| 1 | /* |
| 2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <vm/vm_compressor.h> |
| 30 | |
| 31 | #if CONFIG_PHANTOM_CACHE |
| 32 | #include <vm/vm_phantom_cache.h> |
| 33 | #endif |
| 34 | |
| 35 | #include <vm/vm_map.h> |
| 36 | #include <vm/vm_pageout.h> |
| 37 | #include <vm/memory_object.h> |
| 38 | #include <vm/vm_compressor_algorithms.h> |
| 39 | #include <vm/vm_fault.h> |
| 40 | #include <vm/vm_protos.h> |
| 41 | #include <mach/mach_host.h> /* for host_info() */ |
| 42 | #include <kern/ledger.h> |
| 43 | #include <kern/policy_internal.h> |
| 44 | #include <kern/thread_group.h> |
| 45 | #include <san/kasan.h> |
| 46 | |
| 47 | #if !CONFIG_EMBEDDED |
| 48 | #include <i386/misc_protos.h> |
| 49 | #endif |
| 50 | |
| 51 | #include <IOKit/IOHibernatePrivate.h> |
| 52 | |
| 53 | extern boolean_t vm_darkwake_mode; |
| 54 | |
| 55 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 56 | boolean_t popcount_c_segs = TRUE; |
| 57 | |
| 58 | static inline uint32_t vmc_pop(uintptr_t ins, int sz) { |
| 59 | uint32_t rv = 0; |
| 60 | |
| 61 | if (__probable(popcount_c_segs == FALSE)) { |
| 62 | return 0xDEAD707C; |
| 63 | } |
| 64 | |
| 65 | while (sz >= 16) { |
| 66 | uint32_t rv1, rv2; |
| 67 | uint64_t *ins64 = (uint64_t *) ins; |
| 68 | uint64_t *ins642 = (uint64_t *) (ins + 8); |
| 69 | rv1 = __builtin_popcountll(*ins64); |
| 70 | rv2 = __builtin_popcountll(*ins642); |
| 71 | rv += rv1 + rv2; |
| 72 | sz -= 16; |
| 73 | ins += 16; |
| 74 | } |
| 75 | |
| 76 | while (sz >= 4) { |
| 77 | uint32_t *ins32 = (uint32_t *) ins; |
| 78 | rv += __builtin_popcount(*ins32); |
| 79 | sz -= 4; |
| 80 | ins += 4; |
| 81 | } |
| 82 | |
| 83 | while (sz > 0) { |
| 84 | char *ins8 = (char *)ins; |
| 85 | rv += __builtin_popcount(*ins8); |
| 86 | sz--; |
| 87 | ins++; |
| 88 | } |
| 89 | return rv; |
| 90 | } |
| 91 | #endif |
| 92 | |
| 93 | #if VALIDATE_C_SEGMENTS |
| 94 | boolean_t validate_c_segs = TRUE; |
| 95 | #endif |
| 96 | /* |
| 97 | * vm_compressor_mode has a heirarchy of control to set its value. |
| 98 | * boot-args are checked first, then device-tree, and finally |
| 99 | * the default value that is defined below. See vm_fault_init() for |
| 100 | * the boot-arg & device-tree code. |
| 101 | */ |
| 102 | |
| 103 | #if CONFIG_EMBEDDED |
| 104 | |
| 105 | #if CONFIG_FREEZE |
| 106 | int vm_compressor_mode = VM_PAGER_FREEZER_DEFAULT; |
| 107 | |
| 108 | void *freezer_chead; /* The chead used to track c_segs allocated for the exclusive use of holding just one task's compressed memory.*/ |
| 109 | char *freezer_compressor_scratch_buf = NULL; |
| 110 | |
| 111 | extern int c_freezer_swapout_page_count; /* This count keeps track of the # of compressed pages holding just one task's compressed memory on the swapout queue. This count is used during each freeze i.e. on a per-task basis.*/ |
| 112 | |
| 113 | #else /* CONFIG_FREEZE */ |
| 114 | int vm_compressor_mode = VM_PAGER_NOT_CONFIGURED; |
| 115 | #endif /* CONFIG_FREEZE */ |
| 116 | |
| 117 | int vm_scale = 1; |
| 118 | |
| 119 | #else /* CONFIG_EMBEDDED */ |
| 120 | int vm_compressor_mode = VM_PAGER_COMPRESSOR_WITH_SWAP; |
| 121 | int vm_scale = 16; |
| 122 | |
| 123 | #endif /* CONFIG_EMBEDDED */ |
| 124 | |
| 125 | int vm_compressor_is_active = 0; |
| 126 | int vm_compression_limit = 0; |
| 127 | int vm_compressor_available = 0; |
| 128 | |
| 129 | extern void vm_pageout_io_throttle(void); |
| 130 | |
| 131 | #if CHECKSUM_THE_DATA || CHECKSUM_THE_SWAP || CHECKSUM_THE_COMPRESSED_DATA |
| 132 | extern unsigned int hash_string(char *cp, int len); |
| 133 | static unsigned int vmc_hash(char *, int); |
| 134 | boolean_t checksum_c_segs = TRUE; |
| 135 | |
| 136 | unsigned int vmc_hash(char *cp, int len) { |
| 137 | if (__probable(checksum_c_segs == FALSE)) { |
| 138 | return 0xDEAD7A37; |
| 139 | } |
| 140 | return hash_string(cp, len); |
| 141 | } |
| 142 | #endif |
| 143 | |
| 144 | #define UNPACK_C_SIZE(cs) ((cs->c_size == (PAGE_SIZE-1)) ? PAGE_SIZE : cs->c_size) |
| 145 | #define PACK_C_SIZE(cs, size) (cs->c_size = ((size == PAGE_SIZE) ? PAGE_SIZE - 1 : size)) |
| 146 | |
| 147 | |
| 148 | struct c_sv_hash_entry { |
| 149 | union { |
| 150 | struct { |
| 151 | uint32_t c_sv_he_ref; |
| 152 | uint32_t c_sv_he_data; |
| 153 | } c_sv_he; |
| 154 | uint64_t c_sv_he_record; |
| 155 | |
| 156 | } c_sv_he_un; |
| 157 | }; |
| 158 | |
| 159 | #define he_ref c_sv_he_un.c_sv_he.c_sv_he_ref |
| 160 | #define he_data c_sv_he_un.c_sv_he.c_sv_he_data |
| 161 | #define he_record c_sv_he_un.c_sv_he_record |
| 162 | |
| 163 | #define C_SV_HASH_MAX_MISS 32 |
| 164 | #define C_SV_HASH_SIZE ((1 << 10)) |
| 165 | #define C_SV_HASH_MASK ((1 << 10) - 1) |
| 166 | #define C_SV_CSEG_ID ((1 << 22) - 1) |
| 167 | |
| 168 | |
| 169 | union c_segu { |
| 170 | c_segment_t c_seg; |
| 171 | uintptr_t c_segno; |
| 172 | }; |
| 173 | |
| 174 | |
| 175 | |
| 176 | #define C_SLOT_PACK_PTR(ptr) (((uintptr_t)ptr - (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START) >> 2) |
| 177 | #define C_SLOT_UNPACK_PTR(cslot) ((uintptr_t)(cslot->c_packed_ptr << 2) + (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START) |
| 178 | |
| 179 | |
| 180 | uint32_t c_segment_count = 0; |
| 181 | uint32_t c_segment_count_max = 0; |
| 182 | |
| 183 | uint64_t c_generation_id = 0; |
| 184 | uint64_t c_generation_id_flush_barrier; |
| 185 | |
| 186 | |
| 187 | #define HIBERNATE_FLUSHING_SECS_TO_COMPLETE 120 |
| 188 | |
| 189 | boolean_t hibernate_no_swapspace = FALSE; |
| 190 | clock_sec_t hibernate_flushing_deadline = 0; |
| 191 | |
| 192 | |
| 193 | #if RECORD_THE_COMPRESSED_DATA |
| 194 | char *c_compressed_record_sbuf; |
| 195 | char *c_compressed_record_ebuf; |
| 196 | char *c_compressed_record_cptr; |
| 197 | #endif |
| 198 | |
| 199 | |
| 200 | queue_head_t c_age_list_head; |
| 201 | queue_head_t c_swappedin_list_head; |
| 202 | queue_head_t c_swapout_list_head; |
| 203 | queue_head_t c_swapio_list_head; |
| 204 | queue_head_t c_swappedout_list_head; |
| 205 | queue_head_t c_swappedout_sparse_list_head; |
| 206 | queue_head_t c_major_list_head; |
| 207 | queue_head_t c_filling_list_head; |
| 208 | queue_head_t c_bad_list_head; |
| 209 | |
| 210 | uint32_t c_age_count = 0; |
| 211 | uint32_t c_swappedin_count = 0; |
| 212 | uint32_t c_swapout_count = 0; |
| 213 | uint32_t c_swapio_count = 0; |
| 214 | uint32_t c_swappedout_count = 0; |
| 215 | uint32_t c_swappedout_sparse_count = 0; |
| 216 | uint32_t c_major_count = 0; |
| 217 | uint32_t c_filling_count = 0; |
| 218 | uint32_t c_empty_count = 0; |
| 219 | uint32_t c_bad_count = 0; |
| 220 | |
| 221 | |
| 222 | queue_head_t c_minor_list_head; |
| 223 | uint32_t c_minor_count = 0; |
| 224 | |
| 225 | int c_overage_swapped_count = 0; |
| 226 | int c_overage_swapped_limit = 0; |
| 227 | |
| 228 | int c_seg_fixed_array_len; |
| 229 | union c_segu *c_segments; |
| 230 | vm_offset_t c_buffers; |
| 231 | vm_size_t c_buffers_size; |
| 232 | caddr_t c_segments_next_page; |
| 233 | boolean_t c_segments_busy; |
| 234 | uint32_t c_segments_available; |
| 235 | uint32_t c_segments_limit; |
| 236 | uint32_t c_segments_nearing_limit; |
| 237 | |
| 238 | uint32_t c_segment_svp_in_hash; |
| 239 | uint32_t c_segment_svp_hash_succeeded; |
| 240 | uint32_t c_segment_svp_hash_failed; |
| 241 | uint32_t c_segment_svp_zero_compressions; |
| 242 | uint32_t c_segment_svp_nonzero_compressions; |
| 243 | uint32_t c_segment_svp_zero_decompressions; |
| 244 | uint32_t c_segment_svp_nonzero_decompressions; |
| 245 | |
| 246 | uint32_t c_segment_noncompressible_pages; |
| 247 | |
| 248 | uint32_t c_segment_pages_compressed; |
| 249 | uint32_t c_segment_pages_compressed_limit; |
| 250 | uint32_t c_segment_pages_compressed_nearing_limit; |
| 251 | uint32_t c_free_segno_head = (uint32_t)-1; |
| 252 | |
| 253 | uint32_t vm_compressor_minorcompact_threshold_divisor = 10; |
| 254 | uint32_t vm_compressor_majorcompact_threshold_divisor = 10; |
| 255 | uint32_t vm_compressor_unthrottle_threshold_divisor = 10; |
| 256 | uint32_t vm_compressor_catchup_threshold_divisor = 10; |
| 257 | |
| 258 | uint32_t vm_compressor_minorcompact_threshold_divisor_overridden = 0; |
| 259 | uint32_t vm_compressor_majorcompact_threshold_divisor_overridden = 0; |
| 260 | uint32_t vm_compressor_unthrottle_threshold_divisor_overridden = 0; |
| 261 | uint32_t vm_compressor_catchup_threshold_divisor_overridden = 0; |
| 262 | |
| 263 | #define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu)) |
| 264 | |
| 265 | |
| 266 | lck_grp_attr_t vm_compressor_lck_grp_attr; |
| 267 | lck_attr_t vm_compressor_lck_attr; |
| 268 | lck_grp_t vm_compressor_lck_grp; |
| 269 | lck_mtx_t *c_list_lock; |
| 270 | lck_rw_t c_master_lock; |
| 271 | boolean_t decompressions_blocked = FALSE; |
| 272 | |
| 273 | zone_t compressor_segment_zone; |
| 274 | int c_compressor_swap_trigger = 0; |
| 275 | |
| 276 | uint32_t compressor_cpus; |
| 277 | char *compressor_scratch_bufs; |
| 278 | char *kdp_compressor_scratch_buf; |
| 279 | char *kdp_compressor_decompressed_page; |
| 280 | addr64_t kdp_compressor_decompressed_page_paddr; |
| 281 | ppnum_t kdp_compressor_decompressed_page_ppnum; |
| 282 | |
| 283 | clock_sec_t start_of_sample_period_sec = 0; |
| 284 | clock_nsec_t start_of_sample_period_nsec = 0; |
| 285 | clock_sec_t start_of_eval_period_sec = 0; |
| 286 | clock_nsec_t start_of_eval_period_nsec = 0; |
| 287 | uint32_t sample_period_decompression_count = 0; |
| 288 | uint32_t sample_period_compression_count = 0; |
| 289 | uint32_t last_eval_decompression_count = 0; |
| 290 | uint32_t last_eval_compression_count = 0; |
| 291 | |
| 292 | #define DECOMPRESSION_SAMPLE_MAX_AGE (60 * 30) |
| 293 | |
| 294 | boolean_t vm_swapout_ripe_segments = FALSE; |
| 295 | uint32_t vm_ripe_target_age = (60 * 60 * 48); |
| 296 | |
| 297 | uint32_t swapout_target_age = 0; |
| 298 | uint32_t age_of_decompressions_during_sample_period[DECOMPRESSION_SAMPLE_MAX_AGE]; |
| 299 | uint32_t overage_decompressions_during_sample_period = 0; |
| 300 | |
| 301 | |
| 302 | void do_fastwake_warmup(queue_head_t *, boolean_t); |
| 303 | boolean_t fastwake_warmup = FALSE; |
| 304 | boolean_t fastwake_recording_in_progress = FALSE; |
| 305 | clock_sec_t dont_trim_until_ts = 0; |
| 306 | |
| 307 | uint64_t c_segment_warmup_count; |
| 308 | uint64_t first_c_segment_to_warm_generation_id = 0; |
| 309 | uint64_t last_c_segment_to_warm_generation_id = 0; |
| 310 | boolean_t hibernate_flushing = FALSE; |
| 311 | |
| 312 | int64_t c_segment_input_bytes __attribute__((aligned(8))) = 0; |
| 313 | int64_t c_segment_compressed_bytes __attribute__((aligned(8))) = 0; |
| 314 | int64_t compressor_bytes_used __attribute__((aligned(8))) = 0; |
| 315 | |
| 316 | |
| 317 | struct c_sv_hash_entry c_segment_sv_hash_table[C_SV_HASH_SIZE] __attribute__ ((aligned (8))); |
| 318 | |
| 319 | static boolean_t compressor_needs_to_swap(void); |
| 320 | static void vm_compressor_swap_trigger_thread(void); |
| 321 | static void vm_compressor_do_delayed_compactions(boolean_t); |
| 322 | static void vm_compressor_compact_and_swap(boolean_t); |
| 323 | static void vm_compressor_age_swapped_in_segments(boolean_t); |
| 324 | |
| 325 | #if !CONFIG_EMBEDDED |
| 326 | static void vm_compressor_take_paging_space_action(void); |
| 327 | #endif |
| 328 | |
| 329 | void compute_swapout_target_age(void); |
| 330 | |
| 331 | boolean_t c_seg_major_compact(c_segment_t, c_segment_t); |
| 332 | boolean_t c_seg_major_compact_ok(c_segment_t, c_segment_t); |
| 333 | |
| 334 | int c_seg_minor_compaction_and_unlock(c_segment_t, boolean_t); |
| 335 | int c_seg_do_minor_compaction_and_unlock(c_segment_t, boolean_t, boolean_t, boolean_t); |
| 336 | void c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg); |
| 337 | |
| 338 | void c_seg_move_to_sparse_list(c_segment_t); |
| 339 | void c_seg_insert_into_q(queue_head_t *, c_segment_t); |
| 340 | |
| 341 | uint64_t vm_available_memory(void); |
| 342 | uint64_t vm_compressor_pages_compressed(void); |
| 343 | |
| 344 | /* |
| 345 | * indicate the need to do a major compaction if |
| 346 | * the overall set of in-use compression segments |
| 347 | * becomes sparse... on systems that support pressure |
| 348 | * driven swapping, this will also cause swapouts to |
| 349 | * be initiated. |
| 350 | */ |
| 351 | static inline boolean_t vm_compressor_needs_to_major_compact() |
| 352 | { |
| 353 | uint32_t incore_seg_count; |
| 354 | |
| 355 | incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count; |
| 356 | |
| 357 | if ((c_segment_count >= (c_segments_nearing_limit / 8)) && |
| 358 | ((incore_seg_count * C_SEG_MAX_PAGES) - VM_PAGE_COMPRESSOR_COUNT) > |
| 359 | ((incore_seg_count / 8) * C_SEG_MAX_PAGES)) |
| 360 | return (1); |
| 361 | return (0); |
| 362 | } |
| 363 | |
| 364 | |
| 365 | uint64_t |
| 366 | vm_available_memory(void) |
| 367 | { |
| 368 | return (((uint64_t)AVAILABLE_NON_COMPRESSED_MEMORY) * PAGE_SIZE_64); |
| 369 | } |
| 370 | |
| 371 | |
| 372 | uint64_t |
| 373 | vm_compressor_pages_compressed(void) |
| 374 | { |
| 375 | return (c_segment_pages_compressed * PAGE_SIZE_64); |
| 376 | } |
| 377 | |
| 378 | |
| 379 | boolean_t |
| 380 | vm_compressor_low_on_space(void) |
| 381 | { |
| 382 | if ((c_segment_pages_compressed > c_segment_pages_compressed_nearing_limit) || |
| 383 | (c_segment_count > c_segments_nearing_limit)) |
| 384 | return (TRUE); |
| 385 | |
| 386 | return (FALSE); |
| 387 | } |
| 388 | |
| 389 | |
| 390 | boolean_t |
| 391 | vm_compressor_out_of_space(void) |
| 392 | { |
| 393 | if ((c_segment_pages_compressed >= c_segment_pages_compressed_limit) || |
| 394 | (c_segment_count >= c_segments_limit)) |
| 395 | return (TRUE); |
| 396 | |
| 397 | return (FALSE); |
| 398 | } |
| 399 | |
| 400 | |
| 401 | int |
| 402 | vm_wants_task_throttled(task_t task) |
| 403 | { |
| 404 | if (task == kernel_task) |
| 405 | return (0); |
| 406 | |
| 407 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 408 | if ((vm_compressor_low_on_space() || HARD_THROTTLE_LIMIT_REACHED()) && |
| 409 | (unsigned int)pmap_compressed(task->map->pmap) > (c_segment_pages_compressed / 4)) |
| 410 | return (1); |
| 411 | } |
| 412 | return (0); |
| 413 | } |
| 414 | |
| 415 | |
| 416 | #if DEVELOPMENT || DEBUG |
| 417 | boolean_t kill_on_no_paging_space = FALSE; /* On compressor/swap exhaustion, kill the largest process regardless of |
| 418 | * its chosen process policy. Controlled by a boot-arg of the same name. */ |
| 419 | #endif /* DEVELOPMENT || DEBUG */ |
| 420 | |
| 421 | #if !CONFIG_EMBEDDED |
| 422 | |
| 423 | static uint32_t no_paging_space_action_in_progress = 0; |
| 424 | extern void memorystatus_send_low_swap_note(void); |
| 425 | |
| 426 | static void |
| 427 | vm_compressor_take_paging_space_action(void) |
| 428 | { |
| 429 | if (no_paging_space_action_in_progress == 0) { |
| 430 | |
| 431 | if (OSCompareAndSwap(0, 1, (UInt32 *)&no_paging_space_action_in_progress)) { |
| 432 | |
| 433 | if (no_paging_space_action()) { |
| 434 | #if DEVELOPMENT || DEBUG |
| 435 | if (kill_on_no_paging_space == TRUE) { |
| 436 | /* |
| 437 | * Since we are choosing to always kill a process, we don't need the |
| 438 | * "out of application memory" dialog box in this mode. And, hence we won't |
| 439 | * send the knote. |
| 440 | */ |
| 441 | no_paging_space_action_in_progress = 0; |
| 442 | return; |
| 443 | } |
| 444 | #endif /* DEVELOPMENT || DEBUG */ |
| 445 | memorystatus_send_low_swap_note(); |
| 446 | } |
| 447 | |
| 448 | no_paging_space_action_in_progress = 0; |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | #endif /* !CONFIG_EMBEDDED */ |
| 453 | |
| 454 | |
| 455 | void |
| 456 | vm_compressor_init_locks(void) |
| 457 | { |
| 458 | lck_grp_attr_setdefault(&vm_compressor_lck_grp_attr); |
| 459 | lck_grp_init(&vm_compressor_lck_grp, "vm_compressor" , &vm_compressor_lck_grp_attr); |
| 460 | lck_attr_setdefault(&vm_compressor_lck_attr); |
| 461 | |
| 462 | lck_rw_init(&c_master_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr); |
| 463 | } |
| 464 | |
| 465 | |
| 466 | void |
| 467 | vm_decompressor_lock(void) |
| 468 | { |
| 469 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 470 | |
| 471 | decompressions_blocked = TRUE; |
| 472 | |
| 473 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 474 | } |
| 475 | |
| 476 | void |
| 477 | vm_decompressor_unlock(void) |
| 478 | { |
| 479 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 480 | |
| 481 | decompressions_blocked = FALSE; |
| 482 | |
| 483 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 484 | |
| 485 | thread_wakeup((event_t)&decompressions_blocked); |
| 486 | } |
| 487 | |
| 488 | static inline void cslot_copy(c_slot_t cdst, c_slot_t csrc) { |
| 489 | #if CHECKSUM_THE_DATA |
| 490 | cdst->c_hash_data = csrc->c_hash_data; |
| 491 | #endif |
| 492 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 493 | cdst->c_hash_compressed_data = csrc->c_hash_compressed_data; |
| 494 | #endif |
| 495 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 496 | cdst->c_pop_cdata = csrc->c_pop_cdata; |
| 497 | #endif |
| 498 | cdst->c_size = csrc->c_size; |
| 499 | cdst->c_packed_ptr = csrc->c_packed_ptr; |
| 500 | #if defined(__arm__) || defined(__arm64__) |
| 501 | cdst->c_codec = csrc->c_codec; |
| 502 | #endif |
| 503 | } |
| 504 | |
| 505 | vm_map_t compressor_map; |
| 506 | uint64_t compressor_pool_max_size; |
| 507 | uint64_t compressor_pool_size; |
| 508 | uint32_t compressor_pool_multiplier; |
| 509 | |
| 510 | #if DEVELOPMENT || DEBUG |
| 511 | /* |
| 512 | * Compressor segments are write-protected in development/debug |
| 513 | * kernels to help debug memory corruption. |
| 514 | * In cases where performance is a concern, this can be disabled |
| 515 | * via the boot-arg "-disable_cseg_write_protection". |
| 516 | */ |
| 517 | boolean_t write_protect_c_segs = TRUE; |
| 518 | int vm_compressor_test_seg_wp; |
| 519 | uint32_t vm_ktrace_enabled; |
| 520 | #endif /* DEVELOPMENT || DEBUG */ |
| 521 | |
| 522 | void |
| 523 | vm_compressor_init(void) |
| 524 | { |
| 525 | thread_t thread; |
| 526 | struct c_slot cs_dummy; |
| 527 | c_slot_t cs = &cs_dummy; |
| 528 | int c_segment_min_size; |
| 529 | int c_segment_padded_size; |
| 530 | int attempts = 1; |
| 531 | kern_return_t retval = KERN_SUCCESS; |
| 532 | vm_offset_t start_addr = 0; |
| 533 | vm_size_t c_segments_arr_size = 0, compressor_submap_size = 0; |
| 534 | vm_map_kernel_flags_t vmk_flags; |
| 535 | #if RECORD_THE_COMPRESSED_DATA |
| 536 | vm_size_t c_compressed_record_sbuf_size = 0; |
| 537 | #endif /* RECORD_THE_COMPRESSED_DATA */ |
| 538 | |
| 539 | #if DEVELOPMENT || DEBUG |
| 540 | char bootarg_name[32]; |
| 541 | if (PE_parse_boot_argn("-kill_on_no_paging_space" , bootarg_name, sizeof (bootarg_name))) { |
| 542 | kill_on_no_paging_space = TRUE; |
| 543 | } |
| 544 | if (PE_parse_boot_argn("-disable_cseg_write_protection" , bootarg_name, sizeof (bootarg_name))) { |
| 545 | write_protect_c_segs = FALSE; |
| 546 | } |
| 547 | int vmcval = 1; |
| 548 | PE_parse_boot_argn("vm_compressor_validation" , &vmcval, sizeof(vmcval)); |
| 549 | |
| 550 | if (kern_feature_override(KF_COMPRSV_OVRD)) { |
| 551 | vmcval = 0; |
| 552 | } |
| 553 | if (vmcval == 0) { |
| 554 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 555 | popcount_c_segs = FALSE; |
| 556 | #endif |
| 557 | #if CHECKSUM_THE_DATA || CHECKSUM_THE_COMPRESSED_DATA |
| 558 | checksum_c_segs = FALSE; |
| 559 | #endif |
| 560 | #if VALIDATE_C_SEGMENTS |
| 561 | validate_c_segs = FALSE; |
| 562 | #endif |
| 563 | write_protect_c_segs = FALSE; |
| 564 | } |
| 565 | #endif /* DEVELOPMENT || DEBUG */ |
| 566 | |
| 567 | /* |
| 568 | * ensure that any pointer that gets created from |
| 569 | * the vm_page zone can be packed properly |
| 570 | */ |
| 571 | cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_min_address); |
| 572 | |
| 573 | if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_min_address) |
| 574 | panic("C_SLOT_UNPACK_PTR failed on zone_map_min_address - %p" , (void *)zone_map_min_address); |
| 575 | |
| 576 | cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_max_address); |
| 577 | |
| 578 | if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_max_address) |
| 579 | panic("C_SLOT_UNPACK_PTR failed on zone_map_max_address - %p" , (void *)zone_map_max_address); |
| 580 | |
| 581 | |
| 582 | assert((C_SEGMENTS_PER_PAGE * sizeof(union c_segu)) == PAGE_SIZE); |
| 583 | |
| 584 | PE_parse_boot_argn("vm_compression_limit" , &vm_compression_limit, sizeof (vm_compression_limit)); |
| 585 | |
| 586 | #ifdef CONFIG_EMBEDDED |
| 587 | vm_compressor_minorcompact_threshold_divisor = 20; |
| 588 | vm_compressor_majorcompact_threshold_divisor = 30; |
| 589 | vm_compressor_unthrottle_threshold_divisor = 40; |
| 590 | vm_compressor_catchup_threshold_divisor = 60; |
| 591 | #else |
| 592 | if (max_mem <= (3ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 593 | vm_compressor_minorcompact_threshold_divisor = 11; |
| 594 | vm_compressor_majorcompact_threshold_divisor = 13; |
| 595 | vm_compressor_unthrottle_threshold_divisor = 20; |
| 596 | vm_compressor_catchup_threshold_divisor = 35; |
| 597 | } else { |
| 598 | vm_compressor_minorcompact_threshold_divisor = 20; |
| 599 | vm_compressor_majorcompact_threshold_divisor = 25; |
| 600 | vm_compressor_unthrottle_threshold_divisor = 35; |
| 601 | vm_compressor_catchup_threshold_divisor = 50; |
| 602 | } |
| 603 | #endif |
| 604 | /* |
| 605 | * vm_page_init_lck_grp is now responsible for calling vm_compressor_init_locks |
| 606 | * c_master_lock needs to be available early so that "vm_page_find_contiguous" can |
| 607 | * use PAGE_REPLACEMENT_ALLOWED to coordinate with the compressor. |
| 608 | */ |
| 609 | |
| 610 | c_list_lock = lck_mtx_alloc_init(&vm_compressor_lck_grp, &vm_compressor_lck_attr); |
| 611 | |
| 612 | queue_init(&c_bad_list_head); |
| 613 | queue_init(&c_age_list_head); |
| 614 | queue_init(&c_minor_list_head); |
| 615 | queue_init(&c_major_list_head); |
| 616 | queue_init(&c_filling_list_head); |
| 617 | queue_init(&c_swapout_list_head); |
| 618 | queue_init(&c_swapio_list_head); |
| 619 | queue_init(&c_swappedin_list_head); |
| 620 | queue_init(&c_swappedout_list_head); |
| 621 | queue_init(&c_swappedout_sparse_list_head); |
| 622 | |
| 623 | c_free_segno_head = -1; |
| 624 | c_segments_available = 0; |
| 625 | |
| 626 | if (vm_compression_limit) |
| 627 | compressor_pool_size = (uint64_t)vm_compression_limit * PAGE_SIZE_64; |
| 628 | |
| 629 | compressor_pool_max_size = C_SEG_MAX_LIMIT; |
| 630 | compressor_pool_max_size *= C_SEG_BUFSIZE; |
| 631 | |
| 632 | #if defined(__x86_64__) |
| 633 | |
| 634 | if (vm_compression_limit == 0) { |
| 635 | |
| 636 | if (max_mem <= (4ULL * 1024ULL * 1024ULL * 1024ULL)) |
| 637 | compressor_pool_size = 16ULL * max_mem; |
| 638 | else if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) |
| 639 | compressor_pool_size = 8ULL * max_mem; |
| 640 | else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) |
| 641 | compressor_pool_size = 4ULL * max_mem; |
| 642 | else |
| 643 | compressor_pool_size = 2ULL * max_mem; |
| 644 | } |
| 645 | if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) |
| 646 | compressor_pool_multiplier = 1; |
| 647 | else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) |
| 648 | compressor_pool_multiplier = 2; |
| 649 | else |
| 650 | compressor_pool_multiplier = 4; |
| 651 | |
| 652 | #elif defined(__arm__) |
| 653 | |
| 654 | #define VM_RESERVE_SIZE (1024 * 1024 * 256) |
| 655 | #define MAX_COMPRESSOR_POOL_SIZE (1024 * 1024 * 450) |
| 656 | |
| 657 | if (compressor_pool_max_size > MAX_COMPRESSOR_POOL_SIZE) |
| 658 | compressor_pool_max_size = MAX_COMPRESSOR_POOL_SIZE; |
| 659 | |
| 660 | if (vm_compression_limit == 0) |
| 661 | compressor_pool_size = ((kernel_map->max_offset - kernel_map->min_offset) - kernel_map->size) - VM_RESERVE_SIZE; |
| 662 | compressor_pool_multiplier = 1; |
| 663 | #else |
| 664 | if (compressor_pool_max_size > max_mem) |
| 665 | compressor_pool_max_size = max_mem; |
| 666 | |
| 667 | if (vm_compression_limit == 0) |
| 668 | compressor_pool_size = max_mem; |
| 669 | compressor_pool_multiplier = 1; |
| 670 | #endif |
| 671 | if (compressor_pool_size > compressor_pool_max_size) |
| 672 | compressor_pool_size = compressor_pool_max_size; |
| 673 | |
| 674 | try_again: |
| 675 | c_segments_limit = (uint32_t)(compressor_pool_size / (vm_size_t)(C_SEG_ALLOCSIZE)); |
| 676 | c_segments_nearing_limit = (uint32_t)(((uint64_t)c_segments_limit * 98ULL) / 100ULL); |
| 677 | |
| 678 | c_segment_pages_compressed_limit = (c_segments_limit * (C_SEG_BUFSIZE / PAGE_SIZE) * compressor_pool_multiplier); |
| 679 | |
| 680 | if (c_segment_pages_compressed_limit < (uint32_t)(max_mem / PAGE_SIZE)) |
| 681 | c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE); |
| 682 | |
| 683 | c_segment_pages_compressed_nearing_limit = (uint32_t)(((uint64_t)c_segment_pages_compressed_limit * 98ULL) / 100ULL); |
| 684 | |
| 685 | /* |
| 686 | * Submap needs space for: |
| 687 | * - c_segments |
| 688 | * - c_buffers |
| 689 | * - swap reclaimations -- C_SEG_BUFSIZE |
| 690 | */ |
| 691 | c_segments_arr_size = vm_map_round_page((sizeof(union c_segu) * c_segments_limit), VM_MAP_PAGE_MASK(kernel_map)); |
| 692 | c_buffers_size = vm_map_round_page(((vm_size_t)C_SEG_ALLOCSIZE * (vm_size_t)c_segments_limit), VM_MAP_PAGE_MASK(kernel_map)); |
| 693 | |
| 694 | compressor_submap_size = c_segments_arr_size + c_buffers_size + C_SEG_BUFSIZE; |
| 695 | |
| 696 | #if RECORD_THE_COMPRESSED_DATA |
| 697 | c_compressed_record_sbuf_size = (vm_size_t)C_SEG_ALLOCSIZE + (PAGE_SIZE * 2); |
| 698 | compressor_submap_size += c_compressed_record_sbuf_size; |
| 699 | #endif /* RECORD_THE_COMPRESSED_DATA */ |
| 700 | |
| 701 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 702 | vmk_flags.vmkf_permanent = TRUE; |
| 703 | retval = kmem_suballoc(kernel_map, &start_addr, compressor_submap_size, |
| 704 | FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_COMPRESSOR, |
| 705 | &compressor_map); |
| 706 | |
| 707 | if (retval != KERN_SUCCESS) { |
| 708 | if (++attempts > 3) |
| 709 | panic("vm_compressor_init: kmem_suballoc failed - 0x%llx" , (uint64_t)compressor_submap_size); |
| 710 | |
| 711 | compressor_pool_size = compressor_pool_size / 2; |
| 712 | |
| 713 | kprintf("retrying creation of the compressor submap at 0x%llx bytes\n" , compressor_pool_size); |
| 714 | goto try_again; |
| 715 | } |
| 716 | if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&c_segments), (sizeof(union c_segu) * c_segments_limit), 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) |
| 717 | panic("vm_compressor_init: kernel_memory_allocate failed - c_segments\n" ); |
| 718 | if (kernel_memory_allocate(compressor_map, &c_buffers, c_buffers_size, 0, KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) |
| 719 | panic("vm_compressor_init: kernel_memory_allocate failed - c_buffers\n" ); |
| 720 | |
| 721 | |
| 722 | c_segment_min_size = sizeof(struct c_segment) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN * sizeof(struct c_slot)); |
| 723 | |
| 724 | for (c_segment_padded_size = 128; c_segment_padded_size < c_segment_min_size; c_segment_padded_size = c_segment_padded_size << 1); |
| 725 | |
| 726 | compressor_segment_zone = zinit(c_segment_padded_size, c_segments_limit * c_segment_padded_size, PAGE_SIZE, "compressor_segment" ); |
| 727 | zone_change(compressor_segment_zone, Z_CALLERACCT, FALSE); |
| 728 | zone_change(compressor_segment_zone, Z_NOENCRYPT, TRUE); |
| 729 | |
| 730 | c_seg_fixed_array_len = (c_segment_padded_size - sizeof(struct c_segment)) / sizeof(struct c_slot); |
| 731 | |
| 732 | c_segments_busy = FALSE; |
| 733 | |
| 734 | c_segments_next_page = (caddr_t)c_segments; |
| 735 | vm_compressor_algorithm_init(); |
| 736 | |
| 737 | { |
| 738 | host_basic_info_data_t hinfo; |
| 739 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 740 | |
| 741 | #define BSD_HOST 1 |
| 742 | host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count); |
| 743 | |
| 744 | compressor_cpus = hinfo.max_cpus; |
| 745 | compressor_scratch_bufs = kalloc_tag(compressor_cpus * vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR); |
| 746 | |
| 747 | kdp_compressor_scratch_buf = kalloc_tag(vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR); |
| 748 | |
| 749 | /* |
| 750 | * kdp_compressor_decompressed_page must be page aligned because we access |
| 751 | * it through the physical apperture by page number. kalloc() does not |
| 752 | * guarantee alignment. |
| 753 | */ |
| 754 | vm_offset_t addr; |
| 755 | if (kernel_memory_allocate(kernel_map, &addr, PAGE_SIZE, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) { |
| 756 | panic("vm_compressor_init: kernel_memory_allocate failed - kdp_compressor_decompressed_page\n" ); |
| 757 | } |
| 758 | assert((addr & PAGE_MASK) == 0); |
| 759 | kdp_compressor_decompressed_page = (void *)addr; |
| 760 | kdp_compressor_decompressed_page_paddr = kvtophys((vm_offset_t)kdp_compressor_decompressed_page); |
| 761 | kdp_compressor_decompressed_page_ppnum = (ppnum_t) atop(kdp_compressor_decompressed_page_paddr); |
| 762 | } |
| 763 | #if CONFIG_FREEZE |
| 764 | freezer_compressor_scratch_buf = kalloc_tag(vm_compressor_get_encode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR); |
| 765 | #endif |
| 766 | |
| 767 | #if RECORD_THE_COMPRESSED_DATA |
| 768 | if (kernel_memory_allocate(compressor_map, (vm_offset_t *)&c_compressed_record_sbuf, c_compressed_record_sbuf_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) |
| 769 | panic("vm_compressor_init: kernel_memory_allocate failed - c_compressed_record_sbuf\n" ); |
| 770 | |
| 771 | c_compressed_record_cptr = c_compressed_record_sbuf; |
| 772 | c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size; |
| 773 | #endif |
| 774 | |
| 775 | if (kernel_thread_start_priority((thread_continue_t)vm_compressor_swap_trigger_thread, NULL, |
| 776 | BASEPRI_VM, &thread) != KERN_SUCCESS) { |
| 777 | panic("vm_compressor_swap_trigger_thread: create failed" ); |
| 778 | } |
| 779 | thread_deallocate(thread); |
| 780 | |
| 781 | if (vm_pageout_internal_start() != KERN_SUCCESS) { |
| 782 | panic("vm_compressor_init: Failed to start the internal pageout thread.\n" ); |
| 783 | } |
| 784 | if (VM_CONFIG_SWAP_IS_PRESENT) |
| 785 | vm_compressor_swap_init(); |
| 786 | |
| 787 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) |
| 788 | vm_compressor_is_active = 1; |
| 789 | |
| 790 | #if CONFIG_FREEZE |
| 791 | memorystatus_freeze_enabled = TRUE; |
| 792 | #endif /* CONFIG_FREEZE */ |
| 793 | |
| 794 | vm_compressor_available = 1; |
| 795 | |
| 796 | vm_page_reactivate_all_throttled(); |
| 797 | } |
| 798 | |
| 799 | |
| 800 | #if VALIDATE_C_SEGMENTS |
| 801 | |
| 802 | static void |
| 803 | c_seg_validate(c_segment_t c_seg, boolean_t must_be_compact) |
| 804 | { |
| 805 | int c_indx; |
| 806 | int32_t bytes_used; |
| 807 | uint32_t c_rounded_size; |
| 808 | uint32_t c_size; |
| 809 | c_slot_t cs; |
| 810 | |
| 811 | if (__probable(validate_c_segs == FALSE)) { |
| 812 | return; |
| 813 | } |
| 814 | if (c_seg->c_firstemptyslot < c_seg->c_nextslot) { |
| 815 | c_indx = c_seg->c_firstemptyslot; |
| 816 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 817 | |
| 818 | if (cs == NULL) |
| 819 | panic("c_seg_validate: no slot backing c_firstemptyslot" ); |
| 820 | |
| 821 | if (cs->c_size) |
| 822 | panic("c_seg_validate: c_firstemptyslot has non-zero size (%d)\n" , cs->c_size); |
| 823 | } |
| 824 | bytes_used = 0; |
| 825 | |
| 826 | for (c_indx = 0; c_indx < c_seg->c_nextslot; c_indx++) { |
| 827 | |
| 828 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 829 | |
| 830 | c_size = UNPACK_C_SIZE(cs); |
| 831 | |
| 832 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 833 | |
| 834 | bytes_used += c_rounded_size; |
| 835 | |
| 836 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 837 | unsigned csvhash; |
| 838 | if (c_size && cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) { |
| 839 | addr64_t csvphys = kvtophys((vm_offset_t)&c_seg->c_store.c_buffer[cs->c_offset]); |
| 840 | panic("Compressed data doesn't match original %p phys: 0x%llx %d %p %d %d 0x%x 0x%x" , c_seg, csvphys, cs->c_offset, cs, c_indx, c_size, cs->c_hash_compressed_data, csvhash); |
| 841 | } |
| 842 | #endif |
| 843 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 844 | unsigned csvpop; |
| 845 | if (c_size) { |
| 846 | uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset]; |
| 847 | if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) { |
| 848 | panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x" , (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata); |
| 849 | } |
| 850 | } |
| 851 | #endif |
| 852 | |
| 853 | } |
| 854 | |
| 855 | if (bytes_used != c_seg->c_bytes_used) |
| 856 | panic("c_seg_validate: bytes_used mismatch - found %d, segment has %d\n" , bytes_used, c_seg->c_bytes_used); |
| 857 | |
| 858 | if (c_seg->c_bytes_used > C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) |
| 859 | panic("c_seg_validate: c_bytes_used > c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n" , |
| 860 | (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used); |
| 861 | |
| 862 | if (must_be_compact) { |
| 863 | if (c_seg->c_bytes_used != C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) |
| 864 | panic("c_seg_validate: c_bytes_used doesn't match c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n" , |
| 865 | (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used); |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | #endif |
| 870 | |
| 871 | |
| 872 | void |
| 873 | c_seg_need_delayed_compaction(c_segment_t c_seg, boolean_t c_list_lock_held) |
| 874 | { |
| 875 | boolean_t clear_busy = FALSE; |
| 876 | |
| 877 | if (c_list_lock_held == FALSE) { |
| 878 | if ( !lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 879 | C_SEG_BUSY(c_seg); |
| 880 | |
| 881 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 882 | lck_mtx_lock_spin_always(c_list_lock); |
| 883 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 884 | |
| 885 | clear_busy = TRUE; |
| 886 | } |
| 887 | } |
| 888 | assert(c_seg->c_state != C_IS_FILLING); |
| 889 | |
| 890 | if (!c_seg->c_on_minorcompact_q && !(C_SEG_IS_ON_DISK_OR_SOQ(c_seg))) { |
| 891 | queue_enter(&c_minor_list_head, c_seg, c_segment_t, c_list); |
| 892 | c_seg->c_on_minorcompact_q = 1; |
| 893 | c_minor_count++; |
| 894 | } |
| 895 | if (c_list_lock_held == FALSE) |
| 896 | lck_mtx_unlock_always(c_list_lock); |
| 897 | |
| 898 | if (clear_busy == TRUE) |
| 899 | C_SEG_WAKEUP_DONE(c_seg); |
| 900 | } |
| 901 | |
| 902 | |
| 903 | unsigned int c_seg_moved_to_sparse_list = 0; |
| 904 | |
| 905 | void |
| 906 | c_seg_move_to_sparse_list(c_segment_t c_seg) |
| 907 | { |
| 908 | boolean_t clear_busy = FALSE; |
| 909 | |
| 910 | if ( !lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 911 | C_SEG_BUSY(c_seg); |
| 912 | |
| 913 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 914 | lck_mtx_lock_spin_always(c_list_lock); |
| 915 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 916 | |
| 917 | clear_busy = TRUE; |
| 918 | } |
| 919 | c_seg_switch_state(c_seg, C_ON_SWAPPEDOUTSPARSE_Q, FALSE); |
| 920 | |
| 921 | c_seg_moved_to_sparse_list++; |
| 922 | |
| 923 | lck_mtx_unlock_always(c_list_lock); |
| 924 | |
| 925 | if (clear_busy == TRUE) |
| 926 | C_SEG_WAKEUP_DONE(c_seg); |
| 927 | } |
| 928 | |
| 929 | |
| 930 | void |
| 931 | c_seg_insert_into_q(queue_head_t *qhead, c_segment_t c_seg) |
| 932 | { |
| 933 | c_segment_t c_seg_next; |
| 934 | |
| 935 | if (queue_empty(qhead)) { |
| 936 | queue_enter(qhead, c_seg, c_segment_t, c_age_list); |
| 937 | } else { |
| 938 | c_seg_next = (c_segment_t)queue_first(qhead); |
| 939 | |
| 940 | while (TRUE) { |
| 941 | |
| 942 | if (c_seg->c_generation_id < c_seg_next->c_generation_id) { |
| 943 | queue_insert_before(qhead, c_seg, c_seg_next, c_segment_t, c_age_list); |
| 944 | break; |
| 945 | } |
| 946 | c_seg_next = (c_segment_t) queue_next(&c_seg_next->c_age_list); |
| 947 | |
| 948 | if (queue_end(qhead, (queue_entry_t) c_seg_next)) { |
| 949 | queue_enter(qhead, c_seg, c_segment_t, c_age_list); |
| 950 | break; |
| 951 | } |
| 952 | } |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | |
| 957 | int try_minor_compaction_failed = 0; |
| 958 | int try_minor_compaction_succeeded = 0; |
| 959 | |
| 960 | void |
| 961 | c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg) |
| 962 | { |
| 963 | |
| 964 | assert(c_seg->c_on_minorcompact_q); |
| 965 | /* |
| 966 | * c_seg is currently on the delayed minor compaction |
| 967 | * queue and we have c_seg locked... if we can get the |
| 968 | * c_list_lock w/o blocking (if we blocked we could deadlock |
| 969 | * because the lock order is c_list_lock then c_seg's lock) |
| 970 | * we'll pull it from the delayed list and free it directly |
| 971 | */ |
| 972 | if ( !lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 973 | /* |
| 974 | * c_list_lock is held, we need to bail |
| 975 | */ |
| 976 | try_minor_compaction_failed++; |
| 977 | |
| 978 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 979 | } else { |
| 980 | try_minor_compaction_succeeded++; |
| 981 | |
| 982 | C_SEG_BUSY(c_seg); |
| 983 | c_seg_do_minor_compaction_and_unlock(c_seg, TRUE, FALSE, FALSE); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | |
| 988 | int |
| 989 | c_seg_do_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy, boolean_t need_list_lock, boolean_t disallow_page_replacement) |
| 990 | { |
| 991 | int c_seg_freed; |
| 992 | |
| 993 | assert(c_seg->c_busy); |
| 994 | assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg)); |
| 995 | |
| 996 | /* |
| 997 | * check for the case that can occur when we are not swapping |
| 998 | * and this segment has been major compacted in the past |
| 999 | * and moved to the majorcompact q to remove it from further |
| 1000 | * consideration... if the occupancy falls too low we need |
| 1001 | * to put it back on the age_q so that it will be considered |
| 1002 | * in the next major compaction sweep... if we don't do this |
| 1003 | * we will eventually run into the c_segments_limit |
| 1004 | */ |
| 1005 | if (c_seg->c_state == C_ON_MAJORCOMPACT_Q && C_SEG_SHOULD_MAJORCOMPACT_NOW(c_seg)) { |
| 1006 | |
| 1007 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 1008 | } |
| 1009 | if (!c_seg->c_on_minorcompact_q) { |
| 1010 | if (clear_busy == TRUE) |
| 1011 | C_SEG_WAKEUP_DONE(c_seg); |
| 1012 | |
| 1013 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1014 | |
| 1015 | return (0); |
| 1016 | } |
| 1017 | queue_remove(&c_minor_list_head, c_seg, c_segment_t, c_list); |
| 1018 | c_seg->c_on_minorcompact_q = 0; |
| 1019 | c_minor_count--; |
| 1020 | |
| 1021 | lck_mtx_unlock_always(c_list_lock); |
| 1022 | |
| 1023 | if (disallow_page_replacement == TRUE) { |
| 1024 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1025 | |
| 1026 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 1027 | |
| 1028 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1029 | } |
| 1030 | c_seg_freed = c_seg_minor_compaction_and_unlock(c_seg, clear_busy); |
| 1031 | |
| 1032 | if (disallow_page_replacement == TRUE) |
| 1033 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1034 | |
| 1035 | if (need_list_lock == TRUE) |
| 1036 | lck_mtx_lock_spin_always(c_list_lock); |
| 1037 | |
| 1038 | return (c_seg_freed); |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | void |
| 1043 | c_seg_wait_on_busy(c_segment_t c_seg) |
| 1044 | { |
| 1045 | c_seg->c_wanted = 1; |
| 1046 | assert_wait((event_t) (c_seg), THREAD_UNINT); |
| 1047 | |
| 1048 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1049 | thread_block(THREAD_CONTINUE_NULL); |
| 1050 | } |
| 1051 | |
| 1052 | |
| 1053 | void |
| 1054 | c_seg_switch_state(c_segment_t c_seg, int new_state, boolean_t insert_head) |
| 1055 | { |
| 1056 | int old_state = c_seg->c_state; |
| 1057 | |
| 1058 | #if __i386__ || __x86_64__ |
| 1059 | if (new_state != C_IS_FILLING) |
| 1060 | LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED); |
| 1061 | LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED); |
| 1062 | #endif |
| 1063 | switch (old_state) { |
| 1064 | |
| 1065 | case C_IS_EMPTY: |
| 1066 | assert(new_state == C_IS_FILLING || new_state == C_IS_FREE); |
| 1067 | |
| 1068 | c_empty_count--; |
| 1069 | break; |
| 1070 | |
| 1071 | case C_IS_FILLING: |
| 1072 | assert(new_state == C_ON_AGE_Q || new_state == C_ON_SWAPOUT_Q); |
| 1073 | |
| 1074 | queue_remove(&c_filling_list_head, c_seg, c_segment_t, c_age_list); |
| 1075 | c_filling_count--; |
| 1076 | break; |
| 1077 | |
| 1078 | case C_ON_AGE_Q: |
| 1079 | assert(new_state == C_ON_SWAPOUT_Q || new_state == C_ON_MAJORCOMPACT_Q || |
| 1080 | new_state == C_IS_FREE); |
| 1081 | |
| 1082 | queue_remove(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1083 | c_age_count--; |
| 1084 | break; |
| 1085 | |
| 1086 | case C_ON_SWAPPEDIN_Q: |
| 1087 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE); |
| 1088 | |
| 1089 | queue_remove(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1090 | c_swappedin_count--; |
| 1091 | break; |
| 1092 | |
| 1093 | case C_ON_SWAPOUT_Q: |
| 1094 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE || new_state == C_IS_EMPTY || new_state == C_ON_SWAPIO_Q); |
| 1095 | |
| 1096 | queue_remove(&c_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1097 | thread_wakeup((event_t)&compaction_swapper_running); |
| 1098 | c_swapout_count--; |
| 1099 | break; |
| 1100 | |
| 1101 | case C_ON_SWAPIO_Q: |
| 1102 | assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q || new_state == C_ON_AGE_Q); |
| 1103 | |
| 1104 | queue_remove(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1105 | c_swapio_count--; |
| 1106 | break; |
| 1107 | |
| 1108 | case C_ON_SWAPPEDOUT_Q: |
| 1109 | assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q || |
| 1110 | new_state == C_ON_SWAPPEDOUTSPARSE_Q || |
| 1111 | new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE); |
| 1112 | |
| 1113 | queue_remove(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1114 | c_swappedout_count--; |
| 1115 | break; |
| 1116 | |
| 1117 | case C_ON_SWAPPEDOUTSPARSE_Q: |
| 1118 | assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q || |
| 1119 | new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE); |
| 1120 | |
| 1121 | queue_remove(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1122 | c_swappedout_sparse_count--; |
| 1123 | break; |
| 1124 | |
| 1125 | case C_ON_MAJORCOMPACT_Q: |
| 1126 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE); |
| 1127 | |
| 1128 | queue_remove(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1129 | c_major_count--; |
| 1130 | break; |
| 1131 | |
| 1132 | case C_ON_BAD_Q: |
| 1133 | assert(new_state == C_IS_FREE); |
| 1134 | |
| 1135 | queue_remove(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1136 | c_bad_count--; |
| 1137 | break; |
| 1138 | |
| 1139 | default: |
| 1140 | panic("c_seg %p has bad c_state = %d\n" , c_seg, old_state); |
| 1141 | } |
| 1142 | |
| 1143 | switch(new_state) { |
| 1144 | case C_IS_FREE: |
| 1145 | assert(old_state != C_IS_FILLING); |
| 1146 | |
| 1147 | break; |
| 1148 | |
| 1149 | case C_IS_EMPTY: |
| 1150 | assert(old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1151 | |
| 1152 | c_empty_count++; |
| 1153 | break; |
| 1154 | |
| 1155 | case C_IS_FILLING: |
| 1156 | assert(old_state == C_IS_EMPTY); |
| 1157 | |
| 1158 | queue_enter(&c_filling_list_head, c_seg, c_segment_t, c_age_list); |
| 1159 | c_filling_count++; |
| 1160 | break; |
| 1161 | |
| 1162 | case C_ON_AGE_Q: |
| 1163 | assert(old_state == C_IS_FILLING || old_state == C_ON_SWAPPEDIN_Q || |
| 1164 | old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPIO_Q || |
| 1165 | old_state == C_ON_MAJORCOMPACT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1166 | |
| 1167 | if (old_state == C_IS_FILLING) |
| 1168 | queue_enter(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1169 | else { |
| 1170 | if (!queue_empty(&c_age_list_head)) { |
| 1171 | c_segment_t c_first; |
| 1172 | |
| 1173 | c_first = (c_segment_t)queue_first(&c_age_list_head); |
| 1174 | c_seg->c_creation_ts = c_first->c_creation_ts; |
| 1175 | } |
| 1176 | queue_enter_first(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1177 | } |
| 1178 | c_age_count++; |
| 1179 | break; |
| 1180 | |
| 1181 | case C_ON_SWAPPEDIN_Q: |
| 1182 | assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1183 | |
| 1184 | if (insert_head == TRUE) |
| 1185 | queue_enter_first(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1186 | else |
| 1187 | queue_enter(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1188 | c_swappedin_count++; |
| 1189 | break; |
| 1190 | |
| 1191 | case C_ON_SWAPOUT_Q: |
| 1192 | assert(old_state == C_ON_AGE_Q || old_state == C_IS_FILLING); |
| 1193 | |
| 1194 | if (insert_head == TRUE) |
| 1195 | queue_enter_first(&c_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1196 | else |
| 1197 | queue_enter(&c_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1198 | c_swapout_count++; |
| 1199 | break; |
| 1200 | |
| 1201 | case C_ON_SWAPIO_Q: |
| 1202 | assert(old_state == C_ON_SWAPOUT_Q); |
| 1203 | |
| 1204 | if (insert_head == TRUE) |
| 1205 | queue_enter_first(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1206 | else |
| 1207 | queue_enter(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1208 | c_swapio_count++; |
| 1209 | break; |
| 1210 | |
| 1211 | case C_ON_SWAPPEDOUT_Q: |
| 1212 | assert(old_state == C_ON_SWAPIO_Q); |
| 1213 | |
| 1214 | if (insert_head == TRUE) |
| 1215 | queue_enter_first(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1216 | else |
| 1217 | queue_enter(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1218 | c_swappedout_count++; |
| 1219 | break; |
| 1220 | |
| 1221 | case C_ON_SWAPPEDOUTSPARSE_Q: |
| 1222 | assert(old_state == C_ON_SWAPIO_Q || old_state == C_ON_SWAPPEDOUT_Q); |
| 1223 | |
| 1224 | if (insert_head == TRUE) |
| 1225 | queue_enter_first(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1226 | else |
| 1227 | queue_enter(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1228 | |
| 1229 | c_swappedout_sparse_count++; |
| 1230 | break; |
| 1231 | |
| 1232 | case C_ON_MAJORCOMPACT_Q: |
| 1233 | assert(old_state == C_ON_AGE_Q); |
| 1234 | |
| 1235 | if (insert_head == TRUE) |
| 1236 | queue_enter_first(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1237 | else |
| 1238 | queue_enter(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1239 | c_major_count++; |
| 1240 | break; |
| 1241 | |
| 1242 | case C_ON_BAD_Q: |
| 1243 | assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1244 | |
| 1245 | if (insert_head == TRUE) |
| 1246 | queue_enter_first(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1247 | else |
| 1248 | queue_enter(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1249 | c_bad_count++; |
| 1250 | break; |
| 1251 | |
| 1252 | default: |
| 1253 | panic("c_seg %p requesting bad c_state = %d\n" , c_seg, new_state); |
| 1254 | } |
| 1255 | c_seg->c_state = new_state; |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | |
| 1260 | void |
| 1261 | c_seg_free(c_segment_t c_seg) |
| 1262 | { |
| 1263 | assert(c_seg->c_busy); |
| 1264 | |
| 1265 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1266 | lck_mtx_lock_spin_always(c_list_lock); |
| 1267 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1268 | |
| 1269 | c_seg_free_locked(c_seg); |
| 1270 | } |
| 1271 | |
| 1272 | |
| 1273 | void |
| 1274 | c_seg_free_locked(c_segment_t c_seg) |
| 1275 | { |
| 1276 | int segno; |
| 1277 | int pages_populated = 0; |
| 1278 | int32_t *c_buffer = NULL; |
| 1279 | uint64_t c_swap_handle = 0; |
| 1280 | |
| 1281 | assert(c_seg->c_busy); |
| 1282 | assert(c_seg->c_slots_used == 0); |
| 1283 | assert(!c_seg->c_on_minorcompact_q); |
| 1284 | assert(!c_seg->c_busy_swapping); |
| 1285 | |
| 1286 | if (c_seg->c_overage_swap == TRUE) { |
| 1287 | c_overage_swapped_count--; |
| 1288 | c_seg->c_overage_swap = FALSE; |
| 1289 | } |
| 1290 | if ( !(C_SEG_IS_ONDISK(c_seg))) |
| 1291 | c_buffer = c_seg->c_store.c_buffer; |
| 1292 | else |
| 1293 | c_swap_handle = c_seg->c_store.c_swap_handle; |
| 1294 | |
| 1295 | c_seg_switch_state(c_seg, C_IS_FREE, FALSE); |
| 1296 | |
| 1297 | lck_mtx_unlock_always(c_list_lock); |
| 1298 | |
| 1299 | if (c_buffer) { |
| 1300 | pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE; |
| 1301 | c_seg->c_store.c_buffer = NULL; |
| 1302 | } else |
| 1303 | c_seg->c_store.c_swap_handle = (uint64_t)-1; |
| 1304 | |
| 1305 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1306 | |
| 1307 | if (c_buffer) { |
| 1308 | if (pages_populated) |
| 1309 | kernel_memory_depopulate(compressor_map, (vm_offset_t) c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR); |
| 1310 | |
| 1311 | } else if (c_swap_handle) { |
| 1312 | /* |
| 1313 | * Free swap space on disk. |
| 1314 | */ |
| 1315 | vm_swap_free(c_swap_handle); |
| 1316 | } |
| 1317 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1318 | /* |
| 1319 | * c_seg must remain busy until |
| 1320 | * after the call to vm_swap_free |
| 1321 | */ |
| 1322 | C_SEG_WAKEUP_DONE(c_seg); |
| 1323 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1324 | |
| 1325 | segno = c_seg->c_mysegno; |
| 1326 | |
| 1327 | lck_mtx_lock_spin_always(c_list_lock); |
| 1328 | /* |
| 1329 | * because the c_buffer is now associated with the segno, |
| 1330 | * we can't put the segno back on the free list until |
| 1331 | * after we have depopulated the c_buffer range, or |
| 1332 | * we run the risk of depopulating a range that is |
| 1333 | * now being used in one of the compressor heads |
| 1334 | */ |
| 1335 | c_segments[segno].c_segno = c_free_segno_head; |
| 1336 | c_free_segno_head = segno; |
| 1337 | c_segment_count--; |
| 1338 | |
| 1339 | lck_mtx_unlock_always(c_list_lock); |
| 1340 | |
| 1341 | lck_mtx_destroy(&c_seg->c_lock, &vm_compressor_lck_grp); |
| 1342 | |
| 1343 | if (c_seg->c_slot_var_array_len) |
| 1344 | kfree(c_seg->c_slot_var_array, sizeof(struct c_slot) * c_seg->c_slot_var_array_len); |
| 1345 | |
| 1346 | zfree(compressor_segment_zone, c_seg); |
| 1347 | } |
| 1348 | |
| 1349 | #if DEVELOPMENT || DEBUG |
| 1350 | int c_seg_trim_page_count = 0; |
| 1351 | #endif |
| 1352 | |
| 1353 | void |
| 1354 | c_seg_trim_tail(c_segment_t c_seg) |
| 1355 | { |
| 1356 | c_slot_t cs; |
| 1357 | uint32_t c_size; |
| 1358 | uint32_t c_offset; |
| 1359 | uint32_t c_rounded_size; |
| 1360 | uint16_t current_nextslot; |
| 1361 | uint32_t current_populated_offset; |
| 1362 | |
| 1363 | if (c_seg->c_bytes_used == 0) |
| 1364 | return; |
| 1365 | current_nextslot = c_seg->c_nextslot; |
| 1366 | current_populated_offset = c_seg->c_populated_offset; |
| 1367 | |
| 1368 | while (c_seg->c_nextslot) { |
| 1369 | |
| 1370 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, (c_seg->c_nextslot - 1)); |
| 1371 | |
| 1372 | c_size = UNPACK_C_SIZE(cs); |
| 1373 | |
| 1374 | if (c_size) { |
| 1375 | if (current_nextslot != c_seg->c_nextslot) { |
| 1376 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 1377 | c_offset = cs->c_offset + C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 1378 | |
| 1379 | c_seg->c_nextoffset = c_offset; |
| 1380 | c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) & |
| 1381 | ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1); |
| 1382 | |
| 1383 | if (c_seg->c_firstemptyslot > c_seg->c_nextslot) |
| 1384 | c_seg->c_firstemptyslot = c_seg->c_nextslot; |
| 1385 | #if DEVELOPMENT || DEBUG |
| 1386 | c_seg_trim_page_count += ((round_page_32(C_SEG_OFFSET_TO_BYTES(current_populated_offset)) - |
| 1387 | round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / |
| 1388 | PAGE_SIZE); |
| 1389 | #endif |
| 1390 | } |
| 1391 | break; |
| 1392 | } |
| 1393 | c_seg->c_nextslot--; |
| 1394 | } |
| 1395 | assert(c_seg->c_nextslot); |
| 1396 | } |
| 1397 | |
| 1398 | |
| 1399 | int |
| 1400 | c_seg_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy) |
| 1401 | { |
| 1402 | c_slot_mapping_t slot_ptr; |
| 1403 | uint32_t c_offset = 0; |
| 1404 | uint32_t old_populated_offset; |
| 1405 | uint32_t c_rounded_size; |
| 1406 | uint32_t c_size; |
| 1407 | int c_indx = 0; |
| 1408 | int i; |
| 1409 | c_slot_t c_dst; |
| 1410 | c_slot_t c_src; |
| 1411 | |
| 1412 | assert(c_seg->c_busy); |
| 1413 | |
| 1414 | #if VALIDATE_C_SEGMENTS |
| 1415 | c_seg_validate(c_seg, FALSE); |
| 1416 | #endif |
| 1417 | if (c_seg->c_bytes_used == 0) { |
| 1418 | c_seg_free(c_seg); |
| 1419 | return (1); |
| 1420 | } |
| 1421 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1422 | |
| 1423 | if (c_seg->c_firstemptyslot >= c_seg->c_nextslot || C_SEG_UNUSED_BYTES(c_seg) < PAGE_SIZE) |
| 1424 | goto done; |
| 1425 | |
| 1426 | /* TODO: assert first emptyslot's c_size is actually 0 */ |
| 1427 | |
| 1428 | #if DEVELOPMENT || DEBUG |
| 1429 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 1430 | #endif |
| 1431 | |
| 1432 | #if VALIDATE_C_SEGMENTS |
| 1433 | c_seg->c_was_minor_compacted++; |
| 1434 | #endif |
| 1435 | c_indx = c_seg->c_firstemptyslot; |
| 1436 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 1437 | |
| 1438 | old_populated_offset = c_seg->c_populated_offset; |
| 1439 | c_offset = c_dst->c_offset; |
| 1440 | |
| 1441 | for (i = c_indx + 1; i < c_seg->c_nextslot && c_offset < c_seg->c_nextoffset; i++) { |
| 1442 | |
| 1443 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg, i); |
| 1444 | |
| 1445 | c_size = UNPACK_C_SIZE(c_src); |
| 1446 | |
| 1447 | if (c_size == 0) |
| 1448 | continue; |
| 1449 | |
| 1450 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 1451 | /* N.B.: This memcpy may be an overlapping copy */ |
| 1452 | memcpy(&c_seg->c_store.c_buffer[c_offset], &c_seg->c_store.c_buffer[c_src->c_offset], c_rounded_size); |
| 1453 | |
| 1454 | cslot_copy(c_dst, c_src); |
| 1455 | c_dst->c_offset = c_offset; |
| 1456 | |
| 1457 | slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst); |
| 1458 | slot_ptr->s_cindx = c_indx; |
| 1459 | |
| 1460 | c_offset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 1461 | PACK_C_SIZE(c_src, 0); |
| 1462 | c_indx++; |
| 1463 | |
| 1464 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 1465 | } |
| 1466 | c_seg->c_firstemptyslot = c_indx; |
| 1467 | c_seg->c_nextslot = c_indx; |
| 1468 | c_seg->c_nextoffset = c_offset; |
| 1469 | c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) & ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1); |
| 1470 | c_seg->c_bytes_unused = 0; |
| 1471 | |
| 1472 | #if VALIDATE_C_SEGMENTS |
| 1473 | c_seg_validate(c_seg, TRUE); |
| 1474 | #endif |
| 1475 | if (old_populated_offset > c_seg->c_populated_offset) { |
| 1476 | uint32_t gc_size; |
| 1477 | int32_t *gc_ptr; |
| 1478 | |
| 1479 | gc_size = C_SEG_OFFSET_TO_BYTES(old_populated_offset - c_seg->c_populated_offset); |
| 1480 | gc_ptr = &c_seg->c_store.c_buffer[c_seg->c_populated_offset]; |
| 1481 | |
| 1482 | kernel_memory_depopulate(compressor_map, (vm_offset_t)gc_ptr, gc_size, KMA_COMPRESSOR); |
| 1483 | } |
| 1484 | |
| 1485 | #if DEVELOPMENT || DEBUG |
| 1486 | C_SEG_WRITE_PROTECT(c_seg); |
| 1487 | #endif |
| 1488 | |
| 1489 | done: |
| 1490 | if (clear_busy == TRUE) { |
| 1491 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1492 | C_SEG_WAKEUP_DONE(c_seg); |
| 1493 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1494 | } |
| 1495 | return (0); |
| 1496 | } |
| 1497 | |
| 1498 | |
| 1499 | static void |
| 1500 | c_seg_alloc_nextslot(c_segment_t c_seg) |
| 1501 | { |
| 1502 | struct c_slot *old_slot_array = NULL; |
| 1503 | struct c_slot *new_slot_array = NULL; |
| 1504 | int newlen; |
| 1505 | int oldlen; |
| 1506 | |
| 1507 | if (c_seg->c_nextslot < c_seg_fixed_array_len) |
| 1508 | return; |
| 1509 | |
| 1510 | if ((c_seg->c_nextslot - c_seg_fixed_array_len) >= c_seg->c_slot_var_array_len) { |
| 1511 | |
| 1512 | oldlen = c_seg->c_slot_var_array_len; |
| 1513 | old_slot_array = c_seg->c_slot_var_array; |
| 1514 | |
| 1515 | if (oldlen == 0) |
| 1516 | newlen = C_SEG_SLOT_VAR_ARRAY_MIN_LEN; |
| 1517 | else |
| 1518 | newlen = oldlen * 2; |
| 1519 | |
| 1520 | new_slot_array = (struct c_slot *)kalloc(sizeof(struct c_slot) * newlen); |
| 1521 | |
| 1522 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 1523 | |
| 1524 | if (old_slot_array) |
| 1525 | memcpy((char *)new_slot_array, (char *)old_slot_array, sizeof(struct c_slot) * oldlen); |
| 1526 | |
| 1527 | c_seg->c_slot_var_array_len = newlen; |
| 1528 | c_seg->c_slot_var_array = new_slot_array; |
| 1529 | |
| 1530 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1531 | |
| 1532 | if (old_slot_array) |
| 1533 | kfree(old_slot_array, sizeof(struct c_slot) * oldlen); |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | |
| 1538 | |
| 1539 | struct { |
| 1540 | uint64_t asked_permission; |
| 1541 | uint64_t compactions; |
| 1542 | uint64_t moved_slots; |
| 1543 | uint64_t moved_bytes; |
| 1544 | uint64_t wasted_space_in_swapouts; |
| 1545 | uint64_t count_of_swapouts; |
| 1546 | uint64_t count_of_freed_segs; |
| 1547 | } c_seg_major_compact_stats; |
| 1548 | |
| 1549 | |
| 1550 | #define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((C_SEG_BUFSIZE * 90) / 100) |
| 1551 | |
| 1552 | |
| 1553 | boolean_t |
| 1554 | c_seg_major_compact_ok( |
| 1555 | c_segment_t c_seg_dst, |
| 1556 | c_segment_t c_seg_src) |
| 1557 | { |
| 1558 | |
| 1559 | c_seg_major_compact_stats.asked_permission++; |
| 1560 | |
| 1561 | if (c_seg_src->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE && |
| 1562 | c_seg_dst->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE) |
| 1563 | return (FALSE); |
| 1564 | |
| 1565 | if (c_seg_dst->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 1566 | /* |
| 1567 | * destination segment is full... can't compact |
| 1568 | */ |
| 1569 | return (FALSE); |
| 1570 | } |
| 1571 | |
| 1572 | return (TRUE); |
| 1573 | } |
| 1574 | |
| 1575 | |
| 1576 | boolean_t |
| 1577 | c_seg_major_compact( |
| 1578 | c_segment_t c_seg_dst, |
| 1579 | c_segment_t c_seg_src) |
| 1580 | { |
| 1581 | c_slot_mapping_t slot_ptr; |
| 1582 | uint32_t c_rounded_size; |
| 1583 | uint32_t c_size; |
| 1584 | uint16_t dst_slot; |
| 1585 | int i; |
| 1586 | c_slot_t c_dst; |
| 1587 | c_slot_t c_src; |
| 1588 | boolean_t keep_compacting = TRUE; |
| 1589 | |
| 1590 | /* |
| 1591 | * segments are not locked but they are both marked c_busy |
| 1592 | * which keeps c_decompress from working on them... |
| 1593 | * we can safely allocate new pages, move compressed data |
| 1594 | * from c_seg_src to c_seg_dst and update both c_segment's |
| 1595 | * state w/o holding the master lock |
| 1596 | */ |
| 1597 | #if DEVELOPMENT || DEBUG |
| 1598 | C_SEG_MAKE_WRITEABLE(c_seg_dst); |
| 1599 | #endif |
| 1600 | |
| 1601 | #if VALIDATE_C_SEGMENTS |
| 1602 | c_seg_dst->c_was_major_compacted++; |
| 1603 | c_seg_src->c_was_major_donor++; |
| 1604 | #endif |
| 1605 | c_seg_major_compact_stats.compactions++; |
| 1606 | |
| 1607 | dst_slot = c_seg_dst->c_nextslot; |
| 1608 | |
| 1609 | for (i = 0; i < c_seg_src->c_nextslot; i++) { |
| 1610 | |
| 1611 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg_src, i); |
| 1612 | |
| 1613 | c_size = UNPACK_C_SIZE(c_src); |
| 1614 | |
| 1615 | if (c_size == 0) { |
| 1616 | /* BATCH: move what we have so far; */ |
| 1617 | continue; |
| 1618 | } |
| 1619 | |
| 1620 | if (C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset - c_seg_dst->c_nextoffset) < (unsigned) c_size) { |
| 1621 | int size_to_populate; |
| 1622 | |
| 1623 | /* doesn't fit */ |
| 1624 | size_to_populate = C_SEG_BUFSIZE - C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset); |
| 1625 | |
| 1626 | if (size_to_populate == 0) { |
| 1627 | /* can't fit */ |
| 1628 | keep_compacting = FALSE; |
| 1629 | break; |
| 1630 | } |
| 1631 | if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) |
| 1632 | size_to_populate = C_SEG_MAX_POPULATE_SIZE; |
| 1633 | |
| 1634 | kernel_memory_populate(compressor_map, |
| 1635 | (vm_offset_t) &c_seg_dst->c_store.c_buffer[c_seg_dst->c_populated_offset], |
| 1636 | size_to_populate, |
| 1637 | KMA_COMPRESSOR, |
| 1638 | VM_KERN_MEMORY_COMPRESSOR); |
| 1639 | |
| 1640 | c_seg_dst->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate); |
| 1641 | assert(C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset) <= C_SEG_BUFSIZE); |
| 1642 | } |
| 1643 | c_seg_alloc_nextslot(c_seg_dst); |
| 1644 | |
| 1645 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot); |
| 1646 | |
| 1647 | memcpy(&c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], &c_seg_src->c_store.c_buffer[c_src->c_offset], c_size); |
| 1648 | |
| 1649 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 1650 | |
| 1651 | c_seg_major_compact_stats.moved_slots++; |
| 1652 | c_seg_major_compact_stats.moved_bytes += c_size; |
| 1653 | |
| 1654 | cslot_copy(c_dst, c_src); |
| 1655 | c_dst->c_offset = c_seg_dst->c_nextoffset; |
| 1656 | |
| 1657 | if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) |
| 1658 | c_seg_dst->c_firstemptyslot++; |
| 1659 | c_seg_dst->c_slots_used++; |
| 1660 | c_seg_dst->c_nextslot++; |
| 1661 | c_seg_dst->c_bytes_used += c_rounded_size; |
| 1662 | c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 1663 | |
| 1664 | PACK_C_SIZE(c_src, 0); |
| 1665 | |
| 1666 | c_seg_src->c_bytes_used -= c_rounded_size; |
| 1667 | c_seg_src->c_bytes_unused += c_rounded_size; |
| 1668 | c_seg_src->c_firstemptyslot = 0; |
| 1669 | |
| 1670 | assert(c_seg_src->c_slots_used); |
| 1671 | c_seg_src->c_slots_used--; |
| 1672 | |
| 1673 | if (c_seg_dst->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 1674 | /* dest segment is now full */ |
| 1675 | keep_compacting = FALSE; |
| 1676 | break; |
| 1677 | } |
| 1678 | } |
| 1679 | #if DEVELOPMENT || DEBUG |
| 1680 | C_SEG_WRITE_PROTECT(c_seg_dst); |
| 1681 | #endif |
| 1682 | if (dst_slot < c_seg_dst->c_nextslot) { |
| 1683 | |
| 1684 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 1685 | /* |
| 1686 | * we've now locked out c_decompress from |
| 1687 | * converting the slot passed into it into |
| 1688 | * a c_segment_t which allows us to use |
| 1689 | * the backptr to change which c_segment and |
| 1690 | * index the slot points to |
| 1691 | */ |
| 1692 | while (dst_slot < c_seg_dst->c_nextslot) { |
| 1693 | |
| 1694 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot); |
| 1695 | |
| 1696 | slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst); |
| 1697 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 1698 | slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1; |
| 1699 | slot_ptr->s_cindx = dst_slot++; |
| 1700 | } |
| 1701 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 1702 | } |
| 1703 | return (keep_compacting); |
| 1704 | } |
| 1705 | |
| 1706 | |
| 1707 | uint64_t |
| 1708 | vm_compressor_compute_elapsed_msecs(clock_sec_t end_sec, clock_nsec_t end_nsec, clock_sec_t start_sec, clock_nsec_t start_nsec) |
| 1709 | { |
| 1710 | uint64_t end_msecs; |
| 1711 | uint64_t start_msecs; |
| 1712 | |
| 1713 | end_msecs = (end_sec * 1000) + end_nsec / 1000000; |
| 1714 | start_msecs = (start_sec * 1000) + start_nsec / 1000000; |
| 1715 | |
| 1716 | return (end_msecs - start_msecs); |
| 1717 | } |
| 1718 | |
| 1719 | |
| 1720 | |
| 1721 | uint32_t compressor_eval_period_in_msecs = 250; |
| 1722 | uint32_t compressor_sample_min_in_msecs = 500; |
| 1723 | uint32_t compressor_sample_max_in_msecs = 10000; |
| 1724 | uint32_t compressor_thrashing_threshold_per_10msecs = 50; |
| 1725 | uint32_t compressor_thrashing_min_per_10msecs = 20; |
| 1726 | |
| 1727 | /* When true, reset sample data next chance we get. */ |
| 1728 | static boolean_t compressor_need_sample_reset = FALSE; |
| 1729 | |
| 1730 | |
| 1731 | void |
| 1732 | compute_swapout_target_age(void) |
| 1733 | { |
| 1734 | clock_sec_t cur_ts_sec; |
| 1735 | clock_nsec_t cur_ts_nsec; |
| 1736 | uint32_t min_operations_needed_in_this_sample; |
| 1737 | uint64_t elapsed_msecs_in_eval; |
| 1738 | uint64_t elapsed_msecs_in_sample; |
| 1739 | boolean_t need_eval_reset = FALSE; |
| 1740 | |
| 1741 | clock_get_system_nanotime(&cur_ts_sec, &cur_ts_nsec); |
| 1742 | |
| 1743 | elapsed_msecs_in_sample = vm_compressor_compute_elapsed_msecs(cur_ts_sec, cur_ts_nsec, start_of_sample_period_sec, start_of_sample_period_nsec); |
| 1744 | |
| 1745 | if (compressor_need_sample_reset || |
| 1746 | elapsed_msecs_in_sample >= compressor_sample_max_in_msecs) { |
| 1747 | compressor_need_sample_reset = TRUE; |
| 1748 | need_eval_reset = TRUE; |
| 1749 | goto done; |
| 1750 | } |
| 1751 | elapsed_msecs_in_eval = vm_compressor_compute_elapsed_msecs(cur_ts_sec, cur_ts_nsec, start_of_eval_period_sec, start_of_eval_period_nsec); |
| 1752 | |
| 1753 | if (elapsed_msecs_in_eval < compressor_eval_period_in_msecs) |
| 1754 | goto done; |
| 1755 | need_eval_reset = TRUE; |
| 1756 | |
| 1757 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_START, elapsed_msecs_in_eval, sample_period_compression_count, sample_period_decompression_count, 0, 0); |
| 1758 | |
| 1759 | min_operations_needed_in_this_sample = (compressor_thrashing_min_per_10msecs * (uint32_t)elapsed_msecs_in_eval) / 10; |
| 1760 | |
| 1761 | if ((sample_period_compression_count - last_eval_compression_count) < min_operations_needed_in_this_sample || |
| 1762 | (sample_period_decompression_count - last_eval_decompression_count) < min_operations_needed_in_this_sample) { |
| 1763 | |
| 1764 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_compression_count - last_eval_compression_count, |
| 1765 | sample_period_decompression_count - last_eval_decompression_count, 0, 1, 0); |
| 1766 | |
| 1767 | swapout_target_age = 0; |
| 1768 | |
| 1769 | compressor_need_sample_reset = TRUE; |
| 1770 | need_eval_reset = TRUE; |
| 1771 | goto done; |
| 1772 | } |
| 1773 | last_eval_compression_count = sample_period_compression_count; |
| 1774 | last_eval_decompression_count = sample_period_decompression_count; |
| 1775 | |
| 1776 | if (elapsed_msecs_in_sample < compressor_sample_min_in_msecs) { |
| 1777 | |
| 1778 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, swapout_target_age, 0, 0, 5, 0); |
| 1779 | goto done; |
| 1780 | } |
| 1781 | if (sample_period_decompression_count > ((compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10)) { |
| 1782 | |
| 1783 | uint64_t running_total; |
| 1784 | uint64_t working_target; |
| 1785 | uint64_t aging_target; |
| 1786 | uint32_t oldest_age_of_csegs_sampled = 0; |
| 1787 | uint64_t working_set_approximation = 0; |
| 1788 | |
| 1789 | swapout_target_age = 0; |
| 1790 | |
| 1791 | working_target = (sample_period_decompression_count / 100) * 95; /* 95 percent */ |
| 1792 | aging_target = (sample_period_decompression_count / 100) * 1; /* 1 percent */ |
| 1793 | running_total = 0; |
| 1794 | |
| 1795 | for (oldest_age_of_csegs_sampled = 0; oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE; oldest_age_of_csegs_sampled++) { |
| 1796 | |
| 1797 | running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 1798 | |
| 1799 | working_set_approximation += oldest_age_of_csegs_sampled * age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 1800 | |
| 1801 | if (running_total >= working_target) |
| 1802 | break; |
| 1803 | } |
| 1804 | if (oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE) { |
| 1805 | |
| 1806 | working_set_approximation = (working_set_approximation * 1000) / elapsed_msecs_in_sample; |
| 1807 | |
| 1808 | if (working_set_approximation < VM_PAGE_COMPRESSOR_COUNT) { |
| 1809 | |
| 1810 | running_total = overage_decompressions_during_sample_period; |
| 1811 | |
| 1812 | for (oldest_age_of_csegs_sampled = DECOMPRESSION_SAMPLE_MAX_AGE - 1; oldest_age_of_csegs_sampled; oldest_age_of_csegs_sampled--) { |
| 1813 | running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 1814 | |
| 1815 | if (running_total >= aging_target) |
| 1816 | break; |
| 1817 | } |
| 1818 | swapout_target_age = (uint32_t)cur_ts_sec - oldest_age_of_csegs_sampled; |
| 1819 | |
| 1820 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, swapout_target_age, working_set_approximation, VM_PAGE_COMPRESSOR_COUNT, 2, 0); |
| 1821 | } else { |
| 1822 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_set_approximation, VM_PAGE_COMPRESSOR_COUNT, 0, 3, 0); |
| 1823 | } |
| 1824 | } else |
| 1825 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_target, running_total, 0, 4, 0); |
| 1826 | |
| 1827 | compressor_need_sample_reset = TRUE; |
| 1828 | need_eval_reset = TRUE; |
| 1829 | } else |
| 1830 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_decompression_count, (compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10, 0, 6, 0); |
| 1831 | done: |
| 1832 | if (compressor_need_sample_reset == TRUE) { |
| 1833 | bzero(age_of_decompressions_during_sample_period, sizeof(age_of_decompressions_during_sample_period)); |
| 1834 | overage_decompressions_during_sample_period = 0; |
| 1835 | |
| 1836 | start_of_sample_period_sec = cur_ts_sec; |
| 1837 | start_of_sample_period_nsec = cur_ts_nsec; |
| 1838 | sample_period_decompression_count = 0; |
| 1839 | sample_period_compression_count = 0; |
| 1840 | last_eval_decompression_count = 0; |
| 1841 | last_eval_compression_count = 0; |
| 1842 | compressor_need_sample_reset = FALSE; |
| 1843 | } |
| 1844 | if (need_eval_reset == TRUE) { |
| 1845 | start_of_eval_period_sec = cur_ts_sec; |
| 1846 | start_of_eval_period_nsec = cur_ts_nsec; |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | |
| 1851 | int compaction_swapper_init_now = 0; |
| 1852 | int compaction_swapper_running = 0; |
| 1853 | int compaction_swapper_awakened = 0; |
| 1854 | int compaction_swapper_abort = 0; |
| 1855 | |
| 1856 | |
| 1857 | #if CONFIG_JETSAM |
| 1858 | boolean_t memorystatus_kill_on_VM_compressor_thrashing(boolean_t); |
| 1859 | boolean_t memorystatus_kill_on_VM_compressor_space_shortage(boolean_t); |
| 1860 | boolean_t memorystatus_kill_on_FC_thrashing(boolean_t); |
| 1861 | int compressor_thrashing_induced_jetsam = 0; |
| 1862 | int filecache_thrashing_induced_jetsam = 0; |
| 1863 | static boolean_t vm_compressor_thrashing_detected = FALSE; |
| 1864 | #endif /* CONFIG_JETSAM */ |
| 1865 | |
| 1866 | static boolean_t |
| 1867 | compressor_needs_to_swap(void) |
| 1868 | { |
| 1869 | boolean_t should_swap = FALSE; |
| 1870 | |
| 1871 | if (vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit) { |
| 1872 | c_segment_t c_seg; |
| 1873 | clock_sec_t now; |
| 1874 | clock_sec_t age; |
| 1875 | clock_nsec_t nsec; |
| 1876 | |
| 1877 | clock_get_system_nanotime(&now, &nsec); |
| 1878 | age = 0; |
| 1879 | |
| 1880 | lck_mtx_lock_spin_always(c_list_lock); |
| 1881 | |
| 1882 | if ( !queue_empty(&c_age_list_head)) { |
| 1883 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 1884 | |
| 1885 | age = now - c_seg->c_creation_ts; |
| 1886 | } |
| 1887 | lck_mtx_unlock_always(c_list_lock); |
| 1888 | |
| 1889 | if (age >= vm_ripe_target_age) |
| 1890 | return (TRUE); |
| 1891 | } |
| 1892 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 1893 | if (COMPRESSOR_NEEDS_TO_SWAP()) { |
| 1894 | return (TRUE); |
| 1895 | } |
| 1896 | if (VM_PAGE_Q_THROTTLED(&vm_pageout_queue_external) && vm_page_anonymous_count < (vm_page_inactive_count / 20)) { |
| 1897 | return (TRUE); |
| 1898 | } |
| 1899 | if (vm_page_free_count < (vm_page_free_reserved - (COMPRESSOR_FREE_RESERVED_LIMIT * 2))) |
| 1900 | return (TRUE); |
| 1901 | } |
| 1902 | compute_swapout_target_age(); |
| 1903 | |
| 1904 | if (swapout_target_age) { |
| 1905 | c_segment_t c_seg; |
| 1906 | |
| 1907 | lck_mtx_lock_spin_always(c_list_lock); |
| 1908 | |
| 1909 | if (!queue_empty(&c_age_list_head)) { |
| 1910 | |
| 1911 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 1912 | |
| 1913 | if (c_seg->c_creation_ts > swapout_target_age) |
| 1914 | swapout_target_age = 0; |
| 1915 | } |
| 1916 | lck_mtx_unlock_always(c_list_lock); |
| 1917 | } |
| 1918 | #if CONFIG_PHANTOM_CACHE |
| 1919 | if (vm_phantom_cache_check_pressure()) |
| 1920 | should_swap = TRUE; |
| 1921 | #endif |
| 1922 | if (swapout_target_age) |
| 1923 | should_swap = TRUE; |
| 1924 | |
| 1925 | #if CONFIG_JETSAM |
| 1926 | if (should_swap || vm_compressor_low_on_space() == TRUE) { |
| 1927 | |
| 1928 | if (vm_compressor_thrashing_detected == FALSE) { |
| 1929 | vm_compressor_thrashing_detected = TRUE; |
| 1930 | |
| 1931 | if (swapout_target_age || vm_compressor_low_on_space() == TRUE) { |
| 1932 | if (swapout_target_age) { |
| 1933 | /* The compressor is thrashing. */ |
| 1934 | memorystatus_kill_on_VM_compressor_thrashing(TRUE /* async */); |
| 1935 | } else { |
| 1936 | /* The compressor is running low on space. */ |
| 1937 | memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */); |
| 1938 | } |
| 1939 | compressor_thrashing_induced_jetsam++; |
| 1940 | } else { |
| 1941 | memorystatus_kill_on_FC_thrashing(TRUE /* async */); |
| 1942 | filecache_thrashing_induced_jetsam++; |
| 1943 | } |
| 1944 | } |
| 1945 | /* |
| 1946 | * let the jetsam take precedence over |
| 1947 | * any major compactions we might have |
| 1948 | * been able to do... otherwise we run |
| 1949 | * the risk of doing major compactions |
| 1950 | * on segments we're about to free up |
| 1951 | * due to the jetsam activity. |
| 1952 | */ |
| 1953 | should_swap = FALSE; |
| 1954 | } |
| 1955 | |
| 1956 | #endif /* CONFIG_JETSAM */ |
| 1957 | |
| 1958 | if (should_swap == FALSE) { |
| 1959 | /* |
| 1960 | * vm_compressor_needs_to_major_compact returns true only if we're |
| 1961 | * about to run out of available compressor segments... in this |
| 1962 | * case, we absolutely need to run a major compaction even if |
| 1963 | * we've just kicked off a jetsam or we don't otherwise need to |
| 1964 | * swap... terminating objects releases |
| 1965 | * pages back to the uncompressed cache, but does not guarantee |
| 1966 | * that we will free up even a single compression segment |
| 1967 | */ |
| 1968 | should_swap = vm_compressor_needs_to_major_compact(); |
| 1969 | } |
| 1970 | |
| 1971 | /* |
| 1972 | * returning TRUE when swap_supported == FALSE |
| 1973 | * will cause the major compaction engine to |
| 1974 | * run, but will not trigger any swapping... |
| 1975 | * segments that have been major compacted |
| 1976 | * will be moved to the majorcompact queue |
| 1977 | */ |
| 1978 | return (should_swap); |
| 1979 | } |
| 1980 | |
| 1981 | #if CONFIG_JETSAM |
| 1982 | /* |
| 1983 | * This function is called from the jetsam thread after killing something to |
| 1984 | * mitigate thrashing. |
| 1985 | * |
| 1986 | * We need to restart our thrashing detection heuristics since memory pressure |
| 1987 | * has potentially changed significantly, and we don't want to detect on old |
| 1988 | * data from before the jetsam. |
| 1989 | */ |
| 1990 | void |
| 1991 | vm_thrashing_jetsam_done(void) |
| 1992 | { |
| 1993 | vm_compressor_thrashing_detected = FALSE; |
| 1994 | |
| 1995 | /* Were we compressor-thrashing or filecache-thrashing? */ |
| 1996 | if (swapout_target_age) { |
| 1997 | swapout_target_age = 0; |
| 1998 | compressor_need_sample_reset = TRUE; |
| 1999 | } |
| 2000 | #if CONFIG_PHANTOM_CACHE |
| 2001 | else { |
| 2002 | vm_phantom_cache_restart_sample(); |
| 2003 | } |
| 2004 | #endif |
| 2005 | } |
| 2006 | #endif /* CONFIG_JETSAM */ |
| 2007 | |
| 2008 | uint32_t vm_wake_compactor_swapper_calls = 0; |
| 2009 | uint32_t vm_run_compactor_already_running = 0; |
| 2010 | uint32_t vm_run_compactor_empty_minor_q = 0; |
| 2011 | uint32_t vm_run_compactor_did_compact = 0; |
| 2012 | uint32_t vm_run_compactor_waited = 0; |
| 2013 | |
| 2014 | void |
| 2015 | vm_run_compactor(void) |
| 2016 | { |
| 2017 | if (c_segment_count == 0) |
| 2018 | return; |
| 2019 | |
| 2020 | lck_mtx_lock_spin_always(c_list_lock); |
| 2021 | |
| 2022 | if (c_minor_count == 0) { |
| 2023 | vm_run_compactor_empty_minor_q++; |
| 2024 | |
| 2025 | lck_mtx_unlock_always(c_list_lock); |
| 2026 | return; |
| 2027 | } |
| 2028 | if (compaction_swapper_running) { |
| 2029 | |
| 2030 | if (vm_pageout_state.vm_restricted_to_single_processor == FALSE) { |
| 2031 | vm_run_compactor_already_running++; |
| 2032 | |
| 2033 | lck_mtx_unlock_always(c_list_lock); |
| 2034 | return; |
| 2035 | } |
| 2036 | vm_run_compactor_waited++; |
| 2037 | |
| 2038 | assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT); |
| 2039 | |
| 2040 | lck_mtx_unlock_always(c_list_lock); |
| 2041 | |
| 2042 | thread_block(THREAD_CONTINUE_NULL); |
| 2043 | |
| 2044 | return; |
| 2045 | } |
| 2046 | vm_run_compactor_did_compact++; |
| 2047 | |
| 2048 | fastwake_warmup = FALSE; |
| 2049 | compaction_swapper_running = 1; |
| 2050 | |
| 2051 | vm_compressor_do_delayed_compactions(FALSE); |
| 2052 | |
| 2053 | compaction_swapper_running = 0; |
| 2054 | |
| 2055 | lck_mtx_unlock_always(c_list_lock); |
| 2056 | |
| 2057 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2058 | } |
| 2059 | |
| 2060 | |
| 2061 | void |
| 2062 | vm_wake_compactor_swapper(void) |
| 2063 | { |
| 2064 | if (compaction_swapper_running || compaction_swapper_awakened || c_segment_count == 0) |
| 2065 | return; |
| 2066 | |
| 2067 | if (c_minor_count || vm_compressor_needs_to_major_compact()) { |
| 2068 | |
| 2069 | lck_mtx_lock_spin_always(c_list_lock); |
| 2070 | |
| 2071 | fastwake_warmup = FALSE; |
| 2072 | |
| 2073 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 2074 | |
| 2075 | vm_wake_compactor_swapper_calls++; |
| 2076 | |
| 2077 | compaction_swapper_awakened = 1; |
| 2078 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 2079 | } |
| 2080 | lck_mtx_unlock_always(c_list_lock); |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | |
| 2085 | void |
| 2086 | vm_consider_swapping() |
| 2087 | { |
| 2088 | c_segment_t c_seg, c_seg_next; |
| 2089 | clock_sec_t now; |
| 2090 | clock_nsec_t nsec; |
| 2091 | |
| 2092 | assert(VM_CONFIG_SWAP_IS_PRESENT); |
| 2093 | |
| 2094 | lck_mtx_lock_spin_always(c_list_lock); |
| 2095 | |
| 2096 | compaction_swapper_abort = 1; |
| 2097 | |
| 2098 | while (compaction_swapper_running) { |
| 2099 | assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT); |
| 2100 | |
| 2101 | lck_mtx_unlock_always(c_list_lock); |
| 2102 | |
| 2103 | thread_block(THREAD_CONTINUE_NULL); |
| 2104 | |
| 2105 | lck_mtx_lock_spin_always(c_list_lock); |
| 2106 | } |
| 2107 | compaction_swapper_abort = 0; |
| 2108 | compaction_swapper_running = 1; |
| 2109 | |
| 2110 | vm_swapout_ripe_segments = TRUE; |
| 2111 | |
| 2112 | if (!queue_empty(&c_major_list_head)) { |
| 2113 | |
| 2114 | clock_get_system_nanotime(&now, &nsec); |
| 2115 | |
| 2116 | c_seg = (c_segment_t)queue_first(&c_major_list_head); |
| 2117 | |
| 2118 | while (!queue_end(&c_major_list_head, (queue_entry_t)c_seg)) { |
| 2119 | |
| 2120 | if (c_overage_swapped_count >= c_overage_swapped_limit) |
| 2121 | break; |
| 2122 | |
| 2123 | c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list); |
| 2124 | |
| 2125 | if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) { |
| 2126 | |
| 2127 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2128 | |
| 2129 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 2130 | |
| 2131 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2132 | } |
| 2133 | c_seg = c_seg_next; |
| 2134 | } |
| 2135 | } |
| 2136 | vm_compressor_compact_and_swap(FALSE); |
| 2137 | |
| 2138 | compaction_swapper_running = 0; |
| 2139 | |
| 2140 | vm_swapout_ripe_segments = FALSE; |
| 2141 | |
| 2142 | lck_mtx_unlock_always(c_list_lock); |
| 2143 | |
| 2144 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2145 | } |
| 2146 | |
| 2147 | |
| 2148 | void |
| 2149 | vm_consider_waking_compactor_swapper(void) |
| 2150 | { |
| 2151 | boolean_t need_wakeup = FALSE; |
| 2152 | |
| 2153 | if (c_segment_count == 0) |
| 2154 | return; |
| 2155 | |
| 2156 | if (compaction_swapper_running || compaction_swapper_awakened) |
| 2157 | return; |
| 2158 | |
| 2159 | if (!compaction_swapper_inited && !compaction_swapper_init_now) { |
| 2160 | compaction_swapper_init_now = 1; |
| 2161 | need_wakeup = TRUE; |
| 2162 | } |
| 2163 | |
| 2164 | if (c_minor_count && (COMPRESSOR_NEEDS_TO_MINOR_COMPACT())) { |
| 2165 | |
| 2166 | need_wakeup = TRUE; |
| 2167 | |
| 2168 | } else if (compressor_needs_to_swap()) { |
| 2169 | |
| 2170 | need_wakeup = TRUE; |
| 2171 | |
| 2172 | } else if (c_minor_count) { |
| 2173 | uint64_t total_bytes; |
| 2174 | |
| 2175 | total_bytes = compressor_object->resident_page_count * PAGE_SIZE_64; |
| 2176 | |
| 2177 | if ((total_bytes - compressor_bytes_used) > total_bytes / 10) |
| 2178 | need_wakeup = TRUE; |
| 2179 | } |
| 2180 | if (need_wakeup == TRUE) { |
| 2181 | |
| 2182 | lck_mtx_lock_spin_always(c_list_lock); |
| 2183 | |
| 2184 | fastwake_warmup = FALSE; |
| 2185 | |
| 2186 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 2187 | memoryshot(VM_WAKEUP_COMPACTOR_SWAPPER, DBG_FUNC_NONE); |
| 2188 | |
| 2189 | compaction_swapper_awakened = 1; |
| 2190 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 2191 | } |
| 2192 | lck_mtx_unlock_always(c_list_lock); |
| 2193 | } |
| 2194 | } |
| 2195 | |
| 2196 | |
| 2197 | #define C_SWAPOUT_LIMIT 4 |
| 2198 | #define DELAYED_COMPACTIONS_PER_PASS 30 |
| 2199 | |
| 2200 | void |
| 2201 | vm_compressor_do_delayed_compactions(boolean_t flush_all) |
| 2202 | { |
| 2203 | c_segment_t c_seg; |
| 2204 | int number_compacted = 0; |
| 2205 | boolean_t needs_to_swap = FALSE; |
| 2206 | |
| 2207 | |
| 2208 | #if !CONFIG_EMBEDDED |
| 2209 | LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED); |
| 2210 | #endif /* !CONFIG_EMBEDDED */ |
| 2211 | |
| 2212 | while (!queue_empty(&c_minor_list_head) && needs_to_swap == FALSE) { |
| 2213 | |
| 2214 | c_seg = (c_segment_t)queue_first(&c_minor_list_head); |
| 2215 | |
| 2216 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2217 | |
| 2218 | if (c_seg->c_busy) { |
| 2219 | |
| 2220 | lck_mtx_unlock_always(c_list_lock); |
| 2221 | c_seg_wait_on_busy(c_seg); |
| 2222 | lck_mtx_lock_spin_always(c_list_lock); |
| 2223 | |
| 2224 | continue; |
| 2225 | } |
| 2226 | C_SEG_BUSY(c_seg); |
| 2227 | |
| 2228 | c_seg_do_minor_compaction_and_unlock(c_seg, TRUE, FALSE, TRUE); |
| 2229 | |
| 2230 | if (VM_CONFIG_SWAP_IS_ACTIVE && (number_compacted++ > DELAYED_COMPACTIONS_PER_PASS)) { |
| 2231 | |
| 2232 | if ((flush_all == TRUE || compressor_needs_to_swap() == TRUE) && c_swapout_count < C_SWAPOUT_LIMIT) |
| 2233 | needs_to_swap = TRUE; |
| 2234 | |
| 2235 | number_compacted = 0; |
| 2236 | } |
| 2237 | lck_mtx_lock_spin_always(c_list_lock); |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | |
| 2242 | #define C_SEGMENT_SWAPPEDIN_AGE_LIMIT 10 |
| 2243 | |
| 2244 | static void |
| 2245 | vm_compressor_age_swapped_in_segments(boolean_t flush_all) |
| 2246 | { |
| 2247 | c_segment_t c_seg; |
| 2248 | clock_sec_t now; |
| 2249 | clock_nsec_t nsec; |
| 2250 | |
| 2251 | clock_get_system_nanotime(&now, &nsec); |
| 2252 | |
| 2253 | while (!queue_empty(&c_swappedin_list_head)) { |
| 2254 | |
| 2255 | c_seg = (c_segment_t)queue_first(&c_swappedin_list_head); |
| 2256 | |
| 2257 | if (flush_all == FALSE && (now - c_seg->c_swappedin_ts) < C_SEGMENT_SWAPPEDIN_AGE_LIMIT) |
| 2258 | break; |
| 2259 | |
| 2260 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2261 | |
| 2262 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 2263 | |
| 2264 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | |
| 2269 | extern int vm_num_swap_files; |
| 2270 | extern int vm_num_pinned_swap_files; |
| 2271 | extern int vm_swappin_enabled; |
| 2272 | |
| 2273 | extern unsigned int vm_swapfile_total_segs_used; |
| 2274 | extern unsigned int vm_swapfile_total_segs_alloced; |
| 2275 | |
| 2276 | |
| 2277 | void |
| 2278 | vm_compressor_flush(void) |
| 2279 | { |
| 2280 | uint64_t vm_swap_put_failures_at_start; |
| 2281 | wait_result_t wait_result = 0; |
| 2282 | AbsoluteTime startTime, endTime; |
| 2283 | clock_sec_t now_sec; |
| 2284 | clock_nsec_t now_nsec; |
| 2285 | uint64_t nsec; |
| 2286 | |
| 2287 | HIBLOG("vm_compressor_flush - starting\n" ); |
| 2288 | |
| 2289 | clock_get_uptime(&startTime); |
| 2290 | |
| 2291 | lck_mtx_lock_spin_always(c_list_lock); |
| 2292 | |
| 2293 | fastwake_warmup = FALSE; |
| 2294 | compaction_swapper_abort = 1; |
| 2295 | |
| 2296 | while (compaction_swapper_running) { |
| 2297 | assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT); |
| 2298 | |
| 2299 | lck_mtx_unlock_always(c_list_lock); |
| 2300 | |
| 2301 | thread_block(THREAD_CONTINUE_NULL); |
| 2302 | |
| 2303 | lck_mtx_lock_spin_always(c_list_lock); |
| 2304 | } |
| 2305 | compaction_swapper_abort = 0; |
| 2306 | compaction_swapper_running = 1; |
| 2307 | |
| 2308 | hibernate_flushing = TRUE; |
| 2309 | hibernate_no_swapspace = FALSE; |
| 2310 | c_generation_id_flush_barrier = c_generation_id + 1000; |
| 2311 | |
| 2312 | clock_get_system_nanotime(&now_sec, &now_nsec); |
| 2313 | hibernate_flushing_deadline = now_sec + HIBERNATE_FLUSHING_SECS_TO_COMPLETE; |
| 2314 | |
| 2315 | vm_swap_put_failures_at_start = vm_swap_put_failures; |
| 2316 | |
| 2317 | vm_compressor_compact_and_swap(TRUE); |
| 2318 | |
| 2319 | while (!queue_empty(&c_swapout_list_head)) { |
| 2320 | |
| 2321 | assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC); |
| 2322 | |
| 2323 | lck_mtx_unlock_always(c_list_lock); |
| 2324 | |
| 2325 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 2326 | |
| 2327 | lck_mtx_lock_spin_always(c_list_lock); |
| 2328 | |
| 2329 | if (wait_result == THREAD_TIMED_OUT) |
| 2330 | break; |
| 2331 | } |
| 2332 | hibernate_flushing = FALSE; |
| 2333 | compaction_swapper_running = 0; |
| 2334 | |
| 2335 | if (vm_swap_put_failures > vm_swap_put_failures_at_start) |
| 2336 | HIBLOG("vm_compressor_flush failed to clean %llu segments - vm_page_compressor_count(%d)\n" , |
| 2337 | vm_swap_put_failures - vm_swap_put_failures_at_start, VM_PAGE_COMPRESSOR_COUNT); |
| 2338 | |
| 2339 | lck_mtx_unlock_always(c_list_lock); |
| 2340 | |
| 2341 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2342 | |
| 2343 | clock_get_uptime(&endTime); |
| 2344 | SUB_ABSOLUTETIME(&endTime, &startTime); |
| 2345 | absolutetime_to_nanoseconds(endTime, &nsec); |
| 2346 | |
| 2347 | HIBLOG("vm_compressor_flush completed - took %qd msecs - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d, vm_swappin_enabled = %d\n" , |
| 2348 | nsec / 1000000ULL, vm_num_swap_files, vm_num_pinned_swap_files, vm_swappin_enabled); |
| 2349 | } |
| 2350 | |
| 2351 | |
| 2352 | int compaction_swap_trigger_thread_awakened = 0; |
| 2353 | |
| 2354 | static void |
| 2355 | vm_compressor_swap_trigger_thread(void) |
| 2356 | { |
| 2357 | current_thread()->options |= TH_OPT_VMPRIV; |
| 2358 | |
| 2359 | /* |
| 2360 | * compaction_swapper_init_now is set when the first call to |
| 2361 | * vm_consider_waking_compactor_swapper is made from |
| 2362 | * vm_pageout_scan... since this function is called upon |
| 2363 | * thread creation, we want to make sure to delay adjusting |
| 2364 | * the tuneables until we are awakened via vm_pageout_scan |
| 2365 | * so that we are at a point where the vm_swapfile_open will |
| 2366 | * be operating on the correct directory (in case the default |
| 2367 | * of /var/vm/ is overridden by the dymanic_pager |
| 2368 | */ |
| 2369 | if (compaction_swapper_init_now) { |
| 2370 | vm_compaction_swapper_do_init(); |
| 2371 | |
| 2372 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) |
| 2373 | thread_vm_bind_group_add(); |
| 2374 | thread_set_thread_name(current_thread(), "VM_cswap_trigger" ); |
| 2375 | compaction_swapper_init_now = 0; |
| 2376 | } |
| 2377 | lck_mtx_lock_spin_always(c_list_lock); |
| 2378 | |
| 2379 | compaction_swap_trigger_thread_awakened++; |
| 2380 | compaction_swapper_awakened = 0; |
| 2381 | |
| 2382 | if (compaction_swapper_running == 0) { |
| 2383 | |
| 2384 | compaction_swapper_running = 1; |
| 2385 | |
| 2386 | vm_compressor_compact_and_swap(FALSE); |
| 2387 | |
| 2388 | compaction_swapper_running = 0; |
| 2389 | } |
| 2390 | assert_wait((event_t)&c_compressor_swap_trigger, THREAD_UNINT); |
| 2391 | |
| 2392 | if (compaction_swapper_running == 0) |
| 2393 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2394 | |
| 2395 | lck_mtx_unlock_always(c_list_lock); |
| 2396 | |
| 2397 | thread_block((thread_continue_t)vm_compressor_swap_trigger_thread); |
| 2398 | |
| 2399 | /* NOTREACHED */ |
| 2400 | } |
| 2401 | |
| 2402 | |
| 2403 | void |
| 2404 | vm_compressor_record_warmup_start(void) |
| 2405 | { |
| 2406 | c_segment_t c_seg; |
| 2407 | |
| 2408 | lck_mtx_lock_spin_always(c_list_lock); |
| 2409 | |
| 2410 | if (first_c_segment_to_warm_generation_id == 0) { |
| 2411 | if (!queue_empty(&c_age_list_head)) { |
| 2412 | |
| 2413 | c_seg = (c_segment_t)queue_last(&c_age_list_head); |
| 2414 | |
| 2415 | first_c_segment_to_warm_generation_id = c_seg->c_generation_id; |
| 2416 | } else |
| 2417 | first_c_segment_to_warm_generation_id = 0; |
| 2418 | |
| 2419 | fastwake_recording_in_progress = TRUE; |
| 2420 | } |
| 2421 | lck_mtx_unlock_always(c_list_lock); |
| 2422 | } |
| 2423 | |
| 2424 | |
| 2425 | void |
| 2426 | vm_compressor_record_warmup_end(void) |
| 2427 | { |
| 2428 | c_segment_t c_seg; |
| 2429 | |
| 2430 | lck_mtx_lock_spin_always(c_list_lock); |
| 2431 | |
| 2432 | if (fastwake_recording_in_progress == TRUE) { |
| 2433 | |
| 2434 | if (!queue_empty(&c_age_list_head)) { |
| 2435 | |
| 2436 | c_seg = (c_segment_t)queue_last(&c_age_list_head); |
| 2437 | |
| 2438 | last_c_segment_to_warm_generation_id = c_seg->c_generation_id; |
| 2439 | } else |
| 2440 | last_c_segment_to_warm_generation_id = first_c_segment_to_warm_generation_id; |
| 2441 | |
| 2442 | fastwake_recording_in_progress = FALSE; |
| 2443 | |
| 2444 | HIBLOG("vm_compressor_record_warmup (%qd - %qd)\n" , first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id); |
| 2445 | } |
| 2446 | lck_mtx_unlock_always(c_list_lock); |
| 2447 | } |
| 2448 | |
| 2449 | |
| 2450 | #define DELAY_TRIM_ON_WAKE_SECS 25 |
| 2451 | |
| 2452 | void |
| 2453 | vm_compressor_delay_trim(void) |
| 2454 | { |
| 2455 | clock_sec_t sec; |
| 2456 | clock_nsec_t nsec; |
| 2457 | |
| 2458 | clock_get_system_nanotime(&sec, &nsec); |
| 2459 | dont_trim_until_ts = sec + DELAY_TRIM_ON_WAKE_SECS; |
| 2460 | } |
| 2461 | |
| 2462 | |
| 2463 | void |
| 2464 | vm_compressor_do_warmup(void) |
| 2465 | { |
| 2466 | lck_mtx_lock_spin_always(c_list_lock); |
| 2467 | |
| 2468 | if (first_c_segment_to_warm_generation_id == last_c_segment_to_warm_generation_id) { |
| 2469 | first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0; |
| 2470 | |
| 2471 | lck_mtx_unlock_always(c_list_lock); |
| 2472 | return; |
| 2473 | } |
| 2474 | |
| 2475 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 2476 | |
| 2477 | fastwake_warmup = TRUE; |
| 2478 | |
| 2479 | compaction_swapper_awakened = 1; |
| 2480 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 2481 | } |
| 2482 | lck_mtx_unlock_always(c_list_lock); |
| 2483 | } |
| 2484 | |
| 2485 | void |
| 2486 | do_fastwake_warmup_all(void) |
| 2487 | { |
| 2488 | |
| 2489 | lck_mtx_lock_spin_always(c_list_lock); |
| 2490 | |
| 2491 | if (queue_empty(&c_swappedout_list_head) && queue_empty(&c_swappedout_sparse_list_head)) { |
| 2492 | |
| 2493 | lck_mtx_unlock_always(c_list_lock); |
| 2494 | return; |
| 2495 | } |
| 2496 | |
| 2497 | fastwake_warmup = TRUE; |
| 2498 | |
| 2499 | do_fastwake_warmup(&c_swappedout_list_head, TRUE); |
| 2500 | |
| 2501 | do_fastwake_warmup(&c_swappedout_sparse_list_head, TRUE); |
| 2502 | |
| 2503 | fastwake_warmup = FALSE; |
| 2504 | |
| 2505 | lck_mtx_unlock_always(c_list_lock); |
| 2506 | |
| 2507 | } |
| 2508 | |
| 2509 | void |
| 2510 | do_fastwake_warmup(queue_head_t *c_queue, boolean_t consider_all_cseg) |
| 2511 | { |
| 2512 | c_segment_t c_seg = NULL; |
| 2513 | AbsoluteTime startTime, endTime; |
| 2514 | uint64_t nsec; |
| 2515 | |
| 2516 | |
| 2517 | HIBLOG("vm_compressor_fastwake_warmup (%qd - %qd) - starting\n" , first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id); |
| 2518 | |
| 2519 | clock_get_uptime(&startTime); |
| 2520 | |
| 2521 | lck_mtx_unlock_always(c_list_lock); |
| 2522 | |
| 2523 | proc_set_thread_policy(current_thread(), |
| 2524 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
| 2525 | |
| 2526 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 2527 | |
| 2528 | lck_mtx_lock_spin_always(c_list_lock); |
| 2529 | |
| 2530 | while (!queue_empty(c_queue) && fastwake_warmup == TRUE) { |
| 2531 | |
| 2532 | c_seg = (c_segment_t) queue_first(c_queue); |
| 2533 | |
| 2534 | if (consider_all_cseg == FALSE) { |
| 2535 | if (c_seg->c_generation_id < first_c_segment_to_warm_generation_id || |
| 2536 | c_seg->c_generation_id > last_c_segment_to_warm_generation_id) |
| 2537 | break; |
| 2538 | |
| 2539 | if (vm_page_free_count < (AVAILABLE_MEMORY / 4)) |
| 2540 | break; |
| 2541 | } |
| 2542 | |
| 2543 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2544 | lck_mtx_unlock_always(c_list_lock); |
| 2545 | |
| 2546 | if (c_seg->c_busy) { |
| 2547 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 2548 | c_seg_wait_on_busy(c_seg); |
| 2549 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 2550 | } else { |
| 2551 | if (c_seg_swapin(c_seg, TRUE, FALSE) == 0) |
| 2552 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2553 | c_segment_warmup_count++; |
| 2554 | |
| 2555 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 2556 | vm_pageout_io_throttle(); |
| 2557 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 2558 | } |
| 2559 | lck_mtx_lock_spin_always(c_list_lock); |
| 2560 | } |
| 2561 | lck_mtx_unlock_always(c_list_lock); |
| 2562 | |
| 2563 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 2564 | |
| 2565 | proc_set_thread_policy(current_thread(), |
| 2566 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER0); |
| 2567 | |
| 2568 | clock_get_uptime(&endTime); |
| 2569 | SUB_ABSOLUTETIME(&endTime, &startTime); |
| 2570 | absolutetime_to_nanoseconds(endTime, &nsec); |
| 2571 | |
| 2572 | HIBLOG("vm_compressor_fastwake_warmup completed - took %qd msecs\n" , nsec / 1000000ULL); |
| 2573 | |
| 2574 | lck_mtx_lock_spin_always(c_list_lock); |
| 2575 | |
| 2576 | if (consider_all_cseg == FALSE) { |
| 2577 | first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0; |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | |
| 2582 | void |
| 2583 | vm_compressor_compact_and_swap(boolean_t flush_all) |
| 2584 | { |
| 2585 | c_segment_t c_seg, c_seg_next; |
| 2586 | boolean_t keep_compacting; |
| 2587 | clock_sec_t now; |
| 2588 | clock_nsec_t nsec; |
| 2589 | |
| 2590 | |
| 2591 | if (fastwake_warmup == TRUE) { |
| 2592 | uint64_t starting_warmup_count; |
| 2593 | |
| 2594 | starting_warmup_count = c_segment_warmup_count; |
| 2595 | |
| 2596 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_START, c_segment_warmup_count, |
| 2597 | first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id, 0, 0); |
| 2598 | do_fastwake_warmup(&c_swappedout_list_head, FALSE); |
| 2599 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_END, c_segment_warmup_count, c_segment_warmup_count - starting_warmup_count, 0, 0, 0); |
| 2600 | |
| 2601 | fastwake_warmup = FALSE; |
| 2602 | } |
| 2603 | |
| 2604 | /* |
| 2605 | * it's possible for the c_age_list_head to be empty if we |
| 2606 | * hit our limits for growing the compressor pool and we subsequently |
| 2607 | * hibernated... on the next hibernation we could see the queue as |
| 2608 | * empty and not proceeed even though we have a bunch of segments on |
| 2609 | * the swapped in queue that need to be dealt with. |
| 2610 | */ |
| 2611 | vm_compressor_do_delayed_compactions(flush_all); |
| 2612 | |
| 2613 | vm_compressor_age_swapped_in_segments(flush_all); |
| 2614 | |
| 2615 | /* |
| 2616 | * we only need to grab the timestamp once per |
| 2617 | * invocation of this function since the |
| 2618 | * timescale we're interested in is measured |
| 2619 | * in days |
| 2620 | */ |
| 2621 | clock_get_system_nanotime(&now, &nsec); |
| 2622 | |
| 2623 | while (!queue_empty(&c_age_list_head) && compaction_swapper_abort == 0) { |
| 2624 | |
| 2625 | if (hibernate_flushing == TRUE) { |
| 2626 | clock_sec_t sec; |
| 2627 | |
| 2628 | if (hibernate_should_abort()) { |
| 2629 | HIBLOG("vm_compressor_flush - hibernate_should_abort returned TRUE\n" ); |
| 2630 | break; |
| 2631 | } |
| 2632 | if (hibernate_no_swapspace == TRUE) { |
| 2633 | HIBLOG("vm_compressor_flush - out of swap space\n" ); |
| 2634 | break; |
| 2635 | } |
| 2636 | if (vm_swap_files_pinned() == FALSE) { |
| 2637 | HIBLOG("vm_compressor_flush - unpinned swap files\n" ); |
| 2638 | break; |
| 2639 | } |
| 2640 | if (hibernate_in_progress_with_pinned_swap == TRUE && |
| 2641 | (vm_swapfile_total_segs_alloced == vm_swapfile_total_segs_used)) { |
| 2642 | HIBLOG("vm_compressor_flush - out of pinned swap space\n" ); |
| 2643 | break; |
| 2644 | } |
| 2645 | clock_get_system_nanotime(&sec, &nsec); |
| 2646 | |
| 2647 | if (sec > hibernate_flushing_deadline) { |
| 2648 | HIBLOG("vm_compressor_flush - failed to finish before deadline\n" ); |
| 2649 | break; |
| 2650 | } |
| 2651 | } |
| 2652 | if (c_swapout_count >= C_SWAPOUT_LIMIT) { |
| 2653 | |
| 2654 | assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 100, 1000*NSEC_PER_USEC); |
| 2655 | |
| 2656 | lck_mtx_unlock_always(c_list_lock); |
| 2657 | |
| 2658 | thread_block(THREAD_CONTINUE_NULL); |
| 2659 | |
| 2660 | lck_mtx_lock_spin_always(c_list_lock); |
| 2661 | } |
| 2662 | /* |
| 2663 | * Minor compactions |
| 2664 | */ |
| 2665 | vm_compressor_do_delayed_compactions(flush_all); |
| 2666 | |
| 2667 | vm_compressor_age_swapped_in_segments(flush_all); |
| 2668 | |
| 2669 | if (c_swapout_count >= C_SWAPOUT_LIMIT) { |
| 2670 | /* |
| 2671 | * we timed out on the above thread_block |
| 2672 | * let's loop around and try again |
| 2673 | * the timeout allows us to continue |
| 2674 | * to do minor compactions to make |
| 2675 | * more memory available |
| 2676 | */ |
| 2677 | continue; |
| 2678 | } |
| 2679 | |
| 2680 | /* |
| 2681 | * Swap out segments? |
| 2682 | */ |
| 2683 | if (flush_all == FALSE) { |
| 2684 | boolean_t needs_to_swap; |
| 2685 | |
| 2686 | lck_mtx_unlock_always(c_list_lock); |
| 2687 | |
| 2688 | needs_to_swap = compressor_needs_to_swap(); |
| 2689 | |
| 2690 | #if !CONFIG_EMBEDDED |
| 2691 | if (needs_to_swap == TRUE && vm_swap_low_on_space()) |
| 2692 | vm_compressor_take_paging_space_action(); |
| 2693 | #endif /* !CONFIG_EMBEDDED */ |
| 2694 | |
| 2695 | lck_mtx_lock_spin_always(c_list_lock); |
| 2696 | |
| 2697 | if (needs_to_swap == FALSE) |
| 2698 | break; |
| 2699 | } |
| 2700 | if (queue_empty(&c_age_list_head)) |
| 2701 | break; |
| 2702 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 2703 | |
| 2704 | assert(c_seg->c_state == C_ON_AGE_Q); |
| 2705 | |
| 2706 | if (flush_all == TRUE && c_seg->c_generation_id > c_generation_id_flush_barrier) |
| 2707 | break; |
| 2708 | |
| 2709 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2710 | |
| 2711 | if (c_seg->c_busy) { |
| 2712 | |
| 2713 | lck_mtx_unlock_always(c_list_lock); |
| 2714 | c_seg_wait_on_busy(c_seg); |
| 2715 | lck_mtx_lock_spin_always(c_list_lock); |
| 2716 | |
| 2717 | continue; |
| 2718 | } |
| 2719 | C_SEG_BUSY(c_seg); |
| 2720 | |
| 2721 | if (c_seg_do_minor_compaction_and_unlock(c_seg, FALSE, TRUE, TRUE)) { |
| 2722 | /* |
| 2723 | * found an empty c_segment and freed it |
| 2724 | * so go grab the next guy in the queue |
| 2725 | */ |
| 2726 | c_seg_major_compact_stats.count_of_freed_segs++; |
| 2727 | continue; |
| 2728 | } |
| 2729 | /* |
| 2730 | * Major compaction |
| 2731 | */ |
| 2732 | keep_compacting = TRUE; |
| 2733 | |
| 2734 | while (keep_compacting == TRUE) { |
| 2735 | |
| 2736 | assert(c_seg->c_busy); |
| 2737 | |
| 2738 | /* look for another segment to consolidate */ |
| 2739 | |
| 2740 | c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list); |
| 2741 | |
| 2742 | if (queue_end(&c_age_list_head, (queue_entry_t)c_seg_next)) |
| 2743 | break; |
| 2744 | |
| 2745 | assert(c_seg_next->c_state == C_ON_AGE_Q); |
| 2746 | |
| 2747 | if (c_seg_major_compact_ok(c_seg, c_seg_next) == FALSE) |
| 2748 | break; |
| 2749 | |
| 2750 | lck_mtx_lock_spin_always(&c_seg_next->c_lock); |
| 2751 | |
| 2752 | if (c_seg_next->c_busy) { |
| 2753 | |
| 2754 | lck_mtx_unlock_always(c_list_lock); |
| 2755 | c_seg_wait_on_busy(c_seg_next); |
| 2756 | lck_mtx_lock_spin_always(c_list_lock); |
| 2757 | |
| 2758 | continue; |
| 2759 | } |
| 2760 | /* grab that segment */ |
| 2761 | C_SEG_BUSY(c_seg_next); |
| 2762 | |
| 2763 | if (c_seg_do_minor_compaction_and_unlock(c_seg_next, FALSE, TRUE, TRUE)) { |
| 2764 | /* |
| 2765 | * found an empty c_segment and freed it |
| 2766 | * so we can't continue to use c_seg_next |
| 2767 | */ |
| 2768 | c_seg_major_compact_stats.count_of_freed_segs++; |
| 2769 | continue; |
| 2770 | } |
| 2771 | |
| 2772 | /* unlock the list ... */ |
| 2773 | lck_mtx_unlock_always(c_list_lock); |
| 2774 | |
| 2775 | /* do the major compaction */ |
| 2776 | |
| 2777 | keep_compacting = c_seg_major_compact(c_seg, c_seg_next); |
| 2778 | |
| 2779 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 2780 | |
| 2781 | lck_mtx_lock_spin_always(&c_seg_next->c_lock); |
| 2782 | /* |
| 2783 | * run a minor compaction on the donor segment |
| 2784 | * since we pulled at least some of it's |
| 2785 | * data into our target... if we've emptied |
| 2786 | * it, now is a good time to free it which |
| 2787 | * c_seg_minor_compaction_and_unlock also takes care of |
| 2788 | * |
| 2789 | * by passing TRUE, we ask for c_busy to be cleared |
| 2790 | * and c_wanted to be taken care of |
| 2791 | */ |
| 2792 | if (c_seg_minor_compaction_and_unlock(c_seg_next, TRUE)) |
| 2793 | c_seg_major_compact_stats.count_of_freed_segs++; |
| 2794 | |
| 2795 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 2796 | |
| 2797 | /* relock the list */ |
| 2798 | lck_mtx_lock_spin_always(c_list_lock); |
| 2799 | |
| 2800 | } /* major compaction */ |
| 2801 | |
| 2802 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2803 | |
| 2804 | assert(c_seg->c_busy); |
| 2805 | assert(!c_seg->c_on_minorcompact_q); |
| 2806 | |
| 2807 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 2808 | /* |
| 2809 | * This mode of putting a generic c_seg on the swapout list is |
| 2810 | * only supported when we have general swapping enabled |
| 2811 | */ |
| 2812 | c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE); |
| 2813 | } else { |
| 2814 | if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) { |
| 2815 | |
| 2816 | assert(VM_CONFIG_SWAP_IS_PRESENT); |
| 2817 | /* |
| 2818 | * we are running compressor sweeps with swap-behind |
| 2819 | * make sure the c_seg has aged enough before swapping it |
| 2820 | * out... |
| 2821 | */ |
| 2822 | if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) { |
| 2823 | c_seg->c_overage_swap = TRUE; |
| 2824 | c_overage_swapped_count++; |
| 2825 | c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE); |
| 2826 | } |
| 2827 | } |
| 2828 | } |
| 2829 | if (c_seg->c_state == C_ON_AGE_Q) { |
| 2830 | /* |
| 2831 | * this c_seg didn't get moved to the swapout queue |
| 2832 | * so we need to move it out of the way... |
| 2833 | * we just did a major compaction on it so put it |
| 2834 | * on that queue |
| 2835 | */ |
| 2836 | c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE); |
| 2837 | } else { |
| 2838 | c_seg_major_compact_stats.wasted_space_in_swapouts += C_SEG_BUFSIZE - c_seg->c_bytes_used; |
| 2839 | c_seg_major_compact_stats.count_of_swapouts++; |
| 2840 | } |
| 2841 | C_SEG_WAKEUP_DONE(c_seg); |
| 2842 | |
| 2843 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2844 | |
| 2845 | if (c_swapout_count) { |
| 2846 | lck_mtx_unlock_always(c_list_lock); |
| 2847 | |
| 2848 | thread_wakeup((event_t)&c_swapout_list_head); |
| 2849 | |
| 2850 | lck_mtx_lock_spin_always(c_list_lock); |
| 2851 | } |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | |
| 2856 | static c_segment_t |
| 2857 | c_seg_allocate(c_segment_t *current_chead) |
| 2858 | { |
| 2859 | c_segment_t c_seg; |
| 2860 | int min_needed; |
| 2861 | int size_to_populate; |
| 2862 | |
| 2863 | #if !CONFIG_EMBEDDED |
| 2864 | if (vm_compressor_low_on_space()) |
| 2865 | vm_compressor_take_paging_space_action(); |
| 2866 | #endif /* !CONFIG_EMBEDDED */ |
| 2867 | |
| 2868 | if ( (c_seg = *current_chead) == NULL ) { |
| 2869 | uint32_t c_segno; |
| 2870 | |
| 2871 | lck_mtx_lock_spin_always(c_list_lock); |
| 2872 | |
| 2873 | while (c_segments_busy == TRUE) { |
| 2874 | assert_wait((event_t) (&c_segments_busy), THREAD_UNINT); |
| 2875 | |
| 2876 | lck_mtx_unlock_always(c_list_lock); |
| 2877 | |
| 2878 | thread_block(THREAD_CONTINUE_NULL); |
| 2879 | |
| 2880 | lck_mtx_lock_spin_always(c_list_lock); |
| 2881 | } |
| 2882 | if (c_free_segno_head == (uint32_t)-1) { |
| 2883 | uint32_t c_segments_available_new; |
| 2884 | |
| 2885 | if (c_segments_available >= c_segments_limit || c_segment_pages_compressed >= c_segment_pages_compressed_limit) { |
| 2886 | lck_mtx_unlock_always(c_list_lock); |
| 2887 | |
| 2888 | return (NULL); |
| 2889 | } |
| 2890 | c_segments_busy = TRUE; |
| 2891 | lck_mtx_unlock_always(c_list_lock); |
| 2892 | |
| 2893 | kernel_memory_populate(compressor_map, (vm_offset_t)c_segments_next_page, |
| 2894 | PAGE_SIZE, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR); |
| 2895 | c_segments_next_page += PAGE_SIZE; |
| 2896 | |
| 2897 | c_segments_available_new = c_segments_available + C_SEGMENTS_PER_PAGE; |
| 2898 | |
| 2899 | if (c_segments_available_new > c_segments_limit) |
| 2900 | c_segments_available_new = c_segments_limit; |
| 2901 | |
| 2902 | for (c_segno = c_segments_available + 1; c_segno < c_segments_available_new; c_segno++) |
| 2903 | c_segments[c_segno - 1].c_segno = c_segno; |
| 2904 | |
| 2905 | lck_mtx_lock_spin_always(c_list_lock); |
| 2906 | |
| 2907 | c_segments[c_segno - 1].c_segno = c_free_segno_head; |
| 2908 | c_free_segno_head = c_segments_available; |
| 2909 | c_segments_available = c_segments_available_new; |
| 2910 | |
| 2911 | c_segments_busy = FALSE; |
| 2912 | thread_wakeup((event_t) (&c_segments_busy)); |
| 2913 | } |
| 2914 | c_segno = c_free_segno_head; |
| 2915 | assert(c_segno >= 0 && c_segno < c_segments_limit); |
| 2916 | |
| 2917 | c_free_segno_head = (uint32_t)c_segments[c_segno].c_segno; |
| 2918 | |
| 2919 | /* |
| 2920 | * do the rest of the bookkeeping now while we're still behind |
| 2921 | * the list lock and grab our generation id now into a local |
| 2922 | * so that we can install it once we have the c_seg allocated |
| 2923 | */ |
| 2924 | c_segment_count++; |
| 2925 | if (c_segment_count > c_segment_count_max) |
| 2926 | c_segment_count_max = c_segment_count; |
| 2927 | |
| 2928 | lck_mtx_unlock_always(c_list_lock); |
| 2929 | |
| 2930 | c_seg = (c_segment_t)zalloc(compressor_segment_zone); |
| 2931 | bzero((char *)c_seg, sizeof(struct c_segment)); |
| 2932 | |
| 2933 | c_seg->c_store.c_buffer = (int32_t *)C_SEG_BUFFER_ADDRESS(c_segno); |
| 2934 | |
| 2935 | lck_mtx_init(&c_seg->c_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr); |
| 2936 | |
| 2937 | c_seg->c_state = C_IS_EMPTY; |
| 2938 | c_seg->c_firstemptyslot = C_SLOT_MAX_INDEX; |
| 2939 | c_seg->c_mysegno = c_segno; |
| 2940 | |
| 2941 | lck_mtx_lock_spin_always(c_list_lock); |
| 2942 | c_empty_count++; |
| 2943 | c_seg_switch_state(c_seg, C_IS_FILLING, FALSE); |
| 2944 | c_segments[c_segno].c_seg = c_seg; |
| 2945 | assert(c_segments[c_segno].c_segno > c_segments_available); |
| 2946 | lck_mtx_unlock_always(c_list_lock); |
| 2947 | |
| 2948 | *current_chead = c_seg; |
| 2949 | |
| 2950 | #if DEVELOPMENT || DEBUG |
| 2951 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 2952 | #endif |
| 2953 | |
| 2954 | } |
| 2955 | c_seg_alloc_nextslot(c_seg); |
| 2956 | |
| 2957 | size_to_populate = C_SEG_ALLOCSIZE - C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset); |
| 2958 | |
| 2959 | if (size_to_populate) { |
| 2960 | |
| 2961 | min_needed = PAGE_SIZE + (C_SEG_ALLOCSIZE - C_SEG_BUFSIZE); |
| 2962 | |
| 2963 | if (C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset) < (unsigned) min_needed) { |
| 2964 | |
| 2965 | if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) |
| 2966 | size_to_populate = C_SEG_MAX_POPULATE_SIZE; |
| 2967 | |
| 2968 | OSAddAtomic64(size_to_populate / PAGE_SIZE, &vm_pageout_vminfo.vm_compressor_pages_grabbed); |
| 2969 | |
| 2970 | kernel_memory_populate(compressor_map, |
| 2971 | (vm_offset_t) &c_seg->c_store.c_buffer[c_seg->c_populated_offset], |
| 2972 | size_to_populate, |
| 2973 | KMA_COMPRESSOR, |
| 2974 | VM_KERN_MEMORY_COMPRESSOR); |
| 2975 | } else |
| 2976 | size_to_populate = 0; |
| 2977 | } |
| 2978 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 2979 | |
| 2980 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 2981 | |
| 2982 | if (size_to_populate) |
| 2983 | c_seg->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate); |
| 2984 | |
| 2985 | return (c_seg); |
| 2986 | } |
| 2987 | |
| 2988 | |
| 2989 | static void |
| 2990 | c_current_seg_filled(c_segment_t c_seg, c_segment_t *current_chead) |
| 2991 | { |
| 2992 | uint32_t unused_bytes; |
| 2993 | uint32_t offset_to_depopulate; |
| 2994 | int new_state = C_ON_AGE_Q; |
| 2995 | clock_sec_t sec; |
| 2996 | clock_nsec_t nsec; |
| 2997 | boolean_t head_insert = FALSE; |
| 2998 | |
| 2999 | unused_bytes = trunc_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset)); |
| 3000 | |
| 3001 | #ifndef _OPEN_SOURCE |
| 3002 | /* TODO: The HW codec can generate, lazily, a '2nd page not mapped' |
| 3003 | * exception. So on such a platform, or platforms where we're confident |
| 3004 | * the codec does not require a buffer page to absorb trailing writes, |
| 3005 | * we can create an unmapped hole at the tail of the segment, rather |
| 3006 | * than a populated mapping. This will also guarantee that the codec |
| 3007 | * does not overwrite valid data past the edge of the segment and |
| 3008 | * thus eliminate the depopulation overhead. |
| 3009 | */ |
| 3010 | #endif |
| 3011 | if (unused_bytes) { |
| 3012 | offset_to_depopulate = C_SEG_BYTES_TO_OFFSET(round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_nextoffset))); |
| 3013 | |
| 3014 | /* |
| 3015 | * release the extra physical page(s) at the end of the segment |
| 3016 | */ |
| 3017 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3018 | |
| 3019 | kernel_memory_depopulate( |
| 3020 | compressor_map, |
| 3021 | (vm_offset_t) &c_seg->c_store.c_buffer[offset_to_depopulate], |
| 3022 | unused_bytes, |
| 3023 | KMA_COMPRESSOR); |
| 3024 | |
| 3025 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3026 | |
| 3027 | c_seg->c_populated_offset = offset_to_depopulate; |
| 3028 | } |
| 3029 | assert(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset) <= C_SEG_BUFSIZE); |
| 3030 | |
| 3031 | #if DEVELOPMENT || DEBUG |
| 3032 | { |
| 3033 | boolean_t c_seg_was_busy = FALSE; |
| 3034 | |
| 3035 | if ( !c_seg->c_busy) |
| 3036 | C_SEG_BUSY(c_seg); |
| 3037 | else |
| 3038 | c_seg_was_busy = TRUE; |
| 3039 | |
| 3040 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3041 | |
| 3042 | C_SEG_WRITE_PROTECT(c_seg); |
| 3043 | |
| 3044 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3045 | |
| 3046 | if (c_seg_was_busy == FALSE) |
| 3047 | C_SEG_WAKEUP_DONE(c_seg); |
| 3048 | } |
| 3049 | #endif |
| 3050 | |
| 3051 | #if CONFIG_FREEZE |
| 3052 | if (current_chead == (c_segment_t*)&freezer_chead && |
| 3053 | VM_CONFIG_SWAP_IS_PRESENT && |
| 3054 | VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 3055 | new_state = C_ON_SWAPOUT_Q; |
| 3056 | } |
| 3057 | #endif /* CONFIG_FREEZE */ |
| 3058 | |
| 3059 | if (vm_darkwake_mode == TRUE) { |
| 3060 | new_state = C_ON_SWAPOUT_Q; |
| 3061 | head_insert = TRUE; |
| 3062 | } |
| 3063 | |
| 3064 | clock_get_system_nanotime(&sec, &nsec); |
| 3065 | c_seg->c_creation_ts = (uint32_t)sec; |
| 3066 | |
| 3067 | lck_mtx_lock_spin_always(c_list_lock); |
| 3068 | |
| 3069 | c_seg->c_generation_id = c_generation_id++; |
| 3070 | c_seg_switch_state(c_seg, new_state, head_insert); |
| 3071 | |
| 3072 | #if CONFIG_FREEZE |
| 3073 | if (c_seg->c_state == C_ON_SWAPOUT_Q) { |
| 3074 | /* |
| 3075 | * darkwake and freezer can't co-exist together |
| 3076 | * We'll need to fix this accounting as a start. |
| 3077 | */ |
| 3078 | assert(vm_darkwake_mode == FALSE); |
| 3079 | c_freezer_swapout_page_count += (C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)) / PAGE_SIZE_64; |
| 3080 | } |
| 3081 | #endif /* CONFIG_FREEZE */ |
| 3082 | |
| 3083 | if (c_seg->c_state == C_ON_AGE_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) |
| 3084 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 3085 | |
| 3086 | lck_mtx_unlock_always(c_list_lock); |
| 3087 | |
| 3088 | if (c_seg->c_state == C_ON_SWAPOUT_Q) |
| 3089 | thread_wakeup((event_t)&c_swapout_list_head); |
| 3090 | |
| 3091 | *current_chead = NULL; |
| 3092 | } |
| 3093 | |
| 3094 | |
| 3095 | /* |
| 3096 | * returns with c_seg locked |
| 3097 | */ |
| 3098 | void |
| 3099 | c_seg_swapin_requeue(c_segment_t c_seg, boolean_t has_data, boolean_t minor_compact_ok, boolean_t age_on_swapin_q) |
| 3100 | { |
| 3101 | clock_sec_t sec; |
| 3102 | clock_nsec_t nsec; |
| 3103 | |
| 3104 | clock_get_system_nanotime(&sec, &nsec); |
| 3105 | |
| 3106 | lck_mtx_lock_spin_always(c_list_lock); |
| 3107 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3108 | |
| 3109 | assert(c_seg->c_busy_swapping); |
| 3110 | assert(c_seg->c_busy); |
| 3111 | |
| 3112 | c_seg->c_busy_swapping = 0; |
| 3113 | |
| 3114 | if (c_seg->c_overage_swap == TRUE) { |
| 3115 | c_overage_swapped_count--; |
| 3116 | c_seg->c_overage_swap = FALSE; |
| 3117 | } |
| 3118 | if (has_data == TRUE) { |
| 3119 | if (age_on_swapin_q == TRUE) |
| 3120 | c_seg_switch_state(c_seg, C_ON_SWAPPEDIN_Q, FALSE); |
| 3121 | else |
| 3122 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 3123 | |
| 3124 | if (minor_compact_ok == TRUE && !c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) |
| 3125 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 3126 | } else { |
| 3127 | c_seg->c_store.c_buffer = (int32_t*) NULL; |
| 3128 | c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0); |
| 3129 | |
| 3130 | c_seg_switch_state(c_seg, C_ON_BAD_Q, FALSE); |
| 3131 | } |
| 3132 | c_seg->c_swappedin_ts = (uint32_t)sec; |
| 3133 | |
| 3134 | lck_mtx_unlock_always(c_list_lock); |
| 3135 | } |
| 3136 | |
| 3137 | |
| 3138 | |
| 3139 | /* |
| 3140 | * c_seg has to be locked and is returned locked if the c_seg isn't freed |
| 3141 | * PAGE_REPLACMENT_DISALLOWED has to be TRUE on entry and is returned TRUE |
| 3142 | * c_seg_swapin returns 1 if the c_seg was freed, 0 otherwise |
| 3143 | */ |
| 3144 | |
| 3145 | int |
| 3146 | c_seg_swapin(c_segment_t c_seg, boolean_t force_minor_compaction, boolean_t age_on_swapin_q) |
| 3147 | { |
| 3148 | vm_offset_t addr = 0; |
| 3149 | uint32_t io_size = 0; |
| 3150 | uint64_t f_offset; |
| 3151 | |
| 3152 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 3153 | |
| 3154 | #if !CHECKSUM_THE_SWAP |
| 3155 | c_seg_trim_tail(c_seg); |
| 3156 | #endif |
| 3157 | io_size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 3158 | f_offset = c_seg->c_store.c_swap_handle; |
| 3159 | |
| 3160 | C_SEG_BUSY(c_seg); |
| 3161 | c_seg->c_busy_swapping = 1; |
| 3162 | |
| 3163 | /* |
| 3164 | * This thread is likely going to block for I/O. |
| 3165 | * Make sure it is ready to run when the I/O completes because |
| 3166 | * it needs to clear the busy bit on the c_seg so that other |
| 3167 | * waiting threads can make progress too. To do that, boost |
| 3168 | * the rwlock_count so that the priority is boosted. |
| 3169 | */ |
| 3170 | set_thread_rwlock_boost(); |
| 3171 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3172 | |
| 3173 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3174 | |
| 3175 | addr = (vm_offset_t)C_SEG_BUFFER_ADDRESS(c_seg->c_mysegno); |
| 3176 | c_seg->c_store.c_buffer = (int32_t*) addr; |
| 3177 | |
| 3178 | kernel_memory_populate(compressor_map, addr, io_size, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR); |
| 3179 | |
| 3180 | if (vm_swap_get(c_seg, f_offset, io_size) != KERN_SUCCESS) { |
| 3181 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3182 | |
| 3183 | kernel_memory_depopulate(compressor_map, addr, io_size, KMA_COMPRESSOR); |
| 3184 | |
| 3185 | c_seg_swapin_requeue(c_seg, FALSE, TRUE, age_on_swapin_q); |
| 3186 | } else { |
| 3187 | #if ENCRYPTED_SWAP |
| 3188 | vm_swap_decrypt(c_seg); |
| 3189 | #endif /* ENCRYPTED_SWAP */ |
| 3190 | |
| 3191 | #if CHECKSUM_THE_SWAP |
| 3192 | if (c_seg->cseg_swap_size != io_size) |
| 3193 | panic("swapin size doesn't match swapout size" ); |
| 3194 | |
| 3195 | if (c_seg->cseg_hash != vmc_hash((char*) c_seg->c_store.c_buffer, (int)io_size)) { |
| 3196 | panic("c_seg_swapin - Swap hash mismatch\n" ); |
| 3197 | } |
| 3198 | #endif /* CHECKSUM_THE_SWAP */ |
| 3199 | |
| 3200 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3201 | |
| 3202 | c_seg_swapin_requeue(c_seg, TRUE, force_minor_compaction == TRUE ? FALSE : TRUE, age_on_swapin_q); |
| 3203 | |
| 3204 | OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used); |
| 3205 | |
| 3206 | if (force_minor_compaction == TRUE) { |
| 3207 | if (c_seg_minor_compaction_and_unlock(c_seg, FALSE)) { |
| 3208 | /* |
| 3209 | * c_seg was completely empty so it was freed, |
| 3210 | * so be careful not to reference it again |
| 3211 | * |
| 3212 | * Drop the rwlock_count so that the thread priority |
| 3213 | * is returned back to where it is supposed to be. |
| 3214 | */ |
| 3215 | clear_thread_rwlock_boost(); |
| 3216 | return (1); |
| 3217 | } |
| 3218 | |
| 3219 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3220 | } |
| 3221 | } |
| 3222 | C_SEG_WAKEUP_DONE(c_seg); |
| 3223 | |
| 3224 | /* |
| 3225 | * Drop the rwlock_count so that the thread priority |
| 3226 | * is returned back to where it is supposed to be. |
| 3227 | */ |
| 3228 | clear_thread_rwlock_boost(); |
| 3229 | |
| 3230 | return (0); |
| 3231 | } |
| 3232 | |
| 3233 | |
| 3234 | static void |
| 3235 | c_segment_sv_hash_drop_ref(int hash_indx) |
| 3236 | { |
| 3237 | struct c_sv_hash_entry o_sv_he, n_sv_he; |
| 3238 | |
| 3239 | while (1) { |
| 3240 | |
| 3241 | o_sv_he.he_record = c_segment_sv_hash_table[hash_indx].he_record; |
| 3242 | |
| 3243 | n_sv_he.he_ref = o_sv_he.he_ref - 1; |
| 3244 | n_sv_he.he_data = o_sv_he.he_data; |
| 3245 | |
| 3246 | if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_indx].he_record) == TRUE) { |
| 3247 | if (n_sv_he.he_ref == 0) |
| 3248 | OSAddAtomic(-1, &c_segment_svp_in_hash); |
| 3249 | break; |
| 3250 | } |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | |
| 3255 | static int |
| 3256 | c_segment_sv_hash_insert(uint32_t data) |
| 3257 | { |
| 3258 | int hash_sindx; |
| 3259 | int misses; |
| 3260 | struct c_sv_hash_entry o_sv_he, n_sv_he; |
| 3261 | boolean_t got_ref = FALSE; |
| 3262 | |
| 3263 | if (data == 0) |
| 3264 | OSAddAtomic(1, &c_segment_svp_zero_compressions); |
| 3265 | else |
| 3266 | OSAddAtomic(1, &c_segment_svp_nonzero_compressions); |
| 3267 | |
| 3268 | hash_sindx = data & C_SV_HASH_MASK; |
| 3269 | |
| 3270 | for (misses = 0; misses < C_SV_HASH_MAX_MISS; misses++) |
| 3271 | { |
| 3272 | o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record; |
| 3273 | |
| 3274 | while (o_sv_he.he_data == data || o_sv_he.he_ref == 0) { |
| 3275 | n_sv_he.he_ref = o_sv_he.he_ref + 1; |
| 3276 | n_sv_he.he_data = data; |
| 3277 | |
| 3278 | if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_sindx].he_record) == TRUE) { |
| 3279 | if (n_sv_he.he_ref == 1) |
| 3280 | OSAddAtomic(1, &c_segment_svp_in_hash); |
| 3281 | got_ref = TRUE; |
| 3282 | break; |
| 3283 | } |
| 3284 | o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record; |
| 3285 | } |
| 3286 | if (got_ref == TRUE) |
| 3287 | break; |
| 3288 | hash_sindx++; |
| 3289 | |
| 3290 | if (hash_sindx == C_SV_HASH_SIZE) |
| 3291 | hash_sindx = 0; |
| 3292 | } |
| 3293 | if (got_ref == FALSE) |
| 3294 | return(-1); |
| 3295 | |
| 3296 | return (hash_sindx); |
| 3297 | } |
| 3298 | |
| 3299 | |
| 3300 | #if RECORD_THE_COMPRESSED_DATA |
| 3301 | |
| 3302 | static void |
| 3303 | c_compressed_record_data(char *src, int c_size) |
| 3304 | { |
| 3305 | if ((c_compressed_record_cptr + c_size + 4) >= c_compressed_record_ebuf) |
| 3306 | panic("c_compressed_record_cptr >= c_compressed_record_ebuf" ); |
| 3307 | |
| 3308 | *(int *)((void *)c_compressed_record_cptr) = c_size; |
| 3309 | |
| 3310 | c_compressed_record_cptr += 4; |
| 3311 | |
| 3312 | memcpy(c_compressed_record_cptr, src, c_size); |
| 3313 | c_compressed_record_cptr += c_size; |
| 3314 | } |
| 3315 | #endif |
| 3316 | |
| 3317 | |
| 3318 | static int |
| 3319 | c_compress_page(char *src, c_slot_mapping_t slot_ptr, c_segment_t *current_chead, char *scratch_buf) |
| 3320 | { |
| 3321 | int c_size; |
| 3322 | int c_rounded_size = 0; |
| 3323 | int max_csize; |
| 3324 | c_slot_t cs; |
| 3325 | c_segment_t c_seg; |
| 3326 | |
| 3327 | KERNEL_DEBUG(0xe0400000 | DBG_FUNC_START, *current_chead, 0, 0, 0, 0); |
| 3328 | retry: |
| 3329 | if ((c_seg = c_seg_allocate(current_chead)) == NULL) { |
| 3330 | return (1); |
| 3331 | } |
| 3332 | /* |
| 3333 | * returns with c_seg lock held |
| 3334 | * and PAGE_REPLACEMENT_DISALLOWED(TRUE)... |
| 3335 | * c_nextslot has been allocated and |
| 3336 | * c_store.c_buffer populated |
| 3337 | */ |
| 3338 | assert(c_seg->c_state == C_IS_FILLING); |
| 3339 | |
| 3340 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_seg->c_nextslot); |
| 3341 | |
| 3342 | cs->c_packed_ptr = C_SLOT_PACK_PTR(slot_ptr); |
| 3343 | assert(slot_ptr == (c_slot_mapping_t)C_SLOT_UNPACK_PTR(cs)); |
| 3344 | |
| 3345 | cs->c_offset = c_seg->c_nextoffset; |
| 3346 | |
| 3347 | max_csize = C_SEG_BUFSIZE - C_SEG_OFFSET_TO_BYTES((int32_t)cs->c_offset); |
| 3348 | |
| 3349 | if (max_csize > PAGE_SIZE) |
| 3350 | max_csize = PAGE_SIZE; |
| 3351 | |
| 3352 | #if CHECKSUM_THE_DATA |
| 3353 | cs->c_hash_data = vmc_hash(src, PAGE_SIZE); |
| 3354 | #endif |
| 3355 | boolean_t incomp_copy = FALSE; |
| 3356 | int max_csize_adj = (max_csize - 4); |
| 3357 | |
| 3358 | if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) { |
| 3359 | #if defined(__arm__) || defined(__arm64__) |
| 3360 | uint16_t ccodec = CINVALID; |
| 3361 | |
| 3362 | if (max_csize >= C_SEG_OFFSET_ALIGNMENT_BOUNDARY) { |
| 3363 | c_size = metacompressor((const uint8_t *) src, |
| 3364 | (uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset], |
| 3365 | max_csize_adj, &ccodec, |
| 3366 | scratch_buf, &incomp_copy); |
| 3367 | #if C_SEG_OFFSET_ALIGNMENT_BOUNDARY > 4 |
| 3368 | if (c_size > max_csize_adj) { |
| 3369 | c_size = -1; |
| 3370 | } |
| 3371 | #endif |
| 3372 | } else { |
| 3373 | c_size = -1; |
| 3374 | } |
| 3375 | assert(ccodec == CCWK || ccodec == CCLZ4); |
| 3376 | cs->c_codec = ccodec; |
| 3377 | #endif |
| 3378 | } else { |
| 3379 | #if defined(__arm__) || defined(__arm64__) |
| 3380 | cs->c_codec = CCWK; |
| 3381 | #endif |
| 3382 | #if defined(__arm64__) |
| 3383 | __unreachable_ok_push |
| 3384 | if (PAGE_SIZE == 4096) |
| 3385 | c_size = WKdm_compress_4k((WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3386 | (WK_word *)(uintptr_t)scratch_buf, max_csize_adj); |
| 3387 | else { |
| 3388 | c_size = WKdm_compress_16k((WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3389 | (WK_word *)(uintptr_t)scratch_buf, max_csize_adj); |
| 3390 | } |
| 3391 | __unreachable_ok_pop |
| 3392 | #else |
| 3393 | c_size = WKdm_compress_new((const WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3394 | (WK_word *)(uintptr_t)scratch_buf, max_csize_adj); |
| 3395 | #endif |
| 3396 | } |
| 3397 | assertf(((c_size <= max_csize_adj) && (c_size >= -1)), |
| 3398 | "c_size invalid (%d, %d), cur compressions: %d" , c_size, max_csize_adj, c_segment_pages_compressed); |
| 3399 | |
| 3400 | if (c_size == -1) { |
| 3401 | if (max_csize < PAGE_SIZE) { |
| 3402 | c_current_seg_filled(c_seg, current_chead); |
| 3403 | assert(*current_chead == NULL); |
| 3404 | |
| 3405 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3406 | /* TODO: it may be worth requiring codecs to distinguish |
| 3407 | * between incompressible inputs and failures due to |
| 3408 | * budget exhaustion. |
| 3409 | */ |
| 3410 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3411 | goto retry; |
| 3412 | } |
| 3413 | c_size = PAGE_SIZE; |
| 3414 | |
| 3415 | if (incomp_copy == FALSE) { |
| 3416 | memcpy(&c_seg->c_store.c_buffer[cs->c_offset], src, c_size); |
| 3417 | } |
| 3418 | |
| 3419 | OSAddAtomic(1, &c_segment_noncompressible_pages); |
| 3420 | |
| 3421 | } else if (c_size == 0) { |
| 3422 | int hash_index; |
| 3423 | |
| 3424 | /* |
| 3425 | * special case - this is a page completely full of a single 32 bit value |
| 3426 | */ |
| 3427 | hash_index = c_segment_sv_hash_insert(*(uint32_t *)(uintptr_t)src); |
| 3428 | |
| 3429 | if (hash_index != -1) { |
| 3430 | slot_ptr->s_cindx = hash_index; |
| 3431 | slot_ptr->s_cseg = C_SV_CSEG_ID; |
| 3432 | |
| 3433 | OSAddAtomic(1, &c_segment_svp_hash_succeeded); |
| 3434 | #if RECORD_THE_COMPRESSED_DATA |
| 3435 | c_compressed_record_data(src, 4); |
| 3436 | #endif |
| 3437 | goto sv_compression; |
| 3438 | } |
| 3439 | c_size = 4; |
| 3440 | |
| 3441 | memcpy(&c_seg->c_store.c_buffer[cs->c_offset], src, c_size); |
| 3442 | |
| 3443 | OSAddAtomic(1, &c_segment_svp_hash_failed); |
| 3444 | } |
| 3445 | |
| 3446 | #if RECORD_THE_COMPRESSED_DATA |
| 3447 | c_compressed_record_data((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 3448 | #endif |
| 3449 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 3450 | cs->c_hash_compressed_data = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 3451 | #endif |
| 3452 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 3453 | cs->c_pop_cdata = vmc_pop((uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 3454 | #endif |
| 3455 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 3456 | |
| 3457 | PACK_C_SIZE(cs, c_size); |
| 3458 | c_seg->c_bytes_used += c_rounded_size; |
| 3459 | c_seg->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 3460 | c_seg->c_slots_used++; |
| 3461 | |
| 3462 | slot_ptr->s_cindx = c_seg->c_nextslot++; |
| 3463 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 3464 | slot_ptr->s_cseg = c_seg->c_mysegno + 1; |
| 3465 | |
| 3466 | sv_compression: |
| 3467 | if (c_seg->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 3468 | c_current_seg_filled(c_seg, current_chead); |
| 3469 | assert(*current_chead == NULL); |
| 3470 | } |
| 3471 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3472 | |
| 3473 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3474 | |
| 3475 | #if RECORD_THE_COMPRESSED_DATA |
| 3476 | if ((c_compressed_record_cptr - c_compressed_record_sbuf) >= C_SEG_ALLOCSIZE) { |
| 3477 | c_compressed_record_write(c_compressed_record_sbuf, (int)(c_compressed_record_cptr - c_compressed_record_sbuf)); |
| 3478 | c_compressed_record_cptr = c_compressed_record_sbuf; |
| 3479 | } |
| 3480 | #endif |
| 3481 | if (c_size) { |
| 3482 | OSAddAtomic64(c_size, &c_segment_compressed_bytes); |
| 3483 | OSAddAtomic64(c_rounded_size, &compressor_bytes_used); |
| 3484 | } |
| 3485 | OSAddAtomic64(PAGE_SIZE, &c_segment_input_bytes); |
| 3486 | |
| 3487 | OSAddAtomic(1, &c_segment_pages_compressed); |
| 3488 | OSAddAtomic(1, &sample_period_compression_count); |
| 3489 | |
| 3490 | KERNEL_DEBUG(0xe0400000 | DBG_FUNC_END, *current_chead, c_size, c_segment_input_bytes, c_segment_compressed_bytes, 0); |
| 3491 | |
| 3492 | return (0); |
| 3493 | } |
| 3494 | |
| 3495 | static inline void sv_decompress(int32_t *ddst, int32_t pattern) { |
| 3496 | #if __x86_64__ |
| 3497 | memset_word(ddst, pattern, PAGE_SIZE / sizeof(int32_t)); |
| 3498 | #else |
| 3499 | size_t i; |
| 3500 | |
| 3501 | /* Unroll the pattern fill loop 4x to encourage the |
| 3502 | * compiler to emit NEON stores, cf. |
| 3503 | * <rdar://problem/25839866> Loop autovectorization |
| 3504 | * anomalies. |
| 3505 | * We use separate loops for each PAGE_SIZE |
| 3506 | * to allow the autovectorizer to engage, as PAGE_SIZE |
| 3507 | * is currently not a constant. |
| 3508 | */ |
| 3509 | |
| 3510 | __unreachable_ok_push |
| 3511 | if (PAGE_SIZE == 4096) { |
| 3512 | for (i = 0; i < (4096U / sizeof(int32_t)); i += 4) { |
| 3513 | *ddst++ = pattern; |
| 3514 | *ddst++ = pattern; |
| 3515 | *ddst++ = pattern; |
| 3516 | *ddst++ = pattern; |
| 3517 | } |
| 3518 | } else { |
| 3519 | assert(PAGE_SIZE == 16384); |
| 3520 | for (i = 0; i < (int)(16384U / sizeof(int32_t)); i += 4) { |
| 3521 | *ddst++ = pattern; |
| 3522 | *ddst++ = pattern; |
| 3523 | *ddst++ = pattern; |
| 3524 | *ddst++ = pattern; |
| 3525 | } |
| 3526 | } |
| 3527 | __unreachable_ok_pop |
| 3528 | #endif |
| 3529 | } |
| 3530 | |
| 3531 | static int |
| 3532 | c_decompress_page(char *dst, volatile c_slot_mapping_t slot_ptr, int flags, int *zeroslot) |
| 3533 | { |
| 3534 | c_slot_t cs; |
| 3535 | c_segment_t c_seg; |
| 3536 | uint32_t c_segno; |
| 3537 | int c_indx; |
| 3538 | int c_rounded_size; |
| 3539 | uint32_t c_size; |
| 3540 | int retval = 0; |
| 3541 | boolean_t need_unlock = TRUE; |
| 3542 | boolean_t consider_defragmenting = FALSE; |
| 3543 | boolean_t kdp_mode = FALSE; |
| 3544 | |
| 3545 | if (__improbable(flags & C_KDP)) { |
| 3546 | if (not_in_kdp) { |
| 3547 | panic("C_KDP passed to decompress page from outside of debugger context" ); |
| 3548 | } |
| 3549 | |
| 3550 | assert((flags & C_KEEP) == C_KEEP); |
| 3551 | assert((flags & C_DONT_BLOCK) == C_DONT_BLOCK); |
| 3552 | |
| 3553 | if ((flags & (C_DONT_BLOCK | C_KEEP)) != (C_DONT_BLOCK | C_KEEP)) { |
| 3554 | return (-2); |
| 3555 | } |
| 3556 | |
| 3557 | kdp_mode = TRUE; |
| 3558 | *zeroslot = 0; |
| 3559 | } |
| 3560 | |
| 3561 | ReTry: |
| 3562 | if (__probable(!kdp_mode)) { |
| 3563 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3564 | } else { |
| 3565 | if (kdp_lck_rw_lock_is_acquired_exclusive(&c_master_lock)) { |
| 3566 | return (-2); |
| 3567 | } |
| 3568 | } |
| 3569 | |
| 3570 | #if HIBERNATION |
| 3571 | /* |
| 3572 | * if hibernation is enabled, it indicates (via a call |
| 3573 | * to 'vm_decompressor_lock' that no further |
| 3574 | * decompressions are allowed once it reaches |
| 3575 | * the point of flushing all of the currently dirty |
| 3576 | * anonymous memory through the compressor and out |
| 3577 | * to disk... in this state we allow freeing of compressed |
| 3578 | * pages and must honor the C_DONT_BLOCK case |
| 3579 | */ |
| 3580 | if (__improbable(dst && decompressions_blocked == TRUE)) { |
| 3581 | if (flags & C_DONT_BLOCK) { |
| 3582 | |
| 3583 | if (__probable(!kdp_mode)) { |
| 3584 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3585 | } |
| 3586 | |
| 3587 | *zeroslot = 0; |
| 3588 | return (-2); |
| 3589 | } |
| 3590 | /* |
| 3591 | * it's safe to atomically assert and block behind the |
| 3592 | * lock held in shared mode because "decompressions_blocked" is |
| 3593 | * only set and cleared and the thread_wakeup done when the lock |
| 3594 | * is held exclusively |
| 3595 | */ |
| 3596 | assert_wait((event_t)&decompressions_blocked, THREAD_UNINT); |
| 3597 | |
| 3598 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3599 | |
| 3600 | thread_block(THREAD_CONTINUE_NULL); |
| 3601 | |
| 3602 | goto ReTry; |
| 3603 | } |
| 3604 | #endif |
| 3605 | /* s_cseg is actually "segno+1" */ |
| 3606 | c_segno = slot_ptr->s_cseg - 1; |
| 3607 | |
| 3608 | if (__improbable(c_segno >= c_segments_available)) |
| 3609 | panic("c_decompress_page: c_segno %d >= c_segments_available %d, slot_ptr(%p), slot_data(%x)" , |
| 3610 | c_segno, c_segments_available, slot_ptr, *(int *)((void *)slot_ptr)); |
| 3611 | |
| 3612 | if (__improbable(c_segments[c_segno].c_segno < c_segments_available)) |
| 3613 | panic("c_decompress_page: c_segno %d is free, slot_ptr(%p), slot_data(%x)" , |
| 3614 | c_segno, slot_ptr, *(int *)((void *)slot_ptr)); |
| 3615 | |
| 3616 | c_seg = c_segments[c_segno].c_seg; |
| 3617 | |
| 3618 | if (__probable(!kdp_mode)) { |
| 3619 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3620 | } else { |
| 3621 | if (kdp_lck_mtx_lock_spin_is_acquired(&c_seg->c_lock)) { |
| 3622 | return (-2); |
| 3623 | } |
| 3624 | } |
| 3625 | |
| 3626 | assert(c_seg->c_state != C_IS_EMPTY && c_seg->c_state != C_IS_FREE); |
| 3627 | |
| 3628 | if (dst == NULL && c_seg->c_busy_swapping) { |
| 3629 | assert(c_seg->c_busy); |
| 3630 | |
| 3631 | goto bypass_busy_check; |
| 3632 | } |
| 3633 | if (flags & C_DONT_BLOCK) { |
| 3634 | if (c_seg->c_busy || (C_SEG_IS_ONDISK(c_seg) && dst)) { |
| 3635 | *zeroslot = 0; |
| 3636 | |
| 3637 | retval = -2; |
| 3638 | goto done; |
| 3639 | } |
| 3640 | } |
| 3641 | if (c_seg->c_busy) { |
| 3642 | |
| 3643 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3644 | |
| 3645 | c_seg_wait_on_busy(c_seg); |
| 3646 | |
| 3647 | goto ReTry; |
| 3648 | } |
| 3649 | bypass_busy_check: |
| 3650 | |
| 3651 | c_indx = slot_ptr->s_cindx; |
| 3652 | |
| 3653 | if (__improbable(c_indx >= c_seg->c_nextslot)) |
| 3654 | panic("c_decompress_page: c_indx %d >= c_nextslot %d, c_seg(%p), slot_ptr(%p), slot_data(%x)" , |
| 3655 | c_indx, c_seg->c_nextslot, c_seg, slot_ptr, *(int *)((void *)slot_ptr)); |
| 3656 | |
| 3657 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 3658 | |
| 3659 | c_size = UNPACK_C_SIZE(cs); |
| 3660 | |
| 3661 | if (__improbable(c_size == 0)) |
| 3662 | panic("c_decompress_page: c_size == 0, c_seg(%p), slot_ptr(%p), slot_data(%x)" , |
| 3663 | c_seg, slot_ptr, *(int *)((void *)slot_ptr)); |
| 3664 | |
| 3665 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 3666 | |
| 3667 | if (dst) { |
| 3668 | uint32_t age_of_cseg; |
| 3669 | clock_sec_t cur_ts_sec; |
| 3670 | clock_nsec_t cur_ts_nsec; |
| 3671 | |
| 3672 | if (C_SEG_IS_ONDISK(c_seg)) { |
| 3673 | assert(kdp_mode == FALSE); |
| 3674 | retval = c_seg_swapin(c_seg, FALSE, TRUE); |
| 3675 | assert(retval == 0); |
| 3676 | |
| 3677 | retval = 1; |
| 3678 | } |
| 3679 | if (c_seg->c_state == C_ON_BAD_Q) { |
| 3680 | assert(c_seg->c_store.c_buffer == NULL); |
| 3681 | *zeroslot = 0; |
| 3682 | |
| 3683 | retval = -1; |
| 3684 | goto done; |
| 3685 | } |
| 3686 | |
| 3687 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 3688 | unsigned csvpop; |
| 3689 | uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset]; |
| 3690 | if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) { |
| 3691 | panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x" , (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata); |
| 3692 | } |
| 3693 | #endif |
| 3694 | |
| 3695 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 3696 | unsigned csvhash; |
| 3697 | if (cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) { |
| 3698 | panic("Compressed data doesn't match original %p %p %u %u %u" , c_seg, cs, c_size, cs->c_hash_compressed_data, csvhash); |
| 3699 | } |
| 3700 | #endif |
| 3701 | if (c_rounded_size == PAGE_SIZE) { |
| 3702 | /* |
| 3703 | * page wasn't compressible... just copy it out |
| 3704 | */ |
| 3705 | memcpy(dst, &c_seg->c_store.c_buffer[cs->c_offset], PAGE_SIZE); |
| 3706 | } else if (c_size == 4) { |
| 3707 | int32_t data; |
| 3708 | int32_t *dptr; |
| 3709 | |
| 3710 | /* |
| 3711 | * page was populated with a single value |
| 3712 | * that didn't fit into our fast hash |
| 3713 | * so we packed it in as a single non-compressed value |
| 3714 | * that we need to populate the page with |
| 3715 | */ |
| 3716 | dptr = (int32_t *)(uintptr_t)dst; |
| 3717 | data = *(int32_t *)(&c_seg->c_store.c_buffer[cs->c_offset]); |
| 3718 | sv_decompress(dptr, data); |
| 3719 | } else { |
| 3720 | uint32_t my_cpu_no; |
| 3721 | char *scratch_buf; |
| 3722 | |
| 3723 | if (__probable(!kdp_mode)) { |
| 3724 | /* |
| 3725 | * we're behind the c_seg lock held in spin mode |
| 3726 | * which means pre-emption is disabled... therefore |
| 3727 | * the following sequence is atomic and safe |
| 3728 | */ |
| 3729 | my_cpu_no = cpu_number(); |
| 3730 | |
| 3731 | assert(my_cpu_no < compressor_cpus); |
| 3732 | |
| 3733 | scratch_buf = &compressor_scratch_bufs[my_cpu_no * vm_compressor_get_decode_scratch_size()]; |
| 3734 | } else { |
| 3735 | scratch_buf = kdp_compressor_scratch_buf; |
| 3736 | } |
| 3737 | |
| 3738 | if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) { |
| 3739 | #if defined(__arm__) || defined(__arm64__) |
| 3740 | uint16_t c_codec = cs->c_codec; |
| 3741 | metadecompressor((const uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset], |
| 3742 | (uint8_t *)dst, c_size, c_codec, (void *)scratch_buf); |
| 3743 | #endif |
| 3744 | } else { |
| 3745 | #if defined(__arm64__) |
| 3746 | __unreachable_ok_push |
| 3747 | if (PAGE_SIZE == 4096) |
| 3748 | WKdm_decompress_4k((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3749 | (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size); |
| 3750 | else { |
| 3751 | WKdm_decompress_16k((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3752 | (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size); |
| 3753 | } |
| 3754 | __unreachable_ok_pop |
| 3755 | #else |
| 3756 | WKdm_decompress_new((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 3757 | (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size); |
| 3758 | #endif |
| 3759 | } |
| 3760 | } |
| 3761 | |
| 3762 | #if CHECKSUM_THE_DATA |
| 3763 | if (cs->c_hash_data != vmc_hash(dst, PAGE_SIZE)) { |
| 3764 | #if defined(__arm__) || defined(__arm64__) |
| 3765 | int32_t *dinput = &c_seg->c_store.c_buffer[cs->c_offset]; |
| 3766 | panic("decompressed data doesn't match original cs: %p, hash: 0x%x, offset: %d, c_size: %d, c_rounded_size: %d, codec: %d, header: 0x%x 0x%x 0x%x" , cs, cs->c_hash_data, cs->c_offset, c_size, c_rounded_size, cs->c_codec, *dinput, *(dinput + 1), *(dinput + 2)); |
| 3767 | #else |
| 3768 | panic("decompressed data doesn't match original cs: %p, hash: %d, offset: 0x%x, c_size: %d" , cs, cs->c_hash_data, cs->c_offset, c_size); |
| 3769 | #endif |
| 3770 | } |
| 3771 | #endif |
| 3772 | if (c_seg->c_swappedin_ts == 0 && !kdp_mode) { |
| 3773 | |
| 3774 | clock_get_system_nanotime(&cur_ts_sec, &cur_ts_nsec); |
| 3775 | |
| 3776 | age_of_cseg = (uint32_t)cur_ts_sec - c_seg->c_creation_ts; |
| 3777 | if (age_of_cseg < DECOMPRESSION_SAMPLE_MAX_AGE) |
| 3778 | OSAddAtomic(1, &age_of_decompressions_during_sample_period[age_of_cseg]); |
| 3779 | else |
| 3780 | OSAddAtomic(1, &overage_decompressions_during_sample_period); |
| 3781 | |
| 3782 | OSAddAtomic(1, &sample_period_decompression_count); |
| 3783 | } |
| 3784 | } |
| 3785 | if (flags & C_KEEP) { |
| 3786 | *zeroslot = 0; |
| 3787 | goto done; |
| 3788 | } |
| 3789 | assert(kdp_mode == FALSE); |
| 3790 | |
| 3791 | c_seg->c_bytes_unused += c_rounded_size; |
| 3792 | c_seg->c_bytes_used -= c_rounded_size; |
| 3793 | |
| 3794 | assert(c_seg->c_slots_used); |
| 3795 | c_seg->c_slots_used--; |
| 3796 | |
| 3797 | PACK_C_SIZE(cs, 0); |
| 3798 | |
| 3799 | if (c_indx < c_seg->c_firstemptyslot) |
| 3800 | c_seg->c_firstemptyslot = c_indx; |
| 3801 | |
| 3802 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 3803 | |
| 3804 | if (c_seg->c_state != C_ON_BAD_Q && !(C_SEG_IS_ONDISK(c_seg))) { |
| 3805 | /* |
| 3806 | * C_SEG_IS_ONDISK == TRUE can occur when we're doing a |
| 3807 | * free of a compressed page (i.e. dst == NULL) |
| 3808 | */ |
| 3809 | OSAddAtomic64(-c_rounded_size, &compressor_bytes_used); |
| 3810 | } |
| 3811 | if (c_seg->c_busy_swapping) { |
| 3812 | /* |
| 3813 | * bypass case for c_busy_swapping... |
| 3814 | * let the swapin/swapout paths deal with putting |
| 3815 | * the c_seg on the minor compaction queue if needed |
| 3816 | */ |
| 3817 | assert(c_seg->c_busy); |
| 3818 | goto done; |
| 3819 | } |
| 3820 | assert(!c_seg->c_busy); |
| 3821 | |
| 3822 | if (c_seg->c_state != C_IS_FILLING) { |
| 3823 | if (c_seg->c_bytes_used == 0) { |
| 3824 | if ( !(C_SEG_IS_ONDISK(c_seg))) { |
| 3825 | int pages_populated; |
| 3826 | |
| 3827 | pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE; |
| 3828 | c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0); |
| 3829 | |
| 3830 | if (pages_populated) { |
| 3831 | |
| 3832 | assert(c_seg->c_state != C_ON_BAD_Q); |
| 3833 | assert(c_seg->c_store.c_buffer != NULL); |
| 3834 | |
| 3835 | C_SEG_BUSY(c_seg); |
| 3836 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3837 | |
| 3838 | kernel_memory_depopulate(compressor_map, (vm_offset_t) c_seg->c_store.c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR); |
| 3839 | |
| 3840 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 3841 | C_SEG_WAKEUP_DONE(c_seg); |
| 3842 | } |
| 3843 | if (!c_seg->c_on_minorcompact_q && c_seg->c_state != C_ON_SWAPOUT_Q && c_seg->c_state != C_ON_SWAPIO_Q) |
| 3844 | c_seg_need_delayed_compaction(c_seg, FALSE); |
| 3845 | } else { |
| 3846 | if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q) { |
| 3847 | |
| 3848 | c_seg_move_to_sparse_list(c_seg); |
| 3849 | consider_defragmenting = TRUE; |
| 3850 | } |
| 3851 | } |
| 3852 | } else if (c_seg->c_on_minorcompact_q) { |
| 3853 | |
| 3854 | assert(c_seg->c_state != C_ON_BAD_Q); |
| 3855 | assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg)); |
| 3856 | |
| 3857 | if (C_SEG_SHOULD_MINORCOMPACT_NOW(c_seg)) { |
| 3858 | c_seg_try_minor_compaction_and_unlock(c_seg); |
| 3859 | need_unlock = FALSE; |
| 3860 | } |
| 3861 | } else if ( !(C_SEG_IS_ONDISK(c_seg))) { |
| 3862 | |
| 3863 | if (c_seg->c_state != C_ON_BAD_Q && c_seg->c_state != C_ON_SWAPOUT_Q && c_seg->c_state != C_ON_SWAPIO_Q && |
| 3864 | C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) { |
| 3865 | c_seg_need_delayed_compaction(c_seg, FALSE); |
| 3866 | } |
| 3867 | } else if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q && C_SEG_ONDISK_IS_SPARSE(c_seg)) { |
| 3868 | |
| 3869 | c_seg_move_to_sparse_list(c_seg); |
| 3870 | consider_defragmenting = TRUE; |
| 3871 | } |
| 3872 | } |
| 3873 | done: |
| 3874 | if (__improbable(kdp_mode)) { |
| 3875 | return retval; |
| 3876 | } |
| 3877 | |
| 3878 | if (need_unlock == TRUE) |
| 3879 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3880 | |
| 3881 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3882 | |
| 3883 | if (consider_defragmenting == TRUE) |
| 3884 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE); |
| 3885 | |
| 3886 | #if CONFIG_EMBEDDED |
| 3887 | if ((c_minor_count && COMPRESSOR_NEEDS_TO_MINOR_COMPACT()) || vm_compressor_needs_to_major_compact()) |
| 3888 | vm_wake_compactor_swapper(); |
| 3889 | #endif |
| 3890 | |
| 3891 | return (retval); |
| 3892 | } |
| 3893 | |
| 3894 | |
| 3895 | int |
| 3896 | vm_compressor_get(ppnum_t pn, int *slot, int flags) |
| 3897 | { |
| 3898 | c_slot_mapping_t slot_ptr; |
| 3899 | char *dst; |
| 3900 | int zeroslot = 1; |
| 3901 | int retval; |
| 3902 | |
| 3903 | #if __x86_64__ |
| 3904 | dst = PHYSMAP_PTOV((uint64_t)pn << (uint64_t)PAGE_SHIFT); |
| 3905 | #elif __arm__ || __arm64__ |
| 3906 | dst = (char *) phystokv((pmap_paddr_t)pn << PAGE_SHIFT); |
| 3907 | #else |
| 3908 | #error "unsupported architecture" |
| 3909 | #endif |
| 3910 | slot_ptr = (c_slot_mapping_t)slot; |
| 3911 | |
| 3912 | if (slot_ptr->s_cseg == C_SV_CSEG_ID) { |
| 3913 | int32_t data; |
| 3914 | int32_t *dptr; |
| 3915 | |
| 3916 | /* |
| 3917 | * page was populated with a single value |
| 3918 | * that found a home in our hash table |
| 3919 | * grab that value from the hash and populate the page |
| 3920 | * that we need to populate the page with |
| 3921 | */ |
| 3922 | dptr = (int32_t *)(uintptr_t)dst; |
| 3923 | data = c_segment_sv_hash_table[slot_ptr->s_cindx].he_data; |
| 3924 | #if __x86_64__ |
| 3925 | memset_word(dptr, data, PAGE_SIZE / sizeof(int32_t)); |
| 3926 | #else |
| 3927 | { |
| 3928 | int i; |
| 3929 | |
| 3930 | for (i = 0; i < (int)(PAGE_SIZE / sizeof(int32_t)); i++) |
| 3931 | *dptr++ = data; |
| 3932 | } |
| 3933 | #endif |
| 3934 | if ( !(flags & C_KEEP)) { |
| 3935 | c_segment_sv_hash_drop_ref(slot_ptr->s_cindx); |
| 3936 | |
| 3937 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 3938 | *slot = 0; |
| 3939 | } |
| 3940 | if (data) |
| 3941 | OSAddAtomic(1, &c_segment_svp_nonzero_decompressions); |
| 3942 | else |
| 3943 | OSAddAtomic(1, &c_segment_svp_zero_decompressions); |
| 3944 | |
| 3945 | return (0); |
| 3946 | } |
| 3947 | |
| 3948 | retval = c_decompress_page(dst, slot_ptr, flags, &zeroslot); |
| 3949 | |
| 3950 | /* |
| 3951 | * zeroslot will be set to 0 by c_decompress_page if (flags & C_KEEP) |
| 3952 | * or (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be TRUE |
| 3953 | */ |
| 3954 | if (zeroslot) { |
| 3955 | *slot = 0; |
| 3956 | } |
| 3957 | /* |
| 3958 | * returns 0 if we successfully decompressed a page from a segment already in memory |
| 3959 | * returns 1 if we had to first swap in the segment, before successfully decompressing the page |
| 3960 | * returns -1 if we encountered an error swapping in the segment - decompression failed |
| 3961 | * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be true |
| 3962 | */ |
| 3963 | return (retval); |
| 3964 | } |
| 3965 | |
| 3966 | |
| 3967 | int |
| 3968 | vm_compressor_free(int *slot, int flags) |
| 3969 | { |
| 3970 | c_slot_mapping_t slot_ptr; |
| 3971 | int zeroslot = 1; |
| 3972 | int retval; |
| 3973 | |
| 3974 | assert(flags == 0 || flags == C_DONT_BLOCK); |
| 3975 | |
| 3976 | slot_ptr = (c_slot_mapping_t)slot; |
| 3977 | |
| 3978 | if (slot_ptr->s_cseg == C_SV_CSEG_ID) { |
| 3979 | |
| 3980 | c_segment_sv_hash_drop_ref(slot_ptr->s_cindx); |
| 3981 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 3982 | |
| 3983 | *slot = 0; |
| 3984 | return (0); |
| 3985 | } |
| 3986 | retval = c_decompress_page(NULL, slot_ptr, flags, &zeroslot); |
| 3987 | /* |
| 3988 | * returns 0 if we successfully freed the specified compressed page |
| 3989 | * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' set |
| 3990 | */ |
| 3991 | |
| 3992 | if (retval == 0) |
| 3993 | *slot = 0; |
| 3994 | else |
| 3995 | assert(retval == -2); |
| 3996 | |
| 3997 | return (retval); |
| 3998 | } |
| 3999 | |
| 4000 | |
| 4001 | int |
| 4002 | vm_compressor_put(ppnum_t pn, int *slot, void **current_chead, char *scratch_buf) |
| 4003 | { |
| 4004 | char *src; |
| 4005 | int retval; |
| 4006 | |
| 4007 | #if __x86_64__ |
| 4008 | src = PHYSMAP_PTOV((uint64_t)pn << (uint64_t)PAGE_SHIFT); |
| 4009 | #elif __arm__ || __arm64__ |
| 4010 | src = (char *) phystokv((pmap_paddr_t)pn << PAGE_SHIFT); |
| 4011 | #else |
| 4012 | #error "unsupported architecture" |
| 4013 | #endif |
| 4014 | |
| 4015 | retval = c_compress_page(src, (c_slot_mapping_t)slot, (c_segment_t *)current_chead, scratch_buf); |
| 4016 | |
| 4017 | return (retval); |
| 4018 | } |
| 4019 | |
| 4020 | void |
| 4021 | vm_compressor_transfer( |
| 4022 | int *dst_slot_p, |
| 4023 | int *src_slot_p) |
| 4024 | { |
| 4025 | c_slot_mapping_t dst_slot, src_slot; |
| 4026 | c_segment_t c_seg; |
| 4027 | int c_indx; |
| 4028 | c_slot_t cs; |
| 4029 | |
| 4030 | src_slot = (c_slot_mapping_t) src_slot_p; |
| 4031 | |
| 4032 | if (src_slot->s_cseg == C_SV_CSEG_ID) { |
| 4033 | *dst_slot_p = *src_slot_p; |
| 4034 | *src_slot_p = 0; |
| 4035 | return; |
| 4036 | } |
| 4037 | dst_slot = (c_slot_mapping_t) dst_slot_p; |
| 4038 | Retry: |
| 4039 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4040 | /* get segment for src_slot */ |
| 4041 | c_seg = c_segments[src_slot->s_cseg -1].c_seg; |
| 4042 | /* lock segment */ |
| 4043 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 4044 | /* wait if it's busy */ |
| 4045 | if (c_seg->c_busy && !c_seg->c_busy_swapping) { |
| 4046 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4047 | c_seg_wait_on_busy(c_seg); |
| 4048 | goto Retry; |
| 4049 | } |
| 4050 | /* find the c_slot */ |
| 4051 | c_indx = src_slot->s_cindx; |
| 4052 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 4053 | /* point the c_slot back to dst_slot instead of src_slot */ |
| 4054 | cs->c_packed_ptr = C_SLOT_PACK_PTR(dst_slot); |
| 4055 | /* transfer */ |
| 4056 | *dst_slot_p = *src_slot_p; |
| 4057 | *src_slot_p = 0; |
| 4058 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4059 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4060 | } |
| 4061 | |
| 4062 | #if CONFIG_FREEZE |
| 4063 | |
| 4064 | int freezer_finished_filling = 0; |
| 4065 | |
| 4066 | void |
| 4067 | vm_compressor_finished_filling( |
| 4068 | void **current_chead) |
| 4069 | { |
| 4070 | c_segment_t c_seg; |
| 4071 | |
| 4072 | if ((c_seg = *(c_segment_t *)current_chead) == NULL) |
| 4073 | return; |
| 4074 | |
| 4075 | assert(c_seg->c_state == C_IS_FILLING); |
| 4076 | |
| 4077 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 4078 | |
| 4079 | c_current_seg_filled(c_seg, (c_segment_t *)current_chead); |
| 4080 | |
| 4081 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4082 | |
| 4083 | freezer_finished_filling++; |
| 4084 | } |
| 4085 | |
| 4086 | |
| 4087 | /* |
| 4088 | * This routine is used to transfer the compressed chunks from |
| 4089 | * the c_seg/cindx pointed to by slot_p into a new c_seg headed |
| 4090 | * by the current_chead and a new cindx within that c_seg. |
| 4091 | * |
| 4092 | * Currently, this routine is only used by the "freezer backed by |
| 4093 | * compressor with swap" mode to create a series of c_segs that |
| 4094 | * only contain compressed data belonging to one task. So, we |
| 4095 | * move a task's previously compressed data into a set of new |
| 4096 | * c_segs which will also hold the task's yet to be compressed data. |
| 4097 | */ |
| 4098 | |
| 4099 | kern_return_t |
| 4100 | vm_compressor_relocate( |
| 4101 | void **current_chead, |
| 4102 | int *slot_p) |
| 4103 | { |
| 4104 | c_slot_mapping_t slot_ptr; |
| 4105 | c_slot_mapping_t src_slot; |
| 4106 | uint32_t c_rounded_size; |
| 4107 | uint32_t c_size; |
| 4108 | uint16_t dst_slot; |
| 4109 | c_slot_t c_dst; |
| 4110 | c_slot_t c_src; |
| 4111 | int c_indx; |
| 4112 | c_segment_t c_seg_dst = NULL; |
| 4113 | c_segment_t c_seg_src = NULL; |
| 4114 | kern_return_t kr = KERN_SUCCESS; |
| 4115 | |
| 4116 | |
| 4117 | src_slot = (c_slot_mapping_t) slot_p; |
| 4118 | |
| 4119 | if (src_slot->s_cseg == C_SV_CSEG_ID) { |
| 4120 | /* |
| 4121 | * no need to relocate... this is a page full of a single |
| 4122 | * value which is hashed to a single entry not contained |
| 4123 | * in a c_segment_t |
| 4124 | */ |
| 4125 | return (kr); |
| 4126 | } |
| 4127 | |
| 4128 | Relookup_dst: |
| 4129 | c_seg_dst = c_seg_allocate((c_segment_t *)current_chead); |
| 4130 | /* |
| 4131 | * returns with c_seg lock held |
| 4132 | * and PAGE_REPLACEMENT_DISALLOWED(TRUE)... |
| 4133 | * c_nextslot has been allocated and |
| 4134 | * c_store.c_buffer populated |
| 4135 | */ |
| 4136 | if (c_seg_dst == NULL) { |
| 4137 | /* |
| 4138 | * Out of compression segments? |
| 4139 | */ |
| 4140 | kr = KERN_RESOURCE_SHORTAGE; |
| 4141 | goto out; |
| 4142 | } |
| 4143 | |
| 4144 | assert(c_seg_dst->c_busy == 0); |
| 4145 | |
| 4146 | C_SEG_BUSY(c_seg_dst); |
| 4147 | |
| 4148 | dst_slot = c_seg_dst->c_nextslot; |
| 4149 | |
| 4150 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 4151 | |
| 4152 | Relookup_src: |
| 4153 | c_seg_src = c_segments[src_slot->s_cseg - 1].c_seg; |
| 4154 | |
| 4155 | assert(c_seg_dst != c_seg_src); |
| 4156 | |
| 4157 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 4158 | |
| 4159 | if (C_SEG_IS_ONDISK(c_seg_src)) { |
| 4160 | |
| 4161 | /* |
| 4162 | * A "thaw" can mark a process as eligible for |
| 4163 | * another freeze cycle without bringing any of |
| 4164 | * its swapped out c_segs back from disk (because |
| 4165 | * that is done on-demand). |
| 4166 | * |
| 4167 | * If the src c_seg we find for our pre-compressed |
| 4168 | * data is already on-disk, then we are dealing |
| 4169 | * with an app's data that is already packed and |
| 4170 | * swapped out. Don't do anything. |
| 4171 | */ |
| 4172 | |
| 4173 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4174 | |
| 4175 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 4176 | |
| 4177 | c_seg_src = NULL; |
| 4178 | |
| 4179 | goto out; |
| 4180 | } |
| 4181 | |
| 4182 | if (c_seg_src->c_busy) { |
| 4183 | |
| 4184 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4185 | c_seg_wait_on_busy(c_seg_src); |
| 4186 | |
| 4187 | c_seg_src = NULL; |
| 4188 | |
| 4189 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4190 | |
| 4191 | goto Relookup_src; |
| 4192 | } |
| 4193 | |
| 4194 | C_SEG_BUSY(c_seg_src); |
| 4195 | |
| 4196 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 4197 | |
| 4198 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4199 | |
| 4200 | /* find the c_slot */ |
| 4201 | c_indx = src_slot->s_cindx; |
| 4202 | |
| 4203 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg_src, c_indx); |
| 4204 | |
| 4205 | c_size = UNPACK_C_SIZE(c_src); |
| 4206 | |
| 4207 | assert(c_size); |
| 4208 | |
| 4209 | if (c_size > (uint32_t)(C_SEG_BUFSIZE - C_SEG_OFFSET_TO_BYTES((int32_t)c_seg_dst->c_nextoffset))) { |
| 4210 | /* |
| 4211 | * This segment is full. We need a new one. |
| 4212 | */ |
| 4213 | |
| 4214 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4215 | |
| 4216 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 4217 | C_SEG_WAKEUP_DONE(c_seg_src); |
| 4218 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 4219 | |
| 4220 | c_seg_src = NULL; |
| 4221 | |
| 4222 | lck_mtx_lock_spin_always(&c_seg_dst->c_lock); |
| 4223 | |
| 4224 | assert(c_seg_dst->c_busy); |
| 4225 | assert(c_seg_dst->c_state == C_IS_FILLING); |
| 4226 | assert(!c_seg_dst->c_on_minorcompact_q); |
| 4227 | |
| 4228 | c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead); |
| 4229 | assert(*current_chead == NULL); |
| 4230 | |
| 4231 | C_SEG_WAKEUP_DONE(c_seg_dst); |
| 4232 | |
| 4233 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 4234 | |
| 4235 | c_seg_dst = NULL; |
| 4236 | |
| 4237 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4238 | |
| 4239 | goto Relookup_dst; |
| 4240 | } |
| 4241 | |
| 4242 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot); |
| 4243 | |
| 4244 | memcpy(&c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], &c_seg_src->c_store.c_buffer[c_src->c_offset], c_size); |
| 4245 | //is platform alignment actually necessary since wkdm aligns its output? |
| 4246 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 4247 | |
| 4248 | cslot_copy(c_dst, c_src); |
| 4249 | c_dst->c_offset = c_seg_dst->c_nextoffset; |
| 4250 | |
| 4251 | if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) |
| 4252 | c_seg_dst->c_firstemptyslot++; |
| 4253 | |
| 4254 | c_seg_dst->c_slots_used++; |
| 4255 | c_seg_dst->c_nextslot++; |
| 4256 | c_seg_dst->c_bytes_used += c_rounded_size; |
| 4257 | c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 4258 | |
| 4259 | |
| 4260 | PACK_C_SIZE(c_src, 0); |
| 4261 | |
| 4262 | c_seg_src->c_bytes_used -= c_rounded_size; |
| 4263 | c_seg_src->c_bytes_unused += c_rounded_size; |
| 4264 | |
| 4265 | assert(c_seg_src->c_slots_used); |
| 4266 | c_seg_src->c_slots_used--; |
| 4267 | |
| 4268 | if (c_indx < c_seg_src->c_firstemptyslot) { |
| 4269 | c_seg_src->c_firstemptyslot = c_indx; |
| 4270 | } |
| 4271 | |
| 4272 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot); |
| 4273 | |
| 4274 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 4275 | slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst); |
| 4276 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 4277 | slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1; |
| 4278 | slot_ptr->s_cindx = dst_slot; |
| 4279 | |
| 4280 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 4281 | |
| 4282 | out: |
| 4283 | if (c_seg_src) { |
| 4284 | |
| 4285 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 4286 | |
| 4287 | C_SEG_WAKEUP_DONE(c_seg_src); |
| 4288 | |
| 4289 | if (c_seg_src->c_bytes_used == 0 && c_seg_src->c_state != C_IS_FILLING) { |
| 4290 | if (!c_seg_src->c_on_minorcompact_q) |
| 4291 | c_seg_need_delayed_compaction(c_seg_src, FALSE); |
| 4292 | } |
| 4293 | |
| 4294 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 4295 | } |
| 4296 | |
| 4297 | if (c_seg_dst) { |
| 4298 | |
| 4299 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4300 | |
| 4301 | lck_mtx_lock_spin_always(&c_seg_dst->c_lock); |
| 4302 | |
| 4303 | if (c_seg_dst->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 4304 | /* |
| 4305 | * Nearing or exceeded maximum slot and offset capacity. |
| 4306 | */ |
| 4307 | assert(c_seg_dst->c_busy); |
| 4308 | assert(c_seg_dst->c_state == C_IS_FILLING); |
| 4309 | assert(!c_seg_dst->c_on_minorcompact_q); |
| 4310 | |
| 4311 | c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead); |
| 4312 | assert(*current_chead == NULL); |
| 4313 | } |
| 4314 | |
| 4315 | C_SEG_WAKEUP_DONE(c_seg_dst); |
| 4316 | |
| 4317 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 4318 | |
| 4319 | c_seg_dst = NULL; |
| 4320 | |
| 4321 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4322 | } |
| 4323 | |
| 4324 | return kr; |
| 4325 | } |
| 4326 | #endif /* CONFIG_FREEZE */ |
| 4327 | |