| 1 | /* |
| 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/memory_object.c |
| 60 | * Author: Michael Wayne Young |
| 61 | * |
| 62 | * External memory management interface control functions. |
| 63 | */ |
| 64 | |
| 65 | /* |
| 66 | * Interface dependencies: |
| 67 | */ |
| 68 | |
| 69 | #include <mach/std_types.h> /* For pointer_t */ |
| 70 | #include <mach/mach_types.h> |
| 71 | |
| 72 | #include <mach/mig.h> |
| 73 | #include <mach/kern_return.h> |
| 74 | #include <mach/memory_object.h> |
| 75 | #include <mach/memory_object_default.h> |
| 76 | #include <mach/memory_object_control_server.h> |
| 77 | #include <mach/host_priv_server.h> |
| 78 | #include <mach/boolean.h> |
| 79 | #include <mach/vm_prot.h> |
| 80 | #include <mach/message.h> |
| 81 | |
| 82 | /* |
| 83 | * Implementation dependencies: |
| 84 | */ |
| 85 | #include <string.h> /* For memcpy() */ |
| 86 | |
| 87 | #include <kern/xpr.h> |
| 88 | #include <kern/host.h> |
| 89 | #include <kern/thread.h> /* For current_thread() */ |
| 90 | #include <kern/ipc_mig.h> |
| 91 | #include <kern/misc_protos.h> |
| 92 | |
| 93 | #include <vm/vm_object.h> |
| 94 | #include <vm/vm_fault.h> |
| 95 | #include <vm/memory_object.h> |
| 96 | #include <vm/vm_page.h> |
| 97 | #include <vm/vm_pageout.h> |
| 98 | #include <vm/pmap.h> /* For pmap_clear_modify */ |
| 99 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ |
| 100 | #include <vm/vm_map.h> /* For vm_map_pageable */ |
| 101 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
| 102 | #include <vm/vm_shared_region.h> |
| 103 | |
| 104 | #include <vm/vm_external.h> |
| 105 | |
| 106 | #include <vm/vm_protos.h> |
| 107 | |
| 108 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
| 109 | decl_lck_mtx_data(, memory_manager_default_lock) |
| 110 | |
| 111 | |
| 112 | /* |
| 113 | * Routine: memory_object_should_return_page |
| 114 | * |
| 115 | * Description: |
| 116 | * Determine whether the given page should be returned, |
| 117 | * based on the page's state and on the given return policy. |
| 118 | * |
| 119 | * We should return the page if one of the following is true: |
| 120 | * |
| 121 | * 1. Page is dirty and should_return is not RETURN_NONE. |
| 122 | * 2. Page is precious and should_return is RETURN_ALL. |
| 123 | * 3. Should_return is RETURN_ANYTHING. |
| 124 | * |
| 125 | * As a side effect, m->vmp_dirty will be made consistent |
| 126 | * with pmap_is_modified(m), if should_return is not |
| 127 | * MEMORY_OBJECT_RETURN_NONE. |
| 128 | */ |
| 129 | |
| 130 | #define memory_object_should_return_page(m, should_return) \ |
| 131 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ |
| 132 | (((m)->vmp_dirty || ((m)->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m)))) || \ |
| 133 | ((m)->vmp_precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ |
| 134 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) |
| 135 | |
| 136 | typedef int memory_object_lock_result_t; |
| 137 | |
| 138 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 |
| 139 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 |
| 140 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2 |
| 141 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3 |
| 142 | |
| 143 | memory_object_lock_result_t memory_object_lock_page( |
| 144 | vm_page_t m, |
| 145 | memory_object_return_t should_return, |
| 146 | boolean_t should_flush, |
| 147 | vm_prot_t prot); |
| 148 | |
| 149 | /* |
| 150 | * Routine: memory_object_lock_page |
| 151 | * |
| 152 | * Description: |
| 153 | * Perform the appropriate lock operations on the |
| 154 | * given page. See the description of |
| 155 | * "memory_object_lock_request" for the meanings |
| 156 | * of the arguments. |
| 157 | * |
| 158 | * Returns an indication that the operation |
| 159 | * completed, blocked, or that the page must |
| 160 | * be cleaned. |
| 161 | */ |
| 162 | memory_object_lock_result_t |
| 163 | memory_object_lock_page( |
| 164 | vm_page_t m, |
| 165 | memory_object_return_t should_return, |
| 166 | boolean_t should_flush, |
| 167 | vm_prot_t prot) |
| 168 | { |
| 169 | XPR(XPR_MEMORY_OBJECT, |
| 170 | "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n" , |
| 171 | m, should_return, should_flush, prot, 0); |
| 172 | |
| 173 | |
| 174 | if (m->vmp_busy || m->vmp_cleaning) |
| 175 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK); |
| 176 | |
| 177 | if (m->vmp_laundry) |
| 178 | vm_pageout_steal_laundry(m, FALSE); |
| 179 | |
| 180 | /* |
| 181 | * Don't worry about pages for which the kernel |
| 182 | * does not have any data. |
| 183 | */ |
| 184 | if (m->vmp_absent || m->vmp_error || m->vmp_restart) { |
| 185 | if (m->vmp_error && should_flush && !VM_PAGE_WIRED(m)) { |
| 186 | /* |
| 187 | * dump the page, pager wants us to |
| 188 | * clean it up and there is no |
| 189 | * relevant data to return |
| 190 | */ |
| 191 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); |
| 192 | } |
| 193 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
| 194 | } |
| 195 | assert(!m->vmp_fictitious); |
| 196 | |
| 197 | if (VM_PAGE_WIRED(m)) { |
| 198 | /* |
| 199 | * The page is wired... just clean or return the page if needed. |
| 200 | * Wired pages don't get flushed or disconnected from the pmap. |
| 201 | */ |
| 202 | if (memory_object_should_return_page(m, should_return)) |
| 203 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); |
| 204 | |
| 205 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
| 206 | } |
| 207 | |
| 208 | if (should_flush) { |
| 209 | /* |
| 210 | * must do the pmap_disconnect before determining the |
| 211 | * need to return the page... otherwise it's possible |
| 212 | * for the page to go from the clean to the dirty state |
| 213 | * after we've made our decision |
| 214 | */ |
| 215 | if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) { |
| 216 | SET_PAGE_DIRTY(m, FALSE); |
| 217 | } |
| 218 | } else { |
| 219 | /* |
| 220 | * If we are decreasing permission, do it now; |
| 221 | * let the fault handler take care of increases |
| 222 | * (pmap_page_protect may not increase protection). |
| 223 | */ |
| 224 | if (prot != VM_PROT_NO_CHANGE) |
| 225 | pmap_page_protect(VM_PAGE_GET_PHYS_PAGE(m), VM_PROT_ALL & ~prot); |
| 226 | } |
| 227 | /* |
| 228 | * Handle returning dirty or precious pages |
| 229 | */ |
| 230 | if (memory_object_should_return_page(m, should_return)) { |
| 231 | /* |
| 232 | * we use to do a pmap_disconnect here in support |
| 233 | * of memory_object_lock_request, but that routine |
| 234 | * no longer requires this... in any event, in |
| 235 | * our world, it would turn into a big noop since |
| 236 | * we don't lock the page in any way and as soon |
| 237 | * as we drop the object lock, the page can be |
| 238 | * faulted back into an address space |
| 239 | * |
| 240 | * if (!should_flush) |
| 241 | * pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
| 242 | */ |
| 243 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Handle flushing clean pages |
| 248 | */ |
| 249 | if (should_flush) |
| 250 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); |
| 251 | |
| 252 | /* |
| 253 | * we use to deactivate clean pages at this point, |
| 254 | * but we do not believe that an msync should change |
| 255 | * the 'age' of a page in the cache... here is the |
| 256 | * original comment and code concerning this... |
| 257 | * |
| 258 | * XXX Make clean but not flush a paging hint, |
| 259 | * and deactivate the pages. This is a hack |
| 260 | * because it overloads flush/clean with |
| 261 | * implementation-dependent meaning. This only |
| 262 | * happens to pages that are already clean. |
| 263 | * |
| 264 | * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE)) |
| 265 | * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE); |
| 266 | */ |
| 267 | |
| 268 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
| 269 | } |
| 270 | |
| 271 | |
| 272 | |
| 273 | /* |
| 274 | * Routine: memory_object_lock_request [user interface] |
| 275 | * |
| 276 | * Description: |
| 277 | * Control use of the data associated with the given |
| 278 | * memory object. For each page in the given range, |
| 279 | * perform the following operations, in order: |
| 280 | * 1) restrict access to the page (disallow |
| 281 | * forms specified by "prot"); |
| 282 | * 2) return data to the manager (if "should_return" |
| 283 | * is RETURN_DIRTY and the page is dirty, or |
| 284 | * "should_return" is RETURN_ALL and the page |
| 285 | * is either dirty or precious); and, |
| 286 | * 3) flush the cached copy (if "should_flush" |
| 287 | * is asserted). |
| 288 | * The set of pages is defined by a starting offset |
| 289 | * ("offset") and size ("size"). Only pages with the |
| 290 | * same page alignment as the starting offset are |
| 291 | * considered. |
| 292 | * |
| 293 | * A single acknowledgement is sent (to the "reply_to" |
| 294 | * port) when these actions are complete. If successful, |
| 295 | * the naked send right for reply_to is consumed. |
| 296 | */ |
| 297 | |
| 298 | kern_return_t |
| 299 | memory_object_lock_request( |
| 300 | memory_object_control_t control, |
| 301 | memory_object_offset_t offset, |
| 302 | memory_object_size_t size, |
| 303 | memory_object_offset_t * resid_offset, |
| 304 | int * io_errno, |
| 305 | memory_object_return_t should_return, |
| 306 | int flags, |
| 307 | vm_prot_t prot) |
| 308 | { |
| 309 | vm_object_t object; |
| 310 | |
| 311 | /* |
| 312 | * Check for bogus arguments. |
| 313 | */ |
| 314 | object = memory_object_control_to_vm_object(control); |
| 315 | if (object == VM_OBJECT_NULL) |
| 316 | return (KERN_INVALID_ARGUMENT); |
| 317 | |
| 318 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
| 319 | return (KERN_INVALID_ARGUMENT); |
| 320 | |
| 321 | size = round_page_64(size); |
| 322 | |
| 323 | /* |
| 324 | * Lock the object, and acquire a paging reference to |
| 325 | * prevent the memory_object reference from being released. |
| 326 | */ |
| 327 | vm_object_lock(object); |
| 328 | vm_object_paging_begin(object); |
| 329 | |
| 330 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { |
| 331 | if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) { |
| 332 | flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL; |
| 333 | flags |= MEMORY_OBJECT_DATA_FLUSH; |
| 334 | } |
| 335 | } |
| 336 | offset -= object->paging_offset; |
| 337 | |
| 338 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) |
| 339 | vm_object_reap_pages(object, REAP_DATA_FLUSH); |
| 340 | else |
| 341 | (void)vm_object_update(object, offset, size, resid_offset, |
| 342 | io_errno, should_return, flags, prot); |
| 343 | |
| 344 | vm_object_paging_end(object); |
| 345 | vm_object_unlock(object); |
| 346 | |
| 347 | return (KERN_SUCCESS); |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * memory_object_release_name: [interface] |
| 352 | * |
| 353 | * Enforces name semantic on memory_object reference count decrement |
| 354 | * This routine should not be called unless the caller holds a name |
| 355 | * reference gained through the memory_object_named_create or the |
| 356 | * memory_object_rename call. |
| 357 | * If the TERMINATE_IDLE flag is set, the call will return if the |
| 358 | * reference count is not 1. i.e. idle with the only remaining reference |
| 359 | * being the name. |
| 360 | * If the decision is made to proceed the name field flag is set to |
| 361 | * false and the reference count is decremented. If the RESPECT_CACHE |
| 362 | * flag is set and the reference count has gone to zero, the |
| 363 | * memory_object is checked to see if it is cacheable otherwise when |
| 364 | * the reference count is zero, it is simply terminated. |
| 365 | */ |
| 366 | |
| 367 | kern_return_t |
| 368 | memory_object_release_name( |
| 369 | memory_object_control_t control, |
| 370 | int flags) |
| 371 | { |
| 372 | vm_object_t object; |
| 373 | |
| 374 | object = memory_object_control_to_vm_object(control); |
| 375 | if (object == VM_OBJECT_NULL) |
| 376 | return (KERN_INVALID_ARGUMENT); |
| 377 | |
| 378 | return vm_object_release_name(object, flags); |
| 379 | } |
| 380 | |
| 381 | |
| 382 | |
| 383 | /* |
| 384 | * Routine: memory_object_destroy [user interface] |
| 385 | * Purpose: |
| 386 | * Shut down a memory object, despite the |
| 387 | * presence of address map (or other) references |
| 388 | * to the vm_object. |
| 389 | */ |
| 390 | kern_return_t |
| 391 | memory_object_destroy( |
| 392 | memory_object_control_t control, |
| 393 | kern_return_t reason) |
| 394 | { |
| 395 | vm_object_t object; |
| 396 | |
| 397 | object = memory_object_control_to_vm_object(control); |
| 398 | if (object == VM_OBJECT_NULL) |
| 399 | return (KERN_INVALID_ARGUMENT); |
| 400 | |
| 401 | return (vm_object_destroy(object, reason)); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Routine: vm_object_sync |
| 406 | * |
| 407 | * Kernel internal function to synch out pages in a given |
| 408 | * range within an object to its memory manager. Much the |
| 409 | * same as memory_object_lock_request but page protection |
| 410 | * is not changed. |
| 411 | * |
| 412 | * If the should_flush and should_return flags are true pages |
| 413 | * are flushed, that is dirty & precious pages are written to |
| 414 | * the memory manager and then discarded. If should_return |
| 415 | * is false, only precious pages are returned to the memory |
| 416 | * manager. |
| 417 | * |
| 418 | * If should flush is false and should_return true, the memory |
| 419 | * manager's copy of the pages is updated. If should_return |
| 420 | * is also false, only the precious pages are updated. This |
| 421 | * last option is of limited utility. |
| 422 | * |
| 423 | * Returns: |
| 424 | * FALSE if no pages were returned to the pager |
| 425 | * TRUE otherwise. |
| 426 | */ |
| 427 | |
| 428 | boolean_t |
| 429 | vm_object_sync( |
| 430 | vm_object_t object, |
| 431 | vm_object_offset_t offset, |
| 432 | vm_object_size_t size, |
| 433 | boolean_t should_flush, |
| 434 | boolean_t should_return, |
| 435 | boolean_t should_iosync) |
| 436 | { |
| 437 | boolean_t rv; |
| 438 | int flags; |
| 439 | |
| 440 | XPR(XPR_VM_OBJECT, |
| 441 | "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n" , |
| 442 | object, offset, size, should_flush, should_return); |
| 443 | |
| 444 | /* |
| 445 | * Lock the object, and acquire a paging reference to |
| 446 | * prevent the memory_object and control ports from |
| 447 | * being destroyed. |
| 448 | */ |
| 449 | vm_object_lock(object); |
| 450 | vm_object_paging_begin(object); |
| 451 | |
| 452 | if (should_flush) { |
| 453 | flags = MEMORY_OBJECT_DATA_FLUSH; |
| 454 | /* |
| 455 | * This flush is from an msync(), not a truncate(), so the |
| 456 | * contents of the file are not affected. |
| 457 | * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know |
| 458 | * that the data is not changed and that there's no need to |
| 459 | * push the old contents to a copy object. |
| 460 | */ |
| 461 | flags |= MEMORY_OBJECT_DATA_NO_CHANGE; |
| 462 | } else |
| 463 | flags = 0; |
| 464 | |
| 465 | if (should_iosync) |
| 466 | flags |= MEMORY_OBJECT_IO_SYNC; |
| 467 | |
| 468 | rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL, |
| 469 | (should_return) ? |
| 470 | MEMORY_OBJECT_RETURN_ALL : |
| 471 | MEMORY_OBJECT_RETURN_NONE, |
| 472 | flags, |
| 473 | VM_PROT_NO_CHANGE); |
| 474 | |
| 475 | |
| 476 | vm_object_paging_end(object); |
| 477 | vm_object_unlock(object); |
| 478 | return rv; |
| 479 | } |
| 480 | |
| 481 | |
| 482 | |
| 483 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \ |
| 484 | MACRO_BEGIN \ |
| 485 | \ |
| 486 | int upl_flags; \ |
| 487 | memory_object_t ; \ |
| 488 | \ |
| 489 | if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \ |
| 490 | vm_object_paging_begin(object); \ |
| 491 | vm_object_unlock(object); \ |
| 492 | \ |
| 493 | if (iosync) \ |
| 494 | upl_flags = UPL_MSYNC | UPL_IOSYNC; \ |
| 495 | else \ |
| 496 | upl_flags = UPL_MSYNC; \ |
| 497 | \ |
| 498 | (void) memory_object_data_return(pager, \ |
| 499 | po, \ |
| 500 | (memory_object_cluster_size_t)data_cnt, \ |
| 501 | ro, \ |
| 502 | ioerr, \ |
| 503 | FALSE, \ |
| 504 | FALSE, \ |
| 505 | upl_flags); \ |
| 506 | \ |
| 507 | vm_object_lock(object); \ |
| 508 | vm_object_paging_end(object); \ |
| 509 | } \ |
| 510 | MACRO_END |
| 511 | |
| 512 | extern struct vnode * |
| 513 | (memory_object_t); |
| 514 | |
| 515 | static int |
| 516 | vm_object_update_extent( |
| 517 | vm_object_t object, |
| 518 | vm_object_offset_t offset, |
| 519 | vm_object_offset_t offset_end, |
| 520 | vm_object_offset_t *offset_resid, |
| 521 | int *io_errno, |
| 522 | boolean_t should_flush, |
| 523 | memory_object_return_t should_return, |
| 524 | boolean_t should_iosync, |
| 525 | vm_prot_t prot) |
| 526 | { |
| 527 | vm_page_t m; |
| 528 | int retval = 0; |
| 529 | vm_object_offset_t paging_offset = 0; |
| 530 | vm_object_offset_t next_offset = offset; |
| 531 | memory_object_lock_result_t page_lock_result; |
| 532 | memory_object_cluster_size_t data_cnt = 0; |
| 533 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
| 534 | struct vm_page_delayed_work *dwp; |
| 535 | int dw_count; |
| 536 | int dw_limit; |
| 537 | int dirty_count; |
| 538 | |
| 539 | dwp = &dw_array[0]; |
| 540 | dw_count = 0; |
| 541 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 542 | dirty_count = 0; |
| 543 | |
| 544 | for (; |
| 545 | offset < offset_end && object->resident_page_count; |
| 546 | offset += PAGE_SIZE_64) { |
| 547 | |
| 548 | /* |
| 549 | * Limit the number of pages to be cleaned at once to a contiguous |
| 550 | * run, or at most MAX_UPL_TRANSFER_BYTES |
| 551 | */ |
| 552 | if (data_cnt) { |
| 553 | if ((data_cnt >= MAX_UPL_TRANSFER_BYTES) || (next_offset != offset)) { |
| 554 | |
| 555 | if (dw_count) { |
| 556 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
| 557 | dwp = &dw_array[0]; |
| 558 | dw_count = 0; |
| 559 | } |
| 560 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
| 561 | paging_offset, offset_resid, io_errno, should_iosync); |
| 562 | data_cnt = 0; |
| 563 | } |
| 564 | } |
| 565 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 566 | |
| 567 | dwp->dw_mask = 0; |
| 568 | |
| 569 | page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot); |
| 570 | |
| 571 | if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) { |
| 572 | /* |
| 573 | * End of a run of dirty/precious pages. |
| 574 | */ |
| 575 | if (dw_count) { |
| 576 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
| 577 | dwp = &dw_array[0]; |
| 578 | dw_count = 0; |
| 579 | } |
| 580 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
| 581 | paging_offset, offset_resid, io_errno, should_iosync); |
| 582 | /* |
| 583 | * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will |
| 584 | * allow the state of page 'm' to change... we need to re-lookup |
| 585 | * the current offset |
| 586 | */ |
| 587 | data_cnt = 0; |
| 588 | continue; |
| 589 | } |
| 590 | |
| 591 | switch (page_lock_result) { |
| 592 | |
| 593 | case MEMORY_OBJECT_LOCK_RESULT_DONE: |
| 594 | break; |
| 595 | |
| 596 | case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE: |
| 597 | if (m->vmp_dirty == TRUE) |
| 598 | dirty_count++; |
| 599 | dwp->dw_mask |= DW_vm_page_free; |
| 600 | break; |
| 601 | |
| 602 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: |
| 603 | PAGE_SLEEP(object, m, THREAD_UNINT); |
| 604 | continue; |
| 605 | |
| 606 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: |
| 607 | if (data_cnt == 0) |
| 608 | paging_offset = offset; |
| 609 | |
| 610 | data_cnt += PAGE_SIZE; |
| 611 | next_offset = offset + PAGE_SIZE_64; |
| 612 | |
| 613 | /* |
| 614 | * wired pages shouldn't be flushed and |
| 615 | * since they aren't on any queue, |
| 616 | * no need to remove them |
| 617 | */ |
| 618 | if (!VM_PAGE_WIRED(m)) { |
| 619 | |
| 620 | if (should_flush) { |
| 621 | /* |
| 622 | * add additional state for the flush |
| 623 | */ |
| 624 | m->vmp_free_when_done = TRUE; |
| 625 | } |
| 626 | /* |
| 627 | * we use to remove the page from the queues at this |
| 628 | * point, but we do not believe that an msync |
| 629 | * should cause the 'age' of a page to be changed |
| 630 | * |
| 631 | * else |
| 632 | * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE; |
| 633 | */ |
| 634 | } |
| 635 | retval = 1; |
| 636 | break; |
| 637 | } |
| 638 | if (dwp->dw_mask) { |
| 639 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); |
| 640 | |
| 641 | if (dw_count >= dw_limit) { |
| 642 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
| 643 | dwp = &dw_array[0]; |
| 644 | dw_count = 0; |
| 645 | } |
| 646 | } |
| 647 | break; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | if (object->pager) |
| 652 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_INVALIDATED, vnode_pager_lookup_vnode(object->pager)); |
| 653 | /* |
| 654 | * We have completed the scan for applicable pages. |
| 655 | * Clean any pages that have been saved. |
| 656 | */ |
| 657 | if (dw_count) |
| 658 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
| 659 | |
| 660 | if (data_cnt) { |
| 661 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
| 662 | paging_offset, offset_resid, io_errno, should_iosync); |
| 663 | } |
| 664 | return (retval); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | |
| 669 | /* |
| 670 | * Routine: vm_object_update |
| 671 | * Description: |
| 672 | * Work function for m_o_lock_request(), vm_o_sync(). |
| 673 | * |
| 674 | * Called with object locked and paging ref taken. |
| 675 | */ |
| 676 | kern_return_t |
| 677 | vm_object_update( |
| 678 | vm_object_t object, |
| 679 | vm_object_offset_t offset, |
| 680 | vm_object_size_t size, |
| 681 | vm_object_offset_t *resid_offset, |
| 682 | int *io_errno, |
| 683 | memory_object_return_t should_return, |
| 684 | int flags, |
| 685 | vm_prot_t protection) |
| 686 | { |
| 687 | vm_object_t copy_object = VM_OBJECT_NULL; |
| 688 | boolean_t data_returned = FALSE; |
| 689 | boolean_t update_cow; |
| 690 | boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE; |
| 691 | boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE; |
| 692 | vm_fault_return_t result; |
| 693 | int num_of_extents; |
| 694 | int n; |
| 695 | #define MAX_EXTENTS 8 |
| 696 | #define EXTENT_SIZE (1024 * 1024 * 256) |
| 697 | #define RESIDENT_LIMIT (1024 * 32) |
| 698 | struct extent { |
| 699 | vm_object_offset_t e_base; |
| 700 | vm_object_offset_t e_min; |
| 701 | vm_object_offset_t e_max; |
| 702 | } extents[MAX_EXTENTS]; |
| 703 | |
| 704 | /* |
| 705 | * To avoid blocking while scanning for pages, save |
| 706 | * dirty pages to be cleaned all at once. |
| 707 | * |
| 708 | * XXXO A similar strategy could be used to limit the |
| 709 | * number of times that a scan must be restarted for |
| 710 | * other reasons. Those pages that would require blocking |
| 711 | * could be temporarily collected in another list, or |
| 712 | * their offsets could be recorded in a small array. |
| 713 | */ |
| 714 | |
| 715 | /* |
| 716 | * XXX NOTE: May want to consider converting this to a page list |
| 717 | * XXX vm_map_copy interface. Need to understand object |
| 718 | * XXX coalescing implications before doing so. |
| 719 | */ |
| 720 | |
| 721 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) |
| 722 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && |
| 723 | !(flags & MEMORY_OBJECT_DATA_PURGE))) |
| 724 | || (flags & MEMORY_OBJECT_COPY_SYNC); |
| 725 | |
| 726 | if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) { |
| 727 | int collisions = 0; |
| 728 | |
| 729 | while ((copy_object = object->copy) != VM_OBJECT_NULL) { |
| 730 | /* |
| 731 | * need to do a try here since we're swimming upstream |
| 732 | * against the normal lock ordering... however, we need |
| 733 | * to hold the object stable until we gain control of the |
| 734 | * copy object so we have to be careful how we approach this |
| 735 | */ |
| 736 | if (vm_object_lock_try(copy_object)) { |
| 737 | /* |
| 738 | * we 'won' the lock on the copy object... |
| 739 | * no need to hold the object lock any longer... |
| 740 | * take a real reference on the copy object because |
| 741 | * we're going to call vm_fault_page on it which may |
| 742 | * under certain conditions drop the lock and the paging |
| 743 | * reference we're about to take... the reference |
| 744 | * will keep the copy object from going away if that happens |
| 745 | */ |
| 746 | vm_object_unlock(object); |
| 747 | vm_object_reference_locked(copy_object); |
| 748 | break; |
| 749 | } |
| 750 | vm_object_unlock(object); |
| 751 | |
| 752 | collisions++; |
| 753 | mutex_pause(collisions); |
| 754 | |
| 755 | vm_object_lock(object); |
| 756 | } |
| 757 | } |
| 758 | if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) { |
| 759 | vm_map_size_t i; |
| 760 | vm_map_size_t copy_size; |
| 761 | vm_map_offset_t copy_offset; |
| 762 | vm_prot_t prot; |
| 763 | vm_page_t page; |
| 764 | vm_page_t top_page; |
| 765 | kern_return_t error = 0; |
| 766 | struct vm_object_fault_info fault_info = {}; |
| 767 | |
| 768 | if (copy_object != VM_OBJECT_NULL) { |
| 769 | /* |
| 770 | * translate offset with respect to shadow's offset |
| 771 | */ |
| 772 | copy_offset = (offset >= copy_object->vo_shadow_offset) ? |
| 773 | (vm_map_offset_t)(offset - copy_object->vo_shadow_offset) : |
| 774 | (vm_map_offset_t) 0; |
| 775 | |
| 776 | if (copy_offset > copy_object->vo_size) |
| 777 | copy_offset = copy_object->vo_size; |
| 778 | |
| 779 | /* |
| 780 | * clip size with respect to shadow offset |
| 781 | */ |
| 782 | if (offset >= copy_object->vo_shadow_offset) { |
| 783 | copy_size = size; |
| 784 | } else if (size >= copy_object->vo_shadow_offset - offset) { |
| 785 | copy_size = size - (copy_object->vo_shadow_offset - offset); |
| 786 | } else { |
| 787 | copy_size = 0; |
| 788 | } |
| 789 | |
| 790 | if (copy_offset + copy_size > copy_object->vo_size) { |
| 791 | if (copy_object->vo_size >= copy_offset) { |
| 792 | copy_size = copy_object->vo_size - copy_offset; |
| 793 | } else { |
| 794 | copy_size = 0; |
| 795 | } |
| 796 | } |
| 797 | copy_size+=copy_offset; |
| 798 | |
| 799 | } else { |
| 800 | copy_object = object; |
| 801 | |
| 802 | copy_size = offset + size; |
| 803 | copy_offset = offset; |
| 804 | } |
| 805 | fault_info.interruptible = THREAD_UNINT; |
| 806 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 807 | fault_info.lo_offset = copy_offset; |
| 808 | fault_info.hi_offset = copy_size; |
| 809 | fault_info.stealth = TRUE; |
| 810 | assert(fault_info.cs_bypass == FALSE); |
| 811 | assert(fault_info.pmap_cs_associated == FALSE); |
| 812 | |
| 813 | vm_object_paging_begin(copy_object); |
| 814 | |
| 815 | for (i = copy_offset; i < copy_size; i += PAGE_SIZE) { |
| 816 | RETRY_COW_OF_LOCK_REQUEST: |
| 817 | fault_info.cluster_size = (vm_size_t) (copy_size - i); |
| 818 | assert(fault_info.cluster_size == copy_size - i); |
| 819 | |
| 820 | prot = VM_PROT_WRITE|VM_PROT_READ; |
| 821 | page = VM_PAGE_NULL; |
| 822 | result = vm_fault_page(copy_object, i, |
| 823 | VM_PROT_WRITE|VM_PROT_READ, |
| 824 | FALSE, |
| 825 | FALSE, /* page not looked up */ |
| 826 | &prot, |
| 827 | &page, |
| 828 | &top_page, |
| 829 | (int *)0, |
| 830 | &error, |
| 831 | FALSE, |
| 832 | FALSE, &fault_info); |
| 833 | |
| 834 | switch (result) { |
| 835 | case VM_FAULT_SUCCESS: |
| 836 | if (top_page) { |
| 837 | vm_fault_cleanup( |
| 838 | VM_PAGE_OBJECT(page), top_page); |
| 839 | vm_object_lock(copy_object); |
| 840 | vm_object_paging_begin(copy_object); |
| 841 | } |
| 842 | if (( !VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { |
| 843 | |
| 844 | vm_page_lockspin_queues(); |
| 845 | |
| 846 | if (( !VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { |
| 847 | vm_page_deactivate(page); |
| 848 | } |
| 849 | vm_page_unlock_queues(); |
| 850 | } |
| 851 | PAGE_WAKEUP_DONE(page); |
| 852 | break; |
| 853 | case VM_FAULT_RETRY: |
| 854 | prot = VM_PROT_WRITE|VM_PROT_READ; |
| 855 | vm_object_lock(copy_object); |
| 856 | vm_object_paging_begin(copy_object); |
| 857 | goto RETRY_COW_OF_LOCK_REQUEST; |
| 858 | case VM_FAULT_INTERRUPTED: |
| 859 | prot = VM_PROT_WRITE|VM_PROT_READ; |
| 860 | vm_object_lock(copy_object); |
| 861 | vm_object_paging_begin(copy_object); |
| 862 | goto RETRY_COW_OF_LOCK_REQUEST; |
| 863 | case VM_FAULT_MEMORY_SHORTAGE: |
| 864 | VM_PAGE_WAIT(); |
| 865 | prot = VM_PROT_WRITE|VM_PROT_READ; |
| 866 | vm_object_lock(copy_object); |
| 867 | vm_object_paging_begin(copy_object); |
| 868 | goto RETRY_COW_OF_LOCK_REQUEST; |
| 869 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 870 | /* success but no VM page: fail */ |
| 871 | vm_object_paging_end(copy_object); |
| 872 | vm_object_unlock(copy_object); |
| 873 | /*FALLTHROUGH*/ |
| 874 | case VM_FAULT_MEMORY_ERROR: |
| 875 | if (object != copy_object) |
| 876 | vm_object_deallocate(copy_object); |
| 877 | vm_object_lock(object); |
| 878 | goto BYPASS_COW_COPYIN; |
| 879 | default: |
| 880 | panic("vm_object_update: unexpected error 0x%x" |
| 881 | " from vm_fault_page()\n" , result); |
| 882 | } |
| 883 | |
| 884 | } |
| 885 | vm_object_paging_end(copy_object); |
| 886 | } |
| 887 | if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { |
| 888 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
| 889 | vm_object_unlock(copy_object); |
| 890 | vm_object_deallocate(copy_object); |
| 891 | vm_object_lock(object); |
| 892 | } |
| 893 | return KERN_SUCCESS; |
| 894 | } |
| 895 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
| 896 | if ((flags & MEMORY_OBJECT_DATA_PURGE)) { |
| 897 | vm_object_lock_assert_exclusive(copy_object); |
| 898 | copy_object->shadow_severed = TRUE; |
| 899 | copy_object->shadowed = FALSE; |
| 900 | copy_object->shadow = NULL; |
| 901 | /* |
| 902 | * delete the ref the COW was holding on the target object |
| 903 | */ |
| 904 | vm_object_deallocate(object); |
| 905 | } |
| 906 | vm_object_unlock(copy_object); |
| 907 | vm_object_deallocate(copy_object); |
| 908 | vm_object_lock(object); |
| 909 | } |
| 910 | BYPASS_COW_COPYIN: |
| 911 | |
| 912 | /* |
| 913 | * when we have a really large range to check relative |
| 914 | * to the number of actual resident pages, we'd like |
| 915 | * to use the resident page list to drive our checks |
| 916 | * however, the object lock will get dropped while processing |
| 917 | * the page which means the resident queue can change which |
| 918 | * means we can't walk the queue as we process the pages |
| 919 | * we also want to do the processing in offset order to allow |
| 920 | * 'runs' of pages to be collected if we're being told to |
| 921 | * flush to disk... the resident page queue is NOT ordered. |
| 922 | * |
| 923 | * a temporary solution (until we figure out how to deal with |
| 924 | * large address spaces more generically) is to pre-flight |
| 925 | * the resident page queue (if it's small enough) and develop |
| 926 | * a collection of extents (that encompass actual resident pages) |
| 927 | * to visit. This will at least allow us to deal with some of the |
| 928 | * more pathological cases in a more efficient manner. The current |
| 929 | * worst case (a single resident page at the end of an extremely large |
| 930 | * range) can take minutes to complete for ranges in the terrabyte |
| 931 | * category... since this routine is called when truncating a file, |
| 932 | * and we currently support files up to 16 Tbytes in size, this |
| 933 | * is not a theoretical problem |
| 934 | */ |
| 935 | |
| 936 | if ((object->resident_page_count < RESIDENT_LIMIT) && |
| 937 | (atop_64(size) > (unsigned)(object->resident_page_count/(8 * MAX_EXTENTS)))) { |
| 938 | vm_page_t next; |
| 939 | vm_object_offset_t start; |
| 940 | vm_object_offset_t end; |
| 941 | vm_object_size_t e_mask; |
| 942 | vm_page_t m; |
| 943 | |
| 944 | start = offset; |
| 945 | end = offset + size; |
| 946 | num_of_extents = 0; |
| 947 | e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1)); |
| 948 | |
| 949 | m = (vm_page_t) vm_page_queue_first(&object->memq); |
| 950 | |
| 951 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) m)) { |
| 952 | next = (vm_page_t) vm_page_queue_next(&m->vmp_listq); |
| 953 | |
| 954 | if ((m->vmp_offset >= start) && (m->vmp_offset < end)) { |
| 955 | /* |
| 956 | * this is a page we're interested in |
| 957 | * try to fit it into a current extent |
| 958 | */ |
| 959 | for (n = 0; n < num_of_extents; n++) { |
| 960 | if ((m->vmp_offset & e_mask) == extents[n].e_base) { |
| 961 | /* |
| 962 | * use (PAGE_SIZE - 1) to determine the |
| 963 | * max offset so that we don't wrap if |
| 964 | * we're at the last page of the space |
| 965 | */ |
| 966 | if (m->vmp_offset < extents[n].e_min) |
| 967 | extents[n].e_min = m->vmp_offset; |
| 968 | else if ((m->vmp_offset + (PAGE_SIZE - 1)) > extents[n].e_max) |
| 969 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); |
| 970 | break; |
| 971 | } |
| 972 | } |
| 973 | if (n == num_of_extents) { |
| 974 | /* |
| 975 | * didn't find a current extent that can encompass |
| 976 | * this page |
| 977 | */ |
| 978 | if (n < MAX_EXTENTS) { |
| 979 | /* |
| 980 | * if we still have room, |
| 981 | * create a new extent |
| 982 | */ |
| 983 | extents[n].e_base = m->vmp_offset & e_mask; |
| 984 | extents[n].e_min = m->vmp_offset; |
| 985 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); |
| 986 | |
| 987 | num_of_extents++; |
| 988 | } else { |
| 989 | /* |
| 990 | * no room to create a new extent... |
| 991 | * fall back to a single extent based |
| 992 | * on the min and max page offsets |
| 993 | * we find in the range we're interested in... |
| 994 | * first, look through the extent list and |
| 995 | * develop the overall min and max for the |
| 996 | * pages we've looked at up to this point |
| 997 | */ |
| 998 | for (n = 1; n < num_of_extents; n++) { |
| 999 | if (extents[n].e_min < extents[0].e_min) |
| 1000 | extents[0].e_min = extents[n].e_min; |
| 1001 | if (extents[n].e_max > extents[0].e_max) |
| 1002 | extents[0].e_max = extents[n].e_max; |
| 1003 | } |
| 1004 | /* |
| 1005 | * now setup to run through the remaining pages |
| 1006 | * to determine the overall min and max |
| 1007 | * offset for the specified range |
| 1008 | */ |
| 1009 | extents[0].e_base = 0; |
| 1010 | e_mask = 0; |
| 1011 | num_of_extents = 1; |
| 1012 | |
| 1013 | /* |
| 1014 | * by continuing, we'll reprocess the |
| 1015 | * page that forced us to abandon trying |
| 1016 | * to develop multiple extents |
| 1017 | */ |
| 1018 | continue; |
| 1019 | } |
| 1020 | } |
| 1021 | } |
| 1022 | m = next; |
| 1023 | } |
| 1024 | } else { |
| 1025 | extents[0].e_min = offset; |
| 1026 | extents[0].e_max = offset + (size - 1); |
| 1027 | |
| 1028 | num_of_extents = 1; |
| 1029 | } |
| 1030 | for (n = 0; n < num_of_extents; n++) { |
| 1031 | if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno, |
| 1032 | should_flush, should_return, should_iosync, protection)) |
| 1033 | data_returned = TRUE; |
| 1034 | } |
| 1035 | return (data_returned); |
| 1036 | } |
| 1037 | |
| 1038 | |
| 1039 | static kern_return_t |
| 1040 | vm_object_set_attributes_common( |
| 1041 | vm_object_t object, |
| 1042 | boolean_t may_cache, |
| 1043 | memory_object_copy_strategy_t copy_strategy) |
| 1044 | { |
| 1045 | boolean_t object_became_ready; |
| 1046 | |
| 1047 | XPR(XPR_MEMORY_OBJECT, |
| 1048 | "m_o_set_attr_com, object 0x%X flg %x strat %d\n" , |
| 1049 | object, (may_cache&1), copy_strategy, 0, 0); |
| 1050 | |
| 1051 | if (object == VM_OBJECT_NULL) |
| 1052 | return(KERN_INVALID_ARGUMENT); |
| 1053 | |
| 1054 | /* |
| 1055 | * Verify the attributes of importance |
| 1056 | */ |
| 1057 | |
| 1058 | switch(copy_strategy) { |
| 1059 | case MEMORY_OBJECT_COPY_NONE: |
| 1060 | case MEMORY_OBJECT_COPY_DELAY: |
| 1061 | break; |
| 1062 | default: |
| 1063 | return(KERN_INVALID_ARGUMENT); |
| 1064 | } |
| 1065 | |
| 1066 | if (may_cache) |
| 1067 | may_cache = TRUE; |
| 1068 | |
| 1069 | vm_object_lock(object); |
| 1070 | |
| 1071 | /* |
| 1072 | * Copy the attributes |
| 1073 | */ |
| 1074 | assert(!object->internal); |
| 1075 | object_became_ready = !object->pager_ready; |
| 1076 | object->copy_strategy = copy_strategy; |
| 1077 | object->can_persist = may_cache; |
| 1078 | |
| 1079 | /* |
| 1080 | * Wake up anyone waiting for the ready attribute |
| 1081 | * to become asserted. |
| 1082 | */ |
| 1083 | |
| 1084 | if (object_became_ready) { |
| 1085 | object->pager_ready = TRUE; |
| 1086 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); |
| 1087 | } |
| 1088 | |
| 1089 | vm_object_unlock(object); |
| 1090 | |
| 1091 | return(KERN_SUCCESS); |
| 1092 | } |
| 1093 | |
| 1094 | |
| 1095 | kern_return_t |
| 1096 | memory_object_synchronize_completed( |
| 1097 | __unused memory_object_control_t control, |
| 1098 | __unused memory_object_offset_t offset, |
| 1099 | __unused memory_object_size_t length) |
| 1100 | { |
| 1101 | panic("memory_object_synchronize_completed no longer supported\n" ); |
| 1102 | return(KERN_FAILURE); |
| 1103 | } |
| 1104 | |
| 1105 | |
| 1106 | /* |
| 1107 | * Set the memory object attribute as provided. |
| 1108 | * |
| 1109 | * XXX This routine cannot be completed until the vm_msync, clean |
| 1110 | * in place, and cluster work is completed. See ifdef notyet |
| 1111 | * below and note that vm_object_set_attributes_common() |
| 1112 | * may have to be expanded. |
| 1113 | */ |
| 1114 | kern_return_t |
| 1115 | memory_object_change_attributes( |
| 1116 | memory_object_control_t control, |
| 1117 | memory_object_flavor_t flavor, |
| 1118 | memory_object_info_t attributes, |
| 1119 | mach_msg_type_number_t count) |
| 1120 | { |
| 1121 | vm_object_t object; |
| 1122 | kern_return_t result = KERN_SUCCESS; |
| 1123 | boolean_t may_cache; |
| 1124 | boolean_t invalidate; |
| 1125 | memory_object_copy_strategy_t copy_strategy; |
| 1126 | |
| 1127 | object = memory_object_control_to_vm_object(control); |
| 1128 | if (object == VM_OBJECT_NULL) |
| 1129 | return (KERN_INVALID_ARGUMENT); |
| 1130 | |
| 1131 | vm_object_lock(object); |
| 1132 | |
| 1133 | may_cache = object->can_persist; |
| 1134 | copy_strategy = object->copy_strategy; |
| 1135 | #if notyet |
| 1136 | invalidate = object->invalidate; |
| 1137 | #endif |
| 1138 | vm_object_unlock(object); |
| 1139 | |
| 1140 | switch (flavor) { |
| 1141 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
| 1142 | { |
| 1143 | old_memory_object_behave_info_t behave; |
| 1144 | |
| 1145 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
| 1146 | result = KERN_INVALID_ARGUMENT; |
| 1147 | break; |
| 1148 | } |
| 1149 | |
| 1150 | behave = (old_memory_object_behave_info_t) attributes; |
| 1151 | |
| 1152 | invalidate = behave->invalidate; |
| 1153 | copy_strategy = behave->copy_strategy; |
| 1154 | |
| 1155 | break; |
| 1156 | } |
| 1157 | |
| 1158 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
| 1159 | { |
| 1160 | memory_object_behave_info_t behave; |
| 1161 | |
| 1162 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
| 1163 | result = KERN_INVALID_ARGUMENT; |
| 1164 | break; |
| 1165 | } |
| 1166 | |
| 1167 | behave = (memory_object_behave_info_t) attributes; |
| 1168 | |
| 1169 | invalidate = behave->invalidate; |
| 1170 | copy_strategy = behave->copy_strategy; |
| 1171 | break; |
| 1172 | } |
| 1173 | |
| 1174 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
| 1175 | { |
| 1176 | memory_object_perf_info_t perf; |
| 1177 | |
| 1178 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { |
| 1179 | result = KERN_INVALID_ARGUMENT; |
| 1180 | break; |
| 1181 | } |
| 1182 | |
| 1183 | perf = (memory_object_perf_info_t) attributes; |
| 1184 | |
| 1185 | may_cache = perf->may_cache; |
| 1186 | |
| 1187 | break; |
| 1188 | } |
| 1189 | |
| 1190 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
| 1191 | { |
| 1192 | old_memory_object_attr_info_t attr; |
| 1193 | |
| 1194 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
| 1195 | result = KERN_INVALID_ARGUMENT; |
| 1196 | break; |
| 1197 | } |
| 1198 | |
| 1199 | attr = (old_memory_object_attr_info_t) attributes; |
| 1200 | |
| 1201 | may_cache = attr->may_cache; |
| 1202 | copy_strategy = attr->copy_strategy; |
| 1203 | |
| 1204 | break; |
| 1205 | } |
| 1206 | |
| 1207 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
| 1208 | { |
| 1209 | memory_object_attr_info_t attr; |
| 1210 | |
| 1211 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { |
| 1212 | result = KERN_INVALID_ARGUMENT; |
| 1213 | break; |
| 1214 | } |
| 1215 | |
| 1216 | attr = (memory_object_attr_info_t) attributes; |
| 1217 | |
| 1218 | copy_strategy = attr->copy_strategy; |
| 1219 | may_cache = attr->may_cache_object; |
| 1220 | |
| 1221 | break; |
| 1222 | } |
| 1223 | |
| 1224 | default: |
| 1225 | result = KERN_INVALID_ARGUMENT; |
| 1226 | break; |
| 1227 | } |
| 1228 | |
| 1229 | if (result != KERN_SUCCESS) |
| 1230 | return(result); |
| 1231 | |
| 1232 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { |
| 1233 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * XXX may_cache may become a tri-valued variable to handle |
| 1238 | * XXX uncache if not in use. |
| 1239 | */ |
| 1240 | return (vm_object_set_attributes_common(object, |
| 1241 | may_cache, |
| 1242 | copy_strategy)); |
| 1243 | } |
| 1244 | |
| 1245 | kern_return_t |
| 1246 | memory_object_get_attributes( |
| 1247 | memory_object_control_t control, |
| 1248 | memory_object_flavor_t flavor, |
| 1249 | memory_object_info_t attributes, /* pointer to OUT array */ |
| 1250 | mach_msg_type_number_t *count) /* IN/OUT */ |
| 1251 | { |
| 1252 | kern_return_t ret = KERN_SUCCESS; |
| 1253 | vm_object_t object; |
| 1254 | |
| 1255 | object = memory_object_control_to_vm_object(control); |
| 1256 | if (object == VM_OBJECT_NULL) |
| 1257 | return (KERN_INVALID_ARGUMENT); |
| 1258 | |
| 1259 | vm_object_lock(object); |
| 1260 | |
| 1261 | switch (flavor) { |
| 1262 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
| 1263 | { |
| 1264 | old_memory_object_behave_info_t behave; |
| 1265 | |
| 1266 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
| 1267 | ret = KERN_INVALID_ARGUMENT; |
| 1268 | break; |
| 1269 | } |
| 1270 | |
| 1271 | behave = (old_memory_object_behave_info_t) attributes; |
| 1272 | behave->copy_strategy = object->copy_strategy; |
| 1273 | behave->temporary = FALSE; |
| 1274 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
| 1275 | behave->invalidate = object->invalidate; |
| 1276 | #else |
| 1277 | behave->invalidate = FALSE; |
| 1278 | #endif |
| 1279 | |
| 1280 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; |
| 1281 | break; |
| 1282 | } |
| 1283 | |
| 1284 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
| 1285 | { |
| 1286 | memory_object_behave_info_t behave; |
| 1287 | |
| 1288 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
| 1289 | ret = KERN_INVALID_ARGUMENT; |
| 1290 | break; |
| 1291 | } |
| 1292 | |
| 1293 | behave = (memory_object_behave_info_t) attributes; |
| 1294 | behave->copy_strategy = object->copy_strategy; |
| 1295 | behave->temporary = FALSE; |
| 1296 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
| 1297 | behave->invalidate = object->invalidate; |
| 1298 | #else |
| 1299 | behave->invalidate = FALSE; |
| 1300 | #endif |
| 1301 | behave->advisory_pageout = FALSE; |
| 1302 | behave->silent_overwrite = FALSE; |
| 1303 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; |
| 1304 | break; |
| 1305 | } |
| 1306 | |
| 1307 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
| 1308 | { |
| 1309 | memory_object_perf_info_t perf; |
| 1310 | |
| 1311 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { |
| 1312 | ret = KERN_INVALID_ARGUMENT; |
| 1313 | break; |
| 1314 | } |
| 1315 | |
| 1316 | perf = (memory_object_perf_info_t) attributes; |
| 1317 | perf->cluster_size = PAGE_SIZE; |
| 1318 | perf->may_cache = object->can_persist; |
| 1319 | |
| 1320 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; |
| 1321 | break; |
| 1322 | } |
| 1323 | |
| 1324 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
| 1325 | { |
| 1326 | old_memory_object_attr_info_t attr; |
| 1327 | |
| 1328 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
| 1329 | ret = KERN_INVALID_ARGUMENT; |
| 1330 | break; |
| 1331 | } |
| 1332 | |
| 1333 | attr = (old_memory_object_attr_info_t) attributes; |
| 1334 | attr->may_cache = object->can_persist; |
| 1335 | attr->copy_strategy = object->copy_strategy; |
| 1336 | |
| 1337 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; |
| 1338 | break; |
| 1339 | } |
| 1340 | |
| 1341 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
| 1342 | { |
| 1343 | memory_object_attr_info_t attr; |
| 1344 | |
| 1345 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { |
| 1346 | ret = KERN_INVALID_ARGUMENT; |
| 1347 | break; |
| 1348 | } |
| 1349 | |
| 1350 | attr = (memory_object_attr_info_t) attributes; |
| 1351 | attr->copy_strategy = object->copy_strategy; |
| 1352 | attr->cluster_size = PAGE_SIZE; |
| 1353 | attr->may_cache_object = object->can_persist; |
| 1354 | attr->temporary = FALSE; |
| 1355 | |
| 1356 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; |
| 1357 | break; |
| 1358 | } |
| 1359 | |
| 1360 | default: |
| 1361 | ret = KERN_INVALID_ARGUMENT; |
| 1362 | break; |
| 1363 | } |
| 1364 | |
| 1365 | vm_object_unlock(object); |
| 1366 | |
| 1367 | return(ret); |
| 1368 | } |
| 1369 | |
| 1370 | |
| 1371 | kern_return_t |
| 1372 | memory_object_iopl_request( |
| 1373 | ipc_port_t port, |
| 1374 | memory_object_offset_t offset, |
| 1375 | upl_size_t *upl_size, |
| 1376 | upl_t *upl_ptr, |
| 1377 | upl_page_info_array_t user_page_list, |
| 1378 | unsigned int *page_list_count, |
| 1379 | upl_control_flags_t *flags, |
| 1380 | vm_tag_t tag) |
| 1381 | { |
| 1382 | vm_object_t object; |
| 1383 | kern_return_t ret; |
| 1384 | upl_control_flags_t caller_flags; |
| 1385 | |
| 1386 | caller_flags = *flags; |
| 1387 | |
| 1388 | if (caller_flags & ~UPL_VALID_FLAGS) { |
| 1389 | /* |
| 1390 | * For forward compatibility's sake, |
| 1391 | * reject any unknown flag. |
| 1392 | */ |
| 1393 | return KERN_INVALID_VALUE; |
| 1394 | } |
| 1395 | |
| 1396 | if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
| 1397 | vm_named_entry_t named_entry; |
| 1398 | |
| 1399 | named_entry = (vm_named_entry_t)port->ip_kobject; |
| 1400 | /* a few checks to make sure user is obeying rules */ |
| 1401 | if(*upl_size == 0) { |
| 1402 | if(offset >= named_entry->size) |
| 1403 | return(KERN_INVALID_RIGHT); |
| 1404 | *upl_size = (upl_size_t)(named_entry->size - offset); |
| 1405 | if (*upl_size != named_entry->size - offset) |
| 1406 | return KERN_INVALID_ARGUMENT; |
| 1407 | } |
| 1408 | if(caller_flags & UPL_COPYOUT_FROM) { |
| 1409 | if((named_entry->protection & VM_PROT_READ) |
| 1410 | != VM_PROT_READ) { |
| 1411 | return(KERN_INVALID_RIGHT); |
| 1412 | } |
| 1413 | } else { |
| 1414 | if((named_entry->protection & |
| 1415 | (VM_PROT_READ | VM_PROT_WRITE)) |
| 1416 | != (VM_PROT_READ | VM_PROT_WRITE)) { |
| 1417 | return(KERN_INVALID_RIGHT); |
| 1418 | } |
| 1419 | } |
| 1420 | if(named_entry->size < (offset + *upl_size)) |
| 1421 | return(KERN_INVALID_ARGUMENT); |
| 1422 | |
| 1423 | /* the callers parameter offset is defined to be the */ |
| 1424 | /* offset from beginning of named entry offset in object */ |
| 1425 | offset = offset + named_entry->offset; |
| 1426 | |
| 1427 | if (named_entry->is_sub_map || |
| 1428 | named_entry->is_copy) |
| 1429 | return KERN_INVALID_ARGUMENT; |
| 1430 | |
| 1431 | named_entry_lock(named_entry); |
| 1432 | |
| 1433 | object = named_entry->backing.object; |
| 1434 | vm_object_reference(object); |
| 1435 | named_entry_unlock(named_entry); |
| 1436 | } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) { |
| 1437 | memory_object_control_t control; |
| 1438 | control = (memory_object_control_t) port; |
| 1439 | if (control == NULL) |
| 1440 | return (KERN_INVALID_ARGUMENT); |
| 1441 | object = memory_object_control_to_vm_object(control); |
| 1442 | if (object == VM_OBJECT_NULL) |
| 1443 | return (KERN_INVALID_ARGUMENT); |
| 1444 | vm_object_reference(object); |
| 1445 | } else { |
| 1446 | return KERN_INVALID_ARGUMENT; |
| 1447 | } |
| 1448 | if (object == VM_OBJECT_NULL) |
| 1449 | return (KERN_INVALID_ARGUMENT); |
| 1450 | |
| 1451 | if (!object->private) { |
| 1452 | if (object->phys_contiguous) { |
| 1453 | *flags = UPL_PHYS_CONTIG; |
| 1454 | } else { |
| 1455 | *flags = 0; |
| 1456 | } |
| 1457 | } else { |
| 1458 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; |
| 1459 | } |
| 1460 | |
| 1461 | ret = vm_object_iopl_request(object, |
| 1462 | offset, |
| 1463 | *upl_size, |
| 1464 | upl_ptr, |
| 1465 | user_page_list, |
| 1466 | page_list_count, |
| 1467 | caller_flags, |
| 1468 | tag); |
| 1469 | vm_object_deallocate(object); |
| 1470 | return ret; |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * Routine: memory_object_upl_request [interface] |
| 1475 | * Purpose: |
| 1476 | * Cause the population of a portion of a vm_object. |
| 1477 | * Depending on the nature of the request, the pages |
| 1478 | * returned may be contain valid data or be uninitialized. |
| 1479 | * |
| 1480 | */ |
| 1481 | |
| 1482 | kern_return_t |
| 1483 | memory_object_upl_request( |
| 1484 | memory_object_control_t control, |
| 1485 | memory_object_offset_t offset, |
| 1486 | upl_size_t size, |
| 1487 | upl_t *upl_ptr, |
| 1488 | upl_page_info_array_t user_page_list, |
| 1489 | unsigned int *page_list_count, |
| 1490 | int cntrl_flags, |
| 1491 | int tag) |
| 1492 | { |
| 1493 | vm_object_t object; |
| 1494 | |
| 1495 | object = memory_object_control_to_vm_object(control); |
| 1496 | if (object == VM_OBJECT_NULL) |
| 1497 | return (KERN_TERMINATED); |
| 1498 | |
| 1499 | return vm_object_upl_request(object, |
| 1500 | offset, |
| 1501 | size, |
| 1502 | upl_ptr, |
| 1503 | user_page_list, |
| 1504 | page_list_count, |
| 1505 | (upl_control_flags_t)(unsigned int) cntrl_flags, |
| 1506 | tag); |
| 1507 | } |
| 1508 | |
| 1509 | /* |
| 1510 | * Routine: memory_object_super_upl_request [interface] |
| 1511 | * Purpose: |
| 1512 | * Cause the population of a portion of a vm_object |
| 1513 | * in much the same way as memory_object_upl_request. |
| 1514 | * Depending on the nature of the request, the pages |
| 1515 | * returned may be contain valid data or be uninitialized. |
| 1516 | * However, the region may be expanded up to the super |
| 1517 | * cluster size provided. |
| 1518 | */ |
| 1519 | |
| 1520 | kern_return_t |
| 1521 | memory_object_super_upl_request( |
| 1522 | memory_object_control_t control, |
| 1523 | memory_object_offset_t offset, |
| 1524 | upl_size_t size, |
| 1525 | upl_size_t super_cluster, |
| 1526 | upl_t *upl, |
| 1527 | upl_page_info_t *user_page_list, |
| 1528 | unsigned int *page_list_count, |
| 1529 | int cntrl_flags, |
| 1530 | int tag) |
| 1531 | { |
| 1532 | vm_object_t object; |
| 1533 | |
| 1534 | object = memory_object_control_to_vm_object(control); |
| 1535 | if (object == VM_OBJECT_NULL) |
| 1536 | return (KERN_INVALID_ARGUMENT); |
| 1537 | |
| 1538 | return vm_object_super_upl_request(object, |
| 1539 | offset, |
| 1540 | size, |
| 1541 | super_cluster, |
| 1542 | upl, |
| 1543 | user_page_list, |
| 1544 | page_list_count, |
| 1545 | (upl_control_flags_t)(unsigned int) cntrl_flags, |
| 1546 | tag); |
| 1547 | } |
| 1548 | |
| 1549 | kern_return_t |
| 1550 | memory_object_cluster_size( |
| 1551 | memory_object_control_t control, |
| 1552 | memory_object_offset_t *start, |
| 1553 | vm_size_t *length, |
| 1554 | uint32_t *io_streaming, |
| 1555 | memory_object_fault_info_t mo_fault_info) |
| 1556 | { |
| 1557 | vm_object_t object; |
| 1558 | vm_object_fault_info_t fault_info; |
| 1559 | |
| 1560 | object = memory_object_control_to_vm_object(control); |
| 1561 | |
| 1562 | if (object == VM_OBJECT_NULL || object->paging_offset > *start) |
| 1563 | return KERN_INVALID_ARGUMENT; |
| 1564 | |
| 1565 | *start -= object->paging_offset; |
| 1566 | |
| 1567 | fault_info = (vm_object_fault_info_t)(uintptr_t) mo_fault_info; |
| 1568 | vm_object_cluster_size(object, |
| 1569 | (vm_object_offset_t *)start, |
| 1570 | length, |
| 1571 | fault_info, |
| 1572 | io_streaming); |
| 1573 | |
| 1574 | *start += object->paging_offset; |
| 1575 | |
| 1576 | return KERN_SUCCESS; |
| 1577 | } |
| 1578 | |
| 1579 | |
| 1580 | /* |
| 1581 | * Routine: host_default_memory_manager [interface] |
| 1582 | * Purpose: |
| 1583 | * set/get the default memory manager port and default cluster |
| 1584 | * size. |
| 1585 | * |
| 1586 | * If successful, consumes the supplied naked send right. |
| 1587 | */ |
| 1588 | kern_return_t |
| 1589 | host_default_memory_manager( |
| 1590 | host_priv_t host_priv, |
| 1591 | memory_object_default_t *default_manager, |
| 1592 | __unused memory_object_cluster_size_t cluster_size) |
| 1593 | { |
| 1594 | memory_object_default_t current_manager; |
| 1595 | memory_object_default_t new_manager; |
| 1596 | memory_object_default_t returned_manager; |
| 1597 | kern_return_t result = KERN_SUCCESS; |
| 1598 | |
| 1599 | if (host_priv == HOST_PRIV_NULL) |
| 1600 | return(KERN_INVALID_HOST); |
| 1601 | |
| 1602 | assert(host_priv == &realhost); |
| 1603 | |
| 1604 | new_manager = *default_manager; |
| 1605 | lck_mtx_lock(&memory_manager_default_lock); |
| 1606 | current_manager = memory_manager_default; |
| 1607 | returned_manager = MEMORY_OBJECT_DEFAULT_NULL; |
| 1608 | |
| 1609 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
| 1610 | /* |
| 1611 | * Retrieve the current value. |
| 1612 | */ |
| 1613 | returned_manager = current_manager; |
| 1614 | memory_object_default_reference(returned_manager); |
| 1615 | } else { |
| 1616 | /* |
| 1617 | * Only allow the kernel to change the value. |
| 1618 | */ |
| 1619 | extern task_t kernel_task; |
| 1620 | if (current_task() != kernel_task) { |
| 1621 | result = KERN_NO_ACCESS; |
| 1622 | goto out; |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * If this is the first non-null manager, start |
| 1627 | * up the internal pager support. |
| 1628 | */ |
| 1629 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
| 1630 | result = vm_pageout_internal_start(); |
| 1631 | if (result != KERN_SUCCESS) |
| 1632 | goto out; |
| 1633 | } |
| 1634 | |
| 1635 | /* |
| 1636 | * Retrieve the current value, |
| 1637 | * and replace it with the supplied value. |
| 1638 | * We return the old reference to the caller |
| 1639 | * but we have to take a reference on the new |
| 1640 | * one. |
| 1641 | */ |
| 1642 | returned_manager = current_manager; |
| 1643 | memory_manager_default = new_manager; |
| 1644 | memory_object_default_reference(new_manager); |
| 1645 | |
| 1646 | /* |
| 1647 | * In case anyone's been waiting for a memory |
| 1648 | * manager to be established, wake them up. |
| 1649 | */ |
| 1650 | |
| 1651 | thread_wakeup((event_t) &memory_manager_default); |
| 1652 | |
| 1653 | /* |
| 1654 | * Now that we have a default pager for anonymous memory, |
| 1655 | * reactivate all the throttled pages (i.e. dirty pages with |
| 1656 | * no pager). |
| 1657 | */ |
| 1658 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) |
| 1659 | { |
| 1660 | vm_page_reactivate_all_throttled(); |
| 1661 | } |
| 1662 | } |
| 1663 | out: |
| 1664 | lck_mtx_unlock(&memory_manager_default_lock); |
| 1665 | |
| 1666 | *default_manager = returned_manager; |
| 1667 | return(result); |
| 1668 | } |
| 1669 | |
| 1670 | /* |
| 1671 | * Routine: memory_manager_default_reference |
| 1672 | * Purpose: |
| 1673 | * Returns a naked send right for the default |
| 1674 | * memory manager. The returned right is always |
| 1675 | * valid (not IP_NULL or IP_DEAD). |
| 1676 | */ |
| 1677 | |
| 1678 | __private_extern__ memory_object_default_t |
| 1679 | memory_manager_default_reference(void) |
| 1680 | { |
| 1681 | memory_object_default_t current_manager; |
| 1682 | |
| 1683 | lck_mtx_lock(&memory_manager_default_lock); |
| 1684 | current_manager = memory_manager_default; |
| 1685 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
| 1686 | wait_result_t res; |
| 1687 | |
| 1688 | res = lck_mtx_sleep(&memory_manager_default_lock, |
| 1689 | LCK_SLEEP_DEFAULT, |
| 1690 | (event_t) &memory_manager_default, |
| 1691 | THREAD_UNINT); |
| 1692 | assert(res == THREAD_AWAKENED); |
| 1693 | current_manager = memory_manager_default; |
| 1694 | } |
| 1695 | memory_object_default_reference(current_manager); |
| 1696 | lck_mtx_unlock(&memory_manager_default_lock); |
| 1697 | |
| 1698 | return current_manager; |
| 1699 | } |
| 1700 | |
| 1701 | /* |
| 1702 | * Routine: memory_manager_default_check |
| 1703 | * |
| 1704 | * Purpose: |
| 1705 | * Check whether a default memory manager has been set |
| 1706 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, |
| 1707 | * and KERN_FAILURE if dmm does not exist. |
| 1708 | * |
| 1709 | * If there is no default memory manager, log an error, |
| 1710 | * but only the first time. |
| 1711 | * |
| 1712 | */ |
| 1713 | __private_extern__ kern_return_t |
| 1714 | memory_manager_default_check(void) |
| 1715 | { |
| 1716 | memory_object_default_t current; |
| 1717 | |
| 1718 | lck_mtx_lock(&memory_manager_default_lock); |
| 1719 | current = memory_manager_default; |
| 1720 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { |
| 1721 | static boolean_t logged; /* initialized to 0 */ |
| 1722 | boolean_t complain = !logged; |
| 1723 | logged = TRUE; |
| 1724 | lck_mtx_unlock(&memory_manager_default_lock); |
| 1725 | if (complain) |
| 1726 | printf("Warning: No default memory manager\n" ); |
| 1727 | return(KERN_FAILURE); |
| 1728 | } else { |
| 1729 | lck_mtx_unlock(&memory_manager_default_lock); |
| 1730 | return(KERN_SUCCESS); |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | __private_extern__ void |
| 1735 | memory_manager_default_init(void) |
| 1736 | { |
| 1737 | memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
| 1738 | lck_mtx_init(&memory_manager_default_lock, &vm_object_lck_grp, &vm_object_lck_attr); |
| 1739 | } |
| 1740 | |
| 1741 | |
| 1742 | |
| 1743 | /* Allow manipulation of individual page state. This is actually part of */ |
| 1744 | /* the UPL regimen but takes place on the object rather than on a UPL */ |
| 1745 | |
| 1746 | kern_return_t |
| 1747 | memory_object_page_op( |
| 1748 | memory_object_control_t control, |
| 1749 | memory_object_offset_t offset, |
| 1750 | int ops, |
| 1751 | ppnum_t *phys_entry, |
| 1752 | int *flags) |
| 1753 | { |
| 1754 | vm_object_t object; |
| 1755 | |
| 1756 | object = memory_object_control_to_vm_object(control); |
| 1757 | if (object == VM_OBJECT_NULL) |
| 1758 | return (KERN_INVALID_ARGUMENT); |
| 1759 | |
| 1760 | return vm_object_page_op(object, offset, ops, phys_entry, flags); |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * memory_object_range_op offers performance enhancement over |
| 1765 | * memory_object_page_op for page_op functions which do not require page |
| 1766 | * level state to be returned from the call. Page_op was created to provide |
| 1767 | * a low-cost alternative to page manipulation via UPLs when only a single |
| 1768 | * page was involved. The range_op call establishes the ability in the _op |
| 1769 | * family of functions to work on multiple pages where the lack of page level |
| 1770 | * state handling allows the caller to avoid the overhead of the upl structures. |
| 1771 | */ |
| 1772 | |
| 1773 | kern_return_t |
| 1774 | memory_object_range_op( |
| 1775 | memory_object_control_t control, |
| 1776 | memory_object_offset_t offset_beg, |
| 1777 | memory_object_offset_t offset_end, |
| 1778 | int ops, |
| 1779 | int *range) |
| 1780 | { |
| 1781 | vm_object_t object; |
| 1782 | |
| 1783 | object = memory_object_control_to_vm_object(control); |
| 1784 | if (object == VM_OBJECT_NULL) |
| 1785 | return (KERN_INVALID_ARGUMENT); |
| 1786 | |
| 1787 | return vm_object_range_op(object, |
| 1788 | offset_beg, |
| 1789 | offset_end, |
| 1790 | ops, |
| 1791 | (uint32_t *) range); |
| 1792 | } |
| 1793 | |
| 1794 | |
| 1795 | void |
| 1796 | memory_object_mark_used( |
| 1797 | memory_object_control_t control) |
| 1798 | { |
| 1799 | vm_object_t object; |
| 1800 | |
| 1801 | if (control == NULL) |
| 1802 | return; |
| 1803 | |
| 1804 | object = memory_object_control_to_vm_object(control); |
| 1805 | |
| 1806 | if (object != VM_OBJECT_NULL) |
| 1807 | vm_object_cache_remove(object); |
| 1808 | } |
| 1809 | |
| 1810 | |
| 1811 | void |
| 1812 | memory_object_mark_unused( |
| 1813 | memory_object_control_t control, |
| 1814 | __unused boolean_t rage) |
| 1815 | { |
| 1816 | vm_object_t object; |
| 1817 | |
| 1818 | if (control == NULL) |
| 1819 | return; |
| 1820 | |
| 1821 | object = memory_object_control_to_vm_object(control); |
| 1822 | |
| 1823 | if (object != VM_OBJECT_NULL) |
| 1824 | vm_object_cache_add(object); |
| 1825 | } |
| 1826 | |
| 1827 | void |
| 1828 | memory_object_mark_io_tracking( |
| 1829 | memory_object_control_t control) |
| 1830 | { |
| 1831 | vm_object_t object; |
| 1832 | |
| 1833 | if (control == NULL) |
| 1834 | return; |
| 1835 | object = memory_object_control_to_vm_object(control); |
| 1836 | |
| 1837 | if (object != VM_OBJECT_NULL) { |
| 1838 | vm_object_lock(object); |
| 1839 | object->io_tracking = TRUE; |
| 1840 | vm_object_unlock(object); |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | #if CONFIG_SECLUDED_MEMORY |
| 1845 | void |
| 1846 | memory_object_mark_eligible_for_secluded( |
| 1847 | memory_object_control_t control, |
| 1848 | boolean_t eligible_for_secluded) |
| 1849 | { |
| 1850 | vm_object_t object; |
| 1851 | |
| 1852 | if (control == NULL) |
| 1853 | return; |
| 1854 | object = memory_object_control_to_vm_object(control); |
| 1855 | |
| 1856 | if (object == VM_OBJECT_NULL) { |
| 1857 | return; |
| 1858 | } |
| 1859 | |
| 1860 | vm_object_lock(object); |
| 1861 | if (eligible_for_secluded && |
| 1862 | secluded_for_filecache && /* global boot-arg */ |
| 1863 | !object->eligible_for_secluded) { |
| 1864 | object->eligible_for_secluded = TRUE; |
| 1865 | vm_page_secluded.eligible_for_secluded += object->resident_page_count; |
| 1866 | } else if (!eligible_for_secluded && |
| 1867 | object->eligible_for_secluded) { |
| 1868 | object->eligible_for_secluded = FALSE; |
| 1869 | vm_page_secluded.eligible_for_secluded -= object->resident_page_count; |
| 1870 | if (object->resident_page_count) { |
| 1871 | /* XXX FBDP TODO: flush pages from secluded queue? */ |
| 1872 | // printf("FBDP TODO: flush %d pages from %p from secluded queue\n", object->resident_page_count, object); |
| 1873 | } |
| 1874 | } |
| 1875 | vm_object_unlock(object); |
| 1876 | } |
| 1877 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1878 | |
| 1879 | kern_return_t |
| 1880 | memory_object_pages_resident( |
| 1881 | memory_object_control_t control, |
| 1882 | boolean_t * has_pages_resident) |
| 1883 | { |
| 1884 | vm_object_t object; |
| 1885 | |
| 1886 | *has_pages_resident = FALSE; |
| 1887 | |
| 1888 | object = memory_object_control_to_vm_object(control); |
| 1889 | if (object == VM_OBJECT_NULL) |
| 1890 | return (KERN_INVALID_ARGUMENT); |
| 1891 | |
| 1892 | if (object->resident_page_count) |
| 1893 | *has_pages_resident = TRUE; |
| 1894 | |
| 1895 | return (KERN_SUCCESS); |
| 1896 | } |
| 1897 | |
| 1898 | kern_return_t |
| 1899 | memory_object_signed( |
| 1900 | memory_object_control_t control, |
| 1901 | boolean_t is_signed) |
| 1902 | { |
| 1903 | vm_object_t object; |
| 1904 | |
| 1905 | object = memory_object_control_to_vm_object(control); |
| 1906 | if (object == VM_OBJECT_NULL) |
| 1907 | return KERN_INVALID_ARGUMENT; |
| 1908 | |
| 1909 | vm_object_lock(object); |
| 1910 | object->code_signed = is_signed; |
| 1911 | vm_object_unlock(object); |
| 1912 | |
| 1913 | return KERN_SUCCESS; |
| 1914 | } |
| 1915 | |
| 1916 | boolean_t |
| 1917 | memory_object_is_signed( |
| 1918 | memory_object_control_t control) |
| 1919 | { |
| 1920 | boolean_t is_signed; |
| 1921 | vm_object_t object; |
| 1922 | |
| 1923 | object = memory_object_control_to_vm_object(control); |
| 1924 | if (object == VM_OBJECT_NULL) |
| 1925 | return FALSE; |
| 1926 | |
| 1927 | vm_object_lock_shared(object); |
| 1928 | is_signed = object->code_signed; |
| 1929 | vm_object_unlock(object); |
| 1930 | |
| 1931 | return is_signed; |
| 1932 | } |
| 1933 | |
| 1934 | boolean_t |
| 1935 | memory_object_is_shared_cache( |
| 1936 | memory_object_control_t control) |
| 1937 | { |
| 1938 | vm_object_t object = VM_OBJECT_NULL; |
| 1939 | |
| 1940 | object = memory_object_control_to_vm_object(control); |
| 1941 | if (object == VM_OBJECT_NULL) |
| 1942 | return FALSE; |
| 1943 | |
| 1944 | return object->object_is_shared_cache; |
| 1945 | } |
| 1946 | |
| 1947 | static zone_t mem_obj_control_zone; |
| 1948 | |
| 1949 | __private_extern__ void |
| 1950 | memory_object_control_bootstrap(void) |
| 1951 | { |
| 1952 | int i; |
| 1953 | |
| 1954 | i = (vm_size_t) sizeof (struct memory_object_control); |
| 1955 | mem_obj_control_zone = zinit (i, 8192*i, 4096, "mem_obj_control" ); |
| 1956 | zone_change(mem_obj_control_zone, Z_CALLERACCT, FALSE); |
| 1957 | zone_change(mem_obj_control_zone, Z_NOENCRYPT, TRUE); |
| 1958 | return; |
| 1959 | } |
| 1960 | |
| 1961 | __private_extern__ memory_object_control_t |
| 1962 | memory_object_control_allocate( |
| 1963 | vm_object_t object) |
| 1964 | { |
| 1965 | memory_object_control_t control; |
| 1966 | |
| 1967 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); |
| 1968 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
| 1969 | control->moc_object = object; |
| 1970 | control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */ |
| 1971 | } |
| 1972 | return (control); |
| 1973 | } |
| 1974 | |
| 1975 | __private_extern__ void |
| 1976 | memory_object_control_collapse( |
| 1977 | memory_object_control_t control, |
| 1978 | vm_object_t object) |
| 1979 | { |
| 1980 | assert((control->moc_object != VM_OBJECT_NULL) && |
| 1981 | (control->moc_object != object)); |
| 1982 | control->moc_object = object; |
| 1983 | } |
| 1984 | |
| 1985 | __private_extern__ vm_object_t |
| 1986 | memory_object_control_to_vm_object( |
| 1987 | memory_object_control_t control) |
| 1988 | { |
| 1989 | if (control == MEMORY_OBJECT_CONTROL_NULL || |
| 1990 | control->moc_ikot != IKOT_MEM_OBJ_CONTROL) |
| 1991 | return VM_OBJECT_NULL; |
| 1992 | |
| 1993 | return (control->moc_object); |
| 1994 | } |
| 1995 | |
| 1996 | __private_extern__ vm_object_t |
| 1997 | memory_object_to_vm_object( |
| 1998 | memory_object_t mem_obj) |
| 1999 | { |
| 2000 | memory_object_control_t mo_control; |
| 2001 | |
| 2002 | if (mem_obj == MEMORY_OBJECT_NULL) { |
| 2003 | return VM_OBJECT_NULL; |
| 2004 | } |
| 2005 | mo_control = mem_obj->mo_control; |
| 2006 | if (mo_control == NULL) { |
| 2007 | return VM_OBJECT_NULL; |
| 2008 | } |
| 2009 | return memory_object_control_to_vm_object(mo_control); |
| 2010 | } |
| 2011 | |
| 2012 | memory_object_control_t |
| 2013 | convert_port_to_mo_control( |
| 2014 | __unused mach_port_t port) |
| 2015 | { |
| 2016 | return MEMORY_OBJECT_CONTROL_NULL; |
| 2017 | } |
| 2018 | |
| 2019 | |
| 2020 | mach_port_t |
| 2021 | convert_mo_control_to_port( |
| 2022 | __unused memory_object_control_t control) |
| 2023 | { |
| 2024 | return MACH_PORT_NULL; |
| 2025 | } |
| 2026 | |
| 2027 | void |
| 2028 | memory_object_control_reference( |
| 2029 | __unused memory_object_control_t control) |
| 2030 | { |
| 2031 | return; |
| 2032 | } |
| 2033 | |
| 2034 | /* |
| 2035 | * We only every issue one of these references, so kill it |
| 2036 | * when that gets released (should switch the real reference |
| 2037 | * counting in true port-less EMMI). |
| 2038 | */ |
| 2039 | void |
| 2040 | memory_object_control_deallocate( |
| 2041 | memory_object_control_t control) |
| 2042 | { |
| 2043 | zfree(mem_obj_control_zone, control); |
| 2044 | } |
| 2045 | |
| 2046 | void |
| 2047 | memory_object_control_disable( |
| 2048 | memory_object_control_t control) |
| 2049 | { |
| 2050 | assert(control->moc_object != VM_OBJECT_NULL); |
| 2051 | control->moc_object = VM_OBJECT_NULL; |
| 2052 | } |
| 2053 | |
| 2054 | void |
| 2055 | memory_object_default_reference( |
| 2056 | memory_object_default_t dmm) |
| 2057 | { |
| 2058 | ipc_port_make_send(dmm); |
| 2059 | } |
| 2060 | |
| 2061 | void |
| 2062 | memory_object_default_deallocate( |
| 2063 | memory_object_default_t dmm) |
| 2064 | { |
| 2065 | ipc_port_release_send(dmm); |
| 2066 | } |
| 2067 | |
| 2068 | memory_object_t |
| 2069 | convert_port_to_memory_object( |
| 2070 | __unused mach_port_t port) |
| 2071 | { |
| 2072 | return (MEMORY_OBJECT_NULL); |
| 2073 | } |
| 2074 | |
| 2075 | |
| 2076 | mach_port_t |
| 2077 | convert_memory_object_to_port( |
| 2078 | __unused memory_object_t object) |
| 2079 | { |
| 2080 | return (MACH_PORT_NULL); |
| 2081 | } |
| 2082 | |
| 2083 | |
| 2084 | /* Routine memory_object_reference */ |
| 2085 | void memory_object_reference( |
| 2086 | memory_object_t memory_object) |
| 2087 | { |
| 2088 | (memory_object->mo_pager_ops->memory_object_reference)( |
| 2089 | memory_object); |
| 2090 | } |
| 2091 | |
| 2092 | /* Routine memory_object_deallocate */ |
| 2093 | void memory_object_deallocate( |
| 2094 | memory_object_t memory_object) |
| 2095 | { |
| 2096 | (memory_object->mo_pager_ops->memory_object_deallocate)( |
| 2097 | memory_object); |
| 2098 | } |
| 2099 | |
| 2100 | |
| 2101 | /* Routine memory_object_init */ |
| 2102 | kern_return_t memory_object_init |
| 2103 | ( |
| 2104 | memory_object_t memory_object, |
| 2105 | memory_object_control_t memory_control, |
| 2106 | memory_object_cluster_size_t memory_object_page_size |
| 2107 | ) |
| 2108 | { |
| 2109 | return (memory_object->mo_pager_ops->memory_object_init)( |
| 2110 | memory_object, |
| 2111 | memory_control, |
| 2112 | memory_object_page_size); |
| 2113 | } |
| 2114 | |
| 2115 | /* Routine memory_object_terminate */ |
| 2116 | kern_return_t memory_object_terminate |
| 2117 | ( |
| 2118 | memory_object_t memory_object |
| 2119 | ) |
| 2120 | { |
| 2121 | return (memory_object->mo_pager_ops->memory_object_terminate)( |
| 2122 | memory_object); |
| 2123 | } |
| 2124 | |
| 2125 | /* Routine memory_object_data_request */ |
| 2126 | kern_return_t memory_object_data_request |
| 2127 | ( |
| 2128 | memory_object_t memory_object, |
| 2129 | memory_object_offset_t offset, |
| 2130 | memory_object_cluster_size_t length, |
| 2131 | vm_prot_t desired_access, |
| 2132 | memory_object_fault_info_t fault_info |
| 2133 | ) |
| 2134 | { |
| 2135 | return (memory_object->mo_pager_ops->memory_object_data_request)( |
| 2136 | memory_object, |
| 2137 | offset, |
| 2138 | length, |
| 2139 | desired_access, |
| 2140 | fault_info); |
| 2141 | } |
| 2142 | |
| 2143 | /* Routine memory_object_data_return */ |
| 2144 | kern_return_t memory_object_data_return |
| 2145 | ( |
| 2146 | memory_object_t memory_object, |
| 2147 | memory_object_offset_t offset, |
| 2148 | memory_object_cluster_size_t size, |
| 2149 | memory_object_offset_t *resid_offset, |
| 2150 | int *io_error, |
| 2151 | boolean_t dirty, |
| 2152 | boolean_t kernel_copy, |
| 2153 | int upl_flags |
| 2154 | ) |
| 2155 | { |
| 2156 | return (memory_object->mo_pager_ops->memory_object_data_return)( |
| 2157 | memory_object, |
| 2158 | offset, |
| 2159 | size, |
| 2160 | resid_offset, |
| 2161 | io_error, |
| 2162 | dirty, |
| 2163 | kernel_copy, |
| 2164 | upl_flags); |
| 2165 | } |
| 2166 | |
| 2167 | /* Routine memory_object_data_initialize */ |
| 2168 | kern_return_t memory_object_data_initialize |
| 2169 | ( |
| 2170 | memory_object_t memory_object, |
| 2171 | memory_object_offset_t offset, |
| 2172 | memory_object_cluster_size_t size |
| 2173 | ) |
| 2174 | { |
| 2175 | return (memory_object->mo_pager_ops->memory_object_data_initialize)( |
| 2176 | memory_object, |
| 2177 | offset, |
| 2178 | size); |
| 2179 | } |
| 2180 | |
| 2181 | /* Routine memory_object_data_unlock */ |
| 2182 | kern_return_t memory_object_data_unlock |
| 2183 | ( |
| 2184 | memory_object_t memory_object, |
| 2185 | memory_object_offset_t offset, |
| 2186 | memory_object_size_t size, |
| 2187 | vm_prot_t desired_access |
| 2188 | ) |
| 2189 | { |
| 2190 | return (memory_object->mo_pager_ops->memory_object_data_unlock)( |
| 2191 | memory_object, |
| 2192 | offset, |
| 2193 | size, |
| 2194 | desired_access); |
| 2195 | } |
| 2196 | |
| 2197 | /* Routine memory_object_synchronize */ |
| 2198 | kern_return_t memory_object_synchronize |
| 2199 | ( |
| 2200 | memory_object_t memory_object, |
| 2201 | memory_object_offset_t offset, |
| 2202 | memory_object_size_t size, |
| 2203 | vm_sync_t sync_flags |
| 2204 | ) |
| 2205 | { |
| 2206 | panic("memory_object_syncrhonize no longer supported\n" ); |
| 2207 | |
| 2208 | return (memory_object->mo_pager_ops->memory_object_synchronize)( |
| 2209 | memory_object, |
| 2210 | offset, |
| 2211 | size, |
| 2212 | sync_flags); |
| 2213 | } |
| 2214 | |
| 2215 | |
| 2216 | /* |
| 2217 | * memory_object_map() is called by VM (in vm_map_enter() and its variants) |
| 2218 | * each time a "named" VM object gets mapped directly or indirectly |
| 2219 | * (copy-on-write mapping). A "named" VM object has an extra reference held |
| 2220 | * by the pager to keep it alive until the pager decides that the |
| 2221 | * memory object (and its VM object) can be reclaimed. |
| 2222 | * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all |
| 2223 | * the mappings of that memory object have been removed. |
| 2224 | * |
| 2225 | * For a given VM object, calls to memory_object_map() and memory_object_unmap() |
| 2226 | * are serialized (through object->mapping_in_progress), to ensure that the |
| 2227 | * pager gets a consistent view of the mapping status of the memory object. |
| 2228 | * |
| 2229 | * This allows the pager to keep track of how many times a memory object |
| 2230 | * has been mapped and with which protections, to decide when it can be |
| 2231 | * reclaimed. |
| 2232 | */ |
| 2233 | |
| 2234 | /* Routine memory_object_map */ |
| 2235 | kern_return_t memory_object_map |
| 2236 | ( |
| 2237 | memory_object_t memory_object, |
| 2238 | vm_prot_t prot |
| 2239 | ) |
| 2240 | { |
| 2241 | return (memory_object->mo_pager_ops->memory_object_map)( |
| 2242 | memory_object, |
| 2243 | prot); |
| 2244 | } |
| 2245 | |
| 2246 | /* Routine memory_object_last_unmap */ |
| 2247 | kern_return_t memory_object_last_unmap |
| 2248 | ( |
| 2249 | memory_object_t memory_object |
| 2250 | ) |
| 2251 | { |
| 2252 | return (memory_object->mo_pager_ops->memory_object_last_unmap)( |
| 2253 | memory_object); |
| 2254 | } |
| 2255 | |
| 2256 | /* Routine memory_object_data_reclaim */ |
| 2257 | kern_return_t memory_object_data_reclaim |
| 2258 | ( |
| 2259 | memory_object_t memory_object, |
| 2260 | boolean_t reclaim_backing_store |
| 2261 | ) |
| 2262 | { |
| 2263 | if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) |
| 2264 | return KERN_NOT_SUPPORTED; |
| 2265 | return (memory_object->mo_pager_ops->memory_object_data_reclaim)( |
| 2266 | memory_object, |
| 2267 | reclaim_backing_store); |
| 2268 | } |
| 2269 | |
| 2270 | upl_t |
| 2271 | convert_port_to_upl( |
| 2272 | ipc_port_t port) |
| 2273 | { |
| 2274 | upl_t upl; |
| 2275 | |
| 2276 | ip_lock(port); |
| 2277 | if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) { |
| 2278 | ip_unlock(port); |
| 2279 | return (upl_t)NULL; |
| 2280 | } |
| 2281 | upl = (upl_t) port->ip_kobject; |
| 2282 | ip_unlock(port); |
| 2283 | upl_lock(upl); |
| 2284 | upl->ref_count+=1; |
| 2285 | upl_unlock(upl); |
| 2286 | return upl; |
| 2287 | } |
| 2288 | |
| 2289 | mach_port_t |
| 2290 | convert_upl_to_port( |
| 2291 | __unused upl_t upl) |
| 2292 | { |
| 2293 | return MACH_PORT_NULL; |
| 2294 | } |
| 2295 | |
| 2296 | __private_extern__ void |
| 2297 | upl_no_senders( |
| 2298 | __unused ipc_port_t port, |
| 2299 | __unused mach_port_mscount_t mscount) |
| 2300 | { |
| 2301 | return; |
| 2302 | } |
| 2303 | |