| 1 | /* |
| 2 | * Copyright (c) 2011-2016 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* all thread states code */ |
| 30 | #include <mach/mach_types.h> |
| 31 | #include <sys/errno.h> |
| 32 | |
| 33 | #include <kperf/kperf.h> |
| 34 | #include <kperf/buffer.h> |
| 35 | #include <kperf/sample.h> |
| 36 | #include <kperf/context.h> |
| 37 | #include <kperf/action.h> |
| 38 | #include <kperf/pet.h> |
| 39 | #include <kperf/kperf_timer.h> |
| 40 | |
| 41 | #include <kern/task.h> |
| 42 | #include <kern/kalloc.h> |
| 43 | |
| 44 | /* action ID to call for each sample |
| 45 | * |
| 46 | * Address is used as the sync point for waiting. |
| 47 | */ |
| 48 | static unsigned int pet_action_id = 0; |
| 49 | |
| 50 | static lck_mtx_t *pet_lock; |
| 51 | static boolean_t pet_initted = FALSE; |
| 52 | static boolean_t pet_running = FALSE; |
| 53 | |
| 54 | /* number of callstack samples to skip for idle threads */ |
| 55 | static uint32_t pet_idle_rate = KPERF_PET_DEFAULT_IDLE_RATE; |
| 56 | |
| 57 | /* |
| 58 | * Lightweight PET mode samples the system less-intrusively than normal PET |
| 59 | * mode. Instead of iterating tasks and threads on each sample, it increments |
| 60 | * a global generation count, kperf_pet_gen, which is checked as threads are |
| 61 | * context switched on-core. If the thread's local generation count is older |
| 62 | * than the global generation, the thread samples itself. |
| 63 | * |
| 64 | * | | |
| 65 | * thread A +--+---------| |
| 66 | * | | |
| 67 | * thread B |--+---------------| |
| 68 | * | | |
| 69 | * thread C | | |------------------------------------- |
| 70 | * | | | |
| 71 | * thread D | | | |------------------------------- |
| 72 | * | | | | |
| 73 | * +--+---------+-----+--------------------------------> time |
| 74 | * | │ | |
| 75 | * | +-----+--- threads sampled when they come on-core in |
| 76 | * | kperf_pet_switch_context |
| 77 | * | |
| 78 | * +--- PET timer fire, sample on-core threads A and B, |
| 79 | * increment kperf_pet_gen |
| 80 | */ |
| 81 | static boolean_t lightweight_pet = FALSE; |
| 82 | |
| 83 | /* |
| 84 | * Whether or not lightweight PET and sampling is active. |
| 85 | */ |
| 86 | boolean_t kperf_lightweight_pet_active = FALSE; |
| 87 | |
| 88 | uint32_t kperf_pet_gen = 0; |
| 89 | |
| 90 | static struct kperf_sample *pet_sample; |
| 91 | |
| 92 | /* thread lifecycle */ |
| 93 | |
| 94 | static kern_return_t pet_init(void); |
| 95 | static void pet_start(void); |
| 96 | static void pet_stop(void); |
| 97 | |
| 98 | /* PET thread-only */ |
| 99 | |
| 100 | static void pet_thread_loop(void *param, wait_result_t wr); |
| 101 | static void pet_thread_idle(void); |
| 102 | static void pet_thread_work_unit(void); |
| 103 | |
| 104 | /* listing things to sample */ |
| 105 | |
| 106 | static task_array_t pet_tasks = NULL; |
| 107 | static vm_size_t pet_tasks_size = 0; |
| 108 | static vm_size_t pet_tasks_count = 0; |
| 109 | |
| 110 | static thread_array_t pet_threads = NULL; |
| 111 | static vm_size_t pet_threads_size = 0; |
| 112 | static vm_size_t pet_threads_count = 0; |
| 113 | |
| 114 | static kern_return_t pet_tasks_prepare(void); |
| 115 | static kern_return_t pet_tasks_prepare_internal(void); |
| 116 | |
| 117 | static kern_return_t pet_threads_prepare(task_t task); |
| 118 | |
| 119 | /* sampling */ |
| 120 | |
| 121 | static void pet_sample_all_tasks(uint32_t idle_rate); |
| 122 | static void pet_sample_task(task_t task, uint32_t idle_rate); |
| 123 | static void pet_sample_thread(int pid, task_t task, thread_t thread, |
| 124 | uint32_t idle_rate); |
| 125 | |
| 126 | /* functions called by other areas of kperf */ |
| 127 | |
| 128 | void |
| 129 | kperf_pet_fire_before(void) |
| 130 | { |
| 131 | if (!pet_initted || !pet_running) { |
| 132 | return; |
| 133 | } |
| 134 | |
| 135 | if (lightweight_pet) { |
| 136 | BUF_INFO(PERF_PET_SAMPLE); |
| 137 | OSIncrementAtomic(&kperf_pet_gen); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | void |
| 142 | kperf_pet_fire_after(void) |
| 143 | { |
| 144 | if (!pet_initted || !pet_running) { |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | if (lightweight_pet) { |
| 149 | kperf_timer_pet_rearm(0); |
| 150 | } else { |
| 151 | thread_wakeup(&pet_action_id); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | void |
| 156 | kperf_pet_on_cpu(thread_t thread, thread_continue_t continuation, |
| 157 | uintptr_t *starting_fp) |
| 158 | { |
| 159 | assert(thread != NULL); |
| 160 | assert(ml_get_interrupts_enabled() == FALSE); |
| 161 | |
| 162 | if (thread->kperf_pet_gen != kperf_pet_gen) { |
| 163 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START, kperf_pet_gen, thread->kperf_pet_gen); |
| 164 | |
| 165 | task_t task = get_threadtask(thread); |
| 166 | struct kperf_context ctx = { |
| 167 | .cur_thread = thread, |
| 168 | .cur_task = task, |
| 169 | .cur_pid = task_pid(task), |
| 170 | .starting_fp = starting_fp, |
| 171 | }; |
| 172 | /* |
| 173 | * Use a per-CPU interrupt buffer, since this is only called |
| 174 | * while interrupts are disabled, from the scheduler. |
| 175 | */ |
| 176 | struct kperf_sample *sample = kperf_intr_sample_buffer(); |
| 177 | if (!sample) { |
| 178 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END, 1); |
| 179 | return; |
| 180 | } |
| 181 | |
| 182 | unsigned int flags = SAMPLE_FLAG_NON_INTERRUPT | SAMPLE_FLAG_PEND_USER; |
| 183 | if (continuation != NULL) { |
| 184 | flags |= SAMPLE_FLAG_CONTINUATION; |
| 185 | } |
| 186 | kperf_sample(sample, &ctx, pet_action_id, flags); |
| 187 | |
| 188 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END); |
| 189 | } else { |
| 190 | BUF_VERB(PERF_PET_SAMPLE_THREAD, kperf_pet_gen, thread->kperf_pet_gen); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | void |
| 195 | kperf_pet_config(unsigned int action_id) |
| 196 | { |
| 197 | kern_return_t kr = pet_init(); |
| 198 | if (kr != KERN_SUCCESS) { |
| 199 | return; |
| 200 | } |
| 201 | |
| 202 | lck_mtx_lock(pet_lock); |
| 203 | |
| 204 | BUF_INFO(PERF_PET_THREAD, 3, action_id); |
| 205 | |
| 206 | if (action_id == 0) { |
| 207 | pet_stop(); |
| 208 | } else { |
| 209 | pet_start(); |
| 210 | } |
| 211 | |
| 212 | pet_action_id = action_id; |
| 213 | |
| 214 | lck_mtx_unlock(pet_lock); |
| 215 | } |
| 216 | |
| 217 | /* handle resource allocation */ |
| 218 | |
| 219 | void |
| 220 | pet_start(void) |
| 221 | { |
| 222 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 223 | |
| 224 | if (pet_running) { |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | pet_sample = kalloc(sizeof(struct kperf_sample)); |
| 229 | if (!pet_sample) { |
| 230 | return; |
| 231 | } |
| 232 | |
| 233 | pet_running = TRUE; |
| 234 | } |
| 235 | |
| 236 | void |
| 237 | pet_stop(void) |
| 238 | { |
| 239 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 240 | |
| 241 | if (!pet_initted) { |
| 242 | return; |
| 243 | } |
| 244 | |
| 245 | if (pet_tasks != NULL) { |
| 246 | assert(pet_tasks_size != 0); |
| 247 | kfree(pet_tasks, pet_tasks_size); |
| 248 | |
| 249 | pet_tasks = NULL; |
| 250 | pet_tasks_size = 0; |
| 251 | pet_tasks_count = 0; |
| 252 | } |
| 253 | |
| 254 | if (pet_threads != NULL) { |
| 255 | assert(pet_threads_size != 0); |
| 256 | kfree(pet_threads, pet_threads_size); |
| 257 | |
| 258 | pet_threads = NULL; |
| 259 | pet_threads_size = 0; |
| 260 | pet_threads_count = 0; |
| 261 | } |
| 262 | |
| 263 | if (pet_sample != NULL) { |
| 264 | kfree(pet_sample, sizeof(struct kperf_sample)); |
| 265 | pet_sample = NULL; |
| 266 | } |
| 267 | |
| 268 | pet_running = FALSE; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Lazily initialize PET. The PET thread never exits once PET has been used |
| 273 | * once. |
| 274 | */ |
| 275 | static kern_return_t |
| 276 | pet_init(void) |
| 277 | { |
| 278 | if (pet_initted) { |
| 279 | return KERN_SUCCESS; |
| 280 | } |
| 281 | |
| 282 | /* make the sync point */ |
| 283 | pet_lock = lck_mtx_alloc_init(&kperf_lck_grp, NULL); |
| 284 | assert(pet_lock); |
| 285 | |
| 286 | /* create the thread */ |
| 287 | |
| 288 | BUF_INFO(PERF_PET_THREAD, 0); |
| 289 | thread_t t; |
| 290 | kern_return_t kr = kernel_thread_start(pet_thread_loop, NULL, &t); |
| 291 | if (kr != KERN_SUCCESS) { |
| 292 | lck_mtx_free(pet_lock, &kperf_lck_grp); |
| 293 | return kr; |
| 294 | } |
| 295 | |
| 296 | thread_set_thread_name(t, "kperf sampling" ); |
| 297 | /* let the thread hold the only reference */ |
| 298 | thread_deallocate(t); |
| 299 | |
| 300 | pet_initted = TRUE; |
| 301 | |
| 302 | return KERN_SUCCESS; |
| 303 | } |
| 304 | |
| 305 | /* called by PET thread only */ |
| 306 | |
| 307 | static void |
| 308 | pet_thread_work_unit(void) |
| 309 | { |
| 310 | pet_sample_all_tasks(pet_idle_rate); |
| 311 | } |
| 312 | |
| 313 | static void |
| 314 | pet_thread_idle(void) |
| 315 | { |
| 316 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 317 | |
| 318 | (void)lck_mtx_sleep(pet_lock, LCK_SLEEP_DEFAULT, &pet_action_id, |
| 319 | THREAD_UNINT); |
| 320 | } |
| 321 | |
| 322 | __attribute__((noreturn)) |
| 323 | static void |
| 324 | pet_thread_loop(void *param, wait_result_t wr) |
| 325 | { |
| 326 | #pragma unused(param, wr) |
| 327 | uint64_t work_unit_ticks; |
| 328 | |
| 329 | BUF_INFO(PERF_PET_THREAD, 1); |
| 330 | |
| 331 | lck_mtx_lock(pet_lock); |
| 332 | for (;;) { |
| 333 | BUF_INFO(PERF_PET_IDLE); |
| 334 | pet_thread_idle(); |
| 335 | |
| 336 | BUF_INFO(PERF_PET_RUN); |
| 337 | |
| 338 | /* measure how long the work unit takes */ |
| 339 | work_unit_ticks = mach_absolute_time(); |
| 340 | pet_thread_work_unit(); |
| 341 | work_unit_ticks = mach_absolute_time() - work_unit_ticks; |
| 342 | |
| 343 | /* re-program the timer */ |
| 344 | kperf_timer_pet_rearm(work_unit_ticks); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /* sampling */ |
| 349 | |
| 350 | static void |
| 351 | pet_sample_thread(int pid, task_t task, thread_t thread, uint32_t idle_rate) |
| 352 | { |
| 353 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 354 | |
| 355 | uint32_t sample_flags = SAMPLE_FLAG_IDLE_THREADS | SAMPLE_FLAG_THREAD_ONLY; |
| 356 | |
| 357 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START); |
| 358 | |
| 359 | /* work out the context */ |
| 360 | struct kperf_context ctx = { |
| 361 | .cur_thread = thread, |
| 362 | .cur_task = task, |
| 363 | .cur_pid = pid, |
| 364 | }; |
| 365 | |
| 366 | boolean_t thread_dirty = kperf_thread_get_dirty(thread); |
| 367 | |
| 368 | /* |
| 369 | * Clean a dirty thread and skip callstack sample if the thread was not |
| 370 | * dirty and thread has skipped less than pet_idle_rate samples. |
| 371 | */ |
| 372 | if (thread_dirty) { |
| 373 | kperf_thread_set_dirty(thread, FALSE); |
| 374 | } else if ((thread->kperf_pet_cnt % idle_rate) != 0) { |
| 375 | sample_flags |= SAMPLE_FLAG_EMPTY_CALLSTACK; |
| 376 | } |
| 377 | thread->kperf_pet_cnt++; |
| 378 | |
| 379 | kperf_sample(pet_sample, &ctx, pet_action_id, sample_flags); |
| 380 | |
| 381 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END); |
| 382 | } |
| 383 | |
| 384 | static kern_return_t |
| 385 | pet_threads_prepare(task_t task) |
| 386 | { |
| 387 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 388 | |
| 389 | vm_size_t threads_size_needed; |
| 390 | |
| 391 | if (task == TASK_NULL) { |
| 392 | return KERN_INVALID_ARGUMENT; |
| 393 | } |
| 394 | |
| 395 | for (;;) { |
| 396 | task_lock(task); |
| 397 | |
| 398 | if (!task->active) { |
| 399 | task_unlock(task); |
| 400 | |
| 401 | return KERN_FAILURE; |
| 402 | } |
| 403 | |
| 404 | /* do we have the memory we need? */ |
| 405 | threads_size_needed = task->thread_count * sizeof(thread_t); |
| 406 | if (threads_size_needed <= pet_threads_size) { |
| 407 | break; |
| 408 | } |
| 409 | |
| 410 | /* not enough memory, unlock the task and increase allocation */ |
| 411 | task_unlock(task); |
| 412 | |
| 413 | if (pet_threads_size != 0) { |
| 414 | kfree(pet_threads, pet_threads_size); |
| 415 | } |
| 416 | |
| 417 | assert(threads_size_needed > 0); |
| 418 | pet_threads_size = threads_size_needed; |
| 419 | |
| 420 | pet_threads = kalloc(pet_threads_size); |
| 421 | if (pet_threads == NULL) { |
| 422 | pet_threads_size = 0; |
| 423 | return KERN_RESOURCE_SHORTAGE; |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /* have memory and the task is locked and active */ |
| 428 | thread_t thread; |
| 429 | pet_threads_count = 0; |
| 430 | queue_iterate(&(task->threads), thread, thread_t, task_threads) { |
| 431 | thread_reference_internal(thread); |
| 432 | pet_threads[pet_threads_count++] = thread; |
| 433 | } |
| 434 | |
| 435 | /* can unlock task now that threads are referenced */ |
| 436 | task_unlock(task); |
| 437 | |
| 438 | return (pet_threads_count == 0) ? KERN_FAILURE : KERN_SUCCESS; |
| 439 | } |
| 440 | |
| 441 | static void |
| 442 | pet_sample_task(task_t task, uint32_t idle_rate) |
| 443 | { |
| 444 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 445 | |
| 446 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_START); |
| 447 | |
| 448 | int pid = task_pid(task); |
| 449 | if (kperf_action_has_task(pet_action_id)) { |
| 450 | struct kperf_context ctx = { |
| 451 | .cur_task = task, |
| 452 | .cur_pid = pid, |
| 453 | }; |
| 454 | |
| 455 | kperf_sample(pet_sample, &ctx, pet_action_id, SAMPLE_FLAG_TASK_ONLY); |
| 456 | } |
| 457 | |
| 458 | if (!kperf_action_has_thread(pet_action_id)) { |
| 459 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END); |
| 460 | return; |
| 461 | } |
| 462 | |
| 463 | kern_return_t kr = KERN_SUCCESS; |
| 464 | |
| 465 | /* |
| 466 | * Suspend the task to see an atomic snapshot of all its threads. This |
| 467 | * is expensive, and disruptive. |
| 468 | */ |
| 469 | bool needs_suspend = task != kernel_task; |
| 470 | if (needs_suspend) { |
| 471 | kr = task_suspend_internal(task); |
| 472 | if (kr != KERN_SUCCESS) { |
| 473 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, 1); |
| 474 | return; |
| 475 | } |
| 476 | needs_suspend = true; |
| 477 | } |
| 478 | |
| 479 | kr = pet_threads_prepare(task); |
| 480 | if (kr != KERN_SUCCESS) { |
| 481 | BUF_INFO(PERF_PET_ERROR, ERR_THREAD, kr); |
| 482 | goto out; |
| 483 | } |
| 484 | |
| 485 | for (unsigned int i = 0; i < pet_threads_count; i++) { |
| 486 | thread_t thread = pet_threads[i]; |
| 487 | assert(thread != THREAD_NULL); |
| 488 | |
| 489 | /* |
| 490 | * Do not sample the thread if it was on a CPU when the timer fired. |
| 491 | */ |
| 492 | int cpu = 0; |
| 493 | for (cpu = 0; cpu < machine_info.logical_cpu_max; cpu++) { |
| 494 | if (kperf_tid_on_cpus[cpu] == thread_tid(thread)) { |
| 495 | break; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /* the thread was not on a CPU */ |
| 500 | if (cpu == machine_info.logical_cpu_max) { |
| 501 | pet_sample_thread(pid, task, thread, idle_rate); |
| 502 | } |
| 503 | |
| 504 | thread_deallocate(pet_threads[i]); |
| 505 | } |
| 506 | |
| 507 | out: |
| 508 | if (needs_suspend) { |
| 509 | task_resume_internal(task); |
| 510 | } |
| 511 | |
| 512 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, pet_threads_count); |
| 513 | } |
| 514 | |
| 515 | static kern_return_t |
| 516 | pet_tasks_prepare_internal(void) |
| 517 | { |
| 518 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 519 | |
| 520 | vm_size_t tasks_size_needed = 0; |
| 521 | |
| 522 | for (;;) { |
| 523 | lck_mtx_lock(&tasks_threads_lock); |
| 524 | |
| 525 | /* do we have the memory we need? */ |
| 526 | tasks_size_needed = tasks_count * sizeof(task_t); |
| 527 | if (tasks_size_needed <= pet_tasks_size) { |
| 528 | break; |
| 529 | } |
| 530 | |
| 531 | /* unlock and allocate more memory */ |
| 532 | lck_mtx_unlock(&tasks_threads_lock); |
| 533 | |
| 534 | /* grow task array */ |
| 535 | if (tasks_size_needed > pet_tasks_size) { |
| 536 | if (pet_tasks_size != 0) { |
| 537 | kfree(pet_tasks, pet_tasks_size); |
| 538 | } |
| 539 | |
| 540 | assert(tasks_size_needed > 0); |
| 541 | pet_tasks_size = tasks_size_needed; |
| 542 | |
| 543 | pet_tasks = (task_array_t)kalloc(pet_tasks_size); |
| 544 | if (pet_tasks == NULL) { |
| 545 | pet_tasks_size = 0; |
| 546 | return KERN_RESOURCE_SHORTAGE; |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | return KERN_SUCCESS; |
| 552 | } |
| 553 | |
| 554 | static kern_return_t |
| 555 | pet_tasks_prepare(void) |
| 556 | { |
| 557 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 558 | |
| 559 | /* allocate space and take the tasks_threads_lock */ |
| 560 | kern_return_t kr = pet_tasks_prepare_internal(); |
| 561 | if (KERN_SUCCESS != kr) { |
| 562 | return kr; |
| 563 | } |
| 564 | lck_mtx_assert(&tasks_threads_lock, LCK_MTX_ASSERT_OWNED); |
| 565 | |
| 566 | /* make sure the tasks are not deallocated after dropping the lock */ |
| 567 | task_t task; |
| 568 | pet_tasks_count = 0; |
| 569 | queue_iterate(&tasks, task, task_t, tasks) { |
| 570 | if (task != kernel_task) { |
| 571 | task_reference_internal(task); |
| 572 | pet_tasks[pet_tasks_count++] = task; |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | lck_mtx_unlock(&tasks_threads_lock); |
| 577 | |
| 578 | return KERN_SUCCESS; |
| 579 | } |
| 580 | |
| 581 | static void |
| 582 | pet_sample_all_tasks(uint32_t idle_rate) |
| 583 | { |
| 584 | lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED); |
| 585 | |
| 586 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_START); |
| 587 | |
| 588 | kern_return_t kr = pet_tasks_prepare(); |
| 589 | if (kr != KERN_SUCCESS) { |
| 590 | BUF_INFO(PERF_PET_ERROR, ERR_TASK, kr); |
| 591 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END, 0); |
| 592 | return; |
| 593 | } |
| 594 | |
| 595 | for (unsigned int i = 0; i < pet_tasks_count; i++) { |
| 596 | task_t task = pet_tasks[i]; |
| 597 | |
| 598 | pet_sample_task(task, idle_rate); |
| 599 | } |
| 600 | |
| 601 | for(unsigned int i = 0; i < pet_tasks_count; i++) { |
| 602 | task_deallocate(pet_tasks[i]); |
| 603 | } |
| 604 | |
| 605 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END, pet_tasks_count); |
| 606 | } |
| 607 | |
| 608 | /* support sysctls */ |
| 609 | |
| 610 | int |
| 611 | kperf_get_pet_idle_rate(void) |
| 612 | { |
| 613 | return pet_idle_rate; |
| 614 | } |
| 615 | |
| 616 | int |
| 617 | kperf_set_pet_idle_rate(int val) |
| 618 | { |
| 619 | pet_idle_rate = val; |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | int |
| 625 | kperf_get_lightweight_pet(void) |
| 626 | { |
| 627 | return lightweight_pet; |
| 628 | } |
| 629 | |
| 630 | int |
| 631 | kperf_set_lightweight_pet(int val) |
| 632 | { |
| 633 | if (kperf_sampling_status() == KPERF_SAMPLING_ON) { |
| 634 | return EBUSY; |
| 635 | } |
| 636 | |
| 637 | lightweight_pet = (val == 1); |
| 638 | kperf_lightweight_pet_active_update(); |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | void |
| 644 | kperf_lightweight_pet_active_update(void) |
| 645 | { |
| 646 | kperf_lightweight_pet_active = (kperf_sampling_status() && lightweight_pet); |
| 647 | kperf_on_cpu_update(); |
| 648 | } |
| 649 | |