| 1 | /* |
| 2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include "vm_compressor_backing_store.h" |
| 30 | #include <vm/vm_pageout.h> |
| 31 | #include <vm/vm_protos.h> |
| 32 | |
| 33 | #include <IOKit/IOHibernatePrivate.h> |
| 34 | |
| 35 | #include <kern/policy_internal.h> |
| 36 | |
| 37 | boolean_t compressor_store_stop_compaction = FALSE; |
| 38 | boolean_t vm_swapfile_create_needed = FALSE; |
| 39 | boolean_t vm_swapfile_gc_needed = FALSE; |
| 40 | |
| 41 | int vm_swapper_throttle = -1; |
| 42 | uint64_t vm_swapout_thread_id; |
| 43 | |
| 44 | uint64_t vm_swap_put_failures = 0; |
| 45 | uint64_t vm_swap_get_failures = 0; |
| 46 | int vm_num_swap_files_config = 0; |
| 47 | int vm_num_swap_files = 0; |
| 48 | int vm_num_pinned_swap_files = 0; |
| 49 | int vm_swapout_thread_processed_segments = 0; |
| 50 | int vm_swapout_thread_awakened = 0; |
| 51 | int vm_swapfile_create_thread_awakened = 0; |
| 52 | int vm_swapfile_create_thread_running = 0; |
| 53 | int vm_swapfile_gc_thread_awakened = 0; |
| 54 | int vm_swapfile_gc_thread_running = 0; |
| 55 | |
| 56 | int64_t vm_swappin_avail = 0; |
| 57 | boolean_t vm_swappin_enabled = FALSE; |
| 58 | unsigned int vm_swapfile_total_segs_alloced = 0; |
| 59 | unsigned int vm_swapfile_total_segs_used = 0; |
| 60 | |
| 61 | char swapfilename[MAX_SWAPFILENAME_LEN + 1] = SWAP_FILE_NAME; |
| 62 | |
| 63 | extern vm_map_t compressor_map; |
| 64 | |
| 65 | |
| 66 | #define SWAP_READY 0x1 /* Swap file is ready to be used */ |
| 67 | #define SWAP_RECLAIM 0x2 /* Swap file is marked to be reclaimed */ |
| 68 | #define SWAP_WANTED 0x4 /* Swap file has waiters */ |
| 69 | #define SWAP_REUSE 0x8 /* Swap file is on the Q and has a name. Reuse after init-ing.*/ |
| 70 | #define SWAP_PINNED 0x10 /* Swap file is pinned (FusionDrive) */ |
| 71 | |
| 72 | |
| 73 | struct swapfile{ |
| 74 | queue_head_t swp_queue; /* list of swap files */ |
| 75 | char *swp_path; /* saved pathname of swap file */ |
| 76 | struct vnode *swp_vp; /* backing vnode */ |
| 77 | uint64_t swp_size; /* size of this swap file */ |
| 78 | uint8_t *swp_bitmap; /* bitmap showing the alloced/freed slots in the swap file */ |
| 79 | unsigned int swp_pathlen; /* length of pathname */ |
| 80 | unsigned int swp_nsegs; /* #segments we can use */ |
| 81 | unsigned int swp_nseginuse; /* #segments in use */ |
| 82 | unsigned int swp_index; /* index of this swap file */ |
| 83 | unsigned int swp_flags; /* state of swap file */ |
| 84 | unsigned int swp_free_hint; /* offset of 1st free chunk */ |
| 85 | unsigned int swp_io_count; /* count of outstanding I/Os */ |
| 86 | c_segment_t *swp_csegs; /* back pointers to the c_segments. Used during swap reclaim. */ |
| 87 | |
| 88 | struct trim_list *swp_delayed_trim_list_head; |
| 89 | unsigned int swp_delayed_trim_count; |
| 90 | }; |
| 91 | |
| 92 | queue_head_t swf_global_queue; |
| 93 | boolean_t swp_trim_supported = FALSE; |
| 94 | |
| 95 | extern clock_sec_t dont_trim_until_ts; |
| 96 | clock_sec_t vm_swapfile_last_failed_to_create_ts = 0; |
| 97 | clock_sec_t vm_swapfile_last_successful_create_ts = 0; |
| 98 | int vm_swapfile_can_be_created = FALSE; |
| 99 | boolean_t delayed_trim_handling_in_progress = FALSE; |
| 100 | |
| 101 | boolean_t hibernate_in_progress_with_pinned_swap = FALSE; |
| 102 | |
| 103 | static void vm_swapout_thread_throttle_adjust(void); |
| 104 | static void vm_swap_free_now(struct swapfile *swf, uint64_t f_offset); |
| 105 | static void vm_swapout_thread(void); |
| 106 | static void vm_swapfile_create_thread(void); |
| 107 | static void vm_swapfile_gc_thread(void); |
| 108 | static void vm_swap_defragment(void); |
| 109 | static void vm_swap_handle_delayed_trims(boolean_t); |
| 110 | static void vm_swap_do_delayed_trim(struct swapfile *); |
| 111 | static void vm_swap_wait_on_trim_handling_in_progress(void); |
| 112 | |
| 113 | |
| 114 | boolean_t vm_swap_force_defrag = FALSE, vm_swap_force_reclaim = FALSE; |
| 115 | |
| 116 | #if CONFIG_EMBEDDED |
| 117 | |
| 118 | #if DEVELOPMENT || DEBUG |
| 119 | #define VM_MAX_SWAP_FILE_NUM 100 |
| 120 | #else /* DEVELOPMENT || DEBUG */ |
| 121 | #define VM_MAX_SWAP_FILE_NUM 5 |
| 122 | #endif /* DEVELOPMENT || DEBUG */ |
| 123 | |
| 124 | #define VM_SWAPFILE_DELAYED_TRIM_MAX 4 |
| 125 | |
| 126 | #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 16))) ? 1 : 0) |
| 127 | #define VM_SWAP_SHOULD_PIN(_size) FALSE |
| 128 | #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)VM_SWAPFILE_HIWATER_SEGS) && \ |
| 129 | ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0) |
| 130 | #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0) |
| 131 | |
| 132 | #else /* CONFIG_EMBEDDED */ |
| 133 | |
| 134 | #define VM_MAX_SWAP_FILE_NUM 100 |
| 135 | #define VM_SWAPFILE_DELAYED_TRIM_MAX 128 |
| 136 | |
| 137 | #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 4))) ? 1 : 0) |
| 138 | #define VM_SWAP_SHOULD_PIN(_size) (vm_swappin_avail > 0 && vm_swappin_avail >= (int64_t)(_size)) |
| 139 | #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)VM_SWAPFILE_HIWATER_SEGS) && \ |
| 140 | ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0) |
| 141 | #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0) |
| 142 | |
| 143 | #endif /* CONFIG_EMBEDDED */ |
| 144 | |
| 145 | #define VM_SWAP_SHOULD_RECLAIM() (((vm_swap_force_reclaim == TRUE) || ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) >= SWAPFILE_RECLAIM_THRESHOLD_SEGS)) ? 1 : 0) |
| 146 | #define VM_SWAP_SHOULD_ABORT_RECLAIM() (((vm_swap_force_reclaim == FALSE) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) <= SWAPFILE_RECLAIM_MINIMUM_SEGS)) ? 1 : 0) |
| 147 | #define VM_SWAPFILE_DELAYED_CREATE 15 |
| 148 | |
| 149 | #define VM_SWAP_BUSY() ((c_swapout_count && (vm_swapper_throttle == THROTTLE_LEVEL_COMPRESSOR_TIER0)) ? 1 : 0) |
| 150 | |
| 151 | |
| 152 | #if CHECKSUM_THE_SWAP |
| 153 | extern unsigned int hash_string(char *cp, int len); |
| 154 | #endif |
| 155 | |
| 156 | #if RECORD_THE_COMPRESSED_DATA |
| 157 | boolean_t c_compressed_record_init_done = FALSE; |
| 158 | int c_compressed_record_write_error = 0; |
| 159 | struct vnode *c_compressed_record_vp = NULL; |
| 160 | uint64_t c_compressed_record_file_offset = 0; |
| 161 | void c_compressed_record_init(void); |
| 162 | void c_compressed_record_write(char *, int); |
| 163 | #endif |
| 164 | |
| 165 | extern void vm_pageout_io_throttle(void); |
| 166 | |
| 167 | static struct swapfile *vm_swapfile_for_handle(uint64_t); |
| 168 | |
| 169 | /* |
| 170 | * Called with the vm_swap_data_lock held. |
| 171 | */ |
| 172 | |
| 173 | static struct swapfile * |
| 174 | vm_swapfile_for_handle(uint64_t f_offset) |
| 175 | { |
| 176 | |
| 177 | uint64_t file_offset = 0; |
| 178 | unsigned int swapfile_index = 0; |
| 179 | struct swapfile* swf = NULL; |
| 180 | |
| 181 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 182 | swapfile_index = (f_offset >> SWAP_DEVICE_SHIFT); |
| 183 | |
| 184 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 185 | |
| 186 | while(queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 187 | |
| 188 | if (swapfile_index == swf->swp_index) { |
| 189 | break; |
| 190 | } |
| 191 | |
| 192 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 193 | } |
| 194 | |
| 195 | if (queue_end(&swf_global_queue, (queue_entry_t) swf)) { |
| 196 | swf = NULL; |
| 197 | } |
| 198 | |
| 199 | return swf; |
| 200 | } |
| 201 | |
| 202 | #if ENCRYPTED_SWAP |
| 203 | |
| 204 | #include <libkern/crypto/aesxts.h> |
| 205 | |
| 206 | extern int cc_rand_generate(void *, size_t); /* from libkern/cyrpto/rand.h> */ |
| 207 | |
| 208 | boolean_t swap_crypt_initialized; |
| 209 | void swap_crypt_initialize(void); |
| 210 | |
| 211 | symmetric_xts xts_modectx; |
| 212 | uint32_t swap_crypt_key1[8]; /* big enough for a 256 bit random key */ |
| 213 | uint32_t swap_crypt_key2[8]; /* big enough for a 256 bit random key */ |
| 214 | |
| 215 | #if DEVELOPMENT || DEBUG |
| 216 | boolean_t swap_crypt_xts_tested = FALSE; |
| 217 | unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); |
| 218 | unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); |
| 219 | unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); |
| 220 | #endif /* DEVELOPMENT || DEBUG */ |
| 221 | |
| 222 | unsigned long vm_page_encrypt_counter; |
| 223 | unsigned long vm_page_decrypt_counter; |
| 224 | |
| 225 | |
| 226 | void |
| 227 | swap_crypt_initialize(void) |
| 228 | { |
| 229 | uint8_t *enckey1, *enckey2; |
| 230 | int keylen1, keylen2; |
| 231 | int error; |
| 232 | |
| 233 | assert(swap_crypt_initialized == FALSE); |
| 234 | |
| 235 | keylen1 = sizeof(swap_crypt_key1); |
| 236 | enckey1 = (uint8_t *)&swap_crypt_key1; |
| 237 | keylen2 = sizeof(swap_crypt_key2); |
| 238 | enckey2 = (uint8_t *)&swap_crypt_key2; |
| 239 | |
| 240 | error = cc_rand_generate((void *)enckey1, keylen1); |
| 241 | assert(!error); |
| 242 | |
| 243 | error = cc_rand_generate((void *)enckey2, keylen2); |
| 244 | assert(!error); |
| 245 | |
| 246 | error = xts_start(0, NULL, enckey1, keylen1, enckey2, keylen2, 0, 0, &xts_modectx); |
| 247 | assert(!error); |
| 248 | |
| 249 | swap_crypt_initialized = TRUE; |
| 250 | |
| 251 | #if DEVELOPMENT || DEBUG |
| 252 | uint8_t *encptr; |
| 253 | uint8_t *decptr; |
| 254 | uint8_t *refptr; |
| 255 | uint8_t *iv; |
| 256 | uint64_t ivnum[2]; |
| 257 | int size = 0; |
| 258 | int i = 0; |
| 259 | int rc = 0; |
| 260 | |
| 261 | assert(swap_crypt_xts_tested == FALSE); |
| 262 | |
| 263 | /* |
| 264 | * Validate the encryption algorithms. |
| 265 | * |
| 266 | * First initialize the test data. |
| 267 | */ |
| 268 | for (i = 0; i < 4096; i++) { |
| 269 | swap_crypt_test_page_ref[i] = (char) i; |
| 270 | } |
| 271 | ivnum[0] = (uint64_t)0xaa; |
| 272 | ivnum[1] = 0; |
| 273 | iv = (uint8_t *)ivnum; |
| 274 | |
| 275 | refptr = (uint8_t *)swap_crypt_test_page_ref; |
| 276 | encptr = (uint8_t *)swap_crypt_test_page_encrypt; |
| 277 | decptr = (uint8_t *)swap_crypt_test_page_decrypt; |
| 278 | size = 4096; |
| 279 | |
| 280 | /* encrypt */ |
| 281 | rc = xts_encrypt(refptr, size, encptr, iv, &xts_modectx); |
| 282 | assert(!rc); |
| 283 | |
| 284 | /* compare result with original - should NOT match */ |
| 285 | for (i = 0; i < 4096; i ++) { |
| 286 | if (swap_crypt_test_page_encrypt[i] != |
| 287 | swap_crypt_test_page_ref[i]) { |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | assert(i != 4096); |
| 292 | |
| 293 | /* decrypt */ |
| 294 | rc = xts_decrypt(encptr, size, decptr, iv, &xts_modectx); |
| 295 | assert(!rc); |
| 296 | |
| 297 | /* compare result with original */ |
| 298 | for (i = 0; i < 4096; i ++) { |
| 299 | if (swap_crypt_test_page_decrypt[i] != |
| 300 | swap_crypt_test_page_ref[i]) { |
| 301 | panic("encryption test failed" ); |
| 302 | } |
| 303 | } |
| 304 | /* encrypt in place */ |
| 305 | rc = xts_encrypt(decptr, size, decptr, iv, &xts_modectx); |
| 306 | assert(!rc); |
| 307 | |
| 308 | /* decrypt in place */ |
| 309 | rc = xts_decrypt(decptr, size, decptr, iv, &xts_modectx); |
| 310 | assert(!rc); |
| 311 | |
| 312 | for (i = 0; i < 4096; i ++) { |
| 313 | if (swap_crypt_test_page_decrypt[i] != |
| 314 | swap_crypt_test_page_ref[i]) { |
| 315 | panic("in place encryption test failed" ); |
| 316 | } |
| 317 | } |
| 318 | swap_crypt_xts_tested = TRUE; |
| 319 | #endif /* DEVELOPMENT || DEBUG */ |
| 320 | } |
| 321 | |
| 322 | |
| 323 | void |
| 324 | vm_swap_encrypt(c_segment_t c_seg) |
| 325 | { |
| 326 | uint8_t *ptr; |
| 327 | uint8_t *iv; |
| 328 | uint64_t ivnum[2]; |
| 329 | int size = 0; |
| 330 | int rc = 0; |
| 331 | |
| 332 | if (swap_crypt_initialized == FALSE) |
| 333 | swap_crypt_initialize(); |
| 334 | |
| 335 | #if DEVELOPMENT || DEBUG |
| 336 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 337 | #endif |
| 338 | ptr = (uint8_t *)c_seg->c_store.c_buffer; |
| 339 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 340 | |
| 341 | ivnum[0] = (uint64_t)c_seg; |
| 342 | ivnum[1] = 0; |
| 343 | iv = (uint8_t *)ivnum; |
| 344 | |
| 345 | rc = xts_encrypt(ptr, size, ptr, iv, &xts_modectx); |
| 346 | assert(!rc); |
| 347 | |
| 348 | vm_page_encrypt_counter += (size/PAGE_SIZE_64); |
| 349 | |
| 350 | #if DEVELOPMENT || DEBUG |
| 351 | C_SEG_WRITE_PROTECT(c_seg); |
| 352 | #endif |
| 353 | } |
| 354 | |
| 355 | void |
| 356 | vm_swap_decrypt(c_segment_t c_seg) |
| 357 | { |
| 358 | uint8_t *ptr; |
| 359 | uint8_t *iv; |
| 360 | uint64_t ivnum[2]; |
| 361 | int size = 0; |
| 362 | int rc = 0; |
| 363 | |
| 364 | assert(swap_crypt_initialized); |
| 365 | |
| 366 | #if DEVELOPMENT || DEBUG |
| 367 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 368 | #endif |
| 369 | ptr = (uint8_t *)c_seg->c_store.c_buffer; |
| 370 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 371 | |
| 372 | ivnum[0] = (uint64_t)c_seg; |
| 373 | ivnum[1] = 0; |
| 374 | iv = (uint8_t *)ivnum; |
| 375 | |
| 376 | rc = xts_decrypt(ptr, size, ptr, iv, &xts_modectx); |
| 377 | assert(!rc); |
| 378 | |
| 379 | vm_page_decrypt_counter += (size/PAGE_SIZE_64); |
| 380 | |
| 381 | #if DEVELOPMENT || DEBUG |
| 382 | C_SEG_WRITE_PROTECT(c_seg); |
| 383 | #endif |
| 384 | } |
| 385 | #endif /* ENCRYPTED_SWAP */ |
| 386 | |
| 387 | |
| 388 | void |
| 389 | vm_compressor_swap_init() |
| 390 | { |
| 391 | thread_t thread = NULL; |
| 392 | |
| 393 | lck_grp_attr_setdefault(&vm_swap_data_lock_grp_attr); |
| 394 | lck_grp_init(&vm_swap_data_lock_grp, |
| 395 | "vm_swap_data" , |
| 396 | &vm_swap_data_lock_grp_attr); |
| 397 | lck_attr_setdefault(&vm_swap_data_lock_attr); |
| 398 | lck_mtx_init_ext(&vm_swap_data_lock, |
| 399 | &vm_swap_data_lock_ext, |
| 400 | &vm_swap_data_lock_grp, |
| 401 | &vm_swap_data_lock_attr); |
| 402 | |
| 403 | queue_init(&swf_global_queue); |
| 404 | |
| 405 | |
| 406 | if (kernel_thread_start_priority((thread_continue_t)vm_swapout_thread, NULL, |
| 407 | BASEPRI_VM, &thread) != KERN_SUCCESS) { |
| 408 | panic("vm_swapout_thread: create failed" ); |
| 409 | } |
| 410 | thread_set_thread_name(thread, "VM_swapout" ); |
| 411 | vm_swapout_thread_id = thread->thread_id; |
| 412 | |
| 413 | thread_deallocate(thread); |
| 414 | |
| 415 | if (kernel_thread_start_priority((thread_continue_t)vm_swapfile_create_thread, NULL, |
| 416 | BASEPRI_VM, &thread) != KERN_SUCCESS) { |
| 417 | panic("vm_swapfile_create_thread: create failed" ); |
| 418 | } |
| 419 | |
| 420 | thread_set_thread_name(thread, "VM_swapfile_create" ); |
| 421 | thread_deallocate(thread); |
| 422 | |
| 423 | if (kernel_thread_start_priority((thread_continue_t)vm_swapfile_gc_thread, NULL, |
| 424 | BASEPRI_VM, &thread) != KERN_SUCCESS) { |
| 425 | panic("vm_swapfile_gc_thread: create failed" ); |
| 426 | } |
| 427 | thread_set_thread_name(thread, "VM_swapfile_gc" ); |
| 428 | thread_deallocate(thread); |
| 429 | |
| 430 | proc_set_thread_policy_with_tid(kernel_task, thread->thread_id, |
| 431 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
| 432 | proc_set_thread_policy_with_tid(kernel_task, thread->thread_id, |
| 433 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 434 | |
| 435 | #if CONFIG_EMBEDDED |
| 436 | /* |
| 437 | * dummy value until the swap file gets created |
| 438 | * when we drive the first c_segment_t to the |
| 439 | * swapout queue... at that time we will |
| 440 | * know the true size we have to work with |
| 441 | */ |
| 442 | c_overage_swapped_limit = 16; |
| 443 | #endif |
| 444 | |
| 445 | vm_num_swap_files_config = VM_MAX_SWAP_FILE_NUM; |
| 446 | |
| 447 | printf("VM Swap Subsystem is ON\n" ); |
| 448 | } |
| 449 | |
| 450 | |
| 451 | #if RECORD_THE_COMPRESSED_DATA |
| 452 | |
| 453 | void |
| 454 | c_compressed_record_init() |
| 455 | { |
| 456 | if (c_compressed_record_init_done == FALSE) { |
| 457 | vm_swapfile_open("/tmp/compressed_data" , &c_compressed_record_vp); |
| 458 | c_compressed_record_init_done = TRUE; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | void |
| 463 | c_compressed_record_write(char *buf, int size) |
| 464 | { |
| 465 | if (c_compressed_record_write_error == 0) { |
| 466 | c_compressed_record_write_error = vm_record_file_write(c_compressed_record_vp, c_compressed_record_file_offset, buf, size); |
| 467 | c_compressed_record_file_offset += size; |
| 468 | } |
| 469 | } |
| 470 | #endif |
| 471 | |
| 472 | |
| 473 | int compaction_swapper_inited = 0; |
| 474 | |
| 475 | void |
| 476 | vm_compaction_swapper_do_init(void) |
| 477 | { |
| 478 | struct vnode *vp; |
| 479 | char *pathname; |
| 480 | int namelen; |
| 481 | |
| 482 | if (compaction_swapper_inited) |
| 483 | return; |
| 484 | |
| 485 | if (vm_compressor_mode != VM_PAGER_COMPRESSOR_WITH_SWAP) { |
| 486 | compaction_swapper_inited = 1; |
| 487 | return; |
| 488 | } |
| 489 | lck_mtx_lock(&vm_swap_data_lock); |
| 490 | |
| 491 | if ( !compaction_swapper_inited) { |
| 492 | |
| 493 | namelen = (int)strlen(swapfilename) + SWAPFILENAME_INDEX_LEN + 1; |
| 494 | pathname = (char*)kalloc(namelen); |
| 495 | memset(pathname, 0, namelen); |
| 496 | snprintf(pathname, namelen, "%s%d" , swapfilename, 0); |
| 497 | |
| 498 | vm_swapfile_open(pathname, &vp); |
| 499 | |
| 500 | if (vp) { |
| 501 | |
| 502 | if (vnode_pager_isSSD(vp) == FALSE) { |
| 503 | /* |
| 504 | * swap files live on an HDD, so let's make sure to start swapping |
| 505 | * much earlier since we're not worried about SSD write-wear and |
| 506 | * we have so little write bandwidth to work with |
| 507 | * these values were derived expermentially by running the performance |
| 508 | * teams stock test for evaluating HDD performance against various |
| 509 | * combinations and looking and comparing overall results. |
| 510 | * Note that the > relationship between these 4 values must be maintained |
| 511 | */ |
| 512 | if (vm_compressor_minorcompact_threshold_divisor_overridden == 0) |
| 513 | vm_compressor_minorcompact_threshold_divisor = 15; |
| 514 | if (vm_compressor_majorcompact_threshold_divisor_overridden == 0) |
| 515 | vm_compressor_majorcompact_threshold_divisor = 18; |
| 516 | if (vm_compressor_unthrottle_threshold_divisor_overridden == 0) |
| 517 | vm_compressor_unthrottle_threshold_divisor = 24; |
| 518 | if (vm_compressor_catchup_threshold_divisor_overridden == 0) |
| 519 | vm_compressor_catchup_threshold_divisor = 30; |
| 520 | } |
| 521 | #if !CONFIG_EMBEDDED |
| 522 | vnode_setswapmount(vp); |
| 523 | vm_swappin_avail = vnode_getswappin_avail(vp); |
| 524 | |
| 525 | if (vm_swappin_avail) |
| 526 | vm_swappin_enabled = TRUE; |
| 527 | #endif |
| 528 | vm_swapfile_close((uint64_t)pathname, vp); |
| 529 | } |
| 530 | kfree(pathname, namelen); |
| 531 | |
| 532 | compaction_swapper_inited = 1; |
| 533 | } |
| 534 | lck_mtx_unlock(&vm_swap_data_lock); |
| 535 | } |
| 536 | |
| 537 | |
| 538 | void |
| 539 | vm_swap_consider_defragmenting(int flags) |
| 540 | { |
| 541 | boolean_t force_defrag = (flags & VM_SWAP_FLAGS_FORCE_DEFRAG); |
| 542 | boolean_t force_reclaim = (flags & VM_SWAP_FLAGS_FORCE_RECLAIM); |
| 543 | |
| 544 | if (compressor_store_stop_compaction == FALSE && !VM_SWAP_BUSY() && |
| 545 | (force_defrag || force_reclaim || VM_SWAP_SHOULD_DEFRAGMENT() || VM_SWAP_SHOULD_RECLAIM())) { |
| 546 | |
| 547 | if (!vm_swapfile_gc_thread_running || force_defrag || force_reclaim) { |
| 548 | lck_mtx_lock(&vm_swap_data_lock); |
| 549 | |
| 550 | if (force_defrag) { |
| 551 | vm_swap_force_defrag = TRUE; |
| 552 | } |
| 553 | |
| 554 | if (force_reclaim) { |
| 555 | vm_swap_force_reclaim = TRUE; |
| 556 | } |
| 557 | |
| 558 | if (!vm_swapfile_gc_thread_running) |
| 559 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 560 | |
| 561 | lck_mtx_unlock(&vm_swap_data_lock); |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | |
| 567 | int vm_swap_defragment_yielded = 0; |
| 568 | int vm_swap_defragment_swapin = 0; |
| 569 | int vm_swap_defragment_free = 0; |
| 570 | int vm_swap_defragment_busy = 0; |
| 571 | |
| 572 | |
| 573 | static void |
| 574 | vm_swap_defragment() |
| 575 | { |
| 576 | c_segment_t c_seg; |
| 577 | |
| 578 | /* |
| 579 | * have to grab the master lock w/o holding |
| 580 | * any locks in spin mode |
| 581 | */ |
| 582 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 583 | |
| 584 | lck_mtx_lock_spin_always(c_list_lock); |
| 585 | |
| 586 | while (!queue_empty(&c_swappedout_sparse_list_head)) { |
| 587 | |
| 588 | if (compressor_store_stop_compaction == TRUE || VM_SWAP_BUSY()) { |
| 589 | vm_swap_defragment_yielded++; |
| 590 | break; |
| 591 | } |
| 592 | c_seg = (c_segment_t)queue_first(&c_swappedout_sparse_list_head); |
| 593 | |
| 594 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 595 | |
| 596 | assert(c_seg->c_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 597 | |
| 598 | if (c_seg->c_busy) { |
| 599 | lck_mtx_unlock_always(c_list_lock); |
| 600 | |
| 601 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 602 | /* |
| 603 | * c_seg_wait_on_busy consumes c_seg->c_lock |
| 604 | */ |
| 605 | c_seg_wait_on_busy(c_seg); |
| 606 | |
| 607 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 608 | |
| 609 | lck_mtx_lock_spin_always(c_list_lock); |
| 610 | |
| 611 | vm_swap_defragment_busy++; |
| 612 | continue; |
| 613 | } |
| 614 | if (c_seg->c_bytes_used == 0) { |
| 615 | /* |
| 616 | * c_seg_free_locked consumes the c_list_lock |
| 617 | * and c_seg->c_lock |
| 618 | */ |
| 619 | C_SEG_BUSY(c_seg); |
| 620 | c_seg_free_locked(c_seg); |
| 621 | |
| 622 | vm_swap_defragment_free++; |
| 623 | } else { |
| 624 | lck_mtx_unlock_always(c_list_lock); |
| 625 | |
| 626 | if (c_seg_swapin(c_seg, TRUE, FALSE) == 0) |
| 627 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 628 | |
| 629 | vm_swap_defragment_swapin++; |
| 630 | } |
| 631 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 632 | |
| 633 | vm_pageout_io_throttle(); |
| 634 | |
| 635 | /* |
| 636 | * because write waiters have privilege over readers, |
| 637 | * dropping and immediately retaking the master lock will |
| 638 | * still allow any thread waiting to acquire the |
| 639 | * master lock exclusively an opportunity to take it |
| 640 | */ |
| 641 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 642 | |
| 643 | lck_mtx_lock_spin_always(c_list_lock); |
| 644 | } |
| 645 | lck_mtx_unlock_always(c_list_lock); |
| 646 | |
| 647 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 648 | } |
| 649 | |
| 650 | |
| 651 | |
| 652 | static void |
| 653 | vm_swapfile_create_thread(void) |
| 654 | { |
| 655 | clock_sec_t sec; |
| 656 | clock_nsec_t nsec; |
| 657 | |
| 658 | current_thread()->options |= TH_OPT_VMPRIV; |
| 659 | |
| 660 | vm_swapfile_create_thread_awakened++; |
| 661 | vm_swapfile_create_thread_running = 1; |
| 662 | |
| 663 | while (TRUE) { |
| 664 | /* |
| 665 | * walk through the list of swap files |
| 666 | * and do the delayed frees/trims for |
| 667 | * any swap file whose count of delayed |
| 668 | * frees is above the batch limit |
| 669 | */ |
| 670 | vm_swap_handle_delayed_trims(FALSE); |
| 671 | |
| 672 | lck_mtx_lock(&vm_swap_data_lock); |
| 673 | |
| 674 | if (hibernate_in_progress_with_pinned_swap == TRUE) |
| 675 | break; |
| 676 | |
| 677 | clock_get_system_nanotime(&sec, &nsec); |
| 678 | |
| 679 | if (VM_SWAP_SHOULD_CREATE(sec) == 0) |
| 680 | break; |
| 681 | |
| 682 | lck_mtx_unlock(&vm_swap_data_lock); |
| 683 | |
| 684 | if (vm_swap_create_file() == FALSE) { |
| 685 | vm_swapfile_last_failed_to_create_ts = sec; |
| 686 | HIBLOG("vm_swap_create_file failed @ %lu secs\n" , (unsigned long)sec); |
| 687 | |
| 688 | } else |
| 689 | vm_swapfile_last_successful_create_ts = sec; |
| 690 | } |
| 691 | vm_swapfile_create_thread_running = 0; |
| 692 | |
| 693 | if (hibernate_in_progress_with_pinned_swap == TRUE) |
| 694 | thread_wakeup((event_t)&hibernate_in_progress_with_pinned_swap); |
| 695 | |
| 696 | assert_wait((event_t)&vm_swapfile_create_needed, THREAD_UNINT); |
| 697 | |
| 698 | lck_mtx_unlock(&vm_swap_data_lock); |
| 699 | |
| 700 | thread_block((thread_continue_t)vm_swapfile_create_thread); |
| 701 | |
| 702 | /* NOTREACHED */ |
| 703 | } |
| 704 | |
| 705 | |
| 706 | #if HIBERNATION |
| 707 | |
| 708 | kern_return_t |
| 709 | hibernate_pin_swap(boolean_t start) |
| 710 | { |
| 711 | vm_compaction_swapper_do_init(); |
| 712 | |
| 713 | if (start == FALSE) { |
| 714 | |
| 715 | lck_mtx_lock(&vm_swap_data_lock); |
| 716 | hibernate_in_progress_with_pinned_swap = FALSE; |
| 717 | lck_mtx_unlock(&vm_swap_data_lock); |
| 718 | |
| 719 | return (KERN_SUCCESS); |
| 720 | } |
| 721 | if (vm_swappin_enabled == FALSE) |
| 722 | return (KERN_SUCCESS); |
| 723 | |
| 724 | lck_mtx_lock(&vm_swap_data_lock); |
| 725 | |
| 726 | hibernate_in_progress_with_pinned_swap = TRUE; |
| 727 | |
| 728 | while (vm_swapfile_create_thread_running || vm_swapfile_gc_thread_running) { |
| 729 | |
| 730 | assert_wait((event_t)&hibernate_in_progress_with_pinned_swap, THREAD_UNINT); |
| 731 | |
| 732 | lck_mtx_unlock(&vm_swap_data_lock); |
| 733 | |
| 734 | thread_block(THREAD_CONTINUE_NULL); |
| 735 | |
| 736 | lck_mtx_lock(&vm_swap_data_lock); |
| 737 | } |
| 738 | if (vm_num_swap_files > vm_num_pinned_swap_files) { |
| 739 | hibernate_in_progress_with_pinned_swap = FALSE; |
| 740 | lck_mtx_unlock(&vm_swap_data_lock); |
| 741 | |
| 742 | HIBLOG("hibernate_pin_swap failed - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d\n" , |
| 743 | vm_num_swap_files, vm_num_pinned_swap_files); |
| 744 | return (KERN_FAILURE); |
| 745 | } |
| 746 | lck_mtx_unlock(&vm_swap_data_lock); |
| 747 | |
| 748 | while (VM_SWAP_SHOULD_PIN(MAX_SWAP_FILE_SIZE)) { |
| 749 | if (vm_swap_create_file() == FALSE) |
| 750 | break; |
| 751 | } |
| 752 | return (KERN_SUCCESS); |
| 753 | } |
| 754 | #endif |
| 755 | |
| 756 | static void |
| 757 | vm_swapfile_gc_thread(void) |
| 758 | |
| 759 | { |
| 760 | boolean_t need_defragment; |
| 761 | boolean_t need_reclaim; |
| 762 | |
| 763 | vm_swapfile_gc_thread_awakened++; |
| 764 | vm_swapfile_gc_thread_running = 1; |
| 765 | |
| 766 | while (TRUE) { |
| 767 | |
| 768 | lck_mtx_lock(&vm_swap_data_lock); |
| 769 | |
| 770 | if (hibernate_in_progress_with_pinned_swap == TRUE) |
| 771 | break; |
| 772 | |
| 773 | if (VM_SWAP_BUSY() || compressor_store_stop_compaction == TRUE) |
| 774 | break; |
| 775 | |
| 776 | need_defragment = FALSE; |
| 777 | need_reclaim = FALSE; |
| 778 | |
| 779 | if (VM_SWAP_SHOULD_DEFRAGMENT()) |
| 780 | need_defragment = TRUE; |
| 781 | |
| 782 | if (VM_SWAP_SHOULD_RECLAIM()) { |
| 783 | need_defragment = TRUE; |
| 784 | need_reclaim = TRUE; |
| 785 | } |
| 786 | if (need_defragment == FALSE && need_reclaim == FALSE) |
| 787 | break; |
| 788 | |
| 789 | vm_swap_force_defrag = FALSE; |
| 790 | vm_swap_force_reclaim = FALSE; |
| 791 | |
| 792 | lck_mtx_unlock(&vm_swap_data_lock); |
| 793 | |
| 794 | if (need_defragment == TRUE) |
| 795 | vm_swap_defragment(); |
| 796 | if (need_reclaim == TRUE) |
| 797 | vm_swap_reclaim(); |
| 798 | } |
| 799 | vm_swapfile_gc_thread_running = 0; |
| 800 | |
| 801 | if (hibernate_in_progress_with_pinned_swap == TRUE) |
| 802 | thread_wakeup((event_t)&hibernate_in_progress_with_pinned_swap); |
| 803 | |
| 804 | assert_wait((event_t)&vm_swapfile_gc_needed, THREAD_UNINT); |
| 805 | |
| 806 | lck_mtx_unlock(&vm_swap_data_lock); |
| 807 | |
| 808 | thread_block((thread_continue_t)vm_swapfile_gc_thread); |
| 809 | |
| 810 | /* NOTREACHED */ |
| 811 | } |
| 812 | |
| 813 | |
| 814 | |
| 815 | #define VM_SWAPOUT_LIMIT_T2P 4 |
| 816 | #define VM_SWAPOUT_LIMIT_T1P 4 |
| 817 | #define VM_SWAPOUT_LIMIT_T0P 6 |
| 818 | #define VM_SWAPOUT_LIMIT_T0 8 |
| 819 | #define VM_SWAPOUT_LIMIT_MAX 8 |
| 820 | |
| 821 | #define VM_SWAPOUT_START 0 |
| 822 | #define VM_SWAPOUT_T2_PASSIVE 1 |
| 823 | #define VM_SWAPOUT_T1_PASSIVE 2 |
| 824 | #define VM_SWAPOUT_T0_PASSIVE 3 |
| 825 | #define VM_SWAPOUT_T0 4 |
| 826 | |
| 827 | int vm_swapout_state = VM_SWAPOUT_START; |
| 828 | int vm_swapout_limit = 1; |
| 829 | |
| 830 | int vm_swapper_entered_T0 = 0; |
| 831 | int vm_swapper_entered_T0P = 0; |
| 832 | int vm_swapper_entered_T1P = 0; |
| 833 | int vm_swapper_entered_T2P = 0; |
| 834 | |
| 835 | |
| 836 | static void |
| 837 | vm_swapout_thread_throttle_adjust(void) |
| 838 | { |
| 839 | |
| 840 | switch(vm_swapout_state) { |
| 841 | |
| 842 | case VM_SWAPOUT_START: |
| 843 | |
| 844 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 845 | vm_swapper_entered_T2P++; |
| 846 | |
| 847 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 848 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 849 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 850 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 851 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 852 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 853 | |
| 854 | break; |
| 855 | |
| 856 | case VM_SWAPOUT_T2_PASSIVE: |
| 857 | |
| 858 | if (SWAPPER_NEEDS_TO_UNTHROTTLE()) { |
| 859 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER0; |
| 860 | vm_swapper_entered_T0P++; |
| 861 | |
| 862 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 863 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 864 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 865 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 866 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 867 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 868 | |
| 869 | break; |
| 870 | } |
| 871 | if (swapout_target_age || hibernate_flushing == TRUE) { |
| 872 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER1; |
| 873 | vm_swapper_entered_T1P++; |
| 874 | |
| 875 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 876 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 877 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 878 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 879 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T1P; |
| 880 | vm_swapout_state = VM_SWAPOUT_T1_PASSIVE; |
| 881 | } |
| 882 | break; |
| 883 | |
| 884 | case VM_SWAPOUT_T1_PASSIVE: |
| 885 | |
| 886 | if (SWAPPER_NEEDS_TO_UNTHROTTLE()) { |
| 887 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER0; |
| 888 | vm_swapper_entered_T0P++; |
| 889 | |
| 890 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 891 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 892 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 893 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 894 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 895 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 896 | |
| 897 | break; |
| 898 | } |
| 899 | if (swapout_target_age == 0 && hibernate_flushing == FALSE) { |
| 900 | |
| 901 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 902 | vm_swapper_entered_T2P++; |
| 903 | |
| 904 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 905 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 906 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 907 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 908 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 909 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 910 | } |
| 911 | break; |
| 912 | |
| 913 | case VM_SWAPOUT_T0_PASSIVE: |
| 914 | |
| 915 | if (SWAPPER_NEEDS_TO_RETHROTTLE()) { |
| 916 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 917 | vm_swapper_entered_T2P++; |
| 918 | |
| 919 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 920 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, vm_swapper_throttle); |
| 921 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 922 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 923 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 924 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 925 | |
| 926 | break; |
| 927 | } |
| 928 | if (SWAPPER_NEEDS_TO_CATCHUP()) { |
| 929 | vm_swapper_entered_T0++; |
| 930 | |
| 931 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 932 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_DISABLE); |
| 933 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0; |
| 934 | vm_swapout_state = VM_SWAPOUT_T0; |
| 935 | } |
| 936 | break; |
| 937 | |
| 938 | case VM_SWAPOUT_T0: |
| 939 | |
| 940 | if (SWAPPER_HAS_CAUGHTUP()) { |
| 941 | vm_swapper_entered_T0P++; |
| 942 | |
| 943 | proc_set_thread_policy_with_tid(kernel_task, vm_swapout_thread_id, |
| 944 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 945 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 946 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 947 | } |
| 948 | break; |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | int vm_swapout_found_empty = 0; |
| 953 | |
| 954 | struct swapout_io_completion vm_swapout_ctx[VM_SWAPOUT_LIMIT_MAX]; |
| 955 | |
| 956 | int vm_swapout_soc_busy = 0; |
| 957 | int vm_swapout_soc_done = 0; |
| 958 | |
| 959 | |
| 960 | static struct swapout_io_completion * |
| 961 | vm_swapout_find_free_soc(void) |
| 962 | { int i; |
| 963 | |
| 964 | for (i = 0; i < VM_SWAPOUT_LIMIT_MAX; i++) { |
| 965 | if (vm_swapout_ctx[i].swp_io_busy == 0) |
| 966 | return (&vm_swapout_ctx[i]); |
| 967 | } |
| 968 | assert(vm_swapout_soc_busy == VM_SWAPOUT_LIMIT_MAX); |
| 969 | |
| 970 | return NULL; |
| 971 | } |
| 972 | |
| 973 | static struct swapout_io_completion * |
| 974 | vm_swapout_find_done_soc(void) |
| 975 | { int i; |
| 976 | |
| 977 | if (vm_swapout_soc_done) { |
| 978 | for (i = 0; i < VM_SWAPOUT_LIMIT_MAX; i++) { |
| 979 | if (vm_swapout_ctx[i].swp_io_done) |
| 980 | return (&vm_swapout_ctx[i]); |
| 981 | } |
| 982 | } |
| 983 | return NULL; |
| 984 | } |
| 985 | |
| 986 | static void |
| 987 | vm_swapout_complete_soc(struct swapout_io_completion *soc) |
| 988 | { |
| 989 | kern_return_t kr; |
| 990 | |
| 991 | if (soc->swp_io_error) |
| 992 | kr = KERN_FAILURE; |
| 993 | else |
| 994 | kr = KERN_SUCCESS; |
| 995 | |
| 996 | lck_mtx_unlock_always(c_list_lock); |
| 997 | |
| 998 | vm_swap_put_finish(soc->swp_swf, &soc->swp_f_offset, soc->swp_io_error); |
| 999 | vm_swapout_finish(soc->swp_c_seg, soc->swp_f_offset, soc->swp_c_size, kr); |
| 1000 | |
| 1001 | lck_mtx_lock_spin_always(c_list_lock); |
| 1002 | |
| 1003 | soc->swp_io_done = 0; |
| 1004 | soc->swp_io_busy = 0; |
| 1005 | |
| 1006 | vm_swapout_soc_busy--; |
| 1007 | vm_swapout_soc_done--; |
| 1008 | } |
| 1009 | |
| 1010 | |
| 1011 | static void |
| 1012 | vm_swapout_thread(void) |
| 1013 | { |
| 1014 | uint32_t size = 0; |
| 1015 | c_segment_t c_seg = NULL; |
| 1016 | kern_return_t kr = KERN_SUCCESS; |
| 1017 | struct swapout_io_completion *soc; |
| 1018 | |
| 1019 | current_thread()->options |= TH_OPT_VMPRIV; |
| 1020 | |
| 1021 | vm_swapout_thread_awakened++; |
| 1022 | |
| 1023 | lck_mtx_lock_spin_always(c_list_lock); |
| 1024 | again: |
| 1025 | while (!queue_empty(&c_swapout_list_head) && vm_swapout_soc_busy < vm_swapout_limit) { |
| 1026 | |
| 1027 | c_seg = (c_segment_t)queue_first(&c_swapout_list_head); |
| 1028 | |
| 1029 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1030 | |
| 1031 | assert(c_seg->c_state == C_ON_SWAPOUT_Q); |
| 1032 | |
| 1033 | if (c_seg->c_busy) { |
| 1034 | lck_mtx_unlock_always(c_list_lock); |
| 1035 | |
| 1036 | c_seg_wait_on_busy(c_seg); |
| 1037 | |
| 1038 | lck_mtx_lock_spin_always(c_list_lock); |
| 1039 | |
| 1040 | continue; |
| 1041 | } |
| 1042 | vm_swapout_thread_processed_segments++; |
| 1043 | |
| 1044 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 1045 | |
| 1046 | if (size == 0) { |
| 1047 | assert(c_seg->c_bytes_used == 0); |
| 1048 | |
| 1049 | if (!c_seg->c_on_minorcompact_q) |
| 1050 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 1051 | |
| 1052 | c_seg_switch_state(c_seg, C_IS_EMPTY, FALSE); |
| 1053 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1054 | lck_mtx_unlock_always(c_list_lock); |
| 1055 | |
| 1056 | vm_swapout_found_empty++; |
| 1057 | goto c_seg_is_empty; |
| 1058 | } |
| 1059 | C_SEG_BUSY(c_seg); |
| 1060 | c_seg->c_busy_swapping = 1; |
| 1061 | |
| 1062 | c_seg_switch_state(c_seg, C_ON_SWAPIO_Q, FALSE); |
| 1063 | |
| 1064 | lck_mtx_unlock_always(c_list_lock); |
| 1065 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1066 | |
| 1067 | #if CHECKSUM_THE_SWAP |
| 1068 | c_seg->cseg_hash = hash_string((char *)c_seg->c_store.c_buffer, (int)size); |
| 1069 | c_seg->cseg_swap_size = size; |
| 1070 | #endif /* CHECKSUM_THE_SWAP */ |
| 1071 | |
| 1072 | #if ENCRYPTED_SWAP |
| 1073 | vm_swap_encrypt(c_seg); |
| 1074 | #endif /* ENCRYPTED_SWAP */ |
| 1075 | |
| 1076 | soc = vm_swapout_find_free_soc(); |
| 1077 | assert(soc); |
| 1078 | |
| 1079 | soc->swp_upl_ctx.io_context = (void *)soc; |
| 1080 | soc->swp_upl_ctx.io_done = (void *)vm_swapout_iodone; |
| 1081 | soc->swp_upl_ctx.io_error = 0; |
| 1082 | |
| 1083 | kr = vm_swap_put((vm_offset_t)c_seg->c_store.c_buffer, &soc->swp_f_offset, size, c_seg, soc); |
| 1084 | |
| 1085 | if (kr != KERN_SUCCESS) { |
| 1086 | if (soc->swp_io_done) { |
| 1087 | lck_mtx_lock_spin_always(c_list_lock); |
| 1088 | |
| 1089 | soc->swp_io_done = 0; |
| 1090 | vm_swapout_soc_done--; |
| 1091 | |
| 1092 | lck_mtx_unlock_always(c_list_lock); |
| 1093 | } |
| 1094 | vm_swapout_finish(c_seg, soc->swp_f_offset, size, kr); |
| 1095 | } else { |
| 1096 | soc->swp_io_busy = 1; |
| 1097 | vm_swapout_soc_busy++; |
| 1098 | } |
| 1099 | vm_swapout_thread_throttle_adjust(); |
| 1100 | vm_pageout_io_throttle(); |
| 1101 | |
| 1102 | c_seg_is_empty: |
| 1103 | if (c_swapout_count == 0) |
| 1104 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE); |
| 1105 | |
| 1106 | lck_mtx_lock_spin_always(c_list_lock); |
| 1107 | |
| 1108 | if ((soc = vm_swapout_find_done_soc())) |
| 1109 | vm_swapout_complete_soc(soc); |
| 1110 | } |
| 1111 | if ((soc = vm_swapout_find_done_soc())) { |
| 1112 | vm_swapout_complete_soc(soc); |
| 1113 | goto again; |
| 1114 | } |
| 1115 | assert_wait((event_t)&c_swapout_list_head, THREAD_UNINT); |
| 1116 | |
| 1117 | lck_mtx_unlock_always(c_list_lock); |
| 1118 | |
| 1119 | thread_block((thread_continue_t)vm_swapout_thread); |
| 1120 | |
| 1121 | /* NOTREACHED */ |
| 1122 | } |
| 1123 | |
| 1124 | |
| 1125 | void |
| 1126 | vm_swapout_iodone(void *io_context, int error) |
| 1127 | { |
| 1128 | struct swapout_io_completion *soc; |
| 1129 | |
| 1130 | soc = (struct swapout_io_completion *)io_context; |
| 1131 | |
| 1132 | lck_mtx_lock_spin_always(c_list_lock); |
| 1133 | |
| 1134 | soc->swp_io_done = 1; |
| 1135 | soc->swp_io_error = error; |
| 1136 | vm_swapout_soc_done++; |
| 1137 | |
| 1138 | thread_wakeup((event_t)&c_swapout_list_head); |
| 1139 | |
| 1140 | lck_mtx_unlock_always(c_list_lock); |
| 1141 | } |
| 1142 | |
| 1143 | |
| 1144 | static void |
| 1145 | vm_swapout_finish(c_segment_t c_seg, uint64_t f_offset, uint32_t size, kern_return_t kr) |
| 1146 | { |
| 1147 | |
| 1148 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 1149 | |
| 1150 | if (kr == KERN_SUCCESS) { |
| 1151 | kernel_memory_depopulate(compressor_map, (vm_offset_t)c_seg->c_store.c_buffer, size, KMA_COMPRESSOR); |
| 1152 | } |
| 1153 | #if ENCRYPTED_SWAP |
| 1154 | else { |
| 1155 | vm_swap_decrypt(c_seg); |
| 1156 | } |
| 1157 | #endif /* ENCRYPTED_SWAP */ |
| 1158 | lck_mtx_lock_spin_always(c_list_lock); |
| 1159 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1160 | |
| 1161 | if (kr == KERN_SUCCESS) { |
| 1162 | int new_state = C_ON_SWAPPEDOUT_Q; |
| 1163 | boolean_t insert_head = FALSE; |
| 1164 | |
| 1165 | if (hibernate_flushing == TRUE) { |
| 1166 | if (c_seg->c_generation_id >= first_c_segment_to_warm_generation_id && |
| 1167 | c_seg->c_generation_id <= last_c_segment_to_warm_generation_id) |
| 1168 | insert_head = TRUE; |
| 1169 | } else if (C_SEG_ONDISK_IS_SPARSE(c_seg)) |
| 1170 | new_state = C_ON_SWAPPEDOUTSPARSE_Q; |
| 1171 | |
| 1172 | c_seg_switch_state(c_seg, new_state, insert_head); |
| 1173 | |
| 1174 | c_seg->c_store.c_swap_handle = f_offset; |
| 1175 | |
| 1176 | VM_STAT_INCR_BY(swapouts, size >> PAGE_SHIFT); |
| 1177 | |
| 1178 | if (c_seg->c_bytes_used) |
| 1179 | OSAddAtomic64(-c_seg->c_bytes_used, &compressor_bytes_used); |
| 1180 | } else { |
| 1181 | if (c_seg->c_overage_swap == TRUE) { |
| 1182 | c_seg->c_overage_swap = FALSE; |
| 1183 | c_overage_swapped_count--; |
| 1184 | } |
| 1185 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 1186 | |
| 1187 | if (!c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) |
| 1188 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 1189 | } |
| 1190 | assert(c_seg->c_busy_swapping); |
| 1191 | assert(c_seg->c_busy); |
| 1192 | |
| 1193 | c_seg->c_busy_swapping = 0; |
| 1194 | lck_mtx_unlock_always(c_list_lock); |
| 1195 | |
| 1196 | C_SEG_WAKEUP_DONE(c_seg); |
| 1197 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1198 | |
| 1199 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | boolean_t |
| 1204 | vm_swap_create_file() |
| 1205 | { |
| 1206 | uint64_t size = 0; |
| 1207 | int namelen = 0; |
| 1208 | boolean_t swap_file_created = FALSE; |
| 1209 | boolean_t swap_file_reuse = FALSE; |
| 1210 | boolean_t swap_file_pin = FALSE; |
| 1211 | struct swapfile *swf = NULL; |
| 1212 | |
| 1213 | /* |
| 1214 | * make sure we've got all the info we need |
| 1215 | * to potentially pin a swap file... we could |
| 1216 | * be swapping out due to hibernation w/o ever |
| 1217 | * having run vm_pageout_scan, which is normally |
| 1218 | * the trigger to do the init |
| 1219 | */ |
| 1220 | vm_compaction_swapper_do_init(); |
| 1221 | |
| 1222 | /* |
| 1223 | * Any swapfile structure ready for re-use? |
| 1224 | */ |
| 1225 | |
| 1226 | lck_mtx_lock(&vm_swap_data_lock); |
| 1227 | |
| 1228 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1229 | |
| 1230 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1231 | if (swf->swp_flags == SWAP_REUSE) { |
| 1232 | swap_file_reuse = TRUE; |
| 1233 | break; |
| 1234 | } |
| 1235 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1236 | } |
| 1237 | |
| 1238 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1239 | |
| 1240 | if (swap_file_reuse == FALSE) { |
| 1241 | |
| 1242 | namelen = (int)strlen(swapfilename) + SWAPFILENAME_INDEX_LEN + 1; |
| 1243 | |
| 1244 | swf = (struct swapfile*) kalloc(sizeof *swf); |
| 1245 | memset(swf, 0, sizeof(*swf)); |
| 1246 | |
| 1247 | swf->swp_index = vm_num_swap_files + 1; |
| 1248 | swf->swp_pathlen = namelen; |
| 1249 | swf->swp_path = (char*)kalloc(swf->swp_pathlen); |
| 1250 | |
| 1251 | memset(swf->swp_path, 0, namelen); |
| 1252 | |
| 1253 | snprintf(swf->swp_path, namelen, "%s%d" , swapfilename, vm_num_swap_files); |
| 1254 | } |
| 1255 | |
| 1256 | vm_swapfile_open(swf->swp_path, &swf->swp_vp); |
| 1257 | |
| 1258 | if (swf->swp_vp == NULL) { |
| 1259 | if (swap_file_reuse == FALSE) { |
| 1260 | kfree(swf->swp_path, swf->swp_pathlen); |
| 1261 | kfree(swf, sizeof *swf); |
| 1262 | } |
| 1263 | return FALSE; |
| 1264 | } |
| 1265 | vm_swapfile_can_be_created = TRUE; |
| 1266 | |
| 1267 | size = MAX_SWAP_FILE_SIZE; |
| 1268 | |
| 1269 | while (size >= MIN_SWAP_FILE_SIZE) { |
| 1270 | |
| 1271 | swap_file_pin = VM_SWAP_SHOULD_PIN(size); |
| 1272 | |
| 1273 | if (vm_swapfile_preallocate(swf->swp_vp, &size, &swap_file_pin) == 0) { |
| 1274 | |
| 1275 | int num_bytes_for_bitmap = 0; |
| 1276 | |
| 1277 | swap_file_created = TRUE; |
| 1278 | |
| 1279 | swf->swp_size = size; |
| 1280 | swf->swp_nsegs = (unsigned int) (size / COMPRESSED_SWAP_CHUNK_SIZE); |
| 1281 | swf->swp_nseginuse = 0; |
| 1282 | swf->swp_free_hint = 0; |
| 1283 | |
| 1284 | num_bytes_for_bitmap = MAX((swf->swp_nsegs >> 3) , 1); |
| 1285 | /* |
| 1286 | * Allocate a bitmap that describes the |
| 1287 | * number of segments held by this swapfile. |
| 1288 | */ |
| 1289 | swf->swp_bitmap = (uint8_t*)kalloc(num_bytes_for_bitmap); |
| 1290 | memset(swf->swp_bitmap, 0, num_bytes_for_bitmap); |
| 1291 | |
| 1292 | swf->swp_csegs = (c_segment_t *) kalloc(swf->swp_nsegs * sizeof(c_segment_t)); |
| 1293 | memset(swf->swp_csegs, 0, (swf->swp_nsegs * sizeof(c_segment_t))); |
| 1294 | |
| 1295 | /* |
| 1296 | * passing a NULL trim_list into vnode_trim_list |
| 1297 | * will return ENOTSUP if trim isn't supported |
| 1298 | * and 0 if it is |
| 1299 | */ |
| 1300 | if (vnode_trim_list(swf->swp_vp, NULL, FALSE) == 0) |
| 1301 | swp_trim_supported = TRUE; |
| 1302 | |
| 1303 | lck_mtx_lock(&vm_swap_data_lock); |
| 1304 | |
| 1305 | swf->swp_flags = SWAP_READY; |
| 1306 | |
| 1307 | if (swap_file_reuse == FALSE) { |
| 1308 | queue_enter(&swf_global_queue, swf, struct swapfile*, swp_queue); |
| 1309 | } |
| 1310 | |
| 1311 | vm_num_swap_files++; |
| 1312 | |
| 1313 | vm_swapfile_total_segs_alloced += swf->swp_nsegs; |
| 1314 | |
| 1315 | if (swap_file_pin == TRUE) { |
| 1316 | vm_num_pinned_swap_files++; |
| 1317 | swf->swp_flags |= SWAP_PINNED; |
| 1318 | vm_swappin_avail -= swf->swp_size; |
| 1319 | } |
| 1320 | |
| 1321 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1322 | |
| 1323 | thread_wakeup((event_t) &vm_num_swap_files); |
| 1324 | #if CONFIG_EMBEDDED |
| 1325 | if (vm_num_swap_files == 1) { |
| 1326 | |
| 1327 | c_overage_swapped_limit = (uint32_t)size / C_SEG_BUFSIZE; |
| 1328 | |
| 1329 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) |
| 1330 | c_overage_swapped_limit /= 2; |
| 1331 | } |
| 1332 | #endif |
| 1333 | break; |
| 1334 | } else { |
| 1335 | |
| 1336 | size = size / 2; |
| 1337 | } |
| 1338 | } |
| 1339 | if (swap_file_created == FALSE) { |
| 1340 | |
| 1341 | vm_swapfile_close((uint64_t)(swf->swp_path), swf->swp_vp); |
| 1342 | |
| 1343 | swf->swp_vp = NULL; |
| 1344 | |
| 1345 | if (swap_file_reuse == FALSE) { |
| 1346 | kfree(swf->swp_path, swf->swp_pathlen); |
| 1347 | kfree(swf, sizeof *swf); |
| 1348 | } |
| 1349 | } |
| 1350 | return swap_file_created; |
| 1351 | } |
| 1352 | |
| 1353 | |
| 1354 | kern_return_t |
| 1355 | vm_swap_get(c_segment_t c_seg, uint64_t f_offset, uint64_t size) |
| 1356 | { |
| 1357 | struct swapfile *swf = NULL; |
| 1358 | uint64_t file_offset = 0; |
| 1359 | int retval = 0; |
| 1360 | |
| 1361 | assert(c_seg->c_store.c_buffer); |
| 1362 | |
| 1363 | lck_mtx_lock(&vm_swap_data_lock); |
| 1364 | |
| 1365 | swf = vm_swapfile_for_handle(f_offset); |
| 1366 | |
| 1367 | if (swf == NULL || ( !(swf->swp_flags & SWAP_READY) && !(swf->swp_flags & SWAP_RECLAIM))) { |
| 1368 | retval = 1; |
| 1369 | goto done; |
| 1370 | } |
| 1371 | swf->swp_io_count++; |
| 1372 | |
| 1373 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1374 | |
| 1375 | #if DEVELOPMENT || DEBUG |
| 1376 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 1377 | #endif |
| 1378 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 1379 | retval = vm_swapfile_io(swf->swp_vp, file_offset, (uint64_t)c_seg->c_store.c_buffer, (int)(size / PAGE_SIZE_64), SWAP_READ, NULL); |
| 1380 | |
| 1381 | #if DEVELOPMENT || DEBUG |
| 1382 | C_SEG_WRITE_PROTECT(c_seg); |
| 1383 | #endif |
| 1384 | if (retval == 0) |
| 1385 | VM_STAT_INCR_BY(swapins, size >> PAGE_SHIFT); |
| 1386 | else |
| 1387 | vm_swap_get_failures++; |
| 1388 | |
| 1389 | /* |
| 1390 | * Free this slot in the swap structure. |
| 1391 | */ |
| 1392 | vm_swap_free(f_offset); |
| 1393 | |
| 1394 | lck_mtx_lock(&vm_swap_data_lock); |
| 1395 | swf->swp_io_count--; |
| 1396 | |
| 1397 | if ((swf->swp_flags & SWAP_WANTED) && swf->swp_io_count == 0) { |
| 1398 | |
| 1399 | swf->swp_flags &= ~SWAP_WANTED; |
| 1400 | thread_wakeup((event_t) &swf->swp_flags); |
| 1401 | } |
| 1402 | done: |
| 1403 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1404 | |
| 1405 | if (retval == 0) |
| 1406 | return KERN_SUCCESS; |
| 1407 | else |
| 1408 | return KERN_FAILURE; |
| 1409 | } |
| 1410 | |
| 1411 | kern_return_t |
| 1412 | vm_swap_put(vm_offset_t addr, uint64_t *f_offset, uint32_t size, c_segment_t c_seg, struct swapout_io_completion *soc) |
| 1413 | { |
| 1414 | unsigned int segidx = 0; |
| 1415 | struct swapfile *swf = NULL; |
| 1416 | uint64_t file_offset = 0; |
| 1417 | uint64_t swapfile_index = 0; |
| 1418 | unsigned int byte_for_segidx = 0; |
| 1419 | unsigned int offset_within_byte = 0; |
| 1420 | boolean_t swf_eligible = FALSE; |
| 1421 | boolean_t waiting = FALSE; |
| 1422 | boolean_t retried = FALSE; |
| 1423 | int error = 0; |
| 1424 | clock_sec_t sec; |
| 1425 | clock_nsec_t nsec; |
| 1426 | void *upl_ctx = NULL; |
| 1427 | |
| 1428 | if (addr == 0 || f_offset == NULL) { |
| 1429 | return KERN_FAILURE; |
| 1430 | } |
| 1431 | retry: |
| 1432 | lck_mtx_lock(&vm_swap_data_lock); |
| 1433 | |
| 1434 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1435 | |
| 1436 | while(queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1437 | |
| 1438 | segidx = swf->swp_free_hint; |
| 1439 | |
| 1440 | swf_eligible = (swf->swp_flags & SWAP_READY) && (swf->swp_nseginuse < swf->swp_nsegs); |
| 1441 | |
| 1442 | if (swf_eligible) { |
| 1443 | |
| 1444 | while(segidx < swf->swp_nsegs) { |
| 1445 | |
| 1446 | byte_for_segidx = segidx >> 3; |
| 1447 | offset_within_byte = segidx % 8; |
| 1448 | |
| 1449 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 1450 | segidx++; |
| 1451 | continue; |
| 1452 | } |
| 1453 | |
| 1454 | (swf->swp_bitmap)[byte_for_segidx] |= (1 << offset_within_byte); |
| 1455 | |
| 1456 | file_offset = segidx * COMPRESSED_SWAP_CHUNK_SIZE; |
| 1457 | swf->swp_nseginuse++; |
| 1458 | swf->swp_io_count++; |
| 1459 | swf->swp_csegs[segidx] = c_seg; |
| 1460 | |
| 1461 | swapfile_index = swf->swp_index; |
| 1462 | vm_swapfile_total_segs_used++; |
| 1463 | |
| 1464 | clock_get_system_nanotime(&sec, &nsec); |
| 1465 | |
| 1466 | if (VM_SWAP_SHOULD_CREATE(sec) && !vm_swapfile_create_thread_running) |
| 1467 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1468 | |
| 1469 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1470 | |
| 1471 | goto issue_io; |
| 1472 | } |
| 1473 | } |
| 1474 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1475 | } |
| 1476 | assert(queue_end(&swf_global_queue, (queue_entry_t) swf)); |
| 1477 | |
| 1478 | /* |
| 1479 | * we've run out of swap segments, but may not |
| 1480 | * be in a position to immediately create a new swap |
| 1481 | * file if we've recently failed to create due to a lack |
| 1482 | * of free space in the root filesystem... we'll try |
| 1483 | * to kick that create off, but in any event we're going |
| 1484 | * to take a breather (up to 1 second) so that we're not caught in a tight |
| 1485 | * loop back in "vm_compressor_compact_and_swap" trying to stuff |
| 1486 | * segments into swap files only to have them immediately put back |
| 1487 | * on the c_age queue due to vm_swap_put failing. |
| 1488 | * |
| 1489 | * if we're doing these puts due to a hibernation flush, |
| 1490 | * no need to block... setting hibernate_no_swapspace to TRUE, |
| 1491 | * will cause "vm_compressor_compact_and_swap" to immediately abort |
| 1492 | */ |
| 1493 | clock_get_system_nanotime(&sec, &nsec); |
| 1494 | |
| 1495 | if (VM_SWAP_SHOULD_CREATE(sec) && !vm_swapfile_create_thread_running) |
| 1496 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1497 | |
| 1498 | if (hibernate_flushing == FALSE || VM_SWAP_SHOULD_CREATE(sec)) { |
| 1499 | waiting = TRUE; |
| 1500 | assert_wait_timeout((event_t) &vm_num_swap_files, THREAD_INTERRUPTIBLE, 1000, 1000*NSEC_PER_USEC); |
| 1501 | } else |
| 1502 | hibernate_no_swapspace = TRUE; |
| 1503 | |
| 1504 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1505 | |
| 1506 | if (waiting == TRUE) { |
| 1507 | thread_block(THREAD_CONTINUE_NULL); |
| 1508 | |
| 1509 | if (retried == FALSE && hibernate_flushing == TRUE) { |
| 1510 | retried = TRUE; |
| 1511 | goto retry; |
| 1512 | } |
| 1513 | } |
| 1514 | vm_swap_put_failures++; |
| 1515 | |
| 1516 | return KERN_FAILURE; |
| 1517 | |
| 1518 | issue_io: |
| 1519 | assert(c_seg->c_busy_swapping); |
| 1520 | assert(c_seg->c_busy); |
| 1521 | assert(!c_seg->c_on_minorcompact_q); |
| 1522 | |
| 1523 | *f_offset = (swapfile_index << SWAP_DEVICE_SHIFT) | file_offset; |
| 1524 | |
| 1525 | if (soc) { |
| 1526 | soc->swp_c_seg = c_seg; |
| 1527 | soc->swp_c_size = size; |
| 1528 | |
| 1529 | soc->swp_swf = swf; |
| 1530 | |
| 1531 | soc->swp_io_error = 0; |
| 1532 | soc->swp_io_done = 0; |
| 1533 | |
| 1534 | upl_ctx = (void *)&soc->swp_upl_ctx; |
| 1535 | } |
| 1536 | error = vm_swapfile_io(swf->swp_vp, file_offset, addr, (int) (size / PAGE_SIZE_64), SWAP_WRITE, upl_ctx); |
| 1537 | |
| 1538 | if (error || upl_ctx == NULL) |
| 1539 | return (vm_swap_put_finish(swf, f_offset, error)); |
| 1540 | |
| 1541 | return KERN_SUCCESS; |
| 1542 | } |
| 1543 | |
| 1544 | kern_return_t |
| 1545 | vm_swap_put_finish(struct swapfile *swf, uint64_t *f_offset, int error) |
| 1546 | { |
| 1547 | lck_mtx_lock(&vm_swap_data_lock); |
| 1548 | |
| 1549 | swf->swp_io_count--; |
| 1550 | |
| 1551 | if ((swf->swp_flags & SWAP_WANTED) && swf->swp_io_count == 0) { |
| 1552 | |
| 1553 | swf->swp_flags &= ~SWAP_WANTED; |
| 1554 | thread_wakeup((event_t) &swf->swp_flags); |
| 1555 | } |
| 1556 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1557 | |
| 1558 | if (error) { |
| 1559 | vm_swap_free(*f_offset); |
| 1560 | vm_swap_put_failures++; |
| 1561 | |
| 1562 | return KERN_FAILURE; |
| 1563 | } |
| 1564 | return KERN_SUCCESS; |
| 1565 | } |
| 1566 | |
| 1567 | |
| 1568 | static void |
| 1569 | vm_swap_free_now(struct swapfile *swf, uint64_t f_offset) |
| 1570 | { |
| 1571 | uint64_t file_offset = 0; |
| 1572 | unsigned int segidx = 0; |
| 1573 | |
| 1574 | |
| 1575 | if ((swf->swp_flags & SWAP_READY) || (swf->swp_flags & SWAP_RECLAIM)) { |
| 1576 | |
| 1577 | unsigned int byte_for_segidx = 0; |
| 1578 | unsigned int offset_within_byte = 0; |
| 1579 | |
| 1580 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 1581 | segidx = (unsigned int) (file_offset / COMPRESSED_SWAP_CHUNK_SIZE); |
| 1582 | |
| 1583 | byte_for_segidx = segidx >> 3; |
| 1584 | offset_within_byte = segidx % 8; |
| 1585 | |
| 1586 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 1587 | |
| 1588 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 1589 | |
| 1590 | swf->swp_csegs[segidx] = NULL; |
| 1591 | |
| 1592 | swf->swp_nseginuse--; |
| 1593 | vm_swapfile_total_segs_used--; |
| 1594 | |
| 1595 | if (segidx < swf->swp_free_hint) { |
| 1596 | swf->swp_free_hint = segidx; |
| 1597 | } |
| 1598 | } |
| 1599 | if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running) |
| 1600 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | |
| 1605 | uint32_t vm_swap_free_now_count = 0; |
| 1606 | uint32_t vm_swap_free_delayed_count = 0; |
| 1607 | |
| 1608 | |
| 1609 | void |
| 1610 | vm_swap_free(uint64_t f_offset) |
| 1611 | { |
| 1612 | struct swapfile *swf = NULL; |
| 1613 | struct trim_list *tl = NULL; |
| 1614 | clock_sec_t sec; |
| 1615 | clock_nsec_t nsec; |
| 1616 | |
| 1617 | if (swp_trim_supported == TRUE) |
| 1618 | tl = kalloc(sizeof(struct trim_list)); |
| 1619 | |
| 1620 | lck_mtx_lock(&vm_swap_data_lock); |
| 1621 | |
| 1622 | swf = vm_swapfile_for_handle(f_offset); |
| 1623 | |
| 1624 | if (swf && (swf->swp_flags & (SWAP_READY | SWAP_RECLAIM))) { |
| 1625 | |
| 1626 | if (swp_trim_supported == FALSE || (swf->swp_flags & SWAP_RECLAIM)) { |
| 1627 | /* |
| 1628 | * don't delay the free if the underlying disk doesn't support |
| 1629 | * trim, or we're in the midst of reclaiming this swap file since |
| 1630 | * we don't want to move segments that are technically free |
| 1631 | * but not yet handled by the delayed free mechanism |
| 1632 | */ |
| 1633 | vm_swap_free_now(swf, f_offset); |
| 1634 | |
| 1635 | vm_swap_free_now_count++; |
| 1636 | goto done; |
| 1637 | } |
| 1638 | tl->tl_offset = f_offset & SWAP_SLOT_MASK; |
| 1639 | tl->tl_length = COMPRESSED_SWAP_CHUNK_SIZE; |
| 1640 | |
| 1641 | tl->tl_next = swf->swp_delayed_trim_list_head; |
| 1642 | swf->swp_delayed_trim_list_head = tl; |
| 1643 | swf->swp_delayed_trim_count++; |
| 1644 | tl = NULL; |
| 1645 | |
| 1646 | if (VM_SWAP_SHOULD_TRIM(swf) && !vm_swapfile_create_thread_running) { |
| 1647 | clock_get_system_nanotime(&sec, &nsec); |
| 1648 | |
| 1649 | if (sec > dont_trim_until_ts) |
| 1650 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1651 | } |
| 1652 | vm_swap_free_delayed_count++; |
| 1653 | } |
| 1654 | done: |
| 1655 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1656 | |
| 1657 | if (tl != NULL) |
| 1658 | kfree(tl, sizeof(struct trim_list)); |
| 1659 | } |
| 1660 | |
| 1661 | |
| 1662 | static void |
| 1663 | vm_swap_wait_on_trim_handling_in_progress() |
| 1664 | { |
| 1665 | while (delayed_trim_handling_in_progress == TRUE) { |
| 1666 | |
| 1667 | assert_wait((event_t) &delayed_trim_handling_in_progress, THREAD_UNINT); |
| 1668 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1669 | |
| 1670 | thread_block(THREAD_CONTINUE_NULL); |
| 1671 | |
| 1672 | lck_mtx_lock(&vm_swap_data_lock); |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | |
| 1677 | static void |
| 1678 | vm_swap_handle_delayed_trims(boolean_t force_now) |
| 1679 | { |
| 1680 | struct swapfile *swf = NULL; |
| 1681 | |
| 1682 | /* |
| 1683 | * serialize the race between us and vm_swap_reclaim... |
| 1684 | * if vm_swap_reclaim wins it will turn off SWAP_READY |
| 1685 | * on the victim it has chosen... we can just skip over |
| 1686 | * that file since vm_swap_reclaim will first process |
| 1687 | * all of the delayed trims associated with it |
| 1688 | */ |
| 1689 | lck_mtx_lock(&vm_swap_data_lock); |
| 1690 | |
| 1691 | delayed_trim_handling_in_progress = TRUE; |
| 1692 | |
| 1693 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1694 | |
| 1695 | /* |
| 1696 | * no need to hold the lock to walk the swf list since |
| 1697 | * vm_swap_create (the only place where we add to this list) |
| 1698 | * is run on the same thread as this function |
| 1699 | * and vm_swap_reclaim doesn't remove items from this list |
| 1700 | * instead marking them with SWAP_REUSE for future re-use |
| 1701 | */ |
| 1702 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1703 | |
| 1704 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1705 | |
| 1706 | if ((swf->swp_flags & SWAP_READY) && (force_now == TRUE || VM_SWAP_SHOULD_TRIM(swf))) { |
| 1707 | |
| 1708 | assert(!(swf->swp_flags & SWAP_RECLAIM)); |
| 1709 | vm_swap_do_delayed_trim(swf); |
| 1710 | } |
| 1711 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1712 | } |
| 1713 | lck_mtx_lock(&vm_swap_data_lock); |
| 1714 | |
| 1715 | delayed_trim_handling_in_progress = FALSE; |
| 1716 | thread_wakeup((event_t) &delayed_trim_handling_in_progress); |
| 1717 | |
| 1718 | if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running) |
| 1719 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 1720 | |
| 1721 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1722 | |
| 1723 | } |
| 1724 | |
| 1725 | static void |
| 1726 | vm_swap_do_delayed_trim(struct swapfile *swf) |
| 1727 | { |
| 1728 | struct trim_list *tl, *tl_head; |
| 1729 | |
| 1730 | lck_mtx_lock(&vm_swap_data_lock); |
| 1731 | |
| 1732 | tl_head = swf->swp_delayed_trim_list_head; |
| 1733 | swf->swp_delayed_trim_list_head = NULL; |
| 1734 | swf->swp_delayed_trim_count = 0; |
| 1735 | |
| 1736 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1737 | |
| 1738 | vnode_trim_list(swf->swp_vp, tl_head, TRUE); |
| 1739 | |
| 1740 | while ((tl = tl_head) != NULL) { |
| 1741 | unsigned int segidx = 0; |
| 1742 | unsigned int byte_for_segidx = 0; |
| 1743 | unsigned int offset_within_byte = 0; |
| 1744 | |
| 1745 | lck_mtx_lock(&vm_swap_data_lock); |
| 1746 | |
| 1747 | segidx = (unsigned int) (tl->tl_offset / COMPRESSED_SWAP_CHUNK_SIZE); |
| 1748 | |
| 1749 | byte_for_segidx = segidx >> 3; |
| 1750 | offset_within_byte = segidx % 8; |
| 1751 | |
| 1752 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 1753 | |
| 1754 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 1755 | |
| 1756 | swf->swp_csegs[segidx] = NULL; |
| 1757 | |
| 1758 | swf->swp_nseginuse--; |
| 1759 | vm_swapfile_total_segs_used--; |
| 1760 | |
| 1761 | if (segidx < swf->swp_free_hint) { |
| 1762 | swf->swp_free_hint = segidx; |
| 1763 | } |
| 1764 | } |
| 1765 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1766 | |
| 1767 | tl_head = tl->tl_next; |
| 1768 | |
| 1769 | kfree(tl, sizeof(struct trim_list)); |
| 1770 | } |
| 1771 | } |
| 1772 | |
| 1773 | |
| 1774 | void |
| 1775 | vm_swap_flush() |
| 1776 | { |
| 1777 | return; |
| 1778 | } |
| 1779 | |
| 1780 | int vm_swap_reclaim_yielded = 0; |
| 1781 | |
| 1782 | void |
| 1783 | vm_swap_reclaim(void) |
| 1784 | { |
| 1785 | vm_offset_t addr = 0; |
| 1786 | unsigned int segidx = 0; |
| 1787 | uint64_t f_offset = 0; |
| 1788 | struct swapfile *swf = NULL; |
| 1789 | struct swapfile *smallest_swf = NULL; |
| 1790 | unsigned int min_nsegs = 0; |
| 1791 | unsigned int byte_for_segidx = 0; |
| 1792 | unsigned int offset_within_byte = 0; |
| 1793 | uint32_t c_size = 0; |
| 1794 | |
| 1795 | c_segment_t c_seg = NULL; |
| 1796 | |
| 1797 | if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&addr), C_SEG_BUFSIZE, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) { |
| 1798 | panic("vm_swap_reclaim: kernel_memory_allocate failed\n" ); |
| 1799 | } |
| 1800 | |
| 1801 | lck_mtx_lock(&vm_swap_data_lock); |
| 1802 | |
| 1803 | /* |
| 1804 | * if we're running the swapfile list looking for |
| 1805 | * candidates with delayed trims, we need to |
| 1806 | * wait before making our decision concerning |
| 1807 | * the swapfile we want to reclaim |
| 1808 | */ |
| 1809 | vm_swap_wait_on_trim_handling_in_progress(); |
| 1810 | |
| 1811 | /* |
| 1812 | * from here until we knock down the SWAP_READY bit, |
| 1813 | * we need to remain behind the vm_swap_data_lock... |
| 1814 | * once that bit has been turned off, "vm_swap_handle_delayed_trims" |
| 1815 | * will not consider this swapfile for processing |
| 1816 | */ |
| 1817 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1818 | min_nsegs = MAX_SWAP_FILE_SIZE / COMPRESSED_SWAP_CHUNK_SIZE; |
| 1819 | smallest_swf = NULL; |
| 1820 | |
| 1821 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1822 | |
| 1823 | if ((swf->swp_flags & SWAP_READY) && (swf->swp_nseginuse <= min_nsegs)) { |
| 1824 | |
| 1825 | smallest_swf = swf; |
| 1826 | min_nsegs = swf->swp_nseginuse; |
| 1827 | } |
| 1828 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1829 | } |
| 1830 | |
| 1831 | if (smallest_swf == NULL) |
| 1832 | goto done; |
| 1833 | |
| 1834 | swf = smallest_swf; |
| 1835 | |
| 1836 | |
| 1837 | swf->swp_flags &= ~SWAP_READY; |
| 1838 | swf->swp_flags |= SWAP_RECLAIM; |
| 1839 | |
| 1840 | if (swf->swp_delayed_trim_count) { |
| 1841 | |
| 1842 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1843 | |
| 1844 | vm_swap_do_delayed_trim(swf); |
| 1845 | |
| 1846 | lck_mtx_lock(&vm_swap_data_lock); |
| 1847 | } |
| 1848 | segidx = 0; |
| 1849 | |
| 1850 | while (segidx < swf->swp_nsegs) { |
| 1851 | |
| 1852 | ReTry_for_cseg: |
| 1853 | /* |
| 1854 | * Wait for outgoing I/Os. |
| 1855 | */ |
| 1856 | while (swf->swp_io_count) { |
| 1857 | |
| 1858 | swf->swp_flags |= SWAP_WANTED; |
| 1859 | |
| 1860 | assert_wait((event_t) &swf->swp_flags, THREAD_UNINT); |
| 1861 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1862 | |
| 1863 | thread_block(THREAD_CONTINUE_NULL); |
| 1864 | |
| 1865 | lck_mtx_lock(&vm_swap_data_lock); |
| 1866 | } |
| 1867 | if (compressor_store_stop_compaction == TRUE || VM_SWAP_SHOULD_ABORT_RECLAIM() || VM_SWAP_BUSY()) { |
| 1868 | vm_swap_reclaim_yielded++; |
| 1869 | break; |
| 1870 | } |
| 1871 | |
| 1872 | byte_for_segidx = segidx >> 3; |
| 1873 | offset_within_byte = segidx % 8; |
| 1874 | |
| 1875 | if (((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) == 0) { |
| 1876 | |
| 1877 | segidx++; |
| 1878 | continue; |
| 1879 | } |
| 1880 | |
| 1881 | c_seg = swf->swp_csegs[segidx]; |
| 1882 | assert(c_seg); |
| 1883 | |
| 1884 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1885 | |
| 1886 | if (c_seg->c_busy) { |
| 1887 | /* |
| 1888 | * a swapped out c_segment in the process of being freed will remain in the |
| 1889 | * busy state until after the vm_swap_free is called on it... vm_swap_free |
| 1890 | * takes the vm_swap_data_lock, so can't change the swap state until after |
| 1891 | * we drop the vm_swap_data_lock... once we do, vm_swap_free will complete |
| 1892 | * which will allow c_seg_free_locked to clear busy and wake up this thread... |
| 1893 | * at that point, we re-look up the swap state which will now indicate that |
| 1894 | * this c_segment no longer exists. |
| 1895 | */ |
| 1896 | c_seg->c_wanted = 1; |
| 1897 | |
| 1898 | assert_wait((event_t) (c_seg), THREAD_UNINT); |
| 1899 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1900 | |
| 1901 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1902 | |
| 1903 | thread_block(THREAD_CONTINUE_NULL); |
| 1904 | |
| 1905 | lck_mtx_lock(&vm_swap_data_lock); |
| 1906 | |
| 1907 | goto ReTry_for_cseg; |
| 1908 | } |
| 1909 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 1910 | |
| 1911 | f_offset = segidx * COMPRESSED_SWAP_CHUNK_SIZE; |
| 1912 | |
| 1913 | assert(c_seg == swf->swp_csegs[segidx]); |
| 1914 | swf->swp_csegs[segidx] = NULL; |
| 1915 | swf->swp_nseginuse--; |
| 1916 | |
| 1917 | vm_swapfile_total_segs_used--; |
| 1918 | |
| 1919 | lck_mtx_unlock(&vm_swap_data_lock); |
| 1920 | |
| 1921 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 1922 | |
| 1923 | C_SEG_BUSY(c_seg); |
| 1924 | c_seg->c_busy_swapping = 1; |
| 1925 | #if !CHECKSUM_THE_SWAP |
| 1926 | c_seg_trim_tail(c_seg); |
| 1927 | #endif |
| 1928 | c_size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 1929 | |
| 1930 | assert(c_size <= C_SEG_BUFSIZE && c_size); |
| 1931 | |
| 1932 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1933 | |
| 1934 | if (vm_swapfile_io(swf->swp_vp, f_offset, addr, (int)(c_size / PAGE_SIZE_64), SWAP_READ, NULL)) { |
| 1935 | |
| 1936 | /* |
| 1937 | * reading the data back in failed, so convert c_seg |
| 1938 | * to a swapped in c_segment that contains no data |
| 1939 | */ |
| 1940 | c_seg_swapin_requeue(c_seg, FALSE, TRUE, FALSE); |
| 1941 | /* |
| 1942 | * returns with c_busy_swapping cleared |
| 1943 | */ |
| 1944 | |
| 1945 | vm_swap_get_failures++; |
| 1946 | goto swap_io_failed; |
| 1947 | } |
| 1948 | VM_STAT_INCR_BY(swapins, c_size >> PAGE_SHIFT); |
| 1949 | |
| 1950 | if (vm_swap_put(addr, &f_offset, c_size, c_seg, NULL)) { |
| 1951 | vm_offset_t c_buffer; |
| 1952 | |
| 1953 | /* |
| 1954 | * the put failed, so convert c_seg to a fully swapped in c_segment |
| 1955 | * with valid data |
| 1956 | */ |
| 1957 | c_buffer = (vm_offset_t)C_SEG_BUFFER_ADDRESS(c_seg->c_mysegno); |
| 1958 | |
| 1959 | kernel_memory_populate(compressor_map, c_buffer, c_size, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR); |
| 1960 | |
| 1961 | memcpy((char *)c_buffer, (char *)addr, c_size); |
| 1962 | |
| 1963 | c_seg->c_store.c_buffer = (int32_t *)c_buffer; |
| 1964 | #if ENCRYPTED_SWAP |
| 1965 | vm_swap_decrypt(c_seg); |
| 1966 | #endif /* ENCRYPTED_SWAP */ |
| 1967 | c_seg_swapin_requeue(c_seg, TRUE, TRUE, FALSE); |
| 1968 | /* |
| 1969 | * returns with c_busy_swapping cleared |
| 1970 | */ |
| 1971 | OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used); |
| 1972 | |
| 1973 | goto swap_io_failed; |
| 1974 | } |
| 1975 | VM_STAT_INCR_BY(swapouts, c_size >> PAGE_SHIFT); |
| 1976 | |
| 1977 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1978 | |
| 1979 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 1980 | /* |
| 1981 | * The c_seg will now know about the new location on disk. |
| 1982 | */ |
| 1983 | c_seg->c_store.c_swap_handle = f_offset; |
| 1984 | |
| 1985 | assert(c_seg->c_busy_swapping); |
| 1986 | c_seg->c_busy_swapping = 0; |
| 1987 | swap_io_failed: |
| 1988 | assert(c_seg->c_busy); |
| 1989 | C_SEG_WAKEUP_DONE(c_seg); |
| 1990 | |
| 1991 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1992 | lck_mtx_lock(&vm_swap_data_lock); |
| 1993 | } |
| 1994 | |
| 1995 | if (swf->swp_nseginuse) { |
| 1996 | |
| 1997 | swf->swp_flags &= ~SWAP_RECLAIM; |
| 1998 | swf->swp_flags |= SWAP_READY; |
| 1999 | |
| 2000 | goto done; |
| 2001 | } |
| 2002 | /* |
| 2003 | * We don't remove this inactive swf from the queue. |
| 2004 | * That way, we can re-use it when needed again and |
| 2005 | * preserve the namespace. The delayed_trim processing |
| 2006 | * is also dependent on us not removing swfs from the queue. |
| 2007 | */ |
| 2008 | //queue_remove(&swf_global_queue, swf, struct swapfile*, swp_queue); |
| 2009 | |
| 2010 | vm_num_swap_files--; |
| 2011 | |
| 2012 | vm_swapfile_total_segs_alloced -= swf->swp_nsegs; |
| 2013 | |
| 2014 | lck_mtx_unlock(&vm_swap_data_lock); |
| 2015 | |
| 2016 | vm_swapfile_close((uint64_t)(swf->swp_path), swf->swp_vp); |
| 2017 | |
| 2018 | kfree(swf->swp_csegs, swf->swp_nsegs * sizeof(c_segment_t)); |
| 2019 | kfree(swf->swp_bitmap, MAX((swf->swp_nsegs >> 3), 1)); |
| 2020 | |
| 2021 | lck_mtx_lock(&vm_swap_data_lock); |
| 2022 | |
| 2023 | if (swf->swp_flags & SWAP_PINNED) { |
| 2024 | vm_num_pinned_swap_files--; |
| 2025 | vm_swappin_avail += swf->swp_size; |
| 2026 | } |
| 2027 | |
| 2028 | swf->swp_vp = NULL; |
| 2029 | swf->swp_size = 0; |
| 2030 | swf->swp_free_hint = 0; |
| 2031 | swf->swp_nsegs = 0; |
| 2032 | swf->swp_flags = SWAP_REUSE; |
| 2033 | |
| 2034 | done: |
| 2035 | thread_wakeup((event_t) &swf->swp_flags); |
| 2036 | lck_mtx_unlock(&vm_swap_data_lock); |
| 2037 | |
| 2038 | kmem_free(compressor_map, (vm_offset_t) addr, C_SEG_BUFSIZE); |
| 2039 | } |
| 2040 | |
| 2041 | |
| 2042 | uint64_t |
| 2043 | vm_swap_get_total_space(void) |
| 2044 | { |
| 2045 | uint64_t total_space = 0; |
| 2046 | |
| 2047 | total_space = (uint64_t)vm_swapfile_total_segs_alloced * COMPRESSED_SWAP_CHUNK_SIZE; |
| 2048 | |
| 2049 | return total_space; |
| 2050 | } |
| 2051 | |
| 2052 | uint64_t |
| 2053 | vm_swap_get_used_space(void) |
| 2054 | { |
| 2055 | uint64_t used_space = 0; |
| 2056 | |
| 2057 | used_space = (uint64_t)vm_swapfile_total_segs_used * COMPRESSED_SWAP_CHUNK_SIZE; |
| 2058 | |
| 2059 | return used_space; |
| 2060 | } |
| 2061 | |
| 2062 | uint64_t |
| 2063 | vm_swap_get_free_space(void) |
| 2064 | { |
| 2065 | return (vm_swap_get_total_space() - vm_swap_get_used_space()); |
| 2066 | } |
| 2067 | |
| 2068 | |
| 2069 | int |
| 2070 | vm_swap_low_on_space(void) |
| 2071 | { |
| 2072 | |
| 2073 | if (vm_num_swap_files == 0 && vm_swapfile_can_be_created == FALSE) |
| 2074 | return (0); |
| 2075 | |
| 2076 | if (((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < ((unsigned int)VM_SWAPFILE_HIWATER_SEGS) / 8)) { |
| 2077 | |
| 2078 | if (vm_num_swap_files == 0 && !SWAPPER_NEEDS_TO_UNTHROTTLE()) |
| 2079 | return (0); |
| 2080 | |
| 2081 | if (vm_swapfile_last_failed_to_create_ts >= vm_swapfile_last_successful_create_ts) |
| 2082 | return (1); |
| 2083 | } |
| 2084 | return (0); |
| 2085 | } |
| 2086 | |
| 2087 | boolean_t |
| 2088 | vm_swap_files_pinned(void) |
| 2089 | { |
| 2090 | boolean_t result; |
| 2091 | |
| 2092 | if (vm_swappin_enabled == FALSE) |
| 2093 | return (TRUE); |
| 2094 | |
| 2095 | result = (vm_num_pinned_swap_files == vm_num_swap_files); |
| 2096 | |
| 2097 | return (result); |
| 2098 | } |
| 2099 | |
| 2100 | #if CONFIG_FREEZE |
| 2101 | boolean_t |
| 2102 | vm_swap_max_budget(uint64_t *freeze_daily_budget) |
| 2103 | { |
| 2104 | boolean_t use_device_value = FALSE; |
| 2105 | struct swapfile *swf = NULL; |
| 2106 | |
| 2107 | if (vm_num_swap_files) { |
| 2108 | lck_mtx_lock(&vm_swap_data_lock); |
| 2109 | |
| 2110 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 2111 | |
| 2112 | if (swf) { |
| 2113 | while(queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 2114 | |
| 2115 | if (swf->swp_flags == SWAP_READY) { |
| 2116 | |
| 2117 | assert(swf->swp_vp); |
| 2118 | |
| 2119 | if (vm_swap_vol_get_budget(swf->swp_vp, freeze_daily_budget) == 0) { |
| 2120 | use_device_value = TRUE; |
| 2121 | } |
| 2122 | break; |
| 2123 | } |
| 2124 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | lck_mtx_unlock(&vm_swap_data_lock); |
| 2129 | |
| 2130 | } else { |
| 2131 | |
| 2132 | /* |
| 2133 | * This block is used for the initial budget value before any swap files |
| 2134 | * are created. We create a temp swap file to get the budget. |
| 2135 | */ |
| 2136 | |
| 2137 | struct vnode *temp_vp = NULL; |
| 2138 | |
| 2139 | vm_swapfile_open(swapfilename, &temp_vp); |
| 2140 | |
| 2141 | if (temp_vp) { |
| 2142 | |
| 2143 | if (vm_swap_vol_get_budget(temp_vp, freeze_daily_budget) == 0) { |
| 2144 | use_device_value = TRUE; |
| 2145 | } |
| 2146 | |
| 2147 | vm_swapfile_close((uint64_t)&swapfilename, temp_vp); |
| 2148 | temp_vp = NULL; |
| 2149 | } else { |
| 2150 | *freeze_daily_budget = 0; |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | return use_device_value; |
| 2155 | } |
| 2156 | #endif /* CONFIG_FREEZE */ |
| 2157 | |