| 1 | /* |
| 2 | * Copyright (c) 2012-2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/host_priv.h> |
| 29 | #include <mach/host_special_ports.h> |
| 30 | #include <mach/mach_types.h> |
| 31 | #include <mach/telemetry_notification_server.h> |
| 32 | |
| 33 | #include <kern/assert.h> |
| 34 | #include <kern/clock.h> |
| 35 | #include <kern/debug.h> |
| 36 | #include <kern/host.h> |
| 37 | #include <kern/kalloc.h> |
| 38 | #include <kern/kern_types.h> |
| 39 | #include <kern/locks.h> |
| 40 | #include <kern/misc_protos.h> |
| 41 | #include <kern/sched.h> |
| 42 | #include <kern/sched_prim.h> |
| 43 | #include <kern/telemetry.h> |
| 44 | #include <kern/timer_call.h> |
| 45 | #include <kern/policy_internal.h> |
| 46 | #include <kern/kcdata.h> |
| 47 | |
| 48 | #include <pexpert/pexpert.h> |
| 49 | |
| 50 | #include <vm/vm_kern.h> |
| 51 | #include <vm/vm_shared_region.h> |
| 52 | |
| 53 | #include <kperf/callstack.h> |
| 54 | #include <kern/backtrace.h> |
| 55 | #include <kern/monotonic.h> |
| 56 | |
| 57 | #include <sys/kdebug.h> |
| 58 | #include <uuid/uuid.h> |
| 59 | #include <kdp/kdp_dyld.h> |
| 60 | |
| 61 | #define TELEMETRY_DEBUG 0 |
| 62 | |
| 63 | extern int proc_pid(void *); |
| 64 | extern char *proc_name_address(void *p); |
| 65 | extern uint64_t proc_uniqueid(void *p); |
| 66 | extern uint64_t proc_was_throttled(void *p); |
| 67 | extern uint64_t proc_did_throttle(void *p); |
| 68 | extern int proc_selfpid(void); |
| 69 | extern boolean_t task_did_exec(task_t task); |
| 70 | extern boolean_t task_is_exec_copy(task_t task); |
| 71 | |
| 72 | struct micro_snapshot_buffer { |
| 73 | vm_offset_t buffer; |
| 74 | uint32_t size; |
| 75 | uint32_t current_position; |
| 76 | uint32_t end_point; |
| 77 | }; |
| 78 | |
| 79 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer); |
| 80 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer); |
| 81 | |
| 82 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ |
| 83 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) |
| 84 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) |
| 85 | |
| 86 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification |
| 87 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication |
| 88 | |
| 89 | uint32_t telemetry_sample_rate = 0; |
| 90 | volatile boolean_t telemetry_needs_record = FALSE; |
| 91 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; |
| 92 | |
| 93 | /* |
| 94 | * If TRUE, record micro-stackshot samples for all tasks. |
| 95 | * If FALSE, only sample tasks which are marked for telemetry. |
| 96 | */ |
| 97 | boolean_t telemetry_sample_all_tasks = FALSE; |
| 98 | boolean_t telemetry_sample_pmis = FALSE; |
| 99 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry |
| 100 | |
| 101 | uint32_t telemetry_timestamp = 0; |
| 102 | |
| 103 | /* |
| 104 | * The telemetry_buffer is responsible |
| 105 | * for timer samples and interrupt samples that are driven by |
| 106 | * compute_averages(). It will notify its client (if one |
| 107 | * exists) when it has enough data to be worth flushing. |
| 108 | */ |
| 109 | struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0}; |
| 110 | |
| 111 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? |
| 112 | int telemetry_buffer_notify_at = 0; |
| 113 | |
| 114 | lck_grp_t telemetry_lck_grp; |
| 115 | lck_mtx_t telemetry_mtx; |
| 116 | lck_mtx_t telemetry_pmi_mtx; |
| 117 | |
| 118 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0) |
| 119 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) |
| 120 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0) |
| 121 | |
| 122 | #define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0) |
| 123 | #define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0) |
| 124 | |
| 125 | void telemetry_init(void) |
| 126 | { |
| 127 | kern_return_t ret; |
| 128 | uint32_t telemetry_notification_leeway; |
| 129 | |
| 130 | lck_grp_init(&telemetry_lck_grp, "telemetry group" , LCK_GRP_ATTR_NULL); |
| 131 | lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL); |
| 132 | lck_mtx_init(&telemetry_pmi_mtx, &telemetry_lck_grp, LCK_ATTR_NULL); |
| 133 | |
| 134 | if (!PE_parse_boot_argn("telemetry_buffer_size" , &telemetry_buffer.size, sizeof(telemetry_buffer.size))) { |
| 135 | telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE; |
| 136 | } |
| 137 | |
| 138 | if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) |
| 139 | telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE; |
| 140 | |
| 141 | ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG); |
| 142 | if (ret != KERN_SUCCESS) { |
| 143 | kprintf("Telemetry: Allocation failed: %d\n" , ret); |
| 144 | return; |
| 145 | } |
| 146 | bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size); |
| 147 | |
| 148 | if (!PE_parse_boot_argn("telemetry_notification_leeway" , &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) { |
| 149 | /* |
| 150 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. |
| 151 | */ |
| 152 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; |
| 153 | } |
| 154 | if (telemetry_notification_leeway >= telemetry_buffer.size) { |
| 155 | printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n" , |
| 156 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); |
| 157 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; |
| 158 | } |
| 159 | telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway; |
| 160 | |
| 161 | if (!PE_parse_boot_argn("telemetry_sample_rate" , &telemetry_sample_rate, sizeof(telemetry_sample_rate))) { |
| 162 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. |
| 167 | */ |
| 168 | if (!PE_parse_boot_argn("telemetry_sample_all_tasks" , &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) { |
| 169 | |
| 170 | #if CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG) |
| 171 | telemetry_sample_all_tasks = FALSE; |
| 172 | #else |
| 173 | telemetry_sample_all_tasks = TRUE; |
| 174 | #endif /* CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG) */ |
| 175 | |
| 176 | } |
| 177 | |
| 178 | kprintf("Telemetry: Sampling %stasks once per %u second%s\n" , |
| 179 | (telemetry_sample_all_tasks) ? "all " : "" , |
| 180 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s" ); |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). |
| 185 | * |
| 186 | * enable_disable == 1: turn it on |
| 187 | * enable_disable == 0: turn it off |
| 188 | */ |
| 189 | void |
| 190 | telemetry_global_ctl(int enable_disable) |
| 191 | { |
| 192 | if (enable_disable == 1) { |
| 193 | telemetry_sample_all_tasks = TRUE; |
| 194 | } else { |
| 195 | telemetry_sample_all_tasks = FALSE; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Opt the given task into or out of the telemetry stream. |
| 201 | * |
| 202 | * Supported reasons (callers may use any or all of): |
| 203 | * TF_CPUMON_WARNING |
| 204 | * TF_WAKEMON_WARNING |
| 205 | * |
| 206 | * enable_disable == 1: turn it on |
| 207 | * enable_disable == 0: turn it off |
| 208 | */ |
| 209 | void |
| 210 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) |
| 211 | { |
| 212 | task_lock(task); |
| 213 | telemetry_task_ctl_locked(task, reasons, enable_disable); |
| 214 | task_unlock(task); |
| 215 | } |
| 216 | |
| 217 | void |
| 218 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) |
| 219 | { |
| 220 | uint32_t origflags; |
| 221 | |
| 222 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); |
| 223 | |
| 224 | task_lock_assert_owned(task); |
| 225 | |
| 226 | origflags = task->t_flags; |
| 227 | |
| 228 | if (enable_disable == 1) { |
| 229 | task->t_flags |= reasons; |
| 230 | if ((origflags & TF_TELEMETRY) == 0) { |
| 231 | OSIncrementAtomic(&telemetry_active_tasks); |
| 232 | #if TELEMETRY_DEBUG |
| 233 | printf("%s: telemetry OFF -> ON (%d active)\n" , proc_name_address(task->bsd_info), telemetry_active_tasks); |
| 234 | #endif |
| 235 | } |
| 236 | } else { |
| 237 | task->t_flags &= ~reasons; |
| 238 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { |
| 239 | /* |
| 240 | * If this task went from having at least one telemetry bit to having none, |
| 241 | * the net change was to disable telemetry for the task. |
| 242 | */ |
| 243 | OSDecrementAtomic(&telemetry_active_tasks); |
| 244 | #if TELEMETRY_DEBUG |
| 245 | printf("%s: telemetry ON -> OFF (%d active)\n" , proc_name_address(task->bsd_info), telemetry_active_tasks); |
| 246 | #endif |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * Determine if the current thread is eligible for telemetry: |
| 253 | * |
| 254 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. |
| 255 | * telemetry_active_tasks: Count of tasks opted in. |
| 256 | * task->t_flags & TF_TELEMETRY: This task is opted in. |
| 257 | */ |
| 258 | static boolean_t |
| 259 | telemetry_is_active(thread_t thread) |
| 260 | { |
| 261 | task_t task = thread->task; |
| 262 | |
| 263 | if (task == kernel_task) { |
| 264 | /* Kernel threads never return to an AST boundary, and are ineligible */ |
| 265 | return FALSE; |
| 266 | } |
| 267 | |
| 268 | if (telemetry_sample_all_tasks || telemetry_sample_pmis) { |
| 269 | return TRUE; |
| 270 | } |
| 271 | |
| 272 | if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) { |
| 273 | return TRUE; |
| 274 | } |
| 275 | |
| 276 | return FALSE; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Userland is arming a timer. If we are eligible for such a record, |
| 281 | * sample now. No need to do this one at the AST because we're already at |
| 282 | * a safe place in this system call. |
| 283 | */ |
| 284 | int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) |
| 285 | { |
| 286 | if (telemetry_needs_timer_arming_record == TRUE) { |
| 287 | telemetry_needs_timer_arming_record = FALSE; |
| 288 | telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer); |
| 289 | } |
| 290 | |
| 291 | return (0); |
| 292 | } |
| 293 | |
| 294 | #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) |
| 295 | static void |
| 296 | telemetry_pmi_handler(bool user_mode, __unused void *ctx) |
| 297 | { |
| 298 | telemetry_mark_curthread(user_mode, TRUE); |
| 299 | } |
| 300 | #endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */ |
| 301 | |
| 302 | int telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period) |
| 303 | { |
| 304 | #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) |
| 305 | static boolean_t sample_all_tasks_aside = FALSE; |
| 306 | static uint32_t active_tasks_aside = FALSE; |
| 307 | int error = 0; |
| 308 | const char *name = "?" ; |
| 309 | |
| 310 | unsigned int ctr = 0; |
| 311 | |
| 312 | TELEMETRY_PMI_LOCK(); |
| 313 | |
| 314 | switch (pmi_ctr) { |
| 315 | case TELEMETRY_PMI_NONE: |
| 316 | if (!telemetry_sample_pmis) { |
| 317 | error = 1; |
| 318 | goto out; |
| 319 | } |
| 320 | |
| 321 | telemetry_sample_pmis = FALSE; |
| 322 | telemetry_sample_all_tasks = sample_all_tasks_aside; |
| 323 | telemetry_active_tasks = active_tasks_aside; |
| 324 | error = mt_microstackshot_stop(); |
| 325 | if (!error) { |
| 326 | printf("telemetry: disabling ustackshot on PMI\n" ); |
| 327 | } |
| 328 | goto out; |
| 329 | |
| 330 | case TELEMETRY_PMI_INSTRS: |
| 331 | ctr = MT_CORE_INSTRS; |
| 332 | name = "instructions" ; |
| 333 | break; |
| 334 | |
| 335 | case TELEMETRY_PMI_CYCLES: |
| 336 | ctr = MT_CORE_CYCLES; |
| 337 | name = "cycles" ; |
| 338 | break; |
| 339 | |
| 340 | default: |
| 341 | error = 1; |
| 342 | goto out; |
| 343 | } |
| 344 | |
| 345 | telemetry_sample_pmis = TRUE; |
| 346 | sample_all_tasks_aside = telemetry_sample_all_tasks; |
| 347 | active_tasks_aside = telemetry_active_tasks; |
| 348 | telemetry_sample_all_tasks = FALSE; |
| 349 | telemetry_active_tasks = 0; |
| 350 | |
| 351 | error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL); |
| 352 | if (!error) { |
| 353 | printf("telemetry: ustackshot every %llu %s\n" , period, name); |
| 354 | } |
| 355 | |
| 356 | out: |
| 357 | TELEMETRY_PMI_UNLOCK(); |
| 358 | return error; |
| 359 | #else /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */ |
| 360 | #pragma unused(pmi_ctr, period) |
| 361 | return 1; |
| 362 | #endif /* !defined(MT_CORE_INSTRS) || !defined(MT_CORE_CYCLES) */ |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Mark the current thread for an interrupt-based |
| 367 | * telemetry record, to be sampled at the next AST boundary. |
| 368 | */ |
| 369 | void telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi) |
| 370 | { |
| 371 | uint32_t ast_bits = 0; |
| 372 | thread_t thread = current_thread(); |
| 373 | |
| 374 | /* |
| 375 | * If telemetry isn't active for this thread, return and try |
| 376 | * again next time. |
| 377 | */ |
| 378 | if (telemetry_is_active(thread) == FALSE) { |
| 379 | return; |
| 380 | } |
| 381 | |
| 382 | ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); |
| 383 | if (pmi) { |
| 384 | ast_bits |= AST_TELEMETRY_PMI; |
| 385 | } |
| 386 | |
| 387 | telemetry_needs_record = FALSE; |
| 388 | thread_ast_set(thread, ast_bits); |
| 389 | ast_propagate(thread); |
| 390 | } |
| 391 | |
| 392 | void compute_telemetry(void *arg __unused) |
| 393 | { |
| 394 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { |
| 395 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { |
| 396 | telemetry_needs_record = TRUE; |
| 397 | telemetry_needs_timer_arming_record = TRUE; |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * If userland has registered a port for telemetry notifications, send one now. |
| 404 | */ |
| 405 | static void |
| 406 | telemetry_notify_user(void) |
| 407 | { |
| 408 | mach_port_t user_port = MACH_PORT_NULL; |
| 409 | |
| 410 | kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port); |
| 411 | if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { |
| 412 | return; |
| 413 | } |
| 414 | |
| 415 | telemetry_notification(user_port, 0); |
| 416 | ipc_port_release_send(user_port); |
| 417 | } |
| 418 | |
| 419 | void telemetry_ast(thread_t thread, ast_t reasons) |
| 420 | { |
| 421 | assert((reasons & AST_TELEMETRY_ALL) != 0); |
| 422 | |
| 423 | uint8_t record_type = 0; |
| 424 | if (reasons & AST_TELEMETRY_IO) { |
| 425 | record_type |= kIORecord; |
| 426 | } |
| 427 | if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) { |
| 428 | record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord : |
| 429 | kInterruptRecord; |
| 430 | } |
| 431 | |
| 432 | uint8_t user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0; |
| 433 | |
| 434 | uint8_t microsnapshot_flags = record_type | user_telemetry; |
| 435 | |
| 436 | telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer); |
| 437 | } |
| 438 | |
| 439 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer) |
| 440 | { |
| 441 | task_t task; |
| 442 | void *p; |
| 443 | uint32_t btcount = 0, bti; |
| 444 | struct micro_snapshot *msnap; |
| 445 | struct task_snapshot *tsnap; |
| 446 | struct thread_snapshot *thsnap; |
| 447 | clock_sec_t secs; |
| 448 | clock_usec_t usecs; |
| 449 | vm_size_t framesize; |
| 450 | uint32_t current_record_start; |
| 451 | uint32_t tmp = 0; |
| 452 | boolean_t notify = FALSE; |
| 453 | |
| 454 | if (thread == THREAD_NULL) |
| 455 | return; |
| 456 | |
| 457 | task = thread->task; |
| 458 | if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) |
| 459 | return; |
| 460 | |
| 461 | /* telemetry_XXX accessed outside of lock for instrumentation only */ |
| 462 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, |
| 463 | microsnapshot_flags, telemetry_bytes_since_last_mark, 0, |
| 464 | (&telemetry_buffer != current_buffer)); |
| 465 | |
| 466 | p = get_bsdtask_info(task); |
| 467 | |
| 468 | /* |
| 469 | * Gather up the data we'll need for this sample. The sample is written into the kernel |
| 470 | * buffer with the global telemetry lock held -- so we must do our (possibly faulting) |
| 471 | * copies from userland here, before taking the lock. |
| 472 | */ |
| 473 | uintptr_t frames[MAX_CALLSTACK_FRAMES] = {}; |
| 474 | bool user64; |
| 475 | int backtrace_error = backtrace_user(frames, MAX_CALLSTACK_FRAMES, &btcount, &user64); |
| 476 | if (backtrace_error) { |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland. |
| 482 | */ |
| 483 | int shared_cache_uuid_valid = 0; |
| 484 | uint64_t shared_cache_base_address; |
| 485 | struct _dyld_cache_header ; |
| 486 | uint64_t shared_cache_slide; |
| 487 | |
| 488 | /* |
| 489 | * Don't copy in the entire shared cache header; we only need the UUID. Calculate the |
| 490 | * offset of that one field. |
| 491 | */ |
| 492 | int = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header; |
| 493 | vm_shared_region_t sr = vm_shared_region_get(task); |
| 494 | if (sr != NULL) { |
| 495 | if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) && |
| 496 | (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid, |
| 497 | sizeof (shared_cache_header.uuid)) == 0)) { |
| 498 | shared_cache_uuid_valid = 1; |
| 499 | shared_cache_slide = vm_shared_region_get_slide(sr); |
| 500 | } |
| 501 | // vm_shared_region_get() gave us a reference on the shared region. |
| 502 | vm_shared_region_deallocate(sr); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * Retrieve the array of UUID's for binaries used by this task. |
| 507 | * We reach down into DYLD's data structures to find the array. |
| 508 | * |
| 509 | * XXX - make this common with kdp? |
| 510 | */ |
| 511 | uint32_t uuid_info_count = 0; |
| 512 | mach_vm_address_t uuid_info_addr = 0; |
| 513 | if (task_has_64Bit_addr(task)) { |
| 514 | struct user64_dyld_all_image_infos task_image_infos; |
| 515 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { |
| 516 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; |
| 517 | uuid_info_addr = task_image_infos.uuidArray; |
| 518 | } |
| 519 | } else { |
| 520 | struct user32_dyld_all_image_infos task_image_infos; |
| 521 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { |
| 522 | uuid_info_count = task_image_infos.uuidArrayCount; |
| 523 | uuid_info_addr = task_image_infos.uuidArray; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating |
| 529 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info |
| 530 | * for this task. |
| 531 | */ |
| 532 | if (!uuid_info_addr) { |
| 533 | uuid_info_count = 0; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Don't copy in an unbounded amount of memory. The main binary and interesting |
| 538 | * non-shared-cache libraries should be in the first few images. |
| 539 | */ |
| 540 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { |
| 541 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; |
| 542 | } |
| 543 | |
| 544 | uint32_t uuid_info_size = (uint32_t)(task_has_64Bit_addr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
| 545 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; |
| 546 | char *uuid_info_array = NULL; |
| 547 | |
| 548 | if (uuid_info_count > 0) { |
| 549 | if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) { |
| 550 | return; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Copy in the UUID info array. |
| 555 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. |
| 556 | */ |
| 557 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { |
| 558 | kfree(uuid_info_array, uuid_info_array_size); |
| 559 | uuid_info_array = NULL; |
| 560 | uuid_info_array_size = 0; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Look for a dispatch queue serial number, and copy it in from userland if present. |
| 566 | */ |
| 567 | uint64_t dqserialnum = 0; |
| 568 | int dqserialnum_valid = 0; |
| 569 | |
| 570 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); |
| 571 | if (dqkeyaddr != 0) { |
| 572 | uint64_t dqaddr = 0; |
| 573 | uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task); |
| 574 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64Bit_addr(task) ? 8 : 4)) == 0) && |
| 575 | (dqaddr != 0) && (dq_serialno_offset != 0)) { |
| 576 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; |
| 577 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64Bit_addr(task) ? 8 : 4)) == 0) { |
| 578 | dqserialnum_valid = 1; |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | clock_get_calendar_microtime(&secs, &usecs); |
| 584 | |
| 585 | TELEMETRY_LOCK(); |
| 586 | |
| 587 | /* |
| 588 | * If our buffer is not backed by anything, |
| 589 | * then we cannot take the sample. Meant to allow us to deallocate the window |
| 590 | * buffer if it is disabled. |
| 591 | */ |
| 592 | if (!current_buffer->buffer) |
| 593 | goto cancel_sample; |
| 594 | |
| 595 | /* |
| 596 | * We do the bulk of the operation under the telemetry lock, on assumption that |
| 597 | * any page faults during execution will not cause another AST_TELEMETRY_ALL |
| 598 | * to deadlock; they will just block until we finish. This makes it easier |
| 599 | * to copy into the buffer directly. As soon as we unlock, userspace can copy |
| 600 | * out of our buffer. |
| 601 | */ |
| 602 | |
| 603 | copytobuffer: |
| 604 | |
| 605 | current_record_start = current_buffer->current_position; |
| 606 | |
| 607 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) { |
| 608 | /* |
| 609 | * We can't fit a record in the space available, so wrap around to the beginning. |
| 610 | * Save the current position as the known end point of valid data. |
| 611 | */ |
| 612 | current_buffer->end_point = current_record_start; |
| 613 | current_buffer->current_position = 0; |
| 614 | if (current_record_start == 0) { |
| 615 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 616 | goto cancel_sample; |
| 617 | } |
| 618 | goto copytobuffer; |
| 619 | } |
| 620 | |
| 621 | msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 622 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; |
| 623 | msnap->ms_flags = microsnapshot_flags; |
| 624 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ |
| 625 | msnap->ms_cpu = cpu_number(); |
| 626 | msnap->ms_time = secs; |
| 627 | msnap->ms_time_microsecs = usecs; |
| 628 | |
| 629 | current_buffer->current_position += sizeof(struct micro_snapshot); |
| 630 | |
| 631 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) { |
| 632 | current_buffer->end_point = current_record_start; |
| 633 | current_buffer->current_position = 0; |
| 634 | if (current_record_start == 0) { |
| 635 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 636 | goto cancel_sample; |
| 637 | } |
| 638 | goto copytobuffer; |
| 639 | } |
| 640 | |
| 641 | tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 642 | bzero(tsnap, sizeof(*tsnap)); |
| 643 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; |
| 644 | tsnap->pid = proc_pid(p); |
| 645 | tsnap->uniqueid = proc_uniqueid(p); |
| 646 | tsnap->user_time_in_terminated_threads = task->total_user_time; |
| 647 | tsnap->system_time_in_terminated_threads = task->total_system_time; |
| 648 | tsnap->suspend_count = task->suspend_count; |
| 649 | tsnap->task_size = (typeof(tsnap->task_size)) (get_task_phys_footprint(task) / PAGE_SIZE); |
| 650 | tsnap->faults = task->faults; |
| 651 | tsnap->pageins = task->pageins; |
| 652 | tsnap->cow_faults = task->cow_faults; |
| 653 | /* |
| 654 | * The throttling counters are maintained as 64-bit counters in the proc |
| 655 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot |
| 656 | * struct to save space and since we do not expect them to overflow 32-bits. If we |
| 657 | * find these values overflowing in the future, the fix would be to simply |
| 658 | * upgrade these counters to 64-bit in the task_snapshot struct |
| 659 | */ |
| 660 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); |
| 661 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); |
| 662 | |
| 663 | if (task->t_flags & TF_TELEMETRY) { |
| 664 | tsnap->ss_flags |= kTaskRsrcFlagged; |
| 665 | } |
| 666 | |
| 667 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) { |
| 668 | tsnap->ss_flags |= kTaskDarwinBG; |
| 669 | } |
| 670 | |
| 671 | proc_get_darwinbgstate(task, &tmp); |
| 672 | |
| 673 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { |
| 674 | tsnap->ss_flags |= kTaskIsForeground; |
| 675 | } |
| 676 | |
| 677 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { |
| 678 | tsnap->ss_flags |= kTaskIsBoosted; |
| 679 | } |
| 680 | |
| 681 | if (tmp & PROC_FLAG_SUPPRESSED) { |
| 682 | tsnap->ss_flags |= kTaskIsSuppressed; |
| 683 | } |
| 684 | |
| 685 | tsnap->latency_qos = task_grab_latency_qos(task); |
| 686 | |
| 687 | strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm)); |
| 688 | if (task_has_64Bit_addr(thread->task)) { |
| 689 | tsnap->ss_flags |= kUser64_p; |
| 690 | } |
| 691 | |
| 692 | if (shared_cache_uuid_valid) { |
| 693 | tsnap->shared_cache_slide = shared_cache_slide; |
| 694 | bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid)); |
| 695 | } |
| 696 | |
| 697 | current_buffer->current_position += sizeof(struct task_snapshot); |
| 698 | |
| 699 | /* |
| 700 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries |
| 701 | * used by this task. |
| 702 | */ |
| 703 | if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) { |
| 704 | current_buffer->end_point = current_record_start; |
| 705 | current_buffer->current_position = 0; |
| 706 | if (current_record_start == 0) { |
| 707 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 708 | goto cancel_sample; |
| 709 | } |
| 710 | goto copytobuffer; |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * Copy the UUID info array into our sample. |
| 715 | */ |
| 716 | if (uuid_info_array_size > 0) { |
| 717 | bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size); |
| 718 | tsnap->nloadinfos = uuid_info_count; |
| 719 | } |
| 720 | |
| 721 | current_buffer->current_position += uuid_info_array_size; |
| 722 | |
| 723 | /* |
| 724 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. |
| 725 | */ |
| 726 | |
| 727 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) { |
| 728 | /* wrap and overwrite */ |
| 729 | current_buffer->end_point = current_record_start; |
| 730 | current_buffer->current_position = 0; |
| 731 | if (current_record_start == 0) { |
| 732 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 733 | goto cancel_sample; |
| 734 | } |
| 735 | goto copytobuffer; |
| 736 | } |
| 737 | |
| 738 | thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 739 | bzero(thsnap, sizeof(*thsnap)); |
| 740 | |
| 741 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; |
| 742 | thsnap->thread_id = thread_tid(thread); |
| 743 | thsnap->state = thread->state; |
| 744 | thsnap->priority = thread->base_pri; |
| 745 | thsnap->sched_pri = thread->sched_pri; |
| 746 | thsnap->sched_flags = thread->sched_flags; |
| 747 | thsnap->ss_flags |= kStacksPCOnly; |
| 748 | thsnap->ts_qos = thread->effective_policy.thep_qos; |
| 749 | thsnap->ts_rqos = thread->requested_policy.thrp_qos; |
| 750 | thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
| 751 | thread->requested_policy.thrp_qos_workq_override); |
| 752 | |
| 753 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) { |
| 754 | thsnap->ss_flags |= kThreadDarwinBG; |
| 755 | } |
| 756 | |
| 757 | thsnap->user_time = timer_grab(&thread->user_timer); |
| 758 | |
| 759 | uint64_t tval = timer_grab(&thread->system_timer); |
| 760 | |
| 761 | if (thread->precise_user_kernel_time) { |
| 762 | thsnap->system_time = tval; |
| 763 | } else { |
| 764 | thsnap->user_time += tval; |
| 765 | thsnap->system_time = 0; |
| 766 | } |
| 767 | |
| 768 | current_buffer->current_position += sizeof(struct thread_snapshot); |
| 769 | |
| 770 | /* |
| 771 | * If this thread has a dispatch queue serial number, include it here. |
| 772 | */ |
| 773 | if (dqserialnum_valid) { |
| 774 | if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) { |
| 775 | /* wrap and overwrite */ |
| 776 | current_buffer->end_point = current_record_start; |
| 777 | current_buffer->current_position = 0; |
| 778 | if (current_record_start == 0) { |
| 779 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 780 | goto cancel_sample; |
| 781 | } |
| 782 | goto copytobuffer; |
| 783 | } |
| 784 | |
| 785 | thsnap->ss_flags |= kHasDispatchSerial; |
| 786 | bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof (dqserialnum)); |
| 787 | current_buffer->current_position += sizeof (dqserialnum); |
| 788 | } |
| 789 | |
| 790 | if (user64) { |
| 791 | framesize = 8; |
| 792 | thsnap->ss_flags |= kUser64_p; |
| 793 | } else { |
| 794 | framesize = 4; |
| 795 | } |
| 796 | |
| 797 | /* |
| 798 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, |
| 799 | * and start again there so that we always store a full record. |
| 800 | */ |
| 801 | if ((current_buffer->size - current_buffer->current_position)/framesize < btcount) { |
| 802 | current_buffer->end_point = current_record_start; |
| 803 | current_buffer->current_position = 0; |
| 804 | if (current_record_start == 0) { |
| 805 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 806 | goto cancel_sample; |
| 807 | } |
| 808 | goto copytobuffer; |
| 809 | } |
| 810 | |
| 811 | for (bti=0; bti < btcount; bti++, current_buffer->current_position += framesize) { |
| 812 | if (framesize == 8) { |
| 813 | *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti]; |
| 814 | } else { |
| 815 | *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti]; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | if (current_buffer->end_point < current_buffer->current_position) { |
| 820 | /* |
| 821 | * Each time the cursor wraps around to the beginning, we leave a |
| 822 | * differing amount of unused space at the end of the buffer. Make |
| 823 | * sure the cursor pushes the end point in case we're making use of |
| 824 | * more of the buffer than we did the last time we wrapped. |
| 825 | */ |
| 826 | current_buffer->end_point = current_buffer->current_position; |
| 827 | } |
| 828 | |
| 829 | thsnap->nuser_frames = btcount; |
| 830 | |
| 831 | /* |
| 832 | * Now THIS is a hack. |
| 833 | */ |
| 834 | if (current_buffer == &telemetry_buffer) { |
| 835 | telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start); |
| 836 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { |
| 837 | notify = TRUE; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | cancel_sample: |
| 842 | TELEMETRY_UNLOCK(); |
| 843 | |
| 844 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, |
| 845 | notify, telemetry_bytes_since_last_mark, |
| 846 | current_buffer->current_position, current_buffer->end_point); |
| 847 | |
| 848 | if (notify) { |
| 849 | telemetry_notify_user(); |
| 850 | } |
| 851 | |
| 852 | if (uuid_info_array != NULL) { |
| 853 | kfree(uuid_info_array, uuid_info_array_size); |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | #if TELEMETRY_DEBUG |
| 858 | static void |
| 859 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) |
| 860 | { |
| 861 | struct micro_snapshot *p; |
| 862 | uint32_t offset; |
| 863 | |
| 864 | printf("Copying out %d bytes of telemetry at offset %d\n" , sz, pos); |
| 865 | |
| 866 | buf += pos; |
| 867 | |
| 868 | /* |
| 869 | * Find and log each timestamp in this chunk of buffer. |
| 870 | */ |
| 871 | for (offset = 0; offset < sz; offset++) { |
| 872 | p = (struct micro_snapshot *)(buf + offset); |
| 873 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { |
| 874 | printf("telemetry timestamp: %lld\n" , p->ms_time); |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | #endif |
| 879 | |
| 880 | int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark) |
| 881 | { |
| 882 | return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer); |
| 883 | } |
| 884 | |
| 885 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer) |
| 886 | { |
| 887 | int result = 0; |
| 888 | uint32_t oldest_record_offset; |
| 889 | |
| 890 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, |
| 891 | mark, telemetry_bytes_since_last_mark, 0, |
| 892 | (&telemetry_buffer != current_buffer)); |
| 893 | |
| 894 | TELEMETRY_LOCK(); |
| 895 | |
| 896 | if (current_buffer->buffer == 0) { |
| 897 | *length = 0; |
| 898 | goto out; |
| 899 | } |
| 900 | |
| 901 | if (*length < current_buffer->size) { |
| 902 | result = KERN_NO_SPACE; |
| 903 | goto out; |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. |
| 908 | * First, we need to search forward from the cursor to find the oldest record in our buffer. |
| 909 | */ |
| 910 | oldest_record_offset = current_buffer->current_position; |
| 911 | do { |
| 912 | if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) || |
| 913 | ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) { |
| 914 | |
| 915 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) { |
| 916 | /* |
| 917 | * There is no magic number at the start of the buffer, which means |
| 918 | * it's empty; nothing to see here yet. |
| 919 | */ |
| 920 | *length = 0; |
| 921 | goto out; |
| 922 | } |
| 923 | /* |
| 924 | * We've looked through the end of the active buffer without finding a valid |
| 925 | * record; that means all valid records are in a single chunk, beginning at |
| 926 | * the very start of the buffer. |
| 927 | */ |
| 928 | |
| 929 | oldest_record_offset = 0; |
| 930 | assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); |
| 931 | break; |
| 932 | } |
| 933 | |
| 934 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) |
| 935 | break; |
| 936 | |
| 937 | /* |
| 938 | * There are no alignment guarantees for micro-stackshot records, so we must search at each |
| 939 | * byte offset. |
| 940 | */ |
| 941 | oldest_record_offset++; |
| 942 | } while (oldest_record_offset != current_buffer->current_position); |
| 943 | |
| 944 | /* |
| 945 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then |
| 946 | * from the beginning of the buffer up to the current position. |
| 947 | */ |
| 948 | if (oldest_record_offset != 0) { |
| 949 | #if TELEMETRY_DEBUG |
| 950 | log_telemetry_output(current_buffer->buffer, oldest_record_offset, |
| 951 | current_buffer->end_point - oldest_record_offset); |
| 952 | #endif |
| 953 | if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer, |
| 954 | current_buffer->end_point - oldest_record_offset)) != 0) { |
| 955 | *length = 0; |
| 956 | goto out; |
| 957 | } |
| 958 | *length = current_buffer->end_point - oldest_record_offset; |
| 959 | } else { |
| 960 | *length = 0; |
| 961 | } |
| 962 | |
| 963 | #if TELEMETRY_DEBUG |
| 964 | log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position); |
| 965 | #endif |
| 966 | if ((result = copyout((void *)current_buffer->buffer, buffer + *length, |
| 967 | current_buffer->current_position)) != 0) { |
| 968 | *length = 0; |
| 969 | goto out; |
| 970 | } |
| 971 | *length += (uint32_t)current_buffer->current_position; |
| 972 | |
| 973 | out: |
| 974 | |
| 975 | if (mark && (*length > 0)) { |
| 976 | telemetry_bytes_since_last_mark = 0; |
| 977 | } |
| 978 | |
| 979 | TELEMETRY_UNLOCK(); |
| 980 | |
| 981 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, |
| 982 | current_buffer->current_position, *length, |
| 983 | current_buffer->end_point, (&telemetry_buffer != current_buffer)); |
| 984 | |
| 985 | return (result); |
| 986 | } |
| 987 | |
| 988 | /************************/ |
| 989 | /* BOOT PROFILE SUPPORT */ |
| 990 | /************************/ |
| 991 | /* |
| 992 | * Boot Profiling |
| 993 | * |
| 994 | * The boot-profiling support is a mechanism to sample activity happening on the |
| 995 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, |
| 996 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled |
| 997 | * out and analyzed from user-space. It is turned on using the following boot-args: |
| 998 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer |
| 999 | * "bootprofile_interval_ms" specifies the interval for the profiling timer |
| 1000 | * |
| 1001 | * Process Specific Boot Profiling |
| 1002 | * |
| 1003 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain |
| 1004 | * process that needs to profiled during boot. Setting this boot-arg changes |
| 1005 | * the way stackshots are captured. At every timer fire, the code looks at the |
| 1006 | * currently running process and takes a stackshot only if the requested process |
| 1007 | * is on-core (which makes it unsuitable for MP systems). |
| 1008 | * |
| 1009 | * Trigger Events |
| 1010 | * |
| 1011 | * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using |
| 1012 | * "wake" starts the timer at AP wake from suspend-to-RAM. |
| 1013 | */ |
| 1014 | |
| 1015 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ |
| 1016 | |
| 1017 | vm_offset_t bootprofile_buffer = 0; |
| 1018 | uint32_t bootprofile_buffer_size = 0; |
| 1019 | uint32_t bootprofile_buffer_current_position = 0; |
| 1020 | uint32_t bootprofile_interval_ms = 0; |
| 1021 | uint32_t bootprofile_stackshot_flags = 0; |
| 1022 | uint64_t bootprofile_interval_abs = 0; |
| 1023 | uint64_t bootprofile_next_deadline = 0; |
| 1024 | uint32_t bootprofile_all_procs = 0; |
| 1025 | char bootprofile_proc_name[17]; |
| 1026 | uint64_t bootprofile_delta_since_timestamp = 0; |
| 1027 | lck_grp_t bootprofile_lck_grp; |
| 1028 | lck_mtx_t bootprofile_mtx; |
| 1029 | |
| 1030 | |
| 1031 | enum { |
| 1032 | kBootProfileDisabled = 0, |
| 1033 | kBootProfileStartTimerAtBoot, |
| 1034 | kBootProfileStartTimerAtWake |
| 1035 | } bootprofile_type = kBootProfileDisabled; |
| 1036 | |
| 1037 | |
| 1038 | static timer_call_data_t bootprofile_timer_call_entry; |
| 1039 | |
| 1040 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) |
| 1041 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) |
| 1042 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) |
| 1043 | |
| 1044 | static void bootprofile_timer_call( |
| 1045 | timer_call_param_t param0, |
| 1046 | timer_call_param_t param1); |
| 1047 | |
| 1048 | void bootprofile_init(void) |
| 1049 | { |
| 1050 | kern_return_t ret; |
| 1051 | char type[32]; |
| 1052 | |
| 1053 | lck_grp_init(&bootprofile_lck_grp, "bootprofile group" , LCK_GRP_ATTR_NULL); |
| 1054 | lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL); |
| 1055 | |
| 1056 | if (!PE_parse_boot_argn("bootprofile_buffer_size" , &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) { |
| 1057 | bootprofile_buffer_size = 0; |
| 1058 | } |
| 1059 | |
| 1060 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) |
| 1061 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; |
| 1062 | |
| 1063 | if (!PE_parse_boot_argn("bootprofile_interval_ms" , &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) { |
| 1064 | bootprofile_interval_ms = 0; |
| 1065 | } |
| 1066 | |
| 1067 | if (!PE_parse_boot_argn("bootprofile_stackshot_flags" , &bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) { |
| 1068 | bootprofile_stackshot_flags = 0; |
| 1069 | } |
| 1070 | |
| 1071 | if (!PE_parse_boot_argn("bootprofile_proc_name" , &bootprofile_proc_name, sizeof(bootprofile_proc_name))) { |
| 1072 | bootprofile_all_procs = 1; |
| 1073 | bootprofile_proc_name[0] = '\0'; |
| 1074 | } |
| 1075 | |
| 1076 | if (PE_parse_boot_argn("bootprofile_type" , type, sizeof(type))) { |
| 1077 | if (0 == strcmp(type, "boot" )) { |
| 1078 | bootprofile_type = kBootProfileStartTimerAtBoot; |
| 1079 | } else if (0 == strcmp(type, "wake" )) { |
| 1080 | bootprofile_type = kBootProfileStartTimerAtWake; |
| 1081 | } else { |
| 1082 | bootprofile_type = kBootProfileDisabled; |
| 1083 | } |
| 1084 | } else { |
| 1085 | bootprofile_type = kBootProfileDisabled; |
| 1086 | } |
| 1087 | |
| 1088 | clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs); |
| 1089 | |
| 1090 | /* Both boot args must be set to enable */ |
| 1091 | if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { |
| 1092 | return; |
| 1093 | } |
| 1094 | |
| 1095 | ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG); |
| 1096 | if (ret != KERN_SUCCESS) { |
| 1097 | kprintf("Boot profile: Allocation failed: %d\n" , ret); |
| 1098 | return; |
| 1099 | } |
| 1100 | bzero((void *) bootprofile_buffer, bootprofile_buffer_size); |
| 1101 | |
| 1102 | kprintf("Boot profile: Sampling %s once per %u ms at %s\n" , bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms, |
| 1103 | bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown" )); |
| 1104 | |
| 1105 | timer_call_setup(&bootprofile_timer_call_entry, |
| 1106 | bootprofile_timer_call, |
| 1107 | NULL); |
| 1108 | |
| 1109 | if (bootprofile_type == kBootProfileStartTimerAtBoot) { |
| 1110 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; |
| 1111 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, |
| 1112 | NULL, |
| 1113 | bootprofile_next_deadline, |
| 1114 | 0, |
| 1115 | TIMER_CALL_SYS_NORMAL, |
| 1116 | FALSE); |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | void |
| 1121 | bootprofile_wake_from_sleep(void) |
| 1122 | { |
| 1123 | if (bootprofile_type == kBootProfileStartTimerAtWake) { |
| 1124 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; |
| 1125 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, |
| 1126 | NULL, |
| 1127 | bootprofile_next_deadline, |
| 1128 | 0, |
| 1129 | TIMER_CALL_SYS_NORMAL, |
| 1130 | FALSE); |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | |
| 1135 | static void |
| 1136 | bootprofile_timer_call( |
| 1137 | timer_call_param_t param0 __unused, |
| 1138 | timer_call_param_t param1 __unused) |
| 1139 | { |
| 1140 | unsigned retbytes = 0; |
| 1141 | int pid_to_profile = -1; |
| 1142 | |
| 1143 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { |
| 1144 | goto reprogram; |
| 1145 | } |
| 1146 | |
| 1147 | /* Check if process-specific boot profiling is turned on */ |
| 1148 | if (!bootprofile_all_procs) { |
| 1149 | /* |
| 1150 | * Since boot profiling initializes really early in boot, it is |
| 1151 | * possible that at this point, the task/proc is not initialized. |
| 1152 | * Nothing to do in that case. |
| 1153 | */ |
| 1154 | |
| 1155 | if ((current_task() != NULL) && (current_task()->bsd_info != NULL) && |
| 1156 | (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) { |
| 1157 | pid_to_profile = proc_selfpid(); |
| 1158 | } |
| 1159 | else { |
| 1160 | /* |
| 1161 | * Process-specific boot profiling requested but the on-core process is |
| 1162 | * something else. Nothing to do here. |
| 1163 | */ |
| 1164 | BOOTPROFILE_UNLOCK(); |
| 1165 | goto reprogram; |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | /* initiate a stackshot with whatever portion of the buffer is left */ |
| 1170 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { |
| 1171 | |
| 1172 | uint32_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO |
| 1173 | | STACKSHOT_GET_GLOBAL_MEM_STATS; |
| 1174 | #if __x86_64__ |
| 1175 | flags |= STACKSHOT_SAVE_KEXT_LOADINFO; |
| 1176 | #endif /* __x86_64__ */ |
| 1177 | |
| 1178 | |
| 1179 | /* OR on flags specified in boot-args */ |
| 1180 | flags |= bootprofile_stackshot_flags; |
| 1181 | if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) { |
| 1182 | /* Can't take deltas until the first one */ |
| 1183 | flags &= ~ STACKSHOT_COLLECT_DELTA_SNAPSHOT; |
| 1184 | } |
| 1185 | |
| 1186 | uint64_t timestamp = 0; |
| 1187 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) { |
| 1188 | timestamp = mach_absolute_time(); |
| 1189 | } |
| 1190 | |
| 1191 | kern_return_t r = stack_snapshot_from_kernel( |
| 1192 | pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position), |
| 1193 | bootprofile_buffer_size - bootprofile_buffer_current_position, |
| 1194 | flags, bootprofile_delta_since_timestamp, &retbytes); |
| 1195 | |
| 1196 | /* |
| 1197 | * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser |
| 1198 | * than the bootprofile lock. If someone else has the lock we'll just |
| 1199 | * try again later. |
| 1200 | */ |
| 1201 | |
| 1202 | if (r == KERN_LOCK_OWNED) { |
| 1203 | BOOTPROFILE_UNLOCK(); |
| 1204 | goto reprogram; |
| 1205 | } |
| 1206 | |
| 1207 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT && |
| 1208 | r == KERN_SUCCESS) { |
| 1209 | bootprofile_delta_since_timestamp = timestamp; |
| 1210 | } |
| 1211 | |
| 1212 | bootprofile_buffer_current_position += retbytes; |
| 1213 | } |
| 1214 | |
| 1215 | BOOTPROFILE_UNLOCK(); |
| 1216 | |
| 1217 | /* If we didn't get any data or have run out of buffer space, stop profiling */ |
| 1218 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { |
| 1219 | return; |
| 1220 | } |
| 1221 | |
| 1222 | |
| 1223 | reprogram: |
| 1224 | /* If the user gathered the buffer, no need to keep profiling */ |
| 1225 | if (bootprofile_interval_abs == 0) { |
| 1226 | return; |
| 1227 | } |
| 1228 | |
| 1229 | clock_deadline_for_periodic_event(bootprofile_interval_abs, |
| 1230 | mach_absolute_time(), |
| 1231 | &bootprofile_next_deadline); |
| 1232 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, |
| 1233 | NULL, |
| 1234 | bootprofile_next_deadline, |
| 1235 | 0, |
| 1236 | TIMER_CALL_SYS_NORMAL, |
| 1237 | FALSE); |
| 1238 | } |
| 1239 | |
| 1240 | void bootprofile_get(void **buffer, uint32_t *length) |
| 1241 | { |
| 1242 | BOOTPROFILE_LOCK(); |
| 1243 | *buffer = (void*) bootprofile_buffer; |
| 1244 | *length = bootprofile_buffer_current_position; |
| 1245 | BOOTPROFILE_UNLOCK(); |
| 1246 | } |
| 1247 | |
| 1248 | int bootprofile_gather(user_addr_t buffer, uint32_t *length) |
| 1249 | { |
| 1250 | int result = 0; |
| 1251 | |
| 1252 | BOOTPROFILE_LOCK(); |
| 1253 | |
| 1254 | if (bootprofile_buffer == 0) { |
| 1255 | *length = 0; |
| 1256 | goto out; |
| 1257 | } |
| 1258 | |
| 1259 | if (*length < bootprofile_buffer_current_position) { |
| 1260 | result = KERN_NO_SPACE; |
| 1261 | goto out; |
| 1262 | } |
| 1263 | |
| 1264 | if ((result = copyout((void *)bootprofile_buffer, buffer, |
| 1265 | bootprofile_buffer_current_position)) != 0) { |
| 1266 | *length = 0; |
| 1267 | goto out; |
| 1268 | } |
| 1269 | *length = bootprofile_buffer_current_position; |
| 1270 | |
| 1271 | /* cancel future timers */ |
| 1272 | bootprofile_interval_abs = 0; |
| 1273 | |
| 1274 | out: |
| 1275 | |
| 1276 | BOOTPROFILE_UNLOCK(); |
| 1277 | |
| 1278 | return (result); |
| 1279 | } |
| 1280 | |