| 1 | /* |
| 2 | * Copyright (c) 2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <kern/cpu_data.h> |
| 30 | #include <kern/cpu_number.h> |
| 31 | #include <kern/kalloc.h> |
| 32 | #include <kern/machine.h> |
| 33 | #include <kern/misc_protos.h> |
| 34 | #include <kern/processor.h> |
| 35 | #include <kern/sched.h> |
| 36 | #include <kern/startup.h> |
| 37 | #include <kern/thread.h> |
| 38 | #include <kern/thread_call.h> |
| 39 | #include <mach/machine.h> |
| 40 | #include <mach/processor.h> |
| 41 | #include <machine/cpu_data.h> |
| 42 | #include <machine/simple_lock.h> |
| 43 | #include <sys/errno.h> |
| 44 | #include <sys/kdebug.h> |
| 45 | #include <sys/random.h> |
| 46 | #include <vm/pmap.h> |
| 47 | #include <vm/vm_page.h> |
| 48 | |
| 49 | #include <corecrypto/ccdigest.h> |
| 50 | #include <corecrypto/ccdrbg.h> |
| 51 | #include <corecrypto/cckprng.h> |
| 52 | #include <corecrypto/ccsha1.h> |
| 53 | #include <corecrypto/ccsha2.h> |
| 54 | #include <prng/random.h> |
| 55 | |
| 56 | #include <IOKit/IOPlatformExpert.h> |
| 57 | #include <console/serial_protos.h> |
| 58 | #include <pexpert/pexpert.h> |
| 59 | |
| 60 | #include <libkern/section_keywords.h> |
| 61 | |
| 62 | #if defined(__arm__) || defined(__arm64__) |
| 63 | #include <arm/cpu_data_internal.h> // For MAX_CPUS |
| 64 | #endif |
| 65 | |
| 66 | #if defined(__x86_64__) |
| 67 | #include <i386/cpuid.h> |
| 68 | |
| 69 | static int |
| 70 | rdseed_step(uint64_t * seed) |
| 71 | { |
| 72 | uint8_t ok; |
| 73 | |
| 74 | asm volatile("rdseed %0; setc %1" : "=r" (*seed), "=qm" (ok)); |
| 75 | |
| 76 | return (int)ok; |
| 77 | } |
| 78 | |
| 79 | static int |
| 80 | rdseed_retry(uint64_t * seed, size_t nretries) |
| 81 | { |
| 82 | size_t i; |
| 83 | |
| 84 | for (i = 0; i < nretries; i += 1) { |
| 85 | if (rdseed_step(seed)) { |
| 86 | return 1; |
| 87 | } else { |
| 88 | asm volatile("pause" ); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | static size_t |
| 96 | rdseed_seed(void * buf, size_t nwords) |
| 97 | { |
| 98 | uint64_t * buf_words; |
| 99 | size_t i; |
| 100 | |
| 101 | if (nwords > 8) { |
| 102 | nwords = 8; |
| 103 | } |
| 104 | |
| 105 | buf_words = buf; |
| 106 | for (i = 0; i < nwords; i += 1) { |
| 107 | if (!rdseed_retry(buf_words + i, 10)) { |
| 108 | return i; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | return nwords; |
| 113 | } |
| 114 | |
| 115 | static int |
| 116 | rdrand_step(uint64_t * rand) |
| 117 | { |
| 118 | uint8_t ok; |
| 119 | |
| 120 | asm volatile("rdrand %0; setc %1" : "=r" (*rand), "=qm" (ok)); |
| 121 | |
| 122 | return (int)ok; |
| 123 | } |
| 124 | |
| 125 | static int |
| 126 | rdrand_retry(uint64_t * rand, size_t nretries) |
| 127 | { |
| 128 | size_t i; |
| 129 | |
| 130 | for (i = 0; i < nretries; i += 1) { |
| 131 | if (rdrand_step(rand)) { |
| 132 | return 1; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | static size_t |
| 140 | rdrand_seed(void * buf, size_t nwords) |
| 141 | { |
| 142 | size_t i; |
| 143 | uint64_t w; |
| 144 | uint8_t hash[CCSHA256_OUTPUT_SIZE]; |
| 145 | const struct ccdigest_info * di = &ccsha256_ltc_di; |
| 146 | |
| 147 | ccdigest_di_decl(di, ctx); |
| 148 | ccdigest_init(di, ctx); |
| 149 | |
| 150 | for (i = 0; i < 1023; i += 1) { |
| 151 | if (!rdrand_retry(&w, 10)) { |
| 152 | nwords = 0; |
| 153 | goto out; |
| 154 | } |
| 155 | ccdigest_update(di, ctx, sizeof w, &w); |
| 156 | } |
| 157 | |
| 158 | ccdigest_final(di, ctx, hash); |
| 159 | |
| 160 | if (nwords > 2) { |
| 161 | nwords = 2; |
| 162 | } |
| 163 | |
| 164 | memcpy(buf, hash, nwords * sizeof(uint64_t)); |
| 165 | |
| 166 | out: |
| 167 | ccdigest_di_clear(di, ctx); |
| 168 | bzero(hash, sizeof hash); |
| 169 | bzero(&w, sizeof w); |
| 170 | |
| 171 | return nwords; |
| 172 | } |
| 173 | |
| 174 | static void |
| 175 | intel_entropysource(void * buf, size_t * nbytes) |
| 176 | { |
| 177 | size_t nwords; |
| 178 | |
| 179 | /* only handle complete words */ |
| 180 | assert(*nbytes % sizeof(uint64_t) == 0); |
| 181 | |
| 182 | nwords = (*nbytes) / sizeof(uint64_t); |
| 183 | if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_RDSEED) { |
| 184 | nwords = rdseed_seed(buf, nwords); |
| 185 | *nbytes = nwords * sizeof(uint64_t); |
| 186 | } else if (cpuid_features() & CPUID_FEATURE_RDRAND) { |
| 187 | nwords = rdrand_seed(buf, nwords); |
| 188 | *nbytes = nwords * sizeof(uint64_t); |
| 189 | } else { |
| 190 | *nbytes = 0; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | #endif /* defined(__x86_64__) */ |
| 195 | |
| 196 | void entropy_buffer_read(void * buffer, size_t * count); |
| 197 | |
| 198 | typedef void (*entropysource)(void * buf, size_t * nbytes); |
| 199 | |
| 200 | static const entropysource entropysources[] = { |
| 201 | entropy_buffer_read, |
| 202 | #if defined(__x86_64__) |
| 203 | intel_entropysource, |
| 204 | #endif |
| 205 | }; |
| 206 | |
| 207 | static const size_t nsources = sizeof entropysources / sizeof entropysources[0]; |
| 208 | |
| 209 | static size_t |
| 210 | entropy_readall(void * buf, size_t nbytes_persource) |
| 211 | { |
| 212 | uint8_t * buf_bytes = buf; |
| 213 | size_t i; |
| 214 | size_t nbytes_total = 0; |
| 215 | |
| 216 | for (i = 0; i < nsources; i += 1) { |
| 217 | size_t nbytes = nbytes_persource; |
| 218 | entropysources[i](buf_bytes, &nbytes); |
| 219 | bzero(buf_bytes + nbytes, nbytes_persource - nbytes); |
| 220 | nbytes_total += nbytes; |
| 221 | buf_bytes += nbytes_persource; |
| 222 | } |
| 223 | |
| 224 | return nbytes_total; |
| 225 | } |
| 226 | |
| 227 | static struct { |
| 228 | struct cckprng_ctx ctx; |
| 229 | struct { |
| 230 | lck_grp_t * group; |
| 231 | lck_attr_t * attrs; |
| 232 | lck_grp_attr_t * group_attrs; |
| 233 | lck_mtx_t * mutex; |
| 234 | } lock; |
| 235 | } prng; |
| 236 | |
| 237 | static SECURITY_READ_ONLY_LATE(prng_fns_t) prng_fns = NULL; |
| 238 | |
| 239 | static int |
| 240 | prng_init(cckprng_ctx_t ctx, size_t nbytes, const void * seed) |
| 241 | { |
| 242 | int err = prng_fns->init(ctx, nbytes, seed); |
| 243 | if (err == CCKPRNG_ABORT) { |
| 244 | panic("prng_init" ); |
| 245 | } |
| 246 | return err; |
| 247 | } |
| 248 | |
| 249 | #define PERMIT_WRITE_RANDOM 0 |
| 250 | |
| 251 | #if PERMIT_WRITE_RANDOM |
| 252 | static int |
| 253 | prng_reseed(cckprng_ctx_t ctx, size_t nbytes, const void * seed) |
| 254 | { |
| 255 | int err = prng_fns->reseed(ctx, nbytes, seed); |
| 256 | if (err == CCKPRNG_ABORT) { |
| 257 | panic("prng_reseed" ); |
| 258 | } |
| 259 | return err; |
| 260 | } |
| 261 | #endif |
| 262 | |
| 263 | static int |
| 264 | prng_addentropy(cckprng_ctx_t ctx, size_t nbytes, const void * entropy) |
| 265 | { |
| 266 | int err = prng_fns->addentropy(ctx, nbytes, entropy); |
| 267 | if (err == CCKPRNG_ABORT) { |
| 268 | panic("prng_addentropy" ); |
| 269 | } |
| 270 | return err; |
| 271 | } |
| 272 | |
| 273 | static int |
| 274 | prng_generate(cckprng_ctx_t ctx, size_t nbytes, void * out) |
| 275 | { |
| 276 | int err = prng_fns->generate(ctx, nbytes, out); |
| 277 | if (err == CCKPRNG_ABORT) { |
| 278 | panic("prng_generate" ); |
| 279 | } |
| 280 | return err; |
| 281 | } |
| 282 | |
| 283 | entropy_data_t EntropyData = {.index_ptr = EntropyData.buffer}; |
| 284 | |
| 285 | static struct { |
| 286 | uint8_t seed[nsources][EARLY_RANDOM_SEED_SIZE]; |
| 287 | int seedset; |
| 288 | uint8_t master_drbg_state[EARLY_RANDOM_STATE_STATIC_SIZE]; |
| 289 | struct ccdrbg_state * drbg_states[MAX_CPUS]; |
| 290 | struct ccdrbg_info drbg_info; |
| 291 | const struct ccdrbg_nisthmac_custom drbg_custom; |
| 292 | } erandom = {.drbg_custom = { |
| 293 | .di = &ccsha1_eay_di, |
| 294 | .strictFIPS = 0, |
| 295 | }}; |
| 296 | |
| 297 | static void read_erandom(void * buf, uint32_t nbytes); |
| 298 | |
| 299 | void |
| 300 | entropy_buffer_read(void * buffer, size_t * count) |
| 301 | { |
| 302 | boolean_t current_state; |
| 303 | unsigned int i, j; |
| 304 | |
| 305 | if (!erandom.seedset) { |
| 306 | panic("early_random was never invoked" ); |
| 307 | } |
| 308 | |
| 309 | if (*count > ENTROPY_BUFFER_BYTE_SIZE) { |
| 310 | *count = ENTROPY_BUFFER_BYTE_SIZE; |
| 311 | } |
| 312 | |
| 313 | current_state = ml_set_interrupts_enabled(FALSE); |
| 314 | |
| 315 | memcpy(buffer, EntropyData.buffer, *count); |
| 316 | |
| 317 | /* Consider removing this mixing step rdar://problem/31668239 */ |
| 318 | for (i = 0, j = (ENTROPY_BUFFER_SIZE - 1); i < ENTROPY_BUFFER_SIZE; j = i, i++) |
| 319 | EntropyData.buffer[i] = EntropyData.buffer[i] ^ EntropyData.buffer[j]; |
| 320 | |
| 321 | (void)ml_set_interrupts_enabled(current_state); |
| 322 | |
| 323 | #if DEVELOPMENT || DEBUG |
| 324 | uint32_t * word = buffer; |
| 325 | /* Good for both 32-bit and 64-bit kernels. */ |
| 326 | for (i = 0; i < ENTROPY_BUFFER_SIZE; i += 4) |
| 327 | /* |
| 328 | * We use "EARLY" here so that we can grab early entropy on |
| 329 | * ARM, where tracing is not started until after PRNG is |
| 330 | * initialized. |
| 331 | */ |
| 332 | KERNEL_DEBUG_EARLY(ENTROPY_READ(i / 4), word[i + 0], word[i + 1], word[i + 2], word[i + 3]); |
| 333 | #endif |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Return a uniformly distributed 64-bit random number. |
| 338 | * |
| 339 | * This interface should have minimal dependencies on kernel |
| 340 | * services, and thus be available very early in the life |
| 341 | * of the kernel. |
| 342 | * This provides cryptographically secure randomness. |
| 343 | * Each processor has its own generator instance. |
| 344 | * It is seeded (lazily) with entropy provided by the Booter. |
| 345 | * |
| 346 | * For <rdar://problem/17292592> the algorithm switched from LCG to |
| 347 | * NIST HMAC DBRG as follows: |
| 348 | * - When first called (on OSX this is very early while page tables are being |
| 349 | * built) early_random() calls ccdrbg_factory_hmac() to set-up a ccdbrg info |
| 350 | * structure. |
| 351 | * - The boot processor's ccdrbg state structure is a statically allocated area |
| 352 | * which is then initialized by calling the ccdbrg_init method. |
| 353 | * The initial entropy is 16 bytes of boot entropy. |
| 354 | * The nonce is the first 8 bytes of entropy xor'ed with a timestamp |
| 355 | * from ml_get_timebase(). |
| 356 | * The personalization data provided is null. |
| 357 | * - The first 64-bit random value is returned on the boot processor from |
| 358 | * an invocation of the ccdbrg_generate method. |
| 359 | * - Non-boot processor's DRBG state structures are allocated dynamically |
| 360 | * from prng_init(). Each is initialized with the same 16 bytes of entropy |
| 361 | * but with a different timestamped nonce and cpu number as personalization. |
| 362 | * - Subsequent calls to early_random() pass to read_erandom() to generate |
| 363 | * an 8-byte random value. read_erandom() ensures that pre-emption is |
| 364 | * disabled and selects the DBRG state from the current processor. |
| 365 | * The ccdbrg_generate method is called for the required random output. |
| 366 | * If this method returns CCDRBG_STATUS_NEED_RESEED, the erandom.seed buffer |
| 367 | * is re-filled with kernel-harvested entropy and the ccdbrg_reseed method is |
| 368 | * called with this new entropy. The kernel panics if a reseed fails. |
| 369 | */ |
| 370 | uint64_t |
| 371 | early_random(void) |
| 372 | { |
| 373 | uint32_t cnt = 0; |
| 374 | uint64_t result; |
| 375 | uint64_t nonce; |
| 376 | int rc; |
| 377 | int ps; |
| 378 | struct ccdrbg_state * state; |
| 379 | |
| 380 | if (!erandom.seedset) { |
| 381 | erandom.seedset = 1; |
| 382 | cnt = PE_get_random_seed((unsigned char *)EntropyData.buffer, sizeof(EntropyData.buffer)); |
| 383 | |
| 384 | if (cnt < sizeof(EntropyData.buffer)) { |
| 385 | /* |
| 386 | * Insufficient entropy is fatal. We must fill the |
| 387 | * entire entropy buffer during initializaton. |
| 388 | */ |
| 389 | panic("EntropyData needed %lu bytes, but got %u.\n" , sizeof(EntropyData.buffer), cnt); |
| 390 | } |
| 391 | |
| 392 | entropy_readall(&erandom.seed, EARLY_RANDOM_SEED_SIZE); |
| 393 | |
| 394 | /* Init DRBG for NIST HMAC */ |
| 395 | ccdrbg_factory_nisthmac(&erandom.drbg_info, &erandom.drbg_custom); |
| 396 | assert(erandom.drbg_info.size <= sizeof(erandom.master_drbg_state)); |
| 397 | state = (struct ccdrbg_state *)erandom.master_drbg_state; |
| 398 | erandom.drbg_states[master_cpu] = state; |
| 399 | |
| 400 | /* |
| 401 | * Init our DBRG from the boot entropy and a timestamp as nonce |
| 402 | * and the cpu number as personalization. |
| 403 | */ |
| 404 | assert(sizeof(erandom.seed) > sizeof(nonce)); |
| 405 | nonce = ml_get_timebase(); |
| 406 | ps = 0; /* boot cpu */ |
| 407 | rc = ccdrbg_init(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, sizeof(nonce), &nonce, sizeof(ps), &ps); |
| 408 | cc_clear(sizeof(nonce), &nonce); |
| 409 | if (rc != CCDRBG_STATUS_OK) |
| 410 | panic("ccdrbg_init() returned %d" , rc); |
| 411 | |
| 412 | /* Generate output */ |
| 413 | rc = ccdrbg_generate(&erandom.drbg_info, state, sizeof(result), &result, 0, NULL); |
| 414 | if (rc != CCDRBG_STATUS_OK) |
| 415 | panic("ccdrbg_generate() returned %d" , rc); |
| 416 | |
| 417 | return result; |
| 418 | }; |
| 419 | |
| 420 | read_erandom(&result, sizeof(result)); |
| 421 | |
| 422 | return result; |
| 423 | } |
| 424 | |
| 425 | static void |
| 426 | read_erandom(void * buffer, u_int numBytes) |
| 427 | { |
| 428 | int cpu; |
| 429 | int rc; |
| 430 | size_t nbytes; |
| 431 | struct ccdrbg_state * state; |
| 432 | |
| 433 | mp_disable_preemption(); |
| 434 | cpu = cpu_number(); |
| 435 | state = erandom.drbg_states[cpu]; |
| 436 | assert(state); |
| 437 | for (;;) { |
| 438 | /* Generate output */ |
| 439 | rc = ccdrbg_generate(&erandom.drbg_info, state, numBytes, buffer, 0, NULL); |
| 440 | if (rc == CCDRBG_STATUS_OK) |
| 441 | break; |
| 442 | if (rc == CCDRBG_STATUS_NEED_RESEED) { |
| 443 | /* It's time to reseed. Get more entropy */ |
| 444 | nbytes = entropy_readall(erandom.seed, EARLY_RANDOM_SEED_SIZE); |
| 445 | assert(nbytes >= EARLY_RANDOM_SEED_SIZE); |
| 446 | rc = ccdrbg_reseed(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, 0, NULL); |
| 447 | cc_clear(sizeof(erandom.seed), erandom.seed); |
| 448 | if (rc == CCDRBG_STATUS_OK) |
| 449 | continue; |
| 450 | panic("read_erandom reseed error %d\n" , rc); |
| 451 | } |
| 452 | panic("read_erandom ccdrbg error %d\n" , rc); |
| 453 | } |
| 454 | mp_enable_preemption(); |
| 455 | } |
| 456 | |
| 457 | void |
| 458 | read_frandom(void * buffer, u_int numBytes) |
| 459 | { |
| 460 | uint8_t * buffer_bytes = buffer; |
| 461 | int nbytes; |
| 462 | |
| 463 | /* |
| 464 | * Split up into requests for blocks smaller than |
| 465 | * than the DBRG request limit. iThis limit is private but |
| 466 | * for NISTHMAC it's known to be greater then 4096. |
| 467 | */ |
| 468 | while (numBytes) { |
| 469 | nbytes = MIN(numBytes, PAGE_SIZE); |
| 470 | read_erandom(buffer_bytes, nbytes); |
| 471 | buffer_bytes += nbytes; |
| 472 | numBytes -= nbytes; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | void |
| 477 | early_random_cpu_init(int cpu) |
| 478 | { |
| 479 | uint64_t nonce; |
| 480 | int rc; |
| 481 | struct ccdrbg_state * state; |
| 482 | |
| 483 | /* |
| 484 | * Allocate state and initialize DBRG state for early_random() |
| 485 | * for this processor. |
| 486 | */ |
| 487 | assert(cpu != master_cpu); |
| 488 | assert(erandom.drbg_states[cpu] == NULL); |
| 489 | |
| 490 | state = kalloc(erandom.drbg_info.size); |
| 491 | if (state == NULL) { |
| 492 | panic("prng_init kalloc failed\n" ); |
| 493 | } |
| 494 | erandom.drbg_states[cpu] = state; |
| 495 | |
| 496 | /* |
| 497 | * Init our DBRG from boot entropy, nonce as timestamp |
| 498 | * and use the cpu number as the personalization parameter. |
| 499 | */ |
| 500 | nonce = ml_get_timebase(); |
| 501 | rc = ccdrbg_init(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, sizeof(nonce), &nonce, sizeof(cpu), &cpu); |
| 502 | cc_clear(sizeof(nonce), &nonce); |
| 503 | if (rc != CCDRBG_STATUS_OK) |
| 504 | panic("ccdrbg_init() returned %d" , rc); |
| 505 | } |
| 506 | |
| 507 | void |
| 508 | register_and_init_prng(prng_fns_t fns) |
| 509 | { |
| 510 | uint8_t buf[nsources][ENTROPY_BUFFER_BYTE_SIZE]; |
| 511 | size_t nbytes; |
| 512 | |
| 513 | assert(cpu_number() == master_cpu); |
| 514 | assert(prng_fns == NULL); |
| 515 | |
| 516 | prng_fns = fns; |
| 517 | |
| 518 | /* make a mutex to control access */ |
| 519 | prng.lock.group_attrs = lck_grp_attr_alloc_init(); |
| 520 | prng.lock.group = lck_grp_alloc_init("random" , prng.lock.group_attrs); |
| 521 | prng.lock.attrs = lck_attr_alloc_init(); |
| 522 | prng.lock.mutex = lck_mtx_alloc_init(prng.lock.group, prng.lock.attrs); |
| 523 | |
| 524 | nbytes = entropy_readall(buf, ENTROPY_BUFFER_BYTE_SIZE); |
| 525 | (void)prng_init(&prng.ctx, nbytes, buf); |
| 526 | cc_clear(sizeof(buf), buf); |
| 527 | } |
| 528 | |
| 529 | static void |
| 530 | Reseed(void) |
| 531 | { |
| 532 | uint8_t buf[nsources][ENTROPY_BUFFER_BYTE_SIZE]; |
| 533 | size_t nbytes; |
| 534 | |
| 535 | lck_mtx_assert(prng.lock.mutex, LCK_MTX_ASSERT_OWNED); |
| 536 | |
| 537 | nbytes = entropy_readall(buf, ENTROPY_BUFFER_BYTE_SIZE); |
| 538 | PRNG_CCKPRNG((void)prng_addentropy(&prng.ctx, nbytes, buf)); |
| 539 | cc_clear(sizeof(buf), buf); |
| 540 | } |
| 541 | |
| 542 | /* export good random numbers to the rest of the kernel */ |
| 543 | void |
| 544 | read_random(void * buffer, u_int numbytes) |
| 545 | { |
| 546 | int err; |
| 547 | |
| 548 | lck_mtx_lock(prng.lock.mutex); |
| 549 | |
| 550 | /* |
| 551 | * Call PRNG, reseeding and retrying if requested. |
| 552 | */ |
| 553 | for (;;) { |
| 554 | PRNG_CCKPRNG(err = prng_generate(&prng.ctx, numbytes, buffer)); |
| 555 | if (err == CCKPRNG_OK) |
| 556 | break; |
| 557 | if (err == CCKPRNG_NEED_ENTROPY) { |
| 558 | Reseed(); |
| 559 | continue; |
| 560 | } |
| 561 | panic("read_random() error %d\n" , err); |
| 562 | } |
| 563 | |
| 564 | lck_mtx_unlock(prng.lock.mutex); |
| 565 | } |
| 566 | |
| 567 | int |
| 568 | write_random(void * buffer, u_int numbytes) |
| 569 | { |
| 570 | #if PERMIT_WRITE_RANDOM |
| 571 | int err; |
| 572 | |
| 573 | lck_mtx_lock(prng.lock.mutex); |
| 574 | err = prng_reseed(&prng.ctx, numbytes, buffer); |
| 575 | lck_mtx_unlock(prng.lock.mutex); |
| 576 | |
| 577 | return err ? EIO : 0; |
| 578 | #else |
| 579 | #pragma unused(buffer, numbytes) |
| 580 | return 0; |
| 581 | #endif |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * Boolean PRNG for generating booleans to randomize order of elements |
| 586 | * in certain kernel data structures. The algorithm is a |
| 587 | * modified version of the KISS RNG proposed in the paper: |
| 588 | * http://stat.fsu.edu/techreports/M802.pdf |
| 589 | * The modifications have been documented in the technical paper |
| 590 | * paper from UCL: |
| 591 | * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf |
| 592 | */ |
| 593 | |
| 594 | /* Initialize the PRNG structures. */ |
| 595 | void |
| 596 | random_bool_init(struct bool_gen * bg) |
| 597 | { |
| 598 | /* Seed the random boolean generator */ |
| 599 | for (int i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) { |
| 600 | bg->seed[i] = (unsigned int)early_random(); |
| 601 | } |
| 602 | bg->state = 0; |
| 603 | simple_lock_init(&bg->lock, 0); |
| 604 | } |
| 605 | |
| 606 | /* Generate random bits and add them to an entropy pool. */ |
| 607 | void |
| 608 | random_bool_gen_entropy(struct bool_gen * bg, unsigned int * buffer, int count) |
| 609 | { |
| 610 | simple_lock(&bg->lock); |
| 611 | int i, t; |
| 612 | for (i = 0; i < count; i++) { |
| 613 | bg->seed[1] ^= (bg->seed[1] << 5); |
| 614 | bg->seed[1] ^= (bg->seed[1] >> 7); |
| 615 | bg->seed[1] ^= (bg->seed[1] << 22); |
| 616 | t = bg->seed[2] + bg->seed[3] + bg->state; |
| 617 | bg->seed[2] = bg->seed[3]; |
| 618 | bg->state = t < 0; |
| 619 | bg->seed[3] = t & 2147483647; |
| 620 | bg->seed[0] += 1411392427; |
| 621 | buffer[i] = (bg->seed[0] + bg->seed[1] + bg->seed[3]); |
| 622 | } |
| 623 | simple_unlock(&bg->lock); |
| 624 | } |
| 625 | |
| 626 | /* Get some number of bits from the entropy pool, refilling if necessary. */ |
| 627 | unsigned int |
| 628 | random_bool_gen_bits(struct bool_gen * bg, unsigned int * buffer, unsigned int count, unsigned int numbits) |
| 629 | { |
| 630 | unsigned int index = 0; |
| 631 | unsigned int rbits = 0; |
| 632 | for (unsigned int bitct = 0; bitct < numbits; bitct++) { |
| 633 | /* |
| 634 | * Find a portion of the buffer that hasn't been emptied. |
| 635 | * We might have emptied our last index in the previous iteration. |
| 636 | */ |
| 637 | while (index < count && buffer[index] == 0) |
| 638 | index++; |
| 639 | |
| 640 | /* If we've exhausted the pool, refill it. */ |
| 641 | if (index == count) { |
| 642 | random_bool_gen_entropy(bg, buffer, count); |
| 643 | index = 0; |
| 644 | } |
| 645 | |
| 646 | /* Collect-a-bit */ |
| 647 | unsigned int bit = buffer[index] & 1; |
| 648 | buffer[index] = buffer[index] >> 1; |
| 649 | rbits = bit | (rbits << 1); |
| 650 | } |
| 651 | return rbits; |
| 652 | } |
| 653 | |