addr, len) from the |
| 10835 | * source address space (src_map), possibly removing |
| 10836 | * the region from the source address space (src_destroy). |
| 10837 | * |
| 10838 | * Returns: |
| 10839 | * A vm_map_copy_t object (copy_result), suitable for |
| 10840 | * insertion into another address space (using vm_map_copyout), |
| 10841 | * copying over another address space region (using |
| 10842 | * vm_map_copy_overwrite). If the copy is unused, it |
| 10843 | * should be destroyed (using vm_map_copy_discard). |
| 10844 | * |
| 10845 | * In/out conditions: |
| 10846 | * The source map should not be locked on entry. |
| 10847 | */ |
| 10848 | |
| 10849 | typedef struct submap_map { |
| 10850 | vm_map_t parent_map; |
| 10851 | vm_map_offset_t base_start; |
| 10852 | vm_map_offset_t base_end; |
| 10853 | vm_map_size_t base_len; |
| 10854 | struct submap_map *next; |
| 10855 | } submap_map_t; |
| 10856 | |
| 10857 | kern_return_t |
| 10858 | vm_map_copyin_common( |
| 10859 | vm_map_t src_map, |
| 10860 | vm_map_address_t src_addr, |
| 10861 | vm_map_size_t len, |
| 10862 | boolean_t src_destroy, |
| 10863 | __unused boolean_t src_volatile, |
| 10864 | vm_map_copy_t *copy_result, /* OUT */ |
| 10865 | boolean_t use_maxprot) |
| 10866 | { |
| 10867 | int flags; |
| 10868 | |
| 10869 | flags = 0; |
| 10870 | if (src_destroy) { |
| 10871 | flags |= VM_MAP_COPYIN_SRC_DESTROY; |
| 10872 | } |
| 10873 | if (use_maxprot) { |
| 10874 | flags |= VM_MAP_COPYIN_USE_MAXPROT; |
| 10875 | } |
| 10876 | return vm_map_copyin_internal(src_map, |
| 10877 | src_addr, |
| 10878 | len, |
| 10879 | flags, |
| 10880 | copy_result); |
| 10881 | } |
| 10882 | kern_return_t |
| 10883 | vm_map_copyin_internal( |
| 10884 | vm_map_t src_map, |
| 10885 | vm_map_address_t src_addr, |
| 10886 | vm_map_size_t len, |
| 10887 | int flags, |
| 10888 | vm_map_copy_t *copy_result) /* OUT */ |
| 10889 | { |
| 10890 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- |
| 10891 | * in multi-level lookup, this |
| 10892 | * entry contains the actual |
| 10893 | * vm_object/offset. |
| 10894 | */ |
| 10895 | vm_map_entry_t new_entry = VM_MAP_ENTRY_NULL; /* Map entry for copy */ |
| 10896 | |
| 10897 | vm_map_offset_t src_start; /* Start of current entry -- |
| 10898 | * where copy is taking place now |
| 10899 | */ |
| 10900 | vm_map_offset_t src_end; /* End of entire region to be |
| 10901 | * copied */ |
| 10902 | vm_map_offset_t src_base; |
| 10903 | vm_map_t base_map = src_map; |
| 10904 | boolean_t map_share=FALSE; |
| 10905 | submap_map_t *parent_maps = NULL; |
| 10906 | |
| 10907 | vm_map_copy_t copy; /* Resulting copy */ |
| 10908 | vm_map_address_t copy_addr; |
| 10909 | vm_map_size_t copy_size; |
| 10910 | boolean_t src_destroy; |
| 10911 | boolean_t use_maxprot; |
| 10912 | boolean_t preserve_purgeable; |
| 10913 | boolean_t entry_was_shared; |
| 10914 | vm_map_entry_t saved_src_entry; |
| 10915 | |
| 10916 | if (flags & ~VM_MAP_COPYIN_ALL_FLAGS) { |
| 10917 | return KERN_INVALID_ARGUMENT; |
| 10918 | } |
| 10919 | |
| 10920 | src_destroy = (flags & VM_MAP_COPYIN_SRC_DESTROY) ? TRUE : FALSE; |
| 10921 | use_maxprot = (flags & VM_MAP_COPYIN_USE_MAXPROT) ? TRUE : FALSE; |
| 10922 | preserve_purgeable = |
| 10923 | (flags & VM_MAP_COPYIN_PRESERVE_PURGEABLE) ? TRUE : FALSE; |
| 10924 | |
| 10925 | /* |
| 10926 | * Check for copies of zero bytes. |
| 10927 | */ |
| 10928 | |
| 10929 | if (len == 0) { |
| 10930 | *copy_result = VM_MAP_COPY_NULL; |
| 10931 | return(KERN_SUCCESS); |
| 10932 | } |
| 10933 | |
| 10934 | /* |
| 10935 | * Check that the end address doesn't overflow |
| 10936 | */ |
| 10937 | src_end = src_addr + len; |
| 10938 | if (src_end < src_addr) |
| 10939 | return KERN_INVALID_ADDRESS; |
| 10940 | |
| 10941 | /* |
| 10942 | * Compute (page aligned) start and end of region |
| 10943 | */ |
| 10944 | src_start = vm_map_trunc_page(src_addr, |
| 10945 | VM_MAP_PAGE_MASK(src_map)); |
| 10946 | src_end = vm_map_round_page(src_end, |
| 10947 | VM_MAP_PAGE_MASK(src_map)); |
| 10948 | |
| 10949 | /* |
| 10950 | * If the copy is sufficiently small, use a kernel buffer instead |
| 10951 | * of making a virtual copy. The theory being that the cost of |
| 10952 | * setting up VM (and taking C-O-W faults) dominates the copy costs |
| 10953 | * for small regions. |
| 10954 | */ |
| 10955 | if ((len < msg_ool_size_small) && |
| 10956 | !use_maxprot && |
| 10957 | !preserve_purgeable && |
| 10958 | !(flags & VM_MAP_COPYIN_ENTRY_LIST) && |
| 10959 | /* |
| 10960 | * Since the "msg_ool_size_small" threshold was increased and |
| 10961 | * vm_map_copyin_kernel_buffer() doesn't handle accesses beyond the |
| 10962 | * address space limits, we revert to doing a virtual copy if the |
| 10963 | * copied range goes beyond those limits. Otherwise, mach_vm_read() |
| 10964 | * of the commpage would now fail when it used to work. |
| 10965 | */ |
| 10966 | (src_start >= vm_map_min(src_map) && |
| 10967 | src_start < vm_map_max(src_map) && |
| 10968 | src_end >= vm_map_min(src_map) && |
| 10969 | src_end < vm_map_max(src_map))) |
| 10970 | return vm_map_copyin_kernel_buffer(src_map, src_addr, len, |
| 10971 | src_destroy, copy_result); |
| 10972 | |
| 10973 | XPR(XPR_VM_MAP, "vm_map_copyin_common map 0x%x addr 0x%x len 0x%x dest %d\n" , src_map, src_addr, len, src_destroy, 0); |
| 10974 | |
| 10975 | /* |
| 10976 | * Allocate a header element for the list. |
| 10977 | * |
| 10978 | * Use the start and end in the header to |
| 10979 | * remember the endpoints prior to rounding. |
| 10980 | */ |
| 10981 | |
| 10982 | copy = vm_map_copy_allocate(); |
| 10983 | copy->type = VM_MAP_COPY_ENTRY_LIST; |
| 10984 | copy->cpy_hdr.entries_pageable = TRUE; |
| 10985 | #if 00 |
| 10986 | copy->cpy_hdr.page_shift = src_map->hdr.page_shift; |
| 10987 | #else |
| 10988 | /* |
| 10989 | * The copy entries can be broken down for a variety of reasons, |
| 10990 | * so we can't guarantee that they will remain map-aligned... |
| 10991 | * Will need to adjust the first copy_entry's "vme_start" and |
| 10992 | * the last copy_entry's "vme_end" to be rounded to PAGE_MASK |
| 10993 | * rather than the original map's alignment. |
| 10994 | */ |
| 10995 | copy->cpy_hdr.page_shift = PAGE_SHIFT; |
| 10996 | #endif |
| 10997 | |
| 10998 | vm_map_store_init( &(copy->cpy_hdr) ); |
| 10999 | |
| 11000 | copy->offset = src_addr; |
| 11001 | copy->size = len; |
| 11002 | |
| 11003 | new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); |
| 11004 | |
| 11005 | #define RETURN(x) \ |
| 11006 | MACRO_BEGIN \ |
| 11007 | vm_map_unlock(src_map); \ |
| 11008 | if(src_map != base_map) \ |
| 11009 | vm_map_deallocate(src_map); \ |
| 11010 | if (new_entry != VM_MAP_ENTRY_NULL) \ |
| 11011 | vm_map_copy_entry_dispose(copy,new_entry); \ |
| 11012 | vm_map_copy_discard(copy); \ |
| 11013 | { \ |
| 11014 | submap_map_t *_ptr; \ |
| 11015 | \ |
| 11016 | for(_ptr = parent_maps; _ptr != NULL; _ptr = parent_maps) { \ |
| 11017 | parent_maps=parent_maps->next; \ |
| 11018 | if (_ptr->parent_map != base_map) \ |
| 11019 | vm_map_deallocate(_ptr->parent_map); \ |
| 11020 | kfree(_ptr, sizeof(submap_map_t)); \ |
| 11021 | } \ |
| 11022 | } \ |
| 11023 | MACRO_RETURN(x); \ |
| 11024 | MACRO_END |
| 11025 | |
| 11026 | /* |
| 11027 | * Find the beginning of the region. |
| 11028 | */ |
| 11029 | |
| 11030 | vm_map_lock(src_map); |
| 11031 | |
| 11032 | /* |
| 11033 | * Lookup the original "src_addr" rather than the truncated |
| 11034 | * "src_start", in case "src_start" falls in a non-map-aligned |
| 11035 | * map entry *before* the map entry that contains "src_addr"... |
| 11036 | */ |
| 11037 | if (!vm_map_lookup_entry(src_map, src_addr, &tmp_entry)) |
| 11038 | RETURN(KERN_INVALID_ADDRESS); |
| 11039 | if(!tmp_entry->is_sub_map) { |
| 11040 | /* |
| 11041 | * ... but clip to the map-rounded "src_start" rather than |
| 11042 | * "src_addr" to preserve map-alignment. We'll adjust the |
| 11043 | * first copy entry at the end, if needed. |
| 11044 | */ |
| 11045 | vm_map_clip_start(src_map, tmp_entry, src_start); |
| 11046 | } |
| 11047 | if (src_start < tmp_entry->vme_start) { |
| 11048 | /* |
| 11049 | * Move "src_start" up to the start of the |
| 11050 | * first map entry to copy. |
| 11051 | */ |
| 11052 | src_start = tmp_entry->vme_start; |
| 11053 | } |
| 11054 | /* set for later submap fix-up */ |
| 11055 | copy_addr = src_start; |
| 11056 | |
| 11057 | /* |
| 11058 | * Go through entries until we get to the end. |
| 11059 | */ |
| 11060 | |
| 11061 | while (TRUE) { |
| 11062 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ |
| 11063 | vm_map_size_t src_size; /* Size of source |
| 11064 | * map entry (in both |
| 11065 | * maps) |
| 11066 | */ |
| 11067 | |
| 11068 | vm_object_t src_object; /* Object to copy */ |
| 11069 | vm_object_offset_t src_offset; |
| 11070 | |
| 11071 | boolean_t src_needs_copy; /* Should source map |
| 11072 | * be made read-only |
| 11073 | * for copy-on-write? |
| 11074 | */ |
| 11075 | |
| 11076 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ |
| 11077 | |
| 11078 | boolean_t was_wired; /* Was source wired? */ |
| 11079 | vm_map_version_t version; /* Version before locks |
| 11080 | * dropped to make copy |
| 11081 | */ |
| 11082 | kern_return_t result; /* Return value from |
| 11083 | * copy_strategically. |
| 11084 | */ |
| 11085 | while(tmp_entry->is_sub_map) { |
| 11086 | vm_map_size_t submap_len; |
| 11087 | submap_map_t *ptr; |
| 11088 | |
| 11089 | ptr = (submap_map_t *)kalloc(sizeof(submap_map_t)); |
| 11090 | ptr->next = parent_maps; |
| 11091 | parent_maps = ptr; |
| 11092 | ptr->parent_map = src_map; |
| 11093 | ptr->base_start = src_start; |
| 11094 | ptr->base_end = src_end; |
| 11095 | submap_len = tmp_entry->vme_end - src_start; |
| 11096 | if(submap_len > (src_end-src_start)) |
| 11097 | submap_len = src_end-src_start; |
| 11098 | ptr->base_len = submap_len; |
| 11099 | |
| 11100 | src_start -= tmp_entry->vme_start; |
| 11101 | src_start += VME_OFFSET(tmp_entry); |
| 11102 | src_end = src_start + submap_len; |
| 11103 | src_map = VME_SUBMAP(tmp_entry); |
| 11104 | vm_map_lock(src_map); |
| 11105 | /* keep an outstanding reference for all maps in */ |
| 11106 | /* the parents tree except the base map */ |
| 11107 | vm_map_reference(src_map); |
| 11108 | vm_map_unlock(ptr->parent_map); |
| 11109 | if (!vm_map_lookup_entry( |
| 11110 | src_map, src_start, &tmp_entry)) |
| 11111 | RETURN(KERN_INVALID_ADDRESS); |
| 11112 | map_share = TRUE; |
| 11113 | if(!tmp_entry->is_sub_map) |
| 11114 | vm_map_clip_start(src_map, tmp_entry, src_start); |
| 11115 | src_entry = tmp_entry; |
| 11116 | } |
| 11117 | /* we are now in the lowest level submap... */ |
| 11118 | |
| 11119 | if ((VME_OBJECT(tmp_entry) != VM_OBJECT_NULL) && |
| 11120 | (VME_OBJECT(tmp_entry)->phys_contiguous)) { |
| 11121 | /* This is not, supported for now.In future */ |
| 11122 | /* we will need to detect the phys_contig */ |
| 11123 | /* condition and then upgrade copy_slowly */ |
| 11124 | /* to do physical copy from the device mem */ |
| 11125 | /* based object. We can piggy-back off of */ |
| 11126 | /* the was wired boolean to set-up the */ |
| 11127 | /* proper handling */ |
| 11128 | RETURN(KERN_PROTECTION_FAILURE); |
| 11129 | } |
| 11130 | /* |
| 11131 | * Create a new address map entry to hold the result. |
| 11132 | * Fill in the fields from the appropriate source entries. |
| 11133 | * We must unlock the source map to do this if we need |
| 11134 | * to allocate a map entry. |
| 11135 | */ |
| 11136 | if (new_entry == VM_MAP_ENTRY_NULL) { |
| 11137 | version.main_timestamp = src_map->timestamp; |
| 11138 | vm_map_unlock(src_map); |
| 11139 | |
| 11140 | new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); |
| 11141 | |
| 11142 | vm_map_lock(src_map); |
| 11143 | if ((version.main_timestamp + 1) != src_map->timestamp) { |
| 11144 | if (!vm_map_lookup_entry(src_map, src_start, |
| 11145 | &tmp_entry)) { |
| 11146 | RETURN(KERN_INVALID_ADDRESS); |
| 11147 | } |
| 11148 | if (!tmp_entry->is_sub_map) |
| 11149 | vm_map_clip_start(src_map, tmp_entry, src_start); |
| 11150 | continue; /* restart w/ new tmp_entry */ |
| 11151 | } |
| 11152 | } |
| 11153 | |
| 11154 | /* |
| 11155 | * Verify that the region can be read. |
| 11156 | */ |
| 11157 | if (((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE && |
| 11158 | !use_maxprot) || |
| 11159 | (src_entry->max_protection & VM_PROT_READ) == 0) |
| 11160 | RETURN(KERN_PROTECTION_FAILURE); |
| 11161 | |
| 11162 | /* |
| 11163 | * Clip against the endpoints of the entire region. |
| 11164 | */ |
| 11165 | |
| 11166 | vm_map_clip_end(src_map, src_entry, src_end); |
| 11167 | |
| 11168 | src_size = src_entry->vme_end - src_start; |
| 11169 | src_object = VME_OBJECT(src_entry); |
| 11170 | src_offset = VME_OFFSET(src_entry); |
| 11171 | was_wired = (src_entry->wired_count != 0); |
| 11172 | |
| 11173 | vm_map_entry_copy(new_entry, src_entry); |
| 11174 | if (new_entry->is_sub_map) { |
| 11175 | /* clr address space specifics */ |
| 11176 | new_entry->use_pmap = FALSE; |
| 11177 | } else { |
| 11178 | /* |
| 11179 | * We're dealing with a copy-on-write operation, |
| 11180 | * so the resulting mapping should not inherit the |
| 11181 | * original mapping's accounting settings. |
| 11182 | * "iokit_acct" should have been cleared in |
| 11183 | * vm_map_entry_copy(). |
| 11184 | * "use_pmap" should be reset to its default (TRUE) |
| 11185 | * so that the new mapping gets accounted for in |
| 11186 | * the task's memory footprint. |
| 11187 | */ |
| 11188 | assert(!new_entry->iokit_acct); |
| 11189 | new_entry->use_pmap = TRUE; |
| 11190 | } |
| 11191 | |
| 11192 | /* |
| 11193 | * Attempt non-blocking copy-on-write optimizations. |
| 11194 | */ |
| 11195 | |
| 11196 | if (src_destroy && |
| 11197 | (src_object == VM_OBJECT_NULL || |
| 11198 | (src_object->internal && |
| 11199 | src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && |
| 11200 | !map_share))) { |
| 11201 | /* |
| 11202 | * If we are destroying the source, and the object |
| 11203 | * is internal, we can move the object reference |
| 11204 | * from the source to the copy. The copy is |
| 11205 | * copy-on-write only if the source is. |
| 11206 | * We make another reference to the object, because |
| 11207 | * destroying the source entry will deallocate it. |
| 11208 | */ |
| 11209 | vm_object_reference(src_object); |
| 11210 | |
| 11211 | /* |
| 11212 | * Copy is always unwired. vm_map_copy_entry |
| 11213 | * set its wired count to zero. |
| 11214 | */ |
| 11215 | |
| 11216 | goto CopySuccessful; |
| 11217 | } |
| 11218 | |
| 11219 | |
| 11220 | RestartCopy: |
| 11221 | XPR(XPR_VM_MAP, "vm_map_copyin_common src_obj 0x%x ent 0x%x obj 0x%x was_wired %d\n" , |
| 11222 | src_object, new_entry, VME_OBJECT(new_entry), |
| 11223 | was_wired, 0); |
| 11224 | if ((src_object == VM_OBJECT_NULL || |
| 11225 | (!was_wired && !map_share && !tmp_entry->is_shared)) && |
| 11226 | vm_object_copy_quickly( |
| 11227 | &VME_OBJECT(new_entry), |
| 11228 | src_offset, |
| 11229 | src_size, |
| 11230 | &src_needs_copy, |
| 11231 | &new_entry_needs_copy)) { |
| 11232 | |
| 11233 | new_entry->needs_copy = new_entry_needs_copy; |
| 11234 | |
| 11235 | /* |
| 11236 | * Handle copy-on-write obligations |
| 11237 | */ |
| 11238 | |
| 11239 | if (src_needs_copy && !tmp_entry->needs_copy) { |
| 11240 | vm_prot_t prot; |
| 11241 | |
| 11242 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 11243 | |
| 11244 | if (override_nx(src_map, VME_ALIAS(src_entry)) |
| 11245 | && prot) |
| 11246 | prot |= VM_PROT_EXECUTE; |
| 11247 | |
| 11248 | vm_object_pmap_protect( |
| 11249 | src_object, |
| 11250 | src_offset, |
| 11251 | src_size, |
| 11252 | (src_entry->is_shared ? |
| 11253 | PMAP_NULL |
| 11254 | : src_map->pmap), |
| 11255 | src_entry->vme_start, |
| 11256 | prot); |
| 11257 | |
| 11258 | assert(tmp_entry->wired_count == 0); |
| 11259 | tmp_entry->needs_copy = TRUE; |
| 11260 | } |
| 11261 | |
| 11262 | /* |
| 11263 | * The map has never been unlocked, so it's safe |
| 11264 | * to move to the next entry rather than doing |
| 11265 | * another lookup. |
| 11266 | */ |
| 11267 | |
| 11268 | goto CopySuccessful; |
| 11269 | } |
| 11270 | |
| 11271 | entry_was_shared = tmp_entry->is_shared; |
| 11272 | |
| 11273 | /* |
| 11274 | * Take an object reference, so that we may |
| 11275 | * release the map lock(s). |
| 11276 | */ |
| 11277 | |
| 11278 | assert(src_object != VM_OBJECT_NULL); |
| 11279 | vm_object_reference(src_object); |
| 11280 | |
| 11281 | /* |
| 11282 | * Record the timestamp for later verification. |
| 11283 | * Unlock the map. |
| 11284 | */ |
| 11285 | |
| 11286 | version.main_timestamp = src_map->timestamp; |
| 11287 | vm_map_unlock(src_map); /* Increments timestamp once! */ |
| 11288 | saved_src_entry = src_entry; |
| 11289 | tmp_entry = VM_MAP_ENTRY_NULL; |
| 11290 | src_entry = VM_MAP_ENTRY_NULL; |
| 11291 | |
| 11292 | /* |
| 11293 | * Perform the copy |
| 11294 | */ |
| 11295 | |
| 11296 | if (was_wired) { |
| 11297 | CopySlowly: |
| 11298 | vm_object_lock(src_object); |
| 11299 | result = vm_object_copy_slowly( |
| 11300 | src_object, |
| 11301 | src_offset, |
| 11302 | src_size, |
| 11303 | THREAD_UNINT, |
| 11304 | &VME_OBJECT(new_entry)); |
| 11305 | VME_OFFSET_SET(new_entry, 0); |
| 11306 | new_entry->needs_copy = FALSE; |
| 11307 | } |
| 11308 | else if (src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && |
| 11309 | (entry_was_shared || map_share)) { |
| 11310 | vm_object_t new_object; |
| 11311 | |
| 11312 | vm_object_lock_shared(src_object); |
| 11313 | new_object = vm_object_copy_delayed( |
| 11314 | src_object, |
| 11315 | src_offset, |
| 11316 | src_size, |
| 11317 | TRUE); |
| 11318 | if (new_object == VM_OBJECT_NULL) |
| 11319 | goto CopySlowly; |
| 11320 | |
| 11321 | VME_OBJECT_SET(new_entry, new_object); |
| 11322 | assert(new_entry->wired_count == 0); |
| 11323 | new_entry->needs_copy = TRUE; |
| 11324 | assert(!new_entry->iokit_acct); |
| 11325 | assert(new_object->purgable == VM_PURGABLE_DENY); |
| 11326 | assertf(new_entry->use_pmap, "src_map %p new_entry %p\n" , src_map, new_entry); |
| 11327 | result = KERN_SUCCESS; |
| 11328 | |
| 11329 | } else { |
| 11330 | vm_object_offset_t new_offset; |
| 11331 | new_offset = VME_OFFSET(new_entry); |
| 11332 | result = vm_object_copy_strategically(src_object, |
| 11333 | src_offset, |
| 11334 | src_size, |
| 11335 | &VME_OBJECT(new_entry), |
| 11336 | &new_offset, |
| 11337 | &new_entry_needs_copy); |
| 11338 | if (new_offset != VME_OFFSET(new_entry)) { |
| 11339 | VME_OFFSET_SET(new_entry, new_offset); |
| 11340 | } |
| 11341 | |
| 11342 | new_entry->needs_copy = new_entry_needs_copy; |
| 11343 | } |
| 11344 | |
| 11345 | if (result == KERN_SUCCESS && |
| 11346 | preserve_purgeable && |
| 11347 | src_object->purgable != VM_PURGABLE_DENY) { |
| 11348 | vm_object_t new_object; |
| 11349 | |
| 11350 | new_object = VME_OBJECT(new_entry); |
| 11351 | assert(new_object != src_object); |
| 11352 | vm_object_lock(new_object); |
| 11353 | assert(new_object->ref_count == 1); |
| 11354 | assert(new_object->shadow == VM_OBJECT_NULL); |
| 11355 | assert(new_object->copy == VM_OBJECT_NULL); |
| 11356 | assert(new_object->vo_owner == NULL); |
| 11357 | |
| 11358 | new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 11359 | new_object->true_share = TRUE; |
| 11360 | /* start as non-volatile with no owner... */ |
| 11361 | new_object->purgable = VM_PURGABLE_NONVOLATILE; |
| 11362 | vm_purgeable_nonvolatile_enqueue(new_object, NULL); |
| 11363 | /* ... and move to src_object's purgeable state */ |
| 11364 | if (src_object->purgable != VM_PURGABLE_NONVOLATILE) { |
| 11365 | int state; |
| 11366 | state = src_object->purgable; |
| 11367 | vm_object_purgable_control( |
| 11368 | new_object, |
| 11369 | VM_PURGABLE_SET_STATE_FROM_KERNEL, |
| 11370 | &state); |
| 11371 | } |
| 11372 | vm_object_unlock(new_object); |
| 11373 | new_object = VM_OBJECT_NULL; |
| 11374 | /* no pmap accounting for purgeable objects */ |
| 11375 | new_entry->use_pmap = FALSE; |
| 11376 | } |
| 11377 | |
| 11378 | if (result != KERN_SUCCESS && |
| 11379 | result != KERN_MEMORY_RESTART_COPY) { |
| 11380 | vm_map_lock(src_map); |
| 11381 | RETURN(result); |
| 11382 | } |
| 11383 | |
| 11384 | /* |
| 11385 | * Throw away the extra reference |
| 11386 | */ |
| 11387 | |
| 11388 | vm_object_deallocate(src_object); |
| 11389 | |
| 11390 | /* |
| 11391 | * Verify that the map has not substantially |
| 11392 | * changed while the copy was being made. |
| 11393 | */ |
| 11394 | |
| 11395 | vm_map_lock(src_map); |
| 11396 | |
| 11397 | if ((version.main_timestamp + 1) == src_map->timestamp) { |
| 11398 | /* src_map hasn't changed: src_entry is still valid */ |
| 11399 | src_entry = saved_src_entry; |
| 11400 | goto VerificationSuccessful; |
| 11401 | } |
| 11402 | |
| 11403 | /* |
| 11404 | * Simple version comparison failed. |
| 11405 | * |
| 11406 | * Retry the lookup and verify that the |
| 11407 | * same object/offset are still present. |
| 11408 | * |
| 11409 | * [Note: a memory manager that colludes with |
| 11410 | * the calling task can detect that we have |
| 11411 | * cheated. While the map was unlocked, the |
| 11412 | * mapping could have been changed and restored.] |
| 11413 | */ |
| 11414 | |
| 11415 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { |
| 11416 | if (result != KERN_MEMORY_RESTART_COPY) { |
| 11417 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 11418 | VME_OBJECT_SET(new_entry, VM_OBJECT_NULL); |
| 11419 | /* reset accounting state */ |
| 11420 | new_entry->iokit_acct = FALSE; |
| 11421 | new_entry->use_pmap = TRUE; |
| 11422 | } |
| 11423 | RETURN(KERN_INVALID_ADDRESS); |
| 11424 | } |
| 11425 | |
| 11426 | src_entry = tmp_entry; |
| 11427 | vm_map_clip_start(src_map, src_entry, src_start); |
| 11428 | |
| 11429 | if ((((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE) && |
| 11430 | !use_maxprot) || |
| 11431 | ((src_entry->max_protection & VM_PROT_READ) == 0)) |
| 11432 | goto VerificationFailed; |
| 11433 | |
| 11434 | if (src_entry->vme_end < new_entry->vme_end) { |
| 11435 | /* |
| 11436 | * This entry might have been shortened |
| 11437 | * (vm_map_clip_end) or been replaced with |
| 11438 | * an entry that ends closer to "src_start" |
| 11439 | * than before. |
| 11440 | * Adjust "new_entry" accordingly; copying |
| 11441 | * less memory would be correct but we also |
| 11442 | * redo the copy (see below) if the new entry |
| 11443 | * no longer points at the same object/offset. |
| 11444 | */ |
| 11445 | assert(VM_MAP_PAGE_ALIGNED(src_entry->vme_end, |
| 11446 | VM_MAP_COPY_PAGE_MASK(copy))); |
| 11447 | new_entry->vme_end = src_entry->vme_end; |
| 11448 | src_size = new_entry->vme_end - src_start; |
| 11449 | } else if (src_entry->vme_end > new_entry->vme_end) { |
| 11450 | /* |
| 11451 | * This entry might have been extended |
| 11452 | * (vm_map_entry_simplify() or coalesce) |
| 11453 | * or been replaced with an entry that ends farther |
| 11454 | * from "src_start" than before. |
| 11455 | * |
| 11456 | * We've called vm_object_copy_*() only on |
| 11457 | * the previous <start:end> range, so we can't |
| 11458 | * just extend new_entry. We have to re-do |
| 11459 | * the copy based on the new entry as if it was |
| 11460 | * pointing at a different object/offset (see |
| 11461 | * "Verification failed" below). |
| 11462 | */ |
| 11463 | } |
| 11464 | |
| 11465 | if ((VME_OBJECT(src_entry) != src_object) || |
| 11466 | (VME_OFFSET(src_entry) != src_offset) || |
| 11467 | (src_entry->vme_end > new_entry->vme_end)) { |
| 11468 | |
| 11469 | /* |
| 11470 | * Verification failed. |
| 11471 | * |
| 11472 | * Start over with this top-level entry. |
| 11473 | */ |
| 11474 | |
| 11475 | VerificationFailed: ; |
| 11476 | |
| 11477 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 11478 | tmp_entry = src_entry; |
| 11479 | continue; |
| 11480 | } |
| 11481 | |
| 11482 | /* |
| 11483 | * Verification succeeded. |
| 11484 | */ |
| 11485 | |
| 11486 | VerificationSuccessful: ; |
| 11487 | |
| 11488 | if (result == KERN_MEMORY_RESTART_COPY) |
| 11489 | goto RestartCopy; |
| 11490 | |
| 11491 | /* |
| 11492 | * Copy succeeded. |
| 11493 | */ |
| 11494 | |
| 11495 | CopySuccessful: ; |
| 11496 | |
| 11497 | /* |
| 11498 | * Link in the new copy entry. |
| 11499 | */ |
| 11500 | |
| 11501 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy), |
| 11502 | new_entry); |
| 11503 | |
| 11504 | /* |
| 11505 | * Determine whether the entire region |
| 11506 | * has been copied. |
| 11507 | */ |
| 11508 | src_base = src_start; |
| 11509 | src_start = new_entry->vme_end; |
| 11510 | new_entry = VM_MAP_ENTRY_NULL; |
| 11511 | while ((src_start >= src_end) && (src_end != 0)) { |
| 11512 | submap_map_t *ptr; |
| 11513 | |
| 11514 | if (src_map == base_map) { |
| 11515 | /* back to the top */ |
| 11516 | break; |
| 11517 | } |
| 11518 | |
| 11519 | ptr = parent_maps; |
| 11520 | assert(ptr != NULL); |
| 11521 | parent_maps = parent_maps->next; |
| 11522 | |
| 11523 | /* fix up the damage we did in that submap */ |
| 11524 | vm_map_simplify_range(src_map, |
| 11525 | src_base, |
| 11526 | src_end); |
| 11527 | |
| 11528 | vm_map_unlock(src_map); |
| 11529 | vm_map_deallocate(src_map); |
| 11530 | vm_map_lock(ptr->parent_map); |
| 11531 | src_map = ptr->parent_map; |
| 11532 | src_base = ptr->base_start; |
| 11533 | src_start = ptr->base_start + ptr->base_len; |
| 11534 | src_end = ptr->base_end; |
| 11535 | if (!vm_map_lookup_entry(src_map, |
| 11536 | src_start, |
| 11537 | &tmp_entry) && |
| 11538 | (src_end > src_start)) { |
| 11539 | RETURN(KERN_INVALID_ADDRESS); |
| 11540 | } |
| 11541 | kfree(ptr, sizeof(submap_map_t)); |
| 11542 | if (parent_maps == NULL) |
| 11543 | map_share = FALSE; |
| 11544 | src_entry = tmp_entry->vme_prev; |
| 11545 | } |
| 11546 | |
| 11547 | if ((VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) && |
| 11548 | (src_start >= src_addr + len) && |
| 11549 | (src_addr + len != 0)) { |
| 11550 | /* |
| 11551 | * Stop copying now, even though we haven't reached |
| 11552 | * "src_end". We'll adjust the end of the last copy |
| 11553 | * entry at the end, if needed. |
| 11554 | * |
| 11555 | * If src_map's aligment is different from the |
| 11556 | * system's page-alignment, there could be |
| 11557 | * extra non-map-aligned map entries between |
| 11558 | * the original (non-rounded) "src_addr + len" |
| 11559 | * and the rounded "src_end". |
| 11560 | * We do not want to copy those map entries since |
| 11561 | * they're not part of the copied range. |
| 11562 | */ |
| 11563 | break; |
| 11564 | } |
| 11565 | |
| 11566 | if ((src_start >= src_end) && (src_end != 0)) |
| 11567 | break; |
| 11568 | |
| 11569 | /* |
| 11570 | * Verify that there are no gaps in the region |
| 11571 | */ |
| 11572 | |
| 11573 | tmp_entry = src_entry->vme_next; |
| 11574 | if ((tmp_entry->vme_start != src_start) || |
| 11575 | (tmp_entry == vm_map_to_entry(src_map))) { |
| 11576 | RETURN(KERN_INVALID_ADDRESS); |
| 11577 | } |
| 11578 | } |
| 11579 | |
| 11580 | /* |
| 11581 | * If the source should be destroyed, do it now, since the |
| 11582 | * copy was successful. |
| 11583 | */ |
| 11584 | if (src_destroy) { |
| 11585 | (void) vm_map_delete( |
| 11586 | src_map, |
| 11587 | vm_map_trunc_page(src_addr, |
| 11588 | VM_MAP_PAGE_MASK(src_map)), |
| 11589 | src_end, |
| 11590 | ((src_map == kernel_map) ? |
| 11591 | VM_MAP_REMOVE_KUNWIRE : |
| 11592 | VM_MAP_REMOVE_NO_FLAGS), |
| 11593 | VM_MAP_NULL); |
| 11594 | } else { |
| 11595 | /* fix up the damage we did in the base map */ |
| 11596 | vm_map_simplify_range( |
| 11597 | src_map, |
| 11598 | vm_map_trunc_page(src_addr, |
| 11599 | VM_MAP_PAGE_MASK(src_map)), |
| 11600 | vm_map_round_page(src_end, |
| 11601 | VM_MAP_PAGE_MASK(src_map))); |
| 11602 | } |
| 11603 | |
| 11604 | vm_map_unlock(src_map); |
| 11605 | tmp_entry = VM_MAP_ENTRY_NULL; |
| 11606 | |
| 11607 | if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) { |
| 11608 | vm_map_offset_t original_start, original_offset, original_end; |
| 11609 | |
| 11610 | assert(VM_MAP_COPY_PAGE_MASK(copy) == PAGE_MASK); |
| 11611 | |
| 11612 | /* adjust alignment of first copy_entry's "vme_start" */ |
| 11613 | tmp_entry = vm_map_copy_first_entry(copy); |
| 11614 | if (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 11615 | vm_map_offset_t adjustment; |
| 11616 | |
| 11617 | original_start = tmp_entry->vme_start; |
| 11618 | original_offset = VME_OFFSET(tmp_entry); |
| 11619 | |
| 11620 | /* map-align the start of the first copy entry... */ |
| 11621 | adjustment = (tmp_entry->vme_start - |
| 11622 | vm_map_trunc_page( |
| 11623 | tmp_entry->vme_start, |
| 11624 | VM_MAP_PAGE_MASK(src_map))); |
| 11625 | tmp_entry->vme_start -= adjustment; |
| 11626 | VME_OFFSET_SET(tmp_entry, |
| 11627 | VME_OFFSET(tmp_entry) - adjustment); |
| 11628 | copy_addr -= adjustment; |
| 11629 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 11630 | /* ... adjust for mis-aligned start of copy range */ |
| 11631 | adjustment = |
| 11632 | (vm_map_trunc_page(copy->offset, |
| 11633 | PAGE_MASK) - |
| 11634 | vm_map_trunc_page(copy->offset, |
| 11635 | VM_MAP_PAGE_MASK(src_map))); |
| 11636 | if (adjustment) { |
| 11637 | assert(page_aligned(adjustment)); |
| 11638 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); |
| 11639 | tmp_entry->vme_start += adjustment; |
| 11640 | VME_OFFSET_SET(tmp_entry, |
| 11641 | (VME_OFFSET(tmp_entry) + |
| 11642 | adjustment)); |
| 11643 | copy_addr += adjustment; |
| 11644 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 11645 | } |
| 11646 | |
| 11647 | /* |
| 11648 | * Assert that the adjustments haven't exposed |
| 11649 | * more than was originally copied... |
| 11650 | */ |
| 11651 | assert(tmp_entry->vme_start >= original_start); |
| 11652 | assert(VME_OFFSET(tmp_entry) >= original_offset); |
| 11653 | /* |
| 11654 | * ... and that it did not adjust outside of a |
| 11655 | * a single 16K page. |
| 11656 | */ |
| 11657 | assert(vm_map_trunc_page(tmp_entry->vme_start, |
| 11658 | VM_MAP_PAGE_MASK(src_map)) == |
| 11659 | vm_map_trunc_page(original_start, |
| 11660 | VM_MAP_PAGE_MASK(src_map))); |
| 11661 | } |
| 11662 | |
| 11663 | /* adjust alignment of last copy_entry's "vme_end" */ |
| 11664 | tmp_entry = vm_map_copy_last_entry(copy); |
| 11665 | if (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 11666 | vm_map_offset_t adjustment; |
| 11667 | |
| 11668 | original_end = tmp_entry->vme_end; |
| 11669 | |
| 11670 | /* map-align the end of the last copy entry... */ |
| 11671 | tmp_entry->vme_end = |
| 11672 | vm_map_round_page(tmp_entry->vme_end, |
| 11673 | VM_MAP_PAGE_MASK(src_map)); |
| 11674 | /* ... adjust for mis-aligned end of copy range */ |
| 11675 | adjustment = |
| 11676 | (vm_map_round_page((copy->offset + |
| 11677 | copy->size), |
| 11678 | VM_MAP_PAGE_MASK(src_map)) - |
| 11679 | vm_map_round_page((copy->offset + |
| 11680 | copy->size), |
| 11681 | PAGE_MASK)); |
| 11682 | if (adjustment) { |
| 11683 | assert(page_aligned(adjustment)); |
| 11684 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); |
| 11685 | tmp_entry->vme_end -= adjustment; |
| 11686 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 11687 | } |
| 11688 | |
| 11689 | /* |
| 11690 | * Assert that the adjustments haven't exposed |
| 11691 | * more than was originally copied... |
| 11692 | */ |
| 11693 | assert(tmp_entry->vme_end <= original_end); |
| 11694 | /* |
| 11695 | * ... and that it did not adjust outside of a |
| 11696 | * a single 16K page. |
| 11697 | */ |
| 11698 | assert(vm_map_round_page(tmp_entry->vme_end, |
| 11699 | VM_MAP_PAGE_MASK(src_map)) == |
| 11700 | vm_map_round_page(original_end, |
| 11701 | VM_MAP_PAGE_MASK(src_map))); |
| 11702 | } |
| 11703 | } |
| 11704 | |
| 11705 | /* Fix-up start and end points in copy. This is necessary */ |
| 11706 | /* when the various entries in the copy object were picked */ |
| 11707 | /* up from different sub-maps */ |
| 11708 | |
| 11709 | tmp_entry = vm_map_copy_first_entry(copy); |
| 11710 | copy_size = 0; /* compute actual size */ |
| 11711 | while (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 11712 | assert(VM_MAP_PAGE_ALIGNED( |
| 11713 | copy_addr + (tmp_entry->vme_end - |
| 11714 | tmp_entry->vme_start), |
| 11715 | VM_MAP_COPY_PAGE_MASK(copy))); |
| 11716 | assert(VM_MAP_PAGE_ALIGNED( |
| 11717 | copy_addr, |
| 11718 | VM_MAP_COPY_PAGE_MASK(copy))); |
| 11719 | |
| 11720 | /* |
| 11721 | * The copy_entries will be injected directly into the |
| 11722 | * destination map and might not be "map aligned" there... |
| 11723 | */ |
| 11724 | tmp_entry->map_aligned = FALSE; |
| 11725 | |
| 11726 | tmp_entry->vme_end = copy_addr + |
| 11727 | (tmp_entry->vme_end - tmp_entry->vme_start); |
| 11728 | tmp_entry->vme_start = copy_addr; |
| 11729 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 11730 | copy_addr += tmp_entry->vme_end - tmp_entry->vme_start; |
| 11731 | copy_size += tmp_entry->vme_end - tmp_entry->vme_start; |
| 11732 | tmp_entry = (struct vm_map_entry *)tmp_entry->vme_next; |
| 11733 | } |
| 11734 | |
| 11735 | if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT && |
| 11736 | copy_size < copy->size) { |
| 11737 | /* |
| 11738 | * The actual size of the VM map copy is smaller than what |
| 11739 | * was requested by the caller. This must be because some |
| 11740 | * PAGE_SIZE-sized pages are missing at the end of the last |
| 11741 | * VM_MAP_PAGE_SIZE(src_map)-sized chunk of the range. |
| 11742 | * The caller might not have been aware of those missing |
| 11743 | * pages and might not want to be aware of it, which is |
| 11744 | * fine as long as they don't try to access (and crash on) |
| 11745 | * those missing pages. |
| 11746 | * Let's adjust the size of the "copy", to avoid failing |
| 11747 | * in vm_map_copyout() or vm_map_copy_overwrite(). |
| 11748 | */ |
| 11749 | assert(vm_map_round_page(copy_size, |
| 11750 | VM_MAP_PAGE_MASK(src_map)) == |
| 11751 | vm_map_round_page(copy->size, |
| 11752 | VM_MAP_PAGE_MASK(src_map))); |
| 11753 | copy->size = copy_size; |
| 11754 | } |
| 11755 | |
| 11756 | *copy_result = copy; |
| 11757 | return(KERN_SUCCESS); |
| 11758 | |
| 11759 | #undef RETURN |
| 11760 | } |
| 11761 | |
| 11762 | kern_return_t |
| 11763 | ( |
| 11764 | vm_map_t src_map, |
| 11765 | vm_map_address_t src_addr, |
| 11766 | vm_map_size_t len, |
| 11767 | vm_map_copy_t *copy_result, /* OUT */ |
| 11768 | vm_prot_t *cur_prot, /* OUT */ |
| 11769 | vm_prot_t *max_prot) |
| 11770 | { |
| 11771 | vm_map_offset_t src_start, src_end; |
| 11772 | vm_map_copy_t copy; |
| 11773 | kern_return_t kr; |
| 11774 | |
| 11775 | /* |
| 11776 | * Check for copies of zero bytes. |
| 11777 | */ |
| 11778 | |
| 11779 | if (len == 0) { |
| 11780 | *copy_result = VM_MAP_COPY_NULL; |
| 11781 | return(KERN_SUCCESS); |
| 11782 | } |
| 11783 | |
| 11784 | /* |
| 11785 | * Check that the end address doesn't overflow |
| 11786 | */ |
| 11787 | src_end = src_addr + len; |
| 11788 | if (src_end < src_addr) |
| 11789 | return KERN_INVALID_ADDRESS; |
| 11790 | |
| 11791 | /* |
| 11792 | * Compute (page aligned) start and end of region |
| 11793 | */ |
| 11794 | src_start = vm_map_trunc_page(src_addr, PAGE_MASK); |
| 11795 | src_end = vm_map_round_page(src_end, PAGE_MASK); |
| 11796 | |
| 11797 | /* |
| 11798 | * Allocate a header element for the list. |
| 11799 | * |
| 11800 | * Use the start and end in the header to |
| 11801 | * remember the endpoints prior to rounding. |
| 11802 | */ |
| 11803 | |
| 11804 | copy = vm_map_copy_allocate(); |
| 11805 | copy->type = VM_MAP_COPY_ENTRY_LIST; |
| 11806 | copy->cpy_hdr.entries_pageable = TRUE; |
| 11807 | |
| 11808 | vm_map_store_init(©->cpy_hdr); |
| 11809 | |
| 11810 | copy->offset = 0; |
| 11811 | copy->size = len; |
| 11812 | |
| 11813 | kr = vm_map_remap_extract(src_map, |
| 11814 | src_addr, |
| 11815 | len, |
| 11816 | FALSE, /* copy */ |
| 11817 | ©->cpy_hdr, |
| 11818 | cur_prot, |
| 11819 | max_prot, |
| 11820 | VM_INHERIT_SHARE, |
| 11821 | TRUE, /* pageable */ |
| 11822 | FALSE, /* same_map */ |
| 11823 | VM_MAP_KERNEL_FLAGS_NONE); |
| 11824 | if (kr != KERN_SUCCESS) { |
| 11825 | vm_map_copy_discard(copy); |
| 11826 | return kr; |
| 11827 | } |
| 11828 | |
| 11829 | *copy_result = copy; |
| 11830 | return KERN_SUCCESS; |
| 11831 | } |
| 11832 | |
| 11833 | /* |
| 11834 | * vm_map_copyin_object: |
| 11835 | * |
| 11836 | * Create a copy object from an object. |
| 11837 | * Our caller donates an object reference. |
| 11838 | */ |
| 11839 | |
| 11840 | kern_return_t |
| 11841 | vm_map_copyin_object( |
| 11842 | vm_object_t object, |
| 11843 | vm_object_offset_t offset, /* offset of region in object */ |
| 11844 | vm_object_size_t size, /* size of region in object */ |
| 11845 | vm_map_copy_t *copy_result) /* OUT */ |
| 11846 | { |
| 11847 | vm_map_copy_t copy; /* Resulting copy */ |
| 11848 | |
| 11849 | /* |
| 11850 | * We drop the object into a special copy object |
| 11851 | * that contains the object directly. |
| 11852 | */ |
| 11853 | |
| 11854 | copy = vm_map_copy_allocate(); |
| 11855 | copy->type = VM_MAP_COPY_OBJECT; |
| 11856 | copy->cpy_object = object; |
| 11857 | copy->offset = offset; |
| 11858 | copy->size = size; |
| 11859 | |
| 11860 | *copy_result = copy; |
| 11861 | return(KERN_SUCCESS); |
| 11862 | } |
| 11863 | |
| 11864 | static void |
| 11865 | vm_map_fork_share( |
| 11866 | vm_map_t old_map, |
| 11867 | vm_map_entry_t old_entry, |
| 11868 | vm_map_t new_map) |
| 11869 | { |
| 11870 | vm_object_t object; |
| 11871 | vm_map_entry_t new_entry; |
| 11872 | |
| 11873 | /* |
| 11874 | * New sharing code. New map entry |
| 11875 | * references original object. Internal |
| 11876 | * objects use asynchronous copy algorithm for |
| 11877 | * future copies. First make sure we have |
| 11878 | * the right object. If we need a shadow, |
| 11879 | * or someone else already has one, then |
| 11880 | * make a new shadow and share it. |
| 11881 | */ |
| 11882 | |
| 11883 | object = VME_OBJECT(old_entry); |
| 11884 | if (old_entry->is_sub_map) { |
| 11885 | assert(old_entry->wired_count == 0); |
| 11886 | #ifndef NO_NESTED_PMAP |
| 11887 | if(old_entry->use_pmap) { |
| 11888 | kern_return_t result; |
| 11889 | |
| 11890 | result = pmap_nest(new_map->pmap, |
| 11891 | (VME_SUBMAP(old_entry))->pmap, |
| 11892 | (addr64_t)old_entry->vme_start, |
| 11893 | (addr64_t)old_entry->vme_start, |
| 11894 | (uint64_t)(old_entry->vme_end - old_entry->vme_start)); |
| 11895 | if(result) |
| 11896 | panic("vm_map_fork_share: pmap_nest failed!" ); |
| 11897 | } |
| 11898 | #endif /* NO_NESTED_PMAP */ |
| 11899 | } else if (object == VM_OBJECT_NULL) { |
| 11900 | object = vm_object_allocate((vm_map_size_t)(old_entry->vme_end - |
| 11901 | old_entry->vme_start)); |
| 11902 | VME_OFFSET_SET(old_entry, 0); |
| 11903 | VME_OBJECT_SET(old_entry, object); |
| 11904 | old_entry->use_pmap = TRUE; |
| 11905 | // assert(!old_entry->needs_copy); |
| 11906 | } else if (object->copy_strategy != |
| 11907 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 11908 | |
| 11909 | /* |
| 11910 | * We are already using an asymmetric |
| 11911 | * copy, and therefore we already have |
| 11912 | * the right object. |
| 11913 | */ |
| 11914 | |
| 11915 | assert(! old_entry->needs_copy); |
| 11916 | } |
| 11917 | else if (old_entry->needs_copy || /* case 1 */ |
| 11918 | object->shadowed || /* case 2 */ |
| 11919 | (!object->true_share && /* case 3 */ |
| 11920 | !old_entry->is_shared && |
| 11921 | (object->vo_size > |
| 11922 | (vm_map_size_t)(old_entry->vme_end - |
| 11923 | old_entry->vme_start)))) { |
| 11924 | |
| 11925 | /* |
| 11926 | * We need to create a shadow. |
| 11927 | * There are three cases here. |
| 11928 | * In the first case, we need to |
| 11929 | * complete a deferred symmetrical |
| 11930 | * copy that we participated in. |
| 11931 | * In the second and third cases, |
| 11932 | * we need to create the shadow so |
| 11933 | * that changes that we make to the |
| 11934 | * object do not interfere with |
| 11935 | * any symmetrical copies which |
| 11936 | * have occured (case 2) or which |
| 11937 | * might occur (case 3). |
| 11938 | * |
| 11939 | * The first case is when we had |
| 11940 | * deferred shadow object creation |
| 11941 | * via the entry->needs_copy mechanism. |
| 11942 | * This mechanism only works when |
| 11943 | * only one entry points to the source |
| 11944 | * object, and we are about to create |
| 11945 | * a second entry pointing to the |
| 11946 | * same object. The problem is that |
| 11947 | * there is no way of mapping from |
| 11948 | * an object to the entries pointing |
| 11949 | * to it. (Deferred shadow creation |
| 11950 | * works with one entry because occurs |
| 11951 | * at fault time, and we walk from the |
| 11952 | * entry to the object when handling |
| 11953 | * the fault.) |
| 11954 | * |
| 11955 | * The second case is when the object |
| 11956 | * to be shared has already been copied |
| 11957 | * with a symmetric copy, but we point |
| 11958 | * directly to the object without |
| 11959 | * needs_copy set in our entry. (This |
| 11960 | * can happen because different ranges |
| 11961 | * of an object can be pointed to by |
| 11962 | * different entries. In particular, |
| 11963 | * a single entry pointing to an object |
| 11964 | * can be split by a call to vm_inherit, |
| 11965 | * which, combined with task_create, can |
| 11966 | * result in the different entries |
| 11967 | * having different needs_copy values.) |
| 11968 | * The shadowed flag in the object allows |
| 11969 | * us to detect this case. The problem |
| 11970 | * with this case is that if this object |
| 11971 | * has or will have shadows, then we |
| 11972 | * must not perform an asymmetric copy |
| 11973 | * of this object, since such a copy |
| 11974 | * allows the object to be changed, which |
| 11975 | * will break the previous symmetrical |
| 11976 | * copies (which rely upon the object |
| 11977 | * not changing). In a sense, the shadowed |
| 11978 | * flag says "don't change this object". |
| 11979 | * We fix this by creating a shadow |
| 11980 | * object for this object, and sharing |
| 11981 | * that. This works because we are free |
| 11982 | * to change the shadow object (and thus |
| 11983 | * to use an asymmetric copy strategy); |
| 11984 | * this is also semantically correct, |
| 11985 | * since this object is temporary, and |
| 11986 | * therefore a copy of the object is |
| 11987 | * as good as the object itself. (This |
| 11988 | * is not true for permanent objects, |
| 11989 | * since the pager needs to see changes, |
| 11990 | * which won't happen if the changes |
| 11991 | * are made to a copy.) |
| 11992 | * |
| 11993 | * The third case is when the object |
| 11994 | * to be shared has parts sticking |
| 11995 | * outside of the entry we're working |
| 11996 | * with, and thus may in the future |
| 11997 | * be subject to a symmetrical copy. |
| 11998 | * (This is a preemptive version of |
| 11999 | * case 2.) |
| 12000 | */ |
| 12001 | VME_OBJECT_SHADOW(old_entry, |
| 12002 | (vm_map_size_t) (old_entry->vme_end - |
| 12003 | old_entry->vme_start)); |
| 12004 | |
| 12005 | /* |
| 12006 | * If we're making a shadow for other than |
| 12007 | * copy on write reasons, then we have |
| 12008 | * to remove write permission. |
| 12009 | */ |
| 12010 | |
| 12011 | if (!old_entry->needs_copy && |
| 12012 | (old_entry->protection & VM_PROT_WRITE)) { |
| 12013 | vm_prot_t prot; |
| 12014 | |
| 12015 | assert(!pmap_has_prot_policy(old_entry->protection)); |
| 12016 | |
| 12017 | prot = old_entry->protection & ~VM_PROT_WRITE; |
| 12018 | |
| 12019 | assert(!pmap_has_prot_policy(prot)); |
| 12020 | |
| 12021 | if (override_nx(old_map, VME_ALIAS(old_entry)) && prot) |
| 12022 | prot |= VM_PROT_EXECUTE; |
| 12023 | |
| 12024 | |
| 12025 | if (old_map->mapped_in_other_pmaps) { |
| 12026 | vm_object_pmap_protect( |
| 12027 | VME_OBJECT(old_entry), |
| 12028 | VME_OFFSET(old_entry), |
| 12029 | (old_entry->vme_end - |
| 12030 | old_entry->vme_start), |
| 12031 | PMAP_NULL, |
| 12032 | old_entry->vme_start, |
| 12033 | prot); |
| 12034 | } else { |
| 12035 | pmap_protect(old_map->pmap, |
| 12036 | old_entry->vme_start, |
| 12037 | old_entry->vme_end, |
| 12038 | prot); |
| 12039 | } |
| 12040 | } |
| 12041 | |
| 12042 | old_entry->needs_copy = FALSE; |
| 12043 | object = VME_OBJECT(old_entry); |
| 12044 | } |
| 12045 | |
| 12046 | |
| 12047 | /* |
| 12048 | * If object was using a symmetric copy strategy, |
| 12049 | * change its copy strategy to the default |
| 12050 | * asymmetric copy strategy, which is copy_delay |
| 12051 | * in the non-norma case and copy_call in the |
| 12052 | * norma case. Bump the reference count for the |
| 12053 | * new entry. |
| 12054 | */ |
| 12055 | |
| 12056 | if(old_entry->is_sub_map) { |
| 12057 | vm_map_lock(VME_SUBMAP(old_entry)); |
| 12058 | vm_map_reference(VME_SUBMAP(old_entry)); |
| 12059 | vm_map_unlock(VME_SUBMAP(old_entry)); |
| 12060 | } else { |
| 12061 | vm_object_lock(object); |
| 12062 | vm_object_reference_locked(object); |
| 12063 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 12064 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 12065 | } |
| 12066 | vm_object_unlock(object); |
| 12067 | } |
| 12068 | |
| 12069 | /* |
| 12070 | * Clone the entry, using object ref from above. |
| 12071 | * Mark both entries as shared. |
| 12072 | */ |
| 12073 | |
| 12074 | new_entry = vm_map_entry_create(new_map, FALSE); /* Never the kernel |
| 12075 | * map or descendants */ |
| 12076 | vm_map_entry_copy(new_entry, old_entry); |
| 12077 | old_entry->is_shared = TRUE; |
| 12078 | new_entry->is_shared = TRUE; |
| 12079 | |
| 12080 | /* |
| 12081 | * We're dealing with a shared mapping, so the resulting mapping |
| 12082 | * should inherit some of the original mapping's accounting settings. |
| 12083 | * "iokit_acct" should have been cleared in vm_map_entry_copy(). |
| 12084 | * "use_pmap" should stay the same as before (if it hasn't been reset |
| 12085 | * to TRUE when we cleared "iokit_acct"). |
| 12086 | */ |
| 12087 | assert(!new_entry->iokit_acct); |
| 12088 | |
| 12089 | /* |
| 12090 | * If old entry's inheritence is VM_INHERIT_NONE, |
| 12091 | * the new entry is for corpse fork, remove the |
| 12092 | * write permission from the new entry. |
| 12093 | */ |
| 12094 | if (old_entry->inheritance == VM_INHERIT_NONE) { |
| 12095 | |
| 12096 | new_entry->protection &= ~VM_PROT_WRITE; |
| 12097 | new_entry->max_protection &= ~VM_PROT_WRITE; |
| 12098 | } |
| 12099 | |
| 12100 | /* |
| 12101 | * Insert the entry into the new map -- we |
| 12102 | * know we're inserting at the end of the new |
| 12103 | * map. |
| 12104 | */ |
| 12105 | |
| 12106 | vm_map_store_entry_link(new_map, vm_map_last_entry(new_map), new_entry, |
| 12107 | VM_MAP_KERNEL_FLAGS_NONE); |
| 12108 | |
| 12109 | /* |
| 12110 | * Update the physical map |
| 12111 | */ |
| 12112 | |
| 12113 | if (old_entry->is_sub_map) { |
| 12114 | /* Bill Angell pmap support goes here */ |
| 12115 | } else { |
| 12116 | pmap_copy(new_map->pmap, old_map->pmap, new_entry->vme_start, |
| 12117 | old_entry->vme_end - old_entry->vme_start, |
| 12118 | old_entry->vme_start); |
| 12119 | } |
| 12120 | } |
| 12121 | |
| 12122 | static boolean_t |
| 12123 | vm_map_fork_copy( |
| 12124 | vm_map_t old_map, |
| 12125 | vm_map_entry_t *old_entry_p, |
| 12126 | vm_map_t new_map, |
| 12127 | int vm_map_copyin_flags) |
| 12128 | { |
| 12129 | vm_map_entry_t old_entry = *old_entry_p; |
| 12130 | vm_map_size_t entry_size = old_entry->vme_end - old_entry->vme_start; |
| 12131 | vm_map_offset_t start = old_entry->vme_start; |
| 12132 | vm_map_copy_t copy; |
| 12133 | vm_map_entry_t last = vm_map_last_entry(new_map); |
| 12134 | |
| 12135 | vm_map_unlock(old_map); |
| 12136 | /* |
| 12137 | * Use maxprot version of copyin because we |
| 12138 | * care about whether this memory can ever |
| 12139 | * be accessed, not just whether it's accessible |
| 12140 | * right now. |
| 12141 | */ |
| 12142 | vm_map_copyin_flags |= VM_MAP_COPYIN_USE_MAXPROT; |
| 12143 | if (vm_map_copyin_internal(old_map, start, entry_size, |
| 12144 | vm_map_copyin_flags, ©) |
| 12145 | != KERN_SUCCESS) { |
| 12146 | /* |
| 12147 | * The map might have changed while it |
| 12148 | * was unlocked, check it again. Skip |
| 12149 | * any blank space or permanently |
| 12150 | * unreadable region. |
| 12151 | */ |
| 12152 | vm_map_lock(old_map); |
| 12153 | if (!vm_map_lookup_entry(old_map, start, &last) || |
| 12154 | (last->max_protection & VM_PROT_READ) == VM_PROT_NONE) { |
| 12155 | last = last->vme_next; |
| 12156 | } |
| 12157 | *old_entry_p = last; |
| 12158 | |
| 12159 | /* |
| 12160 | * XXX For some error returns, want to |
| 12161 | * XXX skip to the next element. Note |
| 12162 | * that INVALID_ADDRESS and |
| 12163 | * PROTECTION_FAILURE are handled above. |
| 12164 | */ |
| 12165 | |
| 12166 | return FALSE; |
| 12167 | } |
| 12168 | |
| 12169 | /* |
| 12170 | * Insert the copy into the new map |
| 12171 | */ |
| 12172 | |
| 12173 | vm_map_copy_insert(new_map, last, copy); |
| 12174 | |
| 12175 | /* |
| 12176 | * Pick up the traversal at the end of |
| 12177 | * the copied region. |
| 12178 | */ |
| 12179 | |
| 12180 | vm_map_lock(old_map); |
| 12181 | start += entry_size; |
| 12182 | if (! vm_map_lookup_entry(old_map, start, &last)) { |
| 12183 | last = last->vme_next; |
| 12184 | } else { |
| 12185 | if (last->vme_start == start) { |
| 12186 | /* |
| 12187 | * No need to clip here and we don't |
| 12188 | * want to cause any unnecessary |
| 12189 | * unnesting... |
| 12190 | */ |
| 12191 | } else { |
| 12192 | vm_map_clip_start(old_map, last, start); |
| 12193 | } |
| 12194 | } |
| 12195 | *old_entry_p = last; |
| 12196 | |
| 12197 | return TRUE; |
| 12198 | } |
| 12199 | |
| 12200 | /* |
| 12201 | * vm_map_fork: |
| 12202 | * |
| 12203 | * Create and return a new map based on the old |
| 12204 | * map, according to the inheritance values on the |
| 12205 | * regions in that map and the options. |
| 12206 | * |
| 12207 | * The source map must not be locked. |
| 12208 | */ |
| 12209 | vm_map_t |
| 12210 | vm_map_fork( |
| 12211 | ledger_t ledger, |
| 12212 | vm_map_t old_map, |
| 12213 | int options) |
| 12214 | { |
| 12215 | pmap_t new_pmap; |
| 12216 | vm_map_t new_map; |
| 12217 | vm_map_entry_t old_entry; |
| 12218 | vm_map_size_t new_size = 0, entry_size; |
| 12219 | vm_map_entry_t new_entry; |
| 12220 | boolean_t src_needs_copy; |
| 12221 | boolean_t new_entry_needs_copy; |
| 12222 | boolean_t pmap_is64bit; |
| 12223 | int vm_map_copyin_flags; |
| 12224 | vm_inherit_t old_entry_inheritance; |
| 12225 | int map_create_options; |
| 12226 | kern_return_t ; |
| 12227 | |
| 12228 | if (options & ~(VM_MAP_FORK_SHARE_IF_INHERIT_NONE | |
| 12229 | VM_MAP_FORK_PRESERVE_PURGEABLE | |
| 12230 | VM_MAP_FORK_CORPSE_FOOTPRINT)) { |
| 12231 | /* unsupported option */ |
| 12232 | return VM_MAP_NULL; |
| 12233 | } |
| 12234 | |
| 12235 | pmap_is64bit = |
| 12236 | #if defined(__i386__) || defined(__x86_64__) |
| 12237 | old_map->pmap->pm_task_map != TASK_MAP_32BIT; |
| 12238 | #elif defined(__arm64__) |
| 12239 | old_map->pmap->max == MACH_VM_MAX_ADDRESS; |
| 12240 | #elif defined(__arm__) |
| 12241 | FALSE; |
| 12242 | #else |
| 12243 | #error Unknown architecture. |
| 12244 | #endif |
| 12245 | |
| 12246 | new_pmap = pmap_create(ledger, (vm_map_size_t) 0, pmap_is64bit); |
| 12247 | |
| 12248 | vm_map_reference_swap(old_map); |
| 12249 | vm_map_lock(old_map); |
| 12250 | |
| 12251 | map_create_options = 0; |
| 12252 | if (old_map->hdr.entries_pageable) { |
| 12253 | map_create_options |= VM_MAP_CREATE_PAGEABLE; |
| 12254 | } |
| 12255 | if (options & VM_MAP_FORK_CORPSE_FOOTPRINT) { |
| 12256 | map_create_options |= VM_MAP_CREATE_CORPSE_FOOTPRINT; |
| 12257 | footprint_collect_kr = KERN_SUCCESS; |
| 12258 | } |
| 12259 | new_map = vm_map_create_options(new_pmap, |
| 12260 | old_map->min_offset, |
| 12261 | old_map->max_offset, |
| 12262 | map_create_options); |
| 12263 | vm_map_lock(new_map); |
| 12264 | vm_commit_pagezero_status(new_map); |
| 12265 | /* inherit the parent map's page size */ |
| 12266 | vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(old_map)); |
| 12267 | for ( |
| 12268 | old_entry = vm_map_first_entry(old_map); |
| 12269 | old_entry != vm_map_to_entry(old_map); |
| 12270 | ) { |
| 12271 | |
| 12272 | entry_size = old_entry->vme_end - old_entry->vme_start; |
| 12273 | |
| 12274 | old_entry_inheritance = old_entry->inheritance; |
| 12275 | /* |
| 12276 | * If caller used the VM_MAP_FORK_SHARE_IF_INHERIT_NONE option |
| 12277 | * share VM_INHERIT_NONE entries that are not backed by a |
| 12278 | * device pager. |
| 12279 | */ |
| 12280 | if (old_entry_inheritance == VM_INHERIT_NONE && |
| 12281 | (options & VM_MAP_FORK_SHARE_IF_INHERIT_NONE) && |
| 12282 | !(!old_entry->is_sub_map && |
| 12283 | VME_OBJECT(old_entry) != NULL && |
| 12284 | VME_OBJECT(old_entry)->pager != NULL && |
| 12285 | is_device_pager_ops( |
| 12286 | VME_OBJECT(old_entry)->pager->mo_pager_ops))) { |
| 12287 | old_entry_inheritance = VM_INHERIT_SHARE; |
| 12288 | } |
| 12289 | |
| 12290 | if (old_entry_inheritance != VM_INHERIT_NONE && |
| 12291 | (options & VM_MAP_FORK_CORPSE_FOOTPRINT) && |
| 12292 | footprint_collect_kr == KERN_SUCCESS) { |
| 12293 | /* |
| 12294 | * The corpse won't have old_map->pmap to query |
| 12295 | * footprint information, so collect that data now |
| 12296 | * and store it in new_map->vmmap_corpse_footprint |
| 12297 | * for later autopsy. |
| 12298 | */ |
| 12299 | footprint_collect_kr = |
| 12300 | vm_map_corpse_footprint_collect(old_map, |
| 12301 | old_entry, |
| 12302 | new_map); |
| 12303 | } |
| 12304 | |
| 12305 | switch (old_entry_inheritance) { |
| 12306 | case VM_INHERIT_NONE: |
| 12307 | break; |
| 12308 | |
| 12309 | case VM_INHERIT_SHARE: |
| 12310 | vm_map_fork_share(old_map, old_entry, new_map); |
| 12311 | new_size += entry_size; |
| 12312 | break; |
| 12313 | |
| 12314 | case VM_INHERIT_COPY: |
| 12315 | |
| 12316 | /* |
| 12317 | * Inline the copy_quickly case; |
| 12318 | * upon failure, fall back on call |
| 12319 | * to vm_map_fork_copy. |
| 12320 | */ |
| 12321 | |
| 12322 | if(old_entry->is_sub_map) |
| 12323 | break; |
| 12324 | if ((old_entry->wired_count != 0) || |
| 12325 | ((VME_OBJECT(old_entry) != NULL) && |
| 12326 | (VME_OBJECT(old_entry)->true_share))) { |
| 12327 | goto slow_vm_map_fork_copy; |
| 12328 | } |
| 12329 | |
| 12330 | new_entry = vm_map_entry_create(new_map, FALSE); /* never the kernel map or descendants */ |
| 12331 | vm_map_entry_copy(new_entry, old_entry); |
| 12332 | if (new_entry->is_sub_map) { |
| 12333 | /* clear address space specifics */ |
| 12334 | new_entry->use_pmap = FALSE; |
| 12335 | } else { |
| 12336 | /* |
| 12337 | * We're dealing with a copy-on-write operation, |
| 12338 | * so the resulting mapping should not inherit |
| 12339 | * the original mapping's accounting settings. |
| 12340 | * "iokit_acct" should have been cleared in |
| 12341 | * vm_map_entry_copy(). |
| 12342 | * "use_pmap" should be reset to its default |
| 12343 | * (TRUE) so that the new mapping gets |
| 12344 | * accounted for in the task's memory footprint. |
| 12345 | */ |
| 12346 | assert(!new_entry->iokit_acct); |
| 12347 | new_entry->use_pmap = TRUE; |
| 12348 | } |
| 12349 | |
| 12350 | if (! vm_object_copy_quickly( |
| 12351 | &VME_OBJECT(new_entry), |
| 12352 | VME_OFFSET(old_entry), |
| 12353 | (old_entry->vme_end - |
| 12354 | old_entry->vme_start), |
| 12355 | &src_needs_copy, |
| 12356 | &new_entry_needs_copy)) { |
| 12357 | vm_map_entry_dispose(new_map, new_entry); |
| 12358 | goto slow_vm_map_fork_copy; |
| 12359 | } |
| 12360 | |
| 12361 | /* |
| 12362 | * Handle copy-on-write obligations |
| 12363 | */ |
| 12364 | |
| 12365 | if (src_needs_copy && !old_entry->needs_copy) { |
| 12366 | vm_prot_t prot; |
| 12367 | |
| 12368 | assert(!pmap_has_prot_policy(old_entry->protection)); |
| 12369 | |
| 12370 | prot = old_entry->protection & ~VM_PROT_WRITE; |
| 12371 | |
| 12372 | if (override_nx(old_map, VME_ALIAS(old_entry)) |
| 12373 | && prot) |
| 12374 | prot |= VM_PROT_EXECUTE; |
| 12375 | |
| 12376 | assert(!pmap_has_prot_policy(prot)); |
| 12377 | |
| 12378 | vm_object_pmap_protect( |
| 12379 | VME_OBJECT(old_entry), |
| 12380 | VME_OFFSET(old_entry), |
| 12381 | (old_entry->vme_end - |
| 12382 | old_entry->vme_start), |
| 12383 | ((old_entry->is_shared |
| 12384 | || old_map->mapped_in_other_pmaps) |
| 12385 | ? PMAP_NULL : |
| 12386 | old_map->pmap), |
| 12387 | old_entry->vme_start, |
| 12388 | prot); |
| 12389 | |
| 12390 | assert(old_entry->wired_count == 0); |
| 12391 | old_entry->needs_copy = TRUE; |
| 12392 | } |
| 12393 | new_entry->needs_copy = new_entry_needs_copy; |
| 12394 | |
| 12395 | /* |
| 12396 | * Insert the entry at the end |
| 12397 | * of the map. |
| 12398 | */ |
| 12399 | |
| 12400 | vm_map_store_entry_link(new_map, |
| 12401 | vm_map_last_entry(new_map), |
| 12402 | new_entry, |
| 12403 | VM_MAP_KERNEL_FLAGS_NONE); |
| 12404 | new_size += entry_size; |
| 12405 | break; |
| 12406 | |
| 12407 | slow_vm_map_fork_copy: |
| 12408 | vm_map_copyin_flags = 0; |
| 12409 | if (options & VM_MAP_FORK_PRESERVE_PURGEABLE) { |
| 12410 | vm_map_copyin_flags |= |
| 12411 | VM_MAP_COPYIN_PRESERVE_PURGEABLE; |
| 12412 | } |
| 12413 | if (vm_map_fork_copy(old_map, |
| 12414 | &old_entry, |
| 12415 | new_map, |
| 12416 | vm_map_copyin_flags)) { |
| 12417 | new_size += entry_size; |
| 12418 | } |
| 12419 | continue; |
| 12420 | } |
| 12421 | old_entry = old_entry->vme_next; |
| 12422 | } |
| 12423 | |
| 12424 | #if defined(__arm64__) |
| 12425 | pmap_insert_sharedpage(new_map->pmap); |
| 12426 | #endif |
| 12427 | |
| 12428 | new_map->size = new_size; |
| 12429 | |
| 12430 | if (options & VM_MAP_FORK_CORPSE_FOOTPRINT) { |
| 12431 | vm_map_corpse_footprint_collect_done(new_map); |
| 12432 | } |
| 12433 | |
| 12434 | vm_map_unlock(new_map); |
| 12435 | vm_map_unlock(old_map); |
| 12436 | vm_map_deallocate(old_map); |
| 12437 | |
| 12438 | return(new_map); |
| 12439 | } |
| 12440 | |
| 12441 | /* |
| 12442 | * vm_map_exec: |
| 12443 | * |
| 12444 | * Setup the "new_map" with the proper execution environment according |
| 12445 | * to the type of executable (platform, 64bit, chroot environment). |
| 12446 | * Map the comm page and shared region, etc... |
| 12447 | */ |
| 12448 | kern_return_t |
| 12449 | vm_map_exec( |
| 12450 | vm_map_t new_map, |
| 12451 | task_t task, |
| 12452 | boolean_t is64bit, |
| 12453 | void *fsroot, |
| 12454 | cpu_type_t cpu, |
| 12455 | cpu_subtype_t cpu_subtype) |
| 12456 | { |
| 12457 | SHARED_REGION_TRACE_DEBUG( |
| 12458 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x,0x%x): ->\n" , |
| 12459 | (void *)VM_KERNEL_ADDRPERM(current_task()), |
| 12460 | (void *)VM_KERNEL_ADDRPERM(new_map), |
| 12461 | (void *)VM_KERNEL_ADDRPERM(task), |
| 12462 | (void *)VM_KERNEL_ADDRPERM(fsroot), |
| 12463 | cpu, |
| 12464 | cpu_subtype)); |
| 12465 | (void) vm_commpage_enter(new_map, task, is64bit); |
| 12466 | (void) vm_shared_region_enter(new_map, task, is64bit, fsroot, cpu, cpu_subtype); |
| 12467 | SHARED_REGION_TRACE_DEBUG( |
| 12468 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x,0x%x): <-\n" , |
| 12469 | (void *)VM_KERNEL_ADDRPERM(current_task()), |
| 12470 | (void *)VM_KERNEL_ADDRPERM(new_map), |
| 12471 | (void *)VM_KERNEL_ADDRPERM(task), |
| 12472 | (void *)VM_KERNEL_ADDRPERM(fsroot), |
| 12473 | cpu, |
| 12474 | cpu_subtype)); |
| 12475 | return KERN_SUCCESS; |
| 12476 | } |
| 12477 | |
| 12478 | /* |
| 12479 | * vm_map_lookup_locked: |
| 12480 | * |
| 12481 | * Finds the VM object, offset, and |
| 12482 | * protection for a given virtual address in the |
| 12483 | * specified map, assuming a page fault of the |
| 12484 | * type specified. |
| 12485 | * |
| 12486 | * Returns the (object, offset, protection) for |
| 12487 | * this address, whether it is wired down, and whether |
| 12488 | * this map has the only reference to the data in question. |
| 12489 | * In order to later verify this lookup, a "version" |
| 12490 | * is returned. |
| 12491 | * |
| 12492 | * The map MUST be locked by the caller and WILL be |
| 12493 | * locked on exit. In order to guarantee the |
| 12494 | * existence of the returned object, it is returned |
| 12495 | * locked. |
| 12496 | * |
| 12497 | * If a lookup is requested with "write protection" |
| 12498 | * specified, the map may be changed to perform virtual |
| 12499 | * copying operations, although the data referenced will |
| 12500 | * remain the same. |
| 12501 | */ |
| 12502 | kern_return_t |
| 12503 | vm_map_lookup_locked( |
| 12504 | vm_map_t *var_map, /* IN/OUT */ |
| 12505 | vm_map_offset_t vaddr, |
| 12506 | vm_prot_t fault_type, |
| 12507 | int object_lock_type, |
| 12508 | vm_map_version_t *out_version, /* OUT */ |
| 12509 | vm_object_t *object, /* OUT */ |
| 12510 | vm_object_offset_t *offset, /* OUT */ |
| 12511 | vm_prot_t *out_prot, /* OUT */ |
| 12512 | boolean_t *wired, /* OUT */ |
| 12513 | vm_object_fault_info_t fault_info, /* OUT */ |
| 12514 | vm_map_t *real_map) |
| 12515 | { |
| 12516 | vm_map_entry_t entry; |
| 12517 | vm_map_t map = *var_map; |
| 12518 | vm_map_t old_map = *var_map; |
| 12519 | vm_map_t cow_sub_map_parent = VM_MAP_NULL; |
| 12520 | vm_map_offset_t cow_parent_vaddr = 0; |
| 12521 | vm_map_offset_t old_start = 0; |
| 12522 | vm_map_offset_t old_end = 0; |
| 12523 | vm_prot_t prot; |
| 12524 | boolean_t mask_protections; |
| 12525 | boolean_t force_copy; |
| 12526 | vm_prot_t original_fault_type; |
| 12527 | |
| 12528 | /* |
| 12529 | * VM_PROT_MASK means that the caller wants us to use "fault_type" |
| 12530 | * as a mask against the mapping's actual protections, not as an |
| 12531 | * absolute value. |
| 12532 | */ |
| 12533 | mask_protections = (fault_type & VM_PROT_IS_MASK) ? TRUE : FALSE; |
| 12534 | force_copy = (fault_type & VM_PROT_COPY) ? TRUE : FALSE; |
| 12535 | fault_type &= VM_PROT_ALL; |
| 12536 | original_fault_type = fault_type; |
| 12537 | |
| 12538 | *real_map = map; |
| 12539 | |
| 12540 | RetryLookup: |
| 12541 | fault_type = original_fault_type; |
| 12542 | |
| 12543 | /* |
| 12544 | * If the map has an interesting hint, try it before calling |
| 12545 | * full blown lookup routine. |
| 12546 | */ |
| 12547 | entry = map->hint; |
| 12548 | |
| 12549 | if ((entry == vm_map_to_entry(map)) || |
| 12550 | (vaddr < entry->vme_start) || (vaddr >= entry->vme_end)) { |
| 12551 | vm_map_entry_t tmp_entry; |
| 12552 | |
| 12553 | /* |
| 12554 | * Entry was either not a valid hint, or the vaddr |
| 12555 | * was not contained in the entry, so do a full lookup. |
| 12556 | */ |
| 12557 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { |
| 12558 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)) |
| 12559 | vm_map_unlock(cow_sub_map_parent); |
| 12560 | if((*real_map != map) |
| 12561 | && (*real_map != cow_sub_map_parent)) |
| 12562 | vm_map_unlock(*real_map); |
| 12563 | return KERN_INVALID_ADDRESS; |
| 12564 | } |
| 12565 | |
| 12566 | entry = tmp_entry; |
| 12567 | } |
| 12568 | if(map == old_map) { |
| 12569 | old_start = entry->vme_start; |
| 12570 | old_end = entry->vme_end; |
| 12571 | } |
| 12572 | |
| 12573 | /* |
| 12574 | * Handle submaps. Drop lock on upper map, submap is |
| 12575 | * returned locked. |
| 12576 | */ |
| 12577 | |
| 12578 | submap_recurse: |
| 12579 | if (entry->is_sub_map) { |
| 12580 | vm_map_offset_t local_vaddr; |
| 12581 | vm_map_offset_t end_delta; |
| 12582 | vm_map_offset_t start_delta; |
| 12583 | vm_map_entry_t submap_entry; |
| 12584 | vm_prot_t subentry_protection; |
| 12585 | vm_prot_t subentry_max_protection; |
| 12586 | boolean_t mapped_needs_copy=FALSE; |
| 12587 | |
| 12588 | local_vaddr = vaddr; |
| 12589 | |
| 12590 | if ((entry->use_pmap && |
| 12591 | ! ((fault_type & VM_PROT_WRITE) || |
| 12592 | force_copy))) { |
| 12593 | /* if real_map equals map we unlock below */ |
| 12594 | if ((*real_map != map) && |
| 12595 | (*real_map != cow_sub_map_parent)) |
| 12596 | vm_map_unlock(*real_map); |
| 12597 | *real_map = VME_SUBMAP(entry); |
| 12598 | } |
| 12599 | |
| 12600 | if(entry->needs_copy && |
| 12601 | ((fault_type & VM_PROT_WRITE) || |
| 12602 | force_copy)) { |
| 12603 | if (!mapped_needs_copy) { |
| 12604 | if (vm_map_lock_read_to_write(map)) { |
| 12605 | vm_map_lock_read(map); |
| 12606 | *real_map = map; |
| 12607 | goto RetryLookup; |
| 12608 | } |
| 12609 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 12610 | *var_map = VME_SUBMAP(entry); |
| 12611 | cow_sub_map_parent = map; |
| 12612 | /* reset base to map before cow object */ |
| 12613 | /* this is the map which will accept */ |
| 12614 | /* the new cow object */ |
| 12615 | old_start = entry->vme_start; |
| 12616 | old_end = entry->vme_end; |
| 12617 | cow_parent_vaddr = vaddr; |
| 12618 | mapped_needs_copy = TRUE; |
| 12619 | } else { |
| 12620 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 12621 | *var_map = VME_SUBMAP(entry); |
| 12622 | if((cow_sub_map_parent != map) && |
| 12623 | (*real_map != map)) |
| 12624 | vm_map_unlock(map); |
| 12625 | } |
| 12626 | } else { |
| 12627 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 12628 | *var_map = VME_SUBMAP(entry); |
| 12629 | /* leave map locked if it is a target */ |
| 12630 | /* cow sub_map above otherwise, just */ |
| 12631 | /* follow the maps down to the object */ |
| 12632 | /* here we unlock knowing we are not */ |
| 12633 | /* revisiting the map. */ |
| 12634 | if((*real_map != map) && (map != cow_sub_map_parent)) |
| 12635 | vm_map_unlock_read(map); |
| 12636 | } |
| 12637 | |
| 12638 | map = *var_map; |
| 12639 | |
| 12640 | /* calculate the offset in the submap for vaddr */ |
| 12641 | local_vaddr = (local_vaddr - entry->vme_start) + VME_OFFSET(entry); |
| 12642 | |
| 12643 | RetrySubMap: |
| 12644 | if(!vm_map_lookup_entry(map, local_vaddr, &submap_entry)) { |
| 12645 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)){ |
| 12646 | vm_map_unlock(cow_sub_map_parent); |
| 12647 | } |
| 12648 | if((*real_map != map) |
| 12649 | && (*real_map != cow_sub_map_parent)) { |
| 12650 | vm_map_unlock(*real_map); |
| 12651 | } |
| 12652 | *real_map = map; |
| 12653 | return KERN_INVALID_ADDRESS; |
| 12654 | } |
| 12655 | |
| 12656 | /* find the attenuated shadow of the underlying object */ |
| 12657 | /* on our target map */ |
| 12658 | |
| 12659 | /* in english the submap object may extend beyond the */ |
| 12660 | /* region mapped by the entry or, may only fill a portion */ |
| 12661 | /* of it. For our purposes, we only care if the object */ |
| 12662 | /* doesn't fill. In this case the area which will */ |
| 12663 | /* ultimately be clipped in the top map will only need */ |
| 12664 | /* to be as big as the portion of the underlying entry */ |
| 12665 | /* which is mapped */ |
| 12666 | start_delta = submap_entry->vme_start > VME_OFFSET(entry) ? |
| 12667 | submap_entry->vme_start - VME_OFFSET(entry) : 0; |
| 12668 | |
| 12669 | end_delta = |
| 12670 | (VME_OFFSET(entry) + start_delta + (old_end - old_start)) <= |
| 12671 | submap_entry->vme_end ? |
| 12672 | 0 : (VME_OFFSET(entry) + |
| 12673 | (old_end - old_start)) |
| 12674 | - submap_entry->vme_end; |
| 12675 | |
| 12676 | old_start += start_delta; |
| 12677 | old_end -= end_delta; |
| 12678 | |
| 12679 | if(submap_entry->is_sub_map) { |
| 12680 | entry = submap_entry; |
| 12681 | vaddr = local_vaddr; |
| 12682 | goto submap_recurse; |
| 12683 | } |
| 12684 | |
| 12685 | if (((fault_type & VM_PROT_WRITE) || |
| 12686 | force_copy) |
| 12687 | && cow_sub_map_parent) { |
| 12688 | |
| 12689 | vm_object_t sub_object, copy_object; |
| 12690 | vm_object_offset_t copy_offset; |
| 12691 | vm_map_offset_t local_start; |
| 12692 | vm_map_offset_t local_end; |
| 12693 | boolean_t copied_slowly = FALSE; |
| 12694 | |
| 12695 | if (vm_map_lock_read_to_write(map)) { |
| 12696 | vm_map_lock_read(map); |
| 12697 | old_start -= start_delta; |
| 12698 | old_end += end_delta; |
| 12699 | goto RetrySubMap; |
| 12700 | } |
| 12701 | |
| 12702 | |
| 12703 | sub_object = VME_OBJECT(submap_entry); |
| 12704 | if (sub_object == VM_OBJECT_NULL) { |
| 12705 | sub_object = |
| 12706 | vm_object_allocate( |
| 12707 | (vm_map_size_t) |
| 12708 | (submap_entry->vme_end - |
| 12709 | submap_entry->vme_start)); |
| 12710 | VME_OBJECT_SET(submap_entry, sub_object); |
| 12711 | VME_OFFSET_SET(submap_entry, 0); |
| 12712 | assert(!submap_entry->is_sub_map); |
| 12713 | assert(submap_entry->use_pmap); |
| 12714 | } |
| 12715 | local_start = local_vaddr - |
| 12716 | (cow_parent_vaddr - old_start); |
| 12717 | local_end = local_vaddr + |
| 12718 | (old_end - cow_parent_vaddr); |
| 12719 | vm_map_clip_start(map, submap_entry, local_start); |
| 12720 | vm_map_clip_end(map, submap_entry, local_end); |
| 12721 | if (submap_entry->is_sub_map) { |
| 12722 | /* unnesting was done when clipping */ |
| 12723 | assert(!submap_entry->use_pmap); |
| 12724 | } |
| 12725 | |
| 12726 | /* This is the COW case, lets connect */ |
| 12727 | /* an entry in our space to the underlying */ |
| 12728 | /* object in the submap, bypassing the */ |
| 12729 | /* submap. */ |
| 12730 | |
| 12731 | |
| 12732 | if(submap_entry->wired_count != 0 || |
| 12733 | (sub_object->copy_strategy == |
| 12734 | MEMORY_OBJECT_COPY_NONE)) { |
| 12735 | vm_object_lock(sub_object); |
| 12736 | vm_object_copy_slowly(sub_object, |
| 12737 | VME_OFFSET(submap_entry), |
| 12738 | (submap_entry->vme_end - |
| 12739 | submap_entry->vme_start), |
| 12740 | FALSE, |
| 12741 | ©_object); |
| 12742 | copied_slowly = TRUE; |
| 12743 | } else { |
| 12744 | |
| 12745 | /* set up shadow object */ |
| 12746 | copy_object = sub_object; |
| 12747 | vm_object_lock(sub_object); |
| 12748 | vm_object_reference_locked(sub_object); |
| 12749 | sub_object->shadowed = TRUE; |
| 12750 | vm_object_unlock(sub_object); |
| 12751 | |
| 12752 | assert(submap_entry->wired_count == 0); |
| 12753 | submap_entry->needs_copy = TRUE; |
| 12754 | |
| 12755 | prot = submap_entry->protection; |
| 12756 | assert(!pmap_has_prot_policy(prot)); |
| 12757 | prot = prot & ~VM_PROT_WRITE; |
| 12758 | assert(!pmap_has_prot_policy(prot)); |
| 12759 | |
| 12760 | if (override_nx(old_map, |
| 12761 | VME_ALIAS(submap_entry)) |
| 12762 | && prot) |
| 12763 | prot |= VM_PROT_EXECUTE; |
| 12764 | |
| 12765 | vm_object_pmap_protect( |
| 12766 | sub_object, |
| 12767 | VME_OFFSET(submap_entry), |
| 12768 | submap_entry->vme_end - |
| 12769 | submap_entry->vme_start, |
| 12770 | (submap_entry->is_shared |
| 12771 | || map->mapped_in_other_pmaps) ? |
| 12772 | PMAP_NULL : map->pmap, |
| 12773 | submap_entry->vme_start, |
| 12774 | prot); |
| 12775 | } |
| 12776 | |
| 12777 | /* |
| 12778 | * Adjust the fault offset to the submap entry. |
| 12779 | */ |
| 12780 | copy_offset = (local_vaddr - |
| 12781 | submap_entry->vme_start + |
| 12782 | VME_OFFSET(submap_entry)); |
| 12783 | |
| 12784 | /* This works diffently than the */ |
| 12785 | /* normal submap case. We go back */ |
| 12786 | /* to the parent of the cow map and*/ |
| 12787 | /* clip out the target portion of */ |
| 12788 | /* the sub_map, substituting the */ |
| 12789 | /* new copy object, */ |
| 12790 | |
| 12791 | subentry_protection = submap_entry->protection; |
| 12792 | subentry_max_protection = submap_entry->max_protection; |
| 12793 | vm_map_unlock(map); |
| 12794 | submap_entry = NULL; /* not valid after map unlock */ |
| 12795 | |
| 12796 | local_start = old_start; |
| 12797 | local_end = old_end; |
| 12798 | map = cow_sub_map_parent; |
| 12799 | *var_map = cow_sub_map_parent; |
| 12800 | vaddr = cow_parent_vaddr; |
| 12801 | cow_sub_map_parent = NULL; |
| 12802 | |
| 12803 | if(!vm_map_lookup_entry(map, |
| 12804 | vaddr, &entry)) { |
| 12805 | vm_object_deallocate( |
| 12806 | copy_object); |
| 12807 | vm_map_lock_write_to_read(map); |
| 12808 | return KERN_INVALID_ADDRESS; |
| 12809 | } |
| 12810 | |
| 12811 | /* clip out the portion of space */ |
| 12812 | /* mapped by the sub map which */ |
| 12813 | /* corresponds to the underlying */ |
| 12814 | /* object */ |
| 12815 | |
| 12816 | /* |
| 12817 | * Clip (and unnest) the smallest nested chunk |
| 12818 | * possible around the faulting address... |
| 12819 | */ |
| 12820 | local_start = vaddr & ~(pmap_nesting_size_min - 1); |
| 12821 | local_end = local_start + pmap_nesting_size_min; |
| 12822 | /* |
| 12823 | * ... but don't go beyond the "old_start" to "old_end" |
| 12824 | * range, to avoid spanning over another VM region |
| 12825 | * with a possibly different VM object and/or offset. |
| 12826 | */ |
| 12827 | if (local_start < old_start) { |
| 12828 | local_start = old_start; |
| 12829 | } |
| 12830 | if (local_end > old_end) { |
| 12831 | local_end = old_end; |
| 12832 | } |
| 12833 | /* |
| 12834 | * Adjust copy_offset to the start of the range. |
| 12835 | */ |
| 12836 | copy_offset -= (vaddr - local_start); |
| 12837 | |
| 12838 | vm_map_clip_start(map, entry, local_start); |
| 12839 | vm_map_clip_end(map, entry, local_end); |
| 12840 | if (entry->is_sub_map) { |
| 12841 | /* unnesting was done when clipping */ |
| 12842 | assert(!entry->use_pmap); |
| 12843 | } |
| 12844 | |
| 12845 | /* substitute copy object for */ |
| 12846 | /* shared map entry */ |
| 12847 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 12848 | assert(!entry->iokit_acct); |
| 12849 | entry->is_sub_map = FALSE; |
| 12850 | entry->use_pmap = TRUE; |
| 12851 | VME_OBJECT_SET(entry, copy_object); |
| 12852 | |
| 12853 | /* propagate the submap entry's protections */ |
| 12854 | if (entry->protection != VM_PROT_READ) { |
| 12855 | /* |
| 12856 | * Someone has already altered the top entry's |
| 12857 | * protections via vm_protect(VM_PROT_COPY). |
| 12858 | * Respect these new values and ignore the |
| 12859 | * submap entry's protections. |
| 12860 | */ |
| 12861 | } else { |
| 12862 | /* |
| 12863 | * Regular copy-on-write: propagate the submap |
| 12864 | * entry's protections to the top map entry. |
| 12865 | */ |
| 12866 | entry->protection |= subentry_protection; |
| 12867 | } |
| 12868 | entry->max_protection |= subentry_max_protection; |
| 12869 | |
| 12870 | if ((entry->protection & VM_PROT_WRITE) && |
| 12871 | (entry->protection & VM_PROT_EXECUTE) && |
| 12872 | #if !CONFIG_EMBEDDED |
| 12873 | map != kernel_map && |
| 12874 | cs_process_enforcement(NULL) && |
| 12875 | #endif /* !CONFIG_EMBEDDED */ |
| 12876 | !(entry->used_for_jit)) { |
| 12877 | DTRACE_VM3(cs_wx, |
| 12878 | uint64_t, (uint64_t)entry->vme_start, |
| 12879 | uint64_t, (uint64_t)entry->vme_end, |
| 12880 | vm_prot_t, entry->protection); |
| 12881 | printf("CODE SIGNING: %d[%s] %s can't have both write and exec at the same time\n" , |
| 12882 | proc_selfpid(), |
| 12883 | (current_task()->bsd_info |
| 12884 | ? proc_name_address(current_task()->bsd_info) |
| 12885 | : "?" ), |
| 12886 | __FUNCTION__); |
| 12887 | entry->protection &= ~VM_PROT_EXECUTE; |
| 12888 | } |
| 12889 | |
| 12890 | if(copied_slowly) { |
| 12891 | VME_OFFSET_SET(entry, local_start - old_start); |
| 12892 | entry->needs_copy = FALSE; |
| 12893 | entry->is_shared = FALSE; |
| 12894 | } else { |
| 12895 | VME_OFFSET_SET(entry, copy_offset); |
| 12896 | assert(entry->wired_count == 0); |
| 12897 | entry->needs_copy = TRUE; |
| 12898 | if(entry->inheritance == VM_INHERIT_SHARE) |
| 12899 | entry->inheritance = VM_INHERIT_COPY; |
| 12900 | if (map != old_map) |
| 12901 | entry->is_shared = TRUE; |
| 12902 | } |
| 12903 | if(entry->inheritance == VM_INHERIT_SHARE) |
| 12904 | entry->inheritance = VM_INHERIT_COPY; |
| 12905 | |
| 12906 | vm_map_lock_write_to_read(map); |
| 12907 | } else { |
| 12908 | if((cow_sub_map_parent) |
| 12909 | && (cow_sub_map_parent != *real_map) |
| 12910 | && (cow_sub_map_parent != map)) { |
| 12911 | vm_map_unlock(cow_sub_map_parent); |
| 12912 | } |
| 12913 | entry = submap_entry; |
| 12914 | vaddr = local_vaddr; |
| 12915 | } |
| 12916 | } |
| 12917 | |
| 12918 | /* |
| 12919 | * Check whether this task is allowed to have |
| 12920 | * this page. |
| 12921 | */ |
| 12922 | |
| 12923 | prot = entry->protection; |
| 12924 | |
| 12925 | if (override_nx(old_map, VME_ALIAS(entry)) && prot) { |
| 12926 | /* |
| 12927 | * HACK -- if not a stack, then allow execution |
| 12928 | */ |
| 12929 | prot |= VM_PROT_EXECUTE; |
| 12930 | } |
| 12931 | |
| 12932 | if (mask_protections) { |
| 12933 | fault_type &= prot; |
| 12934 | if (fault_type == VM_PROT_NONE) { |
| 12935 | goto protection_failure; |
| 12936 | } |
| 12937 | } |
| 12938 | if (((fault_type & prot) != fault_type) |
| 12939 | #if __arm64__ |
| 12940 | /* prefetch abort in execute-only page */ |
| 12941 | && !(prot == VM_PROT_EXECUTE && fault_type == (VM_PROT_READ | VM_PROT_EXECUTE)) |
| 12942 | #endif |
| 12943 | ) { |
| 12944 | protection_failure: |
| 12945 | if (*real_map != map) { |
| 12946 | vm_map_unlock(*real_map); |
| 12947 | } |
| 12948 | *real_map = map; |
| 12949 | |
| 12950 | if ((fault_type & VM_PROT_EXECUTE) && prot) |
| 12951 | log_stack_execution_failure((addr64_t)vaddr, prot); |
| 12952 | |
| 12953 | DTRACE_VM2(prot_fault, int, 1, (uint64_t *), NULL); |
| 12954 | return KERN_PROTECTION_FAILURE; |
| 12955 | } |
| 12956 | |
| 12957 | /* |
| 12958 | * If this page is not pageable, we have to get |
| 12959 | * it for all possible accesses. |
| 12960 | */ |
| 12961 | |
| 12962 | *wired = (entry->wired_count != 0); |
| 12963 | if (*wired) |
| 12964 | fault_type = prot; |
| 12965 | |
| 12966 | /* |
| 12967 | * If the entry was copy-on-write, we either ... |
| 12968 | */ |
| 12969 | |
| 12970 | if (entry->needs_copy) { |
| 12971 | /* |
| 12972 | * If we want to write the page, we may as well |
| 12973 | * handle that now since we've got the map locked. |
| 12974 | * |
| 12975 | * If we don't need to write the page, we just |
| 12976 | * demote the permissions allowed. |
| 12977 | */ |
| 12978 | |
| 12979 | if ((fault_type & VM_PROT_WRITE) || *wired || force_copy) { |
| 12980 | /* |
| 12981 | * Make a new object, and place it in the |
| 12982 | * object chain. Note that no new references |
| 12983 | * have appeared -- one just moved from the |
| 12984 | * map to the new object. |
| 12985 | */ |
| 12986 | |
| 12987 | if (vm_map_lock_read_to_write(map)) { |
| 12988 | vm_map_lock_read(map); |
| 12989 | goto RetryLookup; |
| 12990 | } |
| 12991 | |
| 12992 | if (VME_OBJECT(entry)->shadowed == FALSE) { |
| 12993 | vm_object_lock(VME_OBJECT(entry)); |
| 12994 | VME_OBJECT(entry)->shadowed = TRUE; |
| 12995 | vm_object_unlock(VME_OBJECT(entry)); |
| 12996 | } |
| 12997 | VME_OBJECT_SHADOW(entry, |
| 12998 | (vm_map_size_t) (entry->vme_end - |
| 12999 | entry->vme_start)); |
| 13000 | entry->needs_copy = FALSE; |
| 13001 | |
| 13002 | vm_map_lock_write_to_read(map); |
| 13003 | } |
| 13004 | if ((fault_type & VM_PROT_WRITE) == 0 && *wired == 0) { |
| 13005 | /* |
| 13006 | * We're attempting to read a copy-on-write |
| 13007 | * page -- don't allow writes. |
| 13008 | */ |
| 13009 | |
| 13010 | prot &= (~VM_PROT_WRITE); |
| 13011 | } |
| 13012 | } |
| 13013 | |
| 13014 | /* |
| 13015 | * Create an object if necessary. |
| 13016 | */ |
| 13017 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 13018 | |
| 13019 | if (vm_map_lock_read_to_write(map)) { |
| 13020 | vm_map_lock_read(map); |
| 13021 | goto RetryLookup; |
| 13022 | } |
| 13023 | |
| 13024 | VME_OBJECT_SET(entry, |
| 13025 | vm_object_allocate( |
| 13026 | (vm_map_size_t)(entry->vme_end - |
| 13027 | entry->vme_start))); |
| 13028 | VME_OFFSET_SET(entry, 0); |
| 13029 | assert(entry->use_pmap); |
| 13030 | vm_map_lock_write_to_read(map); |
| 13031 | } |
| 13032 | |
| 13033 | /* |
| 13034 | * Return the object/offset from this entry. If the entry |
| 13035 | * was copy-on-write or empty, it has been fixed up. Also |
| 13036 | * return the protection. |
| 13037 | */ |
| 13038 | |
| 13039 | *offset = (vaddr - entry->vme_start) + VME_OFFSET(entry); |
| 13040 | *object = VME_OBJECT(entry); |
| 13041 | *out_prot = prot; |
| 13042 | |
| 13043 | if (fault_info) { |
| 13044 | fault_info->interruptible = THREAD_UNINT; /* for now... */ |
| 13045 | /* ... the caller will change "interruptible" if needed */ |
| 13046 | fault_info->cluster_size = 0; |
| 13047 | fault_info->user_tag = VME_ALIAS(entry); |
| 13048 | fault_info->pmap_options = 0; |
| 13049 | if (entry->iokit_acct || |
| 13050 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 13051 | fault_info->pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 13052 | } |
| 13053 | fault_info->behavior = entry->behavior; |
| 13054 | fault_info->lo_offset = VME_OFFSET(entry); |
| 13055 | fault_info->hi_offset = |
| 13056 | (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); |
| 13057 | fault_info->no_cache = entry->no_cache; |
| 13058 | fault_info->stealth = FALSE; |
| 13059 | fault_info->io_sync = FALSE; |
| 13060 | if (entry->used_for_jit || |
| 13061 | entry->vme_resilient_codesign) { |
| 13062 | fault_info->cs_bypass = TRUE; |
| 13063 | } else { |
| 13064 | fault_info->cs_bypass = FALSE; |
| 13065 | } |
| 13066 | fault_info->pmap_cs_associated = FALSE; |
| 13067 | #if CONFIG_PMAP_CS |
| 13068 | if (entry->pmap_cs_associated) { |
| 13069 | /* |
| 13070 | * The pmap layer will validate this page |
| 13071 | * before allowing it to be executed from. |
| 13072 | */ |
| 13073 | fault_info->pmap_cs_associated = TRUE; |
| 13074 | } |
| 13075 | #endif /* CONFIG_PMAP_CS */ |
| 13076 | fault_info->mark_zf_absent = FALSE; |
| 13077 | fault_info->batch_pmap_op = FALSE; |
| 13078 | } |
| 13079 | |
| 13080 | /* |
| 13081 | * Lock the object to prevent it from disappearing |
| 13082 | */ |
| 13083 | if (object_lock_type == OBJECT_LOCK_EXCLUSIVE) |
| 13084 | vm_object_lock(*object); |
| 13085 | else |
| 13086 | vm_object_lock_shared(*object); |
| 13087 | |
| 13088 | /* |
| 13089 | * Save the version number |
| 13090 | */ |
| 13091 | |
| 13092 | out_version->main_timestamp = map->timestamp; |
| 13093 | |
| 13094 | return KERN_SUCCESS; |
| 13095 | } |
| 13096 | |
| 13097 | |
| 13098 | /* |
| 13099 | * vm_map_verify: |
| 13100 | * |
| 13101 | * Verifies that the map in question has not changed |
| 13102 | * since the given version. The map has to be locked |
| 13103 | * ("shared" mode is fine) before calling this function |
| 13104 | * and it will be returned locked too. |
| 13105 | */ |
| 13106 | boolean_t |
| 13107 | vm_map_verify( |
| 13108 | vm_map_t map, |
| 13109 | vm_map_version_t *version) /* REF */ |
| 13110 | { |
| 13111 | boolean_t result; |
| 13112 | |
| 13113 | vm_map_lock_assert_held(map); |
| 13114 | result = (map->timestamp == version->main_timestamp); |
| 13115 | |
| 13116 | return(result); |
| 13117 | } |
| 13118 | |
| 13119 | /* |
| 13120 | * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY |
| 13121 | * Goes away after regular vm_region_recurse function migrates to |
| 13122 | * 64 bits |
| 13123 | * vm_region_recurse: A form of vm_region which follows the |
| 13124 | * submaps in a target map |
| 13125 | * |
| 13126 | */ |
| 13127 | |
| 13128 | kern_return_t |
| 13129 | vm_map_region_recurse_64( |
| 13130 | vm_map_t map, |
| 13131 | vm_map_offset_t *address, /* IN/OUT */ |
| 13132 | vm_map_size_t *size, /* OUT */ |
| 13133 | natural_t *nesting_depth, /* IN/OUT */ |
| 13134 | vm_region_submap_info_64_t submap_info, /* IN/OUT */ |
| 13135 | mach_msg_type_number_t *count) /* IN/OUT */ |
| 13136 | { |
| 13137 | mach_msg_type_number_t original_count; |
| 13138 | vm_region_extended_info_data_t extended; |
| 13139 | vm_map_entry_t tmp_entry; |
| 13140 | vm_map_offset_t user_address; |
| 13141 | unsigned int user_max_depth; |
| 13142 | |
| 13143 | /* |
| 13144 | * "curr_entry" is the VM map entry preceding or including the |
| 13145 | * address we're looking for. |
| 13146 | * "curr_map" is the map or sub-map containing "curr_entry". |
| 13147 | * "curr_address" is the equivalent of the top map's "user_address" |
| 13148 | * in the current map. |
| 13149 | * "curr_offset" is the cumulated offset of "curr_map" in the |
| 13150 | * target task's address space. |
| 13151 | * "curr_depth" is the depth of "curr_map" in the chain of |
| 13152 | * sub-maps. |
| 13153 | * |
| 13154 | * "curr_max_below" and "curr_max_above" limit the range (around |
| 13155 | * "curr_address") we should take into account in the current (sub)map. |
| 13156 | * They limit the range to what's visible through the map entries |
| 13157 | * we've traversed from the top map to the current map. |
| 13158 | |
| 13159 | */ |
| 13160 | vm_map_entry_t curr_entry; |
| 13161 | vm_map_address_t curr_address; |
| 13162 | vm_map_offset_t curr_offset; |
| 13163 | vm_map_t curr_map; |
| 13164 | unsigned int curr_depth; |
| 13165 | vm_map_offset_t curr_max_below, curr_max_above; |
| 13166 | vm_map_offset_t curr_skip; |
| 13167 | |
| 13168 | /* |
| 13169 | * "next_" is the same as "curr_" but for the VM region immediately |
| 13170 | * after the address we're looking for. We need to keep track of this |
| 13171 | * too because we want to return info about that region if the |
| 13172 | * address we're looking for is not mapped. |
| 13173 | */ |
| 13174 | vm_map_entry_t next_entry; |
| 13175 | vm_map_offset_t next_offset; |
| 13176 | vm_map_offset_t next_address; |
| 13177 | vm_map_t next_map; |
| 13178 | unsigned int next_depth; |
| 13179 | vm_map_offset_t next_max_below, next_max_above; |
| 13180 | vm_map_offset_t next_skip; |
| 13181 | |
| 13182 | boolean_t look_for_pages; |
| 13183 | vm_region_submap_short_info_64_t short_info; |
| 13184 | boolean_t ; |
| 13185 | |
| 13186 | if (map == VM_MAP_NULL) { |
| 13187 | /* no address space to work on */ |
| 13188 | return KERN_INVALID_ARGUMENT; |
| 13189 | } |
| 13190 | |
| 13191 | |
| 13192 | if (*count < VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) { |
| 13193 | /* |
| 13194 | * "info" structure is not big enough and |
| 13195 | * would overflow |
| 13196 | */ |
| 13197 | return KERN_INVALID_ARGUMENT; |
| 13198 | } |
| 13199 | |
| 13200 | do_region_footprint = task_self_region_footprint(); |
| 13201 | original_count = *count; |
| 13202 | |
| 13203 | if (original_count < VM_REGION_SUBMAP_INFO_V0_COUNT_64) { |
| 13204 | *count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; |
| 13205 | look_for_pages = FALSE; |
| 13206 | short_info = (vm_region_submap_short_info_64_t) submap_info; |
| 13207 | submap_info = NULL; |
| 13208 | } else { |
| 13209 | look_for_pages = TRUE; |
| 13210 | *count = VM_REGION_SUBMAP_INFO_V0_COUNT_64; |
| 13211 | short_info = NULL; |
| 13212 | |
| 13213 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { |
| 13214 | *count = VM_REGION_SUBMAP_INFO_V1_COUNT_64; |
| 13215 | } |
| 13216 | } |
| 13217 | |
| 13218 | user_address = *address; |
| 13219 | user_max_depth = *nesting_depth; |
| 13220 | |
| 13221 | if (not_in_kdp) { |
| 13222 | vm_map_lock_read(map); |
| 13223 | } |
| 13224 | |
| 13225 | recurse_again: |
| 13226 | curr_entry = NULL; |
| 13227 | curr_map = map; |
| 13228 | curr_address = user_address; |
| 13229 | curr_offset = 0; |
| 13230 | curr_skip = 0; |
| 13231 | curr_depth = 0; |
| 13232 | curr_max_above = ((vm_map_offset_t) -1) - curr_address; |
| 13233 | curr_max_below = curr_address; |
| 13234 | |
| 13235 | next_entry = NULL; |
| 13236 | next_map = NULL; |
| 13237 | next_address = 0; |
| 13238 | next_offset = 0; |
| 13239 | next_skip = 0; |
| 13240 | next_depth = 0; |
| 13241 | next_max_above = (vm_map_offset_t) -1; |
| 13242 | next_max_below = (vm_map_offset_t) -1; |
| 13243 | |
| 13244 | for (;;) { |
| 13245 | if (vm_map_lookup_entry(curr_map, |
| 13246 | curr_address, |
| 13247 | &tmp_entry)) { |
| 13248 | /* tmp_entry contains the address we're looking for */ |
| 13249 | curr_entry = tmp_entry; |
| 13250 | } else { |
| 13251 | vm_map_offset_t skip; |
| 13252 | /* |
| 13253 | * The address is not mapped. "tmp_entry" is the |
| 13254 | * map entry preceding the address. We want the next |
| 13255 | * one, if it exists. |
| 13256 | */ |
| 13257 | curr_entry = tmp_entry->vme_next; |
| 13258 | |
| 13259 | if (curr_entry == vm_map_to_entry(curr_map) || |
| 13260 | (curr_entry->vme_start >= |
| 13261 | curr_address + curr_max_above)) { |
| 13262 | /* no next entry at this level: stop looking */ |
| 13263 | if (not_in_kdp) { |
| 13264 | vm_map_unlock_read(curr_map); |
| 13265 | } |
| 13266 | curr_entry = NULL; |
| 13267 | curr_map = NULL; |
| 13268 | curr_skip = 0; |
| 13269 | curr_offset = 0; |
| 13270 | curr_depth = 0; |
| 13271 | curr_max_above = 0; |
| 13272 | curr_max_below = 0; |
| 13273 | break; |
| 13274 | } |
| 13275 | |
| 13276 | /* adjust current address and offset */ |
| 13277 | skip = curr_entry->vme_start - curr_address; |
| 13278 | curr_address = curr_entry->vme_start; |
| 13279 | curr_skip += skip; |
| 13280 | curr_offset += skip; |
| 13281 | curr_max_above -= skip; |
| 13282 | curr_max_below = 0; |
| 13283 | } |
| 13284 | |
| 13285 | /* |
| 13286 | * Is the next entry at this level closer to the address (or |
| 13287 | * deeper in the submap chain) than the one we had |
| 13288 | * so far ? |
| 13289 | */ |
| 13290 | tmp_entry = curr_entry->vme_next; |
| 13291 | if (tmp_entry == vm_map_to_entry(curr_map)) { |
| 13292 | /* no next entry at this level */ |
| 13293 | } else if (tmp_entry->vme_start >= |
| 13294 | curr_address + curr_max_above) { |
| 13295 | /* |
| 13296 | * tmp_entry is beyond the scope of what we mapped of |
| 13297 | * this submap in the upper level: ignore it. |
| 13298 | */ |
| 13299 | } else if ((next_entry == NULL) || |
| 13300 | (tmp_entry->vme_start + curr_offset <= |
| 13301 | next_entry->vme_start + next_offset)) { |
| 13302 | /* |
| 13303 | * We didn't have a "next_entry" or this one is |
| 13304 | * closer to the address we're looking for: |
| 13305 | * use this "tmp_entry" as the new "next_entry". |
| 13306 | */ |
| 13307 | if (next_entry != NULL) { |
| 13308 | /* unlock the last "next_map" */ |
| 13309 | if (next_map != curr_map && not_in_kdp) { |
| 13310 | vm_map_unlock_read(next_map); |
| 13311 | } |
| 13312 | } |
| 13313 | next_entry = tmp_entry; |
| 13314 | next_map = curr_map; |
| 13315 | next_depth = curr_depth; |
| 13316 | next_address = next_entry->vme_start; |
| 13317 | next_skip = curr_skip; |
| 13318 | next_skip += (next_address - curr_address); |
| 13319 | next_offset = curr_offset; |
| 13320 | next_offset += (next_address - curr_address); |
| 13321 | next_max_above = MIN(next_max_above, curr_max_above); |
| 13322 | next_max_above = MIN(next_max_above, |
| 13323 | next_entry->vme_end - next_address); |
| 13324 | next_max_below = MIN(next_max_below, curr_max_below); |
| 13325 | next_max_below = MIN(next_max_below, |
| 13326 | next_address - next_entry->vme_start); |
| 13327 | } |
| 13328 | |
| 13329 | /* |
| 13330 | * "curr_max_{above,below}" allow us to keep track of the |
| 13331 | * portion of the submap that is actually mapped at this level: |
| 13332 | * the rest of that submap is irrelevant to us, since it's not |
| 13333 | * mapped here. |
| 13334 | * The relevant portion of the map starts at |
| 13335 | * "VME_OFFSET(curr_entry)" up to the size of "curr_entry". |
| 13336 | */ |
| 13337 | curr_max_above = MIN(curr_max_above, |
| 13338 | curr_entry->vme_end - curr_address); |
| 13339 | curr_max_below = MIN(curr_max_below, |
| 13340 | curr_address - curr_entry->vme_start); |
| 13341 | |
| 13342 | if (!curr_entry->is_sub_map || |
| 13343 | curr_depth >= user_max_depth) { |
| 13344 | /* |
| 13345 | * We hit a leaf map or we reached the maximum depth |
| 13346 | * we could, so stop looking. Keep the current map |
| 13347 | * locked. |
| 13348 | */ |
| 13349 | break; |
| 13350 | } |
| 13351 | |
| 13352 | /* |
| 13353 | * Get down to the next submap level. |
| 13354 | */ |
| 13355 | |
| 13356 | /* |
| 13357 | * Lock the next level and unlock the current level, |
| 13358 | * unless we need to keep it locked to access the "next_entry" |
| 13359 | * later. |
| 13360 | */ |
| 13361 | if (not_in_kdp) { |
| 13362 | vm_map_lock_read(VME_SUBMAP(curr_entry)); |
| 13363 | } |
| 13364 | if (curr_map == next_map) { |
| 13365 | /* keep "next_map" locked in case we need it */ |
| 13366 | } else { |
| 13367 | /* release this map */ |
| 13368 | if (not_in_kdp) |
| 13369 | vm_map_unlock_read(curr_map); |
| 13370 | } |
| 13371 | |
| 13372 | /* |
| 13373 | * Adjust the offset. "curr_entry" maps the submap |
| 13374 | * at relative address "curr_entry->vme_start" in the |
| 13375 | * curr_map but skips the first "VME_OFFSET(curr_entry)" |
| 13376 | * bytes of the submap. |
| 13377 | * "curr_offset" always represents the offset of a virtual |
| 13378 | * address in the curr_map relative to the absolute address |
| 13379 | * space (i.e. the top-level VM map). |
| 13380 | */ |
| 13381 | curr_offset += |
| 13382 | (VME_OFFSET(curr_entry) - curr_entry->vme_start); |
| 13383 | curr_address = user_address + curr_offset; |
| 13384 | /* switch to the submap */ |
| 13385 | curr_map = VME_SUBMAP(curr_entry); |
| 13386 | curr_depth++; |
| 13387 | curr_entry = NULL; |
| 13388 | } |
| 13389 | |
| 13390 | // LP64todo: all the current tools are 32bit, obviously never worked for 64b |
| 13391 | // so probably should be a real 32b ID vs. ptr. |
| 13392 | // Current users just check for equality |
| 13393 | |
| 13394 | if (curr_entry == NULL) { |
| 13395 | /* no VM region contains the address... */ |
| 13396 | |
| 13397 | if (do_region_footprint && /* we want footprint numbers */ |
| 13398 | next_entry == NULL && /* & there are no more regions */ |
| 13399 | /* & we haven't already provided our fake region: */ |
| 13400 | user_address <= vm_map_last_entry(map)->vme_end) { |
| 13401 | ledger_amount_t nonvol, nonvol_compressed; |
| 13402 | /* |
| 13403 | * Add a fake memory region to account for |
| 13404 | * purgeable memory that counts towards this |
| 13405 | * task's memory footprint, i.e. the resident |
| 13406 | * compressed pages of non-volatile objects |
| 13407 | * owned by that task. |
| 13408 | */ |
| 13409 | ledger_get_balance( |
| 13410 | map->pmap->ledger, |
| 13411 | task_ledgers.purgeable_nonvolatile, |
| 13412 | &nonvol); |
| 13413 | ledger_get_balance( |
| 13414 | map->pmap->ledger, |
| 13415 | task_ledgers.purgeable_nonvolatile_compressed, |
| 13416 | &nonvol_compressed); |
| 13417 | if (nonvol + nonvol_compressed == 0) { |
| 13418 | /* no purgeable memory usage to report */ |
| 13419 | return KERN_INVALID_ADDRESS; |
| 13420 | } |
| 13421 | /* fake region to show nonvolatile footprint */ |
| 13422 | if (look_for_pages) { |
| 13423 | submap_info->protection = VM_PROT_DEFAULT; |
| 13424 | submap_info->max_protection = VM_PROT_DEFAULT; |
| 13425 | submap_info->inheritance = VM_INHERIT_DEFAULT; |
| 13426 | submap_info->offset = 0; |
| 13427 | submap_info->user_tag = -1; |
| 13428 | submap_info->pages_resident = (unsigned int) (nonvol / PAGE_SIZE); |
| 13429 | submap_info->pages_shared_now_private = 0; |
| 13430 | submap_info->pages_swapped_out = (unsigned int) (nonvol_compressed / PAGE_SIZE); |
| 13431 | submap_info->pages_dirtied = submap_info->pages_resident; |
| 13432 | submap_info->ref_count = 1; |
| 13433 | submap_info->shadow_depth = 0; |
| 13434 | submap_info->external_pager = 0; |
| 13435 | submap_info->share_mode = SM_PRIVATE; |
| 13436 | submap_info->is_submap = 0; |
| 13437 | submap_info->behavior = VM_BEHAVIOR_DEFAULT; |
| 13438 | submap_info->object_id = INFO_MAKE_FAKE_OBJECT_ID(map, task_ledgers.purgeable_nonvolatile); |
| 13439 | submap_info->user_wired_count = 0; |
| 13440 | submap_info->pages_reusable = 0; |
| 13441 | } else { |
| 13442 | short_info->user_tag = -1; |
| 13443 | short_info->offset = 0; |
| 13444 | short_info->protection = VM_PROT_DEFAULT; |
| 13445 | short_info->inheritance = VM_INHERIT_DEFAULT; |
| 13446 | short_info->max_protection = VM_PROT_DEFAULT; |
| 13447 | short_info->behavior = VM_BEHAVIOR_DEFAULT; |
| 13448 | short_info->user_wired_count = 0; |
| 13449 | short_info->is_submap = 0; |
| 13450 | short_info->object_id = INFO_MAKE_FAKE_OBJECT_ID(map, task_ledgers.purgeable_nonvolatile); |
| 13451 | short_info->external_pager = 0; |
| 13452 | short_info->shadow_depth = 0; |
| 13453 | short_info->share_mode = SM_PRIVATE; |
| 13454 | short_info->ref_count = 1; |
| 13455 | } |
| 13456 | *nesting_depth = 0; |
| 13457 | *size = (vm_map_size_t) (nonvol + nonvol_compressed); |
| 13458 | // *address = user_address; |
| 13459 | *address = vm_map_last_entry(map)->vme_end; |
| 13460 | return KERN_SUCCESS; |
| 13461 | } |
| 13462 | |
| 13463 | if (next_entry == NULL) { |
| 13464 | /* ... and no VM region follows it either */ |
| 13465 | return KERN_INVALID_ADDRESS; |
| 13466 | } |
| 13467 | /* ... gather info about the next VM region */ |
| 13468 | curr_entry = next_entry; |
| 13469 | curr_map = next_map; /* still locked ... */ |
| 13470 | curr_address = next_address; |
| 13471 | curr_skip = next_skip; |
| 13472 | curr_offset = next_offset; |
| 13473 | curr_depth = next_depth; |
| 13474 | curr_max_above = next_max_above; |
| 13475 | curr_max_below = next_max_below; |
| 13476 | } else { |
| 13477 | /* we won't need "next_entry" after all */ |
| 13478 | if (next_entry != NULL) { |
| 13479 | /* release "next_map" */ |
| 13480 | if (next_map != curr_map && not_in_kdp) { |
| 13481 | vm_map_unlock_read(next_map); |
| 13482 | } |
| 13483 | } |
| 13484 | } |
| 13485 | next_entry = NULL; |
| 13486 | next_map = NULL; |
| 13487 | next_offset = 0; |
| 13488 | next_skip = 0; |
| 13489 | next_depth = 0; |
| 13490 | next_max_below = -1; |
| 13491 | next_max_above = -1; |
| 13492 | |
| 13493 | if (curr_entry->is_sub_map && |
| 13494 | curr_depth < user_max_depth) { |
| 13495 | /* |
| 13496 | * We're not as deep as we could be: we must have |
| 13497 | * gone back up after not finding anything mapped |
| 13498 | * below the original top-level map entry's. |
| 13499 | * Let's move "curr_address" forward and recurse again. |
| 13500 | */ |
| 13501 | user_address = curr_address; |
| 13502 | goto recurse_again; |
| 13503 | } |
| 13504 | |
| 13505 | *nesting_depth = curr_depth; |
| 13506 | *size = curr_max_above + curr_max_below; |
| 13507 | *address = user_address + curr_skip - curr_max_below; |
| 13508 | |
| 13509 | // LP64todo: all the current tools are 32bit, obviously never worked for 64b |
| 13510 | // so probably should be a real 32b ID vs. ptr. |
| 13511 | // Current users just check for equality |
| 13512 | #define INFO_MAKE_OBJECT_ID(p) ((uint32_t)(uintptr_t)VM_KERNEL_ADDRPERM(p)) |
| 13513 | |
| 13514 | if (look_for_pages) { |
| 13515 | submap_info->user_tag = VME_ALIAS(curr_entry); |
| 13516 | submap_info->offset = VME_OFFSET(curr_entry); |
| 13517 | submap_info->protection = curr_entry->protection; |
| 13518 | submap_info->inheritance = curr_entry->inheritance; |
| 13519 | submap_info->max_protection = curr_entry->max_protection; |
| 13520 | submap_info->behavior = curr_entry->behavior; |
| 13521 | submap_info->user_wired_count = curr_entry->user_wired_count; |
| 13522 | submap_info->is_submap = curr_entry->is_sub_map; |
| 13523 | submap_info->object_id = INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry)); |
| 13524 | } else { |
| 13525 | short_info->user_tag = VME_ALIAS(curr_entry); |
| 13526 | short_info->offset = VME_OFFSET(curr_entry); |
| 13527 | short_info->protection = curr_entry->protection; |
| 13528 | short_info->inheritance = curr_entry->inheritance; |
| 13529 | short_info->max_protection = curr_entry->max_protection; |
| 13530 | short_info->behavior = curr_entry->behavior; |
| 13531 | short_info->user_wired_count = curr_entry->user_wired_count; |
| 13532 | short_info->is_submap = curr_entry->is_sub_map; |
| 13533 | short_info->object_id = INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry)); |
| 13534 | } |
| 13535 | |
| 13536 | extended.pages_resident = 0; |
| 13537 | extended.pages_swapped_out = 0; |
| 13538 | extended.pages_shared_now_private = 0; |
| 13539 | extended.pages_dirtied = 0; |
| 13540 | extended.pages_reusable = 0; |
| 13541 | extended.external_pager = 0; |
| 13542 | extended.shadow_depth = 0; |
| 13543 | extended.share_mode = SM_EMPTY; |
| 13544 | extended.ref_count = 0; |
| 13545 | |
| 13546 | if (not_in_kdp) { |
| 13547 | if (!curr_entry->is_sub_map) { |
| 13548 | vm_map_offset_t range_start, range_end; |
| 13549 | range_start = MAX((curr_address - curr_max_below), |
| 13550 | curr_entry->vme_start); |
| 13551 | range_end = MIN((curr_address + curr_max_above), |
| 13552 | curr_entry->vme_end); |
| 13553 | vm_map_region_walk(curr_map, |
| 13554 | range_start, |
| 13555 | curr_entry, |
| 13556 | (VME_OFFSET(curr_entry) + |
| 13557 | (range_start - |
| 13558 | curr_entry->vme_start)), |
| 13559 | range_end - range_start, |
| 13560 | &extended, |
| 13561 | look_for_pages, VM_REGION_EXTENDED_INFO_COUNT); |
| 13562 | if (extended.external_pager && |
| 13563 | extended.ref_count == 2 && |
| 13564 | extended.share_mode == SM_SHARED) { |
| 13565 | extended.share_mode = SM_PRIVATE; |
| 13566 | } |
| 13567 | } else { |
| 13568 | if (curr_entry->use_pmap) { |
| 13569 | extended.share_mode = SM_TRUESHARED; |
| 13570 | } else { |
| 13571 | extended.share_mode = SM_PRIVATE; |
| 13572 | } |
| 13573 | extended.ref_count = VME_SUBMAP(curr_entry)->map_refcnt; |
| 13574 | } |
| 13575 | } |
| 13576 | |
| 13577 | if (look_for_pages) { |
| 13578 | submap_info->pages_resident = extended.pages_resident; |
| 13579 | submap_info->pages_swapped_out = extended.pages_swapped_out; |
| 13580 | submap_info->pages_shared_now_private = |
| 13581 | extended.pages_shared_now_private; |
| 13582 | submap_info->pages_dirtied = extended.pages_dirtied; |
| 13583 | submap_info->external_pager = extended.external_pager; |
| 13584 | submap_info->shadow_depth = extended.shadow_depth; |
| 13585 | submap_info->share_mode = extended.share_mode; |
| 13586 | submap_info->ref_count = extended.ref_count; |
| 13587 | |
| 13588 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { |
| 13589 | submap_info->pages_reusable = extended.pages_reusable; |
| 13590 | } |
| 13591 | } else { |
| 13592 | short_info->external_pager = extended.external_pager; |
| 13593 | short_info->shadow_depth = extended.shadow_depth; |
| 13594 | short_info->share_mode = extended.share_mode; |
| 13595 | short_info->ref_count = extended.ref_count; |
| 13596 | } |
| 13597 | |
| 13598 | if (not_in_kdp) { |
| 13599 | vm_map_unlock_read(curr_map); |
| 13600 | } |
| 13601 | |
| 13602 | return KERN_SUCCESS; |
| 13603 | } |
| 13604 | |
| 13605 | /* |
| 13606 | * vm_region: |
| 13607 | * |
| 13608 | * User call to obtain information about a region in |
| 13609 | * a task's address map. Currently, only one flavor is |
| 13610 | * supported. |
| 13611 | * |
| 13612 | * XXX The reserved and behavior fields cannot be filled |
| 13613 | * in until the vm merge from the IK is completed, and |
| 13614 | * vm_reserve is implemented. |
| 13615 | */ |
| 13616 | |
| 13617 | kern_return_t |
| 13618 | vm_map_region( |
| 13619 | vm_map_t map, |
| 13620 | vm_map_offset_t *address, /* IN/OUT */ |
| 13621 | vm_map_size_t *size, /* OUT */ |
| 13622 | vm_region_flavor_t flavor, /* IN */ |
| 13623 | vm_region_info_t info, /* OUT */ |
| 13624 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 13625 | mach_port_t *object_name) /* OUT */ |
| 13626 | { |
| 13627 | vm_map_entry_t tmp_entry; |
| 13628 | vm_map_entry_t entry; |
| 13629 | vm_map_offset_t start; |
| 13630 | |
| 13631 | if (map == VM_MAP_NULL) |
| 13632 | return(KERN_INVALID_ARGUMENT); |
| 13633 | |
| 13634 | switch (flavor) { |
| 13635 | |
| 13636 | case VM_REGION_BASIC_INFO: |
| 13637 | /* legacy for old 32-bit objects info */ |
| 13638 | { |
| 13639 | vm_region_basic_info_t basic; |
| 13640 | |
| 13641 | if (*count < VM_REGION_BASIC_INFO_COUNT) |
| 13642 | return(KERN_INVALID_ARGUMENT); |
| 13643 | |
| 13644 | basic = (vm_region_basic_info_t) info; |
| 13645 | *count = VM_REGION_BASIC_INFO_COUNT; |
| 13646 | |
| 13647 | vm_map_lock_read(map); |
| 13648 | |
| 13649 | start = *address; |
| 13650 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 13651 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 13652 | vm_map_unlock_read(map); |
| 13653 | return(KERN_INVALID_ADDRESS); |
| 13654 | } |
| 13655 | } else { |
| 13656 | entry = tmp_entry; |
| 13657 | } |
| 13658 | |
| 13659 | start = entry->vme_start; |
| 13660 | |
| 13661 | basic->offset = (uint32_t)VME_OFFSET(entry); |
| 13662 | basic->protection = entry->protection; |
| 13663 | basic->inheritance = entry->inheritance; |
| 13664 | basic->max_protection = entry->max_protection; |
| 13665 | basic->behavior = entry->behavior; |
| 13666 | basic->user_wired_count = entry->user_wired_count; |
| 13667 | basic->reserved = entry->is_sub_map; |
| 13668 | *address = start; |
| 13669 | *size = (entry->vme_end - start); |
| 13670 | |
| 13671 | if (object_name) *object_name = IP_NULL; |
| 13672 | if (entry->is_sub_map) { |
| 13673 | basic->shared = FALSE; |
| 13674 | } else { |
| 13675 | basic->shared = entry->is_shared; |
| 13676 | } |
| 13677 | |
| 13678 | vm_map_unlock_read(map); |
| 13679 | return(KERN_SUCCESS); |
| 13680 | } |
| 13681 | |
| 13682 | case VM_REGION_BASIC_INFO_64: |
| 13683 | { |
| 13684 | vm_region_basic_info_64_t basic; |
| 13685 | |
| 13686 | if (*count < VM_REGION_BASIC_INFO_COUNT_64) |
| 13687 | return(KERN_INVALID_ARGUMENT); |
| 13688 | |
| 13689 | basic = (vm_region_basic_info_64_t) info; |
| 13690 | *count = VM_REGION_BASIC_INFO_COUNT_64; |
| 13691 | |
| 13692 | vm_map_lock_read(map); |
| 13693 | |
| 13694 | start = *address; |
| 13695 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 13696 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 13697 | vm_map_unlock_read(map); |
| 13698 | return(KERN_INVALID_ADDRESS); |
| 13699 | } |
| 13700 | } else { |
| 13701 | entry = tmp_entry; |
| 13702 | } |
| 13703 | |
| 13704 | start = entry->vme_start; |
| 13705 | |
| 13706 | basic->offset = VME_OFFSET(entry); |
| 13707 | basic->protection = entry->protection; |
| 13708 | basic->inheritance = entry->inheritance; |
| 13709 | basic->max_protection = entry->max_protection; |
| 13710 | basic->behavior = entry->behavior; |
| 13711 | basic->user_wired_count = entry->user_wired_count; |
| 13712 | basic->reserved = entry->is_sub_map; |
| 13713 | *address = start; |
| 13714 | *size = (entry->vme_end - start); |
| 13715 | |
| 13716 | if (object_name) *object_name = IP_NULL; |
| 13717 | if (entry->is_sub_map) { |
| 13718 | basic->shared = FALSE; |
| 13719 | } else { |
| 13720 | basic->shared = entry->is_shared; |
| 13721 | } |
| 13722 | |
| 13723 | vm_map_unlock_read(map); |
| 13724 | return(KERN_SUCCESS); |
| 13725 | } |
| 13726 | case VM_REGION_EXTENDED_INFO: |
| 13727 | if (*count < VM_REGION_EXTENDED_INFO_COUNT) |
| 13728 | return(KERN_INVALID_ARGUMENT); |
| 13729 | /*fallthru*/ |
| 13730 | case VM_REGION_EXTENDED_INFO__legacy: |
| 13731 | if (*count < VM_REGION_EXTENDED_INFO_COUNT__legacy) |
| 13732 | return KERN_INVALID_ARGUMENT; |
| 13733 | |
| 13734 | { |
| 13735 | vm_region_extended_info_t extended; |
| 13736 | mach_msg_type_number_t original_count; |
| 13737 | |
| 13738 | extended = (vm_region_extended_info_t) info; |
| 13739 | |
| 13740 | vm_map_lock_read(map); |
| 13741 | |
| 13742 | start = *address; |
| 13743 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 13744 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 13745 | vm_map_unlock_read(map); |
| 13746 | return(KERN_INVALID_ADDRESS); |
| 13747 | } |
| 13748 | } else { |
| 13749 | entry = tmp_entry; |
| 13750 | } |
| 13751 | start = entry->vme_start; |
| 13752 | |
| 13753 | extended->protection = entry->protection; |
| 13754 | extended->user_tag = VME_ALIAS(entry); |
| 13755 | extended->pages_resident = 0; |
| 13756 | extended->pages_swapped_out = 0; |
| 13757 | extended->pages_shared_now_private = 0; |
| 13758 | extended->pages_dirtied = 0; |
| 13759 | extended->external_pager = 0; |
| 13760 | extended->shadow_depth = 0; |
| 13761 | |
| 13762 | original_count = *count; |
| 13763 | if (flavor == VM_REGION_EXTENDED_INFO__legacy) { |
| 13764 | *count = VM_REGION_EXTENDED_INFO_COUNT__legacy; |
| 13765 | } else { |
| 13766 | extended->pages_reusable = 0; |
| 13767 | *count = VM_REGION_EXTENDED_INFO_COUNT; |
| 13768 | } |
| 13769 | |
| 13770 | vm_map_region_walk(map, start, entry, VME_OFFSET(entry), entry->vme_end - start, extended, TRUE, *count); |
| 13771 | |
| 13772 | if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED) |
| 13773 | extended->share_mode = SM_PRIVATE; |
| 13774 | |
| 13775 | if (object_name) |
| 13776 | *object_name = IP_NULL; |
| 13777 | *address = start; |
| 13778 | *size = (entry->vme_end - start); |
| 13779 | |
| 13780 | vm_map_unlock_read(map); |
| 13781 | return(KERN_SUCCESS); |
| 13782 | } |
| 13783 | case VM_REGION_TOP_INFO: |
| 13784 | { |
| 13785 | vm_region_top_info_t top; |
| 13786 | |
| 13787 | if (*count < VM_REGION_TOP_INFO_COUNT) |
| 13788 | return(KERN_INVALID_ARGUMENT); |
| 13789 | |
| 13790 | top = (vm_region_top_info_t) info; |
| 13791 | *count = VM_REGION_TOP_INFO_COUNT; |
| 13792 | |
| 13793 | vm_map_lock_read(map); |
| 13794 | |
| 13795 | start = *address; |
| 13796 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 13797 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 13798 | vm_map_unlock_read(map); |
| 13799 | return(KERN_INVALID_ADDRESS); |
| 13800 | } |
| 13801 | } else { |
| 13802 | entry = tmp_entry; |
| 13803 | |
| 13804 | } |
| 13805 | start = entry->vme_start; |
| 13806 | |
| 13807 | top->private_pages_resident = 0; |
| 13808 | top->shared_pages_resident = 0; |
| 13809 | |
| 13810 | vm_map_region_top_walk(entry, top); |
| 13811 | |
| 13812 | if (object_name) |
| 13813 | *object_name = IP_NULL; |
| 13814 | *address = start; |
| 13815 | *size = (entry->vme_end - start); |
| 13816 | |
| 13817 | vm_map_unlock_read(map); |
| 13818 | return(KERN_SUCCESS); |
| 13819 | } |
| 13820 | default: |
| 13821 | return(KERN_INVALID_ARGUMENT); |
| 13822 | } |
| 13823 | } |
| 13824 | |
| 13825 | #define OBJ_RESIDENT_COUNT(obj, entry_size) \ |
| 13826 | MIN((entry_size), \ |
| 13827 | ((obj)->all_reusable ? \ |
| 13828 | (obj)->wired_page_count : \ |
| 13829 | (obj)->resident_page_count - (obj)->reusable_page_count)) |
| 13830 | |
| 13831 | void |
| 13832 | vm_map_region_top_walk( |
| 13833 | vm_map_entry_t entry, |
| 13834 | vm_region_top_info_t top) |
| 13835 | { |
| 13836 | |
| 13837 | if (VME_OBJECT(entry) == 0 || entry->is_sub_map) { |
| 13838 | top->share_mode = SM_EMPTY; |
| 13839 | top->ref_count = 0; |
| 13840 | top->obj_id = 0; |
| 13841 | return; |
| 13842 | } |
| 13843 | |
| 13844 | { |
| 13845 | struct vm_object *obj, *tmp_obj; |
| 13846 | int ref_count; |
| 13847 | uint32_t entry_size; |
| 13848 | |
| 13849 | entry_size = (uint32_t) ((entry->vme_end - entry->vme_start) / PAGE_SIZE_64); |
| 13850 | |
| 13851 | obj = VME_OBJECT(entry); |
| 13852 | |
| 13853 | vm_object_lock(obj); |
| 13854 | |
| 13855 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) |
| 13856 | ref_count--; |
| 13857 | |
| 13858 | assert(obj->reusable_page_count <= obj->resident_page_count); |
| 13859 | if (obj->shadow) { |
| 13860 | if (ref_count == 1) |
| 13861 | top->private_pages_resident = |
| 13862 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 13863 | else |
| 13864 | top->shared_pages_resident = |
| 13865 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 13866 | top->ref_count = ref_count; |
| 13867 | top->share_mode = SM_COW; |
| 13868 | |
| 13869 | while ((tmp_obj = obj->shadow)) { |
| 13870 | vm_object_lock(tmp_obj); |
| 13871 | vm_object_unlock(obj); |
| 13872 | obj = tmp_obj; |
| 13873 | |
| 13874 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) |
| 13875 | ref_count--; |
| 13876 | |
| 13877 | assert(obj->reusable_page_count <= obj->resident_page_count); |
| 13878 | top->shared_pages_resident += |
| 13879 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 13880 | top->ref_count += ref_count - 1; |
| 13881 | } |
| 13882 | } else { |
| 13883 | if (entry->superpage_size) { |
| 13884 | top->share_mode = SM_LARGE_PAGE; |
| 13885 | top->shared_pages_resident = 0; |
| 13886 | top->private_pages_resident = entry_size; |
| 13887 | } else if (entry->needs_copy) { |
| 13888 | top->share_mode = SM_COW; |
| 13889 | top->shared_pages_resident = |
| 13890 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 13891 | } else { |
| 13892 | if (ref_count == 1 || |
| 13893 | (ref_count == 2 && !(obj->pager_trusted) && !(obj->internal))) { |
| 13894 | top->share_mode = SM_PRIVATE; |
| 13895 | top->private_pages_resident = |
| 13896 | OBJ_RESIDENT_COUNT(obj, |
| 13897 | entry_size); |
| 13898 | } else { |
| 13899 | top->share_mode = SM_SHARED; |
| 13900 | top->shared_pages_resident = |
| 13901 | OBJ_RESIDENT_COUNT(obj, |
| 13902 | entry_size); |
| 13903 | } |
| 13904 | } |
| 13905 | top->ref_count = ref_count; |
| 13906 | } |
| 13907 | /* XXX K64: obj_id will be truncated */ |
| 13908 | top->obj_id = (unsigned int) (uintptr_t)VM_KERNEL_ADDRPERM(obj); |
| 13909 | |
| 13910 | vm_object_unlock(obj); |
| 13911 | } |
| 13912 | } |
| 13913 | |
| 13914 | void |
| 13915 | vm_map_region_walk( |
| 13916 | vm_map_t map, |
| 13917 | vm_map_offset_t va, |
| 13918 | vm_map_entry_t entry, |
| 13919 | vm_object_offset_t offset, |
| 13920 | vm_object_size_t range, |
| 13921 | vm_region_extended_info_t extended, |
| 13922 | boolean_t look_for_pages, |
| 13923 | mach_msg_type_number_t count) |
| 13924 | { |
| 13925 | struct vm_object *obj, *tmp_obj; |
| 13926 | vm_map_offset_t last_offset; |
| 13927 | int i; |
| 13928 | int ref_count; |
| 13929 | struct vm_object *shadow_object; |
| 13930 | int shadow_depth; |
| 13931 | boolean_t ; |
| 13932 | |
| 13933 | do_region_footprint = task_self_region_footprint(); |
| 13934 | |
| 13935 | if ((VME_OBJECT(entry) == 0) || |
| 13936 | (entry->is_sub_map) || |
| 13937 | (VME_OBJECT(entry)->phys_contiguous && |
| 13938 | !entry->superpage_size)) { |
| 13939 | extended->share_mode = SM_EMPTY; |
| 13940 | extended->ref_count = 0; |
| 13941 | return; |
| 13942 | } |
| 13943 | |
| 13944 | if (entry->superpage_size) { |
| 13945 | extended->shadow_depth = 0; |
| 13946 | extended->share_mode = SM_LARGE_PAGE; |
| 13947 | extended->ref_count = 1; |
| 13948 | extended->external_pager = 0; |
| 13949 | extended->pages_resident = (unsigned int)(range >> PAGE_SHIFT); |
| 13950 | extended->shadow_depth = 0; |
| 13951 | return; |
| 13952 | } |
| 13953 | |
| 13954 | obj = VME_OBJECT(entry); |
| 13955 | |
| 13956 | vm_object_lock(obj); |
| 13957 | |
| 13958 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) |
| 13959 | ref_count--; |
| 13960 | |
| 13961 | if (look_for_pages) { |
| 13962 | for (last_offset = offset + range; |
| 13963 | offset < last_offset; |
| 13964 | offset += PAGE_SIZE_64, va += PAGE_SIZE) { |
| 13965 | |
| 13966 | if (do_region_footprint) { |
| 13967 | int disp; |
| 13968 | |
| 13969 | disp = 0; |
| 13970 | if (map->has_corpse_footprint) { |
| 13971 | /* |
| 13972 | * Query the page info data we saved |
| 13973 | * while forking the corpse. |
| 13974 | */ |
| 13975 | vm_map_corpse_footprint_query_page_info( |
| 13976 | map, |
| 13977 | va, |
| 13978 | &disp); |
| 13979 | } else { |
| 13980 | /* |
| 13981 | * Query the pmap. |
| 13982 | */ |
| 13983 | pmap_query_page_info(map->pmap, |
| 13984 | va, |
| 13985 | &disp); |
| 13986 | } |
| 13987 | if (disp & PMAP_QUERY_PAGE_PRESENT) { |
| 13988 | if (!(disp & PMAP_QUERY_PAGE_ALTACCT)) { |
| 13989 | extended->pages_resident++; |
| 13990 | } |
| 13991 | if (disp & PMAP_QUERY_PAGE_REUSABLE) { |
| 13992 | extended->pages_reusable++; |
| 13993 | } else if (!(disp & PMAP_QUERY_PAGE_INTERNAL) || |
| 13994 | (disp & PMAP_QUERY_PAGE_ALTACCT)) { |
| 13995 | /* alternate accounting */ |
| 13996 | } else { |
| 13997 | extended->pages_dirtied++; |
| 13998 | } |
| 13999 | } else if (disp & PMAP_QUERY_PAGE_COMPRESSED) { |
| 14000 | if (disp & PMAP_QUERY_PAGE_COMPRESSED_ALTACCT) { |
| 14001 | /* alternate accounting */ |
| 14002 | } else { |
| 14003 | extended->pages_swapped_out++; |
| 14004 | } |
| 14005 | } |
| 14006 | /* deal with alternate accounting */ |
| 14007 | if (obj->purgable == VM_PURGABLE_NONVOLATILE && |
| 14008 | /* && not tagged as no-footprint? */ |
| 14009 | VM_OBJECT_OWNER(obj) != NULL && |
| 14010 | VM_OBJECT_OWNER(obj)->map == map) { |
| 14011 | if ((((va |
| 14012 | - entry->vme_start |
| 14013 | + VME_OFFSET(entry)) |
| 14014 | / PAGE_SIZE) < |
| 14015 | (obj->resident_page_count + |
| 14016 | vm_compressor_pager_get_count(obj->pager)))) { |
| 14017 | /* |
| 14018 | * Non-volatile purgeable object owned |
| 14019 | * by this task: report the first |
| 14020 | * "#resident + #compressed" pages as |
| 14021 | * "resident" (to show that they |
| 14022 | * contribute to the footprint) but not |
| 14023 | * "dirty" (to avoid double-counting |
| 14024 | * with the fake "non-volatile" region |
| 14025 | * we'll report at the end of the |
| 14026 | * address space to account for all |
| 14027 | * (mapped or not) non-volatile memory |
| 14028 | * owned by this task. |
| 14029 | */ |
| 14030 | extended->pages_resident++; |
| 14031 | } |
| 14032 | } else if ((obj->purgable == VM_PURGABLE_VOLATILE || |
| 14033 | obj->purgable == VM_PURGABLE_EMPTY) && |
| 14034 | /* && not tagged as no-footprint? */ |
| 14035 | VM_OBJECT_OWNER(obj) != NULL && |
| 14036 | VM_OBJECT_OWNER(obj)->map == map) { |
| 14037 | if ((((va |
| 14038 | - entry->vme_start |
| 14039 | + VME_OFFSET(entry)) |
| 14040 | / PAGE_SIZE) < |
| 14041 | obj->wired_page_count)) { |
| 14042 | /* |
| 14043 | * Volatile|empty purgeable object owned |
| 14044 | * by this task: report the first |
| 14045 | * "#wired" pages as "resident" (to |
| 14046 | * show that they contribute to the |
| 14047 | * footprint) but not "dirty" (to avoid |
| 14048 | * double-counting with the fake |
| 14049 | * "non-volatile" region we'll report |
| 14050 | * at the end of the address space to |
| 14051 | * account for all (mapped or not) |
| 14052 | * non-volatile memory owned by this |
| 14053 | * task. |
| 14054 | */ |
| 14055 | extended->pages_resident++; |
| 14056 | } |
| 14057 | } else if (obj->purgable != VM_PURGABLE_DENY) { |
| 14058 | /* |
| 14059 | * Pages from purgeable objects |
| 14060 | * will be reported as dirty |
| 14061 | * appropriately in an extra |
| 14062 | * fake memory region at the end of |
| 14063 | * the address space. |
| 14064 | */ |
| 14065 | } else if (entry->iokit_acct) { |
| 14066 | /* |
| 14067 | * IOKit mappings are considered |
| 14068 | * as fully dirty for footprint's |
| 14069 | * sake. |
| 14070 | */ |
| 14071 | extended->pages_dirtied++; |
| 14072 | } |
| 14073 | continue; |
| 14074 | } |
| 14075 | |
| 14076 | vm_map_region_look_for_page(map, va, obj, |
| 14077 | offset, ref_count, |
| 14078 | 0, extended, count); |
| 14079 | } |
| 14080 | |
| 14081 | if (do_region_footprint) { |
| 14082 | goto collect_object_info; |
| 14083 | } |
| 14084 | |
| 14085 | } else { |
| 14086 | collect_object_info: |
| 14087 | shadow_object = obj->shadow; |
| 14088 | shadow_depth = 0; |
| 14089 | |
| 14090 | if ( !(obj->pager_trusted) && !(obj->internal)) |
| 14091 | extended->external_pager = 1; |
| 14092 | |
| 14093 | if (shadow_object != VM_OBJECT_NULL) { |
| 14094 | vm_object_lock(shadow_object); |
| 14095 | for (; |
| 14096 | shadow_object != VM_OBJECT_NULL; |
| 14097 | shadow_depth++) { |
| 14098 | vm_object_t next_shadow; |
| 14099 | |
| 14100 | if ( !(shadow_object->pager_trusted) && |
| 14101 | !(shadow_object->internal)) |
| 14102 | extended->external_pager = 1; |
| 14103 | |
| 14104 | next_shadow = shadow_object->shadow; |
| 14105 | if (next_shadow) { |
| 14106 | vm_object_lock(next_shadow); |
| 14107 | } |
| 14108 | vm_object_unlock(shadow_object); |
| 14109 | shadow_object = next_shadow; |
| 14110 | } |
| 14111 | } |
| 14112 | extended->shadow_depth = shadow_depth; |
| 14113 | } |
| 14114 | |
| 14115 | if (extended->shadow_depth || entry->needs_copy) |
| 14116 | extended->share_mode = SM_COW; |
| 14117 | else { |
| 14118 | if (ref_count == 1) |
| 14119 | extended->share_mode = SM_PRIVATE; |
| 14120 | else { |
| 14121 | if (obj->true_share) |
| 14122 | extended->share_mode = SM_TRUESHARED; |
| 14123 | else |
| 14124 | extended->share_mode = SM_SHARED; |
| 14125 | } |
| 14126 | } |
| 14127 | extended->ref_count = ref_count - extended->shadow_depth; |
| 14128 | |
| 14129 | for (i = 0; i < extended->shadow_depth; i++) { |
| 14130 | if ((tmp_obj = obj->shadow) == 0) |
| 14131 | break; |
| 14132 | vm_object_lock(tmp_obj); |
| 14133 | vm_object_unlock(obj); |
| 14134 | |
| 14135 | if ((ref_count = tmp_obj->ref_count) > 1 && tmp_obj->paging_in_progress) |
| 14136 | ref_count--; |
| 14137 | |
| 14138 | extended->ref_count += ref_count; |
| 14139 | obj = tmp_obj; |
| 14140 | } |
| 14141 | vm_object_unlock(obj); |
| 14142 | |
| 14143 | if (extended->share_mode == SM_SHARED) { |
| 14144 | vm_map_entry_t cur; |
| 14145 | vm_map_entry_t last; |
| 14146 | int my_refs; |
| 14147 | |
| 14148 | obj = VME_OBJECT(entry); |
| 14149 | last = vm_map_to_entry(map); |
| 14150 | my_refs = 0; |
| 14151 | |
| 14152 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) |
| 14153 | ref_count--; |
| 14154 | for (cur = vm_map_first_entry(map); cur != last; cur = cur->vme_next) |
| 14155 | my_refs += vm_map_region_count_obj_refs(cur, obj); |
| 14156 | |
| 14157 | if (my_refs == ref_count) |
| 14158 | extended->share_mode = SM_PRIVATE_ALIASED; |
| 14159 | else if (my_refs > 1) |
| 14160 | extended->share_mode = SM_SHARED_ALIASED; |
| 14161 | } |
| 14162 | } |
| 14163 | |
| 14164 | |
| 14165 | /* object is locked on entry and locked on return */ |
| 14166 | |
| 14167 | |
| 14168 | static void |
| 14169 | vm_map_region_look_for_page( |
| 14170 | __unused vm_map_t map, |
| 14171 | __unused vm_map_offset_t va, |
| 14172 | vm_object_t object, |
| 14173 | vm_object_offset_t offset, |
| 14174 | int max_refcnt, |
| 14175 | int depth, |
| 14176 | vm_region_extended_info_t extended, |
| 14177 | mach_msg_type_number_t count) |
| 14178 | { |
| 14179 | vm_page_t p; |
| 14180 | vm_object_t shadow; |
| 14181 | int ref_count; |
| 14182 | vm_object_t caller_object; |
| 14183 | |
| 14184 | shadow = object->shadow; |
| 14185 | caller_object = object; |
| 14186 | |
| 14187 | |
| 14188 | while (TRUE) { |
| 14189 | |
| 14190 | if ( !(object->pager_trusted) && !(object->internal)) |
| 14191 | extended->external_pager = 1; |
| 14192 | |
| 14193 | if ((p = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 14194 | if (shadow && (max_refcnt == 1)) |
| 14195 | extended->pages_shared_now_private++; |
| 14196 | |
| 14197 | if (!p->vmp_fictitious && |
| 14198 | (p->vmp_dirty || pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) |
| 14199 | extended->pages_dirtied++; |
| 14200 | else if (count >= VM_REGION_EXTENDED_INFO_COUNT) { |
| 14201 | if (p->vmp_reusable || object->all_reusable) { |
| 14202 | extended->pages_reusable++; |
| 14203 | } |
| 14204 | } |
| 14205 | |
| 14206 | extended->pages_resident++; |
| 14207 | |
| 14208 | if(object != caller_object) |
| 14209 | vm_object_unlock(object); |
| 14210 | |
| 14211 | return; |
| 14212 | } |
| 14213 | if (object->internal && |
| 14214 | object->alive && |
| 14215 | !object->terminating && |
| 14216 | object->pager_ready) { |
| 14217 | |
| 14218 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) |
| 14219 | == VM_EXTERNAL_STATE_EXISTS) { |
| 14220 | /* the pager has that page */ |
| 14221 | extended->pages_swapped_out++; |
| 14222 | if (object != caller_object) |
| 14223 | vm_object_unlock(object); |
| 14224 | return; |
| 14225 | } |
| 14226 | } |
| 14227 | |
| 14228 | if (shadow) { |
| 14229 | vm_object_lock(shadow); |
| 14230 | |
| 14231 | if ((ref_count = shadow->ref_count) > 1 && shadow->paging_in_progress) |
| 14232 | ref_count--; |
| 14233 | |
| 14234 | if (++depth > extended->shadow_depth) |
| 14235 | extended->shadow_depth = depth; |
| 14236 | |
| 14237 | if (ref_count > max_refcnt) |
| 14238 | max_refcnt = ref_count; |
| 14239 | |
| 14240 | if(object != caller_object) |
| 14241 | vm_object_unlock(object); |
| 14242 | |
| 14243 | offset = offset + object->vo_shadow_offset; |
| 14244 | object = shadow; |
| 14245 | shadow = object->shadow; |
| 14246 | continue; |
| 14247 | } |
| 14248 | if(object != caller_object) |
| 14249 | vm_object_unlock(object); |
| 14250 | break; |
| 14251 | } |
| 14252 | } |
| 14253 | |
| 14254 | static int |
| 14255 | vm_map_region_count_obj_refs( |
| 14256 | vm_map_entry_t entry, |
| 14257 | vm_object_t object) |
| 14258 | { |
| 14259 | int ref_count; |
| 14260 | vm_object_t chk_obj; |
| 14261 | vm_object_t tmp_obj; |
| 14262 | |
| 14263 | if (VME_OBJECT(entry) == 0) |
| 14264 | return(0); |
| 14265 | |
| 14266 | if (entry->is_sub_map) |
| 14267 | return(0); |
| 14268 | else { |
| 14269 | ref_count = 0; |
| 14270 | |
| 14271 | chk_obj = VME_OBJECT(entry); |
| 14272 | vm_object_lock(chk_obj); |
| 14273 | |
| 14274 | while (chk_obj) { |
| 14275 | if (chk_obj == object) |
| 14276 | ref_count++; |
| 14277 | tmp_obj = chk_obj->shadow; |
| 14278 | if (tmp_obj) |
| 14279 | vm_object_lock(tmp_obj); |
| 14280 | vm_object_unlock(chk_obj); |
| 14281 | |
| 14282 | chk_obj = tmp_obj; |
| 14283 | } |
| 14284 | } |
| 14285 | return(ref_count); |
| 14286 | } |
| 14287 | |
| 14288 | |
| 14289 | /* |
| 14290 | * Routine: vm_map_simplify |
| 14291 | * |
| 14292 | * Description: |
| 14293 | * Attempt to simplify the map representation in |
| 14294 | * the vicinity of the given starting address. |
| 14295 | * Note: |
| 14296 | * This routine is intended primarily to keep the |
| 14297 | * kernel maps more compact -- they generally don't |
| 14298 | * benefit from the "expand a map entry" technology |
| 14299 | * at allocation time because the adjacent entry |
| 14300 | * is often wired down. |
| 14301 | */ |
| 14302 | void |
| 14303 | vm_map_simplify_entry( |
| 14304 | vm_map_t map, |
| 14305 | vm_map_entry_t this_entry) |
| 14306 | { |
| 14307 | vm_map_entry_t prev_entry; |
| 14308 | |
| 14309 | counter(c_vm_map_simplify_entry_called++); |
| 14310 | |
| 14311 | prev_entry = this_entry->vme_prev; |
| 14312 | |
| 14313 | if ((this_entry != vm_map_to_entry(map)) && |
| 14314 | (prev_entry != vm_map_to_entry(map)) && |
| 14315 | |
| 14316 | (prev_entry->vme_end == this_entry->vme_start) && |
| 14317 | |
| 14318 | (prev_entry->is_sub_map == this_entry->is_sub_map) && |
| 14319 | (VME_OBJECT(prev_entry) == VME_OBJECT(this_entry)) && |
| 14320 | ((VME_OFFSET(prev_entry) + (prev_entry->vme_end - |
| 14321 | prev_entry->vme_start)) |
| 14322 | == VME_OFFSET(this_entry)) && |
| 14323 | |
| 14324 | (prev_entry->behavior == this_entry->behavior) && |
| 14325 | (prev_entry->needs_copy == this_entry->needs_copy) && |
| 14326 | (prev_entry->protection == this_entry->protection) && |
| 14327 | (prev_entry->max_protection == this_entry->max_protection) && |
| 14328 | (prev_entry->inheritance == this_entry->inheritance) && |
| 14329 | (prev_entry->use_pmap == this_entry->use_pmap) && |
| 14330 | (VME_ALIAS(prev_entry) == VME_ALIAS(this_entry)) && |
| 14331 | (prev_entry->no_cache == this_entry->no_cache) && |
| 14332 | (prev_entry->permanent == this_entry->permanent) && |
| 14333 | (prev_entry->map_aligned == this_entry->map_aligned) && |
| 14334 | (prev_entry->zero_wired_pages == this_entry->zero_wired_pages) && |
| 14335 | (prev_entry->used_for_jit == this_entry->used_for_jit) && |
| 14336 | (prev_entry->pmap_cs_associated == this_entry->pmap_cs_associated) && |
| 14337 | /* from_reserved_zone: OK if that field doesn't match */ |
| 14338 | (prev_entry->iokit_acct == this_entry->iokit_acct) && |
| 14339 | (prev_entry->vme_resilient_codesign == |
| 14340 | this_entry->vme_resilient_codesign) && |
| 14341 | (prev_entry->vme_resilient_media == |
| 14342 | this_entry->vme_resilient_media) && |
| 14343 | |
| 14344 | (prev_entry->wired_count == this_entry->wired_count) && |
| 14345 | (prev_entry->user_wired_count == this_entry->user_wired_count) && |
| 14346 | |
| 14347 | ((prev_entry->vme_atomic == FALSE) && (this_entry->vme_atomic == FALSE)) && |
| 14348 | (prev_entry->in_transition == FALSE) && |
| 14349 | (this_entry->in_transition == FALSE) && |
| 14350 | (prev_entry->needs_wakeup == FALSE) && |
| 14351 | (this_entry->needs_wakeup == FALSE) && |
| 14352 | (prev_entry->is_shared == FALSE) && |
| 14353 | (this_entry->is_shared == FALSE) && |
| 14354 | (prev_entry->superpage_size == FALSE) && |
| 14355 | (this_entry->superpage_size == FALSE) |
| 14356 | ) { |
| 14357 | vm_map_store_entry_unlink(map, prev_entry); |
| 14358 | assert(prev_entry->vme_start < this_entry->vme_end); |
| 14359 | if (prev_entry->map_aligned) |
| 14360 | assert(VM_MAP_PAGE_ALIGNED(prev_entry->vme_start, |
| 14361 | VM_MAP_PAGE_MASK(map))); |
| 14362 | this_entry->vme_start = prev_entry->vme_start; |
| 14363 | VME_OFFSET_SET(this_entry, VME_OFFSET(prev_entry)); |
| 14364 | |
| 14365 | if (map->holelistenabled) { |
| 14366 | vm_map_store_update_first_free(map, this_entry, TRUE); |
| 14367 | } |
| 14368 | |
| 14369 | if (prev_entry->is_sub_map) { |
| 14370 | vm_map_deallocate(VME_SUBMAP(prev_entry)); |
| 14371 | } else { |
| 14372 | vm_object_deallocate(VME_OBJECT(prev_entry)); |
| 14373 | } |
| 14374 | vm_map_entry_dispose(map, prev_entry); |
| 14375 | SAVE_HINT_MAP_WRITE(map, this_entry); |
| 14376 | counter(c_vm_map_simplified++); |
| 14377 | } |
| 14378 | } |
| 14379 | |
| 14380 | void |
| 14381 | vm_map_simplify( |
| 14382 | vm_map_t map, |
| 14383 | vm_map_offset_t start) |
| 14384 | { |
| 14385 | vm_map_entry_t this_entry; |
| 14386 | |
| 14387 | vm_map_lock(map); |
| 14388 | if (vm_map_lookup_entry(map, start, &this_entry)) { |
| 14389 | vm_map_simplify_entry(map, this_entry); |
| 14390 | vm_map_simplify_entry(map, this_entry->vme_next); |
| 14391 | } |
| 14392 | counter(c_vm_map_simplify_called++); |
| 14393 | vm_map_unlock(map); |
| 14394 | } |
| 14395 | |
| 14396 | static void |
| 14397 | vm_map_simplify_range( |
| 14398 | vm_map_t map, |
| 14399 | vm_map_offset_t start, |
| 14400 | vm_map_offset_t end) |
| 14401 | { |
| 14402 | vm_map_entry_t entry; |
| 14403 | |
| 14404 | /* |
| 14405 | * The map should be locked (for "write") by the caller. |
| 14406 | */ |
| 14407 | |
| 14408 | if (start >= end) { |
| 14409 | /* invalid address range */ |
| 14410 | return; |
| 14411 | } |
| 14412 | |
| 14413 | start = vm_map_trunc_page(start, |
| 14414 | VM_MAP_PAGE_MASK(map)); |
| 14415 | end = vm_map_round_page(end, |
| 14416 | VM_MAP_PAGE_MASK(map)); |
| 14417 | |
| 14418 | if (!vm_map_lookup_entry(map, start, &entry)) { |
| 14419 | /* "start" is not mapped and "entry" ends before "start" */ |
| 14420 | if (entry == vm_map_to_entry(map)) { |
| 14421 | /* start with first entry in the map */ |
| 14422 | entry = vm_map_first_entry(map); |
| 14423 | } else { |
| 14424 | /* start with next entry */ |
| 14425 | entry = entry->vme_next; |
| 14426 | } |
| 14427 | } |
| 14428 | |
| 14429 | while (entry != vm_map_to_entry(map) && |
| 14430 | entry->vme_start <= end) { |
| 14431 | /* try and coalesce "entry" with its previous entry */ |
| 14432 | vm_map_simplify_entry(map, entry); |
| 14433 | entry = entry->vme_next; |
| 14434 | } |
| 14435 | } |
| 14436 | |
| 14437 | |
| 14438 | /* |
| 14439 | * Routine: vm_map_machine_attribute |
| 14440 | * Purpose: |
| 14441 | * Provide machine-specific attributes to mappings, |
| 14442 | * such as cachability etc. for machines that provide |
| 14443 | * them. NUMA architectures and machines with big/strange |
| 14444 | * caches will use this. |
| 14445 | * Note: |
| 14446 | * Responsibilities for locking and checking are handled here, |
| 14447 | * everything else in the pmap module. If any non-volatile |
| 14448 | * information must be kept, the pmap module should handle |
| 14449 | * it itself. [This assumes that attributes do not |
| 14450 | * need to be inherited, which seems ok to me] |
| 14451 | */ |
| 14452 | kern_return_t |
| 14453 | vm_map_machine_attribute( |
| 14454 | vm_map_t map, |
| 14455 | vm_map_offset_t start, |
| 14456 | vm_map_offset_t end, |
| 14457 | vm_machine_attribute_t attribute, |
| 14458 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 14459 | { |
| 14460 | kern_return_t ret; |
| 14461 | vm_map_size_t sync_size; |
| 14462 | vm_map_entry_t entry; |
| 14463 | |
| 14464 | if (start < vm_map_min(map) || end > vm_map_max(map)) |
| 14465 | return KERN_INVALID_ADDRESS; |
| 14466 | |
| 14467 | /* Figure how much memory we need to flush (in page increments) */ |
| 14468 | sync_size = end - start; |
| 14469 | |
| 14470 | vm_map_lock(map); |
| 14471 | |
| 14472 | if (attribute != MATTR_CACHE) { |
| 14473 | /* If we don't have to find physical addresses, we */ |
| 14474 | /* don't have to do an explicit traversal here. */ |
| 14475 | ret = pmap_attribute(map->pmap, start, end-start, |
| 14476 | attribute, value); |
| 14477 | vm_map_unlock(map); |
| 14478 | return ret; |
| 14479 | } |
| 14480 | |
| 14481 | ret = KERN_SUCCESS; /* Assume it all worked */ |
| 14482 | |
| 14483 | while(sync_size) { |
| 14484 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 14485 | vm_map_size_t sub_size; |
| 14486 | if((entry->vme_end - start) > sync_size) { |
| 14487 | sub_size = sync_size; |
| 14488 | sync_size = 0; |
| 14489 | } else { |
| 14490 | sub_size = entry->vme_end - start; |
| 14491 | sync_size -= sub_size; |
| 14492 | } |
| 14493 | if(entry->is_sub_map) { |
| 14494 | vm_map_offset_t sub_start; |
| 14495 | vm_map_offset_t sub_end; |
| 14496 | |
| 14497 | sub_start = (start - entry->vme_start) |
| 14498 | + VME_OFFSET(entry); |
| 14499 | sub_end = sub_start + sub_size; |
| 14500 | vm_map_machine_attribute( |
| 14501 | VME_SUBMAP(entry), |
| 14502 | sub_start, |
| 14503 | sub_end, |
| 14504 | attribute, value); |
| 14505 | } else { |
| 14506 | if (VME_OBJECT(entry)) { |
| 14507 | vm_page_t m; |
| 14508 | vm_object_t object; |
| 14509 | vm_object_t base_object; |
| 14510 | vm_object_t last_object; |
| 14511 | vm_object_offset_t offset; |
| 14512 | vm_object_offset_t base_offset; |
| 14513 | vm_map_size_t range; |
| 14514 | range = sub_size; |
| 14515 | offset = (start - entry->vme_start) |
| 14516 | + VME_OFFSET(entry); |
| 14517 | base_offset = offset; |
| 14518 | object = VME_OBJECT(entry); |
| 14519 | base_object = object; |
| 14520 | last_object = NULL; |
| 14521 | |
| 14522 | vm_object_lock(object); |
| 14523 | |
| 14524 | while (range) { |
| 14525 | m = vm_page_lookup( |
| 14526 | object, offset); |
| 14527 | |
| 14528 | if (m && !m->vmp_fictitious) { |
| 14529 | ret = |
| 14530 | pmap_attribute_cache_sync( |
| 14531 | VM_PAGE_GET_PHYS_PAGE(m), |
| 14532 | PAGE_SIZE, |
| 14533 | attribute, value); |
| 14534 | |
| 14535 | } else if (object->shadow) { |
| 14536 | offset = offset + object->vo_shadow_offset; |
| 14537 | last_object = object; |
| 14538 | object = object->shadow; |
| 14539 | vm_object_lock(last_object->shadow); |
| 14540 | vm_object_unlock(last_object); |
| 14541 | continue; |
| 14542 | } |
| 14543 | range -= PAGE_SIZE; |
| 14544 | |
| 14545 | if (base_object != object) { |
| 14546 | vm_object_unlock(object); |
| 14547 | vm_object_lock(base_object); |
| 14548 | object = base_object; |
| 14549 | } |
| 14550 | /* Bump to the next page */ |
| 14551 | base_offset += PAGE_SIZE; |
| 14552 | offset = base_offset; |
| 14553 | } |
| 14554 | vm_object_unlock(object); |
| 14555 | } |
| 14556 | } |
| 14557 | start += sub_size; |
| 14558 | } else { |
| 14559 | vm_map_unlock(map); |
| 14560 | return KERN_FAILURE; |
| 14561 | } |
| 14562 | |
| 14563 | } |
| 14564 | |
| 14565 | vm_map_unlock(map); |
| 14566 | |
| 14567 | return ret; |
| 14568 | } |
| 14569 | |
| 14570 | /* |
| 14571 | * vm_map_behavior_set: |
| 14572 | * |
| 14573 | * Sets the paging reference behavior of the specified address |
| 14574 | * range in the target map. Paging reference behavior affects |
| 14575 | * how pagein operations resulting from faults on the map will be |
| 14576 | * clustered. |
| 14577 | */ |
| 14578 | kern_return_t |
| 14579 | vm_map_behavior_set( |
| 14580 | vm_map_t map, |
| 14581 | vm_map_offset_t start, |
| 14582 | vm_map_offset_t end, |
| 14583 | vm_behavior_t new_behavior) |
| 14584 | { |
| 14585 | vm_map_entry_t entry; |
| 14586 | vm_map_entry_t temp_entry; |
| 14587 | |
| 14588 | XPR(XPR_VM_MAP, |
| 14589 | "vm_map_behavior_set, 0x%X start 0x%X end 0x%X behavior %d" , |
| 14590 | map, start, end, new_behavior, 0); |
| 14591 | |
| 14592 | if (start > end || |
| 14593 | start < vm_map_min(map) || |
| 14594 | end > vm_map_max(map)) { |
| 14595 | return KERN_NO_SPACE; |
| 14596 | } |
| 14597 | |
| 14598 | switch (new_behavior) { |
| 14599 | |
| 14600 | /* |
| 14601 | * This first block of behaviors all set a persistent state on the specified |
| 14602 | * memory range. All we have to do here is to record the desired behavior |
| 14603 | * in the vm_map_entry_t's. |
| 14604 | */ |
| 14605 | |
| 14606 | case VM_BEHAVIOR_DEFAULT: |
| 14607 | case VM_BEHAVIOR_RANDOM: |
| 14608 | case VM_BEHAVIOR_SEQUENTIAL: |
| 14609 | case VM_BEHAVIOR_RSEQNTL: |
| 14610 | case VM_BEHAVIOR_ZERO_WIRED_PAGES: |
| 14611 | vm_map_lock(map); |
| 14612 | |
| 14613 | /* |
| 14614 | * The entire address range must be valid for the map. |
| 14615 | * Note that vm_map_range_check() does a |
| 14616 | * vm_map_lookup_entry() internally and returns the |
| 14617 | * entry containing the start of the address range if |
| 14618 | * the entire range is valid. |
| 14619 | */ |
| 14620 | if (vm_map_range_check(map, start, end, &temp_entry)) { |
| 14621 | entry = temp_entry; |
| 14622 | vm_map_clip_start(map, entry, start); |
| 14623 | } |
| 14624 | else { |
| 14625 | vm_map_unlock(map); |
| 14626 | return(KERN_INVALID_ADDRESS); |
| 14627 | } |
| 14628 | |
| 14629 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 14630 | vm_map_clip_end(map, entry, end); |
| 14631 | if (entry->is_sub_map) { |
| 14632 | assert(!entry->use_pmap); |
| 14633 | } |
| 14634 | |
| 14635 | if( new_behavior == VM_BEHAVIOR_ZERO_WIRED_PAGES ) { |
| 14636 | entry->zero_wired_pages = TRUE; |
| 14637 | } else { |
| 14638 | entry->behavior = new_behavior; |
| 14639 | } |
| 14640 | entry = entry->vme_next; |
| 14641 | } |
| 14642 | |
| 14643 | vm_map_unlock(map); |
| 14644 | break; |
| 14645 | |
| 14646 | /* |
| 14647 | * The rest of these are different from the above in that they cause |
| 14648 | * an immediate action to take place as opposed to setting a behavior that |
| 14649 | * affects future actions. |
| 14650 | */ |
| 14651 | |
| 14652 | case VM_BEHAVIOR_WILLNEED: |
| 14653 | return vm_map_willneed(map, start, end); |
| 14654 | |
| 14655 | case VM_BEHAVIOR_DONTNEED: |
| 14656 | return vm_map_msync(map, start, end - start, VM_SYNC_DEACTIVATE | VM_SYNC_CONTIGUOUS); |
| 14657 | |
| 14658 | case VM_BEHAVIOR_FREE: |
| 14659 | return vm_map_msync(map, start, end - start, VM_SYNC_KILLPAGES | VM_SYNC_CONTIGUOUS); |
| 14660 | |
| 14661 | case VM_BEHAVIOR_REUSABLE: |
| 14662 | return vm_map_reusable_pages(map, start, end); |
| 14663 | |
| 14664 | case VM_BEHAVIOR_REUSE: |
| 14665 | return vm_map_reuse_pages(map, start, end); |
| 14666 | |
| 14667 | case VM_BEHAVIOR_CAN_REUSE: |
| 14668 | return vm_map_can_reuse(map, start, end); |
| 14669 | |
| 14670 | #if MACH_ASSERT |
| 14671 | case VM_BEHAVIOR_PAGEOUT: |
| 14672 | return vm_map_pageout(map, start, end); |
| 14673 | #endif /* MACH_ASSERT */ |
| 14674 | |
| 14675 | default: |
| 14676 | return(KERN_INVALID_ARGUMENT); |
| 14677 | } |
| 14678 | |
| 14679 | return(KERN_SUCCESS); |
| 14680 | } |
| 14681 | |
| 14682 | |
| 14683 | /* |
| 14684 | * Internals for madvise(MADV_WILLNEED) system call. |
| 14685 | * |
| 14686 | * The present implementation is to do a read-ahead if the mapping corresponds |
| 14687 | * to a mapped regular file. If it's an anonymous mapping, then we do nothing |
| 14688 | * and basically ignore the "advice" (which we are always free to do). |
| 14689 | */ |
| 14690 | |
| 14691 | |
| 14692 | static kern_return_t |
| 14693 | vm_map_willneed( |
| 14694 | vm_map_t map, |
| 14695 | vm_map_offset_t start, |
| 14696 | vm_map_offset_t end |
| 14697 | ) |
| 14698 | { |
| 14699 | vm_map_entry_t entry; |
| 14700 | vm_object_t object; |
| 14701 | memory_object_t ; |
| 14702 | struct vm_object_fault_info fault_info = {}; |
| 14703 | kern_return_t kr; |
| 14704 | vm_object_size_t len; |
| 14705 | vm_object_offset_t offset; |
| 14706 | |
| 14707 | fault_info.interruptible = THREAD_UNINT; /* ignored value */ |
| 14708 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 14709 | fault_info.stealth = TRUE; |
| 14710 | |
| 14711 | /* |
| 14712 | * The MADV_WILLNEED operation doesn't require any changes to the |
| 14713 | * vm_map_entry_t's, so the read lock is sufficient. |
| 14714 | */ |
| 14715 | |
| 14716 | vm_map_lock_read(map); |
| 14717 | |
| 14718 | /* |
| 14719 | * The madvise semantics require that the address range be fully |
| 14720 | * allocated with no holes. Otherwise, we're required to return |
| 14721 | * an error. |
| 14722 | */ |
| 14723 | |
| 14724 | if (! vm_map_range_check(map, start, end, &entry)) { |
| 14725 | vm_map_unlock_read(map); |
| 14726 | return KERN_INVALID_ADDRESS; |
| 14727 | } |
| 14728 | |
| 14729 | /* |
| 14730 | * Examine each vm_map_entry_t in the range. |
| 14731 | */ |
| 14732 | for (; entry != vm_map_to_entry(map) && start < end; ) { |
| 14733 | |
| 14734 | /* |
| 14735 | * The first time through, the start address could be anywhere |
| 14736 | * within the vm_map_entry we found. So adjust the offset to |
| 14737 | * correspond. After that, the offset will always be zero to |
| 14738 | * correspond to the beginning of the current vm_map_entry. |
| 14739 | */ |
| 14740 | offset = (start - entry->vme_start) + VME_OFFSET(entry); |
| 14741 | |
| 14742 | /* |
| 14743 | * Set the length so we don't go beyond the end of the |
| 14744 | * map_entry or beyond the end of the range we were given. |
| 14745 | * This range could span also multiple map entries all of which |
| 14746 | * map different files, so make sure we only do the right amount |
| 14747 | * of I/O for each object. Note that it's possible for there |
| 14748 | * to be multiple map entries all referring to the same object |
| 14749 | * but with different page permissions, but it's not worth |
| 14750 | * trying to optimize that case. |
| 14751 | */ |
| 14752 | len = MIN(entry->vme_end - start, end - start); |
| 14753 | |
| 14754 | if ((vm_size_t) len != len) { |
| 14755 | /* 32-bit overflow */ |
| 14756 | len = (vm_size_t) (0 - PAGE_SIZE); |
| 14757 | } |
| 14758 | fault_info.cluster_size = (vm_size_t) len; |
| 14759 | fault_info.lo_offset = offset; |
| 14760 | fault_info.hi_offset = offset + len; |
| 14761 | fault_info.user_tag = VME_ALIAS(entry); |
| 14762 | fault_info.pmap_options = 0; |
| 14763 | if (entry->iokit_acct || |
| 14764 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 14765 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 14766 | } |
| 14767 | |
| 14768 | /* |
| 14769 | * If there's no read permission to this mapping, then just |
| 14770 | * skip it. |
| 14771 | */ |
| 14772 | if ((entry->protection & VM_PROT_READ) == 0) { |
| 14773 | entry = entry->vme_next; |
| 14774 | start = entry->vme_start; |
| 14775 | continue; |
| 14776 | } |
| 14777 | |
| 14778 | /* |
| 14779 | * Find the file object backing this map entry. If there is |
| 14780 | * none, then we simply ignore the "will need" advice for this |
| 14781 | * entry and go on to the next one. |
| 14782 | */ |
| 14783 | if ((object = find_vnode_object(entry)) == VM_OBJECT_NULL) { |
| 14784 | entry = entry->vme_next; |
| 14785 | start = entry->vme_start; |
| 14786 | continue; |
| 14787 | } |
| 14788 | |
| 14789 | /* |
| 14790 | * The data_request() could take a long time, so let's |
| 14791 | * release the map lock to avoid blocking other threads. |
| 14792 | */ |
| 14793 | vm_map_unlock_read(map); |
| 14794 | |
| 14795 | vm_object_paging_begin(object); |
| 14796 | pager = object->pager; |
| 14797 | vm_object_unlock(object); |
| 14798 | |
| 14799 | /* |
| 14800 | * Get the data from the object asynchronously. |
| 14801 | * |
| 14802 | * Note that memory_object_data_request() places limits on the |
| 14803 | * amount of I/O it will do. Regardless of the len we |
| 14804 | * specified, it won't do more than MAX_UPL_TRANSFER_BYTES and it |
| 14805 | * silently truncates the len to that size. This isn't |
| 14806 | * necessarily bad since madvise shouldn't really be used to |
| 14807 | * page in unlimited amounts of data. Other Unix variants |
| 14808 | * limit the willneed case as well. If this turns out to be an |
| 14809 | * issue for developers, then we can always adjust the policy |
| 14810 | * here and still be backwards compatible since this is all |
| 14811 | * just "advice". |
| 14812 | */ |
| 14813 | kr = memory_object_data_request( |
| 14814 | pager, |
| 14815 | offset + object->paging_offset, |
| 14816 | 0, /* ignored */ |
| 14817 | VM_PROT_READ, |
| 14818 | (memory_object_fault_info_t)&fault_info); |
| 14819 | |
| 14820 | vm_object_lock(object); |
| 14821 | vm_object_paging_end(object); |
| 14822 | vm_object_unlock(object); |
| 14823 | |
| 14824 | /* |
| 14825 | * If we couldn't do the I/O for some reason, just give up on |
| 14826 | * the madvise. We still return success to the user since |
| 14827 | * madvise isn't supposed to fail when the advice can't be |
| 14828 | * taken. |
| 14829 | */ |
| 14830 | if (kr != KERN_SUCCESS) { |
| 14831 | return KERN_SUCCESS; |
| 14832 | } |
| 14833 | |
| 14834 | start += len; |
| 14835 | if (start >= end) { |
| 14836 | /* done */ |
| 14837 | return KERN_SUCCESS; |
| 14838 | } |
| 14839 | |
| 14840 | /* look up next entry */ |
| 14841 | vm_map_lock_read(map); |
| 14842 | if (! vm_map_lookup_entry(map, start, &entry)) { |
| 14843 | /* |
| 14844 | * There's a new hole in the address range. |
| 14845 | */ |
| 14846 | vm_map_unlock_read(map); |
| 14847 | return KERN_INVALID_ADDRESS; |
| 14848 | } |
| 14849 | } |
| 14850 | |
| 14851 | vm_map_unlock_read(map); |
| 14852 | return KERN_SUCCESS; |
| 14853 | } |
| 14854 | |
| 14855 | static boolean_t |
| 14856 | vm_map_entry_is_reusable( |
| 14857 | vm_map_entry_t entry) |
| 14858 | { |
| 14859 | /* Only user map entries */ |
| 14860 | |
| 14861 | vm_object_t object; |
| 14862 | |
| 14863 | if (entry->is_sub_map) { |
| 14864 | return FALSE; |
| 14865 | } |
| 14866 | |
| 14867 | switch (VME_ALIAS(entry)) { |
| 14868 | case VM_MEMORY_MALLOC: |
| 14869 | case VM_MEMORY_MALLOC_SMALL: |
| 14870 | case VM_MEMORY_MALLOC_LARGE: |
| 14871 | case VM_MEMORY_REALLOC: |
| 14872 | case VM_MEMORY_MALLOC_TINY: |
| 14873 | case VM_MEMORY_MALLOC_LARGE_REUSABLE: |
| 14874 | case VM_MEMORY_MALLOC_LARGE_REUSED: |
| 14875 | /* |
| 14876 | * This is a malloc() memory region: check if it's still |
| 14877 | * in its original state and can be re-used for more |
| 14878 | * malloc() allocations. |
| 14879 | */ |
| 14880 | break; |
| 14881 | default: |
| 14882 | /* |
| 14883 | * Not a malloc() memory region: let the caller decide if |
| 14884 | * it's re-usable. |
| 14885 | */ |
| 14886 | return TRUE; |
| 14887 | } |
| 14888 | |
| 14889 | if (/*entry->is_shared ||*/ |
| 14890 | entry->is_sub_map || |
| 14891 | entry->in_transition || |
| 14892 | entry->protection != VM_PROT_DEFAULT || |
| 14893 | entry->max_protection != VM_PROT_ALL || |
| 14894 | entry->inheritance != VM_INHERIT_DEFAULT || |
| 14895 | entry->no_cache || |
| 14896 | entry->permanent || |
| 14897 | entry->superpage_size != FALSE || |
| 14898 | entry->zero_wired_pages || |
| 14899 | entry->wired_count != 0 || |
| 14900 | entry->user_wired_count != 0) { |
| 14901 | return FALSE; |
| 14902 | } |
| 14903 | |
| 14904 | object = VME_OBJECT(entry); |
| 14905 | if (object == VM_OBJECT_NULL) { |
| 14906 | return TRUE; |
| 14907 | } |
| 14908 | if ( |
| 14909 | #if 0 |
| 14910 | /* |
| 14911 | * Let's proceed even if the VM object is potentially |
| 14912 | * shared. |
| 14913 | * We check for this later when processing the actual |
| 14914 | * VM pages, so the contents will be safe if shared. |
| 14915 | * |
| 14916 | * But we can still mark this memory region as "reusable" to |
| 14917 | * acknowledge that the caller did let us know that the memory |
| 14918 | * could be re-used and should not be penalized for holding |
| 14919 | * on to it. This allows its "resident size" to not include |
| 14920 | * the reusable range. |
| 14921 | */ |
| 14922 | object->ref_count == 1 && |
| 14923 | #endif |
| 14924 | object->wired_page_count == 0 && |
| 14925 | object->copy == VM_OBJECT_NULL && |
| 14926 | object->shadow == VM_OBJECT_NULL && |
| 14927 | object->internal && |
| 14928 | object->purgable == VM_PURGABLE_DENY && |
| 14929 | object->copy_strategy != MEMORY_OBJECT_COPY_DELAY && |
| 14930 | !object->true_share && |
| 14931 | object->wimg_bits == VM_WIMG_USE_DEFAULT && |
| 14932 | !object->code_signed) { |
| 14933 | return TRUE; |
| 14934 | } |
| 14935 | return FALSE; |
| 14936 | |
| 14937 | |
| 14938 | } |
| 14939 | |
| 14940 | static kern_return_t |
| 14941 | vm_map_reuse_pages( |
| 14942 | vm_map_t map, |
| 14943 | vm_map_offset_t start, |
| 14944 | vm_map_offset_t end) |
| 14945 | { |
| 14946 | vm_map_entry_t entry; |
| 14947 | vm_object_t object; |
| 14948 | vm_object_offset_t start_offset, end_offset; |
| 14949 | |
| 14950 | /* |
| 14951 | * The MADV_REUSE operation doesn't require any changes to the |
| 14952 | * vm_map_entry_t's, so the read lock is sufficient. |
| 14953 | */ |
| 14954 | |
| 14955 | vm_map_lock_read(map); |
| 14956 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 14957 | |
| 14958 | /* |
| 14959 | * The madvise semantics require that the address range be fully |
| 14960 | * allocated with no holes. Otherwise, we're required to return |
| 14961 | * an error. |
| 14962 | */ |
| 14963 | |
| 14964 | if (!vm_map_range_check(map, start, end, &entry)) { |
| 14965 | vm_map_unlock_read(map); |
| 14966 | vm_page_stats_reusable.reuse_pages_failure++; |
| 14967 | return KERN_INVALID_ADDRESS; |
| 14968 | } |
| 14969 | |
| 14970 | /* |
| 14971 | * Examine each vm_map_entry_t in the range. |
| 14972 | */ |
| 14973 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 14974 | entry = entry->vme_next) { |
| 14975 | /* |
| 14976 | * Sanity check on the VM map entry. |
| 14977 | */ |
| 14978 | if (! vm_map_entry_is_reusable(entry)) { |
| 14979 | vm_map_unlock_read(map); |
| 14980 | vm_page_stats_reusable.reuse_pages_failure++; |
| 14981 | return KERN_INVALID_ADDRESS; |
| 14982 | } |
| 14983 | |
| 14984 | /* |
| 14985 | * The first time through, the start address could be anywhere |
| 14986 | * within the vm_map_entry we found. So adjust the offset to |
| 14987 | * correspond. |
| 14988 | */ |
| 14989 | if (entry->vme_start < start) { |
| 14990 | start_offset = start - entry->vme_start; |
| 14991 | } else { |
| 14992 | start_offset = 0; |
| 14993 | } |
| 14994 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; |
| 14995 | start_offset += VME_OFFSET(entry); |
| 14996 | end_offset += VME_OFFSET(entry); |
| 14997 | |
| 14998 | assert(!entry->is_sub_map); |
| 14999 | object = VME_OBJECT(entry); |
| 15000 | if (object != VM_OBJECT_NULL) { |
| 15001 | vm_object_lock(object); |
| 15002 | vm_object_reuse_pages(object, start_offset, end_offset, |
| 15003 | TRUE); |
| 15004 | vm_object_unlock(object); |
| 15005 | } |
| 15006 | |
| 15007 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSABLE) { |
| 15008 | /* |
| 15009 | * XXX |
| 15010 | * We do not hold the VM map exclusively here. |
| 15011 | * The "alias" field is not that critical, so it's |
| 15012 | * safe to update it here, as long as it is the only |
| 15013 | * one that can be modified while holding the VM map |
| 15014 | * "shared". |
| 15015 | */ |
| 15016 | VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSED); |
| 15017 | } |
| 15018 | } |
| 15019 | |
| 15020 | vm_map_unlock_read(map); |
| 15021 | vm_page_stats_reusable.reuse_pages_success++; |
| 15022 | return KERN_SUCCESS; |
| 15023 | } |
| 15024 | |
| 15025 | |
| 15026 | static kern_return_t |
| 15027 | vm_map_reusable_pages( |
| 15028 | vm_map_t map, |
| 15029 | vm_map_offset_t start, |
| 15030 | vm_map_offset_t end) |
| 15031 | { |
| 15032 | vm_map_entry_t entry; |
| 15033 | vm_object_t object; |
| 15034 | vm_object_offset_t start_offset, end_offset; |
| 15035 | vm_map_offset_t pmap_offset; |
| 15036 | |
| 15037 | /* |
| 15038 | * The MADV_REUSABLE operation doesn't require any changes to the |
| 15039 | * vm_map_entry_t's, so the read lock is sufficient. |
| 15040 | */ |
| 15041 | |
| 15042 | vm_map_lock_read(map); |
| 15043 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 15044 | |
| 15045 | /* |
| 15046 | * The madvise semantics require that the address range be fully |
| 15047 | * allocated with no holes. Otherwise, we're required to return |
| 15048 | * an error. |
| 15049 | */ |
| 15050 | |
| 15051 | if (!vm_map_range_check(map, start, end, &entry)) { |
| 15052 | vm_map_unlock_read(map); |
| 15053 | vm_page_stats_reusable.reusable_pages_failure++; |
| 15054 | return KERN_INVALID_ADDRESS; |
| 15055 | } |
| 15056 | |
| 15057 | /* |
| 15058 | * Examine each vm_map_entry_t in the range. |
| 15059 | */ |
| 15060 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 15061 | entry = entry->vme_next) { |
| 15062 | int kill_pages = 0; |
| 15063 | |
| 15064 | /* |
| 15065 | * Sanity check on the VM map entry. |
| 15066 | */ |
| 15067 | if (! vm_map_entry_is_reusable(entry)) { |
| 15068 | vm_map_unlock_read(map); |
| 15069 | vm_page_stats_reusable.reusable_pages_failure++; |
| 15070 | return KERN_INVALID_ADDRESS; |
| 15071 | } |
| 15072 | |
| 15073 | if (! (entry->protection & VM_PROT_WRITE) && !entry->used_for_jit) { |
| 15074 | /* not writable: can't discard contents */ |
| 15075 | vm_map_unlock_read(map); |
| 15076 | vm_page_stats_reusable.reusable_nonwritable++; |
| 15077 | vm_page_stats_reusable.reusable_pages_failure++; |
| 15078 | return KERN_PROTECTION_FAILURE; |
| 15079 | } |
| 15080 | |
| 15081 | /* |
| 15082 | * The first time through, the start address could be anywhere |
| 15083 | * within the vm_map_entry we found. So adjust the offset to |
| 15084 | * correspond. |
| 15085 | */ |
| 15086 | if (entry->vme_start < start) { |
| 15087 | start_offset = start - entry->vme_start; |
| 15088 | pmap_offset = start; |
| 15089 | } else { |
| 15090 | start_offset = 0; |
| 15091 | pmap_offset = entry->vme_start; |
| 15092 | } |
| 15093 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; |
| 15094 | start_offset += VME_OFFSET(entry); |
| 15095 | end_offset += VME_OFFSET(entry); |
| 15096 | |
| 15097 | assert(!entry->is_sub_map); |
| 15098 | object = VME_OBJECT(entry); |
| 15099 | if (object == VM_OBJECT_NULL) |
| 15100 | continue; |
| 15101 | |
| 15102 | |
| 15103 | vm_object_lock(object); |
| 15104 | if (((object->ref_count == 1) || |
| 15105 | (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC && |
| 15106 | object->copy == VM_OBJECT_NULL)) && |
| 15107 | object->shadow == VM_OBJECT_NULL && |
| 15108 | /* |
| 15109 | * "iokit_acct" entries are billed for their virtual size |
| 15110 | * (rather than for their resident pages only), so they |
| 15111 | * wouldn't benefit from making pages reusable, and it |
| 15112 | * would be hard to keep track of pages that are both |
| 15113 | * "iokit_acct" and "reusable" in the pmap stats and |
| 15114 | * ledgers. |
| 15115 | */ |
| 15116 | !(entry->iokit_acct || |
| 15117 | (!entry->is_sub_map && !entry->use_pmap))) { |
| 15118 | if (object->ref_count != 1) { |
| 15119 | vm_page_stats_reusable.reusable_shared++; |
| 15120 | } |
| 15121 | kill_pages = 1; |
| 15122 | } else { |
| 15123 | kill_pages = -1; |
| 15124 | } |
| 15125 | if (kill_pages != -1) { |
| 15126 | vm_object_deactivate_pages(object, |
| 15127 | start_offset, |
| 15128 | end_offset - start_offset, |
| 15129 | kill_pages, |
| 15130 | TRUE /*reusable_pages*/, |
| 15131 | map->pmap, |
| 15132 | pmap_offset); |
| 15133 | } else { |
| 15134 | vm_page_stats_reusable.reusable_pages_shared++; |
| 15135 | } |
| 15136 | vm_object_unlock(object); |
| 15137 | |
| 15138 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE || |
| 15139 | VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSED) { |
| 15140 | /* |
| 15141 | * XXX |
| 15142 | * We do not hold the VM map exclusively here. |
| 15143 | * The "alias" field is not that critical, so it's |
| 15144 | * safe to update it here, as long as it is the only |
| 15145 | * one that can be modified while holding the VM map |
| 15146 | * "shared". |
| 15147 | */ |
| 15148 | VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSABLE); |
| 15149 | } |
| 15150 | } |
| 15151 | |
| 15152 | vm_map_unlock_read(map); |
| 15153 | vm_page_stats_reusable.reusable_pages_success++; |
| 15154 | return KERN_SUCCESS; |
| 15155 | } |
| 15156 | |
| 15157 | |
| 15158 | static kern_return_t |
| 15159 | vm_map_can_reuse( |
| 15160 | vm_map_t map, |
| 15161 | vm_map_offset_t start, |
| 15162 | vm_map_offset_t end) |
| 15163 | { |
| 15164 | vm_map_entry_t entry; |
| 15165 | |
| 15166 | /* |
| 15167 | * The MADV_REUSABLE operation doesn't require any changes to the |
| 15168 | * vm_map_entry_t's, so the read lock is sufficient. |
| 15169 | */ |
| 15170 | |
| 15171 | vm_map_lock_read(map); |
| 15172 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 15173 | |
| 15174 | /* |
| 15175 | * The madvise semantics require that the address range be fully |
| 15176 | * allocated with no holes. Otherwise, we're required to return |
| 15177 | * an error. |
| 15178 | */ |
| 15179 | |
| 15180 | if (!vm_map_range_check(map, start, end, &entry)) { |
| 15181 | vm_map_unlock_read(map); |
| 15182 | vm_page_stats_reusable.can_reuse_failure++; |
| 15183 | return KERN_INVALID_ADDRESS; |
| 15184 | } |
| 15185 | |
| 15186 | /* |
| 15187 | * Examine each vm_map_entry_t in the range. |
| 15188 | */ |
| 15189 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 15190 | entry = entry->vme_next) { |
| 15191 | /* |
| 15192 | * Sanity check on the VM map entry. |
| 15193 | */ |
| 15194 | if (! vm_map_entry_is_reusable(entry)) { |
| 15195 | vm_map_unlock_read(map); |
| 15196 | vm_page_stats_reusable.can_reuse_failure++; |
| 15197 | return KERN_INVALID_ADDRESS; |
| 15198 | } |
| 15199 | } |
| 15200 | |
| 15201 | vm_map_unlock_read(map); |
| 15202 | vm_page_stats_reusable.can_reuse_success++; |
| 15203 | return KERN_SUCCESS; |
| 15204 | } |
| 15205 | |
| 15206 | |
| 15207 | #if MACH_ASSERT |
| 15208 | static kern_return_t |
| 15209 | vm_map_pageout( |
| 15210 | vm_map_t map, |
| 15211 | vm_map_offset_t start, |
| 15212 | vm_map_offset_t end) |
| 15213 | { |
| 15214 | vm_map_entry_t entry; |
| 15215 | |
| 15216 | /* |
| 15217 | * The MADV_PAGEOUT operation doesn't require any changes to the |
| 15218 | * vm_map_entry_t's, so the read lock is sufficient. |
| 15219 | */ |
| 15220 | |
| 15221 | vm_map_lock_read(map); |
| 15222 | |
| 15223 | /* |
| 15224 | * The madvise semantics require that the address range be fully |
| 15225 | * allocated with no holes. Otherwise, we're required to return |
| 15226 | * an error. |
| 15227 | */ |
| 15228 | |
| 15229 | if (!vm_map_range_check(map, start, end, &entry)) { |
| 15230 | vm_map_unlock_read(map); |
| 15231 | return KERN_INVALID_ADDRESS; |
| 15232 | } |
| 15233 | |
| 15234 | /* |
| 15235 | * Examine each vm_map_entry_t in the range. |
| 15236 | */ |
| 15237 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 15238 | entry = entry->vme_next) { |
| 15239 | vm_object_t object; |
| 15240 | |
| 15241 | /* |
| 15242 | * Sanity check on the VM map entry. |
| 15243 | */ |
| 15244 | if (entry->is_sub_map) { |
| 15245 | vm_map_t submap; |
| 15246 | vm_map_offset_t submap_start; |
| 15247 | vm_map_offset_t submap_end; |
| 15248 | vm_map_entry_t submap_entry; |
| 15249 | |
| 15250 | submap = VME_SUBMAP(entry); |
| 15251 | submap_start = VME_OFFSET(entry); |
| 15252 | submap_end = submap_start + (entry->vme_end - |
| 15253 | entry->vme_start); |
| 15254 | |
| 15255 | vm_map_lock_read(submap); |
| 15256 | |
| 15257 | if (! vm_map_range_check(submap, |
| 15258 | submap_start, |
| 15259 | submap_end, |
| 15260 | &submap_entry)) { |
| 15261 | vm_map_unlock_read(submap); |
| 15262 | vm_map_unlock_read(map); |
| 15263 | return KERN_INVALID_ADDRESS; |
| 15264 | } |
| 15265 | |
| 15266 | object = VME_OBJECT(submap_entry); |
| 15267 | if (submap_entry->is_sub_map || |
| 15268 | object == VM_OBJECT_NULL || |
| 15269 | !object->internal) { |
| 15270 | vm_map_unlock_read(submap); |
| 15271 | continue; |
| 15272 | } |
| 15273 | |
| 15274 | vm_object_pageout(object); |
| 15275 | |
| 15276 | vm_map_unlock_read(submap); |
| 15277 | submap = VM_MAP_NULL; |
| 15278 | submap_entry = VM_MAP_ENTRY_NULL; |
| 15279 | continue; |
| 15280 | } |
| 15281 | |
| 15282 | object = VME_OBJECT(entry); |
| 15283 | if (entry->is_sub_map || |
| 15284 | object == VM_OBJECT_NULL || |
| 15285 | !object->internal) { |
| 15286 | continue; |
| 15287 | } |
| 15288 | |
| 15289 | vm_object_pageout(object); |
| 15290 | } |
| 15291 | |
| 15292 | vm_map_unlock_read(map); |
| 15293 | return KERN_SUCCESS; |
| 15294 | } |
| 15295 | #endif /* MACH_ASSERT */ |
| 15296 | |
| 15297 | |
| 15298 | /* |
| 15299 | * Routine: vm_map_entry_insert |
| 15300 | * |
| 15301 | * Description: This routine inserts a new vm_entry in a locked map. |
| 15302 | */ |
| 15303 | vm_map_entry_t |
| 15304 | vm_map_entry_insert( |
| 15305 | vm_map_t map, |
| 15306 | vm_map_entry_t insp_entry, |
| 15307 | vm_map_offset_t start, |
| 15308 | vm_map_offset_t end, |
| 15309 | vm_object_t object, |
| 15310 | vm_object_offset_t offset, |
| 15311 | boolean_t needs_copy, |
| 15312 | boolean_t is_shared, |
| 15313 | boolean_t in_transition, |
| 15314 | vm_prot_t cur_protection, |
| 15315 | vm_prot_t max_protection, |
| 15316 | vm_behavior_t behavior, |
| 15317 | vm_inherit_t inheritance, |
| 15318 | unsigned wired_count, |
| 15319 | boolean_t no_cache, |
| 15320 | boolean_t permanent, |
| 15321 | unsigned int superpage_size, |
| 15322 | boolean_t clear_map_aligned, |
| 15323 | boolean_t is_submap, |
| 15324 | boolean_t used_for_jit, |
| 15325 | int alias) |
| 15326 | { |
| 15327 | vm_map_entry_t new_entry; |
| 15328 | |
| 15329 | assert(insp_entry != (vm_map_entry_t)0); |
| 15330 | vm_map_lock_assert_exclusive(map); |
| 15331 | |
| 15332 | #if DEVELOPMENT || DEBUG |
| 15333 | vm_object_offset_t end_offset = 0; |
| 15334 | assertf(!os_add_overflow(end - start, offset, &end_offset), "size 0x%llx, offset 0x%llx caused overflow" , (uint64_t)(end - start), offset); |
| 15335 | #endif /* DEVELOPMENT || DEBUG */ |
| 15336 | |
| 15337 | new_entry = vm_map_entry_create(map, !map->hdr.entries_pageable); |
| 15338 | |
| 15339 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { |
| 15340 | new_entry->map_aligned = TRUE; |
| 15341 | } else { |
| 15342 | new_entry->map_aligned = FALSE; |
| 15343 | } |
| 15344 | if (clear_map_aligned && |
| 15345 | (! VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)) || |
| 15346 | ! VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)))) { |
| 15347 | new_entry->map_aligned = FALSE; |
| 15348 | } |
| 15349 | |
| 15350 | new_entry->vme_start = start; |
| 15351 | new_entry->vme_end = end; |
| 15352 | assert(page_aligned(new_entry->vme_start)); |
| 15353 | assert(page_aligned(new_entry->vme_end)); |
| 15354 | if (new_entry->map_aligned) { |
| 15355 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start, |
| 15356 | VM_MAP_PAGE_MASK(map))); |
| 15357 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end, |
| 15358 | VM_MAP_PAGE_MASK(map))); |
| 15359 | } |
| 15360 | assert(new_entry->vme_start < new_entry->vme_end); |
| 15361 | |
| 15362 | VME_OBJECT_SET(new_entry, object); |
| 15363 | VME_OFFSET_SET(new_entry, offset); |
| 15364 | new_entry->is_shared = is_shared; |
| 15365 | new_entry->is_sub_map = is_submap; |
| 15366 | new_entry->needs_copy = needs_copy; |
| 15367 | new_entry->in_transition = in_transition; |
| 15368 | new_entry->needs_wakeup = FALSE; |
| 15369 | new_entry->inheritance = inheritance; |
| 15370 | new_entry->protection = cur_protection; |
| 15371 | new_entry->max_protection = max_protection; |
| 15372 | new_entry->behavior = behavior; |
| 15373 | new_entry->wired_count = wired_count; |
| 15374 | new_entry->user_wired_count = 0; |
| 15375 | if (is_submap) { |
| 15376 | /* |
| 15377 | * submap: "use_pmap" means "nested". |
| 15378 | * default: false. |
| 15379 | */ |
| 15380 | new_entry->use_pmap = FALSE; |
| 15381 | } else { |
| 15382 | /* |
| 15383 | * object: "use_pmap" means "use pmap accounting" for footprint. |
| 15384 | * default: true. |
| 15385 | */ |
| 15386 | new_entry->use_pmap = TRUE; |
| 15387 | } |
| 15388 | VME_ALIAS_SET(new_entry, alias); |
| 15389 | new_entry->zero_wired_pages = FALSE; |
| 15390 | new_entry->no_cache = no_cache; |
| 15391 | new_entry->permanent = permanent; |
| 15392 | if (superpage_size) |
| 15393 | new_entry->superpage_size = TRUE; |
| 15394 | else |
| 15395 | new_entry->superpage_size = FALSE; |
| 15396 | if (used_for_jit){ |
| 15397 | #if CONFIG_EMBEDDED |
| 15398 | if (!(map->jit_entry_exists)) |
| 15399 | #endif /* CONFIG_EMBEDDED */ |
| 15400 | { |
| 15401 | new_entry->used_for_jit = TRUE; |
| 15402 | map->jit_entry_exists = TRUE; |
| 15403 | |
| 15404 | /* Tell the pmap that it supports JIT. */ |
| 15405 | pmap_set_jit_entitled(map->pmap); |
| 15406 | } |
| 15407 | } else { |
| 15408 | new_entry->used_for_jit = FALSE; |
| 15409 | } |
| 15410 | new_entry->pmap_cs_associated = FALSE; |
| 15411 | new_entry->iokit_acct = FALSE; |
| 15412 | new_entry->vme_resilient_codesign = FALSE; |
| 15413 | new_entry->vme_resilient_media = FALSE; |
| 15414 | new_entry->vme_atomic = FALSE; |
| 15415 | |
| 15416 | /* |
| 15417 | * Insert the new entry into the list. |
| 15418 | */ |
| 15419 | |
| 15420 | vm_map_store_entry_link(map, insp_entry, new_entry, |
| 15421 | VM_MAP_KERNEL_FLAGS_NONE); |
| 15422 | map->size += end - start; |
| 15423 | |
| 15424 | /* |
| 15425 | * Update the free space hint and the lookup hint. |
| 15426 | */ |
| 15427 | |
| 15428 | SAVE_HINT_MAP_WRITE(map, new_entry); |
| 15429 | return new_entry; |
| 15430 | } |
| 15431 | |
| 15432 | /* |
| 15433 | * Routine: vm_map_remap_extract |
| 15434 | * |
| 15435 | * Descritpion: This routine returns a vm_entry list from a map. |
| 15436 | */ |
| 15437 | static kern_return_t |
| 15438 | ( |
| 15439 | vm_map_t map, |
| 15440 | vm_map_offset_t addr, |
| 15441 | vm_map_size_t size, |
| 15442 | boolean_t copy, |
| 15443 | struct vm_map_header *, |
| 15444 | vm_prot_t *cur_protection, |
| 15445 | vm_prot_t *max_protection, |
| 15446 | /* What, no behavior? */ |
| 15447 | vm_inherit_t inheritance, |
| 15448 | boolean_t pageable, |
| 15449 | boolean_t same_map, |
| 15450 | vm_map_kernel_flags_t vmk_flags) |
| 15451 | { |
| 15452 | kern_return_t result; |
| 15453 | vm_map_size_t mapped_size; |
| 15454 | vm_map_size_t tmp_size; |
| 15455 | vm_map_entry_t src_entry; /* result of last map lookup */ |
| 15456 | vm_map_entry_t new_entry; |
| 15457 | vm_object_offset_t offset; |
| 15458 | vm_map_offset_t map_address; |
| 15459 | vm_map_offset_t src_start; /* start of entry to map */ |
| 15460 | vm_map_offset_t src_end; /* end of region to be mapped */ |
| 15461 | vm_object_t object; |
| 15462 | vm_map_version_t version; |
| 15463 | boolean_t src_needs_copy; |
| 15464 | boolean_t new_entry_needs_copy; |
| 15465 | vm_map_entry_t saved_src_entry; |
| 15466 | boolean_t src_entry_was_wired; |
| 15467 | vm_prot_t max_prot_for_prot_copy; |
| 15468 | |
| 15469 | assert(map != VM_MAP_NULL); |
| 15470 | assert(size != 0); |
| 15471 | assert(size == vm_map_round_page(size, PAGE_MASK)); |
| 15472 | assert(inheritance == VM_INHERIT_NONE || |
| 15473 | inheritance == VM_INHERIT_COPY || |
| 15474 | inheritance == VM_INHERIT_SHARE); |
| 15475 | |
| 15476 | /* |
| 15477 | * Compute start and end of region. |
| 15478 | */ |
| 15479 | src_start = vm_map_trunc_page(addr, PAGE_MASK); |
| 15480 | src_end = vm_map_round_page(src_start + size, PAGE_MASK); |
| 15481 | |
| 15482 | |
| 15483 | /* |
| 15484 | * Initialize map_header. |
| 15485 | */ |
| 15486 | map_header->links.next = CAST_TO_VM_MAP_ENTRY(&map_header->links); |
| 15487 | map_header->links.prev = CAST_TO_VM_MAP_ENTRY(&map_header->links); |
| 15488 | map_header->nentries = 0; |
| 15489 | map_header->entries_pageable = pageable; |
| 15490 | map_header->page_shift = PAGE_SHIFT; |
| 15491 | |
| 15492 | vm_map_store_init( map_header ); |
| 15493 | |
| 15494 | if (copy && vmk_flags.vmkf_remap_prot_copy) { |
| 15495 | max_prot_for_prot_copy = *max_protection & VM_PROT_ALL; |
| 15496 | } else { |
| 15497 | max_prot_for_prot_copy = VM_PROT_NONE; |
| 15498 | } |
| 15499 | *cur_protection = VM_PROT_ALL; |
| 15500 | *max_protection = VM_PROT_ALL; |
| 15501 | |
| 15502 | map_address = 0; |
| 15503 | mapped_size = 0; |
| 15504 | result = KERN_SUCCESS; |
| 15505 | |
| 15506 | /* |
| 15507 | * The specified source virtual space might correspond to |
| 15508 | * multiple map entries, need to loop on them. |
| 15509 | */ |
| 15510 | vm_map_lock(map); |
| 15511 | while (mapped_size != size) { |
| 15512 | vm_map_size_t entry_size; |
| 15513 | |
| 15514 | /* |
| 15515 | * Find the beginning of the region. |
| 15516 | */ |
| 15517 | if (! vm_map_lookup_entry(map, src_start, &src_entry)) { |
| 15518 | result = KERN_INVALID_ADDRESS; |
| 15519 | break; |
| 15520 | } |
| 15521 | |
| 15522 | if (src_start < src_entry->vme_start || |
| 15523 | (mapped_size && src_start != src_entry->vme_start)) { |
| 15524 | result = KERN_INVALID_ADDRESS; |
| 15525 | break; |
| 15526 | } |
| 15527 | |
| 15528 | tmp_size = size - mapped_size; |
| 15529 | if (src_end > src_entry->vme_end) |
| 15530 | tmp_size -= (src_end - src_entry->vme_end); |
| 15531 | |
| 15532 | entry_size = (vm_map_size_t)(src_entry->vme_end - |
| 15533 | src_entry->vme_start); |
| 15534 | |
| 15535 | if(src_entry->is_sub_map) { |
| 15536 | vm_map_reference(VME_SUBMAP(src_entry)); |
| 15537 | object = VM_OBJECT_NULL; |
| 15538 | } else { |
| 15539 | object = VME_OBJECT(src_entry); |
| 15540 | if (src_entry->iokit_acct) { |
| 15541 | /* |
| 15542 | * This entry uses "IOKit accounting". |
| 15543 | */ |
| 15544 | } else if (object != VM_OBJECT_NULL && |
| 15545 | object->purgable != VM_PURGABLE_DENY) { |
| 15546 | /* |
| 15547 | * Purgeable objects have their own accounting: |
| 15548 | * no pmap accounting for them. |
| 15549 | */ |
| 15550 | assertf(!src_entry->use_pmap, |
| 15551 | "map=%p src_entry=%p [0x%llx:0x%llx] 0x%x/0x%x %d" , |
| 15552 | map, |
| 15553 | src_entry, |
| 15554 | (uint64_t)src_entry->vme_start, |
| 15555 | (uint64_t)src_entry->vme_end, |
| 15556 | src_entry->protection, |
| 15557 | src_entry->max_protection, |
| 15558 | VME_ALIAS(src_entry)); |
| 15559 | } else { |
| 15560 | /* |
| 15561 | * Not IOKit or purgeable: |
| 15562 | * must be accounted by pmap stats. |
| 15563 | */ |
| 15564 | assertf(src_entry->use_pmap, |
| 15565 | "map=%p src_entry=%p [0x%llx:0x%llx] 0x%x/0x%x %d" , |
| 15566 | map, |
| 15567 | src_entry, |
| 15568 | (uint64_t)src_entry->vme_start, |
| 15569 | (uint64_t)src_entry->vme_end, |
| 15570 | src_entry->protection, |
| 15571 | src_entry->max_protection, |
| 15572 | VME_ALIAS(src_entry)); |
| 15573 | } |
| 15574 | |
| 15575 | if (object == VM_OBJECT_NULL) { |
| 15576 | object = vm_object_allocate(entry_size); |
| 15577 | VME_OFFSET_SET(src_entry, 0); |
| 15578 | VME_OBJECT_SET(src_entry, object); |
| 15579 | assert(src_entry->use_pmap); |
| 15580 | } else if (object->copy_strategy != |
| 15581 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 15582 | /* |
| 15583 | * We are already using an asymmetric |
| 15584 | * copy, and therefore we already have |
| 15585 | * the right object. |
| 15586 | */ |
| 15587 | assert(!src_entry->needs_copy); |
| 15588 | } else if (src_entry->needs_copy || object->shadowed || |
| 15589 | (object->internal && !object->true_share && |
| 15590 | !src_entry->is_shared && |
| 15591 | object->vo_size > entry_size)) { |
| 15592 | |
| 15593 | VME_OBJECT_SHADOW(src_entry, entry_size); |
| 15594 | assert(src_entry->use_pmap); |
| 15595 | |
| 15596 | if (!src_entry->needs_copy && |
| 15597 | (src_entry->protection & VM_PROT_WRITE)) { |
| 15598 | vm_prot_t prot; |
| 15599 | |
| 15600 | assert(!pmap_has_prot_policy(src_entry->protection)); |
| 15601 | |
| 15602 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 15603 | |
| 15604 | if (override_nx(map, |
| 15605 | VME_ALIAS(src_entry)) |
| 15606 | && prot) |
| 15607 | prot |= VM_PROT_EXECUTE; |
| 15608 | |
| 15609 | assert(!pmap_has_prot_policy(prot)); |
| 15610 | |
| 15611 | if(map->mapped_in_other_pmaps) { |
| 15612 | vm_object_pmap_protect( |
| 15613 | VME_OBJECT(src_entry), |
| 15614 | VME_OFFSET(src_entry), |
| 15615 | entry_size, |
| 15616 | PMAP_NULL, |
| 15617 | src_entry->vme_start, |
| 15618 | prot); |
| 15619 | } else { |
| 15620 | pmap_protect(vm_map_pmap(map), |
| 15621 | src_entry->vme_start, |
| 15622 | src_entry->vme_end, |
| 15623 | prot); |
| 15624 | } |
| 15625 | } |
| 15626 | |
| 15627 | object = VME_OBJECT(src_entry); |
| 15628 | src_entry->needs_copy = FALSE; |
| 15629 | } |
| 15630 | |
| 15631 | |
| 15632 | vm_object_lock(object); |
| 15633 | vm_object_reference_locked(object); /* object ref. for new entry */ |
| 15634 | if (object->copy_strategy == |
| 15635 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 15636 | object->copy_strategy = |
| 15637 | MEMORY_OBJECT_COPY_DELAY; |
| 15638 | } |
| 15639 | vm_object_unlock(object); |
| 15640 | } |
| 15641 | |
| 15642 | offset = (VME_OFFSET(src_entry) + |
| 15643 | (src_start - src_entry->vme_start)); |
| 15644 | |
| 15645 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); |
| 15646 | vm_map_entry_copy(new_entry, src_entry); |
| 15647 | if (new_entry->is_sub_map) { |
| 15648 | /* clr address space specifics */ |
| 15649 | new_entry->use_pmap = FALSE; |
| 15650 | } else if (copy) { |
| 15651 | /* |
| 15652 | * We're dealing with a copy-on-write operation, |
| 15653 | * so the resulting mapping should not inherit the |
| 15654 | * original mapping's accounting settings. |
| 15655 | * "use_pmap" should be reset to its default (TRUE) |
| 15656 | * so that the new mapping gets accounted for in |
| 15657 | * the task's memory footprint. |
| 15658 | */ |
| 15659 | new_entry->use_pmap = TRUE; |
| 15660 | } |
| 15661 | /* "iokit_acct" was cleared in vm_map_entry_copy() */ |
| 15662 | assert(!new_entry->iokit_acct); |
| 15663 | |
| 15664 | new_entry->map_aligned = FALSE; |
| 15665 | |
| 15666 | new_entry->vme_start = map_address; |
| 15667 | new_entry->vme_end = map_address + tmp_size; |
| 15668 | assert(new_entry->vme_start < new_entry->vme_end); |
| 15669 | if (copy && vmk_flags.vmkf_remap_prot_copy) { |
| 15670 | /* |
| 15671 | * Remapping for vm_map_protect(VM_PROT_COPY) |
| 15672 | * to convert a read-only mapping into a |
| 15673 | * copy-on-write version of itself but |
| 15674 | * with write access: |
| 15675 | * keep the original inheritance and add |
| 15676 | * VM_PROT_WRITE to the max protection. |
| 15677 | */ |
| 15678 | new_entry->inheritance = src_entry->inheritance; |
| 15679 | new_entry->protection &= max_prot_for_prot_copy; |
| 15680 | new_entry->max_protection |= VM_PROT_WRITE; |
| 15681 | } else { |
| 15682 | new_entry->inheritance = inheritance; |
| 15683 | } |
| 15684 | VME_OFFSET_SET(new_entry, offset); |
| 15685 | |
| 15686 | /* |
| 15687 | * The new region has to be copied now if required. |
| 15688 | */ |
| 15689 | RestartCopy: |
| 15690 | if (!copy) { |
| 15691 | /* |
| 15692 | * Cannot allow an entry describing a JIT |
| 15693 | * region to be shared across address spaces. |
| 15694 | */ |
| 15695 | if (src_entry->used_for_jit == TRUE && !same_map) { |
| 15696 | #if CONFIG_EMBEDDED |
| 15697 | result = KERN_INVALID_ARGUMENT; |
| 15698 | break; |
| 15699 | #endif /* CONFIG_EMBEDDED */ |
| 15700 | } |
| 15701 | src_entry->is_shared = TRUE; |
| 15702 | new_entry->is_shared = TRUE; |
| 15703 | if (!(new_entry->is_sub_map)) |
| 15704 | new_entry->needs_copy = FALSE; |
| 15705 | |
| 15706 | } else if (src_entry->is_sub_map) { |
| 15707 | /* make this a COW sub_map if not already */ |
| 15708 | assert(new_entry->wired_count == 0); |
| 15709 | new_entry->needs_copy = TRUE; |
| 15710 | object = VM_OBJECT_NULL; |
| 15711 | } else if (src_entry->wired_count == 0 && |
| 15712 | vm_object_copy_quickly(&VME_OBJECT(new_entry), |
| 15713 | VME_OFFSET(new_entry), |
| 15714 | (new_entry->vme_end - |
| 15715 | new_entry->vme_start), |
| 15716 | &src_needs_copy, |
| 15717 | &new_entry_needs_copy)) { |
| 15718 | |
| 15719 | new_entry->needs_copy = new_entry_needs_copy; |
| 15720 | new_entry->is_shared = FALSE; |
| 15721 | assertf(new_entry->use_pmap, "map %p new_entry %p\n" , map, new_entry); |
| 15722 | |
| 15723 | /* |
| 15724 | * Handle copy_on_write semantics. |
| 15725 | */ |
| 15726 | if (src_needs_copy && !src_entry->needs_copy) { |
| 15727 | vm_prot_t prot; |
| 15728 | |
| 15729 | assert(!pmap_has_prot_policy(src_entry->protection)); |
| 15730 | |
| 15731 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 15732 | |
| 15733 | if (override_nx(map, |
| 15734 | VME_ALIAS(src_entry)) |
| 15735 | && prot) |
| 15736 | prot |= VM_PROT_EXECUTE; |
| 15737 | |
| 15738 | assert(!pmap_has_prot_policy(prot)); |
| 15739 | |
| 15740 | vm_object_pmap_protect(object, |
| 15741 | offset, |
| 15742 | entry_size, |
| 15743 | ((src_entry->is_shared |
| 15744 | || map->mapped_in_other_pmaps) ? |
| 15745 | PMAP_NULL : map->pmap), |
| 15746 | src_entry->vme_start, |
| 15747 | prot); |
| 15748 | |
| 15749 | assert(src_entry->wired_count == 0); |
| 15750 | src_entry->needs_copy = TRUE; |
| 15751 | } |
| 15752 | /* |
| 15753 | * Throw away the old object reference of the new entry. |
| 15754 | */ |
| 15755 | vm_object_deallocate(object); |
| 15756 | |
| 15757 | } else { |
| 15758 | new_entry->is_shared = FALSE; |
| 15759 | assertf(new_entry->use_pmap, "map %p new_entry %p\n" , map, new_entry); |
| 15760 | |
| 15761 | src_entry_was_wired = (src_entry->wired_count > 0); |
| 15762 | saved_src_entry = src_entry; |
| 15763 | src_entry = VM_MAP_ENTRY_NULL; |
| 15764 | |
| 15765 | /* |
| 15766 | * The map can be safely unlocked since we |
| 15767 | * already hold a reference on the object. |
| 15768 | * |
| 15769 | * Record the timestamp of the map for later |
| 15770 | * verification, and unlock the map. |
| 15771 | */ |
| 15772 | version.main_timestamp = map->timestamp; |
| 15773 | vm_map_unlock(map); /* Increments timestamp once! */ |
| 15774 | |
| 15775 | /* |
| 15776 | * Perform the copy. |
| 15777 | */ |
| 15778 | if (src_entry_was_wired > 0) { |
| 15779 | vm_object_lock(object); |
| 15780 | result = vm_object_copy_slowly( |
| 15781 | object, |
| 15782 | offset, |
| 15783 | (new_entry->vme_end - |
| 15784 | new_entry->vme_start), |
| 15785 | THREAD_UNINT, |
| 15786 | &VME_OBJECT(new_entry)); |
| 15787 | |
| 15788 | VME_OFFSET_SET(new_entry, 0); |
| 15789 | new_entry->needs_copy = FALSE; |
| 15790 | } else { |
| 15791 | vm_object_offset_t new_offset; |
| 15792 | |
| 15793 | new_offset = VME_OFFSET(new_entry); |
| 15794 | result = vm_object_copy_strategically( |
| 15795 | object, |
| 15796 | offset, |
| 15797 | (new_entry->vme_end - |
| 15798 | new_entry->vme_start), |
| 15799 | &VME_OBJECT(new_entry), |
| 15800 | &new_offset, |
| 15801 | &new_entry_needs_copy); |
| 15802 | if (new_offset != VME_OFFSET(new_entry)) { |
| 15803 | VME_OFFSET_SET(new_entry, new_offset); |
| 15804 | } |
| 15805 | |
| 15806 | new_entry->needs_copy = new_entry_needs_copy; |
| 15807 | } |
| 15808 | |
| 15809 | /* |
| 15810 | * Throw away the old object reference of the new entry. |
| 15811 | */ |
| 15812 | vm_object_deallocate(object); |
| 15813 | |
| 15814 | if (result != KERN_SUCCESS && |
| 15815 | result != KERN_MEMORY_RESTART_COPY) { |
| 15816 | _vm_map_entry_dispose(map_header, new_entry); |
| 15817 | vm_map_lock(map); |
| 15818 | break; |
| 15819 | } |
| 15820 | |
| 15821 | /* |
| 15822 | * Verify that the map has not substantially |
| 15823 | * changed while the copy was being made. |
| 15824 | */ |
| 15825 | |
| 15826 | vm_map_lock(map); |
| 15827 | if (version.main_timestamp + 1 != map->timestamp) { |
| 15828 | /* |
| 15829 | * Simple version comparison failed. |
| 15830 | * |
| 15831 | * Retry the lookup and verify that the |
| 15832 | * same object/offset are still present. |
| 15833 | */ |
| 15834 | saved_src_entry = VM_MAP_ENTRY_NULL; |
| 15835 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 15836 | _vm_map_entry_dispose(map_header, new_entry); |
| 15837 | if (result == KERN_MEMORY_RESTART_COPY) |
| 15838 | result = KERN_SUCCESS; |
| 15839 | continue; |
| 15840 | } |
| 15841 | /* map hasn't changed: src_entry is still valid */ |
| 15842 | src_entry = saved_src_entry; |
| 15843 | saved_src_entry = VM_MAP_ENTRY_NULL; |
| 15844 | |
| 15845 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 15846 | vm_object_reference(object); |
| 15847 | goto RestartCopy; |
| 15848 | } |
| 15849 | } |
| 15850 | |
| 15851 | _vm_map_store_entry_link(map_header, |
| 15852 | map_header->links.prev, new_entry); |
| 15853 | |
| 15854 | /*Protections for submap mapping are irrelevant here*/ |
| 15855 | if( !src_entry->is_sub_map ) { |
| 15856 | *cur_protection &= src_entry->protection; |
| 15857 | *max_protection &= src_entry->max_protection; |
| 15858 | } |
| 15859 | map_address += tmp_size; |
| 15860 | mapped_size += tmp_size; |
| 15861 | src_start += tmp_size; |
| 15862 | |
| 15863 | } /* end while */ |
| 15864 | |
| 15865 | vm_map_unlock(map); |
| 15866 | if (result != KERN_SUCCESS) { |
| 15867 | /* |
| 15868 | * Free all allocated elements. |
| 15869 | */ |
| 15870 | for (src_entry = map_header->links.next; |
| 15871 | src_entry != CAST_TO_VM_MAP_ENTRY(&map_header->links); |
| 15872 | src_entry = new_entry) { |
| 15873 | new_entry = src_entry->vme_next; |
| 15874 | _vm_map_store_entry_unlink(map_header, src_entry); |
| 15875 | if (src_entry->is_sub_map) { |
| 15876 | vm_map_deallocate(VME_SUBMAP(src_entry)); |
| 15877 | } else { |
| 15878 | vm_object_deallocate(VME_OBJECT(src_entry)); |
| 15879 | } |
| 15880 | _vm_map_entry_dispose(map_header, src_entry); |
| 15881 | } |
| 15882 | } |
| 15883 | return result; |
| 15884 | } |
| 15885 | |
| 15886 | /* |
| 15887 | * Routine: vm_remap |
| 15888 | * |
| 15889 | * Map portion of a task's address space. |
| 15890 | * Mapped region must not overlap more than |
| 15891 | * one vm memory object. Protections and |
| 15892 | * inheritance attributes remain the same |
| 15893 | * as in the original task and are out parameters. |
| 15894 | * Source and Target task can be identical |
| 15895 | * Other attributes are identical as for vm_map() |
| 15896 | */ |
| 15897 | kern_return_t |
| 15898 | vm_map_remap( |
| 15899 | vm_map_t target_map, |
| 15900 | vm_map_address_t *address, |
| 15901 | vm_map_size_t size, |
| 15902 | vm_map_offset_t mask, |
| 15903 | int flags, |
| 15904 | vm_map_kernel_flags_t vmk_flags, |
| 15905 | vm_tag_t tag, |
| 15906 | vm_map_t src_map, |
| 15907 | vm_map_offset_t memory_address, |
| 15908 | boolean_t copy, |
| 15909 | vm_prot_t *cur_protection, |
| 15910 | vm_prot_t *max_protection, |
| 15911 | vm_inherit_t inheritance) |
| 15912 | { |
| 15913 | kern_return_t result; |
| 15914 | vm_map_entry_t entry; |
| 15915 | vm_map_entry_t insp_entry = VM_MAP_ENTRY_NULL; |
| 15916 | vm_map_entry_t new_entry; |
| 15917 | struct vm_map_header ; |
| 15918 | vm_map_offset_t offset_in_mapping; |
| 15919 | |
| 15920 | if (target_map == VM_MAP_NULL) |
| 15921 | return KERN_INVALID_ARGUMENT; |
| 15922 | |
| 15923 | switch (inheritance) { |
| 15924 | case VM_INHERIT_NONE: |
| 15925 | case VM_INHERIT_COPY: |
| 15926 | case VM_INHERIT_SHARE: |
| 15927 | if (size != 0 && src_map != VM_MAP_NULL) |
| 15928 | break; |
| 15929 | /*FALL THRU*/ |
| 15930 | default: |
| 15931 | return KERN_INVALID_ARGUMENT; |
| 15932 | } |
| 15933 | |
| 15934 | /* |
| 15935 | * If the user is requesting that we return the address of the |
| 15936 | * first byte of the data (rather than the base of the page), |
| 15937 | * then we use different rounding semantics: specifically, |
| 15938 | * we assume that (memory_address, size) describes a region |
| 15939 | * all of whose pages we must cover, rather than a base to be truncated |
| 15940 | * down and a size to be added to that base. So we figure out |
| 15941 | * the highest page that the requested region includes and make |
| 15942 | * sure that the size will cover it. |
| 15943 | * |
| 15944 | * The key example we're worried about it is of the form: |
| 15945 | * |
| 15946 | * memory_address = 0x1ff0, size = 0x20 |
| 15947 | * |
| 15948 | * With the old semantics, we round down the memory_address to 0x1000 |
| 15949 | * and round up the size to 0x1000, resulting in our covering *only* |
| 15950 | * page 0x1000. With the new semantics, we'd realize that the region covers |
| 15951 | * 0x1ff0-0x2010, and compute a size of 0x2000. Thus, we cover both page |
| 15952 | * 0x1000 and page 0x2000 in the region we remap. |
| 15953 | */ |
| 15954 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { |
| 15955 | offset_in_mapping = memory_address - vm_map_trunc_page(memory_address, PAGE_MASK); |
| 15956 | size = vm_map_round_page(memory_address + size - vm_map_trunc_page(memory_address, PAGE_MASK), PAGE_MASK); |
| 15957 | } else { |
| 15958 | size = vm_map_round_page(size, PAGE_MASK); |
| 15959 | } |
| 15960 | if (size == 0) { |
| 15961 | return KERN_INVALID_ARGUMENT; |
| 15962 | } |
| 15963 | |
| 15964 | result = vm_map_remap_extract(src_map, memory_address, |
| 15965 | size, copy, &map_header, |
| 15966 | cur_protection, |
| 15967 | max_protection, |
| 15968 | inheritance, |
| 15969 | target_map->hdr.entries_pageable, |
| 15970 | src_map == target_map, |
| 15971 | vmk_flags); |
| 15972 | |
| 15973 | if (result != KERN_SUCCESS) { |
| 15974 | return result; |
| 15975 | } |
| 15976 | |
| 15977 | /* |
| 15978 | * Allocate/check a range of free virtual address |
| 15979 | * space for the target |
| 15980 | */ |
| 15981 | *address = vm_map_trunc_page(*address, |
| 15982 | VM_MAP_PAGE_MASK(target_map)); |
| 15983 | vm_map_lock(target_map); |
| 15984 | result = vm_map_remap_range_allocate(target_map, address, size, |
| 15985 | mask, flags, vmk_flags, tag, |
| 15986 | &insp_entry); |
| 15987 | |
| 15988 | for (entry = map_header.links.next; |
| 15989 | entry != CAST_TO_VM_MAP_ENTRY(&map_header.links); |
| 15990 | entry = new_entry) { |
| 15991 | new_entry = entry->vme_next; |
| 15992 | _vm_map_store_entry_unlink(&map_header, entry); |
| 15993 | if (result == KERN_SUCCESS) { |
| 15994 | if (flags & VM_FLAGS_RESILIENT_CODESIGN) { |
| 15995 | /* no codesigning -> read-only access */ |
| 15996 | entry->max_protection = VM_PROT_READ; |
| 15997 | entry->protection = VM_PROT_READ; |
| 15998 | entry->vme_resilient_codesign = TRUE; |
| 15999 | } |
| 16000 | entry->vme_start += *address; |
| 16001 | entry->vme_end += *address; |
| 16002 | assert(!entry->map_aligned); |
| 16003 | vm_map_store_entry_link(target_map, insp_entry, entry, |
| 16004 | vmk_flags); |
| 16005 | insp_entry = entry; |
| 16006 | } else { |
| 16007 | if (!entry->is_sub_map) { |
| 16008 | vm_object_deallocate(VME_OBJECT(entry)); |
| 16009 | } else { |
| 16010 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 16011 | } |
| 16012 | _vm_map_entry_dispose(&map_header, entry); |
| 16013 | } |
| 16014 | } |
| 16015 | |
| 16016 | if (flags & VM_FLAGS_RESILIENT_CODESIGN) { |
| 16017 | *cur_protection = VM_PROT_READ; |
| 16018 | *max_protection = VM_PROT_READ; |
| 16019 | } |
| 16020 | |
| 16021 | if( target_map->disable_vmentry_reuse == TRUE) { |
| 16022 | assert(!target_map->is_nested_map); |
| 16023 | if( target_map->highest_entry_end < insp_entry->vme_end ){ |
| 16024 | target_map->highest_entry_end = insp_entry->vme_end; |
| 16025 | } |
| 16026 | } |
| 16027 | |
| 16028 | if (result == KERN_SUCCESS) { |
| 16029 | target_map->size += size; |
| 16030 | SAVE_HINT_MAP_WRITE(target_map, insp_entry); |
| 16031 | |
| 16032 | #if PMAP_CS |
| 16033 | if (*max_protection & VM_PROT_EXECUTE) { |
| 16034 | vm_map_address_t region_start = 0, region_size = 0; |
| 16035 | struct pmap_cs_code_directory *region_cd = NULL; |
| 16036 | vm_map_address_t base = 0; |
| 16037 | struct pmap_cs_lookup_results results = {}; |
| 16038 | vm_map_size_t page_addr = vm_map_trunc_page(memory_address, PAGE_MASK); |
| 16039 | vm_map_size_t assoc_size = vm_map_round_page(memory_address + size - page_addr, PAGE_MASK); |
| 16040 | |
| 16041 | pmap_cs_lookup(src_map->pmap, memory_address, &results); |
| 16042 | region_size = results.region_size; |
| 16043 | region_start = results.region_start; |
| 16044 | region_cd = results.region_cd_entry; |
| 16045 | base = results.base; |
| 16046 | |
| 16047 | if (region_cd != NULL && (page_addr != region_start || assoc_size != region_size)) { |
| 16048 | *cur_protection = VM_PROT_READ; |
| 16049 | *max_protection = VM_PROT_READ; |
| 16050 | printf("mismatched remap of executable range 0x%llx-0x%llx to 0x%llx, " |
| 16051 | "region_start 0x%llx, region_size 0x%llx, cd_entry %sNULL, making non-executable.\n" , |
| 16052 | page_addr, page_addr+assoc_size, *address, |
| 16053 | region_start, region_size, |
| 16054 | region_cd != NULL ? "not " : "" // Don't leak kernel slide |
| 16055 | ); |
| 16056 | } |
| 16057 | } |
| 16058 | #endif |
| 16059 | |
| 16060 | } |
| 16061 | vm_map_unlock(target_map); |
| 16062 | |
| 16063 | if (result == KERN_SUCCESS && target_map->wiring_required) |
| 16064 | result = vm_map_wire_kernel(target_map, *address, |
| 16065 | *address + size, *cur_protection, VM_KERN_MEMORY_MLOCK, |
| 16066 | TRUE); |
| 16067 | |
| 16068 | /* |
| 16069 | * If requested, return the address of the data pointed to by the |
| 16070 | * request, rather than the base of the resulting page. |
| 16071 | */ |
| 16072 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { |
| 16073 | *address += offset_in_mapping; |
| 16074 | } |
| 16075 | |
| 16076 | return result; |
| 16077 | } |
| 16078 | |
| 16079 | /* |
| 16080 | * Routine: vm_map_remap_range_allocate |
| 16081 | * |
| 16082 | * Description: |
| 16083 | * Allocate a range in the specified virtual address map. |
| 16084 | * returns the address and the map entry just before the allocated |
| 16085 | * range |
| 16086 | * |
| 16087 | * Map must be locked. |
| 16088 | */ |
| 16089 | |
| 16090 | static kern_return_t |
| 16091 | vm_map_remap_range_allocate( |
| 16092 | vm_map_t map, |
| 16093 | vm_map_address_t *address, /* IN/OUT */ |
| 16094 | vm_map_size_t size, |
| 16095 | vm_map_offset_t mask, |
| 16096 | int flags, |
| 16097 | vm_map_kernel_flags_t vmk_flags, |
| 16098 | __unused vm_tag_t tag, |
| 16099 | vm_map_entry_t *map_entry) /* OUT */ |
| 16100 | { |
| 16101 | vm_map_entry_t entry; |
| 16102 | vm_map_offset_t start; |
| 16103 | vm_map_offset_t end; |
| 16104 | vm_map_offset_t desired_empty_end; |
| 16105 | kern_return_t kr; |
| 16106 | vm_map_entry_t hole_entry; |
| 16107 | |
| 16108 | StartAgain: ; |
| 16109 | |
| 16110 | start = *address; |
| 16111 | |
| 16112 | if (flags & VM_FLAGS_ANYWHERE) |
| 16113 | { |
| 16114 | if (flags & VM_FLAGS_RANDOM_ADDR) |
| 16115 | { |
| 16116 | /* |
| 16117 | * Get a random start address. |
| 16118 | */ |
| 16119 | kr = vm_map_random_address_for_size(map, address, size); |
| 16120 | if (kr != KERN_SUCCESS) { |
| 16121 | return(kr); |
| 16122 | } |
| 16123 | start = *address; |
| 16124 | } |
| 16125 | |
| 16126 | /* |
| 16127 | * Calculate the first possible address. |
| 16128 | */ |
| 16129 | |
| 16130 | if (start < map->min_offset) |
| 16131 | start = map->min_offset; |
| 16132 | if (start > map->max_offset) |
| 16133 | return(KERN_NO_SPACE); |
| 16134 | |
| 16135 | /* |
| 16136 | * Look for the first possible address; |
| 16137 | * if there's already something at this |
| 16138 | * address, we have to start after it. |
| 16139 | */ |
| 16140 | |
| 16141 | if( map->disable_vmentry_reuse == TRUE) { |
| 16142 | VM_MAP_HIGHEST_ENTRY(map, entry, start); |
| 16143 | } else { |
| 16144 | |
| 16145 | if (map->holelistenabled) { |
| 16146 | hole_entry = CAST_TO_VM_MAP_ENTRY(map->holes_list); |
| 16147 | |
| 16148 | if (hole_entry == NULL) { |
| 16149 | /* |
| 16150 | * No more space in the map? |
| 16151 | */ |
| 16152 | return(KERN_NO_SPACE); |
| 16153 | } else { |
| 16154 | |
| 16155 | boolean_t found_hole = FALSE; |
| 16156 | |
| 16157 | do { |
| 16158 | if (hole_entry->vme_start >= start) { |
| 16159 | start = hole_entry->vme_start; |
| 16160 | found_hole = TRUE; |
| 16161 | break; |
| 16162 | } |
| 16163 | |
| 16164 | if (hole_entry->vme_end > start) { |
| 16165 | found_hole = TRUE; |
| 16166 | break; |
| 16167 | } |
| 16168 | hole_entry = hole_entry->vme_next; |
| 16169 | |
| 16170 | } while (hole_entry != CAST_TO_VM_MAP_ENTRY(map->holes_list)); |
| 16171 | |
| 16172 | if (found_hole == FALSE) { |
| 16173 | return (KERN_NO_SPACE); |
| 16174 | } |
| 16175 | |
| 16176 | entry = hole_entry; |
| 16177 | } |
| 16178 | } else { |
| 16179 | assert(first_free_is_valid(map)); |
| 16180 | if (start == map->min_offset) { |
| 16181 | if ((entry = map->first_free) != vm_map_to_entry(map)) |
| 16182 | start = entry->vme_end; |
| 16183 | } else { |
| 16184 | vm_map_entry_t tmp_entry; |
| 16185 | if (vm_map_lookup_entry(map, start, &tmp_entry)) |
| 16186 | start = tmp_entry->vme_end; |
| 16187 | entry = tmp_entry; |
| 16188 | } |
| 16189 | } |
| 16190 | start = vm_map_round_page(start, |
| 16191 | VM_MAP_PAGE_MASK(map)); |
| 16192 | } |
| 16193 | |
| 16194 | /* |
| 16195 | * In any case, the "entry" always precedes |
| 16196 | * the proposed new region throughout the |
| 16197 | * loop: |
| 16198 | */ |
| 16199 | |
| 16200 | while (TRUE) { |
| 16201 | vm_map_entry_t next; |
| 16202 | |
| 16203 | /* |
| 16204 | * Find the end of the proposed new region. |
| 16205 | * Be sure we didn't go beyond the end, or |
| 16206 | * wrap around the address. |
| 16207 | */ |
| 16208 | |
| 16209 | end = ((start + mask) & ~mask); |
| 16210 | end = vm_map_round_page(end, |
| 16211 | VM_MAP_PAGE_MASK(map)); |
| 16212 | if (end < start) |
| 16213 | return(KERN_NO_SPACE); |
| 16214 | start = end; |
| 16215 | end += size; |
| 16216 | |
| 16217 | /* We want an entire page of empty space, but don't increase the allocation size. */ |
| 16218 | desired_empty_end = vm_map_round_page(end, VM_MAP_PAGE_MASK(map)); |
| 16219 | |
| 16220 | if ((desired_empty_end > map->max_offset) || (desired_empty_end < start)) { |
| 16221 | if (map->wait_for_space) { |
| 16222 | if (size <= (map->max_offset - |
| 16223 | map->min_offset)) { |
| 16224 | assert_wait((event_t) map, THREAD_INTERRUPTIBLE); |
| 16225 | vm_map_unlock(map); |
| 16226 | thread_block(THREAD_CONTINUE_NULL); |
| 16227 | vm_map_lock(map); |
| 16228 | goto StartAgain; |
| 16229 | } |
| 16230 | } |
| 16231 | |
| 16232 | return(KERN_NO_SPACE); |
| 16233 | } |
| 16234 | |
| 16235 | next = entry->vme_next; |
| 16236 | |
| 16237 | if (map->holelistenabled) { |
| 16238 | if (entry->vme_end >= desired_empty_end) |
| 16239 | break; |
| 16240 | } else { |
| 16241 | /* |
| 16242 | * If there are no more entries, we must win. |
| 16243 | * |
| 16244 | * OR |
| 16245 | * |
| 16246 | * If there is another entry, it must be |
| 16247 | * after the end of the potential new region. |
| 16248 | */ |
| 16249 | |
| 16250 | if (next == vm_map_to_entry(map)) |
| 16251 | break; |
| 16252 | |
| 16253 | if (next->vme_start >= desired_empty_end) |
| 16254 | break; |
| 16255 | } |
| 16256 | |
| 16257 | /* |
| 16258 | * Didn't fit -- move to the next entry. |
| 16259 | */ |
| 16260 | |
| 16261 | entry = next; |
| 16262 | |
| 16263 | if (map->holelistenabled) { |
| 16264 | if (entry == CAST_TO_VM_MAP_ENTRY(map->holes_list)) { |
| 16265 | /* |
| 16266 | * Wrapped around |
| 16267 | */ |
| 16268 | return(KERN_NO_SPACE); |
| 16269 | } |
| 16270 | start = entry->vme_start; |
| 16271 | } else { |
| 16272 | start = entry->vme_end; |
| 16273 | } |
| 16274 | } |
| 16275 | |
| 16276 | if (map->holelistenabled) { |
| 16277 | |
| 16278 | if (vm_map_lookup_entry(map, entry->vme_start, &entry)) { |
| 16279 | panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n" , entry, (unsigned long long)entry->vme_start); |
| 16280 | } |
| 16281 | } |
| 16282 | |
| 16283 | *address = start; |
| 16284 | |
| 16285 | } else { |
| 16286 | vm_map_entry_t temp_entry; |
| 16287 | |
| 16288 | /* |
| 16289 | * Verify that: |
| 16290 | * the address doesn't itself violate |
| 16291 | * the mask requirement. |
| 16292 | */ |
| 16293 | |
| 16294 | if ((start & mask) != 0) |
| 16295 | return(KERN_NO_SPACE); |
| 16296 | |
| 16297 | |
| 16298 | /* |
| 16299 | * ... the address is within bounds |
| 16300 | */ |
| 16301 | |
| 16302 | end = start + size; |
| 16303 | |
| 16304 | if ((start < map->min_offset) || |
| 16305 | (end > map->max_offset) || |
| 16306 | (start >= end)) { |
| 16307 | return(KERN_INVALID_ADDRESS); |
| 16308 | } |
| 16309 | |
| 16310 | /* |
| 16311 | * If we're asked to overwrite whatever was mapped in that |
| 16312 | * range, first deallocate that range. |
| 16313 | */ |
| 16314 | if (flags & VM_FLAGS_OVERWRITE) { |
| 16315 | vm_map_t zap_map; |
| 16316 | int remove_flags = VM_MAP_REMOVE_SAVE_ENTRIES | VM_MAP_REMOVE_NO_MAP_ALIGN; |
| 16317 | |
| 16318 | /* |
| 16319 | * We use a "zap_map" to avoid having to unlock |
| 16320 | * the "map" in vm_map_delete(), which would compromise |
| 16321 | * the atomicity of the "deallocate" and then "remap" |
| 16322 | * combination. |
| 16323 | */ |
| 16324 | zap_map = vm_map_create(PMAP_NULL, |
| 16325 | start, |
| 16326 | end, |
| 16327 | map->hdr.entries_pageable); |
| 16328 | if (zap_map == VM_MAP_NULL) { |
| 16329 | return KERN_RESOURCE_SHORTAGE; |
| 16330 | } |
| 16331 | vm_map_set_page_shift(zap_map, VM_MAP_PAGE_SHIFT(map)); |
| 16332 | vm_map_disable_hole_optimization(zap_map); |
| 16333 | |
| 16334 | if (vmk_flags.vmkf_overwrite_immutable) { |
| 16335 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 16336 | } |
| 16337 | kr = vm_map_delete(map, start, end, |
| 16338 | remove_flags, |
| 16339 | zap_map); |
| 16340 | if (kr == KERN_SUCCESS) { |
| 16341 | vm_map_destroy(zap_map, |
| 16342 | VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 16343 | zap_map = VM_MAP_NULL; |
| 16344 | } |
| 16345 | } |
| 16346 | |
| 16347 | /* |
| 16348 | * ... the starting address isn't allocated |
| 16349 | */ |
| 16350 | |
| 16351 | if (vm_map_lookup_entry(map, start, &temp_entry)) |
| 16352 | return(KERN_NO_SPACE); |
| 16353 | |
| 16354 | entry = temp_entry; |
| 16355 | |
| 16356 | /* |
| 16357 | * ... the next region doesn't overlap the |
| 16358 | * end point. |
| 16359 | */ |
| 16360 | |
| 16361 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 16362 | (entry->vme_next->vme_start < end)) |
| 16363 | return(KERN_NO_SPACE); |
| 16364 | } |
| 16365 | *map_entry = entry; |
| 16366 | return(KERN_SUCCESS); |
| 16367 | } |
| 16368 | |
| 16369 | /* |
| 16370 | * vm_map_switch: |
| 16371 | * |
| 16372 | * Set the address map for the current thread to the specified map |
| 16373 | */ |
| 16374 | |
| 16375 | vm_map_t |
| 16376 | vm_map_switch( |
| 16377 | vm_map_t map) |
| 16378 | { |
| 16379 | int mycpu; |
| 16380 | thread_t thread = current_thread(); |
| 16381 | vm_map_t oldmap = thread->map; |
| 16382 | |
| 16383 | mp_disable_preemption(); |
| 16384 | mycpu = cpu_number(); |
| 16385 | |
| 16386 | /* |
| 16387 | * Deactivate the current map and activate the requested map |
| 16388 | */ |
| 16389 | PMAP_SWITCH_USER(thread, map, mycpu); |
| 16390 | |
| 16391 | mp_enable_preemption(); |
| 16392 | return(oldmap); |
| 16393 | } |
| 16394 | |
| 16395 | |
| 16396 | /* |
| 16397 | * Routine: vm_map_write_user |
| 16398 | * |
| 16399 | * Description: |
| 16400 | * Copy out data from a kernel space into space in the |
| 16401 | * destination map. The space must already exist in the |
| 16402 | * destination map. |
| 16403 | * NOTE: This routine should only be called by threads |
| 16404 | * which can block on a page fault. i.e. kernel mode user |
| 16405 | * threads. |
| 16406 | * |
| 16407 | */ |
| 16408 | kern_return_t |
| 16409 | vm_map_write_user( |
| 16410 | vm_map_t map, |
| 16411 | void *src_p, |
| 16412 | vm_map_address_t dst_addr, |
| 16413 | vm_size_t size) |
| 16414 | { |
| 16415 | kern_return_t kr = KERN_SUCCESS; |
| 16416 | |
| 16417 | if(current_map() == map) { |
| 16418 | if (copyout(src_p, dst_addr, size)) { |
| 16419 | kr = KERN_INVALID_ADDRESS; |
| 16420 | } |
| 16421 | } else { |
| 16422 | vm_map_t oldmap; |
| 16423 | |
| 16424 | /* take on the identity of the target map while doing */ |
| 16425 | /* the transfer */ |
| 16426 | |
| 16427 | vm_map_reference(map); |
| 16428 | oldmap = vm_map_switch(map); |
| 16429 | if (copyout(src_p, dst_addr, size)) { |
| 16430 | kr = KERN_INVALID_ADDRESS; |
| 16431 | } |
| 16432 | vm_map_switch(oldmap); |
| 16433 | vm_map_deallocate(map); |
| 16434 | } |
| 16435 | return kr; |
| 16436 | } |
| 16437 | |
| 16438 | /* |
| 16439 | * Routine: vm_map_read_user |
| 16440 | * |
| 16441 | * Description: |
| 16442 | * Copy in data from a user space source map into the |
| 16443 | * kernel map. The space must already exist in the |
| 16444 | * kernel map. |
| 16445 | * NOTE: This routine should only be called by threads |
| 16446 | * which can block on a page fault. i.e. kernel mode user |
| 16447 | * threads. |
| 16448 | * |
| 16449 | */ |
| 16450 | kern_return_t |
| 16451 | vm_map_read_user( |
| 16452 | vm_map_t map, |
| 16453 | vm_map_address_t src_addr, |
| 16454 | void *dst_p, |
| 16455 | vm_size_t size) |
| 16456 | { |
| 16457 | kern_return_t kr = KERN_SUCCESS; |
| 16458 | |
| 16459 | if(current_map() == map) { |
| 16460 | if (copyin(src_addr, dst_p, size)) { |
| 16461 | kr = KERN_INVALID_ADDRESS; |
| 16462 | } |
| 16463 | } else { |
| 16464 | vm_map_t oldmap; |
| 16465 | |
| 16466 | /* take on the identity of the target map while doing */ |
| 16467 | /* the transfer */ |
| 16468 | |
| 16469 | vm_map_reference(map); |
| 16470 | oldmap = vm_map_switch(map); |
| 16471 | if (copyin(src_addr, dst_p, size)) { |
| 16472 | kr = KERN_INVALID_ADDRESS; |
| 16473 | } |
| 16474 | vm_map_switch(oldmap); |
| 16475 | vm_map_deallocate(map); |
| 16476 | } |
| 16477 | return kr; |
| 16478 | } |
| 16479 | |
| 16480 | |
| 16481 | /* |
| 16482 | * vm_map_check_protection: |
| 16483 | * |
| 16484 | * Assert that the target map allows the specified |
| 16485 | * privilege on the entire address region given. |
| 16486 | * The entire region must be allocated. |
| 16487 | */ |
| 16488 | boolean_t |
| 16489 | vm_map_check_protection(vm_map_t map, vm_map_offset_t start, |
| 16490 | vm_map_offset_t end, vm_prot_t protection) |
| 16491 | { |
| 16492 | vm_map_entry_t entry; |
| 16493 | vm_map_entry_t tmp_entry; |
| 16494 | |
| 16495 | vm_map_lock(map); |
| 16496 | |
| 16497 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) |
| 16498 | { |
| 16499 | vm_map_unlock(map); |
| 16500 | return (FALSE); |
| 16501 | } |
| 16502 | |
| 16503 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 16504 | vm_map_unlock(map); |
| 16505 | return(FALSE); |
| 16506 | } |
| 16507 | |
| 16508 | entry = tmp_entry; |
| 16509 | |
| 16510 | while (start < end) { |
| 16511 | if (entry == vm_map_to_entry(map)) { |
| 16512 | vm_map_unlock(map); |
| 16513 | return(FALSE); |
| 16514 | } |
| 16515 | |
| 16516 | /* |
| 16517 | * No holes allowed! |
| 16518 | */ |
| 16519 | |
| 16520 | if (start < entry->vme_start) { |
| 16521 | vm_map_unlock(map); |
| 16522 | return(FALSE); |
| 16523 | } |
| 16524 | |
| 16525 | /* |
| 16526 | * Check protection associated with entry. |
| 16527 | */ |
| 16528 | |
| 16529 | if ((entry->protection & protection) != protection) { |
| 16530 | vm_map_unlock(map); |
| 16531 | return(FALSE); |
| 16532 | } |
| 16533 | |
| 16534 | /* go to next entry */ |
| 16535 | |
| 16536 | start = entry->vme_end; |
| 16537 | entry = entry->vme_next; |
| 16538 | } |
| 16539 | vm_map_unlock(map); |
| 16540 | return(TRUE); |
| 16541 | } |
| 16542 | |
| 16543 | kern_return_t |
| 16544 | vm_map_purgable_control( |
| 16545 | vm_map_t map, |
| 16546 | vm_map_offset_t address, |
| 16547 | vm_purgable_t control, |
| 16548 | int *state) |
| 16549 | { |
| 16550 | vm_map_entry_t entry; |
| 16551 | vm_object_t object; |
| 16552 | kern_return_t kr; |
| 16553 | boolean_t was_nonvolatile; |
| 16554 | |
| 16555 | /* |
| 16556 | * Vet all the input parameters and current type and state of the |
| 16557 | * underlaying object. Return with an error if anything is amiss. |
| 16558 | */ |
| 16559 | if (map == VM_MAP_NULL) |
| 16560 | return(KERN_INVALID_ARGUMENT); |
| 16561 | |
| 16562 | if (control != VM_PURGABLE_SET_STATE && |
| 16563 | control != VM_PURGABLE_GET_STATE && |
| 16564 | control != VM_PURGABLE_PURGE_ALL && |
| 16565 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) |
| 16566 | return(KERN_INVALID_ARGUMENT); |
| 16567 | |
| 16568 | if (control == VM_PURGABLE_PURGE_ALL) { |
| 16569 | vm_purgeable_object_purge_all(); |
| 16570 | return KERN_SUCCESS; |
| 16571 | } |
| 16572 | |
| 16573 | if ((control == VM_PURGABLE_SET_STATE || |
| 16574 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && |
| 16575 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || |
| 16576 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) |
| 16577 | return(KERN_INVALID_ARGUMENT); |
| 16578 | |
| 16579 | vm_map_lock_read(map); |
| 16580 | |
| 16581 | if (!vm_map_lookup_entry(map, address, &entry) || entry->is_sub_map) { |
| 16582 | |
| 16583 | /* |
| 16584 | * Must pass a valid non-submap address. |
| 16585 | */ |
| 16586 | vm_map_unlock_read(map); |
| 16587 | return(KERN_INVALID_ADDRESS); |
| 16588 | } |
| 16589 | |
| 16590 | if ((entry->protection & VM_PROT_WRITE) == 0) { |
| 16591 | /* |
| 16592 | * Can't apply purgable controls to something you can't write. |
| 16593 | */ |
| 16594 | vm_map_unlock_read(map); |
| 16595 | return(KERN_PROTECTION_FAILURE); |
| 16596 | } |
| 16597 | |
| 16598 | object = VME_OBJECT(entry); |
| 16599 | if (object == VM_OBJECT_NULL || |
| 16600 | object->purgable == VM_PURGABLE_DENY) { |
| 16601 | /* |
| 16602 | * Object must already be present and be purgeable. |
| 16603 | */ |
| 16604 | vm_map_unlock_read(map); |
| 16605 | return KERN_INVALID_ARGUMENT; |
| 16606 | } |
| 16607 | |
| 16608 | vm_object_lock(object); |
| 16609 | |
| 16610 | #if 00 |
| 16611 | if (VME_OFFSET(entry) != 0 || |
| 16612 | entry->vme_end - entry->vme_start != object->vo_size) { |
| 16613 | /* |
| 16614 | * Can only apply purgable controls to the whole (existing) |
| 16615 | * object at once. |
| 16616 | */ |
| 16617 | vm_map_unlock_read(map); |
| 16618 | vm_object_unlock(object); |
| 16619 | return KERN_INVALID_ARGUMENT; |
| 16620 | } |
| 16621 | #endif |
| 16622 | |
| 16623 | assert(!entry->is_sub_map); |
| 16624 | assert(!entry->use_pmap); /* purgeable has its own accounting */ |
| 16625 | |
| 16626 | vm_map_unlock_read(map); |
| 16627 | |
| 16628 | was_nonvolatile = (object->purgable == VM_PURGABLE_NONVOLATILE); |
| 16629 | |
| 16630 | kr = vm_object_purgable_control(object, control, state); |
| 16631 | |
| 16632 | if (was_nonvolatile && |
| 16633 | object->purgable != VM_PURGABLE_NONVOLATILE && |
| 16634 | map->pmap == kernel_pmap) { |
| 16635 | #if DEBUG |
| 16636 | object->vo_purgeable_volatilizer = kernel_task; |
| 16637 | #endif /* DEBUG */ |
| 16638 | } |
| 16639 | |
| 16640 | vm_object_unlock(object); |
| 16641 | |
| 16642 | return kr; |
| 16643 | } |
| 16644 | |
| 16645 | kern_return_t |
| 16646 | vm_map_page_query_internal( |
| 16647 | vm_map_t target_map, |
| 16648 | vm_map_offset_t offset, |
| 16649 | int *disposition, |
| 16650 | int *ref_count) |
| 16651 | { |
| 16652 | kern_return_t kr; |
| 16653 | vm_page_info_basic_data_t info; |
| 16654 | mach_msg_type_number_t count; |
| 16655 | |
| 16656 | count = VM_PAGE_INFO_BASIC_COUNT; |
| 16657 | kr = vm_map_page_info(target_map, |
| 16658 | offset, |
| 16659 | VM_PAGE_INFO_BASIC, |
| 16660 | (vm_page_info_t) &info, |
| 16661 | &count); |
| 16662 | if (kr == KERN_SUCCESS) { |
| 16663 | *disposition = info.disposition; |
| 16664 | *ref_count = info.ref_count; |
| 16665 | } else { |
| 16666 | *disposition = 0; |
| 16667 | *ref_count = 0; |
| 16668 | } |
| 16669 | |
| 16670 | return kr; |
| 16671 | } |
| 16672 | |
| 16673 | kern_return_t |
| 16674 | vm_map_page_info( |
| 16675 | vm_map_t map, |
| 16676 | vm_map_offset_t offset, |
| 16677 | vm_page_info_flavor_t flavor, |
| 16678 | vm_page_info_t info, |
| 16679 | mach_msg_type_number_t *count) |
| 16680 | { |
| 16681 | return (vm_map_page_range_info_internal(map, |
| 16682 | offset, /* start of range */ |
| 16683 | (offset + 1), /* this will get rounded in the call to the page boundary */ |
| 16684 | flavor, |
| 16685 | info, |
| 16686 | count)); |
| 16687 | } |
| 16688 | |
| 16689 | kern_return_t |
| 16690 | vm_map_page_range_info_internal( |
| 16691 | vm_map_t map, |
| 16692 | vm_map_offset_t start_offset, |
| 16693 | vm_map_offset_t end_offset, |
| 16694 | vm_page_info_flavor_t flavor, |
| 16695 | vm_page_info_t info, |
| 16696 | mach_msg_type_number_t *count) |
| 16697 | { |
| 16698 | vm_map_entry_t map_entry = VM_MAP_ENTRY_NULL; |
| 16699 | vm_object_t object = VM_OBJECT_NULL, curr_object = VM_OBJECT_NULL; |
| 16700 | vm_page_t m = VM_PAGE_NULL; |
| 16701 | kern_return_t retval = KERN_SUCCESS; |
| 16702 | int disposition = 0; |
| 16703 | int ref_count = 0; |
| 16704 | int depth = 0, info_idx = 0; |
| 16705 | vm_page_info_basic_t basic_info = 0; |
| 16706 | vm_map_offset_t offset_in_page = 0, offset_in_object = 0, curr_offset_in_object = 0; |
| 16707 | vm_map_offset_t start = 0, end = 0, curr_s_offset = 0, curr_e_offset = 0; |
| 16708 | boolean_t ; |
| 16709 | |
| 16710 | switch (flavor) { |
| 16711 | case VM_PAGE_INFO_BASIC: |
| 16712 | if (*count != VM_PAGE_INFO_BASIC_COUNT) { |
| 16713 | /* |
| 16714 | * The "vm_page_info_basic_data" structure was not |
| 16715 | * properly padded, so allow the size to be off by |
| 16716 | * one to maintain backwards binary compatibility... |
| 16717 | */ |
| 16718 | if (*count != VM_PAGE_INFO_BASIC_COUNT - 1) |
| 16719 | return KERN_INVALID_ARGUMENT; |
| 16720 | } |
| 16721 | break; |
| 16722 | default: |
| 16723 | return KERN_INVALID_ARGUMENT; |
| 16724 | } |
| 16725 | |
| 16726 | do_region_footprint = task_self_region_footprint(); |
| 16727 | disposition = 0; |
| 16728 | ref_count = 0; |
| 16729 | depth = 0; |
| 16730 | info_idx = 0; /* Tracks the next index within the info structure to be filled.*/ |
| 16731 | retval = KERN_SUCCESS; |
| 16732 | |
| 16733 | offset_in_page = start_offset & PAGE_MASK; |
| 16734 | start = vm_map_trunc_page(start_offset, PAGE_MASK); |
| 16735 | end = vm_map_round_page(end_offset, PAGE_MASK); |
| 16736 | |
| 16737 | assert ((end - start) <= MAX_PAGE_RANGE_QUERY); |
| 16738 | |
| 16739 | vm_map_lock_read(map); |
| 16740 | |
| 16741 | for (curr_s_offset = start; curr_s_offset < end;) { |
| 16742 | /* |
| 16743 | * New lookup needs reset of these variables. |
| 16744 | */ |
| 16745 | curr_object = object = VM_OBJECT_NULL; |
| 16746 | offset_in_object = 0; |
| 16747 | ref_count = 0; |
| 16748 | depth = 0; |
| 16749 | |
| 16750 | if (do_region_footprint && |
| 16751 | curr_s_offset >= vm_map_last_entry(map)->vme_end) { |
| 16752 | ledger_amount_t nonvol_compressed; |
| 16753 | |
| 16754 | /* |
| 16755 | * Request for "footprint" info about a page beyond |
| 16756 | * the end of address space: this must be for |
| 16757 | * the fake region vm_map_region_recurse_64() |
| 16758 | * reported to account for non-volatile purgeable |
| 16759 | * memory owned by this task. |
| 16760 | */ |
| 16761 | disposition = 0; |
| 16762 | nonvol_compressed = 0; |
| 16763 | ledger_get_balance( |
| 16764 | map->pmap->ledger, |
| 16765 | task_ledgers.purgeable_nonvolatile_compressed, |
| 16766 | &nonvol_compressed); |
| 16767 | if (curr_s_offset - vm_map_last_entry(map)->vme_end <= |
| 16768 | (unsigned) nonvol_compressed) { |
| 16769 | /* |
| 16770 | * We haven't reported all the "non-volatile |
| 16771 | * compressed" pages yet, so report this fake |
| 16772 | * page as "compressed". |
| 16773 | */ |
| 16774 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 16775 | } else { |
| 16776 | /* |
| 16777 | * We've reported all the non-volatile |
| 16778 | * compressed page but not all the non-volatile |
| 16779 | * pages , so report this fake page as |
| 16780 | * "resident dirty". |
| 16781 | */ |
| 16782 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 16783 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 16784 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 16785 | } |
| 16786 | switch (flavor) { |
| 16787 | case VM_PAGE_INFO_BASIC: |
| 16788 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 16789 | basic_info->disposition = disposition; |
| 16790 | basic_info->ref_count = 1; |
| 16791 | basic_info->object_id = INFO_MAKE_FAKE_OBJECT_ID(map, task_ledgers.purgeable_nonvolatile); |
| 16792 | basic_info->offset = 0; |
| 16793 | basic_info->depth = 0; |
| 16794 | |
| 16795 | info_idx++; |
| 16796 | break; |
| 16797 | } |
| 16798 | curr_s_offset += PAGE_SIZE; |
| 16799 | continue; |
| 16800 | } |
| 16801 | |
| 16802 | /* |
| 16803 | * First, find the map entry covering "curr_s_offset", going down |
| 16804 | * submaps if necessary. |
| 16805 | */ |
| 16806 | if (!vm_map_lookup_entry(map, curr_s_offset, &map_entry)) { |
| 16807 | /* no entry -> no object -> no page */ |
| 16808 | |
| 16809 | if (curr_s_offset < vm_map_min(map)) { |
| 16810 | /* |
| 16811 | * Illegal address that falls below map min. |
| 16812 | */ |
| 16813 | curr_e_offset = MIN(end, vm_map_min(map)); |
| 16814 | |
| 16815 | } else if (curr_s_offset >= vm_map_max(map)) { |
| 16816 | /* |
| 16817 | * Illegal address that falls on/after map max. |
| 16818 | */ |
| 16819 | curr_e_offset = end; |
| 16820 | |
| 16821 | } else if (map_entry == vm_map_to_entry(map)) { |
| 16822 | /* |
| 16823 | * Hit a hole. |
| 16824 | */ |
| 16825 | if (map_entry->vme_next == vm_map_to_entry(map)) { |
| 16826 | /* |
| 16827 | * Empty map. |
| 16828 | */ |
| 16829 | curr_e_offset = MIN(map->max_offset, end); |
| 16830 | } else { |
| 16831 | /* |
| 16832 | * Hole at start of the map. |
| 16833 | */ |
| 16834 | curr_e_offset = MIN(map_entry->vme_next->vme_start, end); |
| 16835 | } |
| 16836 | } else { |
| 16837 | if (map_entry->vme_next == vm_map_to_entry(map)) { |
| 16838 | /* |
| 16839 | * Hole at the end of the map. |
| 16840 | */ |
| 16841 | curr_e_offset = MIN(map->max_offset, end); |
| 16842 | } else { |
| 16843 | curr_e_offset = MIN(map_entry->vme_next->vme_start, end); |
| 16844 | } |
| 16845 | } |
| 16846 | |
| 16847 | assert(curr_e_offset >= curr_s_offset); |
| 16848 | |
| 16849 | uint64_t num_pages = (curr_e_offset - curr_s_offset) >> PAGE_SHIFT; |
| 16850 | |
| 16851 | void *info_ptr = (void*) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 16852 | |
| 16853 | bzero(info_ptr, num_pages * sizeof(struct vm_page_info_basic)); |
| 16854 | |
| 16855 | curr_s_offset = curr_e_offset; |
| 16856 | |
| 16857 | info_idx += num_pages; |
| 16858 | |
| 16859 | continue; |
| 16860 | } |
| 16861 | |
| 16862 | /* compute offset from this map entry's start */ |
| 16863 | offset_in_object = curr_s_offset - map_entry->vme_start; |
| 16864 | |
| 16865 | /* compute offset into this map entry's object (or submap) */ |
| 16866 | offset_in_object += VME_OFFSET(map_entry); |
| 16867 | |
| 16868 | if (map_entry->is_sub_map) { |
| 16869 | vm_map_t sub_map = VM_MAP_NULL; |
| 16870 | vm_page_info_t submap_info = 0; |
| 16871 | vm_map_offset_t submap_s_offset = 0, submap_e_offset = 0, range_len = 0; |
| 16872 | |
| 16873 | range_len = MIN(map_entry->vme_end, end) - curr_s_offset; |
| 16874 | |
| 16875 | submap_s_offset = offset_in_object; |
| 16876 | submap_e_offset = submap_s_offset + range_len; |
| 16877 | |
| 16878 | sub_map = VME_SUBMAP(map_entry); |
| 16879 | |
| 16880 | vm_map_reference(sub_map); |
| 16881 | vm_map_unlock_read(map); |
| 16882 | |
| 16883 | submap_info = (vm_page_info_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 16884 | |
| 16885 | retval = vm_map_page_range_info_internal(sub_map, |
| 16886 | submap_s_offset, |
| 16887 | submap_e_offset, |
| 16888 | VM_PAGE_INFO_BASIC, |
| 16889 | (vm_page_info_t) submap_info, |
| 16890 | count); |
| 16891 | |
| 16892 | assert(retval == KERN_SUCCESS); |
| 16893 | |
| 16894 | vm_map_lock_read(map); |
| 16895 | vm_map_deallocate(sub_map); |
| 16896 | |
| 16897 | /* Move the "info" index by the number of pages we inspected.*/ |
| 16898 | info_idx += range_len >> PAGE_SHIFT; |
| 16899 | |
| 16900 | /* Move our current offset by the size of the range we inspected.*/ |
| 16901 | curr_s_offset += range_len; |
| 16902 | |
| 16903 | continue; |
| 16904 | } |
| 16905 | |
| 16906 | object = VME_OBJECT(map_entry); |
| 16907 | if (object == VM_OBJECT_NULL) { |
| 16908 | |
| 16909 | /* |
| 16910 | * We don't have an object here and, hence, |
| 16911 | * no pages to inspect. We'll fill up the |
| 16912 | * info structure appropriately. |
| 16913 | */ |
| 16914 | |
| 16915 | curr_e_offset = MIN(map_entry->vme_end, end); |
| 16916 | |
| 16917 | uint64_t num_pages = (curr_e_offset - curr_s_offset) >> PAGE_SHIFT; |
| 16918 | |
| 16919 | void *info_ptr = (void*) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 16920 | |
| 16921 | bzero(info_ptr, num_pages * sizeof(struct vm_page_info_basic)); |
| 16922 | |
| 16923 | curr_s_offset = curr_e_offset; |
| 16924 | |
| 16925 | info_idx += num_pages; |
| 16926 | |
| 16927 | continue; |
| 16928 | } |
| 16929 | |
| 16930 | if (do_region_footprint) { |
| 16931 | int pmap_disp; |
| 16932 | |
| 16933 | disposition = 0; |
| 16934 | pmap_disp = 0; |
| 16935 | if (map->has_corpse_footprint) { |
| 16936 | /* |
| 16937 | * Query the page info data we saved |
| 16938 | * while forking the corpse. |
| 16939 | */ |
| 16940 | vm_map_corpse_footprint_query_page_info( |
| 16941 | map, |
| 16942 | curr_s_offset, |
| 16943 | &pmap_disp); |
| 16944 | } else { |
| 16945 | /* |
| 16946 | * Query the pmap. |
| 16947 | */ |
| 16948 | pmap_query_page_info(map->pmap, |
| 16949 | curr_s_offset, |
| 16950 | &pmap_disp); |
| 16951 | } |
| 16952 | if (object->purgable == VM_PURGABLE_NONVOLATILE && |
| 16953 | /* && not tagged as no-footprint? */ |
| 16954 | VM_OBJECT_OWNER(object) != NULL && |
| 16955 | VM_OBJECT_OWNER(object)->map == map) { |
| 16956 | if ((((curr_s_offset |
| 16957 | - map_entry->vme_start |
| 16958 | + VME_OFFSET(map_entry)) |
| 16959 | / PAGE_SIZE) < |
| 16960 | (object->resident_page_count + |
| 16961 | vm_compressor_pager_get_count(object->pager)))) { |
| 16962 | /* |
| 16963 | * Non-volatile purgeable object owned |
| 16964 | * by this task: report the first |
| 16965 | * "#resident + #compressed" pages as |
| 16966 | * "resident" (to show that they |
| 16967 | * contribute to the footprint) but not |
| 16968 | * "dirty" (to avoid double-counting |
| 16969 | * with the fake "non-volatile" region |
| 16970 | * we'll report at the end of the |
| 16971 | * address space to account for all |
| 16972 | * (mapped or not) non-volatile memory |
| 16973 | * owned by this task. |
| 16974 | */ |
| 16975 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 16976 | } |
| 16977 | } else if ((object->purgable == VM_PURGABLE_VOLATILE || |
| 16978 | object->purgable == VM_PURGABLE_EMPTY) && |
| 16979 | /* && not tagged as no-footprint? */ |
| 16980 | VM_OBJECT_OWNER(object) != NULL && |
| 16981 | VM_OBJECT_OWNER(object)->map == map) { |
| 16982 | if ((((curr_s_offset |
| 16983 | - map_entry->vme_start |
| 16984 | + VME_OFFSET(map_entry)) |
| 16985 | / PAGE_SIZE) < |
| 16986 | object->wired_page_count)) { |
| 16987 | /* |
| 16988 | * Volatile|empty purgeable object owned |
| 16989 | * by this task: report the first |
| 16990 | * "#wired" pages as "resident" (to |
| 16991 | * show that they contribute to the |
| 16992 | * footprint) but not "dirty" (to avoid |
| 16993 | * double-counting with the fake |
| 16994 | * "non-volatile" region we'll report |
| 16995 | * at the end of the address space to |
| 16996 | * account for all (mapped or not) |
| 16997 | * non-volatile memory owned by this |
| 16998 | * task. |
| 16999 | */ |
| 17000 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 17001 | } |
| 17002 | } else if (map_entry->iokit_acct && |
| 17003 | object->internal && |
| 17004 | object->purgable == VM_PURGABLE_DENY) { |
| 17005 | /* |
| 17006 | * Non-purgeable IOKit memory: phys_footprint |
| 17007 | * includes the entire virtual mapping. |
| 17008 | */ |
| 17009 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 17010 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 17011 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 17012 | } else if (pmap_disp & (PMAP_QUERY_PAGE_ALTACCT | |
| 17013 | PMAP_QUERY_PAGE_COMPRESSED_ALTACCT)) { |
| 17014 | /* alternate accounting */ |
| 17015 | #if CONFIG_EMBEDDED && (DEVELOPMENT || DEBUG) |
| 17016 | if (map->pmap->footprint_was_suspended || |
| 17017 | /* |
| 17018 | * XXX corpse does not know if original |
| 17019 | * pmap had its footprint suspended... |
| 17020 | */ |
| 17021 | map->has_corpse_footprint) { |
| 17022 | /* |
| 17023 | * The assertion below can fail if dyld |
| 17024 | * suspended footprint accounting |
| 17025 | * while doing some adjustments to |
| 17026 | * this page; the mapping would say |
| 17027 | * "use pmap accounting" but the page |
| 17028 | * would be marked "alternate |
| 17029 | * accounting". |
| 17030 | */ |
| 17031 | } else |
| 17032 | #endif /* CONFIG_EMBEDDED && (DEVELOPMENT || DEBUG) */ |
| 17033 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 17034 | pmap_disp = 0; |
| 17035 | } else { |
| 17036 | if (pmap_disp & PMAP_QUERY_PAGE_PRESENT) { |
| 17037 | assertf(map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 17038 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 17039 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 17040 | if (pmap_disp & PMAP_QUERY_PAGE_INTERNAL) { |
| 17041 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 17042 | } else { |
| 17043 | disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL; |
| 17044 | } |
| 17045 | } else if (pmap_disp & PMAP_QUERY_PAGE_COMPRESSED) { |
| 17046 | assertf(map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 17047 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 17048 | } |
| 17049 | } |
| 17050 | switch (flavor) { |
| 17051 | case VM_PAGE_INFO_BASIC: |
| 17052 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 17053 | basic_info->disposition = disposition; |
| 17054 | basic_info->ref_count = 1; |
| 17055 | basic_info->object_id = INFO_MAKE_FAKE_OBJECT_ID(map, task_ledgers.purgeable_nonvolatile); |
| 17056 | basic_info->offset = 0; |
| 17057 | basic_info->depth = 0; |
| 17058 | |
| 17059 | info_idx++; |
| 17060 | break; |
| 17061 | } |
| 17062 | curr_s_offset += PAGE_SIZE; |
| 17063 | continue; |
| 17064 | } |
| 17065 | |
| 17066 | vm_object_reference(object); |
| 17067 | /* |
| 17068 | * Shared mode -- so we can allow other readers |
| 17069 | * to grab the lock too. |
| 17070 | */ |
| 17071 | vm_object_lock_shared(object); |
| 17072 | |
| 17073 | curr_e_offset = MIN(map_entry->vme_end, end); |
| 17074 | |
| 17075 | vm_map_unlock_read(map); |
| 17076 | |
| 17077 | map_entry = NULL; /* map is unlocked, the entry is no longer valid. */ |
| 17078 | |
| 17079 | curr_object = object; |
| 17080 | |
| 17081 | for (; curr_s_offset < curr_e_offset;) { |
| 17082 | |
| 17083 | if (object == curr_object) { |
| 17084 | ref_count = curr_object->ref_count - 1; /* account for our object reference above. */ |
| 17085 | } else { |
| 17086 | ref_count = curr_object->ref_count; |
| 17087 | } |
| 17088 | |
| 17089 | curr_offset_in_object = offset_in_object; |
| 17090 | |
| 17091 | for (;;) { |
| 17092 | m = vm_page_lookup(curr_object, curr_offset_in_object); |
| 17093 | |
| 17094 | if (m != VM_PAGE_NULL) { |
| 17095 | |
| 17096 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 17097 | break; |
| 17098 | |
| 17099 | } else { |
| 17100 | if (curr_object->internal && |
| 17101 | curr_object->alive && |
| 17102 | !curr_object->terminating && |
| 17103 | curr_object->pager_ready) { |
| 17104 | |
| 17105 | if (VM_COMPRESSOR_PAGER_STATE_GET(curr_object, curr_offset_in_object) |
| 17106 | == VM_EXTERNAL_STATE_EXISTS) { |
| 17107 | /* the pager has that page */ |
| 17108 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 17109 | break; |
| 17110 | } |
| 17111 | } |
| 17112 | |
| 17113 | /* |
| 17114 | * Go down the VM object shadow chain until we find the page |
| 17115 | * we're looking for. |
| 17116 | */ |
| 17117 | |
| 17118 | if (curr_object->shadow != VM_OBJECT_NULL) { |
| 17119 | vm_object_t shadow = VM_OBJECT_NULL; |
| 17120 | |
| 17121 | curr_offset_in_object += curr_object->vo_shadow_offset; |
| 17122 | shadow = curr_object->shadow; |
| 17123 | |
| 17124 | vm_object_lock_shared(shadow); |
| 17125 | vm_object_unlock(curr_object); |
| 17126 | |
| 17127 | curr_object = shadow; |
| 17128 | depth++; |
| 17129 | continue; |
| 17130 | } else { |
| 17131 | |
| 17132 | break; |
| 17133 | } |
| 17134 | } |
| 17135 | } |
| 17136 | |
| 17137 | /* The ref_count is not strictly accurate, it measures the number */ |
| 17138 | /* of entities holding a ref on the object, they may not be mapping */ |
| 17139 | /* the object or may not be mapping the section holding the */ |
| 17140 | /* target page but its still a ball park number and though an over- */ |
| 17141 | /* count, it picks up the copy-on-write cases */ |
| 17142 | |
| 17143 | /* We could also get a picture of page sharing from pmap_attributes */ |
| 17144 | /* but this would under count as only faulted-in mappings would */ |
| 17145 | /* show up. */ |
| 17146 | |
| 17147 | if ((curr_object == object) && curr_object->shadow) |
| 17148 | disposition |= VM_PAGE_QUERY_PAGE_COPIED; |
| 17149 | |
| 17150 | if (! curr_object->internal) |
| 17151 | disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL; |
| 17152 | |
| 17153 | if (m != VM_PAGE_NULL) { |
| 17154 | |
| 17155 | if (m->vmp_fictitious) { |
| 17156 | |
| 17157 | disposition |= VM_PAGE_QUERY_PAGE_FICTITIOUS; |
| 17158 | |
| 17159 | } else { |
| 17160 | if (m->vmp_dirty || pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m))) |
| 17161 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 17162 | |
| 17163 | if (m->vmp_reference || pmap_is_referenced(VM_PAGE_GET_PHYS_PAGE(m))) |
| 17164 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 17165 | |
| 17166 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) |
| 17167 | disposition |= VM_PAGE_QUERY_PAGE_SPECULATIVE; |
| 17168 | |
| 17169 | if (m->vmp_cs_validated) |
| 17170 | disposition |= VM_PAGE_QUERY_PAGE_CS_VALIDATED; |
| 17171 | if (m->vmp_cs_tainted) |
| 17172 | disposition |= VM_PAGE_QUERY_PAGE_CS_TAINTED; |
| 17173 | if (m->vmp_cs_nx) |
| 17174 | disposition |= VM_PAGE_QUERY_PAGE_CS_NX; |
| 17175 | } |
| 17176 | } |
| 17177 | |
| 17178 | switch (flavor) { |
| 17179 | case VM_PAGE_INFO_BASIC: |
| 17180 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 17181 | basic_info->disposition = disposition; |
| 17182 | basic_info->ref_count = ref_count; |
| 17183 | basic_info->object_id = (vm_object_id_t) (uintptr_t) |
| 17184 | VM_KERNEL_ADDRPERM(curr_object); |
| 17185 | basic_info->offset = |
| 17186 | (memory_object_offset_t) curr_offset_in_object + offset_in_page; |
| 17187 | basic_info->depth = depth; |
| 17188 | |
| 17189 | info_idx++; |
| 17190 | break; |
| 17191 | } |
| 17192 | |
| 17193 | disposition = 0; |
| 17194 | offset_in_page = 0; // This doesn't really make sense for any offset other than the starting offset. |
| 17195 | |
| 17196 | /* |
| 17197 | * Move to next offset in the range and in our object. |
| 17198 | */ |
| 17199 | curr_s_offset += PAGE_SIZE; |
| 17200 | offset_in_object += PAGE_SIZE; |
| 17201 | curr_offset_in_object = offset_in_object; |
| 17202 | |
| 17203 | if (curr_object != object) { |
| 17204 | |
| 17205 | vm_object_unlock(curr_object); |
| 17206 | |
| 17207 | curr_object = object; |
| 17208 | |
| 17209 | vm_object_lock_shared(curr_object); |
| 17210 | } else { |
| 17211 | |
| 17212 | vm_object_lock_yield_shared(curr_object); |
| 17213 | } |
| 17214 | } |
| 17215 | |
| 17216 | vm_object_unlock(curr_object); |
| 17217 | vm_object_deallocate(curr_object); |
| 17218 | |
| 17219 | vm_map_lock_read(map); |
| 17220 | } |
| 17221 | |
| 17222 | vm_map_unlock_read(map); |
| 17223 | return retval; |
| 17224 | } |
| 17225 | |
| 17226 | /* |
| 17227 | * vm_map_msync |
| 17228 | * |
| 17229 | * Synchronises the memory range specified with its backing store |
| 17230 | * image by either flushing or cleaning the contents to the appropriate |
| 17231 | * memory manager engaging in a memory object synchronize dialog with |
| 17232 | * the manager. The client doesn't return until the manager issues |
| 17233 | * m_o_s_completed message. MIG Magically converts user task parameter |
| 17234 | * to the task's address map. |
| 17235 | * |
| 17236 | * interpretation of sync_flags |
| 17237 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 17238 | * pages to manager. |
| 17239 | * |
| 17240 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 17241 | * - discard pages, write dirty or precious |
| 17242 | * pages back to memory manager. |
| 17243 | * |
| 17244 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 17245 | * - write dirty or precious pages back to |
| 17246 | * the memory manager. |
| 17247 | * |
| 17248 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 17249 | * is a hole in the region, and we would |
| 17250 | * have returned KERN_SUCCESS, return |
| 17251 | * KERN_INVALID_ADDRESS instead. |
| 17252 | * |
| 17253 | * NOTE |
| 17254 | * The memory object attributes have not yet been implemented, this |
| 17255 | * function will have to deal with the invalidate attribute |
| 17256 | * |
| 17257 | * RETURNS |
| 17258 | * KERN_INVALID_TASK Bad task parameter |
| 17259 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 17260 | * KERN_SUCCESS The usual. |
| 17261 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 17262 | */ |
| 17263 | |
| 17264 | kern_return_t |
| 17265 | vm_map_msync( |
| 17266 | vm_map_t map, |
| 17267 | vm_map_address_t address, |
| 17268 | vm_map_size_t size, |
| 17269 | vm_sync_t sync_flags) |
| 17270 | { |
| 17271 | vm_map_entry_t entry; |
| 17272 | vm_map_size_t amount_left; |
| 17273 | vm_object_offset_t offset; |
| 17274 | boolean_t do_sync_req; |
| 17275 | boolean_t had_hole = FALSE; |
| 17276 | vm_map_offset_t pmap_offset; |
| 17277 | |
| 17278 | if ((sync_flags & VM_SYNC_ASYNCHRONOUS) && |
| 17279 | (sync_flags & VM_SYNC_SYNCHRONOUS)) |
| 17280 | return(KERN_INVALID_ARGUMENT); |
| 17281 | |
| 17282 | /* |
| 17283 | * align address and size on page boundaries |
| 17284 | */ |
| 17285 | size = (vm_map_round_page(address + size, |
| 17286 | VM_MAP_PAGE_MASK(map)) - |
| 17287 | vm_map_trunc_page(address, |
| 17288 | VM_MAP_PAGE_MASK(map))); |
| 17289 | address = vm_map_trunc_page(address, |
| 17290 | VM_MAP_PAGE_MASK(map)); |
| 17291 | |
| 17292 | if (map == VM_MAP_NULL) |
| 17293 | return(KERN_INVALID_TASK); |
| 17294 | |
| 17295 | if (size == 0) |
| 17296 | return(KERN_SUCCESS); |
| 17297 | |
| 17298 | amount_left = size; |
| 17299 | |
| 17300 | while (amount_left > 0) { |
| 17301 | vm_object_size_t flush_size; |
| 17302 | vm_object_t object; |
| 17303 | |
| 17304 | vm_map_lock(map); |
| 17305 | if (!vm_map_lookup_entry(map, |
| 17306 | address, |
| 17307 | &entry)) { |
| 17308 | |
| 17309 | vm_map_size_t skip; |
| 17310 | |
| 17311 | /* |
| 17312 | * hole in the address map. |
| 17313 | */ |
| 17314 | had_hole = TRUE; |
| 17315 | |
| 17316 | if (sync_flags & VM_SYNC_KILLPAGES) { |
| 17317 | /* |
| 17318 | * For VM_SYNC_KILLPAGES, there should be |
| 17319 | * no holes in the range, since we couldn't |
| 17320 | * prevent someone else from allocating in |
| 17321 | * that hole and we wouldn't want to "kill" |
| 17322 | * their pages. |
| 17323 | */ |
| 17324 | vm_map_unlock(map); |
| 17325 | break; |
| 17326 | } |
| 17327 | |
| 17328 | /* |
| 17329 | * Check for empty map. |
| 17330 | */ |
| 17331 | if (entry == vm_map_to_entry(map) && |
| 17332 | entry->vme_next == entry) { |
| 17333 | vm_map_unlock(map); |
| 17334 | break; |
| 17335 | } |
| 17336 | /* |
| 17337 | * Check that we don't wrap and that |
| 17338 | * we have at least one real map entry. |
| 17339 | */ |
| 17340 | if ((map->hdr.nentries == 0) || |
| 17341 | (entry->vme_next->vme_start < address)) { |
| 17342 | vm_map_unlock(map); |
| 17343 | break; |
| 17344 | } |
| 17345 | /* |
| 17346 | * Move up to the next entry if needed |
| 17347 | */ |
| 17348 | skip = (entry->vme_next->vme_start - address); |
| 17349 | if (skip >= amount_left) |
| 17350 | amount_left = 0; |
| 17351 | else |
| 17352 | amount_left -= skip; |
| 17353 | address = entry->vme_next->vme_start; |
| 17354 | vm_map_unlock(map); |
| 17355 | continue; |
| 17356 | } |
| 17357 | |
| 17358 | offset = address - entry->vme_start; |
| 17359 | pmap_offset = address; |
| 17360 | |
| 17361 | /* |
| 17362 | * do we have more to flush than is contained in this |
| 17363 | * entry ? |
| 17364 | */ |
| 17365 | if (amount_left + entry->vme_start + offset > entry->vme_end) { |
| 17366 | flush_size = entry->vme_end - |
| 17367 | (entry->vme_start + offset); |
| 17368 | } else { |
| 17369 | flush_size = amount_left; |
| 17370 | } |
| 17371 | amount_left -= flush_size; |
| 17372 | address += flush_size; |
| 17373 | |
| 17374 | if (entry->is_sub_map == TRUE) { |
| 17375 | vm_map_t local_map; |
| 17376 | vm_map_offset_t local_offset; |
| 17377 | |
| 17378 | local_map = VME_SUBMAP(entry); |
| 17379 | local_offset = VME_OFFSET(entry); |
| 17380 | vm_map_unlock(map); |
| 17381 | if (vm_map_msync( |
| 17382 | local_map, |
| 17383 | local_offset, |
| 17384 | flush_size, |
| 17385 | sync_flags) == KERN_INVALID_ADDRESS) { |
| 17386 | had_hole = TRUE; |
| 17387 | } |
| 17388 | continue; |
| 17389 | } |
| 17390 | object = VME_OBJECT(entry); |
| 17391 | |
| 17392 | /* |
| 17393 | * We can't sync this object if the object has not been |
| 17394 | * created yet |
| 17395 | */ |
| 17396 | if (object == VM_OBJECT_NULL) { |
| 17397 | vm_map_unlock(map); |
| 17398 | continue; |
| 17399 | } |
| 17400 | offset += VME_OFFSET(entry); |
| 17401 | |
| 17402 | vm_object_lock(object); |
| 17403 | |
| 17404 | if (sync_flags & (VM_SYNC_KILLPAGES | VM_SYNC_DEACTIVATE)) { |
| 17405 | int kill_pages = 0; |
| 17406 | boolean_t reusable_pages = FALSE; |
| 17407 | |
| 17408 | if (sync_flags & VM_SYNC_KILLPAGES) { |
| 17409 | if (((object->ref_count == 1) || |
| 17410 | ((object->copy_strategy != |
| 17411 | MEMORY_OBJECT_COPY_SYMMETRIC) && |
| 17412 | (object->copy == VM_OBJECT_NULL))) && |
| 17413 | (object->shadow == VM_OBJECT_NULL)) { |
| 17414 | if (object->ref_count != 1) { |
| 17415 | vm_page_stats_reusable.free_shared++; |
| 17416 | } |
| 17417 | kill_pages = 1; |
| 17418 | } else { |
| 17419 | kill_pages = -1; |
| 17420 | } |
| 17421 | } |
| 17422 | if (kill_pages != -1) |
| 17423 | vm_object_deactivate_pages( |
| 17424 | object, |
| 17425 | offset, |
| 17426 | (vm_object_size_t) flush_size, |
| 17427 | kill_pages, |
| 17428 | reusable_pages, |
| 17429 | map->pmap, |
| 17430 | pmap_offset); |
| 17431 | vm_object_unlock(object); |
| 17432 | vm_map_unlock(map); |
| 17433 | continue; |
| 17434 | } |
| 17435 | /* |
| 17436 | * We can't sync this object if there isn't a pager. |
| 17437 | * Don't bother to sync internal objects, since there can't |
| 17438 | * be any "permanent" storage for these objects anyway. |
| 17439 | */ |
| 17440 | if ((object->pager == MEMORY_OBJECT_NULL) || |
| 17441 | (object->internal) || (object->private)) { |
| 17442 | vm_object_unlock(object); |
| 17443 | vm_map_unlock(map); |
| 17444 | continue; |
| 17445 | } |
| 17446 | /* |
| 17447 | * keep reference on the object until syncing is done |
| 17448 | */ |
| 17449 | vm_object_reference_locked(object); |
| 17450 | vm_object_unlock(object); |
| 17451 | |
| 17452 | vm_map_unlock(map); |
| 17453 | |
| 17454 | do_sync_req = vm_object_sync(object, |
| 17455 | offset, |
| 17456 | flush_size, |
| 17457 | sync_flags & VM_SYNC_INVALIDATE, |
| 17458 | ((sync_flags & VM_SYNC_SYNCHRONOUS) || |
| 17459 | (sync_flags & VM_SYNC_ASYNCHRONOUS)), |
| 17460 | sync_flags & VM_SYNC_SYNCHRONOUS); |
| 17461 | |
| 17462 | if ((sync_flags & VM_SYNC_INVALIDATE) && object->resident_page_count == 0) { |
| 17463 | /* |
| 17464 | * clear out the clustering and read-ahead hints |
| 17465 | */ |
| 17466 | vm_object_lock(object); |
| 17467 | |
| 17468 | object->pages_created = 0; |
| 17469 | object->pages_used = 0; |
| 17470 | object->sequential = 0; |
| 17471 | object->last_alloc = 0; |
| 17472 | |
| 17473 | vm_object_unlock(object); |
| 17474 | } |
| 17475 | vm_object_deallocate(object); |
| 17476 | } /* while */ |
| 17477 | |
| 17478 | /* for proper msync() behaviour */ |
| 17479 | if (had_hole == TRUE && (sync_flags & VM_SYNC_CONTIGUOUS)) |
| 17480 | return(KERN_INVALID_ADDRESS); |
| 17481 | |
| 17482 | return(KERN_SUCCESS); |
| 17483 | }/* vm_msync */ |
| 17484 | |
| 17485 | /* |
| 17486 | * Routine: convert_port_entry_to_map |
| 17487 | * Purpose: |
| 17488 | * Convert from a port specifying an entry or a task |
| 17489 | * to a map. Doesn't consume the port ref; produces a map ref, |
| 17490 | * which may be null. Unlike convert_port_to_map, the |
| 17491 | * port may be task or a named entry backed. |
| 17492 | * Conditions: |
| 17493 | * Nothing locked. |
| 17494 | */ |
| 17495 | |
| 17496 | |
| 17497 | vm_map_t |
| 17498 | convert_port_entry_to_map( |
| 17499 | ipc_port_t port) |
| 17500 | { |
| 17501 | vm_map_t map; |
| 17502 | vm_named_entry_t named_entry; |
| 17503 | uint32_t try_failed_count = 0; |
| 17504 | |
| 17505 | if(IP_VALID(port) && (ip_kotype(port) == IKOT_NAMED_ENTRY)) { |
| 17506 | while(TRUE) { |
| 17507 | ip_lock(port); |
| 17508 | if(ip_active(port) && (ip_kotype(port) |
| 17509 | == IKOT_NAMED_ENTRY)) { |
| 17510 | named_entry = |
| 17511 | (vm_named_entry_t)port->ip_kobject; |
| 17512 | if (!(lck_mtx_try_lock(&(named_entry)->Lock))) { |
| 17513 | ip_unlock(port); |
| 17514 | |
| 17515 | try_failed_count++; |
| 17516 | mutex_pause(try_failed_count); |
| 17517 | continue; |
| 17518 | } |
| 17519 | named_entry->ref_count++; |
| 17520 | lck_mtx_unlock(&(named_entry)->Lock); |
| 17521 | ip_unlock(port); |
| 17522 | if ((named_entry->is_sub_map) && |
| 17523 | (named_entry->protection |
| 17524 | & VM_PROT_WRITE)) { |
| 17525 | map = named_entry->backing.map; |
| 17526 | } else { |
| 17527 | mach_destroy_memory_entry(port); |
| 17528 | return VM_MAP_NULL; |
| 17529 | } |
| 17530 | vm_map_reference_swap(map); |
| 17531 | mach_destroy_memory_entry(port); |
| 17532 | break; |
| 17533 | } |
| 17534 | else |
| 17535 | return VM_MAP_NULL; |
| 17536 | } |
| 17537 | } |
| 17538 | else |
| 17539 | map = convert_port_to_map(port); |
| 17540 | |
| 17541 | return map; |
| 17542 | } |
| 17543 | |
| 17544 | /* |
| 17545 | * Routine: convert_port_entry_to_object |
| 17546 | * Purpose: |
| 17547 | * Convert from a port specifying a named entry to an |
| 17548 | * object. Doesn't consume the port ref; produces a map ref, |
| 17549 | * which may be null. |
| 17550 | * Conditions: |
| 17551 | * Nothing locked. |
| 17552 | */ |
| 17553 | |
| 17554 | |
| 17555 | vm_object_t |
| 17556 | convert_port_entry_to_object( |
| 17557 | ipc_port_t port) |
| 17558 | { |
| 17559 | vm_object_t object = VM_OBJECT_NULL; |
| 17560 | vm_named_entry_t named_entry; |
| 17561 | uint32_t try_failed_count = 0; |
| 17562 | |
| 17563 | if (IP_VALID(port) && |
| 17564 | (ip_kotype(port) == IKOT_NAMED_ENTRY)) { |
| 17565 | try_again: |
| 17566 | ip_lock(port); |
| 17567 | if (ip_active(port) && |
| 17568 | (ip_kotype(port) == IKOT_NAMED_ENTRY)) { |
| 17569 | named_entry = (vm_named_entry_t)port->ip_kobject; |
| 17570 | if (!(lck_mtx_try_lock(&(named_entry)->Lock))) { |
| 17571 | ip_unlock(port); |
| 17572 | try_failed_count++; |
| 17573 | mutex_pause(try_failed_count); |
| 17574 | goto try_again; |
| 17575 | } |
| 17576 | named_entry->ref_count++; |
| 17577 | lck_mtx_unlock(&(named_entry)->Lock); |
| 17578 | ip_unlock(port); |
| 17579 | if (!(named_entry->is_sub_map) && |
| 17580 | !(named_entry->is_copy) && |
| 17581 | (named_entry->protection & VM_PROT_WRITE)) { |
| 17582 | object = named_entry->backing.object; |
| 17583 | vm_object_reference(object); |
| 17584 | } |
| 17585 | mach_destroy_memory_entry(port); |
| 17586 | } |
| 17587 | } |
| 17588 | |
| 17589 | return object; |
| 17590 | } |
| 17591 | |
| 17592 | /* |
| 17593 | * Export routines to other components for the things we access locally through |
| 17594 | * macros. |
| 17595 | */ |
| 17596 | #undef current_map |
| 17597 | vm_map_t |
| 17598 | current_map(void) |
| 17599 | { |
| 17600 | return (current_map_fast()); |
| 17601 | } |
| 17602 | |
| 17603 | /* |
| 17604 | * vm_map_reference: |
| 17605 | * |
| 17606 | * Most code internal to the osfmk will go through a |
| 17607 | * macro defining this. This is always here for the |
| 17608 | * use of other kernel components. |
| 17609 | */ |
| 17610 | #undef vm_map_reference |
| 17611 | void |
| 17612 | vm_map_reference( |
| 17613 | vm_map_t map) |
| 17614 | { |
| 17615 | if (map == VM_MAP_NULL) |
| 17616 | return; |
| 17617 | |
| 17618 | lck_mtx_lock(&map->s_lock); |
| 17619 | #if TASK_SWAPPER |
| 17620 | assert(map->res_count > 0); |
| 17621 | assert(map->map_refcnt >= map->res_count); |
| 17622 | map->res_count++; |
| 17623 | #endif |
| 17624 | map->map_refcnt++; |
| 17625 | lck_mtx_unlock(&map->s_lock); |
| 17626 | } |
| 17627 | |
| 17628 | /* |
| 17629 | * vm_map_deallocate: |
| 17630 | * |
| 17631 | * Removes a reference from the specified map, |
| 17632 | * destroying it if no references remain. |
| 17633 | * The map should not be locked. |
| 17634 | */ |
| 17635 | void |
| 17636 | vm_map_deallocate( |
| 17637 | vm_map_t map) |
| 17638 | { |
| 17639 | unsigned int ref; |
| 17640 | |
| 17641 | if (map == VM_MAP_NULL) |
| 17642 | return; |
| 17643 | |
| 17644 | lck_mtx_lock(&map->s_lock); |
| 17645 | ref = --map->map_refcnt; |
| 17646 | if (ref > 0) { |
| 17647 | vm_map_res_deallocate(map); |
| 17648 | lck_mtx_unlock(&map->s_lock); |
| 17649 | return; |
| 17650 | } |
| 17651 | assert(map->map_refcnt == 0); |
| 17652 | lck_mtx_unlock(&map->s_lock); |
| 17653 | |
| 17654 | #if TASK_SWAPPER |
| 17655 | /* |
| 17656 | * The map residence count isn't decremented here because |
| 17657 | * the vm_map_delete below will traverse the entire map, |
| 17658 | * deleting entries, and the residence counts on objects |
| 17659 | * and sharing maps will go away then. |
| 17660 | */ |
| 17661 | #endif |
| 17662 | |
| 17663 | vm_map_destroy(map, VM_MAP_REMOVE_NO_FLAGS); |
| 17664 | } |
| 17665 | |
| 17666 | |
| 17667 | void |
| 17668 | vm_map_disable_NX(vm_map_t map) |
| 17669 | { |
| 17670 | if (map == NULL) |
| 17671 | return; |
| 17672 | if (map->pmap == NULL) |
| 17673 | return; |
| 17674 | |
| 17675 | pmap_disable_NX(map->pmap); |
| 17676 | } |
| 17677 | |
| 17678 | void |
| 17679 | vm_map_disallow_data_exec(vm_map_t map) |
| 17680 | { |
| 17681 | if (map == NULL) |
| 17682 | return; |
| 17683 | |
| 17684 | map->map_disallow_data_exec = TRUE; |
| 17685 | } |
| 17686 | |
| 17687 | /* XXX Consider making these constants (VM_MAX_ADDRESS and MACH_VM_MAX_ADDRESS) |
| 17688 | * more descriptive. |
| 17689 | */ |
| 17690 | void |
| 17691 | vm_map_set_32bit(vm_map_t map) |
| 17692 | { |
| 17693 | #if defined(__arm__) || defined(__arm64__) |
| 17694 | map->max_offset = pmap_max_offset(FALSE, ARM_PMAP_MAX_OFFSET_DEVICE); |
| 17695 | #else |
| 17696 | map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS; |
| 17697 | #endif |
| 17698 | } |
| 17699 | |
| 17700 | |
| 17701 | void |
| 17702 | vm_map_set_64bit(vm_map_t map) |
| 17703 | { |
| 17704 | #if defined(__arm__) || defined(__arm64__) |
| 17705 | map->max_offset = pmap_max_offset(TRUE, ARM_PMAP_MAX_OFFSET_DEVICE); |
| 17706 | #else |
| 17707 | map->max_offset = (vm_map_offset_t)MACH_VM_MAX_ADDRESS; |
| 17708 | #endif |
| 17709 | } |
| 17710 | |
| 17711 | /* |
| 17712 | * Expand the maximum size of an existing map to the maximum supported. |
| 17713 | */ |
| 17714 | void |
| 17715 | vm_map_set_jumbo(vm_map_t map) |
| 17716 | { |
| 17717 | #if defined (__arm64__) |
| 17718 | vm_map_set_max_addr(map, ~0); |
| 17719 | #else /* arm64 */ |
| 17720 | (void) map; |
| 17721 | #endif |
| 17722 | } |
| 17723 | |
| 17724 | /* |
| 17725 | * Expand the maximum size of an existing map. |
| 17726 | */ |
| 17727 | void |
| 17728 | vm_map_set_max_addr(vm_map_t map, vm_map_offset_t new_max_offset) |
| 17729 | { |
| 17730 | #if defined(__arm64__) |
| 17731 | vm_map_offset_t max_supported_offset = 0; |
| 17732 | vm_map_offset_t old_max_offset = map->max_offset; |
| 17733 | max_supported_offset = pmap_max_offset(vm_map_is_64bit(map), ARM_PMAP_MAX_OFFSET_JUMBO); |
| 17734 | |
| 17735 | new_max_offset = trunc_page(new_max_offset); |
| 17736 | |
| 17737 | /* The address space cannot be shrunk using this routine. */ |
| 17738 | if (old_max_offset >= new_max_offset) { |
| 17739 | return; |
| 17740 | } |
| 17741 | |
| 17742 | if (max_supported_offset < new_max_offset) { |
| 17743 | new_max_offset = max_supported_offset; |
| 17744 | } |
| 17745 | |
| 17746 | map->max_offset = new_max_offset; |
| 17747 | |
| 17748 | if (map->holes_list->prev->vme_end == old_max_offset) { |
| 17749 | /* |
| 17750 | * There is already a hole at the end of the map; simply make it bigger. |
| 17751 | */ |
| 17752 | map->holes_list->prev->vme_end = map->max_offset; |
| 17753 | } else { |
| 17754 | /* |
| 17755 | * There is no hole at the end, so we need to create a new hole |
| 17756 | * for the new empty space we're creating. |
| 17757 | */ |
| 17758 | struct vm_map_links *new_hole = zalloc(vm_map_holes_zone); |
| 17759 | new_hole->start = old_max_offset; |
| 17760 | new_hole->end = map->max_offset; |
| 17761 | new_hole->prev = map->holes_list->prev; |
| 17762 | new_hole->next = (struct vm_map_entry *)map->holes_list; |
| 17763 | map->holes_list->prev->links.next = (struct vm_map_entry *)new_hole; |
| 17764 | map->holes_list->prev = (struct vm_map_entry *)new_hole; |
| 17765 | } |
| 17766 | #else |
| 17767 | (void)map; |
| 17768 | (void)new_max_offset; |
| 17769 | #endif |
| 17770 | } |
| 17771 | |
| 17772 | vm_map_offset_t |
| 17773 | vm_compute_max_offset(boolean_t is64) |
| 17774 | { |
| 17775 | #if defined(__arm__) || defined(__arm64__) |
| 17776 | return (pmap_max_offset(is64, ARM_PMAP_MAX_OFFSET_DEVICE)); |
| 17777 | #else |
| 17778 | return (is64 ? (vm_map_offset_t)MACH_VM_MAX_ADDRESS : (vm_map_offset_t)VM_MAX_ADDRESS); |
| 17779 | #endif |
| 17780 | } |
| 17781 | |
| 17782 | void |
| 17783 | vm_map_get_max_aslr_slide_section( |
| 17784 | vm_map_t map __unused, |
| 17785 | int64_t *max_sections, |
| 17786 | int64_t *section_size) |
| 17787 | { |
| 17788 | #if defined(__arm64__) |
| 17789 | *max_sections = 3; |
| 17790 | *section_size = ARM_TT_TWIG_SIZE; |
| 17791 | #else |
| 17792 | *max_sections = 1; |
| 17793 | *section_size = 0; |
| 17794 | #endif |
| 17795 | } |
| 17796 | |
| 17797 | uint64_t |
| 17798 | vm_map_get_max_aslr_slide_pages(vm_map_t map) |
| 17799 | { |
| 17800 | #if defined(__arm64__) |
| 17801 | /* Limit arm64 slide to 16MB to conserve contiguous VA space in the more |
| 17802 | * limited embedded address space; this is also meant to minimize pmap |
| 17803 | * memory usage on 16KB page systems. |
| 17804 | */ |
| 17805 | return (1 << (24 - VM_MAP_PAGE_SHIFT(map))); |
| 17806 | #else |
| 17807 | return (1 << (vm_map_is_64bit(map) ? 16 : 8)); |
| 17808 | #endif |
| 17809 | } |
| 17810 | |
| 17811 | uint64_t |
| 17812 | vm_map_get_max_loader_aslr_slide_pages(vm_map_t map) |
| 17813 | { |
| 17814 | #if defined(__arm64__) |
| 17815 | /* We limit the loader slide to 4MB, in order to ensure at least 8 bits |
| 17816 | * of independent entropy on 16KB page systems. |
| 17817 | */ |
| 17818 | return (1 << (22 - VM_MAP_PAGE_SHIFT(map))); |
| 17819 | #else |
| 17820 | return (1 << (vm_map_is_64bit(map) ? 16 : 8)); |
| 17821 | #endif |
| 17822 | } |
| 17823 | |
| 17824 | #ifndef __arm__ |
| 17825 | boolean_t |
| 17826 | vm_map_is_64bit( |
| 17827 | vm_map_t map) |
| 17828 | { |
| 17829 | return map->max_offset > ((vm_map_offset_t)VM_MAX_ADDRESS); |
| 17830 | } |
| 17831 | #endif |
| 17832 | |
| 17833 | boolean_t |
| 17834 | vm_map_has_hard_pagezero( |
| 17835 | vm_map_t map, |
| 17836 | vm_map_offset_t pagezero_size) |
| 17837 | { |
| 17838 | /* |
| 17839 | * XXX FBDP |
| 17840 | * We should lock the VM map (for read) here but we can get away |
| 17841 | * with it for now because there can't really be any race condition: |
| 17842 | * the VM map's min_offset is changed only when the VM map is created |
| 17843 | * and when the zero page is established (when the binary gets loaded), |
| 17844 | * and this routine gets called only when the task terminates and the |
| 17845 | * VM map is being torn down, and when a new map is created via |
| 17846 | * load_machfile()/execve(). |
| 17847 | */ |
| 17848 | return (map->min_offset >= pagezero_size); |
| 17849 | } |
| 17850 | |
| 17851 | /* |
| 17852 | * Raise a VM map's maximun offset. |
| 17853 | */ |
| 17854 | kern_return_t |
| 17855 | vm_map_raise_max_offset( |
| 17856 | vm_map_t map, |
| 17857 | vm_map_offset_t new_max_offset) |
| 17858 | { |
| 17859 | kern_return_t ret; |
| 17860 | |
| 17861 | vm_map_lock(map); |
| 17862 | ret = KERN_INVALID_ADDRESS; |
| 17863 | |
| 17864 | if (new_max_offset >= map->max_offset) { |
| 17865 | if (!vm_map_is_64bit(map)) { |
| 17866 | if (new_max_offset <= (vm_map_offset_t)VM_MAX_ADDRESS) { |
| 17867 | map->max_offset = new_max_offset; |
| 17868 | ret = KERN_SUCCESS; |
| 17869 | } |
| 17870 | } else { |
| 17871 | if (new_max_offset <= (vm_map_offset_t)MACH_VM_MAX_ADDRESS) { |
| 17872 | map->max_offset = new_max_offset; |
| 17873 | ret = KERN_SUCCESS; |
| 17874 | } |
| 17875 | } |
| 17876 | } |
| 17877 | |
| 17878 | vm_map_unlock(map); |
| 17879 | return ret; |
| 17880 | } |
| 17881 | |
| 17882 | |
| 17883 | /* |
| 17884 | * Raise a VM map's minimum offset. |
| 17885 | * To strictly enforce "page zero" reservation. |
| 17886 | */ |
| 17887 | kern_return_t |
| 17888 | vm_map_raise_min_offset( |
| 17889 | vm_map_t map, |
| 17890 | vm_map_offset_t new_min_offset) |
| 17891 | { |
| 17892 | vm_map_entry_t first_entry; |
| 17893 | |
| 17894 | new_min_offset = vm_map_round_page(new_min_offset, |
| 17895 | VM_MAP_PAGE_MASK(map)); |
| 17896 | |
| 17897 | vm_map_lock(map); |
| 17898 | |
| 17899 | if (new_min_offset < map->min_offset) { |
| 17900 | /* |
| 17901 | * Can't move min_offset backwards, as that would expose |
| 17902 | * a part of the address space that was previously, and for |
| 17903 | * possibly good reasons, inaccessible. |
| 17904 | */ |
| 17905 | vm_map_unlock(map); |
| 17906 | return KERN_INVALID_ADDRESS; |
| 17907 | } |
| 17908 | if (new_min_offset >= map->max_offset) { |
| 17909 | /* can't go beyond the end of the address space */ |
| 17910 | vm_map_unlock(map); |
| 17911 | return KERN_INVALID_ADDRESS; |
| 17912 | } |
| 17913 | |
| 17914 | first_entry = vm_map_first_entry(map); |
| 17915 | if (first_entry != vm_map_to_entry(map) && |
| 17916 | first_entry->vme_start < new_min_offset) { |
| 17917 | /* |
| 17918 | * Some memory was already allocated below the new |
| 17919 | * minimun offset. It's too late to change it now... |
| 17920 | */ |
| 17921 | vm_map_unlock(map); |
| 17922 | return KERN_NO_SPACE; |
| 17923 | } |
| 17924 | |
| 17925 | map->min_offset = new_min_offset; |
| 17926 | |
| 17927 | assert(map->holes_list); |
| 17928 | map->holes_list->start = new_min_offset; |
| 17929 | assert(new_min_offset < map->holes_list->end); |
| 17930 | |
| 17931 | vm_map_unlock(map); |
| 17932 | |
| 17933 | return KERN_SUCCESS; |
| 17934 | } |
| 17935 | |
| 17936 | /* |
| 17937 | * Set the limit on the maximum amount of user wired memory allowed for this map. |
| 17938 | * This is basically a copy of the MEMLOCK rlimit value maintained by the BSD side of |
| 17939 | * the kernel. The limits are checked in the mach VM side, so we keep a copy so we |
| 17940 | * don't have to reach over to the BSD data structures. |
| 17941 | */ |
| 17942 | |
| 17943 | void |
| 17944 | vm_map_set_user_wire_limit(vm_map_t map, |
| 17945 | vm_size_t limit) |
| 17946 | { |
| 17947 | map->user_wire_limit = limit; |
| 17948 | } |
| 17949 | |
| 17950 | |
| 17951 | void vm_map_switch_protect(vm_map_t map, |
| 17952 | boolean_t val) |
| 17953 | { |
| 17954 | vm_map_lock(map); |
| 17955 | map->switch_protect=val; |
| 17956 | vm_map_unlock(map); |
| 17957 | } |
| 17958 | |
| 17959 | /* |
| 17960 | * IOKit has mapped a region into this map; adjust the pmap's ledgers appropriately. |
| 17961 | * phys_footprint is a composite limit consisting of iokit + physmem, so we need to |
| 17962 | * bump both counters. |
| 17963 | */ |
| 17964 | void |
| 17965 | vm_map_iokit_mapped_region(vm_map_t map, vm_size_t bytes) |
| 17966 | { |
| 17967 | pmap_t pmap = vm_map_pmap(map); |
| 17968 | |
| 17969 | ledger_credit(pmap->ledger, task_ledgers.iokit_mapped, bytes); |
| 17970 | ledger_credit(pmap->ledger, task_ledgers.phys_footprint, bytes); |
| 17971 | } |
| 17972 | |
| 17973 | void |
| 17974 | vm_map_iokit_unmapped_region(vm_map_t map, vm_size_t bytes) |
| 17975 | { |
| 17976 | pmap_t pmap = vm_map_pmap(map); |
| 17977 | |
| 17978 | ledger_debit(pmap->ledger, task_ledgers.iokit_mapped, bytes); |
| 17979 | ledger_debit(pmap->ledger, task_ledgers.phys_footprint, bytes); |
| 17980 | } |
| 17981 | |
| 17982 | /* Add (generate) code signature for memory range */ |
| 17983 | #if CONFIG_DYNAMIC_CODE_SIGNING |
| 17984 | kern_return_t vm_map_sign(vm_map_t map, |
| 17985 | vm_map_offset_t start, |
| 17986 | vm_map_offset_t end) |
| 17987 | { |
| 17988 | vm_map_entry_t entry; |
| 17989 | vm_page_t m; |
| 17990 | vm_object_t object; |
| 17991 | |
| 17992 | /* |
| 17993 | * Vet all the input parameters and current type and state of the |
| 17994 | * underlaying object. Return with an error if anything is amiss. |
| 17995 | */ |
| 17996 | if (map == VM_MAP_NULL) |
| 17997 | return(KERN_INVALID_ARGUMENT); |
| 17998 | |
| 17999 | vm_map_lock_read(map); |
| 18000 | |
| 18001 | if (!vm_map_lookup_entry(map, start, &entry) || entry->is_sub_map) { |
| 18002 | /* |
| 18003 | * Must pass a valid non-submap address. |
| 18004 | */ |
| 18005 | vm_map_unlock_read(map); |
| 18006 | return(KERN_INVALID_ADDRESS); |
| 18007 | } |
| 18008 | |
| 18009 | if((entry->vme_start > start) || (entry->vme_end < end)) { |
| 18010 | /* |
| 18011 | * Map entry doesn't cover the requested range. Not handling |
| 18012 | * this situation currently. |
| 18013 | */ |
| 18014 | vm_map_unlock_read(map); |
| 18015 | return(KERN_INVALID_ARGUMENT); |
| 18016 | } |
| 18017 | |
| 18018 | object = VME_OBJECT(entry); |
| 18019 | if (object == VM_OBJECT_NULL) { |
| 18020 | /* |
| 18021 | * Object must already be present or we can't sign. |
| 18022 | */ |
| 18023 | vm_map_unlock_read(map); |
| 18024 | return KERN_INVALID_ARGUMENT; |
| 18025 | } |
| 18026 | |
| 18027 | vm_object_lock(object); |
| 18028 | vm_map_unlock_read(map); |
| 18029 | |
| 18030 | while(start < end) { |
| 18031 | uint32_t refmod; |
| 18032 | |
| 18033 | m = vm_page_lookup(object, |
| 18034 | start - entry->vme_start + VME_OFFSET(entry)); |
| 18035 | if (m==VM_PAGE_NULL) { |
| 18036 | /* shoud we try to fault a page here? we can probably |
| 18037 | * demand it exists and is locked for this request */ |
| 18038 | vm_object_unlock(object); |
| 18039 | return KERN_FAILURE; |
| 18040 | } |
| 18041 | /* deal with special page status */ |
| 18042 | if (m->vmp_busy || |
| 18043 | (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent))) { |
| 18044 | vm_object_unlock(object); |
| 18045 | return KERN_FAILURE; |
| 18046 | } |
| 18047 | |
| 18048 | /* Page is OK... now "validate" it */ |
| 18049 | /* This is the place where we'll call out to create a code |
| 18050 | * directory, later */ |
| 18051 | m->vmp_cs_validated = TRUE; |
| 18052 | |
| 18053 | /* The page is now "clean" for codesigning purposes. That means |
| 18054 | * we don't consider it as modified (wpmapped) anymore. But |
| 18055 | * we'll disconnect the page so we note any future modification |
| 18056 | * attempts. */ |
| 18057 | m->vmp_wpmapped = FALSE; |
| 18058 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
| 18059 | |
| 18060 | /* Pull the dirty status from the pmap, since we cleared the |
| 18061 | * wpmapped bit */ |
| 18062 | if ((refmod & VM_MEM_MODIFIED) && !m->vmp_dirty) { |
| 18063 | SET_PAGE_DIRTY(m, FALSE); |
| 18064 | } |
| 18065 | |
| 18066 | /* On to the next page */ |
| 18067 | start += PAGE_SIZE; |
| 18068 | } |
| 18069 | vm_object_unlock(object); |
| 18070 | |
| 18071 | return KERN_SUCCESS; |
| 18072 | } |
| 18073 | #endif |
| 18074 | |
| 18075 | kern_return_t vm_map_partial_reap(vm_map_t map, unsigned int *reclaimed_resident, unsigned int *reclaimed_compressed) |
| 18076 | { |
| 18077 | vm_map_entry_t entry = VM_MAP_ENTRY_NULL; |
| 18078 | vm_map_entry_t next_entry; |
| 18079 | kern_return_t kr = KERN_SUCCESS; |
| 18080 | vm_map_t zap_map; |
| 18081 | |
| 18082 | vm_map_lock(map); |
| 18083 | |
| 18084 | /* |
| 18085 | * We use a "zap_map" to avoid having to unlock |
| 18086 | * the "map" in vm_map_delete(). |
| 18087 | */ |
| 18088 | zap_map = vm_map_create(PMAP_NULL, |
| 18089 | map->min_offset, |
| 18090 | map->max_offset, |
| 18091 | map->hdr.entries_pageable); |
| 18092 | |
| 18093 | if (zap_map == VM_MAP_NULL) { |
| 18094 | return KERN_RESOURCE_SHORTAGE; |
| 18095 | } |
| 18096 | |
| 18097 | vm_map_set_page_shift(zap_map, |
| 18098 | VM_MAP_PAGE_SHIFT(map)); |
| 18099 | vm_map_disable_hole_optimization(zap_map); |
| 18100 | |
| 18101 | for (entry = vm_map_first_entry(map); |
| 18102 | entry != vm_map_to_entry(map); |
| 18103 | entry = next_entry) { |
| 18104 | next_entry = entry->vme_next; |
| 18105 | |
| 18106 | if (VME_OBJECT(entry) && |
| 18107 | !entry->is_sub_map && |
| 18108 | (VME_OBJECT(entry)->internal == TRUE) && |
| 18109 | (VME_OBJECT(entry)->ref_count == 1)) { |
| 18110 | |
| 18111 | *reclaimed_resident += VME_OBJECT(entry)->resident_page_count; |
| 18112 | *reclaimed_compressed += vm_compressor_pager_get_count(VME_OBJECT(entry)->pager); |
| 18113 | |
| 18114 | (void)vm_map_delete(map, |
| 18115 | entry->vme_start, |
| 18116 | entry->vme_end, |
| 18117 | VM_MAP_REMOVE_SAVE_ENTRIES, |
| 18118 | zap_map); |
| 18119 | } |
| 18120 | } |
| 18121 | |
| 18122 | vm_map_unlock(map); |
| 18123 | |
| 18124 | /* |
| 18125 | * Get rid of the "zap_maps" and all the map entries that |
| 18126 | * they may still contain. |
| 18127 | */ |
| 18128 | if (zap_map != VM_MAP_NULL) { |
| 18129 | vm_map_destroy(zap_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); |
| 18130 | zap_map = VM_MAP_NULL; |
| 18131 | } |
| 18132 | |
| 18133 | return kr; |
| 18134 | } |
| 18135 | |
| 18136 | |
| 18137 | #if DEVELOPMENT || DEBUG |
| 18138 | |
| 18139 | int |
| 18140 | vm_map_disconnect_page_mappings( |
| 18141 | vm_map_t map, |
| 18142 | boolean_t do_unnest) |
| 18143 | { |
| 18144 | vm_map_entry_t entry; |
| 18145 | int page_count = 0; |
| 18146 | |
| 18147 | if (do_unnest == TRUE) { |
| 18148 | #ifndef NO_NESTED_PMAP |
| 18149 | vm_map_lock(map); |
| 18150 | |
| 18151 | for (entry = vm_map_first_entry(map); |
| 18152 | entry != vm_map_to_entry(map); |
| 18153 | entry = entry->vme_next) { |
| 18154 | |
| 18155 | if (entry->is_sub_map && entry->use_pmap) { |
| 18156 | /* |
| 18157 | * Make sure the range between the start of this entry and |
| 18158 | * the end of this entry is no longer nested, so that |
| 18159 | * we will only remove mappings from the pmap in use by this |
| 18160 | * this task |
| 18161 | */ |
| 18162 | vm_map_clip_unnest(map, entry, entry->vme_start, entry->vme_end); |
| 18163 | } |
| 18164 | } |
| 18165 | vm_map_unlock(map); |
| 18166 | #endif |
| 18167 | } |
| 18168 | vm_map_lock_read(map); |
| 18169 | |
| 18170 | page_count = map->pmap->stats.resident_count; |
| 18171 | |
| 18172 | for (entry = vm_map_first_entry(map); |
| 18173 | entry != vm_map_to_entry(map); |
| 18174 | entry = entry->vme_next) { |
| 18175 | |
| 18176 | if (!entry->is_sub_map && ((VME_OBJECT(entry) == 0) || |
| 18177 | (VME_OBJECT(entry)->phys_contiguous))) { |
| 18178 | continue; |
| 18179 | } |
| 18180 | if (entry->is_sub_map) |
| 18181 | assert(!entry->use_pmap); |
| 18182 | |
| 18183 | pmap_remove_options(map->pmap, entry->vme_start, entry->vme_end, 0); |
| 18184 | } |
| 18185 | vm_map_unlock_read(map); |
| 18186 | |
| 18187 | return page_count; |
| 18188 | } |
| 18189 | |
| 18190 | #endif |
| 18191 | |
| 18192 | |
| 18193 | #if CONFIG_FREEZE |
| 18194 | |
| 18195 | |
| 18196 | int c_freezer_swapout_page_count; |
| 18197 | int c_freezer_compression_count = 0; |
| 18198 | AbsoluteTime c_freezer_last_yield_ts = 0; |
| 18199 | |
| 18200 | extern unsigned int memorystatus_freeze_private_shared_pages_ratio; |
| 18201 | extern unsigned int memorystatus_freeze_shared_mb_per_process_max; |
| 18202 | |
| 18203 | kern_return_t |
| 18204 | vm_map_freeze( |
| 18205 | vm_map_t map, |
| 18206 | unsigned int *purgeable_count, |
| 18207 | unsigned int *wired_count, |
| 18208 | unsigned int *clean_count, |
| 18209 | unsigned int *dirty_count, |
| 18210 | __unused unsigned int dirty_budget, |
| 18211 | unsigned int *shared_count, |
| 18212 | int *freezer_error_code, |
| 18213 | boolean_t eval_only) |
| 18214 | { |
| 18215 | vm_map_entry_t entry2 = VM_MAP_ENTRY_NULL; |
| 18216 | kern_return_t kr = KERN_SUCCESS; |
| 18217 | boolean_t evaluation_phase = TRUE; |
| 18218 | vm_object_t cur_shared_object = NULL; |
| 18219 | int cur_shared_obj_ref_cnt = 0; |
| 18220 | unsigned int dirty_private_count = 0, dirty_shared_count = 0, obj_pages_snapshot = 0; |
| 18221 | |
| 18222 | *purgeable_count = *wired_count = *clean_count = *dirty_count = *shared_count = 0; |
| 18223 | |
| 18224 | /* |
| 18225 | * We need the exclusive lock here so that we can |
| 18226 | * block any page faults or lookups while we are |
| 18227 | * in the middle of freezing this vm map. |
| 18228 | */ |
| 18229 | vm_map_lock(map); |
| 18230 | |
| 18231 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 18232 | |
| 18233 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
| 18234 | if (vm_compressor_low_on_space()) { |
| 18235 | *freezer_error_code = FREEZER_ERROR_NO_COMPRESSOR_SPACE; |
| 18236 | } |
| 18237 | |
| 18238 | if (vm_swap_low_on_space()) { |
| 18239 | *freezer_error_code = FREEZER_ERROR_NO_SWAP_SPACE; |
| 18240 | } |
| 18241 | |
| 18242 | kr = KERN_NO_SPACE; |
| 18243 | goto done; |
| 18244 | } |
| 18245 | |
| 18246 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE == FALSE) { |
| 18247 | /* |
| 18248 | * In-memory compressor backing the freezer. No disk. |
| 18249 | * So no need to do the evaluation phase. |
| 18250 | */ |
| 18251 | evaluation_phase = FALSE; |
| 18252 | |
| 18253 | if (eval_only == TRUE) { |
| 18254 | /* |
| 18255 | * We don't support 'eval_only' mode |
| 18256 | * in this non-swap config. |
| 18257 | */ |
| 18258 | *freezer_error_code = FREEZER_ERROR_GENERIC; |
| 18259 | kr = KERN_INVALID_ARGUMENT; |
| 18260 | goto done; |
| 18261 | } |
| 18262 | |
| 18263 | c_freezer_compression_count = 0; |
| 18264 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 18265 | } |
| 18266 | again: |
| 18267 | |
| 18268 | for (entry2 = vm_map_first_entry(map); |
| 18269 | entry2 != vm_map_to_entry(map); |
| 18270 | entry2 = entry2->vme_next) { |
| 18271 | |
| 18272 | vm_object_t src_object = VME_OBJECT(entry2); |
| 18273 | |
| 18274 | if (src_object && |
| 18275 | !entry2->is_sub_map && |
| 18276 | !src_object->phys_contiguous) { |
| 18277 | /* If eligible, scan the entry, moving eligible pages over to our parent object */ |
| 18278 | |
| 18279 | if (src_object->internal == TRUE) { |
| 18280 | |
| 18281 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 18282 | /* |
| 18283 | * Pages belonging to this object could be swapped to disk. |
| 18284 | * Make sure it's not a shared object because we could end |
| 18285 | * up just bringing it back in again. |
| 18286 | * |
| 18287 | * We try to optimize somewhat by checking for objects that are mapped |
| 18288 | * more than once within our own map. But we don't do full searches, |
| 18289 | * we just look at the entries following our current entry. |
| 18290 | */ |
| 18291 | if (src_object->ref_count > 1) { |
| 18292 | if (src_object != cur_shared_object) { |
| 18293 | obj_pages_snapshot = (src_object->resident_page_count - src_object->wired_page_count) + vm_compressor_pager_get_count(src_object->pager); |
| 18294 | dirty_shared_count += obj_pages_snapshot; |
| 18295 | |
| 18296 | cur_shared_object = src_object; |
| 18297 | cur_shared_obj_ref_cnt = 1; |
| 18298 | continue; |
| 18299 | } else { |
| 18300 | cur_shared_obj_ref_cnt++; |
| 18301 | if (src_object->ref_count == cur_shared_obj_ref_cnt) { |
| 18302 | /* |
| 18303 | * Fall through to below and treat this object as private. |
| 18304 | * So deduct its pages from our shared total and add it to the |
| 18305 | * private total. |
| 18306 | */ |
| 18307 | |
| 18308 | dirty_shared_count -= obj_pages_snapshot; |
| 18309 | dirty_private_count += obj_pages_snapshot; |
| 18310 | } else { |
| 18311 | continue; |
| 18312 | } |
| 18313 | } |
| 18314 | } |
| 18315 | |
| 18316 | |
| 18317 | if (src_object->ref_count == 1) { |
| 18318 | dirty_private_count += (src_object->resident_page_count - src_object->wired_page_count) + vm_compressor_pager_get_count(src_object->pager); |
| 18319 | } |
| 18320 | |
| 18321 | if (evaluation_phase == TRUE) { |
| 18322 | |
| 18323 | continue; |
| 18324 | } |
| 18325 | } |
| 18326 | |
| 18327 | vm_object_compressed_freezer_pageout(src_object); |
| 18328 | |
| 18329 | *wired_count += src_object->wired_page_count; |
| 18330 | |
| 18331 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
| 18332 | if (vm_compressor_low_on_space()) { |
| 18333 | *freezer_error_code = FREEZER_ERROR_NO_COMPRESSOR_SPACE; |
| 18334 | } |
| 18335 | |
| 18336 | if (vm_swap_low_on_space()) { |
| 18337 | *freezer_error_code = FREEZER_ERROR_NO_SWAP_SPACE; |
| 18338 | } |
| 18339 | |
| 18340 | kr = KERN_NO_SPACE; |
| 18341 | break; |
| 18342 | } |
| 18343 | } |
| 18344 | } |
| 18345 | } |
| 18346 | |
| 18347 | if (evaluation_phase) { |
| 18348 | |
| 18349 | unsigned int shared_pages_threshold = (memorystatus_freeze_shared_mb_per_process_max * 1024 * 1024ULL) / PAGE_SIZE_64; |
| 18350 | |
| 18351 | if (dirty_shared_count > shared_pages_threshold) { |
| 18352 | *freezer_error_code = FREEZER_ERROR_EXCESS_SHARED_MEMORY; |
| 18353 | kr = KERN_FAILURE; |
| 18354 | goto done; |
| 18355 | } |
| 18356 | |
| 18357 | if (dirty_shared_count && |
| 18358 | ((dirty_private_count / dirty_shared_count) < memorystatus_freeze_private_shared_pages_ratio)) { |
| 18359 | *freezer_error_code = FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO; |
| 18360 | kr = KERN_FAILURE; |
| 18361 | goto done; |
| 18362 | } |
| 18363 | |
| 18364 | evaluation_phase = FALSE; |
| 18365 | dirty_shared_count = dirty_private_count = 0; |
| 18366 | |
| 18367 | c_freezer_compression_count = 0; |
| 18368 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 18369 | |
| 18370 | if (eval_only) { |
| 18371 | kr = KERN_SUCCESS; |
| 18372 | goto done; |
| 18373 | } |
| 18374 | |
| 18375 | goto again; |
| 18376 | |
| 18377 | } else { |
| 18378 | |
| 18379 | kr = KERN_SUCCESS; |
| 18380 | *shared_count = (unsigned int) ((dirty_shared_count * PAGE_SIZE_64) / (1024 * 1024ULL)); |
| 18381 | } |
| 18382 | |
| 18383 | done: |
| 18384 | vm_map_unlock(map); |
| 18385 | |
| 18386 | if ((eval_only == FALSE) && (kr == KERN_SUCCESS)) { |
| 18387 | vm_object_compressed_freezer_done(); |
| 18388 | |
| 18389 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 18390 | /* |
| 18391 | * reset the counter tracking the # of swapped compressed pages |
| 18392 | * because we are now done with this freeze session and task. |
| 18393 | */ |
| 18394 | |
| 18395 | *dirty_count = c_freezer_swapout_page_count; //used to track pageouts |
| 18396 | c_freezer_swapout_page_count = 0; |
| 18397 | } |
| 18398 | } |
| 18399 | return kr; |
| 18400 | } |
| 18401 | |
| 18402 | #endif |
| 18403 | |
| 18404 | /* |
| 18405 | * vm_map_entry_should_cow_for_true_share: |
| 18406 | * |
| 18407 | * Determines if the map entry should be clipped and setup for copy-on-write |
| 18408 | * to avoid applying "true_share" to a large VM object when only a subset is |
| 18409 | * targeted. |
| 18410 | * |
| 18411 | * For now, we target only the map entries created for the Objective C |
| 18412 | * Garbage Collector, which initially have the following properties: |
| 18413 | * - alias == VM_MEMORY_MALLOC |
| 18414 | * - wired_count == 0 |
| 18415 | * - !needs_copy |
| 18416 | * and a VM object with: |
| 18417 | * - internal |
| 18418 | * - copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC |
| 18419 | * - !true_share |
| 18420 | * - vo_size == ANON_CHUNK_SIZE |
| 18421 | * |
| 18422 | * Only non-kernel map entries. |
| 18423 | */ |
| 18424 | boolean_t |
| 18425 | vm_map_entry_should_cow_for_true_share( |
| 18426 | vm_map_entry_t entry) |
| 18427 | { |
| 18428 | vm_object_t object; |
| 18429 | |
| 18430 | if (entry->is_sub_map) { |
| 18431 | /* entry does not point at a VM object */ |
| 18432 | return FALSE; |
| 18433 | } |
| 18434 | |
| 18435 | if (entry->needs_copy) { |
| 18436 | /* already set for copy_on_write: done! */ |
| 18437 | return FALSE; |
| 18438 | } |
| 18439 | |
| 18440 | if (VME_ALIAS(entry) != VM_MEMORY_MALLOC && |
| 18441 | VME_ALIAS(entry) != VM_MEMORY_MALLOC_SMALL) { |
| 18442 | /* not a malloc heap or Obj-C Garbage Collector heap */ |
| 18443 | return FALSE; |
| 18444 | } |
| 18445 | |
| 18446 | if (entry->wired_count) { |
| 18447 | /* wired: can't change the map entry... */ |
| 18448 | vm_counters.should_cow_but_wired++; |
| 18449 | return FALSE; |
| 18450 | } |
| 18451 | |
| 18452 | object = VME_OBJECT(entry); |
| 18453 | |
| 18454 | if (object == VM_OBJECT_NULL) { |
| 18455 | /* no object yet... */ |
| 18456 | return FALSE; |
| 18457 | } |
| 18458 | |
| 18459 | if (!object->internal) { |
| 18460 | /* not an internal object */ |
| 18461 | return FALSE; |
| 18462 | } |
| 18463 | |
| 18464 | if (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 18465 | /* not the default copy strategy */ |
| 18466 | return FALSE; |
| 18467 | } |
| 18468 | |
| 18469 | if (object->true_share) { |
| 18470 | /* already true_share: too late to avoid it */ |
| 18471 | return FALSE; |
| 18472 | } |
| 18473 | |
| 18474 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC && |
| 18475 | object->vo_size != ANON_CHUNK_SIZE) { |
| 18476 | /* ... not an object created for the ObjC Garbage Collector */ |
| 18477 | return FALSE; |
| 18478 | } |
| 18479 | |
| 18480 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_SMALL && |
| 18481 | object->vo_size != 2048 * 4096) { |
| 18482 | /* ... not a "MALLOC_SMALL" heap */ |
| 18483 | return FALSE; |
| 18484 | } |
| 18485 | |
| 18486 | /* |
| 18487 | * All the criteria match: we have a large object being targeted for "true_share". |
| 18488 | * To limit the adverse side-effects linked with "true_share", tell the caller to |
| 18489 | * try and avoid setting up the entire object for "true_share" by clipping the |
| 18490 | * targeted range and setting it up for copy-on-write. |
| 18491 | */ |
| 18492 | return TRUE; |
| 18493 | } |
| 18494 | |
| 18495 | vm_map_offset_t |
| 18496 | vm_map_round_page_mask( |
| 18497 | vm_map_offset_t offset, |
| 18498 | vm_map_offset_t mask) |
| 18499 | { |
| 18500 | return VM_MAP_ROUND_PAGE(offset, mask); |
| 18501 | } |
| 18502 | |
| 18503 | vm_map_offset_t |
| 18504 | vm_map_trunc_page_mask( |
| 18505 | vm_map_offset_t offset, |
| 18506 | vm_map_offset_t mask) |
| 18507 | { |
| 18508 | return VM_MAP_TRUNC_PAGE(offset, mask); |
| 18509 | } |
| 18510 | |
| 18511 | boolean_t |
| 18512 | vm_map_page_aligned( |
| 18513 | vm_map_offset_t offset, |
| 18514 | vm_map_offset_t mask) |
| 18515 | { |
| 18516 | return ((offset) & mask) == 0; |
| 18517 | } |
| 18518 | |
| 18519 | int |
| 18520 | vm_map_page_shift( |
| 18521 | vm_map_t map) |
| 18522 | { |
| 18523 | return VM_MAP_PAGE_SHIFT(map); |
| 18524 | } |
| 18525 | |
| 18526 | int |
| 18527 | vm_map_page_size( |
| 18528 | vm_map_t map) |
| 18529 | { |
| 18530 | return VM_MAP_PAGE_SIZE(map); |
| 18531 | } |
| 18532 | |
| 18533 | vm_map_offset_t |
| 18534 | vm_map_page_mask( |
| 18535 | vm_map_t map) |
| 18536 | { |
| 18537 | return VM_MAP_PAGE_MASK(map); |
| 18538 | } |
| 18539 | |
| 18540 | kern_return_t |
| 18541 | vm_map_set_page_shift( |
| 18542 | vm_map_t map, |
| 18543 | int pageshift) |
| 18544 | { |
| 18545 | if (map->hdr.nentries != 0) { |
| 18546 | /* too late to change page size */ |
| 18547 | return KERN_FAILURE; |
| 18548 | } |
| 18549 | |
| 18550 | map->hdr.page_shift = pageshift; |
| 18551 | |
| 18552 | return KERN_SUCCESS; |
| 18553 | } |
| 18554 | |
| 18555 | kern_return_t |
| 18556 | vm_map_query_volatile( |
| 18557 | vm_map_t map, |
| 18558 | mach_vm_size_t *volatile_virtual_size_p, |
| 18559 | mach_vm_size_t *volatile_resident_size_p, |
| 18560 | mach_vm_size_t *volatile_compressed_size_p, |
| 18561 | mach_vm_size_t *volatile_pmap_size_p, |
| 18562 | mach_vm_size_t *volatile_compressed_pmap_size_p) |
| 18563 | { |
| 18564 | mach_vm_size_t volatile_virtual_size; |
| 18565 | mach_vm_size_t volatile_resident_count; |
| 18566 | mach_vm_size_t volatile_compressed_count; |
| 18567 | mach_vm_size_t volatile_pmap_count; |
| 18568 | mach_vm_size_t volatile_compressed_pmap_count; |
| 18569 | mach_vm_size_t resident_count; |
| 18570 | vm_map_entry_t entry; |
| 18571 | vm_object_t object; |
| 18572 | |
| 18573 | /* map should be locked by caller */ |
| 18574 | |
| 18575 | volatile_virtual_size = 0; |
| 18576 | volatile_resident_count = 0; |
| 18577 | volatile_compressed_count = 0; |
| 18578 | volatile_pmap_count = 0; |
| 18579 | volatile_compressed_pmap_count = 0; |
| 18580 | |
| 18581 | for (entry = vm_map_first_entry(map); |
| 18582 | entry != vm_map_to_entry(map); |
| 18583 | entry = entry->vme_next) { |
| 18584 | mach_vm_size_t pmap_resident_bytes, pmap_compressed_bytes; |
| 18585 | |
| 18586 | if (entry->is_sub_map) { |
| 18587 | continue; |
| 18588 | } |
| 18589 | if (! (entry->protection & VM_PROT_WRITE)) { |
| 18590 | continue; |
| 18591 | } |
| 18592 | object = VME_OBJECT(entry); |
| 18593 | if (object == VM_OBJECT_NULL) { |
| 18594 | continue; |
| 18595 | } |
| 18596 | if (object->purgable != VM_PURGABLE_VOLATILE && |
| 18597 | object->purgable != VM_PURGABLE_EMPTY) { |
| 18598 | continue; |
| 18599 | } |
| 18600 | if (VME_OFFSET(entry)) { |
| 18601 | /* |
| 18602 | * If the map entry has been split and the object now |
| 18603 | * appears several times in the VM map, we don't want |
| 18604 | * to count the object's resident_page_count more than |
| 18605 | * once. We count it only for the first one, starting |
| 18606 | * at offset 0 and ignore the other VM map entries. |
| 18607 | */ |
| 18608 | continue; |
| 18609 | } |
| 18610 | resident_count = object->resident_page_count; |
| 18611 | if ((VME_OFFSET(entry) / PAGE_SIZE) >= resident_count) { |
| 18612 | resident_count = 0; |
| 18613 | } else { |
| 18614 | resident_count -= (VME_OFFSET(entry) / PAGE_SIZE); |
| 18615 | } |
| 18616 | |
| 18617 | volatile_virtual_size += entry->vme_end - entry->vme_start; |
| 18618 | volatile_resident_count += resident_count; |
| 18619 | if (object->pager) { |
| 18620 | volatile_compressed_count += |
| 18621 | vm_compressor_pager_get_count(object->pager); |
| 18622 | } |
| 18623 | pmap_compressed_bytes = 0; |
| 18624 | pmap_resident_bytes = |
| 18625 | pmap_query_resident(map->pmap, |
| 18626 | entry->vme_start, |
| 18627 | entry->vme_end, |
| 18628 | &pmap_compressed_bytes); |
| 18629 | volatile_pmap_count += (pmap_resident_bytes / PAGE_SIZE); |
| 18630 | volatile_compressed_pmap_count += (pmap_compressed_bytes |
| 18631 | / PAGE_SIZE); |
| 18632 | } |
| 18633 | |
| 18634 | /* map is still locked on return */ |
| 18635 | |
| 18636 | *volatile_virtual_size_p = volatile_virtual_size; |
| 18637 | *volatile_resident_size_p = volatile_resident_count * PAGE_SIZE; |
| 18638 | *volatile_compressed_size_p = volatile_compressed_count * PAGE_SIZE; |
| 18639 | *volatile_pmap_size_p = volatile_pmap_count * PAGE_SIZE; |
| 18640 | *volatile_compressed_pmap_size_p = volatile_compressed_pmap_count * PAGE_SIZE; |
| 18641 | |
| 18642 | return KERN_SUCCESS; |
| 18643 | } |
| 18644 | |
| 18645 | void |
| 18646 | vm_map_sizes(vm_map_t map, |
| 18647 | vm_map_size_t * psize, |
| 18648 | vm_map_size_t * pfree, |
| 18649 | vm_map_size_t * plargest_free) |
| 18650 | { |
| 18651 | vm_map_entry_t entry; |
| 18652 | vm_map_offset_t prev; |
| 18653 | vm_map_size_t free, total_free, largest_free; |
| 18654 | boolean_t end; |
| 18655 | |
| 18656 | if (!map) |
| 18657 | { |
| 18658 | *psize = *pfree = *plargest_free = 0; |
| 18659 | return; |
| 18660 | } |
| 18661 | total_free = largest_free = 0; |
| 18662 | |
| 18663 | vm_map_lock_read(map); |
| 18664 | if (psize) *psize = map->max_offset - map->min_offset; |
| 18665 | |
| 18666 | prev = map->min_offset; |
| 18667 | for (entry = vm_map_first_entry(map);; entry = entry->vme_next) |
| 18668 | { |
| 18669 | end = (entry == vm_map_to_entry(map)); |
| 18670 | |
| 18671 | if (end) free = entry->vme_end - prev; |
| 18672 | else free = entry->vme_start - prev; |
| 18673 | |
| 18674 | total_free += free; |
| 18675 | if (free > largest_free) largest_free = free; |
| 18676 | |
| 18677 | if (end) break; |
| 18678 | prev = entry->vme_end; |
| 18679 | } |
| 18680 | vm_map_unlock_read(map); |
| 18681 | if (pfree) *pfree = total_free; |
| 18682 | if (plargest_free) *plargest_free = largest_free; |
| 18683 | } |
| 18684 | |
| 18685 | #if VM_SCAN_FOR_SHADOW_CHAIN |
| 18686 | int vm_map_shadow_max(vm_map_t map); |
| 18687 | int vm_map_shadow_max( |
| 18688 | vm_map_t map) |
| 18689 | { |
| 18690 | int shadows, shadows_max; |
| 18691 | vm_map_entry_t entry; |
| 18692 | vm_object_t object, next_object; |
| 18693 | |
| 18694 | if (map == NULL) |
| 18695 | return 0; |
| 18696 | |
| 18697 | shadows_max = 0; |
| 18698 | |
| 18699 | vm_map_lock_read(map); |
| 18700 | |
| 18701 | for (entry = vm_map_first_entry(map); |
| 18702 | entry != vm_map_to_entry(map); |
| 18703 | entry = entry->vme_next) { |
| 18704 | if (entry->is_sub_map) { |
| 18705 | continue; |
| 18706 | } |
| 18707 | object = VME_OBJECT(entry); |
| 18708 | if (object == NULL) { |
| 18709 | continue; |
| 18710 | } |
| 18711 | vm_object_lock_shared(object); |
| 18712 | for (shadows = 0; |
| 18713 | object->shadow != NULL; |
| 18714 | shadows++, object = next_object) { |
| 18715 | next_object = object->shadow; |
| 18716 | vm_object_lock_shared(next_object); |
| 18717 | vm_object_unlock(object); |
| 18718 | } |
| 18719 | vm_object_unlock(object); |
| 18720 | if (shadows > shadows_max) { |
| 18721 | shadows_max = shadows; |
| 18722 | } |
| 18723 | } |
| 18724 | |
| 18725 | vm_map_unlock_read(map); |
| 18726 | |
| 18727 | return shadows_max; |
| 18728 | } |
| 18729 | #endif /* VM_SCAN_FOR_SHADOW_CHAIN */ |
| 18730 | |
| 18731 | void vm_commit_pagezero_status(vm_map_t lmap) { |
| 18732 | pmap_advise_pagezero_range(lmap->pmap, lmap->min_offset); |
| 18733 | } |
| 18734 | |
| 18735 | #if __x86_64__ |
| 18736 | void |
| 18737 | vm_map_set_high_start( |
| 18738 | vm_map_t map, |
| 18739 | vm_map_offset_t high_start) |
| 18740 | { |
| 18741 | map->vmmap_high_start = high_start; |
| 18742 | } |
| 18743 | #endif /* __x86_64__ */ |
| 18744 | |
| 18745 | #if PMAP_CS |
| 18746 | kern_return_t |
| 18747 | vm_map_entry_cs_associate( |
| 18748 | vm_map_t map, |
| 18749 | vm_map_entry_t entry, |
| 18750 | vm_map_kernel_flags_t vmk_flags) |
| 18751 | { |
| 18752 | vm_object_t cs_object, cs_shadow; |
| 18753 | vm_object_offset_t cs_offset; |
| 18754 | void *cs_blobs; |
| 18755 | struct vnode *cs_vnode; |
| 18756 | kern_return_t cs_ret; |
| 18757 | |
| 18758 | if (map->pmap == NULL || |
| 18759 | entry->is_sub_map || /* XXX FBDP: recurse on sub-range? */ |
| 18760 | VME_OBJECT(entry) == VM_OBJECT_NULL || |
| 18761 | ! (entry->protection & VM_PROT_EXECUTE)) { |
| 18762 | return KERN_SUCCESS; |
| 18763 | } |
| 18764 | |
| 18765 | vm_map_lock_assert_exclusive(map); |
| 18766 | |
| 18767 | if (entry->used_for_jit) { |
| 18768 | cs_ret = pmap_cs_associate(map->pmap, |
| 18769 | PMAP_CS_ASSOCIATE_JIT, |
| 18770 | entry->vme_start, |
| 18771 | entry->vme_end - entry->vme_start); |
| 18772 | goto done; |
| 18773 | } |
| 18774 | |
| 18775 | if (vmk_flags.vmkf_remap_prot_copy) { |
| 18776 | cs_ret = pmap_cs_associate(map->pmap, |
| 18777 | PMAP_CS_ASSOCIATE_COW, |
| 18778 | entry->vme_start, |
| 18779 | entry->vme_end - entry->vme_start); |
| 18780 | goto done; |
| 18781 | } |
| 18782 | |
| 18783 | vm_object_lock_shared(VME_OBJECT(entry)); |
| 18784 | cs_offset = VME_OFFSET(entry); |
| 18785 | for (cs_object = VME_OBJECT(entry); |
| 18786 | (cs_object != VM_OBJECT_NULL && |
| 18787 | !cs_object->code_signed); |
| 18788 | cs_object = cs_shadow) { |
| 18789 | cs_shadow = cs_object->shadow; |
| 18790 | if (cs_shadow != VM_OBJECT_NULL) { |
| 18791 | cs_offset += cs_object->vo_shadow_offset; |
| 18792 | vm_object_lock_shared(cs_shadow); |
| 18793 | } |
| 18794 | vm_object_unlock(cs_object); |
| 18795 | } |
| 18796 | if (cs_object == VM_OBJECT_NULL) { |
| 18797 | return KERN_SUCCESS; |
| 18798 | } |
| 18799 | |
| 18800 | cs_offset += cs_object->paging_offset; |
| 18801 | cs_vnode = vnode_pager_lookup_vnode(cs_object->pager); |
| 18802 | cs_ret = vnode_pager_get_cs_blobs(cs_vnode, |
| 18803 | &cs_blobs); |
| 18804 | assert(cs_ret == KERN_SUCCESS); |
| 18805 | cs_ret = cs_associate_blob_with_mapping(map->pmap, |
| 18806 | entry->vme_start, |
| 18807 | (entry->vme_end - |
| 18808 | entry->vme_start), |
| 18809 | cs_offset, |
| 18810 | cs_blobs); |
| 18811 | vm_object_unlock(cs_object); |
| 18812 | cs_object = VM_OBJECT_NULL; |
| 18813 | |
| 18814 | done: |
| 18815 | if (cs_ret == KERN_SUCCESS) { |
| 18816 | DTRACE_VM2(vm_map_entry_cs_associate_success, |
| 18817 | vm_map_offset_t, entry->vme_start, |
| 18818 | vm_map_offset_t, entry->vme_end); |
| 18819 | if (vm_map_executable_immutable) { |
| 18820 | /* |
| 18821 | * Prevent this executable |
| 18822 | * mapping from being unmapped |
| 18823 | * or modified. |
| 18824 | */ |
| 18825 | entry->permanent = TRUE; |
| 18826 | } |
| 18827 | /* |
| 18828 | * pmap says it will validate the |
| 18829 | * code-signing validity of pages |
| 18830 | * faulted in via this mapping, so |
| 18831 | * this map entry should be marked so |
| 18832 | * that vm_fault() bypasses code-signing |
| 18833 | * validation for faults coming through |
| 18834 | * this mapping. |
| 18835 | */ |
| 18836 | entry->pmap_cs_associated = TRUE; |
| 18837 | } else if (cs_ret == KERN_NOT_SUPPORTED) { |
| 18838 | /* |
| 18839 | * pmap won't check the code-signing |
| 18840 | * validity of pages faulted in via |
| 18841 | * this mapping, so VM should keep |
| 18842 | * doing it. |
| 18843 | */ |
| 18844 | DTRACE_VM3(vm_map_entry_cs_associate_off, |
| 18845 | vm_map_offset_t, entry->vme_start, |
| 18846 | vm_map_offset_t, entry->vme_end, |
| 18847 | int, cs_ret); |
| 18848 | } else { |
| 18849 | /* |
| 18850 | * A real error: do not allow |
| 18851 | * execution in this mapping. |
| 18852 | */ |
| 18853 | DTRACE_VM3(vm_map_entry_cs_associate_failure, |
| 18854 | vm_map_offset_t, entry->vme_start, |
| 18855 | vm_map_offset_t, entry->vme_end, |
| 18856 | int, cs_ret); |
| 18857 | entry->protection &= ~VM_PROT_EXECUTE; |
| 18858 | entry->max_protection &= ~VM_PROT_EXECUTE; |
| 18859 | } |
| 18860 | |
| 18861 | return cs_ret; |
| 18862 | } |
| 18863 | #endif /* PMAP_CS */ |
| 18864 | |
| 18865 | /* |
| 18866 | * FORKED CORPSE FOOTPRINT |
| 18867 | * |
| 18868 | * A forked corpse gets a copy of the original VM map but its pmap is mostly |
| 18869 | * empty since it never ran and never got to fault in any pages. |
| 18870 | * Collecting footprint info (via "sysctl vm.self_region_footprint") for |
| 18871 | * a forked corpse would therefore return very little information. |
| 18872 | * |
| 18873 | * When forking a corpse, we can pass the VM_MAP_FORK_CORPSE_FOOTPRINT option |
| 18874 | * to vm_map_fork() to collect footprint information from the original VM map |
| 18875 | * and its pmap, and store it in the forked corpse's VM map. That information |
| 18876 | * is stored in place of the VM map's "hole list" since we'll never need to |
| 18877 | * lookup for holes in the corpse's map. |
| 18878 | * |
| 18879 | * The corpse's footprint info looks like this: |
| 18880 | * |
| 18881 | * vm_map->vmmap_corpse_footprint points to pageable kernel memory laid out |
| 18882 | * as follows: |
| 18883 | * +---------------------------------------+ |
| 18884 | * header-> | cf_size | |
| 18885 | * +-------------------+-------------------+ |
| 18886 | * | cf_last_region | cf_last_zeroes | |
| 18887 | * +-------------------+-------------------+ |
| 18888 | * region1-> | cfr_vaddr | |
| 18889 | * +-------------------+-------------------+ |
| 18890 | * | cfr_num_pages | d0 | d1 | d2 | d3 | |
| 18891 | * +---------------------------------------+ |
| 18892 | * | d4 | d5 | ... | |
| 18893 | * +---------------------------------------+ |
| 18894 | * | ... | |
| 18895 | * +-------------------+-------------------+ |
| 18896 | * | dy | dz | na | na | cfr_vaddr... | <-region2 |
| 18897 | * +-------------------+-------------------+ |
| 18898 | * | cfr_vaddr (ctd) | cfr_num_pages | |
| 18899 | * +---------------------------------------+ |
| 18900 | * | d0 | d1 ... | |
| 18901 | * +---------------------------------------+ |
| 18902 | * ... |
| 18903 | * +---------------------------------------+ |
| 18904 | * last region-> | cfr_vaddr | |
| 18905 | * +---------------------------------------+ |
| 18906 | * + cfr_num_pages | d0 | d1 | d2 | d3 | |
| 18907 | * +---------------------------------------+ |
| 18908 | * ... |
| 18909 | * +---------------------------------------+ |
| 18910 | * | dx | dy | dz | na | na | na | na | na | |
| 18911 | * +---------------------------------------+ |
| 18912 | * |
| 18913 | * where: |
| 18914 | * cf_size: total size of the buffer (rounded to page size) |
| 18915 | * cf_last_region: offset in the buffer of the last "region" sub-header |
| 18916 | * cf_last_zeroes: number of trailing "zero" dispositions at the end |
| 18917 | * of last region |
| 18918 | * cfr_vaddr: virtual address of the start of the covered "region" |
| 18919 | * cfr_num_pages: number of pages in the covered "region" |
| 18920 | * d*: disposition of the page at that virtual address |
| 18921 | * Regions in the buffer are word-aligned. |
| 18922 | * |
| 18923 | * We estimate the size of the buffer based on the number of memory regions |
| 18924 | * and the virtual size of the address space. While copying each memory region |
| 18925 | * during vm_map_fork(), we also collect the footprint info for that region |
| 18926 | * and store it in the buffer, packing it as much as possible (coalescing |
| 18927 | * contiguous memory regions to avoid having too many region headers and |
| 18928 | * avoiding long streaks of "zero" page dispositions by splitting footprint |
| 18929 | * "regions", so the number of regions in the footprint buffer might not match |
| 18930 | * the number of memory regions in the address space. |
| 18931 | * |
| 18932 | * We also have to copy the original task's "nonvolatile" ledgers since that's |
| 18933 | * part of the footprint and will need to be reported to any tool asking for |
| 18934 | * the footprint information of the forked corpse. |
| 18935 | */ |
| 18936 | |
| 18937 | uint64_t = 0; |
| 18938 | uint64_t = 0; |
| 18939 | uint64_t = 0; |
| 18940 | uint64_t = 0; |
| 18941 | uint64_t = 0; |
| 18942 | |
| 18943 | /* |
| 18944 | * vm_map_corpse_footprint_new_region: |
| 18945 | * closes the current footprint "region" and creates a new one |
| 18946 | * |
| 18947 | * Returns NULL if there's not enough space in the buffer for a new region. |
| 18948 | */ |
| 18949 | static struct vm_map_corpse_footprint_region * |
| 18950 | ( |
| 18951 | struct vm_map_corpse_footprint_header *) |
| 18952 | { |
| 18953 | uintptr_t ; |
| 18954 | uint32_t new_region_offset; |
| 18955 | struct vm_map_corpse_footprint_region *; |
| 18956 | struct vm_map_corpse_footprint_region *; |
| 18957 | |
| 18958 | footprint_edge = ((uintptr_t)footprint_header + |
| 18959 | footprint_header->cf_size); |
| 18960 | footprint_region = ((struct vm_map_corpse_footprint_region *) |
| 18961 | ((char *)footprint_header + |
| 18962 | footprint_header->cf_last_region)); |
| 18963 | assert((uintptr_t)footprint_region + sizeof (*footprint_region) <= |
| 18964 | footprint_edge); |
| 18965 | |
| 18966 | /* get rid of trailing zeroes in the last region */ |
| 18967 | assert(footprint_region->cfr_num_pages >= |
| 18968 | footprint_header->cf_last_zeroes); |
| 18969 | footprint_region->cfr_num_pages -= |
| 18970 | footprint_header->cf_last_zeroes; |
| 18971 | footprint_header->cf_last_zeroes = 0; |
| 18972 | |
| 18973 | /* reuse this region if it's now empty */ |
| 18974 | if (footprint_region->cfr_num_pages == 0) { |
| 18975 | return footprint_region; |
| 18976 | } |
| 18977 | |
| 18978 | /* compute offset of new region */ |
| 18979 | new_region_offset = footprint_header->cf_last_region; |
| 18980 | new_region_offset += sizeof (*footprint_region); |
| 18981 | new_region_offset += footprint_region->cfr_num_pages; |
| 18982 | new_region_offset = roundup(new_region_offset, sizeof (int)); |
| 18983 | |
| 18984 | /* check if we're going over the edge */ |
| 18985 | if (((uintptr_t)footprint_header + |
| 18986 | new_region_offset + |
| 18987 | sizeof (*footprint_region)) >= |
| 18988 | footprint_edge) { |
| 18989 | /* over the edge: no new region */ |
| 18990 | return NULL; |
| 18991 | } |
| 18992 | |
| 18993 | /* adjust offset of last region in header */ |
| 18994 | footprint_header->cf_last_region = new_region_offset; |
| 18995 | |
| 18996 | new_footprint_region = (struct vm_map_corpse_footprint_region *) |
| 18997 | ((char *)footprint_header + |
| 18998 | footprint_header->cf_last_region); |
| 18999 | new_footprint_region->cfr_vaddr = 0; |
| 19000 | new_footprint_region->cfr_num_pages = 0; |
| 19001 | /* caller needs to initialize new region */ |
| 19002 | |
| 19003 | return new_footprint_region; |
| 19004 | } |
| 19005 | |
| 19006 | /* |
| 19007 | * vm_map_corpse_footprint_collect: |
| 19008 | * collect footprint information for "old_entry" in "old_map" and |
| 19009 | * stores it in "new_map"'s vmmap_footprint_info. |
| 19010 | */ |
| 19011 | kern_return_t |
| 19012 | ( |
| 19013 | vm_map_t old_map, |
| 19014 | vm_map_entry_t old_entry, |
| 19015 | vm_map_t new_map) |
| 19016 | { |
| 19017 | vm_map_offset_t va; |
| 19018 | int disp; |
| 19019 | kern_return_t kr; |
| 19020 | struct vm_map_corpse_footprint_header *; |
| 19021 | struct vm_map_corpse_footprint_region *; |
| 19022 | struct vm_map_corpse_footprint_region *; |
| 19023 | unsigned char *next_disp_p; |
| 19024 | uintptr_t ; |
| 19025 | uint32_t num_pages_tmp; |
| 19026 | |
| 19027 | va = old_entry->vme_start; |
| 19028 | |
| 19029 | vm_map_lock_assert_exclusive(old_map); |
| 19030 | vm_map_lock_assert_exclusive(new_map); |
| 19031 | |
| 19032 | assert(new_map->has_corpse_footprint); |
| 19033 | assert(!old_map->has_corpse_footprint); |
| 19034 | if (!new_map->has_corpse_footprint || |
| 19035 | old_map->has_corpse_footprint) { |
| 19036 | /* |
| 19037 | * This can only transfer footprint info from a |
| 19038 | * map with a live pmap to a map with a corpse footprint. |
| 19039 | */ |
| 19040 | return KERN_NOT_SUPPORTED; |
| 19041 | } |
| 19042 | |
| 19043 | if (new_map->vmmap_corpse_footprint == NULL) { |
| 19044 | vm_offset_t buf; |
| 19045 | vm_size_t buf_size; |
| 19046 | |
| 19047 | buf = 0; |
| 19048 | buf_size = (sizeof (*footprint_header) + |
| 19049 | (old_map->hdr.nentries |
| 19050 | * |
| 19051 | (sizeof (*footprint_region) + |
| 19052 | + 3)) /* potential alignment for each region */ |
| 19053 | + |
| 19054 | ((old_map->size / PAGE_SIZE) |
| 19055 | * |
| 19056 | sizeof (char))); /* disposition for each page */ |
| 19057 | // printf("FBDP corpse map %p guestimate footprint size 0x%llx\n", new_map, (uint64_t) buf_size); |
| 19058 | buf_size = round_page(buf_size); |
| 19059 | |
| 19060 | /* limit buffer to 1 page to validate overflow detection */ |
| 19061 | // buf_size = PAGE_SIZE; |
| 19062 | |
| 19063 | /* limit size to a somewhat sane amount */ |
| 19064 | #if CONFIG_EMBEDDED |
| 19065 | #define VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE (256*1024) /* 256KB */ |
| 19066 | #else /* CONFIG_EMBEDDED */ |
| 19067 | #define (8*1024*1024) /* 8MB */ |
| 19068 | #endif /* CONFIG_EMBEDDED */ |
| 19069 | if (buf_size > VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE) { |
| 19070 | buf_size = VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE; |
| 19071 | } |
| 19072 | |
| 19073 | /* |
| 19074 | * Allocate the pageable buffer (with a trailing guard page). |
| 19075 | * It will be zero-filled on demand. |
| 19076 | */ |
| 19077 | kr = kernel_memory_allocate(kernel_map, |
| 19078 | &buf, |
| 19079 | (buf_size |
| 19080 | + PAGE_SIZE), /* trailing guard page */ |
| 19081 | 0, /* mask */ |
| 19082 | KMA_PAGEABLE | KMA_GUARD_LAST, |
| 19083 | VM_KERN_MEMORY_DIAG); |
| 19084 | if (kr != KERN_SUCCESS) { |
| 19085 | vm_map_corpse_footprint_no_buf++; |
| 19086 | return kr; |
| 19087 | } |
| 19088 | |
| 19089 | /* initialize header and 1st region */ |
| 19090 | footprint_header = (struct vm_map_corpse_footprint_header *)buf; |
| 19091 | new_map->vmmap_corpse_footprint = footprint_header; |
| 19092 | |
| 19093 | footprint_header->cf_size = buf_size; |
| 19094 | footprint_header->cf_last_region = |
| 19095 | sizeof (*footprint_header); |
| 19096 | footprint_header->cf_last_zeroes = 0; |
| 19097 | |
| 19098 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 19099 | ((char *)footprint_header + |
| 19100 | footprint_header->cf_last_region); |
| 19101 | footprint_region->cfr_vaddr = 0; |
| 19102 | footprint_region->cfr_num_pages = 0; |
| 19103 | } else { |
| 19104 | /* retrieve header and last region */ |
| 19105 | footprint_header = (struct vm_map_corpse_footprint_header *) |
| 19106 | new_map->vmmap_corpse_footprint; |
| 19107 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 19108 | ((char *)footprint_header + |
| 19109 | footprint_header->cf_last_region); |
| 19110 | } |
| 19111 | footprint_edge = ((uintptr_t)footprint_header + |
| 19112 | footprint_header->cf_size); |
| 19113 | |
| 19114 | if ((footprint_region->cfr_vaddr + |
| 19115 | (((vm_map_offset_t)footprint_region->cfr_num_pages) * |
| 19116 | PAGE_SIZE)) |
| 19117 | != old_entry->vme_start) { |
| 19118 | uint64_t num_pages_delta; |
| 19119 | uint32_t region_offset_delta; |
| 19120 | |
| 19121 | /* |
| 19122 | * Not the next contiguous virtual address: |
| 19123 | * start a new region or store "zero" dispositions for |
| 19124 | * the missing pages? |
| 19125 | */ |
| 19126 | /* size of gap in actual page dispositions */ |
| 19127 | num_pages_delta = (((old_entry->vme_start - |
| 19128 | footprint_region->cfr_vaddr) / PAGE_SIZE) |
| 19129 | - footprint_region->cfr_num_pages); |
| 19130 | /* size of gap as a new footprint region header */ |
| 19131 | region_offset_delta = |
| 19132 | (sizeof (*footprint_region) + |
| 19133 | roundup((footprint_region->cfr_num_pages - |
| 19134 | footprint_header->cf_last_zeroes), |
| 19135 | sizeof (int)) - |
| 19136 | (footprint_region->cfr_num_pages - |
| 19137 | footprint_header->cf_last_zeroes)); |
| 19138 | // printf("FBDP %s:%d region 0x%x 0x%llx 0x%x vme_start 0x%llx pages_delta 0x%llx region_delta 0x%x\n", __FUNCTION__, __LINE__, footprint_header->cf_last_region, footprint_region->cfr_vaddr, footprint_region->cfr_num_pages, old_entry->vme_start, num_pages_delta, region_offset_delta); |
| 19139 | if (region_offset_delta < num_pages_delta || |
| 19140 | os_add3_overflow(footprint_region->cfr_num_pages, |
| 19141 | (uint32_t) num_pages_delta, |
| 19142 | 1, |
| 19143 | &num_pages_tmp)) { |
| 19144 | /* |
| 19145 | * Storing data for this gap would take more space |
| 19146 | * than inserting a new footprint region header: |
| 19147 | * let's start a new region and save space. If it's a |
| 19148 | * tie, let's avoid using a new region, since that |
| 19149 | * would require more region hops to find the right |
| 19150 | * range during lookups. |
| 19151 | * |
| 19152 | * If the current region's cfr_num_pages would overflow |
| 19153 | * if we added "zero" page dispositions for the gap, |
| 19154 | * no choice but to start a new region. |
| 19155 | */ |
| 19156 | // printf("FBDP %s:%d new region\n", __FUNCTION__, __LINE__); |
| 19157 | new_footprint_region = |
| 19158 | vm_map_corpse_footprint_new_region(footprint_header); |
| 19159 | /* check that we're not going over the edge */ |
| 19160 | if (new_footprint_region == NULL) { |
| 19161 | goto over_the_edge; |
| 19162 | } |
| 19163 | footprint_region = new_footprint_region; |
| 19164 | /* initialize new region as empty */ |
| 19165 | footprint_region->cfr_vaddr = old_entry->vme_start; |
| 19166 | footprint_region->cfr_num_pages = 0; |
| 19167 | } else { |
| 19168 | /* |
| 19169 | * Store "zero" page dispositions for the missing |
| 19170 | * pages. |
| 19171 | */ |
| 19172 | // printf("FBDP %s:%d zero gap\n", __FUNCTION__, __LINE__); |
| 19173 | for (; num_pages_delta > 0; num_pages_delta--) { |
| 19174 | next_disp_p = |
| 19175 | ((unsigned char *) footprint_region + |
| 19176 | sizeof (*footprint_region) + |
| 19177 | footprint_region->cfr_num_pages); |
| 19178 | /* check that we're not going over the edge */ |
| 19179 | if ((uintptr_t)next_disp_p >= footprint_edge) { |
| 19180 | goto over_the_edge; |
| 19181 | } |
| 19182 | /* store "zero" disposition for this gap page */ |
| 19183 | footprint_region->cfr_num_pages++; |
| 19184 | *next_disp_p = (unsigned char) 0; |
| 19185 | footprint_header->cf_last_zeroes++; |
| 19186 | } |
| 19187 | } |
| 19188 | } |
| 19189 | |
| 19190 | for (va = old_entry->vme_start; |
| 19191 | va < old_entry->vme_end; |
| 19192 | va += PAGE_SIZE) { |
| 19193 | vm_object_t object; |
| 19194 | |
| 19195 | object = VME_OBJECT(old_entry); |
| 19196 | if (!old_entry->is_sub_map && |
| 19197 | old_entry->iokit_acct && |
| 19198 | object != VM_OBJECT_NULL && |
| 19199 | object->internal && |
| 19200 | object->purgable == VM_PURGABLE_DENY) { |
| 19201 | /* |
| 19202 | * Non-purgeable IOKit memory: phys_footprint |
| 19203 | * includes the entire virtual mapping. |
| 19204 | * Since the forked corpse's VM map entry will not |
| 19205 | * have "iokit_acct", pretend that this page's |
| 19206 | * disposition is "present & internal", so that it |
| 19207 | * shows up in the forked corpse's footprint. |
| 19208 | */ |
| 19209 | disp = (PMAP_QUERY_PAGE_PRESENT | |
| 19210 | PMAP_QUERY_PAGE_INTERNAL); |
| 19211 | } else { |
| 19212 | disp = 0; |
| 19213 | pmap_query_page_info(old_map->pmap, |
| 19214 | va, |
| 19215 | &disp); |
| 19216 | } |
| 19217 | |
| 19218 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP collect map %p va 0x%llx disp 0x%x\n", new_map, va, disp); |
| 19219 | |
| 19220 | if (disp == 0 && footprint_region->cfr_num_pages == 0) { |
| 19221 | /* |
| 19222 | * Ignore "zero" dispositions at start of |
| 19223 | * region: just move start of region. |
| 19224 | */ |
| 19225 | footprint_region->cfr_vaddr += PAGE_SIZE; |
| 19226 | continue; |
| 19227 | } |
| 19228 | |
| 19229 | /* would region's cfr_num_pages overflow? */ |
| 19230 | if (os_add_overflow(footprint_region->cfr_num_pages, 1, |
| 19231 | &num_pages_tmp)) { |
| 19232 | /* overflow: create a new region */ |
| 19233 | new_footprint_region = |
| 19234 | vm_map_corpse_footprint_new_region( |
| 19235 | footprint_header); |
| 19236 | if (new_footprint_region == NULL) { |
| 19237 | goto over_the_edge; |
| 19238 | } |
| 19239 | footprint_region = new_footprint_region; |
| 19240 | footprint_region->cfr_vaddr = va; |
| 19241 | footprint_region->cfr_num_pages = 0; |
| 19242 | } |
| 19243 | |
| 19244 | next_disp_p = ((unsigned char *)footprint_region + |
| 19245 | sizeof (*footprint_region) + |
| 19246 | footprint_region->cfr_num_pages); |
| 19247 | /* check that we're not going over the edge */ |
| 19248 | if ((uintptr_t)next_disp_p >= footprint_edge) { |
| 19249 | goto over_the_edge; |
| 19250 | } |
| 19251 | /* store this dispostion */ |
| 19252 | *next_disp_p = (unsigned char) disp; |
| 19253 | footprint_region->cfr_num_pages++; |
| 19254 | |
| 19255 | if (disp != 0) { |
| 19256 | /* non-zero disp: break the current zero streak */ |
| 19257 | footprint_header->cf_last_zeroes = 0; |
| 19258 | /* done */ |
| 19259 | continue; |
| 19260 | } |
| 19261 | |
| 19262 | /* zero disp: add to the current streak of zeroes */ |
| 19263 | footprint_header->cf_last_zeroes++; |
| 19264 | if ((footprint_header->cf_last_zeroes + |
| 19265 | roundup((footprint_region->cfr_num_pages - |
| 19266 | footprint_header->cf_last_zeroes) & |
| 19267 | (sizeof (int) - 1), |
| 19268 | sizeof (int))) < |
| 19269 | (sizeof (*footprint_header))) { |
| 19270 | /* |
| 19271 | * There are not enough trailing "zero" dispositions |
| 19272 | * (+ the extra padding we would need for the previous |
| 19273 | * region); creating a new region would not save space |
| 19274 | * at this point, so let's keep this "zero" disposition |
| 19275 | * in this region and reconsider later. |
| 19276 | */ |
| 19277 | continue; |
| 19278 | } |
| 19279 | /* |
| 19280 | * Create a new region to avoid having too many consecutive |
| 19281 | * "zero" dispositions. |
| 19282 | */ |
| 19283 | new_footprint_region = |
| 19284 | vm_map_corpse_footprint_new_region(footprint_header); |
| 19285 | if (new_footprint_region == NULL) { |
| 19286 | goto over_the_edge; |
| 19287 | } |
| 19288 | footprint_region = new_footprint_region; |
| 19289 | /* initialize the new region as empty ... */ |
| 19290 | footprint_region->cfr_num_pages = 0; |
| 19291 | /* ... and skip this "zero" disp */ |
| 19292 | footprint_region->cfr_vaddr = va + PAGE_SIZE; |
| 19293 | } |
| 19294 | |
| 19295 | return KERN_SUCCESS; |
| 19296 | |
| 19297 | over_the_edge: |
| 19298 | // printf("FBDP map %p footprint was full for va 0x%llx\n", new_map, va); |
| 19299 | vm_map_corpse_footprint_full++; |
| 19300 | return KERN_RESOURCE_SHORTAGE; |
| 19301 | } |
| 19302 | |
| 19303 | /* |
| 19304 | * vm_map_corpse_footprint_collect_done: |
| 19305 | * completes the footprint collection by getting rid of any remaining |
| 19306 | * trailing "zero" dispositions and trimming the unused part of the |
| 19307 | * kernel buffer |
| 19308 | */ |
| 19309 | void |
| 19310 | ( |
| 19311 | vm_map_t new_map) |
| 19312 | { |
| 19313 | struct vm_map_corpse_footprint_header *; |
| 19314 | struct vm_map_corpse_footprint_region *; |
| 19315 | vm_size_t buf_size, actual_size; |
| 19316 | kern_return_t kr; |
| 19317 | |
| 19318 | assert(new_map->has_corpse_footprint); |
| 19319 | if (!new_map->has_corpse_footprint || |
| 19320 | new_map->vmmap_corpse_footprint == NULL) { |
| 19321 | return; |
| 19322 | } |
| 19323 | |
| 19324 | footprint_header = (struct vm_map_corpse_footprint_header *) |
| 19325 | new_map->vmmap_corpse_footprint; |
| 19326 | buf_size = footprint_header->cf_size; |
| 19327 | |
| 19328 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 19329 | ((char *)footprint_header + |
| 19330 | footprint_header->cf_last_region); |
| 19331 | |
| 19332 | /* get rid of trailing zeroes in last region */ |
| 19333 | assert(footprint_region->cfr_num_pages >= footprint_header->cf_last_zeroes); |
| 19334 | footprint_region->cfr_num_pages -= footprint_header->cf_last_zeroes; |
| 19335 | footprint_header->cf_last_zeroes = 0; |
| 19336 | |
| 19337 | actual_size = (vm_size_t)(footprint_header->cf_last_region + |
| 19338 | sizeof (*footprint_region) + |
| 19339 | footprint_region->cfr_num_pages); |
| 19340 | |
| 19341 | // printf("FBDP map %p buf_size 0x%llx actual_size 0x%llx\n", new_map, (uint64_t) buf_size, (uint64_t) actual_size); |
| 19342 | vm_map_corpse_footprint_size_avg = |
| 19343 | (((vm_map_corpse_footprint_size_avg * |
| 19344 | vm_map_corpse_footprint_count) + |
| 19345 | actual_size) / |
| 19346 | (vm_map_corpse_footprint_count + 1)); |
| 19347 | vm_map_corpse_footprint_count++; |
| 19348 | if (actual_size > vm_map_corpse_footprint_size_max) { |
| 19349 | vm_map_corpse_footprint_size_max = actual_size; |
| 19350 | } |
| 19351 | |
| 19352 | actual_size = round_page(actual_size); |
| 19353 | if (buf_size > actual_size) { |
| 19354 | kr = vm_deallocate(kernel_map, |
| 19355 | ((vm_address_t)footprint_header + |
| 19356 | actual_size + |
| 19357 | PAGE_SIZE), /* trailing guard page */ |
| 19358 | (buf_size - actual_size)); |
| 19359 | assertf(kr == KERN_SUCCESS, |
| 19360 | "trim: footprint_header %p buf_size 0x%llx actual_size 0x%llx kr=0x%x\n" , |
| 19361 | footprint_header, |
| 19362 | (uint64_t) buf_size, |
| 19363 | (uint64_t) actual_size, |
| 19364 | kr); |
| 19365 | kr = vm_protect(kernel_map, |
| 19366 | ((vm_address_t)footprint_header + |
| 19367 | actual_size), |
| 19368 | PAGE_SIZE, |
| 19369 | FALSE, /* set_maximum */ |
| 19370 | VM_PROT_NONE); |
| 19371 | assertf(kr == KERN_SUCCESS, |
| 19372 | "guard: footprint_header %p buf_size 0x%llx actual_size 0x%llx kr=0x%x\n" , |
| 19373 | footprint_header, |
| 19374 | (uint64_t) buf_size, |
| 19375 | (uint64_t) actual_size, |
| 19376 | kr); |
| 19377 | } |
| 19378 | |
| 19379 | footprint_header->cf_size = actual_size; |
| 19380 | } |
| 19381 | |
| 19382 | /* |
| 19383 | * vm_map_corpse_footprint_query_page_info: |
| 19384 | * retrieves the disposition of the page at virtual address "vaddr" |
| 19385 | * in the forked corpse's VM map |
| 19386 | * |
| 19387 | * This is the equivalent of pmap_query_page_info() for a forked corpse. |
| 19388 | */ |
| 19389 | kern_return_t |
| 19390 | ( |
| 19391 | vm_map_t map, |
| 19392 | vm_map_offset_t va, |
| 19393 | int *disp) |
| 19394 | { |
| 19395 | struct vm_map_corpse_footprint_header *; |
| 19396 | struct vm_map_corpse_footprint_region *; |
| 19397 | uint32_t ; |
| 19398 | vm_map_offset_t region_start, region_end; |
| 19399 | int disp_idx; |
| 19400 | kern_return_t kr; |
| 19401 | |
| 19402 | if (!map->has_corpse_footprint) { |
| 19403 | *disp = 0; |
| 19404 | kr = KERN_INVALID_ARGUMENT; |
| 19405 | goto done; |
| 19406 | } |
| 19407 | |
| 19408 | footprint_header = map->vmmap_corpse_footprint; |
| 19409 | if (footprint_header == NULL) { |
| 19410 | *disp = 0; |
| 19411 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disp); |
| 19412 | kr = KERN_INVALID_ARGUMENT; |
| 19413 | goto done; |
| 19414 | } |
| 19415 | |
| 19416 | /* start looking at the hint ("cf_hint_region") */ |
| 19417 | footprint_region_offset = footprint_header->cf_hint_region; |
| 19418 | |
| 19419 | lookup_again: |
| 19420 | if (footprint_region_offset < sizeof (*footprint_header)) { |
| 19421 | /* hint too low: start from 1st region */ |
| 19422 | footprint_region_offset = sizeof (*footprint_header); |
| 19423 | } |
| 19424 | if (footprint_region_offset >= footprint_header->cf_last_region) { |
| 19425 | /* hint too high: re-start from 1st region */ |
| 19426 | footprint_region_offset = sizeof (*footprint_header); |
| 19427 | } |
| 19428 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 19429 | ((char *)footprint_header + footprint_region_offset); |
| 19430 | region_start = footprint_region->cfr_vaddr; |
| 19431 | region_end = (region_start + |
| 19432 | ((vm_map_offset_t)(footprint_region->cfr_num_pages) * |
| 19433 | PAGE_SIZE)); |
| 19434 | if (va < region_start && |
| 19435 | footprint_region_offset != sizeof (*footprint_header)) { |
| 19436 | /* our range starts before the hint region */ |
| 19437 | |
| 19438 | /* reset the hint (in a racy way...) */ |
| 19439 | footprint_header->cf_hint_region = sizeof (*footprint_header); |
| 19440 | /* lookup "va" again from 1st region */ |
| 19441 | footprint_region_offset = sizeof (*footprint_header); |
| 19442 | goto lookup_again; |
| 19443 | } |
| 19444 | |
| 19445 | while (va >= region_end) { |
| 19446 | if (footprint_region_offset >= footprint_header->cf_last_region) { |
| 19447 | break; |
| 19448 | } |
| 19449 | /* skip the region's header */ |
| 19450 | footprint_region_offset += sizeof (*footprint_region); |
| 19451 | /* skip the region's page dispositions */ |
| 19452 | footprint_region_offset += footprint_region->cfr_num_pages; |
| 19453 | /* align to next word boundary */ |
| 19454 | footprint_region_offset = |
| 19455 | roundup(footprint_region_offset, |
| 19456 | sizeof (int)); |
| 19457 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 19458 | ((char *)footprint_header + footprint_region_offset); |
| 19459 | region_start = footprint_region->cfr_vaddr; |
| 19460 | region_end = (region_start + |
| 19461 | ((vm_map_offset_t)(footprint_region->cfr_num_pages) * |
| 19462 | PAGE_SIZE)); |
| 19463 | } |
| 19464 | if (va < region_start || va >= region_end) { |
| 19465 | /* page not found */ |
| 19466 | *disp = 0; |
| 19467 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disp); |
| 19468 | kr = KERN_SUCCESS; |
| 19469 | goto done; |
| 19470 | } |
| 19471 | |
| 19472 | /* "va" found: set the lookup hint for next lookup (in a racy way...) */ |
| 19473 | footprint_header->cf_hint_region = footprint_region_offset; |
| 19474 | |
| 19475 | /* get page disposition for "va" in this region */ |
| 19476 | disp_idx = (int) ((va - footprint_region->cfr_vaddr) / PAGE_SIZE); |
| 19477 | *disp = (int) (footprint_region->cfr_disposition[disp_idx]); |
| 19478 | |
| 19479 | kr = KERN_SUCCESS; |
| 19480 | done: |
| 19481 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disp); |
| 19482 | /* dtrace -n 'vminfo:::footprint_query_page_info { printf("map 0x%p va 0x%llx disp 0x%x kr 0x%x", arg0, arg1, arg2, arg3); }' */ |
| 19483 | DTRACE_VM4(footprint_query_page_info, |
| 19484 | vm_map_t, map, |
| 19485 | vm_map_offset_t, va, |
| 19486 | int, *disp, |
| 19487 | kern_return_t, kr); |
| 19488 | |
| 19489 | return kr; |
| 19490 | } |
| 19491 | |
| 19492 | |
| 19493 | static void |
| 19494 | ( |
| 19495 | vm_map_t map) |
| 19496 | { |
| 19497 | if (map->has_corpse_footprint && |
| 19498 | map->vmmap_corpse_footprint != 0) { |
| 19499 | struct vm_map_corpse_footprint_header *; |
| 19500 | vm_size_t buf_size; |
| 19501 | kern_return_t kr; |
| 19502 | |
| 19503 | footprint_header = map->vmmap_corpse_footprint; |
| 19504 | buf_size = footprint_header->cf_size; |
| 19505 | kr = vm_deallocate(kernel_map, |
| 19506 | (vm_offset_t) map->vmmap_corpse_footprint, |
| 19507 | ((vm_size_t) buf_size |
| 19508 | + PAGE_SIZE)); /* trailing guard page */ |
| 19509 | assertf(kr == KERN_SUCCESS, "kr=0x%x\n" , kr); |
| 19510 | map->vmmap_corpse_footprint = 0; |
| 19511 | map->has_corpse_footprint = FALSE; |
| 19512 | } |
| 19513 | } |
| 19514 | |
| 19515 | /* |
| 19516 | * vm_map_copy_footprint_ledgers: |
| 19517 | * copies any ledger that's relevant to the memory footprint of "old_task" |
| 19518 | * into the forked corpse's task ("new_task") |
| 19519 | */ |
| 19520 | void |
| 19521 | ( |
| 19522 | task_t old_task, |
| 19523 | task_t new_task) |
| 19524 | { |
| 19525 | vm_map_copy_ledger(old_task, new_task, task_ledgers.phys_footprint); |
| 19526 | vm_map_copy_ledger(old_task, new_task, task_ledgers.purgeable_nonvolatile); |
| 19527 | vm_map_copy_ledger(old_task, new_task, task_ledgers.purgeable_nonvolatile_compressed); |
| 19528 | vm_map_copy_ledger(old_task, new_task, task_ledgers.internal); |
| 19529 | vm_map_copy_ledger(old_task, new_task, task_ledgers.internal_compressed); |
| 19530 | vm_map_copy_ledger(old_task, new_task, task_ledgers.iokit_mapped); |
| 19531 | vm_map_copy_ledger(old_task, new_task, task_ledgers.alternate_accounting); |
| 19532 | vm_map_copy_ledger(old_task, new_task, task_ledgers.alternate_accounting_compressed); |
| 19533 | vm_map_copy_ledger(old_task, new_task, task_ledgers.page_table); |
| 19534 | vm_map_copy_ledger(old_task, new_task, task_ledgers.network_nonvolatile); |
| 19535 | vm_map_copy_ledger(old_task, new_task, task_ledgers.network_nonvolatile_compressed); |
| 19536 | vm_map_copy_ledger(old_task, new_task, task_ledgers.wired_mem); |
| 19537 | } |
| 19538 | |
| 19539 | /* |
| 19540 | * vm_map_copy_ledger: |
| 19541 | * copy a single ledger from "old_task" to "new_task" |
| 19542 | */ |
| 19543 | void |
| 19544 | vm_map_copy_ledger( |
| 19545 | task_t old_task, |
| 19546 | task_t new_task, |
| 19547 | int ledger_entry) |
| 19548 | { |
| 19549 | ledger_amount_t old_balance, new_balance, delta; |
| 19550 | |
| 19551 | assert(new_task->map->has_corpse_footprint); |
| 19552 | if (!new_task->map->has_corpse_footprint) |
| 19553 | return; |
| 19554 | |
| 19555 | /* turn off sanity checks for the ledger we're about to mess with */ |
| 19556 | ledger_disable_panic_on_negative(new_task->ledger, |
| 19557 | ledger_entry); |
| 19558 | |
| 19559 | /* adjust "new_task" to match "old_task" */ |
| 19560 | ledger_get_balance(old_task->ledger, |
| 19561 | ledger_entry, |
| 19562 | &old_balance); |
| 19563 | ledger_get_balance(new_task->ledger, |
| 19564 | ledger_entry, |
| 19565 | &new_balance); |
| 19566 | if (new_balance == old_balance) { |
| 19567 | /* new == old: done */ |
| 19568 | } else if (new_balance > old_balance) { |
| 19569 | /* new > old ==> new -= new - old */ |
| 19570 | delta = new_balance - old_balance; |
| 19571 | ledger_debit(new_task->ledger, |
| 19572 | ledger_entry, |
| 19573 | delta); |
| 19574 | } else { |
| 19575 | /* new < old ==> new += old - new */ |
| 19576 | delta = old_balance - new_balance; |
| 19577 | ledger_credit(new_task->ledger, |
| 19578 | ledger_entry, |
| 19579 | delta); |
| 19580 | } |
| 19581 | } |
| 19582 | |