| 1 | /* |
| 2 | * Copyright (c) 2015-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | |
| 57 | /* |
| 58 | * un-comment the following lines to debug the link/prepost tables |
| 59 | * NOTE: this expands each element by ~40 bytes |
| 60 | */ |
| 61 | //#define KEEP_WAITQ_LINK_STATS |
| 62 | //#define KEEP_WAITQ_PREPOST_STATS |
| 63 | |
| 64 | #include <kern/ast.h> |
| 65 | #include <kern/backtrace.h> |
| 66 | #include <kern/kern_types.h> |
| 67 | #include <kern/ltable.h> |
| 68 | #include <kern/mach_param.h> |
| 69 | #include <kern/queue.h> |
| 70 | #include <kern/sched_prim.h> |
| 71 | #include <kern/simple_lock.h> |
| 72 | #include <kern/spl.h> |
| 73 | #include <kern/waitq.h> |
| 74 | #include <kern/zalloc.h> |
| 75 | #include <kern/policy_internal.h> |
| 76 | #include <kern/turnstile.h> |
| 77 | |
| 78 | #include <libkern/OSAtomic.h> |
| 79 | #include <mach/sync_policy.h> |
| 80 | #include <vm/vm_kern.h> |
| 81 | |
| 82 | #include <sys/kdebug.h> |
| 83 | |
| 84 | #if defined(KEEP_WAITQ_LINK_STATS) || defined(KEEP_WAITQ_PREPOST_STATS) |
| 85 | # if !CONFIG_LTABLE_STATS |
| 86 | # error "You must configure LTABLE_STATS to use WAITQ_[LINK|PREPOST]_STATS" |
| 87 | # endif |
| 88 | # if !CONFIG_WAITQ_STATS |
| 89 | # error "You must configure WAITQ_STATS to use WAITQ_[LINK|PREPOST]_STATS" |
| 90 | # endif |
| 91 | #endif |
| 92 | |
| 93 | #if CONFIG_WAITQ_DEBUG |
| 94 | #define wqdbg(fmt,...) \ |
| 95 | printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__) |
| 96 | #else |
| 97 | #define wqdbg(fmt,...) do { } while (0) |
| 98 | #endif |
| 99 | |
| 100 | #ifdef WAITQ_VERBOSE_DEBUG |
| 101 | #define wqdbg_v(fmt,...) \ |
| 102 | printf("WQ[v:%s]: " fmt "\n", __func__, ## __VA_ARGS__) |
| 103 | #else |
| 104 | #define wqdbg_v(fmt,...) do { } while (0) |
| 105 | #endif |
| 106 | |
| 107 | #define wqinfo(fmt,...) \ |
| 108 | printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__) |
| 109 | |
| 110 | #define wqerr(fmt,...) \ |
| 111 | printf("WQ[%s] ERROR: " fmt "\n", __func__, ## __VA_ARGS__) |
| 112 | |
| 113 | /* |
| 114 | * file-static functions / data |
| 115 | */ |
| 116 | static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event, |
| 117 | uint64_t *reserved_preposts, |
| 118 | int priority, spl_t *spl); |
| 119 | |
| 120 | static kern_return_t waitq_select_thread_locked(struct waitq *waitq, |
| 121 | event64_t event, |
| 122 | thread_t thread, spl_t *spl); |
| 123 | |
| 124 | #define WAITQ_SET_MAX (task_max * 3) |
| 125 | static zone_t waitq_set_zone; |
| 126 | |
| 127 | |
| 128 | #define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align))) |
| 129 | #define ROUNDDOWN(x,y) (((x)/(y))*(y)) |
| 130 | |
| 131 | |
| 132 | #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS |
| 133 | static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip); |
| 134 | #endif |
| 135 | |
| 136 | #if __arm64__ |
| 137 | |
| 138 | #define waitq_lock_to(wq,to) \ |
| 139 | (hw_lock_bit_to(&(wq)->waitq_interlock, LCK_ILOCK, to)) |
| 140 | |
| 141 | #define waitq_lock_unlock(wq) \ |
| 142 | (hw_unlock_bit(&(wq)->waitq_interlock, LCK_ILOCK)) |
| 143 | |
| 144 | #define waitq_lock_init(wq) \ |
| 145 | (wq->waitq_interlock = 0) |
| 146 | |
| 147 | #else |
| 148 | |
| 149 | #define waitq_lock_to(wq,to) \ |
| 150 | (hw_lock_to(&(wq)->waitq_interlock, to)) |
| 151 | |
| 152 | #define waitq_lock_unlock(wq) \ |
| 153 | (hw_lock_unlock(&(wq)->waitq_interlock)) |
| 154 | |
| 155 | #define waitq_lock_init(wq) \ |
| 156 | (hw_lock_init(&(wq)->waitq_interlock)) |
| 157 | |
| 158 | #endif /* __arm64__ */ |
| 159 | |
| 160 | /* |
| 161 | * Prepost callback function for specially marked waitq sets |
| 162 | * (prepost alternative) |
| 163 | */ |
| 164 | extern void waitq_set__CALLING_PREPOST_HOOK__(void *ctx, void *memberctx, int priority); |
| 165 | |
| 166 | #define DEFAULT_MIN_FREE_TABLE_ELEM 100 |
| 167 | static uint32_t g_min_free_table_elem; |
| 168 | static uint32_t g_min_free_cache; |
| 169 | |
| 170 | |
| 171 | /* ---------------------------------------------------------------------- |
| 172 | * |
| 173 | * SetID Link Table Implementation |
| 174 | * |
| 175 | * ---------------------------------------------------------------------- */ |
| 176 | static struct link_table g_wqlinktable; |
| 177 | |
| 178 | enum wq_link_type { |
| 179 | WQL_ALL = -1, |
| 180 | WQL_FREE = LT_FREE, |
| 181 | WQL_WQS = LT_ELEM, |
| 182 | WQL_LINK = LT_LINK, |
| 183 | }; |
| 184 | |
| 185 | struct waitq_link { |
| 186 | struct lt_elem wqte; |
| 187 | |
| 188 | union { |
| 189 | /* wqt_type == WQL_WQS (LT_ELEM) */ |
| 190 | struct { |
| 191 | struct waitq_set *wql_set; |
| 192 | /* uint64_t sl_prepost_id; */ |
| 193 | } wql_wqs; |
| 194 | |
| 195 | /* wqt_type == WQL_LINK (LT_LINK) */ |
| 196 | struct { |
| 197 | uint64_t left_setid; |
| 198 | uint64_t right_setid; |
| 199 | } wql_link; |
| 200 | }; |
| 201 | #ifdef KEEP_WAITQ_LINK_STATS |
| 202 | thread_t sl_alloc_th; |
| 203 | task_t sl_alloc_task; |
| 204 | uintptr_t sl_alloc_bt[NWAITQ_BTFRAMES]; |
| 205 | uint64_t sl_alloc_ts; |
| 206 | uintptr_t sl_invalidate_bt[NWAITQ_BTFRAMES]; |
| 207 | uint64_t sl_invalidate_ts; |
| 208 | uintptr_t sl_mkvalid_bt[NWAITQ_BTFRAMES]; |
| 209 | uint64_t sl_mkvalid_ts; |
| 210 | uint64_t sl_free_ts; |
| 211 | #endif |
| 212 | }; |
| 213 | #if !defined(KEEP_WAITQ_LINK_STATS) |
| 214 | static_assert((sizeof(struct waitq_link) & (sizeof(struct waitq_link) - 1)) == 0, |
| 215 | "waitq_link struct must be a power of two!" ); |
| 216 | #endif |
| 217 | |
| 218 | #define wql_refcnt(link) \ |
| 219 | (lt_bits_refcnt((link)->wqte.lt_bits)) |
| 220 | |
| 221 | #define wql_type(link) \ |
| 222 | (lt_bits_type((link)->wqte.lt_bits)) |
| 223 | |
| 224 | #define wql_mkvalid(link) \ |
| 225 | do { \ |
| 226 | lt_elem_mkvalid(&(link)->wqte); \ |
| 227 | wql_do_mkvalid_stats(&(link)->wqte); \ |
| 228 | } while (0) |
| 229 | |
| 230 | #define wql_is_valid(link) \ |
| 231 | lt_bits_valid((link)->wqte.lt_bits) |
| 232 | |
| 233 | #define wql_setid wqte.lt_id |
| 234 | |
| 235 | #define WQL_WQS_POISON ((void *)(0xf00df00d)) |
| 236 | #define WQL_LINK_POISON (0x0bad0badffffffffull) |
| 237 | |
| 238 | static void wql_poison(struct link_table *table, struct lt_elem *elem) |
| 239 | { |
| 240 | struct waitq_link *link = (struct waitq_link *)elem; |
| 241 | (void)table; |
| 242 | |
| 243 | switch (wql_type(link)) { |
| 244 | case WQL_WQS: |
| 245 | link->wql_wqs.wql_set = WQL_WQS_POISON; |
| 246 | break; |
| 247 | case WQL_LINK: |
| 248 | link->wql_link.left_setid = WQL_LINK_POISON; |
| 249 | link->wql_link.right_setid = WQL_LINK_POISON; |
| 250 | break; |
| 251 | default: |
| 252 | break; |
| 253 | } |
| 254 | #ifdef KEEP_WAITQ_LINK_STATS |
| 255 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); |
| 256 | link->sl_alloc_ts = 0; |
| 257 | memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt)); |
| 258 | link->sl_mkvalid_ts = 0; |
| 259 | |
| 260 | link->sl_alloc_th = THREAD_NULL; |
| 261 | /* leave the sl_alloc_task in place for debugging */ |
| 262 | |
| 263 | link->sl_free_ts = mach_absolute_time(); |
| 264 | #endif |
| 265 | } |
| 266 | |
| 267 | #ifdef KEEP_WAITQ_LINK_STATS |
| 268 | static __inline__ void wql_do_alloc_stats(struct lt_elem *elem) |
| 269 | { |
| 270 | if (elem) { |
| 271 | struct waitq_link *link = (struct waitq_link *)elem; |
| 272 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); |
| 273 | waitq_grab_backtrace(link->sl_alloc_bt, 0); |
| 274 | link->sl_alloc_th = current_thread(); |
| 275 | link->sl_alloc_task = current_task(); |
| 276 | |
| 277 | assert(link->sl_alloc_ts == 0); |
| 278 | link->sl_alloc_ts = mach_absolute_time(); |
| 279 | |
| 280 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); |
| 281 | link->sl_invalidate_ts = 0; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | static __inline__ void wql_do_invalidate_stats(struct lt_elem *elem) |
| 286 | { |
| 287 | struct waitq_link *link = (struct waitq_link *)elem; |
| 288 | |
| 289 | if (!elem) |
| 290 | return; |
| 291 | |
| 292 | assert(link->sl_mkvalid_ts > 0); |
| 293 | |
| 294 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); |
| 295 | link->sl_invalidate_ts = mach_absolute_time(); |
| 296 | waitq_grab_backtrace(link->sl_invalidate_bt, 0); |
| 297 | } |
| 298 | |
| 299 | static __inline__ void wql_do_mkvalid_stats(struct lt_elem *elem) |
| 300 | { |
| 301 | struct waitq_link *link = (struct waitq_link *)elem; |
| 302 | |
| 303 | if (!elem) |
| 304 | return; |
| 305 | |
| 306 | memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt)); |
| 307 | link->sl_mkvalid_ts = mach_absolute_time(); |
| 308 | waitq_grab_backtrace(link->sl_mkvalid_bt, 0); |
| 309 | } |
| 310 | #else |
| 311 | #define wql_do_alloc_stats(e) |
| 312 | #define wql_do_invalidate_stats(e) |
| 313 | #define wql_do_mkvalid_stats(e) |
| 314 | #endif /* KEEP_WAITQ_LINK_STATS */ |
| 315 | |
| 316 | static void wql_init(void) |
| 317 | { |
| 318 | uint32_t tablesz = 0, max_links = 0; |
| 319 | |
| 320 | if (PE_parse_boot_argn("wql_tsize" , &tablesz, sizeof(tablesz)) != TRUE) |
| 321 | tablesz = (uint32_t)g_lt_max_tbl_size; |
| 322 | |
| 323 | tablesz = P2ROUNDUP(tablesz, PAGE_SIZE); |
| 324 | max_links = tablesz / sizeof(struct waitq_link); |
| 325 | assert(max_links > 0 && tablesz > 0); |
| 326 | |
| 327 | /* we have a restricted index range */ |
| 328 | if (max_links > (LT_IDX_MAX + 1)) |
| 329 | max_links = LT_IDX_MAX + 1; |
| 330 | |
| 331 | wqinfo("init linktable with max:%d elements (%d bytes)" , |
| 332 | max_links, tablesz); |
| 333 | ltable_init(&g_wqlinktable, "wqslab.wql" , max_links, |
| 334 | sizeof(struct waitq_link), wql_poison); |
| 335 | } |
| 336 | |
| 337 | static void wql_ensure_free_space(void) |
| 338 | { |
| 339 | if (g_wqlinktable.nelem - g_wqlinktable.used_elem < g_min_free_table_elem) { |
| 340 | /* |
| 341 | * we don't hold locks on these values, so check for underflow |
| 342 | */ |
| 343 | if (g_wqlinktable.used_elem <= g_wqlinktable.nelem) { |
| 344 | wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d" , |
| 345 | g_wqlinktable.nelem, g_wqlinktable.used_elem, |
| 346 | g_min_free_table_elem); |
| 347 | ltable_grow(&g_wqlinktable, g_min_free_table_elem); |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | static struct waitq_link *wql_alloc_link(int type) |
| 353 | { |
| 354 | struct lt_elem *elem; |
| 355 | |
| 356 | elem = ltable_alloc_elem(&g_wqlinktable, type, 1, 0); |
| 357 | wql_do_alloc_stats(elem); |
| 358 | return (struct waitq_link *)elem; |
| 359 | } |
| 360 | |
| 361 | static void wql_realloc_link(struct waitq_link *link, int type) |
| 362 | { |
| 363 | ltable_realloc_elem(&g_wqlinktable, &link->wqte, type); |
| 364 | #ifdef KEEP_WAITQ_LINK_STATS |
| 365 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); |
| 366 | link->sl_alloc_ts = 0; |
| 367 | wql_do_alloc_stats(&link->wqte); |
| 368 | |
| 369 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); |
| 370 | link->sl_invalidate_ts = 0; |
| 371 | #endif |
| 372 | } |
| 373 | |
| 374 | static void wql_invalidate(struct waitq_link *link) |
| 375 | { |
| 376 | lt_elem_invalidate(&link->wqte); |
| 377 | wql_do_invalidate_stats(&link->wqte); |
| 378 | } |
| 379 | |
| 380 | static struct waitq_link *wql_get_link(uint64_t setid) |
| 381 | { |
| 382 | struct lt_elem *elem; |
| 383 | |
| 384 | elem = ltable_get_elem(&g_wqlinktable, setid); |
| 385 | return (struct waitq_link *)elem; |
| 386 | } |
| 387 | |
| 388 | static void wql_put_link(struct waitq_link *link) |
| 389 | { |
| 390 | if (!link) |
| 391 | return; |
| 392 | ltable_put_elem(&g_wqlinktable, (struct lt_elem *)link); |
| 393 | } |
| 394 | |
| 395 | static struct waitq_link *wql_get_reserved(uint64_t setid, int type) |
| 396 | { |
| 397 | struct lt_elem *elem; |
| 398 | |
| 399 | elem = lt_elem_list_first(&g_wqlinktable, setid); |
| 400 | if (!elem) |
| 401 | return NULL; |
| 402 | ltable_realloc_elem(&g_wqlinktable, elem, type); |
| 403 | return (struct waitq_link *)elem; |
| 404 | } |
| 405 | |
| 406 | |
| 407 | static inline int waitq_maybe_remove_link(struct waitq *waitq, |
| 408 | uint64_t setid, |
| 409 | struct waitq_link *parent, |
| 410 | struct waitq_link *left, |
| 411 | struct waitq_link *right); |
| 412 | |
| 413 | enum { |
| 414 | LINK_WALK_ONE_LEVEL = 0, |
| 415 | LINK_WALK_FULL_DAG = 1, |
| 416 | LINK_WALK_FULL_DAG_UNLOCKED = 2, |
| 417 | }; |
| 418 | |
| 419 | typedef int (*wql_callback_func)(struct waitq *waitq, void *ctx, |
| 420 | struct waitq_link *link); |
| 421 | |
| 422 | /** |
| 423 | * walk_waitq_links: walk all table elements (of type 'link_type') pointed to by 'setid' |
| 424 | * |
| 425 | * Conditions: |
| 426 | * waitq is locked (or NULL) |
| 427 | * 'setid' is managed by 'waitq' |
| 428 | * this could be direct (waitq->waitq_set_id == setid) |
| 429 | * OR indirect (setid is the left/right ID in a LINK chain, |
| 430 | * whose root is waitq->waitq_set_id) |
| 431 | * |
| 432 | * Notes: |
| 433 | * This function uses recursion to walk the set of table elements |
| 434 | * pointed to by 'setid'. For each element encountered, 'cb' will be |
| 435 | * called. If non-zero, the return value of this callback function can |
| 436 | * early-out of the table walk. |
| 437 | * |
| 438 | * For each link element encountered, the function takes a reference to |
| 439 | * it. The reference is dropped only after the callback and any recursion |
| 440 | * has completed. |
| 441 | * |
| 442 | * The assumed table/link/tree structure: |
| 443 | * 'setid' |
| 444 | * / \ |
| 445 | * / \ |
| 446 | * L(LINK) R(LINK) |
| 447 | * /\ /\ |
| 448 | * / \ / \ |
| 449 | * / \ Rl(*) Rr(*) |
| 450 | * Ll(*) Lr(*) /\ /\ |
| 451 | * /\ /\ ... ... ... ... |
| 452 | * ... ... ... ... |
| 453 | * \ |
| 454 | * WQS(wqset_q.waitq_setid == Sx) |
| 455 | * [waitq set is a membet of setid, 'Sx') |
| 456 | * |
| 457 | * 'Sx' |
| 458 | * / \ |
| 459 | * / \ |
| 460 | * L(LINK) R(LINK) |
| 461 | * /\ /\ |
| 462 | * ... ... ... ... |
| 463 | * |
| 464 | * The basic algorithm is as follows: |
| 465 | * *) take a reference to the table object pointed to by 'setid' |
| 466 | * *) if appropriate, call 'cb' (potentially early-out on non-zero return) |
| 467 | * *) if the link object points to a waitq set, and the walk type |
| 468 | * is 'FULL_DAG' (full directed-acyclic-graph), then try to lock |
| 469 | * the associated waitq set object and recursively walk all sets to |
| 470 | * which that set belongs. This is a DFS of the tree structure. |
| 471 | * *) recurse down the left side of the tree (following the |
| 472 | * 'left_setid' pointer in the link object |
| 473 | * *) recurse down the right side of the tree (following the |
| 474 | * 'right_setid' pointer in the link object |
| 475 | */ |
| 476 | static __attribute__((noinline)) |
| 477 | int walk_waitq_links(int walk_type, struct waitq *waitq, |
| 478 | uint64_t setid, int link_type, |
| 479 | void *ctx, wql_callback_func cb) |
| 480 | { |
| 481 | struct waitq_link *link; |
| 482 | uint64_t nextid; |
| 483 | int wqltype; |
| 484 | |
| 485 | link = wql_get_link(setid); |
| 486 | |
| 487 | /* invalid link */ |
| 488 | if (!link) |
| 489 | return WQ_ITERATE_CONTINUE; |
| 490 | |
| 491 | setid = nextid = 0; |
| 492 | wqltype = wql_type(link); |
| 493 | if (wqltype == WQL_LINK) { |
| 494 | setid = link->wql_link.left_setid; |
| 495 | nextid = link->wql_link.right_setid; |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * Make the callback only on specified link_type (or all links) |
| 500 | * Note that after the callback, the link object may be |
| 501 | * invalid. The only valid thing we can do is put our |
| 502 | * reference to it (which may put it back on the free list) |
| 503 | */ |
| 504 | if (link_type == WQL_ALL || link_type == wqltype) { |
| 505 | /* allow the callback to early-out */ |
| 506 | int ret = cb(waitq, ctx, link); |
| 507 | if (ret != WQ_ITERATE_CONTINUE) { |
| 508 | wql_put_link(link); |
| 509 | return ret; |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | if (wqltype == WQL_WQS && |
| 514 | (walk_type == LINK_WALK_FULL_DAG || |
| 515 | walk_type == LINK_WALK_FULL_DAG_UNLOCKED)) { |
| 516 | /* |
| 517 | * Recurse down any sets to which this wait queue set was |
| 518 | * added. We do this just before we put our reference to |
| 519 | * the link object (which may free it). |
| 520 | */ |
| 521 | struct waitq_set *wqset = link->wql_wqs.wql_set; |
| 522 | int ret = WQ_ITERATE_CONTINUE; |
| 523 | int should_unlock = 0; |
| 524 | uint64_t wqset_setid = 0; |
| 525 | |
| 526 | if (waitq_set_is_valid(wqset) && walk_type == LINK_WALK_FULL_DAG) { |
| 527 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 528 | waitq_set_lock(wqset); |
| 529 | should_unlock = 1; |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * verify the linked waitq set as it could have been |
| 534 | * invalidated before we grabbed the lock! |
| 535 | */ |
| 536 | if (wqset->wqset_id != link->wql_setid.id) { |
| 537 | /* This is the bottom of the tree: just get out */ |
| 538 | if (should_unlock) { |
| 539 | waitq_set_unlock(wqset); |
| 540 | } |
| 541 | wql_put_link(link); |
| 542 | return WQ_ITERATE_CONTINUE; |
| 543 | } |
| 544 | |
| 545 | wqset_setid = wqset->wqset_q.waitq_set_id; |
| 546 | |
| 547 | if (wqset_setid > 0) |
| 548 | ret = walk_waitq_links(walk_type, &wqset->wqset_q, |
| 549 | wqset_setid, link_type, ctx, cb); |
| 550 | if (should_unlock) { |
| 551 | waitq_set_unlock(wqset); |
| 552 | } |
| 553 | if (ret != WQ_ITERATE_CONTINUE) { |
| 554 | wql_put_link(link); |
| 555 | return ret; |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | wql_put_link(link); |
| 560 | |
| 561 | /* recurse down left side of the tree */ |
| 562 | if (setid) { |
| 563 | int ret = walk_waitq_links(walk_type, waitq, setid, link_type, ctx, cb); |
| 564 | if (ret != WQ_ITERATE_CONTINUE) |
| 565 | return ret; |
| 566 | } |
| 567 | |
| 568 | /* recurse down right side of the tree */ |
| 569 | if (nextid) |
| 570 | return walk_waitq_links(walk_type, waitq, nextid, link_type, ctx, cb); |
| 571 | |
| 572 | return WQ_ITERATE_CONTINUE; |
| 573 | } |
| 574 | |
| 575 | /* ---------------------------------------------------------------------- |
| 576 | * |
| 577 | * Prepost Link Table Implementation |
| 578 | * |
| 579 | * ---------------------------------------------------------------------- */ |
| 580 | static struct link_table g_prepost_table; |
| 581 | |
| 582 | enum wq_prepost_type { |
| 583 | WQP_FREE = LT_FREE, |
| 584 | WQP_WQ = LT_ELEM, |
| 585 | WQP_POST = LT_LINK, |
| 586 | }; |
| 587 | |
| 588 | struct wq_prepost { |
| 589 | struct lt_elem wqte; |
| 590 | |
| 591 | union { |
| 592 | /* wqt_type == WQP_WQ (LT_ELEM) */ |
| 593 | struct { |
| 594 | struct waitq *wqp_wq_ptr; |
| 595 | } wqp_wq; |
| 596 | /* wqt_type == WQP_POST (LT_LINK) */ |
| 597 | struct { |
| 598 | uint64_t wqp_next_id; |
| 599 | uint64_t wqp_wq_id; |
| 600 | } wqp_post; |
| 601 | }; |
| 602 | #ifdef KEEP_WAITQ_PREPOST_STATS |
| 603 | thread_t wqp_alloc_th; |
| 604 | task_t wqp_alloc_task; |
| 605 | uintptr_t wqp_alloc_bt[NWAITQ_BTFRAMES]; |
| 606 | #endif |
| 607 | }; |
| 608 | #if !defined(KEEP_WAITQ_PREPOST_STATS) |
| 609 | static_assert((sizeof(struct wq_prepost) & (sizeof(struct wq_prepost) - 1)) == 0, |
| 610 | "wq_prepost struct must be a power of two!" ); |
| 611 | #endif |
| 612 | |
| 613 | #define wqp_refcnt(wqp) \ |
| 614 | (lt_bits_refcnt((wqp)->wqte.lt_bits)) |
| 615 | |
| 616 | #define wqp_type(wqp) \ |
| 617 | (lt_bits_type((wqp)->wqte.lt_bits)) |
| 618 | |
| 619 | #define wqp_set_valid(wqp) \ |
| 620 | lt_elem_mkvalid(&(wqp)->wqte) |
| 621 | |
| 622 | #define wqp_is_valid(wqp) \ |
| 623 | lt_bits_valid((wqp)->wqte.lt_bits) |
| 624 | |
| 625 | #define wqp_prepostid wqte.lt_id |
| 626 | |
| 627 | #define WQP_WQ_POISON (0x0bad0badffffffffull) |
| 628 | #define WQP_POST_POISON (0xf00df00df00df00d) |
| 629 | |
| 630 | static void wqp_poison(struct link_table *table, struct lt_elem *elem) |
| 631 | { |
| 632 | struct wq_prepost *wqp = (struct wq_prepost *)elem; |
| 633 | (void)table; |
| 634 | |
| 635 | switch (wqp_type(wqp)) { |
| 636 | case WQP_WQ: |
| 637 | break; |
| 638 | case WQP_POST: |
| 639 | wqp->wqp_post.wqp_next_id = WQP_POST_POISON; |
| 640 | wqp->wqp_post.wqp_wq_id = WQP_POST_POISON; |
| 641 | break; |
| 642 | default: |
| 643 | break; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | #ifdef KEEP_WAITQ_PREPOST_STATS |
| 648 | static __inline__ void wqp_do_alloc_stats(struct lt_elem *elem) |
| 649 | { |
| 650 | if (!elem) |
| 651 | return; |
| 652 | |
| 653 | struct wq_prepost *wqp = (struct wq_prepost *)elem; |
| 654 | uintptr_t alloc_bt[sizeof(wqp->wqp_alloc_bt)]; |
| 655 | |
| 656 | waitq_grab_backtrace(alloc_bt, NWAITQ_BTFRAMES); |
| 657 | |
| 658 | /* be sure the take stats for _all_ allocated objects */ |
| 659 | for (;;) { |
| 660 | memcpy(wqp->wqp_alloc_bt, alloc_bt, sizeof(alloc_bt)); |
| 661 | wqp->wqp_alloc_th = current_thread(); |
| 662 | wqp->wqp_alloc_task = current_task(); |
| 663 | wqp = (struct wq_prepost *)lt_elem_list_next(&g_prepost_table, &wqp->wqte); |
| 664 | if (!wqp) |
| 665 | break; |
| 666 | } |
| 667 | } |
| 668 | #else |
| 669 | #define wqp_do_alloc_stats(e) |
| 670 | #endif /* KEEP_WAITQ_LINK_STATS */ |
| 671 | |
| 672 | static void wqp_init(void) |
| 673 | { |
| 674 | uint32_t tablesz = 0, max_wqp = 0; |
| 675 | |
| 676 | if (PE_parse_boot_argn("wqp_tsize" , &tablesz, sizeof(tablesz)) != TRUE) |
| 677 | tablesz = (uint32_t)g_lt_max_tbl_size; |
| 678 | |
| 679 | tablesz = P2ROUNDUP(tablesz, PAGE_SIZE); |
| 680 | max_wqp = tablesz / sizeof(struct wq_prepost); |
| 681 | assert(max_wqp > 0 && tablesz > 0); |
| 682 | |
| 683 | /* we have a restricted index range */ |
| 684 | if (max_wqp > (LT_IDX_MAX + 1)) |
| 685 | max_wqp = LT_IDX_MAX + 1; |
| 686 | |
| 687 | wqinfo("init prepost table with max:%d elements (%d bytes)" , |
| 688 | max_wqp, tablesz); |
| 689 | ltable_init(&g_prepost_table, "wqslab.prepost" , max_wqp, |
| 690 | sizeof(struct wq_prepost), wqp_poison); |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Refill the per-CPU cache. |
| 695 | */ |
| 696 | static void wq_prepost_refill_cpu_cache(uint32_t nalloc) |
| 697 | { |
| 698 | struct lt_elem *new_head, *old_head; |
| 699 | struct wqp_cache *cache; |
| 700 | |
| 701 | /* require preemption enabled to allocate elements */ |
| 702 | if (get_preemption_level() != 0) |
| 703 | return; |
| 704 | |
| 705 | new_head = ltable_alloc_elem(&g_prepost_table, |
| 706 | LT_RESERVED, nalloc, 1); |
| 707 | if (new_head == NULL) |
| 708 | return; |
| 709 | |
| 710 | disable_preemption(); |
| 711 | cache = &PROCESSOR_DATA(current_processor(), wqp_cache); |
| 712 | |
| 713 | /* check once more before putting these elements on the list */ |
| 714 | if (cache->avail >= WQP_CACHE_MAX) { |
| 715 | lt_elem_list_release(&g_prepost_table, new_head, LT_RESERVED); |
| 716 | enable_preemption(); |
| 717 | return; |
| 718 | } |
| 719 | |
| 720 | cache->avail += nalloc; |
| 721 | if (cache->head == 0 || cache->head == LT_IDX_MAX) { |
| 722 | cache->head = new_head->lt_id.id; |
| 723 | goto out; |
| 724 | } |
| 725 | |
| 726 | old_head = lt_elem_list_first(&g_prepost_table, cache->head); |
| 727 | (void)lt_elem_list_link(&g_prepost_table, new_head, old_head); |
| 728 | cache->head = new_head->lt_id.id; |
| 729 | |
| 730 | out: |
| 731 | enable_preemption(); |
| 732 | return; |
| 733 | } |
| 734 | |
| 735 | static void wq_prepost_ensure_free_space(void) |
| 736 | { |
| 737 | uint32_t free_elem; |
| 738 | uint32_t min_free; |
| 739 | struct wqp_cache *cache; |
| 740 | |
| 741 | if (g_min_free_cache == 0) |
| 742 | g_min_free_cache = (WQP_CACHE_MAX * ml_get_max_cpus()); |
| 743 | |
| 744 | /* |
| 745 | * Ensure that we always have a pool of per-CPU prepost elements |
| 746 | */ |
| 747 | disable_preemption(); |
| 748 | cache = &PROCESSOR_DATA(current_processor(), wqp_cache); |
| 749 | free_elem = cache->avail; |
| 750 | enable_preemption(); |
| 751 | |
| 752 | if (free_elem < (WQP_CACHE_MAX / 3)) |
| 753 | wq_prepost_refill_cpu_cache(WQP_CACHE_MAX - free_elem); |
| 754 | |
| 755 | /* |
| 756 | * Now ensure that we have a sufficient amount of free table space |
| 757 | */ |
| 758 | free_elem = g_prepost_table.nelem - g_prepost_table.used_elem; |
| 759 | min_free = g_min_free_table_elem + g_min_free_cache; |
| 760 | if (free_elem < min_free) { |
| 761 | /* |
| 762 | * we don't hold locks on these values, so check for underflow |
| 763 | */ |
| 764 | if (g_prepost_table.used_elem <= g_prepost_table.nelem) { |
| 765 | wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d+%d" , |
| 766 | g_prepost_table.nelem, g_prepost_table.used_elem, |
| 767 | g_min_free_table_elem, g_min_free_cache); |
| 768 | ltable_grow(&g_prepost_table, min_free); |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | static struct wq_prepost *wq_prepost_alloc(int type, int nelem) |
| 774 | { |
| 775 | struct lt_elem *elem; |
| 776 | struct wq_prepost *wqp; |
| 777 | struct wqp_cache *cache; |
| 778 | |
| 779 | if (type != LT_RESERVED) |
| 780 | goto do_alloc; |
| 781 | if (nelem == 0) |
| 782 | return NULL; |
| 783 | |
| 784 | /* |
| 785 | * First try to grab the elements from the per-CPU cache if we are |
| 786 | * allocating RESERVED elements |
| 787 | */ |
| 788 | disable_preemption(); |
| 789 | cache = &PROCESSOR_DATA(current_processor(), wqp_cache); |
| 790 | if (nelem <= (int)cache->avail) { |
| 791 | struct lt_elem *first, *next = NULL; |
| 792 | int nalloc = nelem; |
| 793 | |
| 794 | cache->avail -= nelem; |
| 795 | |
| 796 | /* grab the first element */ |
| 797 | first = lt_elem_list_first(&g_prepost_table, cache->head); |
| 798 | |
| 799 | /* find the last element and re-adjust the cache head */ |
| 800 | for (elem = first; elem != NULL && nalloc > 0; elem = next) { |
| 801 | next = lt_elem_list_next(&g_prepost_table, elem); |
| 802 | if (--nalloc == 0) { |
| 803 | /* terminate the allocated list */ |
| 804 | elem->lt_next_idx = LT_IDX_MAX; |
| 805 | break; |
| 806 | } |
| 807 | } |
| 808 | assert(nalloc == 0); |
| 809 | if (!next) |
| 810 | cache->head = LT_IDX_MAX; |
| 811 | else |
| 812 | cache->head = next->lt_id.id; |
| 813 | /* assert that we don't have mis-matched book keeping */ |
| 814 | assert(!(cache->head == LT_IDX_MAX && cache->avail > 0)); |
| 815 | enable_preemption(); |
| 816 | elem = first; |
| 817 | goto out; |
| 818 | } |
| 819 | enable_preemption(); |
| 820 | |
| 821 | do_alloc: |
| 822 | /* fall-back to standard table allocation */ |
| 823 | elem = ltable_alloc_elem(&g_prepost_table, type, nelem, 0); |
| 824 | if (!elem) |
| 825 | return NULL; |
| 826 | |
| 827 | out: |
| 828 | wqp = (struct wq_prepost *)elem; |
| 829 | wqp_do_alloc_stats(elem); |
| 830 | return wqp; |
| 831 | } |
| 832 | |
| 833 | static void wq_prepost_invalidate(struct wq_prepost *wqp) |
| 834 | { |
| 835 | lt_elem_invalidate(&wqp->wqte); |
| 836 | } |
| 837 | |
| 838 | static struct wq_prepost *wq_prepost_get(uint64_t wqp_id) |
| 839 | { |
| 840 | struct lt_elem *elem; |
| 841 | |
| 842 | elem = ltable_get_elem(&g_prepost_table, wqp_id); |
| 843 | return (struct wq_prepost *)elem; |
| 844 | } |
| 845 | |
| 846 | static void wq_prepost_put(struct wq_prepost *wqp) |
| 847 | { |
| 848 | ltable_put_elem(&g_prepost_table, (struct lt_elem *)wqp); |
| 849 | } |
| 850 | |
| 851 | static int wq_prepost_rlink(struct wq_prepost *parent, struct wq_prepost *child) |
| 852 | { |
| 853 | return lt_elem_list_link(&g_prepost_table, &parent->wqte, &child->wqte); |
| 854 | } |
| 855 | |
| 856 | static struct wq_prepost *wq_prepost_get_rnext(struct wq_prepost *head) |
| 857 | { |
| 858 | struct lt_elem *elem; |
| 859 | struct wq_prepost *wqp; |
| 860 | uint64_t id; |
| 861 | |
| 862 | elem = lt_elem_list_next(&g_prepost_table, &head->wqte); |
| 863 | if (!elem) |
| 864 | return NULL; |
| 865 | id = elem->lt_id.id; |
| 866 | elem = ltable_get_elem(&g_prepost_table, id); |
| 867 | |
| 868 | if (!elem) |
| 869 | return NULL; |
| 870 | wqp = (struct wq_prepost *)elem; |
| 871 | if (elem->lt_id.id != id || |
| 872 | wqp_type(wqp) != WQP_POST || |
| 873 | wqp->wqp_post.wqp_next_id != head->wqp_prepostid.id) { |
| 874 | ltable_put_elem(&g_prepost_table, elem); |
| 875 | return NULL; |
| 876 | } |
| 877 | |
| 878 | return wqp; |
| 879 | } |
| 880 | |
| 881 | static void wq_prepost_reset_rnext(struct wq_prepost *wqp) |
| 882 | { |
| 883 | (void)lt_elem_list_break(&g_prepost_table, &wqp->wqte); |
| 884 | } |
| 885 | |
| 886 | |
| 887 | /** |
| 888 | * remove 'wqp' from the prepost list on 'wqset' |
| 889 | * |
| 890 | * Conditions: |
| 891 | * wqset is locked |
| 892 | * caller holds a reference on wqp (and is responsible to release it) |
| 893 | * |
| 894 | * Result: |
| 895 | * wqp is invalidated, wqset is potentially updated with a new |
| 896 | * prepost ID, and the next element of the prepost list may be |
| 897 | * consumed as well (if the list contained only 2 objects) |
| 898 | */ |
| 899 | static int wq_prepost_remove(struct waitq_set *wqset, |
| 900 | struct wq_prepost *wqp) |
| 901 | { |
| 902 | int more_posts = 1; |
| 903 | uint64_t next_id = wqp->wqp_post.wqp_next_id; |
| 904 | uint64_t wqp_id = wqp->wqp_prepostid.id; |
| 905 | struct wq_prepost *prev_wqp, *next_wqp; |
| 906 | |
| 907 | assert(wqp_type(wqp) == WQP_POST); |
| 908 | assert(wqset->wqset_q.waitq_prepost == 1); |
| 909 | |
| 910 | if (next_id == wqp_id) { |
| 911 | /* the list is singular and becoming empty */ |
| 912 | wqset->wqset_prepost_id = 0; |
| 913 | more_posts = 0; |
| 914 | goto out; |
| 915 | } |
| 916 | |
| 917 | prev_wqp = wq_prepost_get_rnext(wqp); |
| 918 | assert(prev_wqp != NULL); |
| 919 | assert(prev_wqp->wqp_post.wqp_next_id == wqp_id); |
| 920 | assert(prev_wqp->wqp_prepostid.id != wqp_id); |
| 921 | assert(wqp_type(prev_wqp) == WQP_POST); |
| 922 | |
| 923 | if (prev_wqp->wqp_prepostid.id == next_id) { |
| 924 | /* |
| 925 | * There are two items in the list, and we're removing one. We |
| 926 | * only need to keep the WQP_WQ pointer from 'prev_wqp' |
| 927 | */ |
| 928 | wqset->wqset_prepost_id = prev_wqp->wqp_post.wqp_wq_id; |
| 929 | wq_prepost_invalidate(prev_wqp); |
| 930 | wq_prepost_put(prev_wqp); |
| 931 | more_posts = 0; |
| 932 | goto out; |
| 933 | } |
| 934 | |
| 935 | /* prev->next = next */ |
| 936 | prev_wqp->wqp_post.wqp_next_id = next_id; |
| 937 | |
| 938 | /* next->prev = prev */ |
| 939 | next_wqp = wq_prepost_get(next_id); |
| 940 | assert(next_wqp != NULL); |
| 941 | assert(next_wqp != wqp); |
| 942 | assert(next_wqp != prev_wqp); |
| 943 | assert(wqp_type(next_wqp) == WQP_POST); |
| 944 | |
| 945 | wq_prepost_reset_rnext(next_wqp); |
| 946 | wq_prepost_rlink(next_wqp, prev_wqp); |
| 947 | |
| 948 | /* If we remove the head of the list, update the wqset */ |
| 949 | if (wqp_id == wqset->wqset_prepost_id) |
| 950 | wqset->wqset_prepost_id = next_id; |
| 951 | |
| 952 | wq_prepost_put(prev_wqp); |
| 953 | wq_prepost_put(next_wqp); |
| 954 | |
| 955 | out: |
| 956 | wq_prepost_reset_rnext(wqp); |
| 957 | wq_prepost_invalidate(wqp); |
| 958 | return more_posts; |
| 959 | } |
| 960 | |
| 961 | static struct wq_prepost *wq_prepost_rfirst(uint64_t id) |
| 962 | { |
| 963 | struct lt_elem *elem; |
| 964 | elem = lt_elem_list_first(&g_prepost_table, id); |
| 965 | wqp_do_alloc_stats(elem); |
| 966 | return (struct wq_prepost *)(void *)elem; |
| 967 | } |
| 968 | |
| 969 | static struct wq_prepost *wq_prepost_rpop(uint64_t *id, int type) |
| 970 | { |
| 971 | struct lt_elem *elem; |
| 972 | elem = lt_elem_list_pop(&g_prepost_table, id, type); |
| 973 | wqp_do_alloc_stats(elem); |
| 974 | return (struct wq_prepost *)(void *)elem; |
| 975 | } |
| 976 | |
| 977 | static void wq_prepost_release_rlist(struct wq_prepost *wqp) |
| 978 | { |
| 979 | int nelem = 0; |
| 980 | struct wqp_cache *cache; |
| 981 | struct lt_elem *elem; |
| 982 | |
| 983 | if (!wqp) |
| 984 | return; |
| 985 | |
| 986 | elem = &wqp->wqte; |
| 987 | |
| 988 | /* |
| 989 | * These are reserved elements: release them back to the per-cpu pool |
| 990 | * if our cache is running low. |
| 991 | */ |
| 992 | disable_preemption(); |
| 993 | cache = &PROCESSOR_DATA(current_processor(), wqp_cache); |
| 994 | if (cache->avail < WQP_CACHE_MAX) { |
| 995 | struct lt_elem *tmp = NULL; |
| 996 | if (cache->head != LT_IDX_MAX) |
| 997 | tmp = lt_elem_list_first(&g_prepost_table, cache->head); |
| 998 | nelem = lt_elem_list_link(&g_prepost_table, elem, tmp); |
| 999 | cache->head = elem->lt_id.id; |
| 1000 | cache->avail += nelem; |
| 1001 | enable_preemption(); |
| 1002 | return; |
| 1003 | } |
| 1004 | enable_preemption(); |
| 1005 | |
| 1006 | /* release these elements back to the main table */ |
| 1007 | nelem = lt_elem_list_release(&g_prepost_table, elem, LT_RESERVED); |
| 1008 | |
| 1009 | #if CONFIG_WAITQ_STATS |
| 1010 | g_prepost_table.nreserved_releases += 1; |
| 1011 | OSDecrementAtomic64(&g_prepost_table.nreservations); |
| 1012 | #endif |
| 1013 | } |
| 1014 | |
| 1015 | typedef int (*wqp_callback_func)(struct waitq_set *wqset, |
| 1016 | void *ctx, |
| 1017 | struct wq_prepost *wqp, |
| 1018 | struct waitq *waitq); |
| 1019 | |
| 1020 | /** |
| 1021 | * iterate over a chain of preposts associated with a waitq set. |
| 1022 | * |
| 1023 | * Conditions: |
| 1024 | * wqset is locked |
| 1025 | * |
| 1026 | * Notes: |
| 1027 | * This loop performs automatic prepost chain management / culling, and |
| 1028 | * may reset or adjust the waitq set's prepost ID pointer. If you don't |
| 1029 | * want this extra processing, you can use wq_prepost_iterate(). |
| 1030 | */ |
| 1031 | static int wq_prepost_foreach_locked(struct waitq_set *wqset, |
| 1032 | void *ctx, wqp_callback_func cb) |
| 1033 | { |
| 1034 | int ret = WQ_ITERATE_SUCCESS; |
| 1035 | struct wq_prepost *wqp, *tmp_wqp; |
| 1036 | |
| 1037 | assert(cb != NULL); |
| 1038 | |
| 1039 | if (!wqset || !waitq_set_maybe_preposted(wqset)) |
| 1040 | return WQ_ITERATE_SUCCESS; |
| 1041 | |
| 1042 | restart: |
| 1043 | wqp = wq_prepost_get(wqset->wqset_prepost_id); |
| 1044 | if (!wqp) { |
| 1045 | /* |
| 1046 | * The prepost object is no longer valid, reset the waitq |
| 1047 | * set's prepost id. |
| 1048 | */ |
| 1049 | wqset->wqset_prepost_id = 0; |
| 1050 | return WQ_ITERATE_SUCCESS; |
| 1051 | } |
| 1052 | |
| 1053 | if (wqp_type(wqp) == WQP_WQ) { |
| 1054 | uint64_t __assert_only wqp_id = wqp->wqp_prepostid.id; |
| 1055 | |
| 1056 | ret = cb(wqset, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr); |
| 1057 | |
| 1058 | switch (ret) { |
| 1059 | case WQ_ITERATE_INVALIDATE_CONTINUE: |
| 1060 | /* the caller wants to remove the only prepost here */ |
| 1061 | assert(wqp_id == wqset->wqset_prepost_id); |
| 1062 | wqset->wqset_prepost_id = 0; |
| 1063 | /* fall through */ |
| 1064 | case WQ_ITERATE_CONTINUE: |
| 1065 | wq_prepost_put(wqp); |
| 1066 | ret = WQ_ITERATE_SUCCESS; |
| 1067 | break; |
| 1068 | case WQ_ITERATE_RESTART: |
| 1069 | wq_prepost_put(wqp); |
| 1070 | /* fall through */ |
| 1071 | case WQ_ITERATE_DROPPED: |
| 1072 | goto restart; |
| 1073 | default: |
| 1074 | wq_prepost_put(wqp); |
| 1075 | break; |
| 1076 | } |
| 1077 | return ret; |
| 1078 | } |
| 1079 | |
| 1080 | assert(wqp->wqp_prepostid.id == wqset->wqset_prepost_id); |
| 1081 | assert(wqp_type(wqp) == WQP_POST); |
| 1082 | |
| 1083 | /* |
| 1084 | * At this point we know we have a list of POST objects. |
| 1085 | * Grab a handle to the last element in the list and start |
| 1086 | * the iteration. |
| 1087 | */ |
| 1088 | tmp_wqp = wq_prepost_get_rnext(wqp); |
| 1089 | assert(tmp_wqp != NULL && wqp_type(tmp_wqp) == WQP_POST); |
| 1090 | |
| 1091 | uint64_t last_id = tmp_wqp->wqp_prepostid.id; |
| 1092 | wq_prepost_put(tmp_wqp); |
| 1093 | |
| 1094 | ret = WQ_ITERATE_SUCCESS; |
| 1095 | for (;;) { |
| 1096 | uint64_t wqp_id, first_id, next_id; |
| 1097 | |
| 1098 | wqp_id = wqp->wqp_prepostid.id; |
| 1099 | first_id = wqset->wqset_prepost_id; |
| 1100 | next_id = wqp->wqp_post.wqp_next_id; |
| 1101 | |
| 1102 | /* grab the WQP_WQ object this _POST points to */ |
| 1103 | tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id); |
| 1104 | if (!tmp_wqp) { |
| 1105 | /* |
| 1106 | * This WQP_POST object points to an invalid |
| 1107 | * WQP_WQ object - remove the POST object from |
| 1108 | * the list. |
| 1109 | */ |
| 1110 | if (wq_prepost_remove(wqset, wqp) == 0) { |
| 1111 | wq_prepost_put(wqp); |
| 1112 | goto restart; |
| 1113 | } |
| 1114 | goto next_prepost; |
| 1115 | } |
| 1116 | assert(wqp_type(tmp_wqp) == WQP_WQ); |
| 1117 | /* |
| 1118 | * make the callback: note that this could remove 'wqp' or |
| 1119 | * drop the lock on our waitq set. We need to re-validate |
| 1120 | * our state when this function returns. |
| 1121 | */ |
| 1122 | ret = cb(wqset, ctx, wqp, tmp_wqp->wqp_wq.wqp_wq_ptr); |
| 1123 | wq_prepost_put(tmp_wqp); |
| 1124 | |
| 1125 | switch (ret) { |
| 1126 | case WQ_ITERATE_CONTINUE: |
| 1127 | /* continue iteration */ |
| 1128 | break; |
| 1129 | case WQ_ITERATE_INVALIDATE_CONTINUE: |
| 1130 | assert(next_id == wqp->wqp_post.wqp_next_id); |
| 1131 | if (wq_prepost_remove(wqset, wqp) == 0) { |
| 1132 | wq_prepost_put(wqp); |
| 1133 | goto restart; |
| 1134 | } |
| 1135 | goto next_prepost; |
| 1136 | case WQ_ITERATE_RESTART: |
| 1137 | wq_prepost_put(wqp); |
| 1138 | /* fall-through */ |
| 1139 | case WQ_ITERATE_DROPPED: |
| 1140 | /* the callback dropped the ref to wqp: just restart */ |
| 1141 | goto restart; |
| 1142 | default: |
| 1143 | /* break out of the iteration for some other reason */ |
| 1144 | goto finish_prepost_foreach; |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * the set lock may have been dropped during callback, |
| 1149 | * if something looks different, restart the prepost iteration |
| 1150 | */ |
| 1151 | if (!wqp_is_valid(wqp) || |
| 1152 | (wqp->wqp_post.wqp_next_id != next_id) || |
| 1153 | wqset->wqset_prepost_id != first_id) { |
| 1154 | wq_prepost_put(wqp); |
| 1155 | goto restart; |
| 1156 | } |
| 1157 | |
| 1158 | next_prepost: |
| 1159 | /* this was the last object in the list */ |
| 1160 | if (wqp_id == last_id) |
| 1161 | break; |
| 1162 | |
| 1163 | /* get the next object */ |
| 1164 | tmp_wqp = wq_prepost_get(next_id); |
| 1165 | if (!tmp_wqp) { |
| 1166 | /* |
| 1167 | * At this point we've already checked our state |
| 1168 | * after the callback (which may have dropped the set |
| 1169 | * lock). If we find an invalid member of the list |
| 1170 | * then something is wrong. |
| 1171 | */ |
| 1172 | panic("Invalid WQP_POST member 0x%llx in waitq set " |
| 1173 | "0x%llx prepost list (first:%llx, " |
| 1174 | "wqp:%p)" , |
| 1175 | next_id, wqset->wqset_id, first_id, wqp); |
| 1176 | } |
| 1177 | wq_prepost_put(wqp); |
| 1178 | wqp = tmp_wqp; |
| 1179 | |
| 1180 | assert(wqp_type(wqp) == WQP_POST); |
| 1181 | } |
| 1182 | |
| 1183 | finish_prepost_foreach: |
| 1184 | wq_prepost_put(wqp); |
| 1185 | if (ret == WQ_ITERATE_CONTINUE) |
| 1186 | ret = WQ_ITERATE_SUCCESS; |
| 1187 | |
| 1188 | return ret; |
| 1189 | } |
| 1190 | |
| 1191 | /** |
| 1192 | * Perform a simple loop over a chain of prepost objects |
| 1193 | * |
| 1194 | * Conditions: |
| 1195 | * If 'prepost_id' is associated with a waitq (set) then that object must |
| 1196 | * be locked before calling this function. |
| 1197 | * Callback function, 'cb', must be able to handle a NULL wqset pointer |
| 1198 | * and a NULL waitq pointer! |
| 1199 | * |
| 1200 | * Notes: |
| 1201 | * This prepost chain iteration will _not_ automatically adjust any chain |
| 1202 | * element or linkage. This is the responsibility of the caller! If you |
| 1203 | * want automatic prepost chain management (at a cost of extra CPU time), |
| 1204 | * you can use: wq_prepost_foreach_locked(). |
| 1205 | */ |
| 1206 | static int wq_prepost_iterate(uint64_t prepost_id, |
| 1207 | void *ctx, wqp_callback_func cb) |
| 1208 | { |
| 1209 | int ret; |
| 1210 | struct wq_prepost *wqp; |
| 1211 | |
| 1212 | if (!prepost_id) |
| 1213 | return WQ_ITERATE_SUCCESS; |
| 1214 | |
| 1215 | wqp = wq_prepost_get(prepost_id); |
| 1216 | if (!wqp) |
| 1217 | return WQ_ITERATE_SUCCESS; |
| 1218 | |
| 1219 | if (wqp_type(wqp) == WQP_WQ) { |
| 1220 | ret = WQ_ITERATE_SUCCESS; |
| 1221 | if (cb) |
| 1222 | ret = cb(NULL, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr); |
| 1223 | |
| 1224 | if (ret != WQ_ITERATE_DROPPED) |
| 1225 | wq_prepost_put(wqp); |
| 1226 | return ret; |
| 1227 | } |
| 1228 | |
| 1229 | assert(wqp->wqp_prepostid.id == prepost_id); |
| 1230 | assert(wqp_type(wqp) == WQP_POST); |
| 1231 | |
| 1232 | /* at this point we know we have a list of POST objects */ |
| 1233 | uint64_t next_id; |
| 1234 | |
| 1235 | ret = WQ_ITERATE_CONTINUE; |
| 1236 | do { |
| 1237 | struct wq_prepost *tmp_wqp; |
| 1238 | struct waitq *wq = NULL; |
| 1239 | |
| 1240 | next_id = wqp->wqp_post.wqp_next_id; |
| 1241 | |
| 1242 | /* grab the WQP_WQ object this _POST points to */ |
| 1243 | tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id); |
| 1244 | if (tmp_wqp) { |
| 1245 | assert(wqp_type(tmp_wqp) == WQP_WQ); |
| 1246 | wq = tmp_wqp->wqp_wq.wqp_wq_ptr; |
| 1247 | } |
| 1248 | |
| 1249 | if (cb) |
| 1250 | ret = cb(NULL, ctx, wqp, wq); |
| 1251 | if (tmp_wqp) |
| 1252 | wq_prepost_put(tmp_wqp); |
| 1253 | |
| 1254 | if (ret != WQ_ITERATE_CONTINUE) |
| 1255 | break; |
| 1256 | |
| 1257 | tmp_wqp = wq_prepost_get(next_id); |
| 1258 | if (!tmp_wqp) { |
| 1259 | /* |
| 1260 | * the chain is broken: nothing we can do here besides |
| 1261 | * bail from the iteration. |
| 1262 | */ |
| 1263 | ret = WQ_ITERATE_ABORTED; |
| 1264 | break; |
| 1265 | } |
| 1266 | |
| 1267 | wq_prepost_put(wqp); |
| 1268 | wqp = tmp_wqp; |
| 1269 | |
| 1270 | assert(wqp_type(wqp) == WQP_POST); |
| 1271 | } while (next_id != prepost_id); |
| 1272 | |
| 1273 | if (ret != WQ_ITERATE_DROPPED) |
| 1274 | wq_prepost_put(wqp); |
| 1275 | |
| 1276 | if (ret == WQ_ITERATE_CONTINUE) |
| 1277 | ret = WQ_ITERATE_SUCCESS; |
| 1278 | return ret; |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | struct _is_posted_ctx { |
| 1283 | struct waitq *posting_wq; |
| 1284 | int did_prepost; |
| 1285 | }; |
| 1286 | |
| 1287 | static int wq_is_preposted_on_set_cb(struct waitq_set *wqset, void *ctx, |
| 1288 | struct wq_prepost *wqp, struct waitq *waitq) |
| 1289 | { |
| 1290 | struct _is_posted_ctx *pctx = (struct _is_posted_ctx *)ctx; |
| 1291 | |
| 1292 | (void)wqset; |
| 1293 | (void)wqp; |
| 1294 | |
| 1295 | /* |
| 1296 | * Don't early-out, run through the _entire_ list: |
| 1297 | * This ensures that we retain a minimum number of invalid elements. |
| 1298 | */ |
| 1299 | if (pctx->posting_wq == waitq) |
| 1300 | pctx->did_prepost = 1; |
| 1301 | |
| 1302 | return WQ_ITERATE_CONTINUE; |
| 1303 | } |
| 1304 | |
| 1305 | |
| 1306 | /** |
| 1307 | * checks if 'waitq' has already preposted on 'wqset' |
| 1308 | * |
| 1309 | * Parameters: |
| 1310 | * waitq The waitq that's preposting |
| 1311 | * wqset The set onto which waitq may be preposted |
| 1312 | * |
| 1313 | * Conditions: |
| 1314 | * both waitq and wqset are locked |
| 1315 | * |
| 1316 | * Returns non-zero if 'waitq' has already preposted to 'wqset' |
| 1317 | */ |
| 1318 | static int wq_is_preposted_on_set(struct waitq *waitq, struct waitq_set *wqset) |
| 1319 | { |
| 1320 | int ret; |
| 1321 | struct _is_posted_ctx pctx; |
| 1322 | |
| 1323 | /* |
| 1324 | * If the set's only prepost matches the waitq's prepost ID, |
| 1325 | * then it obviously already preposted to the set. |
| 1326 | */ |
| 1327 | if (waitq->waitq_prepost_id != 0 && |
| 1328 | wqset->wqset_prepost_id == waitq->waitq_prepost_id) |
| 1329 | return 1; |
| 1330 | |
| 1331 | /* use full prepost iteration: always trim the list */ |
| 1332 | pctx.posting_wq = waitq; |
| 1333 | pctx.did_prepost = 0; |
| 1334 | ret = wq_prepost_foreach_locked(wqset, (void *)&pctx, |
| 1335 | wq_is_preposted_on_set_cb); |
| 1336 | return pctx.did_prepost; |
| 1337 | } |
| 1338 | |
| 1339 | static struct wq_prepost *wq_get_prepost_obj(uint64_t *reserved, int type) |
| 1340 | { |
| 1341 | struct wq_prepost *wqp = NULL; |
| 1342 | /* |
| 1343 | * don't fail just because the caller doesn't have enough |
| 1344 | * reservations, we've kept a low-water mark on the prepost table, |
| 1345 | * so there should be some available for us. |
| 1346 | */ |
| 1347 | if (reserved && *reserved) { |
| 1348 | wqp = wq_prepost_rpop(reserved, type); |
| 1349 | assert(wqp->wqte.lt_id.idx < g_prepost_table.nelem); |
| 1350 | } else { |
| 1351 | /* |
| 1352 | * TODO: if in interrupt context, grab from a special |
| 1353 | * region / reserved list! |
| 1354 | */ |
| 1355 | wqp = wq_prepost_alloc(type, 1); |
| 1356 | } |
| 1357 | |
| 1358 | if (wqp == NULL) |
| 1359 | panic("Couldn't allocate prepost object!" ); |
| 1360 | return wqp; |
| 1361 | } |
| 1362 | |
| 1363 | |
| 1364 | /** |
| 1365 | * prepost a waitq onto a waitq set |
| 1366 | * |
| 1367 | * Parameters: |
| 1368 | * wqset The set onto which waitq will be preposted |
| 1369 | * waitq The waitq that's preposting |
| 1370 | * reserved List (lt_elem_list_ style) of pre-allocated prepost elements |
| 1371 | * Could be NULL |
| 1372 | * |
| 1373 | * Conditions: |
| 1374 | * both wqset and waitq are locked |
| 1375 | * |
| 1376 | * Notes: |
| 1377 | * If reserved is NULL, this may block on prepost table growth. |
| 1378 | */ |
| 1379 | static void wq_prepost_do_post_locked(struct waitq_set *wqset, |
| 1380 | struct waitq *waitq, |
| 1381 | uint64_t *reserved) |
| 1382 | { |
| 1383 | struct wq_prepost *wqp_post, *wqp_head, *wqp_tail; |
| 1384 | |
| 1385 | assert(waitq_held(waitq) && waitq_held(&wqset->wqset_q)); |
| 1386 | |
| 1387 | /* |
| 1388 | * nothing to do if it's already preposted: |
| 1389 | * note that this also culls any invalid prepost objects |
| 1390 | */ |
| 1391 | if (wq_is_preposted_on_set(waitq, wqset)) |
| 1392 | return; |
| 1393 | |
| 1394 | assert(waitqs_is_linked(wqset)); |
| 1395 | |
| 1396 | /* |
| 1397 | * This function is called because an event is being posted to 'waitq'. |
| 1398 | * We need a prepost object associated with this queue. Allocate one |
| 1399 | * now if the waitq isn't already associated with one. |
| 1400 | */ |
| 1401 | if (waitq->waitq_prepost_id == 0) { |
| 1402 | struct wq_prepost *wqp; |
| 1403 | wqp = wq_get_prepost_obj(reserved, WQP_WQ); |
| 1404 | wqp->wqp_wq.wqp_wq_ptr = waitq; |
| 1405 | wqp_set_valid(wqp); |
| 1406 | waitq->waitq_prepost_id = wqp->wqp_prepostid.id; |
| 1407 | wq_prepost_put(wqp); |
| 1408 | } |
| 1409 | |
| 1410 | #if CONFIG_LTABLE_STATS |
| 1411 | g_prepost_table.npreposts += 1; |
| 1412 | #endif |
| 1413 | |
| 1414 | wqdbg_v("preposting waitq %p (0x%llx) to set 0x%llx" , |
| 1415 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), |
| 1416 | waitq->waitq_prepost_id, wqset->wqset_id); |
| 1417 | |
| 1418 | if (wqset->wqset_prepost_id == 0) { |
| 1419 | /* the set has no previous preposts */ |
| 1420 | wqset->wqset_prepost_id = waitq->waitq_prepost_id; |
| 1421 | return; |
| 1422 | } |
| 1423 | |
| 1424 | wqp_head = wq_prepost_get(wqset->wqset_prepost_id); |
| 1425 | if (!wqp_head) { |
| 1426 | /* the previous prepost has become invalid */ |
| 1427 | wqset->wqset_prepost_id = waitq->waitq_prepost_id; |
| 1428 | return; |
| 1429 | } |
| 1430 | |
| 1431 | assert(wqp_head->wqp_prepostid.id == wqset->wqset_prepost_id); |
| 1432 | |
| 1433 | /* |
| 1434 | * If we get here, we're going to need at least one new wq_prepost |
| 1435 | * object. If the previous wqset_prepost_id points to a WQP_WQ, we |
| 1436 | * actually need to allocate 2 wq_prepost objects because the WQP_WQ |
| 1437 | * is tied to the waitq and shared across all sets. |
| 1438 | */ |
| 1439 | wqp_post = wq_get_prepost_obj(reserved, WQP_POST); |
| 1440 | |
| 1441 | wqp_post->wqp_post.wqp_wq_id = waitq->waitq_prepost_id; |
| 1442 | wqdbg_v("POST 0x%llx :: WQ 0x%llx" , wqp_post->wqp_prepostid.id, |
| 1443 | waitq->waitq_prepost_id); |
| 1444 | |
| 1445 | if (wqp_type(wqp_head) == WQP_WQ) { |
| 1446 | /* |
| 1447 | * We must replace the wqset_prepost_id with a pointer |
| 1448 | * to two new WQP_POST objects |
| 1449 | */ |
| 1450 | uint64_t wqp_id = wqp_head->wqp_prepostid.id; |
| 1451 | wqdbg_v("set 0x%llx previous had 1 WQ prepost (0x%llx): " |
| 1452 | "replacing with two POST preposts" , |
| 1453 | wqset->wqset_id, wqp_id); |
| 1454 | |
| 1455 | /* drop the old reference */ |
| 1456 | wq_prepost_put(wqp_head); |
| 1457 | |
| 1458 | /* grab another new object (the 2nd of two) */ |
| 1459 | wqp_head = wq_get_prepost_obj(reserved, WQP_POST); |
| 1460 | |
| 1461 | /* point this one to the original WQP_WQ object */ |
| 1462 | wqp_head->wqp_post.wqp_wq_id = wqp_id; |
| 1463 | wqdbg_v("POST 0x%llx :: WQ 0x%llx" , |
| 1464 | wqp_head->wqp_prepostid.id, wqp_id); |
| 1465 | |
| 1466 | /* link it to the new wqp_post object allocated earlier */ |
| 1467 | wqp_head->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id; |
| 1468 | /* make the list a double-linked and circular */ |
| 1469 | wq_prepost_rlink(wqp_head, wqp_post); |
| 1470 | |
| 1471 | /* |
| 1472 | * Finish setting up the new prepost: point it back to the |
| 1473 | * POST object we allocated to replace the original wqset |
| 1474 | * WQ prepost object |
| 1475 | */ |
| 1476 | wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id; |
| 1477 | wq_prepost_rlink(wqp_post, wqp_head); |
| 1478 | |
| 1479 | /* mark objects valid, and reset the wqset prepost list head */ |
| 1480 | wqp_set_valid(wqp_head); |
| 1481 | wqp_set_valid(wqp_post); |
| 1482 | wqset->wqset_prepost_id = wqp_head->wqp_prepostid.id; |
| 1483 | |
| 1484 | /* release both references */ |
| 1485 | wq_prepost_put(wqp_head); |
| 1486 | wq_prepost_put(wqp_post); |
| 1487 | |
| 1488 | wqdbg_v("set 0x%llx: 0x%llx/0x%llx -> 0x%llx/0x%llx -> 0x%llx" , |
| 1489 | wqset->wqset_id, wqset->wqset_prepost_id, |
| 1490 | wqp_head->wqp_prepostid.id, wqp_head->wqp_post.wqp_next_id, |
| 1491 | wqp_post->wqp_prepostid.id, |
| 1492 | wqp_post->wqp_post.wqp_next_id); |
| 1493 | return; |
| 1494 | } |
| 1495 | |
| 1496 | assert(wqp_type(wqp_head) == WQP_POST); |
| 1497 | |
| 1498 | /* |
| 1499 | * Add the new prepost to the end of the prepost list |
| 1500 | */ |
| 1501 | wqp_tail = wq_prepost_get_rnext(wqp_head); |
| 1502 | assert(wqp_tail != NULL); |
| 1503 | assert(wqp_tail->wqp_post.wqp_next_id == wqset->wqset_prepost_id); |
| 1504 | |
| 1505 | /* |
| 1506 | * link the head to the new tail |
| 1507 | * NOTE: this needs to happen first in case wqp_tail == wqp_head |
| 1508 | */ |
| 1509 | wq_prepost_reset_rnext(wqp_head); |
| 1510 | wq_prepost_rlink(wqp_head, wqp_post); |
| 1511 | |
| 1512 | /* point the new object to the list head, and list tail */ |
| 1513 | wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id; |
| 1514 | wq_prepost_rlink(wqp_post, wqp_tail); |
| 1515 | |
| 1516 | /* point the last item in the waitq set's list to the new object */ |
| 1517 | wqp_tail->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id; |
| 1518 | |
| 1519 | wqp_set_valid(wqp_post); |
| 1520 | |
| 1521 | wq_prepost_put(wqp_head); |
| 1522 | wq_prepost_put(wqp_tail); |
| 1523 | wq_prepost_put(wqp_post); |
| 1524 | |
| 1525 | wqdbg_v("set 0x%llx (wqp:0x%llx) last_prepost:0x%llx, " |
| 1526 | "new_prepost:0x%llx->0x%llx" , wqset->wqset_id, |
| 1527 | wqset->wqset_prepost_id, wqp_head->wqp_prepostid.id, |
| 1528 | wqp_post->wqp_prepostid.id, wqp_post->wqp_post.wqp_next_id); |
| 1529 | |
| 1530 | return; |
| 1531 | } |
| 1532 | |
| 1533 | |
| 1534 | /* ---------------------------------------------------------------------- |
| 1535 | * |
| 1536 | * Stats collection / reporting |
| 1537 | * |
| 1538 | * ---------------------------------------------------------------------- */ |
| 1539 | #if CONFIG_LTABLE_STATS && CONFIG_WAITQ_STATS |
| 1540 | static void wq_table_stats(struct link_table *table, struct wq_table_stats *stats) |
| 1541 | { |
| 1542 | stats->version = WAITQ_STATS_VERSION; |
| 1543 | stats->table_elements = table->nelem; |
| 1544 | stats->table_used_elems = table->used_elem; |
| 1545 | stats->table_elem_sz = table->elem_sz; |
| 1546 | stats->table_slabs = table->nslabs; |
| 1547 | stats->table_slab_sz = table->slab_sz; |
| 1548 | |
| 1549 | stats->table_num_allocs = table->nallocs; |
| 1550 | stats->table_num_preposts = table->npreposts; |
| 1551 | stats->table_num_reservations = table->nreservations; |
| 1552 | |
| 1553 | stats->table_max_used = table->max_used; |
| 1554 | stats->table_avg_used = table->avg_used; |
| 1555 | stats->table_max_reservations = table->max_reservations; |
| 1556 | stats->table_avg_reservations = table->avg_reservations; |
| 1557 | } |
| 1558 | |
| 1559 | void waitq_link_stats(struct wq_table_stats *stats) |
| 1560 | { |
| 1561 | if (!stats) |
| 1562 | return; |
| 1563 | wq_table_stats(&g_wqlinktable, stats); |
| 1564 | } |
| 1565 | |
| 1566 | void waitq_prepost_stats(struct wq_table_stats *stats) |
| 1567 | { |
| 1568 | wq_table_stats(&g_prepost_table, stats); |
| 1569 | } |
| 1570 | #endif |
| 1571 | |
| 1572 | |
| 1573 | /* ---------------------------------------------------------------------- |
| 1574 | * |
| 1575 | * Global Wait Queues |
| 1576 | * |
| 1577 | * ---------------------------------------------------------------------- */ |
| 1578 | |
| 1579 | static struct waitq g_boot_waitq; |
| 1580 | static struct waitq *global_waitqs = &g_boot_waitq; |
| 1581 | static uint32_t g_num_waitqs = 1; |
| 1582 | |
| 1583 | /* |
| 1584 | * Zero out the used MSBs of the event. |
| 1585 | */ |
| 1586 | #define _CAST_TO_EVENT_MASK(event) ((uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul)) |
| 1587 | |
| 1588 | static __inline__ uint32_t waitq_hash(char *key, size_t length) |
| 1589 | { |
| 1590 | uint32_t hash = jenkins_hash(key, length); |
| 1591 | |
| 1592 | hash &= (g_num_waitqs - 1); |
| 1593 | return hash; |
| 1594 | } |
| 1595 | |
| 1596 | /* return a global waitq pointer corresponding to the given event */ |
| 1597 | struct waitq *_global_eventq(char *event, size_t event_length) |
| 1598 | { |
| 1599 | return &global_waitqs[waitq_hash(event, event_length)]; |
| 1600 | } |
| 1601 | |
| 1602 | /* return an indexed global waitq pointer */ |
| 1603 | struct waitq *global_waitq(int index) |
| 1604 | { |
| 1605 | return &global_waitqs[index % g_num_waitqs]; |
| 1606 | } |
| 1607 | |
| 1608 | |
| 1609 | #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS |
| 1610 | /* this global is for lldb */ |
| 1611 | const uint32_t g_nwaitq_btframes = NWAITQ_BTFRAMES; |
| 1612 | |
| 1613 | static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip) |
| 1614 | { |
| 1615 | uintptr_t buf[NWAITQ_BTFRAMES + skip]; |
| 1616 | if (skip < 0) |
| 1617 | skip = 0; |
| 1618 | memset(buf, 0, (NWAITQ_BTFRAMES + skip) * sizeof(uintptr_t)); |
| 1619 | backtrace(buf, g_nwaitq_btframes + skip); |
| 1620 | memcpy(&bt[0], &buf[skip], NWAITQ_BTFRAMES * sizeof(uintptr_t)); |
| 1621 | } |
| 1622 | #else /* no stats */ |
| 1623 | #define waitq_grab_backtrace(...) |
| 1624 | #endif |
| 1625 | |
| 1626 | #if CONFIG_WAITQ_STATS |
| 1627 | |
| 1628 | struct wq_stats g_boot_stats; |
| 1629 | struct wq_stats *g_waitq_stats = &g_boot_stats; |
| 1630 | |
| 1631 | static __inline__ struct wq_stats *waitq_global_stats(struct waitq *waitq) { |
| 1632 | struct wq_stats *wqs; |
| 1633 | uint32_t idx; |
| 1634 | |
| 1635 | if (!waitq_is_global(waitq)) |
| 1636 | return NULL; |
| 1637 | |
| 1638 | idx = (uint32_t)(((uintptr_t)waitq - (uintptr_t)global_waitqs) / sizeof(*waitq)); |
| 1639 | assert(idx < g_num_waitqs); |
| 1640 | wqs = &g_waitq_stats[idx]; |
| 1641 | return wqs; |
| 1642 | } |
| 1643 | |
| 1644 | static __inline__ void waitq_stats_count_wait(struct waitq *waitq) |
| 1645 | { |
| 1646 | struct wq_stats *wqs = waitq_global_stats(waitq); |
| 1647 | if (wqs != NULL) { |
| 1648 | wqs->waits++; |
| 1649 | waitq_grab_backtrace(wqs->last_wait, 2); |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | static __inline__ void waitq_stats_count_wakeup(struct waitq *waitq) |
| 1654 | { |
| 1655 | struct wq_stats *wqs = waitq_global_stats(waitq); |
| 1656 | if (wqs != NULL) { |
| 1657 | wqs->wakeups++; |
| 1658 | waitq_grab_backtrace(wqs->last_wakeup, 2); |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | static __inline__ void waitq_stats_count_clear_wakeup(struct waitq *waitq) |
| 1663 | { |
| 1664 | struct wq_stats *wqs = waitq_global_stats(waitq); |
| 1665 | if (wqs != NULL) { |
| 1666 | wqs->wakeups++; |
| 1667 | wqs->clears++; |
| 1668 | waitq_grab_backtrace(wqs->last_wakeup, 2); |
| 1669 | } |
| 1670 | } |
| 1671 | |
| 1672 | static __inline__ void waitq_stats_count_fail(struct waitq *waitq) |
| 1673 | { |
| 1674 | struct wq_stats *wqs = waitq_global_stats(waitq); |
| 1675 | if (wqs != NULL) { |
| 1676 | wqs->failed_wakeups++; |
| 1677 | waitq_grab_backtrace(wqs->last_failed_wakeup, 2); |
| 1678 | } |
| 1679 | } |
| 1680 | #else /* !CONFIG_WAITQ_STATS */ |
| 1681 | #define waitq_stats_count_wait(q) do { } while (0) |
| 1682 | #define waitq_stats_count_wakeup(q) do { } while (0) |
| 1683 | #define waitq_stats_count_clear_wakeup(q) do { } while (0) |
| 1684 | #define waitq_stats_count_fail(q) do { } while (0) |
| 1685 | #endif |
| 1686 | |
| 1687 | int waitq_is_valid(struct waitq *waitq) |
| 1688 | { |
| 1689 | return (waitq != NULL) && waitq->waitq_isvalid; |
| 1690 | } |
| 1691 | |
| 1692 | int waitq_set_is_valid(struct waitq_set *wqset) |
| 1693 | { |
| 1694 | return (wqset != NULL) && wqset->wqset_q.waitq_isvalid && waitqs_is_set(wqset); |
| 1695 | } |
| 1696 | |
| 1697 | int waitq_is_global(struct waitq *waitq) |
| 1698 | { |
| 1699 | if (waitq >= global_waitqs && waitq < global_waitqs + g_num_waitqs) |
| 1700 | return 1; |
| 1701 | return 0; |
| 1702 | } |
| 1703 | |
| 1704 | int waitq_irq_safe(struct waitq *waitq) |
| 1705 | { |
| 1706 | /* global wait queues have this bit set on initialization */ |
| 1707 | return waitq->waitq_irq; |
| 1708 | } |
| 1709 | |
| 1710 | struct waitq * waitq_get_safeq(struct waitq *waitq) |
| 1711 | { |
| 1712 | struct waitq *safeq; |
| 1713 | |
| 1714 | /* Check if it's a port waitq */ |
| 1715 | if (waitq_is_port_queue(waitq)) { |
| 1716 | assert(!waitq_irq_safe(waitq)); |
| 1717 | safeq = ipc_port_rcv_turnstile_waitq(waitq); |
| 1718 | } else { |
| 1719 | safeq = global_eventq(waitq); |
| 1720 | } |
| 1721 | return safeq; |
| 1722 | } |
| 1723 | |
| 1724 | static uint32_t waitq_hash_size(void) |
| 1725 | { |
| 1726 | uint32_t hsize, queues; |
| 1727 | |
| 1728 | if (PE_parse_boot_argn("wqsize" , &hsize, sizeof(hsize))) |
| 1729 | return (hsize); |
| 1730 | |
| 1731 | queues = thread_max / 5; |
| 1732 | hsize = P2ROUNDUP(queues * sizeof(struct waitq), PAGE_SIZE); |
| 1733 | |
| 1734 | return hsize; |
| 1735 | } |
| 1736 | |
| 1737 | /* |
| 1738 | * Since the priority ordered waitq uses basepri as the |
| 1739 | * ordering key assert that this value fits in a uint8_t. |
| 1740 | */ |
| 1741 | static_assert(MAXPRI <= UINT8_MAX); |
| 1742 | |
| 1743 | static inline void waitq_thread_insert(struct waitq *wq, |
| 1744 | thread_t thread, boolean_t fifo) |
| 1745 | { |
| 1746 | if (waitq_is_turnstile_queue(wq)) { |
| 1747 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1748 | (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS, (THREAD_ADDED_TO_TURNSTILE_WAITQ))) | DBG_FUNC_NONE, |
| 1749 | VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq)), |
| 1750 | thread_tid(thread), |
| 1751 | thread->base_pri, 0, 0); |
| 1752 | |
| 1753 | turnstile_stats_update(0, TSU_TURNSTILE_BLOCK_COUNT, NULL); |
| 1754 | |
| 1755 | /* |
| 1756 | * For turnstile queues (which use priority queues), |
| 1757 | * insert the thread in the heap based on its current |
| 1758 | * base_pri. Note that the priority queue implementation |
| 1759 | * is currently not stable, so does not maintain fifo for |
| 1760 | * threads at the same base_pri. Also, if the base_pri |
| 1761 | * of the thread changes while its blocked in the waitq, |
| 1762 | * the thread position should be updated in the priority |
| 1763 | * queue by calling priority queue increase/decrease |
| 1764 | * operations. |
| 1765 | */ |
| 1766 | priority_queue_entry_init(&(thread->wait_prioq_links)); |
| 1767 | priority_queue_insert(&wq->waitq_prio_queue, |
| 1768 | &thread->wait_prioq_links, thread->base_pri, |
| 1769 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE); |
| 1770 | } else { |
| 1771 | turnstile_stats_update(0, TSU_REGULAR_WAITQ_BLOCK_COUNT, NULL); |
| 1772 | if (fifo) { |
| 1773 | enqueue_tail(&wq->waitq_queue, &thread->wait_links); |
| 1774 | } else { |
| 1775 | enqueue_head(&wq->waitq_queue, &thread->wait_links); |
| 1776 | } |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | static inline void waitq_thread_remove(struct waitq *wq, |
| 1781 | thread_t thread) |
| 1782 | { |
| 1783 | if (waitq_is_turnstile_queue(wq)) { |
| 1784 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1785 | (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS, (THREAD_REMOVED_FROM_TURNSTILE_WAITQ))) | DBG_FUNC_NONE, |
| 1786 | VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq)), |
| 1787 | thread_tid(thread), |
| 1788 | 0, 0, 0); |
| 1789 | priority_queue_remove(&wq->waitq_prio_queue, &thread->wait_prioq_links, |
| 1790 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE); |
| 1791 | } else { |
| 1792 | remqueue(&(thread->wait_links)); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | void waitq_bootstrap(void) |
| 1797 | { |
| 1798 | kern_return_t kret; |
| 1799 | uint32_t whsize, qsz, tmp32; |
| 1800 | |
| 1801 | g_min_free_table_elem = DEFAULT_MIN_FREE_TABLE_ELEM; |
| 1802 | if (PE_parse_boot_argn("wqt_min_free" , &tmp32, sizeof(tmp32)) == TRUE) |
| 1803 | g_min_free_table_elem = tmp32; |
| 1804 | wqdbg("Minimum free table elements: %d" , tmp32); |
| 1805 | |
| 1806 | /* |
| 1807 | * Determine the amount of memory we're willing to reserve for |
| 1808 | * the waitqueue hash table |
| 1809 | */ |
| 1810 | whsize = waitq_hash_size(); |
| 1811 | |
| 1812 | /* Determine the number of waitqueues we can fit. */ |
| 1813 | qsz = sizeof(struct waitq); |
| 1814 | whsize = ROUNDDOWN(whsize, qsz); |
| 1815 | g_num_waitqs = whsize / qsz; |
| 1816 | |
| 1817 | /* |
| 1818 | * The hash algorithm requires that this be a power of 2, so we |
| 1819 | * just mask off all the low-order bits. |
| 1820 | */ |
| 1821 | for (uint32_t i = 0; i < 31; i++) { |
| 1822 | uint32_t bit = (1 << i); |
| 1823 | if ((g_num_waitqs & bit) == g_num_waitqs) |
| 1824 | break; |
| 1825 | g_num_waitqs &= ~bit; |
| 1826 | } |
| 1827 | assert(g_num_waitqs > 0); |
| 1828 | |
| 1829 | /* Now determine how much memory we really need. */ |
| 1830 | whsize = P2ROUNDUP(g_num_waitqs * qsz, PAGE_SIZE); |
| 1831 | |
| 1832 | wqdbg("allocating %d global queues (%d bytes)" , g_num_waitqs, whsize); |
| 1833 | kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&global_waitqs, |
| 1834 | whsize, 0, KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ); |
| 1835 | if (kret != KERN_SUCCESS || global_waitqs == NULL) |
| 1836 | panic("kernel_memory_allocate() failed to alloc global_waitqs" |
| 1837 | ", error: %d, whsize: 0x%x" , kret, whsize); |
| 1838 | |
| 1839 | #if CONFIG_WAITQ_STATS |
| 1840 | whsize = P2ROUNDUP(g_num_waitqs * sizeof(struct wq_stats), PAGE_SIZE); |
| 1841 | kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&g_waitq_stats, |
| 1842 | whsize, 0, KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ); |
| 1843 | if (kret != KERN_SUCCESS || global_waitqs == NULL) |
| 1844 | panic("kernel_memory_allocate() failed to alloc g_waitq_stats" |
| 1845 | ", error: %d, whsize: 0x%x" , kret, whsize); |
| 1846 | memset(g_waitq_stats, 0, whsize); |
| 1847 | #endif |
| 1848 | |
| 1849 | for (uint32_t i = 0; i < g_num_waitqs; i++) { |
| 1850 | waitq_init(&global_waitqs[i], SYNC_POLICY_FIFO|SYNC_POLICY_DISABLE_IRQ); |
| 1851 | } |
| 1852 | |
| 1853 | waitq_set_zone = zinit(sizeof(struct waitq_set), |
| 1854 | WAITQ_SET_MAX * sizeof(struct waitq_set), |
| 1855 | sizeof(struct waitq_set), |
| 1856 | "waitq sets" ); |
| 1857 | zone_change(waitq_set_zone, Z_NOENCRYPT, TRUE); |
| 1858 | |
| 1859 | /* initialize the global waitq link table */ |
| 1860 | wql_init(); |
| 1861 | |
| 1862 | /* initialize the global waitq prepost table */ |
| 1863 | wqp_init(); |
| 1864 | } |
| 1865 | |
| 1866 | |
| 1867 | /* ---------------------------------------------------------------------- |
| 1868 | * |
| 1869 | * Wait Queue Implementation |
| 1870 | * |
| 1871 | * ---------------------------------------------------------------------- */ |
| 1872 | |
| 1873 | /* |
| 1874 | * Double the standard lock timeout, because wait queues tend |
| 1875 | * to iterate over a number of threads - locking each. If there is |
| 1876 | * a problem with a thread lock, it normally times out at the wait |
| 1877 | * queue level first, hiding the real problem. |
| 1878 | */ |
| 1879 | /* For x86, the hardware timeout is in TSC units. */ |
| 1880 | #if defined(__i386__) || defined(__x86_64__) |
| 1881 | #define hwLockTimeOut LockTimeOutTSC |
| 1882 | #else |
| 1883 | #define hwLockTimeOut LockTimeOut |
| 1884 | #endif |
| 1885 | |
| 1886 | void waitq_lock(struct waitq *wq) |
| 1887 | { |
| 1888 | if (__improbable(waitq_lock_to(wq, |
| 1889 | hwLockTimeOut * 2) == 0)) { |
| 1890 | boolean_t wql_acquired = FALSE; |
| 1891 | |
| 1892 | while (machine_timeout_suspended()) { |
| 1893 | mp_enable_preemption(); |
| 1894 | wql_acquired = waitq_lock_to(wq, |
| 1895 | hwLockTimeOut * 2); |
| 1896 | if (wql_acquired) |
| 1897 | break; |
| 1898 | } |
| 1899 | if (wql_acquired == FALSE) |
| 1900 | panic("waitq deadlock - waitq=%p, cpu=%d\n" , |
| 1901 | wq, cpu_number()); |
| 1902 | } |
| 1903 | #if defined(__x86_64__) |
| 1904 | pltrace(FALSE); |
| 1905 | #endif |
| 1906 | assert(waitq_held(wq)); |
| 1907 | } |
| 1908 | |
| 1909 | void waitq_unlock(struct waitq *wq) |
| 1910 | { |
| 1911 | assert(waitq_held(wq)); |
| 1912 | #if defined(__x86_64__) |
| 1913 | pltrace(TRUE); |
| 1914 | #endif |
| 1915 | waitq_lock_unlock(wq); |
| 1916 | } |
| 1917 | |
| 1918 | |
| 1919 | /** |
| 1920 | * clear the thread-related waitq state |
| 1921 | * |
| 1922 | * Conditions: |
| 1923 | * 'thread' is locked |
| 1924 | */ |
| 1925 | static inline void thread_clear_waitq_state(thread_t thread) |
| 1926 | { |
| 1927 | thread->waitq = NULL; |
| 1928 | thread->wait_event = NO_EVENT64; |
| 1929 | thread->at_safe_point = FALSE; |
| 1930 | } |
| 1931 | |
| 1932 | |
| 1933 | typedef thread_t (*waitq_select_cb)(void *ctx, struct waitq *waitq, |
| 1934 | int is_global, thread_t thread); |
| 1935 | |
| 1936 | struct waitq_select_args { |
| 1937 | /* input parameters */ |
| 1938 | struct waitq *posted_waitq; |
| 1939 | struct waitq *waitq; |
| 1940 | event64_t event; |
| 1941 | waitq_select_cb select_cb; |
| 1942 | void *select_ctx; |
| 1943 | |
| 1944 | uint64_t *reserved_preposts; |
| 1945 | |
| 1946 | /* output parameters */ |
| 1947 | queue_t threadq; |
| 1948 | int max_threads; |
| 1949 | int *nthreads; |
| 1950 | spl_t *spl; |
| 1951 | }; |
| 1952 | |
| 1953 | static void do_waitq_select_n_locked(struct waitq_select_args *args); |
| 1954 | |
| 1955 | /** |
| 1956 | * callback invoked once for every waitq set to which a waitq belongs |
| 1957 | * |
| 1958 | * Conditions: |
| 1959 | * ctx->posted_waitq is locked |
| 1960 | * 'link' points to a valid waitq set |
| 1961 | * |
| 1962 | * Notes: |
| 1963 | * Takes the waitq set lock on the set pointed to by 'link' |
| 1964 | * Calls do_waitq_select_n_locked() which could recurse back into |
| 1965 | * this function if the waitq set is a member of other sets. |
| 1966 | * If no threads were selected, it preposts the input waitq |
| 1967 | * onto the waitq set pointed to by 'link'. |
| 1968 | */ |
| 1969 | static int waitq_select_walk_cb(struct waitq *waitq, void *ctx, |
| 1970 | struct waitq_link *link) |
| 1971 | { |
| 1972 | int ret = WQ_ITERATE_CONTINUE; |
| 1973 | struct waitq_select_args args = *((struct waitq_select_args *)ctx); |
| 1974 | struct waitq_set *wqset; |
| 1975 | |
| 1976 | (void)waitq; |
| 1977 | assert(wql_type(link) == WQL_WQS); |
| 1978 | |
| 1979 | wqset = link->wql_wqs.wql_set; |
| 1980 | args.waitq = &wqset->wqset_q; |
| 1981 | |
| 1982 | assert(!waitq_irq_safe(waitq)); |
| 1983 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 1984 | |
| 1985 | waitq_set_lock(wqset); |
| 1986 | /* |
| 1987 | * verify that the link wasn't invalidated just before |
| 1988 | * we were able to take the lock. |
| 1989 | */ |
| 1990 | if (wqset->wqset_id != link->wql_setid.id) |
| 1991 | goto out_unlock; |
| 1992 | |
| 1993 | assert(waitqs_is_linked(wqset)); |
| 1994 | |
| 1995 | /* |
| 1996 | * Find any threads waiting on this wait queue set, |
| 1997 | * and recurse into any waitq set to which this set belongs. |
| 1998 | */ |
| 1999 | do_waitq_select_n_locked(&args); |
| 2000 | |
| 2001 | if (*(args.nthreads) > 0 || |
| 2002 | (args.threadq && !queue_empty(args.threadq))) { |
| 2003 | /* at least 1 thread was selected and returned: don't prepost */ |
| 2004 | if (args.max_threads > 0 && |
| 2005 | *(args.nthreads) >= args.max_threads) { |
| 2006 | /* break out of the setid walk */ |
| 2007 | ret = WQ_ITERATE_FOUND; |
| 2008 | } |
| 2009 | goto out_unlock; |
| 2010 | } else { |
| 2011 | /* |
| 2012 | * No thread selected: prepost 'waitq' to 'wqset' |
| 2013 | * if wqset can handle preposts and the event is set to 0. |
| 2014 | * We also make sure to not post waitq sets to other sets. |
| 2015 | * |
| 2016 | * If the set doesn't support preposts, but does support |
| 2017 | * prepost callout/hook interaction, invoke the predefined |
| 2018 | * callout function and pass the set's 'prepost_hook.' This |
| 2019 | * could potentially release another thread to handle events. |
| 2020 | */ |
| 2021 | if (args.event == NO_EVENT64) { |
| 2022 | if (waitq_set_can_prepost(wqset)) { |
| 2023 | wq_prepost_do_post_locked( |
| 2024 | wqset, waitq, args.reserved_preposts); |
| 2025 | } else if (waitq_set_has_prepost_hook(wqset)) { |
| 2026 | waitq_set__CALLING_PREPOST_HOOK__( |
| 2027 | wqset->wqset_prepost_hook, waitq, 0); |
| 2028 | } |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | out_unlock: |
| 2033 | waitq_set_unlock(wqset); |
| 2034 | return ret; |
| 2035 | } |
| 2036 | |
| 2037 | /** |
| 2038 | * Routine to iterate over the waitq for non-priority ordered waitqs |
| 2039 | * |
| 2040 | * Conditions: |
| 2041 | * args->waitq (and args->posted_waitq) is locked |
| 2042 | * |
| 2043 | * Notes: |
| 2044 | * Uses the optional select callback function to refine the selection |
| 2045 | * of one or more threads from a waitq. The select callback is invoked |
| 2046 | * once for every thread that is found to be waiting on the input args->waitq. |
| 2047 | * |
| 2048 | * If one or more threads are selected, this may disable interrupts. |
| 2049 | * The previous interrupt state is returned in args->spl and should |
| 2050 | * be used in a call to splx() if threads are returned to the caller. |
| 2051 | */ |
| 2052 | static thread_t waitq_queue_iterate_locked(struct waitq *safeq, struct waitq *waitq, |
| 2053 | spl_t spl, struct waitq_select_args *args, |
| 2054 | uint32_t *remaining_eventmask) |
| 2055 | { |
| 2056 | int max_threads = args->max_threads; |
| 2057 | int *nthreads = args->nthreads; |
| 2058 | thread_t thread = THREAD_NULL; |
| 2059 | thread_t first_thread = THREAD_NULL; |
| 2060 | |
| 2061 | qe_foreach_element_safe(thread, &safeq->waitq_queue, wait_links) { |
| 2062 | thread_t t = THREAD_NULL; |
| 2063 | assert_thread_magic(thread); |
| 2064 | |
| 2065 | /* |
| 2066 | * For non-priority ordered waitqs, we allow multiple events to be |
| 2067 | * mux'ed into the same waitq. Also safeqs may contain threads from |
| 2068 | * multiple waitqs. Only pick threads that match the |
| 2069 | * requested wait event. |
| 2070 | */ |
| 2071 | if (thread->waitq == waitq && thread->wait_event == args->event) { |
| 2072 | t = thread; |
| 2073 | if (first_thread == THREAD_NULL) |
| 2074 | first_thread = thread; |
| 2075 | |
| 2076 | /* allow the caller to futher refine the selection */ |
| 2077 | if (args->select_cb) |
| 2078 | t = args->select_cb(args->select_ctx, waitq, |
| 2079 | waitq_is_global(waitq), thread); |
| 2080 | if (t != THREAD_NULL) { |
| 2081 | *nthreads += 1; |
| 2082 | if (args->threadq) { |
| 2083 | /* if output queue, add locked thread to it */ |
| 2084 | if (*nthreads == 1) |
| 2085 | *(args->spl) = (safeq != waitq) ? spl : splsched(); |
| 2086 | thread_lock(t); |
| 2087 | thread_clear_waitq_state(t); |
| 2088 | re_queue_tail(args->threadq, &t->wait_links); |
| 2089 | } |
| 2090 | /* only enqueue up to 'max' threads */ |
| 2091 | if (*nthreads >= max_threads && max_threads > 0) |
| 2092 | break; |
| 2093 | } |
| 2094 | } |
| 2095 | /* thread wasn't selected so track it's event */ |
| 2096 | if (t == THREAD_NULL) { |
| 2097 | *remaining_eventmask |= (thread->waitq != safeq) ? |
| 2098 | _CAST_TO_EVENT_MASK(thread->waitq) : _CAST_TO_EVENT_MASK(thread->wait_event); |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | return first_thread; |
| 2103 | } |
| 2104 | |
| 2105 | /** |
| 2106 | * Routine to iterate and remove threads from priority ordered waitqs |
| 2107 | * |
| 2108 | * Conditions: |
| 2109 | * args->waitq (and args->posted_waitq) is locked |
| 2110 | * |
| 2111 | * Notes: |
| 2112 | * The priority ordered waitqs only support maximum priority element removal. |
| 2113 | * |
| 2114 | * Also, the implementation makes sure that all threads in a priority ordered |
| 2115 | * waitq are waiting on the same wait event. This is not necessarily true for |
| 2116 | * non-priority ordered waitqs. If one or more threads are selected, this may |
| 2117 | * disable interrupts. The previous interrupt state is returned in args->spl |
| 2118 | * and should be used in a call to splx() if threads are returned to the caller. |
| 2119 | * |
| 2120 | * In the future, we could support priority ordered waitqs with multiple wait |
| 2121 | * events in the same queue. The way to implement that would be to keep removing |
| 2122 | * elements from the waitq and if the event does not match the requested one, |
| 2123 | * add it to a local list. This local list of elements needs to be re-inserted |
| 2124 | * into the priority queue at the end and the select_cb return value & |
| 2125 | * remaining_eventmask would need to be handled appropriately. The implementation |
| 2126 | * is not very efficient but would work functionally. |
| 2127 | */ |
| 2128 | static thread_t waitq_prioq_iterate_locked(struct waitq *safeq, struct waitq *waitq, |
| 2129 | spl_t spl, struct waitq_select_args *args, |
| 2130 | uint32_t *remaining_eventmask) |
| 2131 | { |
| 2132 | int max_threads = args->max_threads; |
| 2133 | int *nthreads = args->nthreads; |
| 2134 | thread_t first_thread = THREAD_NULL; |
| 2135 | thread_t thread = THREAD_NULL; |
| 2136 | |
| 2137 | /* |
| 2138 | * The waitq select routines need to handle two cases: |
| 2139 | * Case 1: Peek at maximum priority thread in the waitq (remove_op = 0) |
| 2140 | * Get the maximum priority thread from the waitq without removing it. |
| 2141 | * In that case args->threadq == NULL and max_threads == 1. |
| 2142 | * Case 2: Remove 'n' highest priority threads from waitq (remove_op = 1) |
| 2143 | * Get max_threads (if available) while removing them from the waitq. |
| 2144 | * In that case args->threadq != NULL and max_threads is one of {-1, 1}. |
| 2145 | * |
| 2146 | * The only possible values for remaining_eventmask for the priority queue |
| 2147 | * waitq are either 0 (for the remove all threads case) or the original |
| 2148 | * safeq->waitq_eventmask (for the lookup/remove one thread cases). |
| 2149 | */ |
| 2150 | *remaining_eventmask = safeq->waitq_eventmask; |
| 2151 | boolean_t remove_op = !!(args->threadq); |
| 2152 | |
| 2153 | while ((max_threads <= 0) || (*nthreads < max_threads)) { |
| 2154 | |
| 2155 | if (priority_queue_empty(&(safeq->waitq_prio_queue))) { |
| 2156 | *remaining_eventmask = 0; |
| 2157 | break; |
| 2158 | } |
| 2159 | |
| 2160 | if (remove_op) { |
| 2161 | thread = priority_queue_remove_max(&safeq->waitq_prio_queue, |
| 2162 | struct thread, wait_prioq_links, |
| 2163 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE); |
| 2164 | } else { |
| 2165 | /* For the peek operation, the only valid value for max_threads is 1 */ |
| 2166 | assert(max_threads == 1); |
| 2167 | thread = priority_queue_max(&safeq->waitq_prio_queue, |
| 2168 | struct thread, wait_prioq_links); |
| 2169 | } |
| 2170 | /* |
| 2171 | * Ensure the wait event matches since priority ordered waitqs do not |
| 2172 | * support multiple events in the same waitq. |
| 2173 | */ |
| 2174 | assert((thread->waitq == waitq) && (thread->wait_event == args->event)); |
| 2175 | |
| 2176 | if (args->select_cb) { |
| 2177 | /* |
| 2178 | * Call the select_cb passed into the waitq_select args. The callback |
| 2179 | * updates the select_ctx with information about the highest priority |
| 2180 | * thread which is eventually used by the caller. |
| 2181 | */ |
| 2182 | thread_t __assert_only ret_thread = args->select_cb(args->select_ctx, waitq, |
| 2183 | waitq_is_global(waitq), thread); |
| 2184 | if (!remove_op) { |
| 2185 | /* For the peek operation, the thread should not be selected for addition */ |
| 2186 | assert(ret_thread == THREAD_NULL); |
| 2187 | } else { |
| 2188 | /* |
| 2189 | * For the remove operation, the select routine should always return a valid |
| 2190 | * thread for priority waitqs. Since all threads in a prioq are equally |
| 2191 | * eligible, it should match the thread removed from the prioq. If this |
| 2192 | * invariant changes, the implementation would need to handle the |
| 2193 | * remaining_eventmask here correctly. |
| 2194 | */ |
| 2195 | assert(ret_thread == thread); |
| 2196 | } |
| 2197 | } |
| 2198 | |
| 2199 | if (first_thread == THREAD_NULL) |
| 2200 | first_thread = thread; |
| 2201 | |
| 2202 | /* For the peek operation, break out early */ |
| 2203 | if (!remove_op) |
| 2204 | break; |
| 2205 | |
| 2206 | /* Add the thread to the result thread list */ |
| 2207 | *nthreads += 1; |
| 2208 | if (*nthreads == 1) |
| 2209 | *(args->spl) = (safeq != waitq) ? spl : splsched(); |
| 2210 | thread_lock(thread); |
| 2211 | thread_clear_waitq_state(thread); |
| 2212 | enqueue_tail(args->threadq, &(thread->wait_links)); |
| 2213 | } |
| 2214 | |
| 2215 | return first_thread; |
| 2216 | } |
| 2217 | |
| 2218 | /** |
| 2219 | * generic thread selection from a waitq (and sets to which the waitq belongs) |
| 2220 | * |
| 2221 | * Conditions: |
| 2222 | * args->waitq (and args->posted_waitq) is locked |
| 2223 | * |
| 2224 | * Notes: |
| 2225 | * Uses the optional select callback function to refine the selection |
| 2226 | * of one or more threads from a waitq and any set to which the waitq |
| 2227 | * belongs. The select callback is invoked once for every thread that |
| 2228 | * is found to be waiting on the input args->waitq. |
| 2229 | * |
| 2230 | * If one or more threads are selected, this may disable interrupts. |
| 2231 | * The previous interrupt state is returned in args->spl and should |
| 2232 | * be used in a call to splx() if threads are returned to the caller. |
| 2233 | */ |
| 2234 | static void do_waitq_select_n_locked(struct waitq_select_args *args) |
| 2235 | { |
| 2236 | struct waitq *waitq = args->waitq; |
| 2237 | int max_threads = args->max_threads; |
| 2238 | thread_t first_thread = THREAD_NULL; |
| 2239 | struct waitq *safeq; |
| 2240 | uint32_t remaining_eventmask = 0; |
| 2241 | uint32_t eventmask; |
| 2242 | int *nthreads = args->nthreads; |
| 2243 | spl_t spl = 0; |
| 2244 | |
| 2245 | assert(max_threads != 0); |
| 2246 | |
| 2247 | if (!waitq_irq_safe(waitq)) { |
| 2248 | /* JMM - add flag to waitq to avoid global lookup if no waiters */ |
| 2249 | eventmask = _CAST_TO_EVENT_MASK(waitq); |
| 2250 | safeq = waitq_get_safeq(waitq); |
| 2251 | if (*nthreads == 0) |
| 2252 | spl = splsched(); |
| 2253 | waitq_lock(safeq); |
| 2254 | } else { |
| 2255 | eventmask = _CAST_TO_EVENT_MASK(args->event); |
| 2256 | safeq = waitq; |
| 2257 | } |
| 2258 | |
| 2259 | /* |
| 2260 | * If the safeq doesn't have an eventmask (not global) or the event |
| 2261 | * we're looking for IS set in its eventmask, then scan the threads |
| 2262 | * in that queue for ones that match the original <waitq,event> pair. |
| 2263 | */ |
| 2264 | if (!waitq_is_global(safeq) || |
| 2265 | (safeq->waitq_eventmask & eventmask) == eventmask) { |
| 2266 | |
| 2267 | if (waitq_is_turnstile_queue(safeq)) { |
| 2268 | first_thread = waitq_prioq_iterate_locked(safeq, waitq, |
| 2269 | spl, args, |
| 2270 | &remaining_eventmask); |
| 2271 | } else { |
| 2272 | first_thread = waitq_queue_iterate_locked(safeq, waitq, |
| 2273 | spl, args, |
| 2274 | &remaining_eventmask); |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | * Update the eventmask of global queues we just scanned: |
| 2279 | * - If we selected all the threads in the queue, we can clear its |
| 2280 | * eventmask. |
| 2281 | * |
| 2282 | * - If we didn't find enough threads to fill our needs, then we can |
| 2283 | * assume we looked at every thread in the queue and the mask we |
| 2284 | * computed is complete - so reset it. |
| 2285 | */ |
| 2286 | if (waitq_is_global(safeq)) { |
| 2287 | if (waitq_empty(safeq)) |
| 2288 | safeq->waitq_eventmask = 0; |
| 2289 | else if (max_threads < 0 || *nthreads < max_threads) |
| 2290 | safeq->waitq_eventmask = remaining_eventmask; |
| 2291 | } |
| 2292 | } |
| 2293 | |
| 2294 | /* |
| 2295 | * Grab the first thread in the queue if no other thread was selected. |
| 2296 | * We can guarantee that no one has manipulated this thread because |
| 2297 | * it's waiting on the given waitq, and we have that waitq locked. |
| 2298 | */ |
| 2299 | if (*nthreads == 0 && first_thread != THREAD_NULL && args->threadq) { |
| 2300 | /* we know this is the first (and only) thread */ |
| 2301 | ++(*nthreads); |
| 2302 | *(args->spl) = (safeq != waitq) ? spl : splsched(); |
| 2303 | thread_lock(first_thread); |
| 2304 | thread_clear_waitq_state(first_thread); |
| 2305 | waitq_thread_remove(safeq, first_thread); |
| 2306 | enqueue_tail(args->threadq, &(first_thread->wait_links)); |
| 2307 | |
| 2308 | /* update the eventmask on [now] empty global queues */ |
| 2309 | if (waitq_is_global(safeq) && waitq_empty(safeq)) |
| 2310 | safeq->waitq_eventmask = 0; |
| 2311 | } |
| 2312 | |
| 2313 | /* unlock the safe queue if we locked one above */ |
| 2314 | if (safeq != waitq) { |
| 2315 | waitq_unlock(safeq); |
| 2316 | if (*nthreads == 0) |
| 2317 | splx(spl); |
| 2318 | } |
| 2319 | |
| 2320 | if (max_threads > 0 && *nthreads >= max_threads) |
| 2321 | return; |
| 2322 | |
| 2323 | /* |
| 2324 | * wait queues that are not in any sets |
| 2325 | * are the bottom of the recursion |
| 2326 | */ |
| 2327 | if (!waitq->waitq_set_id) |
| 2328 | return; |
| 2329 | |
| 2330 | /* check to see if the set ID for this wait queue is valid */ |
| 2331 | struct waitq_link *link = wql_get_link(waitq->waitq_set_id); |
| 2332 | if (!link) { |
| 2333 | /* the waitq set to which this waitq belonged, has been invalidated */ |
| 2334 | waitq->waitq_set_id = 0; |
| 2335 | return; |
| 2336 | } |
| 2337 | |
| 2338 | wql_put_link(link); |
| 2339 | |
| 2340 | /* |
| 2341 | * If this waitq is a member of any wait queue sets, we need to look |
| 2342 | * for waiting thread(s) in any of those sets, and prepost all sets that |
| 2343 | * don't have active waiters. |
| 2344 | * |
| 2345 | * Note that we do a local walk of this waitq's links - we manually |
| 2346 | * recurse down wait queue set's with non-zero wqset_q.waitq_set_id |
| 2347 | */ |
| 2348 | (void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, |
| 2349 | WQL_WQS, (void *)args, waitq_select_walk_cb); |
| 2350 | } |
| 2351 | |
| 2352 | /** |
| 2353 | * main entry point for thread selection from a waitq |
| 2354 | * |
| 2355 | * Conditions: |
| 2356 | * waitq is locked |
| 2357 | * |
| 2358 | * Returns: |
| 2359 | * The number of threads waiting on 'waitq' for 'event' which have |
| 2360 | * been placed onto the input 'threadq' |
| 2361 | * |
| 2362 | * Notes: |
| 2363 | * The 'select_cb' function is invoked for every thread found waiting on |
| 2364 | * 'waitq' for 'event'. The thread is _not_ locked upon callback |
| 2365 | * invocation. This parameter may be NULL. |
| 2366 | * |
| 2367 | * If one or more threads are returned in 'threadq' then the caller is |
| 2368 | * responsible to call splx() using the returned 'spl' value. Each |
| 2369 | * returned thread is locked. |
| 2370 | */ |
| 2371 | static __inline__ int waitq_select_n_locked(struct waitq *waitq, |
| 2372 | event64_t event, |
| 2373 | waitq_select_cb select_cb, |
| 2374 | void *select_ctx, |
| 2375 | uint64_t *reserved_preposts, |
| 2376 | queue_t threadq, |
| 2377 | int max_threads, spl_t *spl) |
| 2378 | { |
| 2379 | int nthreads = 0; |
| 2380 | |
| 2381 | struct waitq_select_args args = { |
| 2382 | .posted_waitq = waitq, |
| 2383 | .waitq = waitq, |
| 2384 | .event = event, |
| 2385 | .select_cb = select_cb, |
| 2386 | .select_ctx = select_ctx, |
| 2387 | .reserved_preposts = reserved_preposts, |
| 2388 | .threadq = threadq, |
| 2389 | .max_threads = max_threads, |
| 2390 | .nthreads = &nthreads, |
| 2391 | .spl = spl, |
| 2392 | }; |
| 2393 | |
| 2394 | do_waitq_select_n_locked(&args); |
| 2395 | return nthreads; |
| 2396 | } |
| 2397 | |
| 2398 | /** |
| 2399 | * select from a waitq a single thread waiting for a given event |
| 2400 | * |
| 2401 | * Conditions: |
| 2402 | * 'waitq' is locked |
| 2403 | * |
| 2404 | * Returns: |
| 2405 | * A locked thread that's been removed from the waitq, but has not |
| 2406 | * yet been put on a run queue. Caller is responsible to call splx |
| 2407 | * with the '*spl' value. |
| 2408 | */ |
| 2409 | static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event, |
| 2410 | uint64_t *reserved_preposts, |
| 2411 | int priority, spl_t *spl) |
| 2412 | { |
| 2413 | (void)priority; |
| 2414 | int nthreads; |
| 2415 | queue_head_t threadq; |
| 2416 | |
| 2417 | queue_init(&threadq); |
| 2418 | |
| 2419 | nthreads = waitq_select_n_locked(waitq, event, NULL, NULL, |
| 2420 | reserved_preposts, &threadq, 1, spl); |
| 2421 | |
| 2422 | /* if we selected a thread, return it (still locked) */ |
| 2423 | if (!queue_empty(&threadq)) { |
| 2424 | thread_t t; |
| 2425 | queue_entry_t qe = dequeue_head(&threadq); |
| 2426 | t = qe_element(qe, struct thread, wait_links); |
| 2427 | assert(queue_empty(&threadq)); /* there should be 1 entry */ |
| 2428 | /* t has been locked and removed from all queues */ |
| 2429 | return t; |
| 2430 | } |
| 2431 | |
| 2432 | return THREAD_NULL; |
| 2433 | } |
| 2434 | |
| 2435 | struct find_max_pri_ctx { |
| 2436 | integer_t max_sched_pri; |
| 2437 | integer_t max_base_pri; |
| 2438 | thread_t highest_thread; |
| 2439 | }; |
| 2440 | |
| 2441 | /** |
| 2442 | * callback function that finds the max priority thread |
| 2443 | * |
| 2444 | * Conditions: |
| 2445 | * 'waitq' is locked |
| 2446 | * 'thread' is not locked |
| 2447 | */ |
| 2448 | static thread_t |
| 2449 | waitq_find_max_pri_cb(void *ctx_in, |
| 2450 | __unused struct waitq *waitq, |
| 2451 | __unused int is_global, |
| 2452 | thread_t thread) |
| 2453 | { |
| 2454 | struct find_max_pri_ctx *ctx = (struct find_max_pri_ctx *)ctx_in; |
| 2455 | |
| 2456 | /* |
| 2457 | * thread is not locked, use pri as a hint only |
| 2458 | * wake up the highest base pri, and find the highest sched pri at that base pri |
| 2459 | */ |
| 2460 | integer_t sched_pri = *(volatile int16_t *)&thread->sched_pri; |
| 2461 | integer_t base_pri = *(volatile int16_t *)&thread->base_pri; |
| 2462 | |
| 2463 | if (ctx->highest_thread == THREAD_NULL || |
| 2464 | (base_pri > ctx->max_base_pri) || |
| 2465 | (base_pri == ctx->max_base_pri && sched_pri > ctx->max_sched_pri)) { |
| 2466 | /* don't select the thread, just update ctx */ |
| 2467 | |
| 2468 | ctx->max_sched_pri = sched_pri; |
| 2469 | ctx->max_base_pri = base_pri; |
| 2470 | ctx->highest_thread = thread; |
| 2471 | } |
| 2472 | |
| 2473 | return THREAD_NULL; |
| 2474 | } |
| 2475 | |
| 2476 | /** |
| 2477 | * select from a waitq the highest priority thread waiting for a given event |
| 2478 | * |
| 2479 | * Conditions: |
| 2480 | * 'waitq' is locked |
| 2481 | * |
| 2482 | * Returns: |
| 2483 | * A locked thread that's been removed from the waitq, but has not |
| 2484 | * yet been put on a run queue. Caller is responsible to call splx |
| 2485 | * with the '*spl' value. |
| 2486 | */ |
| 2487 | static thread_t |
| 2488 | waitq_select_max_locked(struct waitq *waitq, event64_t event, |
| 2489 | uint64_t *reserved_preposts, |
| 2490 | spl_t *spl) |
| 2491 | { |
| 2492 | __assert_only int nthreads; |
| 2493 | assert(!waitq->waitq_set_id); /* doesn't support recursive sets */ |
| 2494 | |
| 2495 | struct find_max_pri_ctx ctx = { |
| 2496 | .max_sched_pri = 0, |
| 2497 | .max_base_pri = 0, |
| 2498 | .highest_thread = THREAD_NULL, |
| 2499 | }; |
| 2500 | |
| 2501 | /* |
| 2502 | * Scan the waitq to find the highest priority thread. |
| 2503 | * This doesn't remove any thread from the queue |
| 2504 | */ |
| 2505 | nthreads = waitq_select_n_locked(waitq, event, |
| 2506 | waitq_find_max_pri_cb, |
| 2507 | &ctx, reserved_preposts, NULL, 1, spl); |
| 2508 | |
| 2509 | assert(nthreads == 0); |
| 2510 | |
| 2511 | if (ctx.highest_thread != THREAD_NULL) { |
| 2512 | __assert_only kern_return_t ret; |
| 2513 | |
| 2514 | /* Remove only the thread we just found */ |
| 2515 | ret = waitq_select_thread_locked(waitq, event, ctx.highest_thread, spl); |
| 2516 | |
| 2517 | assert(ret == KERN_SUCCESS); |
| 2518 | return ctx.highest_thread; |
| 2519 | } |
| 2520 | |
| 2521 | return THREAD_NULL; |
| 2522 | } |
| 2523 | |
| 2524 | |
| 2525 | struct select_thread_ctx { |
| 2526 | thread_t thread; |
| 2527 | event64_t event; |
| 2528 | spl_t *spl; |
| 2529 | }; |
| 2530 | |
| 2531 | /** |
| 2532 | * link walk callback invoked once for each set to which a waitq belongs |
| 2533 | * |
| 2534 | * Conditions: |
| 2535 | * initial waitq is locked |
| 2536 | * ctx->thread is unlocked |
| 2537 | * |
| 2538 | * Notes: |
| 2539 | * This may disable interrupts and early-out of the full DAG link walk by |
| 2540 | * returning KERN_ALREADY_IN_SET. In this case, the returned thread has |
| 2541 | * been removed from the waitq, it's waitq state has been reset, and the |
| 2542 | * caller is responsible to call splx() with the returned interrupt state |
| 2543 | * in ctx->spl. |
| 2544 | */ |
| 2545 | static int waitq_select_thread_cb(struct waitq *waitq, void *ctx, |
| 2546 | struct waitq_link *link) |
| 2547 | { |
| 2548 | struct select_thread_ctx *stctx = (struct select_thread_ctx *)ctx; |
| 2549 | struct waitq_set *wqset; |
| 2550 | struct waitq *wqsetq; |
| 2551 | struct waitq *safeq; |
| 2552 | spl_t s; |
| 2553 | |
| 2554 | (void)waitq; |
| 2555 | |
| 2556 | thread_t thread = stctx->thread; |
| 2557 | event64_t event = stctx->event; |
| 2558 | |
| 2559 | if (wql_type(link) != WQL_WQS) |
| 2560 | return WQ_ITERATE_CONTINUE; |
| 2561 | |
| 2562 | wqset = link->wql_wqs.wql_set; |
| 2563 | wqsetq = &wqset->wqset_q; |
| 2564 | |
| 2565 | assert(!waitq_irq_safe(waitq)); |
| 2566 | assert(!waitq_irq_safe(wqsetq)); |
| 2567 | |
| 2568 | waitq_set_lock(wqset); |
| 2569 | |
| 2570 | s = splsched(); |
| 2571 | |
| 2572 | /* find and lock the interrupt-safe waitq the thread is thought to be on */ |
| 2573 | safeq = waitq_get_safeq(wqsetq); |
| 2574 | waitq_lock(safeq); |
| 2575 | |
| 2576 | thread_lock(thread); |
| 2577 | |
| 2578 | if ((thread->waitq == wqsetq) && (thread->wait_event == event)) { |
| 2579 | waitq_thread_remove(wqsetq, thread); |
| 2580 | if (waitq_empty(safeq)) { |
| 2581 | safeq->waitq_eventmask = 0; |
| 2582 | } |
| 2583 | thread_clear_waitq_state(thread); |
| 2584 | waitq_unlock(safeq); |
| 2585 | waitq_set_unlock(wqset); |
| 2586 | /* |
| 2587 | * thread still locked, |
| 2588 | * return non-zero to break out of WQS walk |
| 2589 | */ |
| 2590 | *(stctx->spl) = s; |
| 2591 | return WQ_ITERATE_FOUND; |
| 2592 | } |
| 2593 | |
| 2594 | thread_unlock(thread); |
| 2595 | waitq_set_unlock(wqset); |
| 2596 | waitq_unlock(safeq); |
| 2597 | splx(s); |
| 2598 | |
| 2599 | return WQ_ITERATE_CONTINUE; |
| 2600 | } |
| 2601 | |
| 2602 | /** |
| 2603 | * returns KERN_SUCCESS and locks 'thread' if-and-only-if 'thread' is waiting |
| 2604 | * on 'waitq' (or any set to which waitq belongs) for 'event' |
| 2605 | * |
| 2606 | * Conditions: |
| 2607 | * 'waitq' is locked |
| 2608 | * 'thread' is unlocked |
| 2609 | */ |
| 2610 | static kern_return_t waitq_select_thread_locked(struct waitq *waitq, |
| 2611 | event64_t event, |
| 2612 | thread_t thread, spl_t *spl) |
| 2613 | { |
| 2614 | struct waitq *safeq; |
| 2615 | struct waitq_link *link; |
| 2616 | struct select_thread_ctx ctx; |
| 2617 | kern_return_t kr; |
| 2618 | spl_t s; |
| 2619 | |
| 2620 | s = splsched(); |
| 2621 | |
| 2622 | /* Find and lock the interrupts disabled queue the thread is actually on */ |
| 2623 | if (!waitq_irq_safe(waitq)) { |
| 2624 | safeq = waitq_get_safeq(waitq); |
| 2625 | waitq_lock(safeq); |
| 2626 | } else { |
| 2627 | safeq = waitq; |
| 2628 | } |
| 2629 | |
| 2630 | thread_lock(thread); |
| 2631 | |
| 2632 | if ((thread->waitq == waitq) && (thread->wait_event == event)) { |
| 2633 | waitq_thread_remove(safeq, thread); |
| 2634 | if (waitq_empty(safeq)) { |
| 2635 | safeq->waitq_eventmask = 0; |
| 2636 | } |
| 2637 | thread_clear_waitq_state(thread); |
| 2638 | *spl = s; |
| 2639 | /* thread still locked */ |
| 2640 | return KERN_SUCCESS; |
| 2641 | } |
| 2642 | |
| 2643 | thread_unlock(thread); |
| 2644 | |
| 2645 | if (safeq != waitq) |
| 2646 | waitq_unlock(safeq); |
| 2647 | |
| 2648 | splx(s); |
| 2649 | |
| 2650 | if (!waitq->waitq_set_id) |
| 2651 | return KERN_NOT_WAITING; |
| 2652 | |
| 2653 | /* check to see if the set ID for this wait queue is valid */ |
| 2654 | link = wql_get_link(waitq->waitq_set_id); |
| 2655 | if (!link) { |
| 2656 | /* the waitq to which this set belonged, has been invalidated */ |
| 2657 | waitq->waitq_set_id = 0; |
| 2658 | return KERN_NOT_WAITING; |
| 2659 | } |
| 2660 | |
| 2661 | /* |
| 2662 | * The thread may be waiting on a wait queue set to which |
| 2663 | * the input 'waitq' belongs. Go look for the thread in |
| 2664 | * all wait queue sets. If it's there, we'll remove it |
| 2665 | * because it's equivalent to waiting directly on the input waitq. |
| 2666 | */ |
| 2667 | ctx.thread = thread; |
| 2668 | ctx.event = event; |
| 2669 | ctx.spl = spl; |
| 2670 | kr = walk_waitq_links(LINK_WALK_FULL_DAG, waitq, waitq->waitq_set_id, |
| 2671 | WQL_WQS, (void *)&ctx, waitq_select_thread_cb); |
| 2672 | |
| 2673 | wql_put_link(link); |
| 2674 | |
| 2675 | /* we found a thread, return success */ |
| 2676 | if (kr == WQ_ITERATE_FOUND) |
| 2677 | return KERN_SUCCESS; |
| 2678 | |
| 2679 | return KERN_NOT_WAITING; |
| 2680 | } |
| 2681 | |
| 2682 | static int prepost_exists_cb(struct waitq_set __unused *wqset, |
| 2683 | void __unused *ctx, |
| 2684 | struct wq_prepost __unused *wqp, |
| 2685 | struct waitq __unused *waitq) |
| 2686 | { |
| 2687 | /* if we get here, then we know that there is a valid prepost object! */ |
| 2688 | return WQ_ITERATE_FOUND; |
| 2689 | } |
| 2690 | |
| 2691 | /** |
| 2692 | * declare a thread's intent to wait on 'waitq' for 'wait_event' |
| 2693 | * |
| 2694 | * Conditions: |
| 2695 | * 'waitq' is locked |
| 2696 | */ |
| 2697 | wait_result_t waitq_assert_wait64_locked(struct waitq *waitq, |
| 2698 | event64_t wait_event, |
| 2699 | wait_interrupt_t interruptible, |
| 2700 | wait_timeout_urgency_t urgency, |
| 2701 | uint64_t deadline, |
| 2702 | uint64_t leeway, |
| 2703 | thread_t thread) |
| 2704 | { |
| 2705 | wait_result_t wait_result; |
| 2706 | int realtime = 0; |
| 2707 | struct waitq *safeq; |
| 2708 | uintptr_t eventmask; |
| 2709 | spl_t s; |
| 2710 | |
| 2711 | |
| 2712 | /* |
| 2713 | * Warning: Do _not_ place debugging print statements here. |
| 2714 | * The waitq is locked! |
| 2715 | */ |
| 2716 | assert(!thread->started || thread == current_thread()); |
| 2717 | |
| 2718 | if (thread->waitq != NULL) |
| 2719 | panic("thread already waiting on %p" , thread->waitq); |
| 2720 | |
| 2721 | if (waitq_is_set(waitq)) { |
| 2722 | struct waitq_set *wqset = (struct waitq_set *)waitq; |
| 2723 | /* |
| 2724 | * early-out if the thread is waiting on a wait queue set |
| 2725 | * that has already been pre-posted. |
| 2726 | */ |
| 2727 | if (wait_event == NO_EVENT64 && waitq_set_maybe_preposted(wqset)) { |
| 2728 | int ret; |
| 2729 | /* |
| 2730 | * Run through the list of potential preposts. Because |
| 2731 | * this is a hot path, we short-circuit the iteration |
| 2732 | * if we find just one prepost object. |
| 2733 | */ |
| 2734 | ret = wq_prepost_foreach_locked(wqset, NULL, |
| 2735 | prepost_exists_cb); |
| 2736 | if (ret == WQ_ITERATE_FOUND) { |
| 2737 | s = splsched(); |
| 2738 | thread_lock(thread); |
| 2739 | thread->wait_result = THREAD_AWAKENED; |
| 2740 | thread_unlock(thread); |
| 2741 | splx(s); |
| 2742 | return THREAD_AWAKENED; |
| 2743 | } |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | s = splsched(); |
| 2748 | |
| 2749 | /* |
| 2750 | * If already dealing with an irq safe wait queue, we are all set. |
| 2751 | * Otherwise, determine a global queue to use and lock it. |
| 2752 | */ |
| 2753 | if (!waitq_irq_safe(waitq)) { |
| 2754 | safeq = waitq_get_safeq(waitq); |
| 2755 | eventmask = _CAST_TO_EVENT_MASK(waitq); |
| 2756 | waitq_lock(safeq); |
| 2757 | } else { |
| 2758 | safeq = waitq; |
| 2759 | eventmask = _CAST_TO_EVENT_MASK(wait_event); |
| 2760 | } |
| 2761 | |
| 2762 | /* lock the thread now that we have the irq-safe waitq locked */ |
| 2763 | thread_lock(thread); |
| 2764 | |
| 2765 | /* |
| 2766 | * Realtime threads get priority for wait queue placements. |
| 2767 | * This allows wait_queue_wakeup_one to prefer a waiting |
| 2768 | * realtime thread, similar in principle to performing |
| 2769 | * a wait_queue_wakeup_all and allowing scheduler prioritization |
| 2770 | * to run the realtime thread, but without causing the |
| 2771 | * lock contention of that scenario. |
| 2772 | */ |
| 2773 | if (thread->sched_pri >= BASEPRI_REALTIME) |
| 2774 | realtime = 1; |
| 2775 | |
| 2776 | /* |
| 2777 | * This is the extent to which we currently take scheduling attributes |
| 2778 | * into account. If the thread is vm priviledged, we stick it at |
| 2779 | * the front of the queue. Later, these queues will honor the policy |
| 2780 | * value set at waitq_init time. |
| 2781 | */ |
| 2782 | wait_result = thread_mark_wait_locked(thread, interruptible); |
| 2783 | /* thread->wait_result has been set */ |
| 2784 | if (wait_result == THREAD_WAITING) { |
| 2785 | |
| 2786 | if (!safeq->waitq_fifo |
| 2787 | || (thread->options & TH_OPT_VMPRIV) || realtime) |
| 2788 | waitq_thread_insert(safeq, thread, false); |
| 2789 | else |
| 2790 | waitq_thread_insert(safeq, thread, true); |
| 2791 | |
| 2792 | /* mark the event and real waitq, even if enqueued on a global safeq */ |
| 2793 | thread->wait_event = wait_event; |
| 2794 | thread->waitq = waitq; |
| 2795 | |
| 2796 | if (deadline != 0) { |
| 2797 | boolean_t act; |
| 2798 | |
| 2799 | act = timer_call_enter_with_leeway(&thread->wait_timer, |
| 2800 | NULL, |
| 2801 | deadline, leeway, |
| 2802 | urgency, FALSE); |
| 2803 | if (!act) |
| 2804 | thread->wait_timer_active++; |
| 2805 | thread->wait_timer_is_set = TRUE; |
| 2806 | } |
| 2807 | |
| 2808 | if (waitq_is_global(safeq)) |
| 2809 | safeq->waitq_eventmask |= eventmask; |
| 2810 | |
| 2811 | waitq_stats_count_wait(waitq); |
| 2812 | } |
| 2813 | |
| 2814 | /* unlock the thread */ |
| 2815 | thread_unlock(thread); |
| 2816 | |
| 2817 | /* update the inheritor's thread priority if the waitq is embedded in turnstile */ |
| 2818 | if (waitq_is_turnstile_queue(safeq) && wait_result == THREAD_WAITING) { |
| 2819 | turnstile_recompute_priority_locked(waitq_to_turnstile(safeq)); |
| 2820 | turnstile_update_inheritor_locked(waitq_to_turnstile(safeq)); |
| 2821 | } |
| 2822 | |
| 2823 | /* unlock the safeq if we locked it here */ |
| 2824 | if (safeq != waitq) { |
| 2825 | waitq_unlock(safeq); |
| 2826 | } |
| 2827 | |
| 2828 | splx(s); |
| 2829 | |
| 2830 | return wait_result; |
| 2831 | } |
| 2832 | |
| 2833 | /** |
| 2834 | * remove 'thread' from its current blocking state on 'waitq' |
| 2835 | * |
| 2836 | * Conditions: |
| 2837 | * 'thread' is locked |
| 2838 | * |
| 2839 | * Notes: |
| 2840 | * This function is primarily used by clear_wait_internal in |
| 2841 | * sched_prim.c from the thread timer wakeup path |
| 2842 | * (i.e. the thread was waiting on 'waitq' with a timeout that expired) |
| 2843 | */ |
| 2844 | int waitq_pull_thread_locked(struct waitq *waitq, thread_t thread) |
| 2845 | { |
| 2846 | struct waitq *safeq; |
| 2847 | |
| 2848 | assert_thread_magic(thread); |
| 2849 | assert(thread->waitq == waitq); |
| 2850 | |
| 2851 | /* Find the interrupts disabled queue thread is waiting on */ |
| 2852 | if (!waitq_irq_safe(waitq)) { |
| 2853 | safeq = waitq_get_safeq(waitq); |
| 2854 | } else { |
| 2855 | safeq = waitq; |
| 2856 | } |
| 2857 | |
| 2858 | /* thread is already locked so have to try for the waitq lock */ |
| 2859 | if (!waitq_lock_try(safeq)) |
| 2860 | return 0; |
| 2861 | |
| 2862 | waitq_thread_remove(safeq, thread); |
| 2863 | thread_clear_waitq_state(thread); |
| 2864 | waitq_stats_count_clear_wakeup(waitq); |
| 2865 | |
| 2866 | /* clear the global event mask if this was the last thread there! */ |
| 2867 | if (waitq_is_global(safeq) && waitq_empty(safeq)) { |
| 2868 | safeq->waitq_eventmask = 0; |
| 2869 | /* JMM - also mark no-waiters on waitq (if not the same as the safeq) */ |
| 2870 | } |
| 2871 | |
| 2872 | waitq_unlock(safeq); |
| 2873 | |
| 2874 | return 1; |
| 2875 | } |
| 2876 | |
| 2877 | |
| 2878 | static __inline__ |
| 2879 | void maybe_adjust_thread_pri(thread_t thread, |
| 2880 | int priority, |
| 2881 | __kdebug_only struct waitq *waitq) |
| 2882 | { |
| 2883 | |
| 2884 | /* |
| 2885 | * If the caller is requesting the waitq subsystem to promote the |
| 2886 | * priority of the awoken thread, then boost the thread's priority to |
| 2887 | * the default WAITQ_BOOST_PRIORITY (if it's not already equal or |
| 2888 | * higher priority). This boost must be removed via a call to |
| 2889 | * waitq_clear_promotion_locked before the thread waits again. |
| 2890 | * |
| 2891 | * WAITQ_PROMOTE_PRIORITY is -2. |
| 2892 | * Anything above 0 represents a mutex promotion. |
| 2893 | * The default 'no action' value is -1. |
| 2894 | * TODO: define this in a header |
| 2895 | */ |
| 2896 | if (priority == WAITQ_PROMOTE_PRIORITY) { |
| 2897 | uintptr_t trace_waitq = 0; |
| 2898 | if (__improbable(kdebug_enable)) |
| 2899 | trace_waitq = VM_KERNEL_UNSLIDE_OR_PERM(waitq); |
| 2900 | |
| 2901 | sched_thread_promote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, trace_waitq); |
| 2902 | } else if (priority > 0) { |
| 2903 | /* Mutex subsystem wants to see this thread before we 'go' it */ |
| 2904 | lck_mtx_wakeup_adjust_pri(thread, priority); |
| 2905 | } |
| 2906 | } |
| 2907 | |
| 2908 | /* |
| 2909 | * Clear a potential thread priority promotion from a waitq wakeup |
| 2910 | * with WAITQ_PROMOTE_PRIORITY. |
| 2911 | * |
| 2912 | * This must be called on the thread which was woken up with TH_SFLAG_WAITQ_PROMOTED. |
| 2913 | */ |
| 2914 | void waitq_clear_promotion_locked(struct waitq *waitq, thread_t thread) |
| 2915 | { |
| 2916 | spl_t s; |
| 2917 | |
| 2918 | assert(waitq_held(waitq)); |
| 2919 | assert(thread != THREAD_NULL); |
| 2920 | assert(thread == current_thread()); |
| 2921 | |
| 2922 | /* This flag is only cleared by the thread itself, so safe to check outside lock */ |
| 2923 | if ((thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) != TH_SFLAG_WAITQ_PROMOTED) |
| 2924 | return; |
| 2925 | |
| 2926 | if (!waitq_irq_safe(waitq)) |
| 2927 | s = splsched(); |
| 2928 | thread_lock(thread); |
| 2929 | |
| 2930 | sched_thread_unpromote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, 0); |
| 2931 | |
| 2932 | thread_unlock(thread); |
| 2933 | if (!waitq_irq_safe(waitq)) |
| 2934 | splx(s); |
| 2935 | } |
| 2936 | |
| 2937 | /** |
| 2938 | * wakeup all threads waiting on 'waitq' for 'wake_event' |
| 2939 | * |
| 2940 | * Conditions: |
| 2941 | * 'waitq' is locked |
| 2942 | * |
| 2943 | * Notes: |
| 2944 | * May temporarily disable and re-enable interrupts |
| 2945 | * and re-adjust thread priority of each awoken thread. |
| 2946 | * |
| 2947 | * If the input 'lock_state' == WAITQ_UNLOCK then the waitq will have |
| 2948 | * been unlocked before calling thread_go() on any returned threads, and |
| 2949 | * is guaranteed to be unlocked upon function return. |
| 2950 | */ |
| 2951 | kern_return_t waitq_wakeup64_all_locked(struct waitq *waitq, |
| 2952 | event64_t wake_event, |
| 2953 | wait_result_t result, |
| 2954 | uint64_t *reserved_preposts, |
| 2955 | int priority, |
| 2956 | waitq_lock_state_t lock_state) |
| 2957 | { |
| 2958 | kern_return_t ret; |
| 2959 | thread_t thread; |
| 2960 | spl_t th_spl; |
| 2961 | int nthreads; |
| 2962 | queue_head_t wakeup_queue; |
| 2963 | |
| 2964 | assert(waitq_held(waitq)); |
| 2965 | queue_init(&wakeup_queue); |
| 2966 | |
| 2967 | nthreads = waitq_select_n_locked(waitq, wake_event, NULL, NULL, |
| 2968 | reserved_preposts, |
| 2969 | &wakeup_queue, -1, &th_spl); |
| 2970 | |
| 2971 | /* set each thread running */ |
| 2972 | ret = KERN_NOT_WAITING; |
| 2973 | |
| 2974 | #if CONFIG_WAITQ_STATS |
| 2975 | qe_foreach_element(thread, &wakeup_queue, wait_links) |
| 2976 | waitq_stats_count_wakeup(waitq); |
| 2977 | #endif |
| 2978 | if (lock_state == WAITQ_UNLOCK) |
| 2979 | waitq_unlock(waitq); |
| 2980 | |
| 2981 | qe_foreach_element_safe(thread, &wakeup_queue, wait_links) { |
| 2982 | assert_thread_magic(thread); |
| 2983 | remqueue(&thread->wait_links); |
| 2984 | maybe_adjust_thread_pri(thread, priority, waitq); |
| 2985 | ret = thread_go(thread, result); |
| 2986 | assert(ret == KERN_SUCCESS); |
| 2987 | thread_unlock(thread); |
| 2988 | } |
| 2989 | if (nthreads > 0) |
| 2990 | splx(th_spl); |
| 2991 | else |
| 2992 | waitq_stats_count_fail(waitq); |
| 2993 | |
| 2994 | return ret; |
| 2995 | } |
| 2996 | |
| 2997 | /** |
| 2998 | * wakeup one thread waiting on 'waitq' for 'wake_event' |
| 2999 | * |
| 3000 | * Conditions: |
| 3001 | * 'waitq' is locked |
| 3002 | * |
| 3003 | * Notes: |
| 3004 | * May temporarily disable and re-enable interrupts. |
| 3005 | */ |
| 3006 | kern_return_t waitq_wakeup64_one_locked(struct waitq *waitq, |
| 3007 | event64_t wake_event, |
| 3008 | wait_result_t result, |
| 3009 | uint64_t *reserved_preposts, |
| 3010 | int priority, |
| 3011 | waitq_lock_state_t lock_state) |
| 3012 | { |
| 3013 | thread_t thread; |
| 3014 | spl_t th_spl; |
| 3015 | |
| 3016 | assert(waitq_held(waitq)); |
| 3017 | |
| 3018 | if (priority == WAITQ_SELECT_MAX_PRI) { |
| 3019 | thread = waitq_select_max_locked(waitq, wake_event, |
| 3020 | reserved_preposts, |
| 3021 | &th_spl); |
| 3022 | } else { |
| 3023 | thread = waitq_select_one_locked(waitq, wake_event, |
| 3024 | reserved_preposts, |
| 3025 | priority, &th_spl); |
| 3026 | } |
| 3027 | |
| 3028 | |
| 3029 | if (thread != THREAD_NULL) |
| 3030 | waitq_stats_count_wakeup(waitq); |
| 3031 | else |
| 3032 | waitq_stats_count_fail(waitq); |
| 3033 | |
| 3034 | if (lock_state == WAITQ_UNLOCK) |
| 3035 | waitq_unlock(waitq); |
| 3036 | |
| 3037 | if (thread != THREAD_NULL) { |
| 3038 | maybe_adjust_thread_pri(thread, priority, waitq); |
| 3039 | kern_return_t ret = thread_go(thread, result); |
| 3040 | assert(ret == KERN_SUCCESS); |
| 3041 | thread_unlock(thread); |
| 3042 | splx(th_spl); |
| 3043 | return ret; |
| 3044 | } |
| 3045 | |
| 3046 | return KERN_NOT_WAITING; |
| 3047 | } |
| 3048 | |
| 3049 | /** |
| 3050 | * wakeup one thread waiting on 'waitq' for 'wake_event' |
| 3051 | * |
| 3052 | * Conditions: |
| 3053 | * 'waitq' is locked |
| 3054 | * |
| 3055 | * Returns: |
| 3056 | * A locked, runnable thread. |
| 3057 | * If return value is non-NULL, interrupts have also |
| 3058 | * been disabled, and the caller is responsible to call |
| 3059 | * splx() with the returned '*spl' value. |
| 3060 | */ |
| 3061 | thread_t |
| 3062 | waitq_wakeup64_identify_locked(struct waitq *waitq, |
| 3063 | event64_t wake_event, |
| 3064 | wait_result_t result, |
| 3065 | spl_t *spl, |
| 3066 | uint64_t *reserved_preposts, |
| 3067 | int priority, |
| 3068 | waitq_lock_state_t lock_state) |
| 3069 | { |
| 3070 | thread_t thread; |
| 3071 | |
| 3072 | assert(waitq_held(waitq)); |
| 3073 | |
| 3074 | if (priority == WAITQ_SELECT_MAX_PRI) { |
| 3075 | thread = waitq_select_max_locked(waitq, wake_event, |
| 3076 | reserved_preposts, |
| 3077 | spl); |
| 3078 | } else { |
| 3079 | thread = waitq_select_one_locked(waitq, wake_event, |
| 3080 | reserved_preposts, |
| 3081 | priority, spl); |
| 3082 | } |
| 3083 | |
| 3084 | if (thread != THREAD_NULL) |
| 3085 | waitq_stats_count_wakeup(waitq); |
| 3086 | else |
| 3087 | waitq_stats_count_fail(waitq); |
| 3088 | |
| 3089 | if (lock_state == WAITQ_UNLOCK) |
| 3090 | waitq_unlock(waitq); |
| 3091 | |
| 3092 | if (thread != THREAD_NULL) { |
| 3093 | kern_return_t __assert_only ret; |
| 3094 | ret = thread_go(thread, result); |
| 3095 | assert(ret == KERN_SUCCESS); |
| 3096 | } |
| 3097 | |
| 3098 | return thread; /* locked if not NULL (caller responsible for spl) */ |
| 3099 | } |
| 3100 | |
| 3101 | /** |
| 3102 | * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event' |
| 3103 | * |
| 3104 | * Conditions: |
| 3105 | * 'waitq' is locked |
| 3106 | * 'thread' is unlocked |
| 3107 | * |
| 3108 | * Notes: |
| 3109 | * May temporarily disable and re-enable interrupts |
| 3110 | * |
| 3111 | * If the input lock_state == WAITQ_UNLOCK then the waitq will have been |
| 3112 | * unlocked before calling thread_go() if 'thread' is to be awoken, and |
| 3113 | * is guaranteed to be unlocked upon function return. |
| 3114 | */ |
| 3115 | kern_return_t waitq_wakeup64_thread_locked(struct waitq *waitq, |
| 3116 | event64_t wake_event, |
| 3117 | thread_t thread, |
| 3118 | wait_result_t result, |
| 3119 | waitq_lock_state_t lock_state) |
| 3120 | { |
| 3121 | kern_return_t ret; |
| 3122 | spl_t th_spl; |
| 3123 | |
| 3124 | assert(waitq_held(waitq)); |
| 3125 | assert_thread_magic(thread); |
| 3126 | |
| 3127 | /* |
| 3128 | * See if the thread was still waiting there. If so, it got |
| 3129 | * dequeued and returned locked. |
| 3130 | */ |
| 3131 | ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl); |
| 3132 | |
| 3133 | if (ret == KERN_SUCCESS) |
| 3134 | waitq_stats_count_wakeup(waitq); |
| 3135 | else |
| 3136 | waitq_stats_count_fail(waitq); |
| 3137 | |
| 3138 | if (lock_state == WAITQ_UNLOCK) |
| 3139 | waitq_unlock(waitq); |
| 3140 | |
| 3141 | if (ret != KERN_SUCCESS) |
| 3142 | return KERN_NOT_WAITING; |
| 3143 | |
| 3144 | ret = thread_go(thread, result); |
| 3145 | assert(ret == KERN_SUCCESS); |
| 3146 | thread_unlock(thread); |
| 3147 | splx(th_spl); |
| 3148 | |
| 3149 | return ret; |
| 3150 | } |
| 3151 | |
| 3152 | |
| 3153 | |
| 3154 | /* ---------------------------------------------------------------------- |
| 3155 | * |
| 3156 | * In-Kernel API |
| 3157 | * |
| 3158 | * ---------------------------------------------------------------------- */ |
| 3159 | |
| 3160 | /** |
| 3161 | * initialize a waitq object |
| 3162 | */ |
| 3163 | kern_return_t waitq_init(struct waitq *waitq, int policy) |
| 3164 | { |
| 3165 | assert(waitq != NULL); |
| 3166 | |
| 3167 | /* only FIFO and LIFO for now */ |
| 3168 | if ((policy & SYNC_POLICY_FIXED_PRIORITY) != 0) |
| 3169 | return KERN_INVALID_ARGUMENT; |
| 3170 | |
| 3171 | waitq->waitq_fifo = ((policy & SYNC_POLICY_REVERSED) == 0); |
| 3172 | waitq->waitq_irq = !!(policy & SYNC_POLICY_DISABLE_IRQ); |
| 3173 | waitq->waitq_prepost = 0; |
| 3174 | waitq->waitq_type = WQT_QUEUE; |
| 3175 | waitq->waitq_turnstile_or_port = !!(policy & SYNC_POLICY_TURNSTILE); |
| 3176 | waitq->waitq_eventmask = 0; |
| 3177 | |
| 3178 | waitq->waitq_set_id = 0; |
| 3179 | waitq->waitq_prepost_id = 0; |
| 3180 | |
| 3181 | waitq_lock_init(waitq); |
| 3182 | if (waitq_is_turnstile_queue(waitq)) { |
| 3183 | /* For turnstile, initialize it as a priority queue */ |
| 3184 | priority_queue_init(&waitq->waitq_prio_queue, |
| 3185 | PRIORITY_QUEUE_BUILTIN_MAX_HEAP); |
| 3186 | assert(waitq->waitq_fifo == 0); |
| 3187 | } else { |
| 3188 | queue_init(&waitq->waitq_queue); |
| 3189 | } |
| 3190 | |
| 3191 | waitq->waitq_isvalid = 1; |
| 3192 | return KERN_SUCCESS; |
| 3193 | } |
| 3194 | |
| 3195 | struct wq_unlink_ctx { |
| 3196 | struct waitq *unlink_wq; |
| 3197 | struct waitq_set *unlink_wqset; |
| 3198 | }; |
| 3199 | |
| 3200 | static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx, |
| 3201 | struct wq_prepost *wqp, struct waitq *waitq); |
| 3202 | |
| 3203 | /** |
| 3204 | * walk_waitq_links callback to invalidate 'link' parameter |
| 3205 | * |
| 3206 | * Conditions: |
| 3207 | * Called from walk_waitq_links. |
| 3208 | * Note that unlink other callbacks, this one make no assumptions about |
| 3209 | * the 'waitq' parameter, specifically it does not have to be locked or |
| 3210 | * even valid. |
| 3211 | */ |
| 3212 | static int waitq_unlink_all_cb(struct waitq *waitq, void *ctx, |
| 3213 | struct waitq_link *link) |
| 3214 | { |
| 3215 | (void)waitq; |
| 3216 | (void)ctx; |
| 3217 | if (wql_type(link) == WQL_LINK && wql_is_valid(link)) |
| 3218 | wql_invalidate(link); |
| 3219 | |
| 3220 | if (wql_type(link) == WQL_WQS) { |
| 3221 | struct waitq_set *wqset; |
| 3222 | struct wq_unlink_ctx ulctx; |
| 3223 | |
| 3224 | /* |
| 3225 | * When destroying the waitq, take the time to clear out any |
| 3226 | * preposts it may have made. This could potentially save time |
| 3227 | * on the IPC send path which would otherwise have to iterate |
| 3228 | * over lots of dead port preposts. |
| 3229 | */ |
| 3230 | if (waitq->waitq_prepost_id == 0) |
| 3231 | goto out; |
| 3232 | |
| 3233 | wqset = link->wql_wqs.wql_set; |
| 3234 | assert(wqset != NULL); |
| 3235 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 3236 | |
| 3237 | waitq_set_lock(wqset); |
| 3238 | |
| 3239 | if (!waitq_set_is_valid(wqset)) { |
| 3240 | /* someone raced us to teardown */ |
| 3241 | goto out_unlock; |
| 3242 | } |
| 3243 | if (!waitq_set_maybe_preposted(wqset)) |
| 3244 | goto out_unlock; |
| 3245 | |
| 3246 | ulctx.unlink_wq = waitq; |
| 3247 | ulctx.unlink_wqset = wqset; |
| 3248 | (void)wq_prepost_iterate(wqset->wqset_prepost_id, &ulctx, |
| 3249 | waitq_unlink_prepost_cb); |
| 3250 | out_unlock: |
| 3251 | waitq_set_unlock(wqset); |
| 3252 | } |
| 3253 | |
| 3254 | out: |
| 3255 | return WQ_ITERATE_CONTINUE; |
| 3256 | } |
| 3257 | |
| 3258 | |
| 3259 | /** |
| 3260 | * cleanup any link/prepost table resources associated with a waitq |
| 3261 | */ |
| 3262 | void waitq_deinit(struct waitq *waitq) |
| 3263 | { |
| 3264 | spl_t s; |
| 3265 | |
| 3266 | if (!waitq || !waitq_is_queue(waitq)) |
| 3267 | return; |
| 3268 | |
| 3269 | if (waitq_irq_safe(waitq)) |
| 3270 | s = splsched(); |
| 3271 | waitq_lock(waitq); |
| 3272 | if (!waitq_valid(waitq)) { |
| 3273 | waitq_unlock(waitq); |
| 3274 | if (waitq_irq_safe(waitq)) |
| 3275 | splx(s); |
| 3276 | return; |
| 3277 | } |
| 3278 | |
| 3279 | waitq->waitq_isvalid = 0; |
| 3280 | |
| 3281 | if (!waitq_irq_safe(waitq)) { |
| 3282 | waitq_unlink_all_unlock(waitq); |
| 3283 | /* waitq unlocked and set links deallocated */ |
| 3284 | } else { |
| 3285 | waitq_unlock(waitq); |
| 3286 | splx(s); |
| 3287 | } |
| 3288 | |
| 3289 | assert(waitq_empty(waitq)); |
| 3290 | } |
| 3291 | |
| 3292 | void waitq_invalidate_locked(struct waitq *waitq) |
| 3293 | { |
| 3294 | assert(waitq_held(waitq)); |
| 3295 | assert(waitq_is_valid(waitq)); |
| 3296 | waitq->waitq_isvalid = 0; |
| 3297 | } |
| 3298 | |
| 3299 | /** |
| 3300 | * invalidate the given wq_prepost object |
| 3301 | * |
| 3302 | * Conditions: |
| 3303 | * Called from wq_prepost_iterate (_not_ from wq_prepost_foreach_locked!) |
| 3304 | */ |
| 3305 | static int wqset_clear_prepost_chain_cb(struct waitq_set __unused *wqset, |
| 3306 | void __unused *ctx, |
| 3307 | struct wq_prepost *wqp, |
| 3308 | struct waitq __unused *waitq) |
| 3309 | { |
| 3310 | if (wqp_type(wqp) == WQP_POST) |
| 3311 | wq_prepost_invalidate(wqp); |
| 3312 | return WQ_ITERATE_CONTINUE; |
| 3313 | } |
| 3314 | |
| 3315 | |
| 3316 | /** |
| 3317 | * allocate and initialize a waitq set object |
| 3318 | * |
| 3319 | * Conditions: |
| 3320 | * may block |
| 3321 | * |
| 3322 | * Returns: |
| 3323 | * allocated / initialized waitq_set object. |
| 3324 | * the waits_set object returned does not have |
| 3325 | * a waitq_link associated. |
| 3326 | * |
| 3327 | * NULL on failure |
| 3328 | */ |
| 3329 | struct waitq_set *waitq_set_alloc(int policy, void *prepost_hook) |
| 3330 | { |
| 3331 | struct waitq_set *wqset; |
| 3332 | |
| 3333 | wqset = (struct waitq_set *)zalloc(waitq_set_zone); |
| 3334 | if (!wqset) |
| 3335 | panic("Can't allocate a new waitq set from zone %p" , waitq_set_zone); |
| 3336 | |
| 3337 | kern_return_t ret; |
| 3338 | ret = waitq_set_init(wqset, policy, NULL, prepost_hook); |
| 3339 | if (ret != KERN_SUCCESS) { |
| 3340 | zfree(waitq_set_zone, wqset); |
| 3341 | wqset = NULL; |
| 3342 | } |
| 3343 | |
| 3344 | return wqset; |
| 3345 | } |
| 3346 | |
| 3347 | /** |
| 3348 | * initialize a waitq set object |
| 3349 | * |
| 3350 | * if no 'reserved_link' object is passed |
| 3351 | * the waitq_link will be lazily allocated |
| 3352 | * on demand through waitq_set_lazy_init_link. |
| 3353 | */ |
| 3354 | kern_return_t waitq_set_init(struct waitq_set *wqset, |
| 3355 | int policy, uint64_t *reserved_link, |
| 3356 | void *prepost_hook) |
| 3357 | { |
| 3358 | struct waitq_link *link; |
| 3359 | kern_return_t ret; |
| 3360 | |
| 3361 | memset(wqset, 0, sizeof(*wqset)); |
| 3362 | |
| 3363 | ret = waitq_init(&wqset->wqset_q, policy); |
| 3364 | if (ret != KERN_SUCCESS) |
| 3365 | return ret; |
| 3366 | |
| 3367 | wqset->wqset_q.waitq_type = WQT_SET; |
| 3368 | if (policy & SYNC_POLICY_PREPOST) { |
| 3369 | wqset->wqset_q.waitq_prepost = 1; |
| 3370 | wqset->wqset_prepost_id = 0; |
| 3371 | assert(prepost_hook == NULL); |
| 3372 | } else { |
| 3373 | wqset->wqset_q.waitq_prepost = 0; |
| 3374 | wqset->wqset_prepost_hook = prepost_hook; |
| 3375 | } |
| 3376 | |
| 3377 | if (reserved_link && *reserved_link != 0) { |
| 3378 | link = wql_get_reserved(*reserved_link, WQL_WQS); |
| 3379 | |
| 3380 | if (!link) |
| 3381 | panic("Can't allocate link object for waitq set: %p" , wqset); |
| 3382 | |
| 3383 | /* always consume the caller's reference */ |
| 3384 | *reserved_link = 0; |
| 3385 | |
| 3386 | link->wql_wqs.wql_set = wqset; |
| 3387 | wql_mkvalid(link); |
| 3388 | |
| 3389 | wqset->wqset_id = link->wql_setid.id; |
| 3390 | wql_put_link(link); |
| 3391 | |
| 3392 | } else { |
| 3393 | /* |
| 3394 | * Lazy allocate the link only when an actual id is needed. |
| 3395 | */ |
| 3396 | wqset->wqset_id = WQSET_NOT_LINKED; |
| 3397 | } |
| 3398 | |
| 3399 | return KERN_SUCCESS; |
| 3400 | } |
| 3401 | |
| 3402 | #if DEVELOPMENT || DEBUG |
| 3403 | |
| 3404 | int |
| 3405 | sysctl_helper_waitq_set_nelem(void) |
| 3406 | { |
| 3407 | return ltable_nelem(&g_wqlinktable); |
| 3408 | } |
| 3409 | |
| 3410 | #endif |
| 3411 | |
| 3412 | /** |
| 3413 | * initialize a waitq set link. |
| 3414 | * |
| 3415 | * Conditions: |
| 3416 | * may block |
| 3417 | * locks and unlocks the waiq set lock |
| 3418 | * |
| 3419 | */ |
| 3420 | void |
| 3421 | waitq_set_lazy_init_link(struct waitq_set *wqset) |
| 3422 | { |
| 3423 | struct waitq_link *link; |
| 3424 | |
| 3425 | assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread())); |
| 3426 | |
| 3427 | waitq_set_lock(wqset); |
| 3428 | if (!waitq_set_should_lazy_init_link(wqset)){ |
| 3429 | waitq_set_unlock(wqset); |
| 3430 | return; |
| 3431 | } |
| 3432 | |
| 3433 | assert(wqset->wqset_id == WQSET_NOT_LINKED); |
| 3434 | waitq_set_unlock(wqset); |
| 3435 | |
| 3436 | link = wql_alloc_link(WQL_WQS); |
| 3437 | if (!link) |
| 3438 | panic("Can't allocate link object for waitq set: %p" , wqset); |
| 3439 | |
| 3440 | link->wql_wqs.wql_set = wqset; |
| 3441 | |
| 3442 | waitq_set_lock(wqset); |
| 3443 | if (waitq_set_should_lazy_init_link(wqset)) { |
| 3444 | wql_mkvalid(link); |
| 3445 | wqset->wqset_id = link->wql_setid.id; |
| 3446 | } |
| 3447 | |
| 3448 | assert(wqset->wqset_id != 0); |
| 3449 | assert(wqset->wqset_id != WQSET_NOT_LINKED); |
| 3450 | |
| 3451 | waitq_set_unlock(wqset); |
| 3452 | |
| 3453 | wql_put_link(link); |
| 3454 | |
| 3455 | return; |
| 3456 | } |
| 3457 | |
| 3458 | /** |
| 3459 | * checks if a waitq set needs to be linked. |
| 3460 | * |
| 3461 | */ |
| 3462 | boolean_t |
| 3463 | waitq_set_should_lazy_init_link(struct waitq_set *wqset) |
| 3464 | { |
| 3465 | if (waitqs_is_linked(wqset) || wqset->wqset_id == 0) { |
| 3466 | return FALSE; |
| 3467 | } |
| 3468 | return TRUE; |
| 3469 | } |
| 3470 | |
| 3471 | /** |
| 3472 | * clear out / release any resources associated with a waitq set |
| 3473 | * |
| 3474 | * Conditions: |
| 3475 | * may block |
| 3476 | * Note: |
| 3477 | * This will render the waitq set invalid, and it must |
| 3478 | * be re-initialized with waitq_set_init before it can be used again |
| 3479 | */ |
| 3480 | void waitq_set_deinit(struct waitq_set *wqset) |
| 3481 | { |
| 3482 | struct waitq_link *link = NULL; |
| 3483 | uint64_t set_id, prepost_id; |
| 3484 | |
| 3485 | if (!waitqs_is_set(wqset)) |
| 3486 | panic("trying to de-initialize an invalid wqset @%p" , wqset); |
| 3487 | |
| 3488 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 3489 | |
| 3490 | waitq_set_lock(wqset); |
| 3491 | |
| 3492 | set_id = wqset->wqset_id; |
| 3493 | |
| 3494 | if (waitqs_is_linked(wqset) || set_id == 0) { |
| 3495 | |
| 3496 | /* grab the set's link object */ |
| 3497 | link = wql_get_link(set_id); |
| 3498 | if (link) { |
| 3499 | wql_invalidate(link); |
| 3500 | } |
| 3501 | /* someone raced us to deinit */ |
| 3502 | if (!link || wqset->wqset_id != set_id || set_id != link->wql_setid.id) { |
| 3503 | if (link) { |
| 3504 | wql_put_link(link); |
| 3505 | } |
| 3506 | waitq_set_unlock(wqset); |
| 3507 | return; |
| 3508 | } |
| 3509 | |
| 3510 | /* the link should be a valid link object at this point */ |
| 3511 | assert(link != NULL && wql_type(link) == WQL_WQS); |
| 3512 | |
| 3513 | wqset->wqset_id = 0; |
| 3514 | } |
| 3515 | |
| 3516 | /* |
| 3517 | * This set may have a lot of preposts, or may have been a member of |
| 3518 | * many other sets. To minimize spinlock hold times, we clear out the |
| 3519 | * waitq set data structure under the lock-hold, but don't clear any |
| 3520 | * table objects. We keep handles to the prepost and set linkage |
| 3521 | * objects and free those outside the critical section. |
| 3522 | */ |
| 3523 | prepost_id = 0; |
| 3524 | if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) { |
| 3525 | assert(link != NULL); |
| 3526 | prepost_id = wqset->wqset_prepost_id; |
| 3527 | } |
| 3528 | /* else { TODO: notify kqueue subsystem? } */ |
| 3529 | wqset->wqset_prepost_id = 0; |
| 3530 | |
| 3531 | wqset->wqset_q.waitq_fifo = 0; |
| 3532 | wqset->wqset_q.waitq_prepost = 0; |
| 3533 | wqset->wqset_q.waitq_isvalid = 0; |
| 3534 | |
| 3535 | /* don't clear the 'waitq_irq' bit: it's used in locking! */ |
| 3536 | wqset->wqset_q.waitq_eventmask = 0; |
| 3537 | |
| 3538 | waitq_unlink_all_unlock(&wqset->wqset_q); |
| 3539 | /* wqset->wqset_q unlocked and set links deallocated */ |
| 3540 | |
| 3541 | |
| 3542 | if (link) { |
| 3543 | /* |
| 3544 | * walk_waitq_links may race with us for access to the waitq set. |
| 3545 | * If walk_waitq_links has a reference to the set, then we should wait |
| 3546 | * until the link's refcount goes to 1 (our reference) before we exit |
| 3547 | * this function. That way we ensure that the waitq set memory will |
| 3548 | * remain valid even though it's been cleared out. |
| 3549 | */ |
| 3550 | while (wql_refcnt(link) > 1) |
| 3551 | delay(1); |
| 3552 | wql_put_link(link); |
| 3553 | } |
| 3554 | |
| 3555 | /* drop / unlink all the prepost table objects */ |
| 3556 | /* JMM - can this happen before the delay? */ |
| 3557 | if (prepost_id) |
| 3558 | (void)wq_prepost_iterate(prepost_id, NULL, |
| 3559 | wqset_clear_prepost_chain_cb); |
| 3560 | } |
| 3561 | |
| 3562 | /** |
| 3563 | * de-initialize and free an allocated waitq set object |
| 3564 | * |
| 3565 | * Conditions: |
| 3566 | * may block |
| 3567 | */ |
| 3568 | kern_return_t waitq_set_free(struct waitq_set *wqset) |
| 3569 | { |
| 3570 | waitq_set_deinit(wqset); |
| 3571 | |
| 3572 | memset(wqset, 0, sizeof(*wqset)); |
| 3573 | zfree(waitq_set_zone, wqset); |
| 3574 | |
| 3575 | return KERN_SUCCESS; |
| 3576 | } |
| 3577 | |
| 3578 | #if DEVELOPMENT || DEBUG |
| 3579 | #if CONFIG_WAITQ_DEBUG |
| 3580 | /** |
| 3581 | * return the set ID of 'wqset' |
| 3582 | */ |
| 3583 | uint64_t wqset_id(struct waitq_set *wqset) |
| 3584 | { |
| 3585 | if (!wqset) |
| 3586 | return 0; |
| 3587 | |
| 3588 | assert(waitqs_is_set(wqset)); |
| 3589 | |
| 3590 | if (!waitqs_is_linked(wqset)) { |
| 3591 | waitq_set_lazy_init_link(wqset); |
| 3592 | } |
| 3593 | |
| 3594 | return wqset->wqset_id; |
| 3595 | } |
| 3596 | |
| 3597 | /** |
| 3598 | * returns a pointer to the waitq object embedded in 'wqset' |
| 3599 | */ |
| 3600 | struct waitq *wqset_waitq(struct waitq_set *wqset) |
| 3601 | { |
| 3602 | if (!wqset) |
| 3603 | return NULL; |
| 3604 | |
| 3605 | assert(waitqs_is_set(wqset)); |
| 3606 | |
| 3607 | return &wqset->wqset_q; |
| 3608 | } |
| 3609 | #endif /* CONFIG_WAITQ_DEBUG */ |
| 3610 | #endif /* DEVELOPMENT || DEBUG */ |
| 3611 | |
| 3612 | |
| 3613 | /** |
| 3614 | * clear all preposts originating from 'waitq' |
| 3615 | * |
| 3616 | * Conditions: |
| 3617 | * 'waitq' locked |
| 3618 | * may (rarely) spin waiting for another on-core thread to |
| 3619 | * release the last reference to the waitq's prepost link object |
| 3620 | * |
| 3621 | * NOTE: |
| 3622 | * If this function needs to spin, it will drop the waitq lock! |
| 3623 | * The return value of the function indicates whether or not this |
| 3624 | * happened: 1 == lock was dropped, 0 == lock held |
| 3625 | */ |
| 3626 | int waitq_clear_prepost_locked(struct waitq *waitq) |
| 3627 | { |
| 3628 | struct wq_prepost *wqp; |
| 3629 | int dropped_lock = 0; |
| 3630 | |
| 3631 | assert(!waitq_irq_safe(waitq)); |
| 3632 | |
| 3633 | if (waitq->waitq_prepost_id == 0) |
| 3634 | return 0; |
| 3635 | |
| 3636 | wqp = wq_prepost_get(waitq->waitq_prepost_id); |
| 3637 | waitq->waitq_prepost_id = 0; |
| 3638 | if (wqp) { |
| 3639 | uint64_t wqp_id = wqp->wqp_prepostid.id; |
| 3640 | wqdbg_v("invalidate prepost 0x%llx (refcnt:%d)" , |
| 3641 | wqp->wqp_prepostid.id, wqp_refcnt(wqp)); |
| 3642 | wq_prepost_invalidate(wqp); |
| 3643 | while (wqp_refcnt(wqp) > 1) { |
| 3644 | |
| 3645 | /* |
| 3646 | * Some other thread must have raced us to grab a link |
| 3647 | * object reference before we invalidated it. This |
| 3648 | * means that they are probably trying to access the |
| 3649 | * waitq to which the prepost object points. We need |
| 3650 | * to wait here until the other thread drops their |
| 3651 | * reference. We know that no one else can get a |
| 3652 | * reference (the object has been invalidated), and |
| 3653 | * that prepost references are short-lived (dropped on |
| 3654 | * a call to wq_prepost_put). We also know that no one |
| 3655 | * blocks while holding a reference therefore the |
| 3656 | * other reference holder must be on-core. We'll just |
| 3657 | * sit and wait for the other reference to be dropped. |
| 3658 | */ |
| 3659 | disable_preemption(); |
| 3660 | |
| 3661 | waitq_unlock(waitq); |
| 3662 | dropped_lock = 1; |
| 3663 | /* |
| 3664 | * don't yield here, just spin and assume the other |
| 3665 | * consumer is already on core... |
| 3666 | */ |
| 3667 | delay(1); |
| 3668 | |
| 3669 | waitq_lock(waitq); |
| 3670 | |
| 3671 | enable_preemption(); |
| 3672 | } |
| 3673 | if (wqp_refcnt(wqp) > 0 && wqp->wqp_prepostid.id == wqp_id) |
| 3674 | wq_prepost_put(wqp); |
| 3675 | } |
| 3676 | |
| 3677 | return dropped_lock; |
| 3678 | } |
| 3679 | |
| 3680 | /** |
| 3681 | * clear all preposts originating from 'waitq' |
| 3682 | * |
| 3683 | * Conditions: |
| 3684 | * 'waitq' is not locked |
| 3685 | * may disable and re-enable interrupts |
| 3686 | */ |
| 3687 | void waitq_clear_prepost(struct waitq *waitq) |
| 3688 | { |
| 3689 | assert(waitq_valid(waitq)); |
| 3690 | assert(!waitq_irq_safe(waitq)); |
| 3691 | |
| 3692 | waitq_lock(waitq); |
| 3693 | /* it doesn't matter to us if the lock is dropped here */ |
| 3694 | (void)waitq_clear_prepost_locked(waitq); |
| 3695 | waitq_unlock(waitq); |
| 3696 | } |
| 3697 | |
| 3698 | /** |
| 3699 | * return a the waitq's prepost object ID (allocate if necessary) |
| 3700 | * |
| 3701 | * Conditions: |
| 3702 | * 'waitq' is unlocked |
| 3703 | */ |
| 3704 | uint64_t waitq_get_prepost_id(struct waitq *waitq) |
| 3705 | { |
| 3706 | struct wq_prepost *wqp; |
| 3707 | uint64_t wqp_id = 0; |
| 3708 | |
| 3709 | if (!waitq_valid(waitq)) |
| 3710 | return 0; |
| 3711 | |
| 3712 | assert(!waitq_irq_safe(waitq)); |
| 3713 | |
| 3714 | waitq_lock(waitq); |
| 3715 | |
| 3716 | if (!waitq_valid(waitq)) |
| 3717 | goto out_unlock; |
| 3718 | |
| 3719 | if (waitq->waitq_prepost_id) { |
| 3720 | wqp_id = waitq->waitq_prepost_id; |
| 3721 | goto out_unlock; |
| 3722 | } |
| 3723 | |
| 3724 | /* don't hold a spinlock while allocating a prepost object */ |
| 3725 | waitq_unlock(waitq); |
| 3726 | |
| 3727 | wqp = wq_prepost_alloc(WQP_WQ, 1); |
| 3728 | if (!wqp) |
| 3729 | return 0; |
| 3730 | |
| 3731 | /* re-acquire the waitq lock */ |
| 3732 | waitq_lock(waitq); |
| 3733 | |
| 3734 | if (!waitq_valid(waitq)) { |
| 3735 | wq_prepost_put(wqp); |
| 3736 | wqp_id = 0; |
| 3737 | goto out_unlock; |
| 3738 | } |
| 3739 | |
| 3740 | if (waitq->waitq_prepost_id) { |
| 3741 | /* we were beat by someone else */ |
| 3742 | wq_prepost_put(wqp); |
| 3743 | wqp_id = waitq->waitq_prepost_id; |
| 3744 | goto out_unlock; |
| 3745 | } |
| 3746 | |
| 3747 | wqp->wqp_wq.wqp_wq_ptr = waitq; |
| 3748 | |
| 3749 | wqp_set_valid(wqp); |
| 3750 | wqp_id = wqp->wqp_prepostid.id; |
| 3751 | waitq->waitq_prepost_id = wqp_id; |
| 3752 | |
| 3753 | wq_prepost_put(wqp); |
| 3754 | |
| 3755 | out_unlock: |
| 3756 | waitq_unlock(waitq); |
| 3757 | |
| 3758 | return wqp_id; |
| 3759 | } |
| 3760 | |
| 3761 | |
| 3762 | static int waitq_inset_cb(struct waitq *waitq, void *ctx, struct waitq_link *link) |
| 3763 | { |
| 3764 | uint64_t setid = *(uint64_t *)ctx; |
| 3765 | int wqltype = wql_type(link); |
| 3766 | (void)waitq; |
| 3767 | if (wqltype == WQL_WQS && link->wql_setid.id == setid) { |
| 3768 | wqdbg_v(" waitq already in set 0x%llx" , setid); |
| 3769 | return WQ_ITERATE_FOUND; |
| 3770 | } else if (wqltype == WQL_LINK) { |
| 3771 | /* |
| 3772 | * break out early if we see a link that points to the setid |
| 3773 | * in question. This saves us a step in the |
| 3774 | * iteration/recursion |
| 3775 | */ |
| 3776 | wqdbg_v(" waitq already in set 0x%llx (WQL_LINK)" , setid); |
| 3777 | if (link->wql_link.left_setid == setid || |
| 3778 | link->wql_link.right_setid == setid) |
| 3779 | return WQ_ITERATE_FOUND; |
| 3780 | } |
| 3781 | |
| 3782 | return WQ_ITERATE_CONTINUE; |
| 3783 | } |
| 3784 | |
| 3785 | /** |
| 3786 | * determine if 'waitq' is a member of 'wqset' |
| 3787 | * |
| 3788 | * Conditions: |
| 3789 | * neither 'waitq' nor 'wqset' is not locked |
| 3790 | * may disable and re-enable interrupts while locking 'waitq' |
| 3791 | */ |
| 3792 | boolean_t waitq_member(struct waitq *waitq, struct waitq_set *wqset) |
| 3793 | { |
| 3794 | kern_return_t kr = WQ_ITERATE_SUCCESS; |
| 3795 | uint64_t setid; |
| 3796 | |
| 3797 | if (!waitq_valid(waitq)) |
| 3798 | panic("Invalid waitq: %p" , waitq); |
| 3799 | assert(!waitq_irq_safe(waitq)); |
| 3800 | |
| 3801 | if (!waitqs_is_set(wqset)) |
| 3802 | return FALSE; |
| 3803 | |
| 3804 | waitq_lock(waitq); |
| 3805 | |
| 3806 | if (!waitqs_is_linked(wqset)) |
| 3807 | goto out_unlock; |
| 3808 | |
| 3809 | setid = wqset->wqset_id; |
| 3810 | |
| 3811 | /* fast path: most waitqs are members of only 1 set */ |
| 3812 | if (waitq->waitq_set_id == setid) { |
| 3813 | waitq_unlock(waitq); |
| 3814 | return TRUE; |
| 3815 | } |
| 3816 | |
| 3817 | /* walk the link table and look for the Set ID of wqset */ |
| 3818 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, |
| 3819 | WQL_ALL, (void *)&setid, waitq_inset_cb); |
| 3820 | |
| 3821 | out_unlock: |
| 3822 | waitq_unlock(waitq); |
| 3823 | return (kr == WQ_ITERATE_FOUND); |
| 3824 | } |
| 3825 | |
| 3826 | /** |
| 3827 | * Returns true is the given waitq is a member of at least 1 set |
| 3828 | */ |
| 3829 | boolean_t waitq_in_set(struct waitq *waitq) |
| 3830 | { |
| 3831 | struct waitq_link *link; |
| 3832 | boolean_t inset = FALSE; |
| 3833 | |
| 3834 | if (waitq_irq_safe(waitq)) |
| 3835 | return FALSE; |
| 3836 | |
| 3837 | waitq_lock(waitq); |
| 3838 | |
| 3839 | if (!waitq->waitq_set_id) |
| 3840 | goto out_unlock; |
| 3841 | |
| 3842 | link = wql_get_link(waitq->waitq_set_id); |
| 3843 | if (link) { |
| 3844 | /* if we get here, the waitq is in _at_least_one_ set */ |
| 3845 | inset = TRUE; |
| 3846 | wql_put_link(link); |
| 3847 | } else { |
| 3848 | /* we can just optimize this for next time */ |
| 3849 | waitq->waitq_set_id = 0; |
| 3850 | } |
| 3851 | |
| 3852 | out_unlock: |
| 3853 | waitq_unlock(waitq); |
| 3854 | return inset; |
| 3855 | } |
| 3856 | |
| 3857 | |
| 3858 | /** |
| 3859 | * pre-allocate a waitq link structure from the link table |
| 3860 | * |
| 3861 | * Conditions: |
| 3862 | * 'waitq' is not locked |
| 3863 | * may (rarely) block if link table needs to grow |
| 3864 | */ |
| 3865 | uint64_t waitq_link_reserve(struct waitq *waitq) |
| 3866 | { |
| 3867 | struct waitq_link *link; |
| 3868 | uint64_t reserved_id = 0; |
| 3869 | |
| 3870 | assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread())); |
| 3871 | |
| 3872 | /* |
| 3873 | * We've asserted that the caller can block, so we enforce a |
| 3874 | * minimum-free table element policy here. |
| 3875 | */ |
| 3876 | wql_ensure_free_space(); |
| 3877 | |
| 3878 | (void)waitq; |
| 3879 | link = wql_alloc_link(LT_RESERVED); |
| 3880 | if (!link) |
| 3881 | return 0; |
| 3882 | |
| 3883 | reserved_id = link->wql_setid.id; |
| 3884 | |
| 3885 | return reserved_id; |
| 3886 | } |
| 3887 | |
| 3888 | /** |
| 3889 | * release a pre-allocated waitq link structure |
| 3890 | */ |
| 3891 | void waitq_link_release(uint64_t id) |
| 3892 | { |
| 3893 | struct waitq_link *link; |
| 3894 | |
| 3895 | if (id == 0) |
| 3896 | return; |
| 3897 | |
| 3898 | link = wql_get_reserved(id, WQL_LINK); |
| 3899 | if (!link) |
| 3900 | return; |
| 3901 | |
| 3902 | /* |
| 3903 | * if we successfully got a link object, then we know |
| 3904 | * it's not been marked valid, and can be released with |
| 3905 | * a standard wql_put_link() which should free the element. |
| 3906 | */ |
| 3907 | wql_put_link(link); |
| 3908 | #if CONFIG_LTABLE_STATS |
| 3909 | g_wqlinktable.nreserved_releases += 1; |
| 3910 | #endif |
| 3911 | } |
| 3912 | |
| 3913 | /** |
| 3914 | * link 'waitq' to the set identified by 'setid' using the 'link' structure |
| 3915 | * |
| 3916 | * Conditions: |
| 3917 | * 'waitq' is locked |
| 3918 | * caller should have a reference to the 'link' object |
| 3919 | */ |
| 3920 | static kern_return_t waitq_link_internal(struct waitq *waitq, |
| 3921 | uint64_t setid, struct waitq_link *link) |
| 3922 | { |
| 3923 | struct waitq_link *qlink; |
| 3924 | kern_return_t kr; |
| 3925 | |
| 3926 | assert(waitq_held(waitq)); |
| 3927 | assert(setid != 0); |
| 3928 | assert(setid != WQSET_NOT_LINKED); |
| 3929 | |
| 3930 | /* |
| 3931 | * If the waitq_set_id field is empty, then this waitq is not |
| 3932 | * a member of any other set. All we have to do is update the |
| 3933 | * field. |
| 3934 | */ |
| 3935 | if (!waitq->waitq_set_id) { |
| 3936 | waitq->waitq_set_id = setid; |
| 3937 | return KERN_SUCCESS; |
| 3938 | } |
| 3939 | |
| 3940 | qlink = wql_get_link(waitq->waitq_set_id); |
| 3941 | if (!qlink) { |
| 3942 | /* |
| 3943 | * The set to which this wait queue belonged has been |
| 3944 | * destroyed / invalidated. We can re-use the waitq field. |
| 3945 | */ |
| 3946 | waitq->waitq_set_id = setid; |
| 3947 | return KERN_SUCCESS; |
| 3948 | } |
| 3949 | wql_put_link(qlink); |
| 3950 | |
| 3951 | /* |
| 3952 | * Check to see if it's already a member of the set. |
| 3953 | * |
| 3954 | * TODO: check for cycles! |
| 3955 | */ |
| 3956 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, |
| 3957 | WQL_ALL, (void *)&setid, waitq_inset_cb); |
| 3958 | if (kr == WQ_ITERATE_FOUND) |
| 3959 | return KERN_ALREADY_IN_SET; |
| 3960 | |
| 3961 | /* |
| 3962 | * This wait queue is a member of at least one set already, |
| 3963 | * and _not_ a member of the given set. Use our previously |
| 3964 | * allocated link object, and hook it up to the wait queue. |
| 3965 | * Note that it's possible that one or more of the wait queue sets to |
| 3966 | * which the wait queue belongs was invalidated before we allocated |
| 3967 | * this link object. That's OK because the next time we use that |
| 3968 | * object we'll just ignore it. |
| 3969 | */ |
| 3970 | link->wql_link.left_setid = setid; |
| 3971 | link->wql_link.right_setid = waitq->waitq_set_id; |
| 3972 | wql_mkvalid(link); |
| 3973 | |
| 3974 | waitq->waitq_set_id = link->wql_setid.id; |
| 3975 | |
| 3976 | return KERN_SUCCESS; |
| 3977 | } |
| 3978 | |
| 3979 | /** |
| 3980 | * link 'waitq' to 'wqset' |
| 3981 | * |
| 3982 | * Conditions: |
| 3983 | * if 'lock_state' contains WAITQ_SHOULD_LOCK, 'waitq' must be unlocked. |
| 3984 | * Otherwise, 'waitq' must be locked. |
| 3985 | * |
| 3986 | * may (rarely) block on link table allocation if the table has to grow, |
| 3987 | * and no 'reserved_link' object is passed. |
| 3988 | * |
| 3989 | * may block and acquire wqset lock if the wqset passed has no link. |
| 3990 | * |
| 3991 | * Notes: |
| 3992 | * The caller can guarantee that this function will never block by |
| 3993 | * - pre-allocating a link table object and passing its ID in 'reserved_link' |
| 3994 | * - and pre-allocating the waitq set link calling waitq_set_lazy_init_link. |
| 3995 | * It is not possible to provide a reserved_link without having also linked |
| 3996 | * the wqset. |
| 3997 | */ |
| 3998 | kern_return_t waitq_link(struct waitq *waitq, struct waitq_set *wqset, |
| 3999 | waitq_lock_state_t lock_state, uint64_t *reserved_link) |
| 4000 | { |
| 4001 | kern_return_t kr; |
| 4002 | struct waitq_link *link; |
| 4003 | int should_lock = (lock_state == WAITQ_SHOULD_LOCK); |
| 4004 | |
| 4005 | if (!waitq_valid(waitq) || waitq_irq_safe(waitq)) |
| 4006 | panic("Invalid waitq: %p" , waitq); |
| 4007 | |
| 4008 | if (!waitqs_is_set(wqset)) |
| 4009 | return KERN_INVALID_ARGUMENT; |
| 4010 | |
| 4011 | if (!reserved_link || *reserved_link == 0) { |
| 4012 | if (!waitqs_is_linked(wqset)) { |
| 4013 | waitq_set_lazy_init_link(wqset); |
| 4014 | } |
| 4015 | } |
| 4016 | |
| 4017 | wqdbg_v("Link waitq %p to wqset 0x%llx" , |
| 4018 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id); |
| 4019 | |
| 4020 | /* |
| 4021 | * We _might_ need a new link object here, so we'll grab outside |
| 4022 | * the lock because the alloc call _might_ block. |
| 4023 | * |
| 4024 | * If the caller reserved a link beforehand, then wql_get_link |
| 4025 | * is guaranteed not to block because the caller holds an extra |
| 4026 | * reference to the link which, in turn, hold a reference to the |
| 4027 | * link table. |
| 4028 | */ |
| 4029 | if (reserved_link && *reserved_link != 0) { |
| 4030 | link = wql_get_reserved(*reserved_link, WQL_LINK); |
| 4031 | /* always consume the caller's reference */ |
| 4032 | *reserved_link = 0; |
| 4033 | } else { |
| 4034 | link = wql_alloc_link(WQL_LINK); |
| 4035 | } |
| 4036 | if (!link) |
| 4037 | return KERN_NO_SPACE; |
| 4038 | |
| 4039 | if (should_lock) { |
| 4040 | waitq_lock(waitq); |
| 4041 | } |
| 4042 | |
| 4043 | kr = waitq_link_internal(waitq, wqset->wqset_id, link); |
| 4044 | |
| 4045 | if (should_lock) { |
| 4046 | waitq_unlock(waitq); |
| 4047 | } |
| 4048 | |
| 4049 | wql_put_link(link); |
| 4050 | |
| 4051 | return kr; |
| 4052 | } |
| 4053 | |
| 4054 | /** |
| 4055 | * helper: unlink 'waitq' from waitq set identified by 'setid' |
| 4056 | * this function also prunes invalid objects from the tree |
| 4057 | * |
| 4058 | * Conditions: |
| 4059 | * MUST be called from walk_waitq_links link table walk |
| 4060 | * 'waitq' is locked |
| 4061 | * |
| 4062 | * Notes: |
| 4063 | * This is a helper function which compresses the link table by culling |
| 4064 | * unused or unnecessary links. See comments below for different |
| 4065 | * scenarios. |
| 4066 | */ |
| 4067 | static inline int waitq_maybe_remove_link(struct waitq *waitq, |
| 4068 | uint64_t setid, |
| 4069 | struct waitq_link *parent, |
| 4070 | struct waitq_link *left, |
| 4071 | struct waitq_link *right) |
| 4072 | { |
| 4073 | uint64_t *wq_setid = &waitq->waitq_set_id; |
| 4074 | |
| 4075 | /* |
| 4076 | * There are two scenarios: |
| 4077 | * |
| 4078 | * Scenario 1: |
| 4079 | * -------------------------------------------------------------------- |
| 4080 | * waitq->waitq_set_id == parent |
| 4081 | * |
| 4082 | * parent(LINK) |
| 4083 | * / \ |
| 4084 | * / \ |
| 4085 | * / \ |
| 4086 | * L(LINK/WQS_l) R(LINK/WQS_r) |
| 4087 | * |
| 4088 | * In this scenario, we assert that the original waitq points to the |
| 4089 | * parent link we were passed in. If WQS_l (or WQS_r) is the waitq |
| 4090 | * set we're looking for, we can set the corresponding parent |
| 4091 | * link id (left or right) to 0. To compress the tree, we can reset the |
| 4092 | * waitq_set_id of the original waitq to point to the side of the |
| 4093 | * parent that is still valid. We then discard the parent link object. |
| 4094 | */ |
| 4095 | if (*wq_setid == parent->wql_setid.id) { |
| 4096 | if (!left && !right) { |
| 4097 | /* completely invalid children */ |
| 4098 | wql_invalidate(parent); |
| 4099 | wqdbg_v("S1, L+R" ); |
| 4100 | *wq_setid = 0; |
| 4101 | return WQ_ITERATE_INVALID; |
| 4102 | } else if (!left || left->wql_setid.id == setid) { |
| 4103 | /* |
| 4104 | * left side matches we know it points either to the |
| 4105 | * WQS we're unlinking, or to an invalid object: |
| 4106 | * no need to invalidate it |
| 4107 | */ |
| 4108 | *wq_setid = right ? right->wql_setid.id : 0; |
| 4109 | wql_invalidate(parent); |
| 4110 | wqdbg_v("S1, L" ); |
| 4111 | return left ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4112 | } else if (!right || right->wql_setid.id == setid) { |
| 4113 | /* |
| 4114 | * if right side matches we know it points either to the |
| 4115 | * WQS we're unlinking, or to an invalid object: |
| 4116 | * no need to invalidate it |
| 4117 | */ |
| 4118 | *wq_setid = left ? left->wql_setid.id : 0; |
| 4119 | wql_invalidate(parent); |
| 4120 | wqdbg_v("S1, R" ); |
| 4121 | return right ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4122 | } |
| 4123 | } |
| 4124 | |
| 4125 | /* |
| 4126 | * the tree walk starts at the top-of-tree and moves down, |
| 4127 | * so these are safe asserts. |
| 4128 | */ |
| 4129 | assert(left || right); /* one of them has to be valid at this point */ |
| 4130 | |
| 4131 | /* |
| 4132 | * Scenario 2: |
| 4133 | * -------------------------------------------------------------------- |
| 4134 | * waitq->waitq_set_id == ... (OR parent) |
| 4135 | * |
| 4136 | * ... |
| 4137 | * | |
| 4138 | * parent |
| 4139 | * / \ |
| 4140 | * / \ |
| 4141 | * L(LINK) R(LINK) |
| 4142 | * /\ /\ |
| 4143 | * / \ / \ |
| 4144 | * / \ Rl(*) Rr(*) |
| 4145 | * Ll(WQS) Lr(WQS) |
| 4146 | * |
| 4147 | * In this scenario, a leaf node of either the left or right side |
| 4148 | * could be the wait queue set we're looking to unlink. We also handle |
| 4149 | * the case where one of these links is invalid. If a leaf node is |
| 4150 | * invalid or it's the set we're looking for, we can safely remove the |
| 4151 | * middle link (left or right) and point the parent link directly to |
| 4152 | * the remaining leaf node. |
| 4153 | */ |
| 4154 | if (left && wql_type(left) == WQL_LINK) { |
| 4155 | uint64_t Ll, Lr; |
| 4156 | struct waitq_link *linkLl, *linkLr; |
| 4157 | assert(left->wql_setid.id != setid); |
| 4158 | Ll = left->wql_link.left_setid; |
| 4159 | Lr = left->wql_link.right_setid; |
| 4160 | linkLl = wql_get_link(Ll); |
| 4161 | linkLr = wql_get_link(Lr); |
| 4162 | if (!linkLl && !linkLr) { |
| 4163 | /* |
| 4164 | * The left object points to two invalid objects! |
| 4165 | * We can invalidate the left w/o touching the parent. |
| 4166 | */ |
| 4167 | wql_invalidate(left); |
| 4168 | wqdbg_v("S2, Ll+Lr" ); |
| 4169 | return WQ_ITERATE_INVALID; |
| 4170 | } else if (!linkLl || Ll == setid) { |
| 4171 | /* Ll is invalid and/or the wait queue set we're looking for */ |
| 4172 | parent->wql_link.left_setid = Lr; |
| 4173 | wql_invalidate(left); |
| 4174 | wql_put_link(linkLl); |
| 4175 | wql_put_link(linkLr); |
| 4176 | wqdbg_v("S2, Ll" ); |
| 4177 | return linkLl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4178 | } else if (!linkLr || Lr == setid) { |
| 4179 | /* Lr is invalid and/or the wait queue set we're looking for */ |
| 4180 | parent->wql_link.left_setid = Ll; |
| 4181 | wql_invalidate(left); |
| 4182 | wql_put_link(linkLr); |
| 4183 | wql_put_link(linkLl); |
| 4184 | wqdbg_v("S2, Lr" ); |
| 4185 | return linkLr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4186 | } |
| 4187 | wql_put_link(linkLl); |
| 4188 | wql_put_link(linkLr); |
| 4189 | } |
| 4190 | |
| 4191 | if (right && wql_type(right) == WQL_LINK) { |
| 4192 | uint64_t Rl, Rr; |
| 4193 | struct waitq_link *linkRl, *linkRr; |
| 4194 | assert(right->wql_setid.id != setid); |
| 4195 | Rl = right->wql_link.left_setid; |
| 4196 | Rr = right->wql_link.right_setid; |
| 4197 | linkRl = wql_get_link(Rl); |
| 4198 | linkRr = wql_get_link(Rr); |
| 4199 | if (!linkRl && !linkRr) { |
| 4200 | /* |
| 4201 | * The right object points to two invalid objects! |
| 4202 | * We can invalidate the right w/o touching the parent. |
| 4203 | */ |
| 4204 | wql_invalidate(right); |
| 4205 | wqdbg_v("S2, Rl+Rr" ); |
| 4206 | return WQ_ITERATE_INVALID; |
| 4207 | } else if (!linkRl || Rl == setid) { |
| 4208 | /* Rl is invalid and/or the wait queue set we're looking for */ |
| 4209 | parent->wql_link.right_setid = Rr; |
| 4210 | wql_invalidate(right); |
| 4211 | wql_put_link(linkRl); |
| 4212 | wql_put_link(linkRr); |
| 4213 | wqdbg_v("S2, Rl" ); |
| 4214 | return linkRl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4215 | } else if (!linkRr || Rr == setid) { |
| 4216 | /* Rr is invalid and/or the wait queue set we're looking for */ |
| 4217 | parent->wql_link.right_setid = Rl; |
| 4218 | wql_invalidate(right); |
| 4219 | wql_put_link(linkRl); |
| 4220 | wql_put_link(linkRr); |
| 4221 | wqdbg_v("S2, Rr" ); |
| 4222 | return linkRr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; |
| 4223 | } |
| 4224 | wql_put_link(linkRl); |
| 4225 | wql_put_link(linkRr); |
| 4226 | } |
| 4227 | |
| 4228 | return WQ_ITERATE_CONTINUE; |
| 4229 | } |
| 4230 | |
| 4231 | /** |
| 4232 | * link table walk callback that unlinks 'waitq' from 'ctx->setid' |
| 4233 | * |
| 4234 | * Conditions: |
| 4235 | * called from walk_waitq_links |
| 4236 | * 'waitq' is locked |
| 4237 | * |
| 4238 | * Notes: |
| 4239 | * uses waitq_maybe_remove_link() to compress the linktable and |
| 4240 | * perform the actual unlinking |
| 4241 | */ |
| 4242 | static int waitq_unlink_cb(struct waitq *waitq, void *ctx, |
| 4243 | struct waitq_link *link) |
| 4244 | { |
| 4245 | uint64_t setid = *((uint64_t *)ctx); |
| 4246 | struct waitq_link *right, *left; |
| 4247 | int ret = 0; |
| 4248 | |
| 4249 | if (wql_type(link) != WQL_LINK) |
| 4250 | return WQ_ITERATE_CONTINUE; |
| 4251 | |
| 4252 | do { |
| 4253 | left = wql_get_link(link->wql_link.left_setid); |
| 4254 | right = wql_get_link(link->wql_link.right_setid); |
| 4255 | |
| 4256 | ret = waitq_maybe_remove_link(waitq, setid, link, left, right); |
| 4257 | |
| 4258 | wql_put_link(left); |
| 4259 | wql_put_link(right); |
| 4260 | |
| 4261 | if (!wql_is_valid(link)) |
| 4262 | return WQ_ITERATE_INVALID; |
| 4263 | /* A ret value of UNLINKED will break us out of table walk */ |
| 4264 | } while (ret == WQ_ITERATE_INVALID); |
| 4265 | |
| 4266 | return ret; |
| 4267 | } |
| 4268 | |
| 4269 | |
| 4270 | /** |
| 4271 | * undo/remove a prepost from 'ctx' (waitq) to 'wqset' |
| 4272 | * |
| 4273 | * Conditions: |
| 4274 | * Called from wq_prepost_foreach_locked OR wq_prepost_iterate |
| 4275 | * 'wqset' may be NULL |
| 4276 | * (ctx)->unlink_wqset is locked |
| 4277 | */ |
| 4278 | static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx, |
| 4279 | struct wq_prepost *wqp, struct waitq *waitq) |
| 4280 | { |
| 4281 | struct wq_unlink_ctx *ulctx = (struct wq_unlink_ctx *)ctx; |
| 4282 | |
| 4283 | if (waitq != ulctx->unlink_wq) |
| 4284 | return WQ_ITERATE_CONTINUE; |
| 4285 | |
| 4286 | if (wqp_type(wqp) == WQP_WQ && |
| 4287 | wqp->wqp_prepostid.id == ulctx->unlink_wqset->wqset_prepost_id) { |
| 4288 | /* this is the only prepost on this wait queue set */ |
| 4289 | wqdbg_v("unlink wqp (WQ) 0x%llx" , wqp->wqp_prepostid.id); |
| 4290 | ulctx->unlink_wqset->wqset_prepost_id = 0; |
| 4291 | return WQ_ITERATE_BREAK; |
| 4292 | } |
| 4293 | |
| 4294 | assert(wqp_type(wqp) == WQP_POST); |
| 4295 | |
| 4296 | /* |
| 4297 | * The prepost object 'wqp' points to a waitq which should no longer |
| 4298 | * be preposted to 'ulctx->unlink_wqset'. We can remove the prepost |
| 4299 | * object from the list and break out of the iteration. Using the |
| 4300 | * context object in this way allows this same callback function to be |
| 4301 | * used from both wq_prepost_foreach_locked and wq_prepost_iterate. |
| 4302 | */ |
| 4303 | wq_prepost_remove(ulctx->unlink_wqset, wqp); |
| 4304 | return WQ_ITERATE_BREAK; |
| 4305 | } |
| 4306 | |
| 4307 | /** |
| 4308 | * unlink 'waitq' from 'wqset' |
| 4309 | * |
| 4310 | * Conditions: |
| 4311 | * 'waitq' is locked |
| 4312 | * 'wqset' is _not_ locked |
| 4313 | * may (rarely) spin in prepost clear and drop/re-acquire 'waitq' lock |
| 4314 | * (see waitq_clear_prepost_locked) |
| 4315 | */ |
| 4316 | static kern_return_t waitq_unlink_locked(struct waitq *waitq, |
| 4317 | struct waitq_set *wqset) |
| 4318 | { |
| 4319 | uint64_t setid; |
| 4320 | kern_return_t kr; |
| 4321 | |
| 4322 | assert(!waitq_irq_safe(waitq)); |
| 4323 | |
| 4324 | if (waitq->waitq_set_id == 0) { |
| 4325 | /* |
| 4326 | * TODO: |
| 4327 | * it doesn't belong to anyone, and it has a prepost object? |
| 4328 | * This is an artifact of not cleaning up after kqueues when |
| 4329 | * they prepost into select sets... |
| 4330 | */ |
| 4331 | if (waitq->waitq_prepost_id != 0) |
| 4332 | (void)waitq_clear_prepost_locked(waitq); |
| 4333 | return KERN_NOT_IN_SET; |
| 4334 | } |
| 4335 | |
| 4336 | if (!waitqs_is_linked(wqset)) { |
| 4337 | /* |
| 4338 | * No link has been allocated for the wqset, |
| 4339 | * so no waitq could have been linked to it. |
| 4340 | */ |
| 4341 | return KERN_NOT_IN_SET; |
| 4342 | } |
| 4343 | |
| 4344 | setid = wqset->wqset_id; |
| 4345 | |
| 4346 | if (waitq->waitq_set_id == setid) { |
| 4347 | waitq->waitq_set_id = 0; |
| 4348 | /* |
| 4349 | * This was the only set to which the waitq belonged: we can |
| 4350 | * safely release the waitq's prepost object. It doesn't |
| 4351 | * matter if this function drops and re-acquires the lock |
| 4352 | * because we're not manipulating waitq state any more. |
| 4353 | */ |
| 4354 | (void)waitq_clear_prepost_locked(waitq); |
| 4355 | return KERN_SUCCESS; |
| 4356 | } |
| 4357 | |
| 4358 | /* |
| 4359 | * The waitq was a member of more that 1 set, so we need to |
| 4360 | * handle potentially compressing the link table, and |
| 4361 | * adjusting the waitq->waitq_set_id value. |
| 4362 | * |
| 4363 | * Note: we can't free the waitq's associated prepost object (if any) |
| 4364 | * because it may be in use by the one or more _other_ sets to |
| 4365 | * which this queue belongs. |
| 4366 | * |
| 4367 | * Note: This function only handles a single level of the queue linkage. |
| 4368 | * Removing a waitq from a set to which it does not directly |
| 4369 | * belong is undefined. For example, if a waitq belonged to set |
| 4370 | * A, and set A belonged to set B. You can't remove the waitq |
| 4371 | * from set B. |
| 4372 | */ |
| 4373 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, |
| 4374 | WQL_LINK, (void *)&setid, waitq_unlink_cb); |
| 4375 | |
| 4376 | if (kr == WQ_ITERATE_UNLINKED) { |
| 4377 | struct wq_unlink_ctx ulctx; |
| 4378 | |
| 4379 | kr = KERN_SUCCESS; /* found it and dis-associated it */ |
| 4380 | |
| 4381 | /* don't look for preposts if it's not prepost-enabled */ |
| 4382 | if (!wqset->wqset_q.waitq_prepost) |
| 4383 | goto out; |
| 4384 | |
| 4385 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 4386 | |
| 4387 | waitq_set_lock(wqset); |
| 4388 | /* |
| 4389 | * clear out any prepost from waitq into wqset |
| 4390 | * TODO: this could be more efficient than a linear search of |
| 4391 | * the waitq set's prepost list. |
| 4392 | */ |
| 4393 | ulctx.unlink_wq = waitq; |
| 4394 | ulctx.unlink_wqset = wqset; |
| 4395 | (void)wq_prepost_iterate(wqset->wqset_prepost_id, (void *)&ulctx, |
| 4396 | waitq_unlink_prepost_cb); |
| 4397 | waitq_set_unlock(wqset); |
| 4398 | } else { |
| 4399 | kr = KERN_NOT_IN_SET; /* waitq is _not_ associated with wqset */ |
| 4400 | } |
| 4401 | |
| 4402 | out: |
| 4403 | return kr; |
| 4404 | } |
| 4405 | |
| 4406 | /** |
| 4407 | * unlink 'waitq' from 'wqset' |
| 4408 | * |
| 4409 | * Conditions: |
| 4410 | * neither 'waitq' nor 'wqset' is locked |
| 4411 | * may disable and re-enable interrupts |
| 4412 | * may (rarely) spin in prepost clear |
| 4413 | * (see waitq_clear_prepost_locked) |
| 4414 | */ |
| 4415 | kern_return_t waitq_unlink(struct waitq *waitq, struct waitq_set *wqset) |
| 4416 | { |
| 4417 | kern_return_t kr = KERN_SUCCESS; |
| 4418 | |
| 4419 | assert(waitqs_is_set(wqset)); |
| 4420 | |
| 4421 | /* |
| 4422 | * we allow the waitq to be invalid because the caller may be trying |
| 4423 | * to clear out old/dirty state |
| 4424 | */ |
| 4425 | if (!waitq_valid(waitq)) |
| 4426 | return KERN_INVALID_ARGUMENT; |
| 4427 | |
| 4428 | wqdbg_v("unlink waitq %p from set 0x%llx" , |
| 4429 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id); |
| 4430 | |
| 4431 | assert(!waitq_irq_safe(waitq)); |
| 4432 | |
| 4433 | waitq_lock(waitq); |
| 4434 | |
| 4435 | kr = waitq_unlink_locked(waitq, wqset); |
| 4436 | |
| 4437 | waitq_unlock(waitq); |
| 4438 | return kr; |
| 4439 | } |
| 4440 | |
| 4441 | /** |
| 4442 | * unlink a waitq from a waitq set, but reference the waitq by its prepost ID |
| 4443 | * |
| 4444 | * Conditions: |
| 4445 | * 'wqset' is unlocked |
| 4446 | * wqp_id may be valid or invalid |
| 4447 | */ |
| 4448 | void waitq_unlink_by_prepost_id(uint64_t wqp_id, struct waitq_set *wqset) |
| 4449 | { |
| 4450 | struct wq_prepost *wqp; |
| 4451 | |
| 4452 | disable_preemption(); |
| 4453 | wqp = wq_prepost_get(wqp_id); |
| 4454 | if (wqp) { |
| 4455 | struct waitq *wq; |
| 4456 | |
| 4457 | wq = wqp->wqp_wq.wqp_wq_ptr; |
| 4458 | |
| 4459 | /* |
| 4460 | * lock the waitq, then release our prepost ID reference, then |
| 4461 | * unlink the waitq from the wqset: this ensures that we don't |
| 4462 | * hold a prepost ID reference during the unlink, but we also |
| 4463 | * complete the unlink operation atomically to avoid a race |
| 4464 | * with waitq_unlink[_all]. |
| 4465 | */ |
| 4466 | assert(!waitq_irq_safe(wq)); |
| 4467 | |
| 4468 | waitq_lock(wq); |
| 4469 | wq_prepost_put(wqp); |
| 4470 | |
| 4471 | if (!waitq_valid(wq)) { |
| 4472 | /* someone already tore down this waitq! */ |
| 4473 | waitq_unlock(wq); |
| 4474 | enable_preemption(); |
| 4475 | return; |
| 4476 | } |
| 4477 | |
| 4478 | /* this _may_ drop the wq lock, but that's OK */ |
| 4479 | waitq_unlink_locked(wq, wqset); |
| 4480 | |
| 4481 | waitq_unlock(wq); |
| 4482 | } |
| 4483 | enable_preemption(); |
| 4484 | return; |
| 4485 | } |
| 4486 | |
| 4487 | |
| 4488 | /** |
| 4489 | * reference and lock a waitq by its prepost ID |
| 4490 | * |
| 4491 | * Conditions: |
| 4492 | * wqp_id may be valid or invalid |
| 4493 | * |
| 4494 | * Returns: |
| 4495 | * a locked waitq if wqp_id was valid |
| 4496 | * NULL on failure |
| 4497 | */ |
| 4498 | struct waitq *waitq_lock_by_prepost_id(uint64_t wqp_id) |
| 4499 | { |
| 4500 | struct waitq *wq = NULL; |
| 4501 | struct wq_prepost *wqp; |
| 4502 | |
| 4503 | disable_preemption(); |
| 4504 | wqp = wq_prepost_get(wqp_id); |
| 4505 | if (wqp) { |
| 4506 | wq = wqp->wqp_wq.wqp_wq_ptr; |
| 4507 | |
| 4508 | assert(!waitq_irq_safe(wq)); |
| 4509 | |
| 4510 | waitq_lock(wq); |
| 4511 | wq_prepost_put(wqp); |
| 4512 | |
| 4513 | if (!waitq_valid(wq)) { |
| 4514 | /* someone already tore down this waitq! */ |
| 4515 | waitq_unlock(wq); |
| 4516 | enable_preemption(); |
| 4517 | return NULL; |
| 4518 | } |
| 4519 | } |
| 4520 | enable_preemption(); |
| 4521 | return wq; |
| 4522 | } |
| 4523 | |
| 4524 | |
| 4525 | /** |
| 4526 | * unlink 'waitq' from all sets to which it belongs |
| 4527 | * |
| 4528 | * Conditions: |
| 4529 | * 'waitq' is locked on entry |
| 4530 | * returns with waitq lock dropped |
| 4531 | * |
| 4532 | * Notes: |
| 4533 | * may (rarely) spin (see waitq_clear_prepost_locked) |
| 4534 | */ |
| 4535 | kern_return_t waitq_unlink_all_unlock(struct waitq *waitq) |
| 4536 | { |
| 4537 | uint64_t old_set_id = 0; |
| 4538 | wqdbg_v("unlink waitq %p from all sets" , |
| 4539 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq)); |
| 4540 | assert(!waitq_irq_safe(waitq)); |
| 4541 | |
| 4542 | /* it's not a member of any sets */ |
| 4543 | if (waitq->waitq_set_id == 0) { |
| 4544 | waitq_unlock(waitq); |
| 4545 | return KERN_SUCCESS; |
| 4546 | } |
| 4547 | |
| 4548 | old_set_id = waitq->waitq_set_id; |
| 4549 | waitq->waitq_set_id = 0; |
| 4550 | |
| 4551 | /* |
| 4552 | * invalidate the prepost entry for this waitq. |
| 4553 | * This may drop and re-acquire the waitq lock, but that's OK because |
| 4554 | * if it was added to another set and preposted to that set in the |
| 4555 | * time we drop the lock, the state will remain consistent. |
| 4556 | */ |
| 4557 | (void)waitq_clear_prepost_locked(waitq); |
| 4558 | |
| 4559 | waitq_unlock(waitq); |
| 4560 | |
| 4561 | if (old_set_id) { |
| 4562 | /* |
| 4563 | * Walk the link table and invalidate each LINK object that |
| 4564 | * used to connect this waitq to one or more sets: this works |
| 4565 | * because WQL_LINK objects are private to each wait queue |
| 4566 | */ |
| 4567 | (void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, old_set_id, |
| 4568 | WQL_LINK, NULL, waitq_unlink_all_cb); |
| 4569 | } |
| 4570 | |
| 4571 | return KERN_SUCCESS; |
| 4572 | } |
| 4573 | |
| 4574 | /** |
| 4575 | * unlink 'waitq' from all sets to which it belongs |
| 4576 | * |
| 4577 | * Conditions: |
| 4578 | * 'waitq' is not locked |
| 4579 | * may disable and re-enable interrupts |
| 4580 | * may (rarely) spin |
| 4581 | * (see waitq_unlink_all_locked, waitq_clear_prepost_locked) |
| 4582 | */ |
| 4583 | kern_return_t waitq_unlink_all(struct waitq *waitq) |
| 4584 | { |
| 4585 | kern_return_t kr = KERN_SUCCESS; |
| 4586 | |
| 4587 | if (!waitq_valid(waitq)) |
| 4588 | panic("Invalid waitq: %p" , waitq); |
| 4589 | |
| 4590 | assert(!waitq_irq_safe(waitq)); |
| 4591 | waitq_lock(waitq); |
| 4592 | if (!waitq_valid(waitq)) { |
| 4593 | waitq_unlock(waitq); |
| 4594 | return KERN_SUCCESS; |
| 4595 | } |
| 4596 | |
| 4597 | kr = waitq_unlink_all_unlock(waitq); |
| 4598 | /* waitq unlocked and set links deallocated */ |
| 4599 | |
| 4600 | return kr; |
| 4601 | } |
| 4602 | |
| 4603 | |
| 4604 | /** |
| 4605 | * unlink all waitqs from 'wqset' |
| 4606 | * |
| 4607 | * Conditions: |
| 4608 | * 'wqset' is locked on entry |
| 4609 | * 'wqset' is unlocked on exit and spl is restored |
| 4610 | * |
| 4611 | * Note: |
| 4612 | * may (rarely) spin/block (see waitq_clear_prepost_locked) |
| 4613 | */ |
| 4614 | kern_return_t waitq_set_unlink_all_unlock(struct waitq_set *wqset) |
| 4615 | { |
| 4616 | struct waitq_link *link; |
| 4617 | uint64_t prepost_id; |
| 4618 | |
| 4619 | wqdbg_v("unlink all queues from set 0x%llx" , wqset->wqset_id); |
| 4620 | |
| 4621 | /* |
| 4622 | * This operation does not require interaction with any of the set's |
| 4623 | * constituent wait queues. All we have to do is invalidate the SetID |
| 4624 | */ |
| 4625 | |
| 4626 | if (waitqs_is_linked(wqset)){ |
| 4627 | |
| 4628 | /* invalidate and re-alloc the link object first */ |
| 4629 | link = wql_get_link(wqset->wqset_id); |
| 4630 | |
| 4631 | /* we may have raced with a waitq_set_deinit: handle this */ |
| 4632 | if (!link) { |
| 4633 | waitq_set_unlock(wqset); |
| 4634 | return KERN_SUCCESS; |
| 4635 | } |
| 4636 | |
| 4637 | wql_invalidate(link); |
| 4638 | |
| 4639 | /* re-alloc the object to get a new generation ID */ |
| 4640 | wql_realloc_link(link, WQL_WQS); |
| 4641 | link->wql_wqs.wql_set = wqset; |
| 4642 | |
| 4643 | wqset->wqset_id = link->wql_setid.id; |
| 4644 | wql_mkvalid(link); |
| 4645 | wql_put_link(link); |
| 4646 | } |
| 4647 | |
| 4648 | /* clear any preposts attached to this set */ |
| 4649 | prepost_id = 0; |
| 4650 | if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) |
| 4651 | prepost_id = wqset->wqset_prepost_id; |
| 4652 | /* else { TODO: notify kqueue subsystem? } */ |
| 4653 | wqset->wqset_prepost_id = 0; |
| 4654 | |
| 4655 | /* |
| 4656 | * clear set linkage and prepost object associated with this set: |
| 4657 | * waitq sets may prepost to other sets if, for example, they are |
| 4658 | * associated with a kqueue which is in a select set. |
| 4659 | * |
| 4660 | * This releases all the set link objects |
| 4661 | * (links to other sets to which this set was previously added) |
| 4662 | */ |
| 4663 | waitq_unlink_all_unlock(&wqset->wqset_q); |
| 4664 | /* wqset->wqset_q unlocked */ |
| 4665 | |
| 4666 | /* drop / unlink all the prepost table objects */ |
| 4667 | if (prepost_id) |
| 4668 | (void)wq_prepost_iterate(prepost_id, NULL, |
| 4669 | wqset_clear_prepost_chain_cb); |
| 4670 | |
| 4671 | return KERN_SUCCESS; |
| 4672 | } |
| 4673 | |
| 4674 | /** |
| 4675 | * unlink all waitqs from 'wqset' |
| 4676 | * |
| 4677 | * Conditions: |
| 4678 | * 'wqset' is not locked |
| 4679 | * may (rarely) spin/block (see waitq_clear_prepost_locked) |
| 4680 | */ |
| 4681 | kern_return_t waitq_set_unlink_all(struct waitq_set *wqset) |
| 4682 | { |
| 4683 | assert(waitqs_is_set(wqset)); |
| 4684 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 4685 | |
| 4686 | waitq_set_lock(wqset); |
| 4687 | return waitq_set_unlink_all_unlock(wqset); |
| 4688 | /* wqset unlocked and set links and preposts deallocated */ |
| 4689 | } |
| 4690 | |
| 4691 | static int waitq_prepost_reserve_cb(struct waitq *waitq, void *ctx, |
| 4692 | struct waitq_link *link) |
| 4693 | { |
| 4694 | uint32_t *num = (uint32_t *)ctx; |
| 4695 | (void)waitq; |
| 4696 | |
| 4697 | /* |
| 4698 | * In the worst case, we'll have to allocate 2 prepost objects |
| 4699 | * per waitq set (if the set was already preposted by another |
| 4700 | * waitq). |
| 4701 | */ |
| 4702 | if (wql_type(link) == WQL_WQS) { |
| 4703 | /* |
| 4704 | * check to see if the associated waitq actually supports |
| 4705 | * preposting |
| 4706 | */ |
| 4707 | if (waitq_set_can_prepost(link->wql_wqs.wql_set)) |
| 4708 | *num += 2; |
| 4709 | } |
| 4710 | return WQ_ITERATE_CONTINUE; |
| 4711 | } |
| 4712 | |
| 4713 | static int waitq_alloc_prepost_reservation(int nalloc, struct waitq *waitq, |
| 4714 | int *did_unlock, struct wq_prepost **wqp) |
| 4715 | { |
| 4716 | struct wq_prepost *tmp; |
| 4717 | struct wqp_cache *cache; |
| 4718 | |
| 4719 | *did_unlock = 0; |
| 4720 | |
| 4721 | /* |
| 4722 | * Before we unlock the waitq, check the per-processor prepost object |
| 4723 | * cache to see if there's enough there for us. If so, do the |
| 4724 | * allocation, keep the lock and save an entire iteration over the set |
| 4725 | * linkage! |
| 4726 | */ |
| 4727 | if (waitq) { |
| 4728 | disable_preemption(); |
| 4729 | cache = &PROCESSOR_DATA(current_processor(), wqp_cache); |
| 4730 | if (nalloc <= (int)cache->avail) |
| 4731 | goto do_alloc; |
| 4732 | enable_preemption(); |
| 4733 | |
| 4734 | /* unlock the waitq to perform the allocation */ |
| 4735 | *did_unlock = 1; |
| 4736 | waitq_unlock(waitq); |
| 4737 | } |
| 4738 | |
| 4739 | do_alloc: |
| 4740 | tmp = wq_prepost_alloc(LT_RESERVED, nalloc); |
| 4741 | if (!tmp) |
| 4742 | panic("Couldn't reserve %d preposts for waitq @%p (wqp@%p)" , |
| 4743 | nalloc, waitq, *wqp); |
| 4744 | if (*wqp) { |
| 4745 | /* link the two lists */ |
| 4746 | int __assert_only rc; |
| 4747 | rc = wq_prepost_rlink(tmp, *wqp); |
| 4748 | assert(rc == nalloc); |
| 4749 | } |
| 4750 | *wqp = tmp; |
| 4751 | |
| 4752 | /* |
| 4753 | * If the caller can block, then enforce a minimum-free table element |
| 4754 | * policy here. This helps ensure that we will have enough prepost |
| 4755 | * objects for callers such as selwakeup() that can be called with |
| 4756 | * spin locks held. |
| 4757 | */ |
| 4758 | if (get_preemption_level() == 0) |
| 4759 | wq_prepost_ensure_free_space(); |
| 4760 | |
| 4761 | if (waitq) { |
| 4762 | if (*did_unlock == 0) { |
| 4763 | /* decrement the preemption count if alloc from cache */ |
| 4764 | enable_preemption(); |
| 4765 | } else { |
| 4766 | /* otherwise: re-lock the waitq */ |
| 4767 | waitq_lock(waitq); |
| 4768 | } |
| 4769 | } |
| 4770 | |
| 4771 | return nalloc; |
| 4772 | } |
| 4773 | |
| 4774 | static int waitq_count_prepost_reservation(struct waitq *waitq, int , int keep_locked) |
| 4775 | { |
| 4776 | int npreposts = 0; |
| 4777 | |
| 4778 | /* |
| 4779 | * If the waitq is not currently part of a set, and we're not asked to |
| 4780 | * keep the waitq locked then we'll want to have 3 in reserve |
| 4781 | * just-in-case it becomes part of a set while we unlock and reserve. |
| 4782 | * We may need up to 1 object for the waitq, and 2 for the set. |
| 4783 | */ |
| 4784 | if (waitq->waitq_set_id == 0) { |
| 4785 | npreposts = 3; |
| 4786 | } else { |
| 4787 | /* this queue has never been preposted before */ |
| 4788 | if (waitq->waitq_prepost_id == 0) |
| 4789 | npreposts = 3; |
| 4790 | |
| 4791 | /* |
| 4792 | * Walk the set of table linkages associated with this waitq |
| 4793 | * and count the worst-case number of prepost objects that |
| 4794 | * may be needed during a wakeup_all. We can walk this without |
| 4795 | * locking each set along the way because the table-based IDs |
| 4796 | * disconnect us from the set pointers themselves, and the |
| 4797 | * table walking is careful to read the setid values only once. |
| 4798 | * Locking each set up the chain also doesn't guarantee that |
| 4799 | * their membership won't change between the time we unlock |
| 4800 | * that set and when we actually go to prepost, so our |
| 4801 | * situation is no worse than before and we've alleviated lock |
| 4802 | * contention on any sets to which this waitq belongs. |
| 4803 | */ |
| 4804 | (void)walk_waitq_links(LINK_WALK_FULL_DAG_UNLOCKED, |
| 4805 | waitq, waitq->waitq_set_id, |
| 4806 | WQL_WQS, (void *)&npreposts, |
| 4807 | waitq_prepost_reserve_cb); |
| 4808 | } |
| 4809 | |
| 4810 | if (extra > 0) |
| 4811 | npreposts += extra; |
| 4812 | |
| 4813 | if (npreposts == 0 && !keep_locked) { |
| 4814 | /* |
| 4815 | * If we get here, we were asked to reserve some prepost |
| 4816 | * objects for a waitq that's previously preposted, and is not |
| 4817 | * currently a member of any sets. We have also been |
| 4818 | * instructed to unlock the waitq when we're done. In this |
| 4819 | * case, we pre-allocated enough reserved objects to handle |
| 4820 | * the case where the waitq gets added to a single set when |
| 4821 | * the lock is released. |
| 4822 | */ |
| 4823 | npreposts = 3; |
| 4824 | } |
| 4825 | |
| 4826 | return npreposts; |
| 4827 | } |
| 4828 | |
| 4829 | |
| 4830 | /** |
| 4831 | * pre-allocate prepost objects for 'waitq' |
| 4832 | * |
| 4833 | * Conditions: |
| 4834 | * 'waitq' is not locked |
| 4835 | * |
| 4836 | * Returns: |
| 4837 | * panic on error |
| 4838 | * |
| 4839 | * 0 on success, '*reserved' is set to the head of a singly-linked |
| 4840 | * list of pre-allocated prepost objects. |
| 4841 | * |
| 4842 | * Notes: |
| 4843 | * If 'lock_state' is WAITQ_KEEP_LOCKED, this function performs the pre-allocation |
| 4844 | * atomically and returns 'waitq' locked. |
| 4845 | * |
| 4846 | * This function attempts to pre-allocate precisely enough prepost |
| 4847 | * objects based on the current set membership of 'waitq'. If the |
| 4848 | * operation is performed atomically, then the caller |
| 4849 | * is guaranteed to have enough pre-allocated prepost object to avoid |
| 4850 | * any (rare) blocking in the wakeup path. |
| 4851 | */ |
| 4852 | uint64_t waitq_prepost_reserve(struct waitq *waitq, int , |
| 4853 | waitq_lock_state_t lock_state) |
| 4854 | { |
| 4855 | uint64_t reserved = 0; |
| 4856 | uint64_t prev_setid = 0, prev_prepostid = 0; |
| 4857 | struct wq_prepost *wqp = NULL; |
| 4858 | int nalloc = 0, npreposts = 0; |
| 4859 | int keep_locked = (lock_state == WAITQ_KEEP_LOCKED); |
| 4860 | int unlocked = 0; |
| 4861 | |
| 4862 | wqdbg_v("Attempting to reserve prepost linkages for waitq %p (extra:%d)" , |
| 4863 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), extra); |
| 4864 | |
| 4865 | if (waitq == NULL && extra > 0) { |
| 4866 | /* |
| 4867 | * Simple prepost object allocation: |
| 4868 | * we'll add 2 more because the waitq might need an object, |
| 4869 | * and the set itself may need a new POST object in addition |
| 4870 | * to the number of preposts requested by the caller |
| 4871 | */ |
| 4872 | nalloc = waitq_alloc_prepost_reservation(extra + 2, NULL, |
| 4873 | &unlocked, &wqp); |
| 4874 | assert(nalloc == extra + 2); |
| 4875 | return wqp->wqp_prepostid.id; |
| 4876 | } |
| 4877 | |
| 4878 | assert(lock_state == WAITQ_KEEP_LOCKED || lock_state == WAITQ_UNLOCK); |
| 4879 | |
| 4880 | assert(!waitq_irq_safe(waitq)); |
| 4881 | |
| 4882 | waitq_lock(waitq); |
| 4883 | |
| 4884 | /* remember the set ID that we started with */ |
| 4885 | prev_setid = waitq->waitq_set_id; |
| 4886 | prev_prepostid = waitq->waitq_prepost_id; |
| 4887 | |
| 4888 | /* |
| 4889 | * If the waitq is not part of a set, and we're asked to |
| 4890 | * keep the set locked, then we don't have to reserve |
| 4891 | * anything! |
| 4892 | */ |
| 4893 | if (prev_setid == 0 && keep_locked) |
| 4894 | goto out; |
| 4895 | |
| 4896 | npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked); |
| 4897 | |
| 4898 | /* nothing for us to do! */ |
| 4899 | if (npreposts == 0) { |
| 4900 | if (keep_locked) |
| 4901 | goto out; |
| 4902 | goto out_unlock; |
| 4903 | } |
| 4904 | |
| 4905 | try_alloc: |
| 4906 | /* this _may_ unlock and relock the waitq! */ |
| 4907 | nalloc = waitq_alloc_prepost_reservation(npreposts, waitq, |
| 4908 | &unlocked, &wqp); |
| 4909 | |
| 4910 | if (!unlocked) { |
| 4911 | /* allocation held the waitq lock: we'd done! */ |
| 4912 | if (keep_locked) |
| 4913 | goto out; |
| 4914 | goto out_unlock; |
| 4915 | } |
| 4916 | |
| 4917 | /* |
| 4918 | * Before we return, if the allocation had to unlock the waitq, we |
| 4919 | * must check one more time to see if we have enough. If not, we'll |
| 4920 | * try to allocate the difference. If the caller requests it, we'll |
| 4921 | * also leave the waitq locked so that the use of the pre-allocated |
| 4922 | * prepost objects can be guaranteed to be enough if a wakeup_all is |
| 4923 | * performed before unlocking the waitq. |
| 4924 | */ |
| 4925 | |
| 4926 | /* |
| 4927 | * If the waitq is no longer associated with a set, or if the waitq's |
| 4928 | * set/prepostid has not changed since we first walked its linkage, |
| 4929 | * we're done. |
| 4930 | */ |
| 4931 | if ((waitq->waitq_set_id == 0) || |
| 4932 | (waitq->waitq_set_id == prev_setid && |
| 4933 | waitq->waitq_prepost_id == prev_prepostid)) { |
| 4934 | if (keep_locked) |
| 4935 | goto out; |
| 4936 | goto out_unlock; |
| 4937 | } |
| 4938 | |
| 4939 | npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked); |
| 4940 | |
| 4941 | if (npreposts > nalloc) { |
| 4942 | prev_setid = waitq->waitq_set_id; |
| 4943 | prev_prepostid = waitq->waitq_prepost_id; |
| 4944 | npreposts = npreposts - nalloc; /* only allocate the diff */ |
| 4945 | goto try_alloc; |
| 4946 | } |
| 4947 | |
| 4948 | if (keep_locked) |
| 4949 | goto out; |
| 4950 | |
| 4951 | out_unlock: |
| 4952 | waitq_unlock(waitq); |
| 4953 | out: |
| 4954 | if (wqp) |
| 4955 | reserved = wqp->wqp_prepostid.id; |
| 4956 | |
| 4957 | return reserved; |
| 4958 | } |
| 4959 | |
| 4960 | /** |
| 4961 | * release a linked list of prepost objects allocated via _prepost_reserve |
| 4962 | * |
| 4963 | * Conditions: |
| 4964 | * may (rarely) spin waiting for prepost table growth memcpy |
| 4965 | */ |
| 4966 | void waitq_prepost_release_reserve(uint64_t id) |
| 4967 | { |
| 4968 | struct wq_prepost *wqp; |
| 4969 | |
| 4970 | wqdbg_v("releasing reserved preposts starting at: 0x%llx" , id); |
| 4971 | |
| 4972 | wqp = wq_prepost_rfirst(id); |
| 4973 | if (!wqp) |
| 4974 | return; |
| 4975 | |
| 4976 | wq_prepost_release_rlist(wqp); |
| 4977 | } |
| 4978 | |
| 4979 | |
| 4980 | /** |
| 4981 | * clear all preposts from 'wqset' |
| 4982 | * |
| 4983 | * Conditions: |
| 4984 | * 'wqset' is not locked |
| 4985 | */ |
| 4986 | void waitq_set_clear_preposts(struct waitq_set *wqset) |
| 4987 | { |
| 4988 | uint64_t prepost_id; |
| 4989 | spl_t spl; |
| 4990 | |
| 4991 | assert(waitqs_is_set(wqset)); |
| 4992 | |
| 4993 | if (!wqset->wqset_q.waitq_prepost || !wqset->wqset_prepost_id) |
| 4994 | return; |
| 4995 | |
| 4996 | wqdbg_v("Clearing all preposted queues on waitq_set: 0x%llx" , |
| 4997 | wqset->wqset_id); |
| 4998 | |
| 4999 | if (waitq_irq_safe(&wqset->wqset_q)) |
| 5000 | spl = splsched(); |
| 5001 | waitq_set_lock(wqset); |
| 5002 | prepost_id = wqset->wqset_prepost_id; |
| 5003 | wqset->wqset_prepost_id = 0; |
| 5004 | waitq_set_unlock(wqset); |
| 5005 | if (waitq_irq_safe(&wqset->wqset_q)) |
| 5006 | splx(spl); |
| 5007 | |
| 5008 | /* drop / unlink all the prepost table objects */ |
| 5009 | if (prepost_id) |
| 5010 | (void)wq_prepost_iterate(prepost_id, NULL, |
| 5011 | wqset_clear_prepost_chain_cb); |
| 5012 | } |
| 5013 | |
| 5014 | |
| 5015 | /* ---------------------------------------------------------------------- |
| 5016 | * |
| 5017 | * Iteration: waitq -> sets / waitq_set -> preposts |
| 5018 | * |
| 5019 | * ---------------------------------------------------------------------- */ |
| 5020 | |
| 5021 | struct wq_it_ctx { |
| 5022 | void *input; |
| 5023 | void *ctx; |
| 5024 | waitq_iterator_t it; |
| 5025 | }; |
| 5026 | |
| 5027 | static int waitq_iterate_sets_cb(struct waitq *waitq, void *ctx, |
| 5028 | struct waitq_link *link) |
| 5029 | { |
| 5030 | struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx); |
| 5031 | struct waitq_set *wqset; |
| 5032 | int ret; |
| 5033 | |
| 5034 | (void)waitq; |
| 5035 | assert(!waitq_irq_safe(waitq)); |
| 5036 | assert(wql_type(link) == WQL_WQS); |
| 5037 | |
| 5038 | /* |
| 5039 | * the waitq is locked, so we can just take the set lock |
| 5040 | * and call the iterator function |
| 5041 | */ |
| 5042 | wqset = link->wql_wqs.wql_set; |
| 5043 | assert(wqset != NULL); |
| 5044 | assert(!waitq_irq_safe(&wqset->wqset_q)); |
| 5045 | waitq_set_lock(wqset); |
| 5046 | |
| 5047 | ret = wctx->it(wctx->ctx, (struct waitq *)wctx->input, wqset); |
| 5048 | |
| 5049 | waitq_set_unlock(wqset); |
| 5050 | return ret; |
| 5051 | } |
| 5052 | |
| 5053 | /** |
| 5054 | * call external iterator function for each prepost object in wqset |
| 5055 | * |
| 5056 | * Conditions: |
| 5057 | * Called from wq_prepost_foreach_locked |
| 5058 | * (wqset locked, waitq _not_ locked) |
| 5059 | */ |
| 5060 | static int wqset_iterate_prepost_cb(struct waitq_set *wqset, void *ctx, |
| 5061 | struct wq_prepost *wqp, struct waitq *waitq) |
| 5062 | { |
| 5063 | struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx); |
| 5064 | uint64_t wqp_id; |
| 5065 | int ret; |
| 5066 | |
| 5067 | (void)wqp; |
| 5068 | |
| 5069 | /* |
| 5070 | * This is a bit tricky. The 'wqset' is locked, but the 'waitq' is not. |
| 5071 | * Taking the 'waitq' lock is a lock order violation, so we need to be |
| 5072 | * careful. We also must realize that we may have taken a reference to |
| 5073 | * the 'wqp' just as the associated waitq was being torn down (or |
| 5074 | * clearing all its preposts) - see waitq_clear_prepost_locked(). If |
| 5075 | * the 'wqp' is valid and we can get the waitq lock, then we are good |
| 5076 | * to go. If not, we need to back off, check that the 'wqp' hasn't |
| 5077 | * been invalidated, and try to re-take the locks. |
| 5078 | */ |
| 5079 | assert(!waitq_irq_safe(waitq)); |
| 5080 | |
| 5081 | if (waitq_lock_try(waitq)) |
| 5082 | goto call_iterator; |
| 5083 | |
| 5084 | if (!wqp_is_valid(wqp)) |
| 5085 | return WQ_ITERATE_RESTART; |
| 5086 | |
| 5087 | /* We are passed a prepost object with a reference on it. If neither |
| 5088 | * the waitq set nor the waitq require interrupts disabled, then we |
| 5089 | * may block on the delay(1) call below. We can't hold a prepost |
| 5090 | * object reference while blocking, so we have to give that up as well |
| 5091 | * and re-acquire it when we come back. |
| 5092 | */ |
| 5093 | wqp_id = wqp->wqp_prepostid.id; |
| 5094 | wq_prepost_put(wqp); |
| 5095 | waitq_set_unlock(wqset); |
| 5096 | wqdbg_v("dropped set:%p lock waiting for wqp:%p (0x%llx -> wq:%p)" , |
| 5097 | wqset, wqp, wqp->wqp_prepostid.id, waitq); |
| 5098 | delay(1); |
| 5099 | waitq_set_lock(wqset); |
| 5100 | wqp = wq_prepost_get(wqp_id); |
| 5101 | if (!wqp) |
| 5102 | /* someone cleared preposts while we slept! */ |
| 5103 | return WQ_ITERATE_DROPPED; |
| 5104 | |
| 5105 | /* |
| 5106 | * TODO: |
| 5107 | * This differs slightly from the logic in ipc_mqueue.c: |
| 5108 | * ipc_mqueue_receive_on_thread(). There, if the waitq lock |
| 5109 | * can't be obtained, the prepost link is placed on the back of |
| 5110 | * the chain, and the iteration starts from the beginning. Here, |
| 5111 | * we just restart from the beginning. |
| 5112 | */ |
| 5113 | return WQ_ITERATE_RESTART; |
| 5114 | |
| 5115 | call_iterator: |
| 5116 | if (!wqp_is_valid(wqp)) { |
| 5117 | ret = WQ_ITERATE_RESTART; |
| 5118 | goto out_unlock; |
| 5119 | } |
| 5120 | |
| 5121 | /* call the external callback */ |
| 5122 | ret = wctx->it(wctx->ctx, waitq, wqset); |
| 5123 | |
| 5124 | if (ret == WQ_ITERATE_BREAK_KEEP_LOCKED) { |
| 5125 | ret = WQ_ITERATE_BREAK; |
| 5126 | goto out; |
| 5127 | } |
| 5128 | |
| 5129 | out_unlock: |
| 5130 | waitq_unlock(waitq); |
| 5131 | out: |
| 5132 | return ret; |
| 5133 | } |
| 5134 | |
| 5135 | /** |
| 5136 | * iterator over all sets to which the given waitq has been linked |
| 5137 | * |
| 5138 | * Conditions: |
| 5139 | * 'waitq' is locked |
| 5140 | */ |
| 5141 | int waitq_iterate_sets(struct waitq *waitq, void *ctx, waitq_iterator_t it) |
| 5142 | { |
| 5143 | int ret; |
| 5144 | struct wq_it_ctx wctx = { |
| 5145 | .input = (void *)waitq, |
| 5146 | .ctx = ctx, |
| 5147 | .it = it, |
| 5148 | }; |
| 5149 | if (!it || !waitq) |
| 5150 | return KERN_INVALID_ARGUMENT; |
| 5151 | |
| 5152 | ret = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, |
| 5153 | WQL_WQS, (void *)&wctx, waitq_iterate_sets_cb); |
| 5154 | if (ret == WQ_ITERATE_CONTINUE) |
| 5155 | ret = WQ_ITERATE_SUCCESS; |
| 5156 | return ret; |
| 5157 | } |
| 5158 | |
| 5159 | /** |
| 5160 | * iterator over all preposts in the given wqset |
| 5161 | * |
| 5162 | * Conditions: |
| 5163 | * 'wqset' is locked |
| 5164 | */ |
| 5165 | int waitq_set_iterate_preposts(struct waitq_set *wqset, |
| 5166 | void *ctx, waitq_iterator_t it) |
| 5167 | { |
| 5168 | struct wq_it_ctx wctx = { |
| 5169 | .input = (void *)wqset, |
| 5170 | .ctx = ctx, |
| 5171 | .it = it, |
| 5172 | }; |
| 5173 | if (!it || !wqset) |
| 5174 | return WQ_ITERATE_INVALID; |
| 5175 | |
| 5176 | assert(waitq_held(&wqset->wqset_q)); |
| 5177 | |
| 5178 | return wq_prepost_foreach_locked(wqset, (void *)&wctx, |
| 5179 | wqset_iterate_prepost_cb); |
| 5180 | } |
| 5181 | |
| 5182 | |
| 5183 | /* ---------------------------------------------------------------------- |
| 5184 | * |
| 5185 | * Higher-level APIs |
| 5186 | * |
| 5187 | * ---------------------------------------------------------------------- */ |
| 5188 | |
| 5189 | |
| 5190 | /** |
| 5191 | * declare a thread's intent to wait on 'waitq' for 'wait_event' |
| 5192 | * |
| 5193 | * Conditions: |
| 5194 | * 'waitq' is not locked |
| 5195 | */ |
| 5196 | wait_result_t waitq_assert_wait64(struct waitq *waitq, |
| 5197 | event64_t wait_event, |
| 5198 | wait_interrupt_t interruptible, |
| 5199 | uint64_t deadline) |
| 5200 | { |
| 5201 | thread_t thread = current_thread(); |
| 5202 | wait_result_t ret; |
| 5203 | spl_t s; |
| 5204 | |
| 5205 | if (!waitq_valid(waitq)) |
| 5206 | panic("Invalid waitq: %p" , waitq); |
| 5207 | |
| 5208 | if (waitq_irq_safe(waitq)) |
| 5209 | s = splsched(); |
| 5210 | |
| 5211 | waitq_lock(waitq); |
| 5212 | ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible, |
| 5213 | TIMEOUT_URGENCY_SYS_NORMAL, |
| 5214 | deadline, TIMEOUT_NO_LEEWAY, thread); |
| 5215 | waitq_unlock(waitq); |
| 5216 | |
| 5217 | if (waitq_irq_safe(waitq)) |
| 5218 | splx(s); |
| 5219 | |
| 5220 | return ret; |
| 5221 | } |
| 5222 | |
| 5223 | /** |
| 5224 | * declare a thread's intent to wait on 'waitq' for 'wait_event' |
| 5225 | * |
| 5226 | * Conditions: |
| 5227 | * 'waitq' is not locked |
| 5228 | * will disable and re-enable interrupts while locking current_thread() |
| 5229 | */ |
| 5230 | wait_result_t waitq_assert_wait64_leeway(struct waitq *waitq, |
| 5231 | event64_t wait_event, |
| 5232 | wait_interrupt_t interruptible, |
| 5233 | wait_timeout_urgency_t urgency, |
| 5234 | uint64_t deadline, |
| 5235 | uint64_t leeway) |
| 5236 | { |
| 5237 | wait_result_t ret; |
| 5238 | thread_t thread = current_thread(); |
| 5239 | spl_t s; |
| 5240 | |
| 5241 | if (!waitq_valid(waitq)) |
| 5242 | panic("Invalid waitq: %p" , waitq); |
| 5243 | |
| 5244 | if (waitq_irq_safe(waitq)) |
| 5245 | s = splsched(); |
| 5246 | |
| 5247 | waitq_lock(waitq); |
| 5248 | ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible, |
| 5249 | urgency, deadline, leeway, thread); |
| 5250 | waitq_unlock(waitq); |
| 5251 | |
| 5252 | if (waitq_irq_safe(waitq)) |
| 5253 | splx(s); |
| 5254 | |
| 5255 | return ret; |
| 5256 | } |
| 5257 | |
| 5258 | /** |
| 5259 | * wakeup a single thread from a waitq that's waiting for a given event |
| 5260 | * |
| 5261 | * Conditions: |
| 5262 | * 'waitq' is not locked |
| 5263 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets |
| 5264 | * may disable and re-enable interrupts |
| 5265 | * |
| 5266 | * Notes: |
| 5267 | * will _not_ block if waitq is global (or not a member of any set) |
| 5268 | */ |
| 5269 | kern_return_t waitq_wakeup64_one(struct waitq *waitq, event64_t wake_event, |
| 5270 | wait_result_t result, int priority) |
| 5271 | { |
| 5272 | kern_return_t kr; |
| 5273 | uint64_t reserved_preposts = 0; |
| 5274 | spl_t spl; |
| 5275 | |
| 5276 | if (!waitq_valid(waitq)) |
| 5277 | panic("Invalid waitq: %p" , waitq); |
| 5278 | |
| 5279 | if (!waitq_irq_safe(waitq)) { |
| 5280 | /* reserve preposts in addition to locking the waitq */ |
| 5281 | reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED); |
| 5282 | } else { |
| 5283 | spl = splsched(); |
| 5284 | waitq_lock(waitq); |
| 5285 | } |
| 5286 | |
| 5287 | /* waitq is locked upon return */ |
| 5288 | kr = waitq_wakeup64_one_locked(waitq, wake_event, result, |
| 5289 | &reserved_preposts, priority, WAITQ_UNLOCK); |
| 5290 | |
| 5291 | if (waitq_irq_safe(waitq)) |
| 5292 | splx(spl); |
| 5293 | |
| 5294 | /* release any left-over prepost object (won't block/lock anything) */ |
| 5295 | waitq_prepost_release_reserve(reserved_preposts); |
| 5296 | |
| 5297 | return kr; |
| 5298 | } |
| 5299 | |
| 5300 | /** |
| 5301 | * wakeup all threads from a waitq that are waiting for a given event |
| 5302 | * |
| 5303 | * Conditions: |
| 5304 | * 'waitq' is not locked |
| 5305 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets |
| 5306 | * may disable and re-enable interrupts |
| 5307 | * |
| 5308 | * Notes: |
| 5309 | * will _not_ block if waitq is global (or not a member of any set) |
| 5310 | */ |
| 5311 | kern_return_t waitq_wakeup64_all(struct waitq *waitq, |
| 5312 | event64_t wake_event, |
| 5313 | wait_result_t result, |
| 5314 | int priority) |
| 5315 | { |
| 5316 | kern_return_t ret; |
| 5317 | uint64_t reserved_preposts = 0; |
| 5318 | spl_t s; |
| 5319 | |
| 5320 | if (!waitq_valid(waitq)) |
| 5321 | panic("Invalid waitq: %p" , waitq); |
| 5322 | |
| 5323 | if (!waitq_irq_safe(waitq)) { |
| 5324 | /* reserve preposts in addition to locking waitq */ |
| 5325 | reserved_preposts = waitq_prepost_reserve(waitq, 0, |
| 5326 | WAITQ_KEEP_LOCKED); |
| 5327 | } else { |
| 5328 | s = splsched(); |
| 5329 | waitq_lock(waitq); |
| 5330 | } |
| 5331 | |
| 5332 | ret = waitq_wakeup64_all_locked(waitq, wake_event, result, |
| 5333 | &reserved_preposts, priority, |
| 5334 | WAITQ_UNLOCK); |
| 5335 | |
| 5336 | if (waitq_irq_safe(waitq)) |
| 5337 | splx(s); |
| 5338 | |
| 5339 | waitq_prepost_release_reserve(reserved_preposts); |
| 5340 | |
| 5341 | return ret; |
| 5342 | |
| 5343 | } |
| 5344 | |
| 5345 | /** |
| 5346 | * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event' |
| 5347 | * |
| 5348 | * Conditions: |
| 5349 | * 'waitq' is not locked |
| 5350 | * |
| 5351 | * Notes: |
| 5352 | * May temporarily disable and re-enable interrupts |
| 5353 | */ |
| 5354 | kern_return_t waitq_wakeup64_thread(struct waitq *waitq, |
| 5355 | event64_t wake_event, |
| 5356 | thread_t thread, |
| 5357 | wait_result_t result) |
| 5358 | { |
| 5359 | kern_return_t ret; |
| 5360 | spl_t s, th_spl; |
| 5361 | |
| 5362 | if (!waitq_valid(waitq)) |
| 5363 | panic("Invalid waitq: %p" , waitq); |
| 5364 | |
| 5365 | if (waitq_irq_safe(waitq)) |
| 5366 | s = splsched(); |
| 5367 | waitq_lock(waitq); |
| 5368 | |
| 5369 | ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl); |
| 5370 | /* on success, returns 'thread' locked */ |
| 5371 | |
| 5372 | waitq_unlock(waitq); |
| 5373 | |
| 5374 | if (ret == KERN_SUCCESS) { |
| 5375 | ret = thread_go(thread, result); |
| 5376 | assert(ret == KERN_SUCCESS); |
| 5377 | thread_unlock(thread); |
| 5378 | splx(th_spl); |
| 5379 | waitq_stats_count_wakeup(waitq); |
| 5380 | } else { |
| 5381 | ret = KERN_NOT_WAITING; |
| 5382 | waitq_stats_count_fail(waitq); |
| 5383 | } |
| 5384 | |
| 5385 | if (waitq_irq_safe(waitq)) |
| 5386 | splx(s); |
| 5387 | |
| 5388 | return ret; |
| 5389 | } |
| 5390 | |
| 5391 | /** |
| 5392 | * wakeup a single thread from a waitq that's waiting for a given event |
| 5393 | * and return a reference to that thread |
| 5394 | * returns THREAD_NULL if no thread was waiting |
| 5395 | * |
| 5396 | * Conditions: |
| 5397 | * 'waitq' is not locked |
| 5398 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets |
| 5399 | * may disable and re-enable interrupts |
| 5400 | * |
| 5401 | * Notes: |
| 5402 | * will _not_ block if waitq is global (or not a member of any set) |
| 5403 | */ |
| 5404 | thread_t |
| 5405 | waitq_wakeup64_identify(struct waitq *waitq, |
| 5406 | event64_t wake_event, |
| 5407 | wait_result_t result, |
| 5408 | int priority) |
| 5409 | { |
| 5410 | uint64_t reserved_preposts = 0; |
| 5411 | spl_t thread_spl = 0; |
| 5412 | thread_t thread; |
| 5413 | spl_t spl; |
| 5414 | |
| 5415 | if (!waitq_valid(waitq)) |
| 5416 | panic("Invalid waitq: %p" , waitq); |
| 5417 | |
| 5418 | if (!waitq_irq_safe(waitq)) { |
| 5419 | /* reserve preposts in addition to locking waitq */ |
| 5420 | reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED); |
| 5421 | } else { |
| 5422 | spl = splsched(); |
| 5423 | waitq_lock(waitq); |
| 5424 | } |
| 5425 | |
| 5426 | thread = waitq_wakeup64_identify_locked(waitq, wake_event, result, |
| 5427 | &thread_spl, &reserved_preposts, |
| 5428 | priority, WAITQ_UNLOCK); |
| 5429 | /* waitq is unlocked, thread is locked */ |
| 5430 | |
| 5431 | if (thread != THREAD_NULL) { |
| 5432 | thread_reference(thread); |
| 5433 | thread_unlock(thread); |
| 5434 | splx(thread_spl); |
| 5435 | } |
| 5436 | |
| 5437 | if (waitq_irq_safe(waitq)) |
| 5438 | splx(spl); |
| 5439 | |
| 5440 | /* release any left-over prepost object (won't block/lock anything) */ |
| 5441 | waitq_prepost_release_reserve(reserved_preposts); |
| 5442 | |
| 5443 | /* returns +1 ref to running thread or THREAD_NULL */ |
| 5444 | return thread; |
| 5445 | } |
| 5446 | |
| 5447 | |