| 1 | /* |
| 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | * File: kern/task.c |
| 58 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, |
| 59 | * David Black |
| 60 | * |
| 61 | * Task management primitives implementation. |
| 62 | */ |
| 63 | /* |
| 64 | * Copyright (c) 1993 The University of Utah and |
| 65 | * the Computer Systems Laboratory (CSL). All rights reserved. |
| 66 | * |
| 67 | * Permission to use, copy, modify and distribute this software and its |
| 68 | * documentation is hereby granted, provided that both the copyright |
| 69 | * notice and this permission notice appear in all copies of the |
| 70 | * software, derivative works or modified versions, and any portions |
| 71 | * thereof, and that both notices appear in supporting documentation. |
| 72 | * |
| 73 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS |
| 74 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF |
| 75 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 76 | * |
| 77 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any |
| 78 | * improvements that they make and grant CSL redistribution rights. |
| 79 | * |
| 80 | */ |
| 81 | /* |
| 82 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 83 | * support for mandatory and extensible security protections. This notice |
| 84 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 85 | * Version 2.0. |
| 86 | * Copyright (c) 2005 SPARTA, Inc. |
| 87 | */ |
| 88 | |
| 89 | #include <mach/mach_types.h> |
| 90 | #include <mach/boolean.h> |
| 91 | #include <mach/host_priv.h> |
| 92 | #include <mach/machine/vm_types.h> |
| 93 | #include <mach/vm_param.h> |
| 94 | #include <mach/mach_vm.h> |
| 95 | #include <mach/semaphore.h> |
| 96 | #include <mach/task_info.h> |
| 97 | #include <mach/task_inspect.h> |
| 98 | #include <mach/task_special_ports.h> |
| 99 | #include <mach/sdt.h> |
| 100 | |
| 101 | #include <ipc/ipc_importance.h> |
| 102 | #include <ipc/ipc_types.h> |
| 103 | #include <ipc/ipc_space.h> |
| 104 | #include <ipc/ipc_entry.h> |
| 105 | #include <ipc/ipc_hash.h> |
| 106 | |
| 107 | #include <kern/kern_types.h> |
| 108 | #include <kern/mach_param.h> |
| 109 | #include <kern/misc_protos.h> |
| 110 | #include <kern/task.h> |
| 111 | #include <kern/thread.h> |
| 112 | #include <kern/coalition.h> |
| 113 | #include <kern/zalloc.h> |
| 114 | #include <kern/kalloc.h> |
| 115 | #include <kern/kern_cdata.h> |
| 116 | #include <kern/processor.h> |
| 117 | #include <kern/sched_prim.h> /* for thread_wakeup */ |
| 118 | #include <kern/ipc_tt.h> |
| 119 | #include <kern/host.h> |
| 120 | #include <kern/clock.h> |
| 121 | #include <kern/timer.h> |
| 122 | #include <kern/assert.h> |
| 123 | #include <kern/sync_lock.h> |
| 124 | #include <kern/affinity.h> |
| 125 | #include <kern/exc_resource.h> |
| 126 | #include <kern/machine.h> |
| 127 | #include <kern/policy_internal.h> |
| 128 | |
| 129 | #include <corpses/task_corpse.h> |
| 130 | #if CONFIG_TELEMETRY |
| 131 | #include <kern/telemetry.h> |
| 132 | #endif |
| 133 | |
| 134 | #if MONOTONIC |
| 135 | #include <kern/monotonic.h> |
| 136 | #include <machine/monotonic.h> |
| 137 | #endif /* MONOTONIC */ |
| 138 | |
| 139 | #include <os/log.h> |
| 140 | |
| 141 | #include <vm/pmap.h> |
| 142 | #include <vm/vm_map.h> |
| 143 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ |
| 144 | #include <vm/vm_pageout.h> |
| 145 | #include <vm/vm_protos.h> |
| 146 | #include <vm/vm_purgeable_internal.h> |
| 147 | |
| 148 | #include <sys/resource.h> |
| 149 | #include <sys/signalvar.h> /* for coredump */ |
| 150 | |
| 151 | /* |
| 152 | * Exported interfaces |
| 153 | */ |
| 154 | |
| 155 | #include <mach/task_server.h> |
| 156 | #include <mach/mach_host_server.h> |
| 157 | #include <mach/host_security_server.h> |
| 158 | #include <mach/mach_port_server.h> |
| 159 | |
| 160 | #include <vm/vm_shared_region.h> |
| 161 | |
| 162 | #include <libkern/OSDebug.h> |
| 163 | #include <libkern/OSAtomic.h> |
| 164 | #include <libkern/section_keywords.h> |
| 165 | |
| 166 | #if CONFIG_ATM |
| 167 | #include <atm/atm_internal.h> |
| 168 | #endif |
| 169 | |
| 170 | #include <kern/sfi.h> /* picks up ledger.h */ |
| 171 | |
| 172 | #if CONFIG_MACF |
| 173 | #include <security/mac_mach_internal.h> |
| 174 | #endif |
| 175 | |
| 176 | #if KPERF |
| 177 | extern int kpc_force_all_ctrs(task_t, int); |
| 178 | #endif |
| 179 | |
| 180 | task_t kernel_task; |
| 181 | zone_t task_zone; |
| 182 | lck_attr_t task_lck_attr; |
| 183 | lck_grp_t task_lck_grp; |
| 184 | lck_grp_attr_t task_lck_grp_attr; |
| 185 | |
| 186 | extern int exc_via_corpse_forking; |
| 187 | extern int corpse_for_fatal_memkill; |
| 188 | extern boolean_t proc_send_synchronous_EXC_RESOURCE(void *p); |
| 189 | |
| 190 | /* Flag set by core audio when audio is playing. Used to stifle EXC_RESOURCE generation when active. */ |
| 191 | int audio_active = 0; |
| 192 | |
| 193 | zinfo_usage_store_t tasks_tkm_private; |
| 194 | zinfo_usage_store_t tasks_tkm_shared; |
| 195 | |
| 196 | /* A container to accumulate statistics for expired tasks */ |
| 197 | expired_task_statistics_t dead_task_statistics; |
| 198 | lck_spin_t dead_task_statistics_lock; |
| 199 | |
| 200 | ledger_template_t task_ledger_template = NULL; |
| 201 | |
| 202 | SECURITY_READ_ONLY_LATE(struct _task_ledger_indices) task_ledgers __attribute__((used)) = |
| 203 | {.cpu_time = -1, |
| 204 | .tkm_private = -1, |
| 205 | .tkm_shared = -1, |
| 206 | .phys_mem = -1, |
| 207 | .wired_mem = -1, |
| 208 | .internal = -1, |
| 209 | .iokit_mapped = -1, |
| 210 | .alternate_accounting = -1, |
| 211 | .alternate_accounting_compressed = -1, |
| 212 | .page_table = -1, |
| 213 | .phys_footprint = -1, |
| 214 | .internal_compressed = -1, |
| 215 | .purgeable_volatile = -1, |
| 216 | .purgeable_nonvolatile = -1, |
| 217 | .purgeable_volatile_compressed = -1, |
| 218 | .purgeable_nonvolatile_compressed = -1, |
| 219 | .network_volatile = -1, |
| 220 | .network_nonvolatile = -1, |
| 221 | .network_volatile_compressed = -1, |
| 222 | .network_nonvolatile_compressed = -1, |
| 223 | .platform_idle_wakeups = -1, |
| 224 | .interrupt_wakeups = -1, |
| 225 | #if !CONFIG_EMBEDDED |
| 226 | .sfi_wait_times = { 0 /* initialized at runtime */}, |
| 227 | #endif /* !CONFIG_EMBEDDED */ |
| 228 | .cpu_time_billed_to_me = -1, |
| 229 | .cpu_time_billed_to_others = -1, |
| 230 | .physical_writes = -1, |
| 231 | .logical_writes = -1, |
| 232 | .energy_billed_to_me = -1, |
| 233 | .energy_billed_to_others = -1 |
| 234 | }; |
| 235 | |
| 236 | /* System sleep state */ |
| 237 | boolean_t tasks_suspend_state; |
| 238 | |
| 239 | |
| 240 | void init_task_ledgers(void); |
| 241 | void task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
| 242 | void task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
| 243 | void task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1); |
| 244 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void); |
| 245 | void __attribute__((noinline)) PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , boolean_t is_fatal); |
| 246 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor); |
| 247 | |
| 248 | kern_return_t task_suspend_internal(task_t); |
| 249 | kern_return_t task_resume_internal(task_t); |
| 250 | static kern_return_t task_start_halt_locked(task_t task, boolean_t should_mark_corpse); |
| 251 | |
| 252 | extern kern_return_t iokit_task_terminate(task_t task); |
| 253 | |
| 254 | extern kern_return_t exception_deliver(thread_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, struct exception_action *, lck_mtx_t *); |
| 255 | extern void bsd_copythreadname(void *dst_uth, void *src_uth); |
| 256 | extern kern_return_t thread_resume(thread_t thread); |
| 257 | |
| 258 | // Warn tasks when they hit 80% of their memory limit. |
| 259 | #define 80 |
| 260 | |
| 261 | #define TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT 150 /* wakeups per second */ |
| 262 | #define TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL 300 /* in seconds. */ |
| 263 | |
| 264 | /* |
| 265 | * Level (in terms of percentage of the limit) at which the wakeups monitor triggers telemetry. |
| 266 | * |
| 267 | * (ie when the task's wakeups rate exceeds 70% of the limit, start taking user |
| 268 | * stacktraces, aka micro-stackshots) |
| 269 | */ |
| 270 | #define TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER 70 |
| 271 | |
| 272 | int task_wakeups_monitor_interval; /* In seconds. Time period over which wakeups rate is observed */ |
| 273 | int task_wakeups_monitor_rate; /* In hz. Maximum allowable wakeups per task before EXC_RESOURCE is sent */ |
| 274 | |
| 275 | int task_wakeups_monitor_ustackshots_trigger_pct; /* Percentage. Level at which we start gathering telemetry. */ |
| 276 | |
| 277 | int disable_exc_resource; /* Global override to supress EXC_RESOURCE for resource monitor violations. */ |
| 278 | |
| 279 | ledger_amount_t = 0; /* Per-task limit on physical memory consumption in bytes */ |
| 280 | int = 0; /* Per-task limit warning percentage */ |
| 281 | int = 0; /* Per-task limit on physical memory consumption in megabytes */ |
| 282 | |
| 283 | /* I/O Monitor Limits */ |
| 284 | #define IOMON_DEFAULT_LIMIT (20480ull) /* MB of logical/physical I/O */ |
| 285 | #define IOMON_DEFAULT_INTERVAL (86400ull) /* in seconds */ |
| 286 | |
| 287 | uint64_t task_iomon_limit_mb; /* Per-task I/O monitor limit in MBs */ |
| 288 | uint64_t task_iomon_interval_secs; /* Per-task I/O monitor interval in secs */ |
| 289 | |
| 290 | #define IO_TELEMETRY_DEFAULT_LIMIT (10ll * 1024ll * 1024ll) |
| 291 | int64_t io_telemetry_limit; /* Threshold to take a microstackshot (0 indicated I/O telemetry is turned off) */ |
| 292 | int64_t global_logical_writes_count = 0; /* Global count for logical writes */ |
| 293 | static boolean_t global_update_logical_writes(int64_t); |
| 294 | |
| 295 | #define TASK_MAX_THREAD_LIMIT 256 |
| 296 | |
| 297 | #if MACH_ASSERT |
| 298 | int pmap_ledgers_panic = 1; |
| 299 | int pmap_ledgers_panic_leeway = 3; |
| 300 | #endif /* MACH_ASSERT */ |
| 301 | |
| 302 | int task_max = CONFIG_TASK_MAX; /* Max number of tasks */ |
| 303 | |
| 304 | #if CONFIG_COREDUMP |
| 305 | int hwm_user_cores = 0; /* high watermark violations generate user core files */ |
| 306 | #endif |
| 307 | |
| 308 | #ifdef MACH_BSD |
| 309 | extern void proc_getexecutableuuid(void *, unsigned char *, unsigned long); |
| 310 | extern int proc_pid(struct proc *p); |
| 311 | extern int proc_selfpid(void); |
| 312 | extern struct proc *current_proc(void); |
| 313 | extern char *proc_name_address(struct proc *p); |
| 314 | extern uint64_t get_dispatchqueue_offset_from_proc(void *); |
| 315 | extern int kevent_proc_copy_uptrs(void *proc, uint64_t *buf, int bufsize); |
| 316 | extern void workq_proc_suspended(struct proc *p); |
| 317 | extern void workq_proc_resumed(struct proc *p); |
| 318 | |
| 319 | #if CONFIG_MEMORYSTATUS |
| 320 | extern void proc_memstat_terminated(struct proc* p, boolean_t set); |
| 321 | extern void (int warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal); |
| 322 | extern void memorystatus_log_exception(const int , boolean_t memlimit_is_active, boolean_t memlimit_is_fatal); |
| 323 | extern boolean_t memorystatus_allowed_vm_map_fork(task_t task); |
| 324 | |
| 325 | #if DEVELOPMENT || DEBUG |
| 326 | extern void memorystatus_abort_vm_map_fork(task_t); |
| 327 | #endif |
| 328 | |
| 329 | #endif /* CONFIG_MEMORYSTATUS */ |
| 330 | |
| 331 | #endif /* MACH_BSD */ |
| 332 | |
| 333 | #if DEVELOPMENT || DEBUG |
| 334 | int exc_resource_threads_enabled; |
| 335 | #endif /* DEVELOPMENT || DEBUG */ |
| 336 | |
| 337 | #if (DEVELOPMENT || DEBUG) && TASK_EXC_GUARD_DELIVER_CORPSE |
| 338 | uint32_t task_exc_guard_default = TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_CORPSE | |
| 339 | TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_CORPSE; |
| 340 | #else |
| 341 | uint32_t task_exc_guard_default = 0; |
| 342 | #endif |
| 343 | |
| 344 | /* Forwards */ |
| 345 | |
| 346 | static void task_hold_locked(task_t task); |
| 347 | static void task_wait_locked(task_t task, boolean_t until_not_runnable); |
| 348 | static void task_release_locked(task_t task); |
| 349 | |
| 350 | static void task_synchronizer_destroy_all(task_t task); |
| 351 | |
| 352 | |
| 353 | void |
| 354 | task_set_64bit( |
| 355 | task_t task, |
| 356 | boolean_t is_64bit, |
| 357 | boolean_t is_64bit_data) |
| 358 | { |
| 359 | #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__) |
| 360 | thread_t thread; |
| 361 | #endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */ |
| 362 | |
| 363 | task_lock(task); |
| 364 | |
| 365 | /* |
| 366 | * Switching to/from 64-bit address spaces |
| 367 | */ |
| 368 | if (is_64bit) { |
| 369 | if (!task_has_64Bit_addr(task)) { |
| 370 | task_set_64Bit_addr(task); |
| 371 | } |
| 372 | } else { |
| 373 | if (task_has_64Bit_addr(task)) { |
| 374 | task_clear_64Bit_addr(task); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * Switching to/from 64-bit register state. |
| 380 | */ |
| 381 | if (is_64bit_data) { |
| 382 | if (task_has_64Bit_data(task)) |
| 383 | goto out; |
| 384 | |
| 385 | task_set_64Bit_data(task); |
| 386 | } else { |
| 387 | if ( !task_has_64Bit_data(task)) |
| 388 | goto out; |
| 389 | |
| 390 | task_clear_64Bit_data(task); |
| 391 | } |
| 392 | |
| 393 | /* FIXME: On x86, the thread save state flavor can diverge from the |
| 394 | * task's 64-bit feature flag due to the 32-bit/64-bit register save |
| 395 | * state dichotomy. Since we can be pre-empted in this interval, |
| 396 | * certain routines may observe the thread as being in an inconsistent |
| 397 | * state with respect to its task's 64-bitness. |
| 398 | */ |
| 399 | |
| 400 | #if defined(__x86_64__) || defined(__arm64__) |
| 401 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 402 | thread_mtx_lock(thread); |
| 403 | machine_thread_switch_addrmode(thread); |
| 404 | thread_mtx_unlock(thread); |
| 405 | |
| 406 | #if defined(__arm64__) |
| 407 | /* specifically, if running on H9 */ |
| 408 | if (thread == current_thread()) { |
| 409 | uint64_t arg1, arg2; |
| 410 | int urgency; |
| 411 | spl_t spl = splsched(); |
| 412 | /* |
| 413 | * This call tell that the current thread changed it's 32bitness. |
| 414 | * Other thread were no more on core when 32bitness was changed, |
| 415 | * but current_thread() is on core and the previous call to |
| 416 | * machine_thread_going_on_core() gave 32bitness which is now wrong. |
| 417 | * |
| 418 | * This is needed for bring-up, a different callback should be used |
| 419 | * in the future. |
| 420 | * |
| 421 | * TODO: Remove this callout when we no longer support 32-bit code on H9 |
| 422 | */ |
| 423 | thread_lock(thread); |
| 424 | urgency = thread_get_urgency(thread, &arg1, &arg2); |
| 425 | machine_thread_going_on_core(thread, urgency, 0, 0, mach_approximate_time()); |
| 426 | thread_unlock(thread); |
| 427 | splx(spl); |
| 428 | } |
| 429 | #endif /* defined(__arm64__) */ |
| 430 | } |
| 431 | #endif /* defined(__x86_64__) || defined(__arm64__) */ |
| 432 | |
| 433 | out: |
| 434 | task_unlock(task); |
| 435 | } |
| 436 | |
| 437 | boolean_t |
| 438 | task_get_64bit_data(task_t task) |
| 439 | { |
| 440 | return task_has_64Bit_data(task); |
| 441 | } |
| 442 | |
| 443 | void |
| 444 | task_set_platform_binary( |
| 445 | task_t task, |
| 446 | boolean_t is_platform) |
| 447 | { |
| 448 | task_lock(task); |
| 449 | if (is_platform) { |
| 450 | task->t_flags |= TF_PLATFORM; |
| 451 | } else { |
| 452 | task->t_flags &= ~(TF_PLATFORM); |
| 453 | } |
| 454 | task_unlock(task); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Set or clear per-task TF_CA_CLIENT_WI flag according to specified argument. |
| 459 | * Returns "false" if flag is already set, and "true" in other cases. |
| 460 | */ |
| 461 | bool |
| 462 | task_set_ca_client_wi( |
| 463 | task_t task, |
| 464 | boolean_t set_or_clear) |
| 465 | { |
| 466 | bool ret = true; |
| 467 | task_lock(task); |
| 468 | if (set_or_clear) { |
| 469 | /* Tasks can have only one CA_CLIENT work interval */ |
| 470 | if (task->t_flags & TF_CA_CLIENT_WI) |
| 471 | ret = false; |
| 472 | else |
| 473 | task->t_flags |= TF_CA_CLIENT_WI; |
| 474 | } else { |
| 475 | task->t_flags &= ~TF_CA_CLIENT_WI; |
| 476 | } |
| 477 | task_unlock(task); |
| 478 | return ret; |
| 479 | } |
| 480 | |
| 481 | void |
| 482 | task_set_dyld_info( |
| 483 | task_t task, |
| 484 | mach_vm_address_t addr, |
| 485 | mach_vm_size_t size) |
| 486 | { |
| 487 | task_lock(task); |
| 488 | task->all_image_info_addr = addr; |
| 489 | task->all_image_info_size = size; |
| 490 | task_unlock(task); |
| 491 | } |
| 492 | |
| 493 | void |
| 494 | task_atm_reset(__unused task_t task) { |
| 495 | |
| 496 | #if CONFIG_ATM |
| 497 | if (task->atm_context != NULL) { |
| 498 | atm_task_descriptor_destroy(task->atm_context); |
| 499 | task->atm_context = NULL; |
| 500 | } |
| 501 | #endif |
| 502 | |
| 503 | } |
| 504 | |
| 505 | void |
| 506 | task_bank_reset(__unused task_t task) { |
| 507 | |
| 508 | if (task->bank_context != NULL) { |
| 509 | bank_task_destroy(task); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | * NOTE: This should only be called when the P_LINTRANSIT |
| 515 | * flag is set (the proc_trans lock is held) on the |
| 516 | * proc associated with the task. |
| 517 | */ |
| 518 | void |
| 519 | task_bank_init(__unused task_t task) { |
| 520 | |
| 521 | if (task->bank_context != NULL) { |
| 522 | panic("Task bank init called with non null bank context for task: %p and bank_context: %p" , task, task->bank_context); |
| 523 | } |
| 524 | bank_task_initialize(task); |
| 525 | } |
| 526 | |
| 527 | void |
| 528 | task_set_did_exec_flag(task_t task) |
| 529 | { |
| 530 | task->t_procflags |= TPF_DID_EXEC; |
| 531 | } |
| 532 | |
| 533 | void |
| 534 | task_clear_exec_copy_flag(task_t task) |
| 535 | { |
| 536 | task->t_procflags &= ~TPF_EXEC_COPY; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * This wait event is t_procflags instead of t_flags because t_flags is volatile |
| 541 | * |
| 542 | * TODO: store the flags in the same place as the event |
| 543 | * rdar://problem/28501994 |
| 544 | */ |
| 545 | event_t |
| 546 | task_get_return_wait_event(task_t task) |
| 547 | { |
| 548 | return (event_t)&task->t_procflags; |
| 549 | } |
| 550 | |
| 551 | void |
| 552 | task_clear_return_wait(task_t task) |
| 553 | { |
| 554 | task_lock(task); |
| 555 | |
| 556 | task->t_flags &= ~TF_LRETURNWAIT; |
| 557 | |
| 558 | if (task->t_flags & TF_LRETURNWAITER) { |
| 559 | thread_wakeup(task_get_return_wait_event(task)); |
| 560 | task->t_flags &= ~TF_LRETURNWAITER; |
| 561 | } |
| 562 | |
| 563 | task_unlock(task); |
| 564 | } |
| 565 | |
| 566 | void __attribute__((noreturn)) |
| 567 | task_wait_to_return(void) |
| 568 | { |
| 569 | task_t task; |
| 570 | |
| 571 | task = current_task(); |
| 572 | task_lock(task); |
| 573 | |
| 574 | if (task->t_flags & TF_LRETURNWAIT) { |
| 575 | do { |
| 576 | task->t_flags |= TF_LRETURNWAITER; |
| 577 | assert_wait(task_get_return_wait_event(task), THREAD_UNINT); |
| 578 | task_unlock(task); |
| 579 | |
| 580 | thread_block(THREAD_CONTINUE_NULL); |
| 581 | |
| 582 | task_lock(task); |
| 583 | } while (task->t_flags & TF_LRETURNWAIT); |
| 584 | } |
| 585 | |
| 586 | task_unlock(task); |
| 587 | |
| 588 | #if CONFIG_MACF |
| 589 | /* |
| 590 | * Before jumping to userspace and allowing this process to execute any code, |
| 591 | * notify any interested parties. |
| 592 | */ |
| 593 | mac_proc_notify_exec_complete(current_proc()); |
| 594 | #endif |
| 595 | |
| 596 | thread_bootstrap_return(); |
| 597 | } |
| 598 | |
| 599 | #ifdef CONFIG_32BIT_TELEMETRY |
| 600 | boolean_t |
| 601 | task_consume_32bit_log_flag(task_t task) |
| 602 | { |
| 603 | if ((task->t_procflags & TPF_LOG_32BIT_TELEMETRY) != 0) { |
| 604 | task->t_procflags &= ~TPF_LOG_32BIT_TELEMETRY; |
| 605 | return TRUE; |
| 606 | } else { |
| 607 | return FALSE; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | void |
| 612 | task_set_32bit_log_flag(task_t task) |
| 613 | { |
| 614 | task->t_procflags |= TPF_LOG_32BIT_TELEMETRY; |
| 615 | } |
| 616 | #endif /* CONFIG_32BIT_TELEMETRY */ |
| 617 | |
| 618 | boolean_t |
| 619 | task_is_exec_copy(task_t task) |
| 620 | { |
| 621 | return task_is_exec_copy_internal(task); |
| 622 | } |
| 623 | |
| 624 | boolean_t |
| 625 | task_did_exec(task_t task) |
| 626 | { |
| 627 | return task_did_exec_internal(task); |
| 628 | } |
| 629 | |
| 630 | boolean_t |
| 631 | task_is_active(task_t task) |
| 632 | { |
| 633 | return task->active; |
| 634 | } |
| 635 | |
| 636 | boolean_t |
| 637 | task_is_halting(task_t task) |
| 638 | { |
| 639 | return task->halting; |
| 640 | } |
| 641 | |
| 642 | #if TASK_REFERENCE_LEAK_DEBUG |
| 643 | #include <kern/btlog.h> |
| 644 | |
| 645 | static btlog_t *task_ref_btlog; |
| 646 | #define TASK_REF_OP_INCR 0x1 |
| 647 | #define TASK_REF_OP_DECR 0x2 |
| 648 | |
| 649 | #define TASK_REF_NUM_RECORDS 100000 |
| 650 | #define TASK_REF_BTDEPTH 7 |
| 651 | |
| 652 | void |
| 653 | task_reference_internal(task_t task) |
| 654 | { |
| 655 | void * bt[TASK_REF_BTDEPTH]; |
| 656 | int numsaved = 0; |
| 657 | |
| 658 | numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH); |
| 659 | |
| 660 | (void)hw_atomic_add(&(task)->ref_count, 1); |
| 661 | btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_INCR, |
| 662 | bt, numsaved); |
| 663 | } |
| 664 | |
| 665 | uint32_t |
| 666 | task_deallocate_internal(task_t task) |
| 667 | { |
| 668 | void * bt[TASK_REF_BTDEPTH]; |
| 669 | int numsaved = 0; |
| 670 | |
| 671 | numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH); |
| 672 | |
| 673 | btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_DECR, |
| 674 | bt, numsaved); |
| 675 | return hw_atomic_sub(&(task)->ref_count, 1); |
| 676 | } |
| 677 | |
| 678 | #endif /* TASK_REFERENCE_LEAK_DEBUG */ |
| 679 | |
| 680 | void |
| 681 | task_init(void) |
| 682 | { |
| 683 | |
| 684 | lck_grp_attr_setdefault(&task_lck_grp_attr); |
| 685 | lck_grp_init(&task_lck_grp, "task" , &task_lck_grp_attr); |
| 686 | lck_attr_setdefault(&task_lck_attr); |
| 687 | lck_mtx_init(&tasks_threads_lock, &task_lck_grp, &task_lck_attr); |
| 688 | lck_mtx_init(&tasks_corpse_lock, &task_lck_grp, &task_lck_attr); |
| 689 | |
| 690 | task_zone = zinit( |
| 691 | sizeof(struct task), |
| 692 | task_max * sizeof(struct task), |
| 693 | TASK_CHUNK * sizeof(struct task), |
| 694 | "tasks" ); |
| 695 | |
| 696 | zone_change(task_zone, Z_NOENCRYPT, TRUE); |
| 697 | |
| 698 | #if CONFIG_EMBEDDED |
| 699 | task_watch_init(); |
| 700 | #endif /* CONFIG_EMBEDDED */ |
| 701 | |
| 702 | /* |
| 703 | * Configure per-task memory limit. |
| 704 | * The boot-arg is interpreted as Megabytes, |
| 705 | * and takes precedence over the device tree. |
| 706 | * Setting the boot-arg to 0 disables task limits. |
| 707 | */ |
| 708 | if (!PE_parse_boot_argn("max_task_pmem" , &max_task_footprint_mb, |
| 709 | sizeof (max_task_footprint_mb))) { |
| 710 | /* |
| 711 | * No limit was found in boot-args, so go look in the device tree. |
| 712 | */ |
| 713 | if (!PE_get_default("kern.max_task_pmem" , &max_task_footprint_mb, |
| 714 | sizeof(max_task_footprint_mb))) { |
| 715 | /* |
| 716 | * No limit was found in device tree. |
| 717 | */ |
| 718 | max_task_footprint_mb = 0; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | if (max_task_footprint_mb != 0) { |
| 723 | #if CONFIG_MEMORYSTATUS |
| 724 | if (max_task_footprint_mb < 50) { |
| 725 | printf("Warning: max_task_pmem %d below minimum.\n" , |
| 726 | max_task_footprint_mb); |
| 727 | max_task_footprint_mb = 50; |
| 728 | } |
| 729 | printf("Limiting task physical memory footprint to %d MB\n" , |
| 730 | max_task_footprint_mb); |
| 731 | |
| 732 | max_task_footprint = (ledger_amount_t)max_task_footprint_mb * 1024 * 1024; // Convert MB to bytes |
| 733 | |
| 734 | /* |
| 735 | * Configure the per-task memory limit warning level. |
| 736 | * This is computed as a percentage. |
| 737 | */ |
| 738 | max_task_footprint_warning_level = 0; |
| 739 | |
| 740 | if (max_mem < 0x40000000) { |
| 741 | /* |
| 742 | * On devices with < 1GB of memory: |
| 743 | * -- set warnings to 50MB below the per-task limit. |
| 744 | */ |
| 745 | if (max_task_footprint_mb > 50) { |
| 746 | max_task_footprint_warning_level = ((max_task_footprint_mb - 50) * 100) / max_task_footprint_mb; |
| 747 | } |
| 748 | } else { |
| 749 | /* |
| 750 | * On devices with >= 1GB of memory: |
| 751 | * -- set warnings to 100MB below the per-task limit. |
| 752 | */ |
| 753 | if (max_task_footprint_mb > 100) { |
| 754 | max_task_footprint_warning_level = ((max_task_footprint_mb - 100) * 100) / max_task_footprint_mb; |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Never allow warning level to land below the default. |
| 760 | */ |
| 761 | if (max_task_footprint_warning_level < PHYS_FOOTPRINT_WARNING_LEVEL) { |
| 762 | max_task_footprint_warning_level = PHYS_FOOTPRINT_WARNING_LEVEL; |
| 763 | } |
| 764 | |
| 765 | printf("Limiting task physical memory warning to %d%%\n" , max_task_footprint_warning_level); |
| 766 | |
| 767 | #else |
| 768 | printf("Warning: max_task_pmem specified, but jetsam not configured; ignoring.\n" ); |
| 769 | #endif /* CONFIG_MEMORYSTATUS */ |
| 770 | } |
| 771 | |
| 772 | #if DEVELOPMENT || DEBUG |
| 773 | if (!PE_parse_boot_argn("exc_resource_threads" , |
| 774 | &exc_resource_threads_enabled, |
| 775 | sizeof(exc_resource_threads_enabled))) { |
| 776 | exc_resource_threads_enabled = 1; |
| 777 | } |
| 778 | PE_parse_boot_argn("task_exc_guard_default" , |
| 779 | &task_exc_guard_default, |
| 780 | sizeof(task_exc_guard_default)); |
| 781 | #endif /* DEVELOPMENT || DEBUG */ |
| 782 | |
| 783 | #if CONFIG_COREDUMP |
| 784 | if (!PE_parse_boot_argn("hwm_user_cores" , &hwm_user_cores, |
| 785 | sizeof (hwm_user_cores))) { |
| 786 | hwm_user_cores = 0; |
| 787 | } |
| 788 | #endif |
| 789 | |
| 790 | proc_init_cpumon_params(); |
| 791 | |
| 792 | if (!PE_parse_boot_argn("task_wakeups_monitor_rate" , &task_wakeups_monitor_rate, sizeof (task_wakeups_monitor_rate))) { |
| 793 | task_wakeups_monitor_rate = TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT; |
| 794 | } |
| 795 | |
| 796 | if (!PE_parse_boot_argn("task_wakeups_monitor_interval" , &task_wakeups_monitor_interval, sizeof (task_wakeups_monitor_interval))) { |
| 797 | task_wakeups_monitor_interval = TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL; |
| 798 | } |
| 799 | |
| 800 | if (!PE_parse_boot_argn("task_wakeups_monitor_ustackshots_trigger_pct" , &task_wakeups_monitor_ustackshots_trigger_pct, |
| 801 | sizeof (task_wakeups_monitor_ustackshots_trigger_pct))) { |
| 802 | task_wakeups_monitor_ustackshots_trigger_pct = TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER; |
| 803 | } |
| 804 | |
| 805 | if (!PE_parse_boot_argn("disable_exc_resource" , &disable_exc_resource, |
| 806 | sizeof (disable_exc_resource))) { |
| 807 | disable_exc_resource = 0; |
| 808 | } |
| 809 | |
| 810 | if (!PE_parse_boot_argn("task_iomon_limit_mb" , &task_iomon_limit_mb, sizeof (task_iomon_limit_mb))) { |
| 811 | task_iomon_limit_mb = IOMON_DEFAULT_LIMIT; |
| 812 | } |
| 813 | |
| 814 | if (!PE_parse_boot_argn("task_iomon_interval_secs" , &task_iomon_interval_secs, sizeof (task_iomon_interval_secs))) { |
| 815 | task_iomon_interval_secs = IOMON_DEFAULT_INTERVAL; |
| 816 | } |
| 817 | |
| 818 | if (!PE_parse_boot_argn("io_telemetry_limit" , &io_telemetry_limit, sizeof (io_telemetry_limit))) { |
| 819 | io_telemetry_limit = IO_TELEMETRY_DEFAULT_LIMIT; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * If we have coalitions, coalition_init() will call init_task_ledgers() as it |
| 824 | * sets up the ledgers for the default coalition. If we don't have coalitions, |
| 825 | * then we have to call it now. |
| 826 | */ |
| 827 | #if CONFIG_COALITIONS |
| 828 | assert(task_ledger_template); |
| 829 | #else /* CONFIG_COALITIONS */ |
| 830 | init_task_ledgers(); |
| 831 | #endif /* CONFIG_COALITIONS */ |
| 832 | |
| 833 | #if TASK_REFERENCE_LEAK_DEBUG |
| 834 | task_ref_btlog = btlog_create(TASK_REF_NUM_RECORDS, TASK_REF_BTDEPTH, TRUE /* caller_will_remove_entries_for_element? */); |
| 835 | assert(task_ref_btlog); |
| 836 | #endif |
| 837 | |
| 838 | /* |
| 839 | * Create the kernel task as the first task. |
| 840 | */ |
| 841 | #ifdef __LP64__ |
| 842 | if (task_create_internal(TASK_NULL, NULL, FALSE, TRUE, TRUE, TF_NONE, TPF_NONE, &kernel_task) != KERN_SUCCESS) |
| 843 | #else |
| 844 | if (task_create_internal(TASK_NULL, NULL, FALSE, FALSE, FALSE, TF_NONE, TPF_NONE, &kernel_task) != KERN_SUCCESS) |
| 845 | #endif |
| 846 | panic("task_init\n" ); |
| 847 | |
| 848 | |
| 849 | vm_map_deallocate(kernel_task->map); |
| 850 | kernel_task->map = kernel_map; |
| 851 | lck_spin_init(&dead_task_statistics_lock, &task_lck_grp, &task_lck_attr); |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * Create a task running in the kernel address space. It may |
| 856 | * have its own map of size mem_size and may have ipc privileges. |
| 857 | */ |
| 858 | kern_return_t |
| 859 | kernel_task_create( |
| 860 | __unused task_t parent_task, |
| 861 | __unused vm_offset_t map_base, |
| 862 | __unused vm_size_t map_size, |
| 863 | __unused task_t *child_task) |
| 864 | { |
| 865 | return (KERN_INVALID_ARGUMENT); |
| 866 | } |
| 867 | |
| 868 | kern_return_t |
| 869 | task_create( |
| 870 | task_t parent_task, |
| 871 | __unused ledger_port_array_t ledger_ports, |
| 872 | __unused mach_msg_type_number_t num_ledger_ports, |
| 873 | __unused boolean_t inherit_memory, |
| 874 | __unused task_t *child_task) /* OUT */ |
| 875 | { |
| 876 | if (parent_task == TASK_NULL) |
| 877 | return(KERN_INVALID_ARGUMENT); |
| 878 | |
| 879 | /* |
| 880 | * No longer supported: too many calls assume that a task has a valid |
| 881 | * process attached. |
| 882 | */ |
| 883 | return(KERN_FAILURE); |
| 884 | } |
| 885 | |
| 886 | kern_return_t |
| 887 | host_security_create_task_token( |
| 888 | host_security_t host_security, |
| 889 | task_t parent_task, |
| 890 | __unused security_token_t sec_token, |
| 891 | __unused audit_token_t audit_token, |
| 892 | __unused host_priv_t host_priv, |
| 893 | __unused ledger_port_array_t ledger_ports, |
| 894 | __unused mach_msg_type_number_t num_ledger_ports, |
| 895 | __unused boolean_t inherit_memory, |
| 896 | __unused task_t *child_task) /* OUT */ |
| 897 | { |
| 898 | if (parent_task == TASK_NULL) |
| 899 | return(KERN_INVALID_ARGUMENT); |
| 900 | |
| 901 | if (host_security == HOST_NULL) |
| 902 | return(KERN_INVALID_SECURITY); |
| 903 | |
| 904 | /* |
| 905 | * No longer supported. |
| 906 | */ |
| 907 | return(KERN_FAILURE); |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Task ledgers |
| 912 | * ------------ |
| 913 | * |
| 914 | * phys_footprint |
| 915 | * Physical footprint: This is the sum of: |
| 916 | * + (internal - alternate_accounting) |
| 917 | * + (internal_compressed - alternate_accounting_compressed) |
| 918 | * + iokit_mapped |
| 919 | * + purgeable_nonvolatile |
| 920 | * + purgeable_nonvolatile_compressed |
| 921 | * + page_table |
| 922 | * |
| 923 | * internal |
| 924 | * The task's anonymous memory, which on iOS is always resident. |
| 925 | * |
| 926 | * internal_compressed |
| 927 | * Amount of this task's internal memory which is held by the compressor. |
| 928 | * Such memory is no longer actually resident for the task [i.e., resident in its pmap], |
| 929 | * and could be either decompressed back into memory, or paged out to storage, depending |
| 930 | * on our implementation. |
| 931 | * |
| 932 | * iokit_mapped |
| 933 | * IOKit mappings: The total size of all IOKit mappings in this task, regardless of |
| 934 | clean/dirty or internal/external state]. |
| 935 | * |
| 936 | * alternate_accounting |
| 937 | * The number of internal dirty pages which are part of IOKit mappings. By definition, these pages |
| 938 | * are counted in both internal *and* iokit_mapped, so we must subtract them from the total to avoid |
| 939 | * double counting. |
| 940 | */ |
| 941 | void |
| 942 | init_task_ledgers(void) |
| 943 | { |
| 944 | ledger_template_t t; |
| 945 | |
| 946 | assert(task_ledger_template == NULL); |
| 947 | assert(kernel_task == TASK_NULL); |
| 948 | |
| 949 | #if MACH_ASSERT |
| 950 | PE_parse_boot_argn("pmap_ledgers_panic" , |
| 951 | &pmap_ledgers_panic, |
| 952 | sizeof (pmap_ledgers_panic)); |
| 953 | PE_parse_boot_argn("pmap_ledgers_panic_leeway" , |
| 954 | &pmap_ledgers_panic_leeway, |
| 955 | sizeof (pmap_ledgers_panic_leeway)); |
| 956 | #endif /* MACH_ASSERT */ |
| 957 | |
| 958 | if ((t = ledger_template_create("Per-task ledger" )) == NULL) |
| 959 | panic("couldn't create task ledger template" ); |
| 960 | |
| 961 | task_ledgers.cpu_time = ledger_entry_add(t, "cpu_time" , "sched" , "ns" ); |
| 962 | task_ledgers.tkm_private = ledger_entry_add(t, "tkm_private" , |
| 963 | "physmem" , "bytes" ); |
| 964 | task_ledgers.tkm_shared = ledger_entry_add(t, "tkm_shared" , "physmem" , |
| 965 | "bytes" ); |
| 966 | task_ledgers.phys_mem = ledger_entry_add(t, "phys_mem" , "physmem" , |
| 967 | "bytes" ); |
| 968 | task_ledgers.wired_mem = ledger_entry_add(t, "wired_mem" , "physmem" , |
| 969 | "bytes" ); |
| 970 | task_ledgers.internal = ledger_entry_add(t, "internal" , "physmem" , |
| 971 | "bytes" ); |
| 972 | task_ledgers.iokit_mapped = ledger_entry_add(t, "iokit_mapped" , "mappings" , |
| 973 | "bytes" ); |
| 974 | task_ledgers.alternate_accounting = ledger_entry_add(t, "alternate_accounting" , "physmem" , |
| 975 | "bytes" ); |
| 976 | task_ledgers.alternate_accounting_compressed = ledger_entry_add(t, "alternate_accounting_compressed" , "physmem" , |
| 977 | "bytes" ); |
| 978 | task_ledgers.page_table = ledger_entry_add(t, "page_table" , "physmem" , |
| 979 | "bytes" ); |
| 980 | task_ledgers.phys_footprint = ledger_entry_add(t, "phys_footprint" , "physmem" , |
| 981 | "bytes" ); |
| 982 | task_ledgers.internal_compressed = ledger_entry_add(t, "internal_compressed" , "physmem" , |
| 983 | "bytes" ); |
| 984 | task_ledgers.purgeable_volatile = ledger_entry_add(t, "purgeable_volatile" , "physmem" , "bytes" ); |
| 985 | task_ledgers.purgeable_nonvolatile = ledger_entry_add(t, "purgeable_nonvolatile" , "physmem" , "bytes" ); |
| 986 | task_ledgers.purgeable_volatile_compressed = ledger_entry_add(t, "purgeable_volatile_compress" , "physmem" , "bytes" ); |
| 987 | task_ledgers.purgeable_nonvolatile_compressed = ledger_entry_add(t, "purgeable_nonvolatile_compress" , "physmem" , "bytes" ); |
| 988 | |
| 989 | task_ledgers.network_volatile = ledger_entry_add(t, "network_volatile" , "physmem" , "bytes" ); |
| 990 | task_ledgers.network_nonvolatile = ledger_entry_add(t, "network_nonvolatile" , "physmem" , "bytes" ); |
| 991 | task_ledgers.network_volatile_compressed = ledger_entry_add(t, "network_volatile_compressed" , "physmem" , "bytes" ); |
| 992 | task_ledgers.network_nonvolatile_compressed = ledger_entry_add(t, "network_nonvolatile_compressed" , "physmem" , "bytes" ); |
| 993 | |
| 994 | task_ledgers.platform_idle_wakeups = ledger_entry_add(t, "platform_idle_wakeups" , "power" , |
| 995 | "count" ); |
| 996 | task_ledgers.interrupt_wakeups = ledger_entry_add(t, "interrupt_wakeups" , "power" , |
| 997 | "count" ); |
| 998 | |
| 999 | #if CONFIG_SCHED_SFI |
| 1000 | sfi_class_id_t class_id, ledger_alias; |
| 1001 | for (class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 1002 | task_ledgers.sfi_wait_times[class_id] = -1; |
| 1003 | } |
| 1004 | |
| 1005 | /* don't account for UNSPECIFIED */ |
| 1006 | for (class_id = SFI_CLASS_UNSPECIFIED + 1; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 1007 | ledger_alias = sfi_get_ledger_alias_for_class(class_id); |
| 1008 | if (ledger_alias != SFI_CLASS_UNSPECIFIED) { |
| 1009 | /* Check to see if alias has been registered yet */ |
| 1010 | if (task_ledgers.sfi_wait_times[ledger_alias] != -1) { |
| 1011 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias]; |
| 1012 | } else { |
| 1013 | /* Otherwise, initialize it first */ |
| 1014 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias] = sfi_ledger_entry_add(t, ledger_alias); |
| 1015 | } |
| 1016 | } else { |
| 1017 | task_ledgers.sfi_wait_times[class_id] = sfi_ledger_entry_add(t, class_id); |
| 1018 | } |
| 1019 | |
| 1020 | if (task_ledgers.sfi_wait_times[class_id] < 0) { |
| 1021 | panic("couldn't create entries for task ledger template for SFI class 0x%x" , class_id); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | assert(task_ledgers.sfi_wait_times[MAX_SFI_CLASS_ID -1] != -1); |
| 1026 | #endif /* CONFIG_SCHED_SFI */ |
| 1027 | |
| 1028 | task_ledgers.cpu_time_billed_to_me = ledger_entry_add(t, "cpu_time_billed_to_me" , "sched" , "ns" ); |
| 1029 | task_ledgers.cpu_time_billed_to_others = ledger_entry_add(t, "cpu_time_billed_to_others" , "sched" , "ns" ); |
| 1030 | task_ledgers.physical_writes = ledger_entry_add(t, "physical_writes" , "res" , "bytes" ); |
| 1031 | task_ledgers.logical_writes = ledger_entry_add(t, "logical_writes" , "res" , "bytes" ); |
| 1032 | task_ledgers.energy_billed_to_me = ledger_entry_add(t, "energy_billed_to_me" , "power" , "nj" ); |
| 1033 | task_ledgers.energy_billed_to_others = ledger_entry_add(t, "energy_billed_to_others" , "power" , "nj" ); |
| 1034 | |
| 1035 | if ((task_ledgers.cpu_time < 0) || |
| 1036 | (task_ledgers.tkm_private < 0) || |
| 1037 | (task_ledgers.tkm_shared < 0) || |
| 1038 | (task_ledgers.phys_mem < 0) || |
| 1039 | (task_ledgers.wired_mem < 0) || |
| 1040 | (task_ledgers.internal < 0) || |
| 1041 | (task_ledgers.iokit_mapped < 0) || |
| 1042 | (task_ledgers.alternate_accounting < 0) || |
| 1043 | (task_ledgers.alternate_accounting_compressed < 0) || |
| 1044 | (task_ledgers.page_table < 0) || |
| 1045 | (task_ledgers.phys_footprint < 0) || |
| 1046 | (task_ledgers.internal_compressed < 0) || |
| 1047 | (task_ledgers.purgeable_volatile < 0) || |
| 1048 | (task_ledgers.purgeable_nonvolatile < 0) || |
| 1049 | (task_ledgers.purgeable_volatile_compressed < 0) || |
| 1050 | (task_ledgers.purgeable_nonvolatile_compressed < 0) || |
| 1051 | (task_ledgers.network_volatile < 0) || |
| 1052 | (task_ledgers.network_nonvolatile < 0) || |
| 1053 | (task_ledgers.network_volatile_compressed < 0) || |
| 1054 | (task_ledgers.network_nonvolatile_compressed < 0) || |
| 1055 | (task_ledgers.platform_idle_wakeups < 0) || |
| 1056 | (task_ledgers.interrupt_wakeups < 0) || |
| 1057 | (task_ledgers.cpu_time_billed_to_me < 0) || (task_ledgers.cpu_time_billed_to_others < 0) || |
| 1058 | (task_ledgers.physical_writes < 0) || |
| 1059 | (task_ledgers.logical_writes < 0) || |
| 1060 | (task_ledgers.energy_billed_to_me < 0) || |
| 1061 | (task_ledgers.energy_billed_to_others < 0) |
| 1062 | ) { |
| 1063 | panic("couldn't create entries for task ledger template" ); |
| 1064 | } |
| 1065 | |
| 1066 | ledger_track_credit_only(t, task_ledgers.phys_footprint); |
| 1067 | ledger_track_credit_only(t, task_ledgers.page_table); |
| 1068 | ledger_track_credit_only(t, task_ledgers.internal); |
| 1069 | ledger_track_credit_only(t, task_ledgers.internal_compressed); |
| 1070 | ledger_track_credit_only(t, task_ledgers.iokit_mapped); |
| 1071 | ledger_track_credit_only(t, task_ledgers.alternate_accounting); |
| 1072 | ledger_track_credit_only(t, task_ledgers.alternate_accounting_compressed); |
| 1073 | ledger_track_credit_only(t, task_ledgers.purgeable_volatile); |
| 1074 | ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile); |
| 1075 | ledger_track_credit_only(t, task_ledgers.purgeable_volatile_compressed); |
| 1076 | ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile_compressed); |
| 1077 | |
| 1078 | ledger_track_credit_only(t, task_ledgers.network_volatile); |
| 1079 | ledger_track_credit_only(t, task_ledgers.network_nonvolatile); |
| 1080 | ledger_track_credit_only(t, task_ledgers.network_volatile_compressed); |
| 1081 | ledger_track_credit_only(t, task_ledgers.network_nonvolatile_compressed); |
| 1082 | |
| 1083 | ledger_track_maximum(t, task_ledgers.phys_footprint, 60); |
| 1084 | #if MACH_ASSERT |
| 1085 | if (pmap_ledgers_panic) { |
| 1086 | ledger_panic_on_negative(t, task_ledgers.phys_footprint); |
| 1087 | ledger_panic_on_negative(t, task_ledgers.page_table); |
| 1088 | ledger_panic_on_negative(t, task_ledgers.internal); |
| 1089 | ledger_panic_on_negative(t, task_ledgers.internal_compressed); |
| 1090 | ledger_panic_on_negative(t, task_ledgers.iokit_mapped); |
| 1091 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting); |
| 1092 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting_compressed); |
| 1093 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile); |
| 1094 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile); |
| 1095 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile_compressed); |
| 1096 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile_compressed); |
| 1097 | |
| 1098 | ledger_panic_on_negative(t, task_ledgers.network_volatile); |
| 1099 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile); |
| 1100 | ledger_panic_on_negative(t, task_ledgers.network_volatile_compressed); |
| 1101 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile_compressed); |
| 1102 | } |
| 1103 | #endif /* MACH_ASSERT */ |
| 1104 | |
| 1105 | #if CONFIG_MEMORYSTATUS |
| 1106 | ledger_set_callback(t, task_ledgers.phys_footprint, task_footprint_exceeded, NULL, NULL); |
| 1107 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1108 | |
| 1109 | ledger_set_callback(t, task_ledgers.interrupt_wakeups, |
| 1110 | task_wakeups_rate_exceeded, NULL, NULL); |
| 1111 | ledger_set_callback(t, task_ledgers.physical_writes, task_io_rate_exceeded, (void *)FLAVOR_IO_PHYSICAL_WRITES, NULL); |
| 1112 | ledger_set_callback(t, task_ledgers.logical_writes, task_io_rate_exceeded, (void *)FLAVOR_IO_LOGICAL_WRITES, NULL); |
| 1113 | |
| 1114 | ledger_template_complete(t); |
| 1115 | task_ledger_template = t; |
| 1116 | } |
| 1117 | |
| 1118 | kern_return_t |
| 1119 | task_create_internal( |
| 1120 | task_t parent_task, |
| 1121 | coalition_t *parent_coalitions __unused, |
| 1122 | boolean_t inherit_memory, |
| 1123 | __unused boolean_t is_64bit, |
| 1124 | boolean_t is_64bit_data, |
| 1125 | uint32_t t_flags, |
| 1126 | uint32_t t_procflags, |
| 1127 | task_t *child_task) /* OUT */ |
| 1128 | { |
| 1129 | task_t new_task; |
| 1130 | vm_shared_region_t shared_region; |
| 1131 | ledger_t ledger = NULL; |
| 1132 | |
| 1133 | new_task = (task_t) zalloc(task_zone); |
| 1134 | |
| 1135 | if (new_task == TASK_NULL) |
| 1136 | return(KERN_RESOURCE_SHORTAGE); |
| 1137 | |
| 1138 | /* one ref for just being alive; one for our caller */ |
| 1139 | new_task->ref_count = 2; |
| 1140 | |
| 1141 | /* allocate with active entries */ |
| 1142 | assert(task_ledger_template != NULL); |
| 1143 | if ((ledger = ledger_instantiate(task_ledger_template, |
| 1144 | LEDGER_CREATE_ACTIVE_ENTRIES)) == NULL) { |
| 1145 | zfree(task_zone, new_task); |
| 1146 | return(KERN_RESOURCE_SHORTAGE); |
| 1147 | } |
| 1148 | |
| 1149 | |
| 1150 | new_task->ledger = ledger; |
| 1151 | |
| 1152 | #if defined(CONFIG_SCHED_MULTIQ) |
| 1153 | new_task->sched_group = sched_group_create(); |
| 1154 | #endif |
| 1155 | |
| 1156 | /* if inherit_memory is true, parent_task MUST not be NULL */ |
| 1157 | if (!(t_flags & TF_CORPSE_FORK) && inherit_memory) |
| 1158 | new_task->map = vm_map_fork(ledger, parent_task->map, 0); |
| 1159 | else |
| 1160 | new_task->map = vm_map_create(pmap_create(ledger, 0, is_64bit), |
| 1161 | (vm_map_offset_t)(VM_MIN_ADDRESS), |
| 1162 | (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE); |
| 1163 | |
| 1164 | /* Inherit memlock limit from parent */ |
| 1165 | if (parent_task) |
| 1166 | vm_map_set_user_wire_limit(new_task->map, (vm_size_t)parent_task->map->user_wire_limit); |
| 1167 | |
| 1168 | lck_mtx_init(&new_task->lock, &task_lck_grp, &task_lck_attr); |
| 1169 | queue_init(&new_task->threads); |
| 1170 | new_task->suspend_count = 0; |
| 1171 | new_task->thread_count = 0; |
| 1172 | new_task->active_thread_count = 0; |
| 1173 | new_task->user_stop_count = 0; |
| 1174 | new_task->legacy_stop_count = 0; |
| 1175 | new_task->active = TRUE; |
| 1176 | new_task->halting = FALSE; |
| 1177 | new_task->priv_flags = 0; |
| 1178 | new_task->t_flags = t_flags; |
| 1179 | new_task->t_procflags = t_procflags; |
| 1180 | new_task->importance = 0; |
| 1181 | new_task->crashed_thread_id = 0; |
| 1182 | new_task->exec_token = 0; |
| 1183 | |
| 1184 | new_task->task_exc_guard = task_exc_guard_default; |
| 1185 | |
| 1186 | #if CONFIG_ATM |
| 1187 | new_task->atm_context = NULL; |
| 1188 | #endif |
| 1189 | new_task->bank_context = NULL; |
| 1190 | |
| 1191 | #ifdef MACH_BSD |
| 1192 | new_task->bsd_info = NULL; |
| 1193 | new_task->corpse_info = NULL; |
| 1194 | #endif /* MACH_BSD */ |
| 1195 | |
| 1196 | #if CONFIG_MACF |
| 1197 | new_task->crash_label = NULL; |
| 1198 | #endif |
| 1199 | |
| 1200 | #if CONFIG_MEMORYSTATUS |
| 1201 | if (max_task_footprint != 0) { |
| 1202 | ledger_set_limit(ledger, task_ledgers.phys_footprint, max_task_footprint, PHYS_FOOTPRINT_WARNING_LEVEL); |
| 1203 | } |
| 1204 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1205 | |
| 1206 | if (task_wakeups_monitor_rate != 0) { |
| 1207 | uint32_t flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS; |
| 1208 | int32_t rate; // Ignored because of WAKEMON_SET_DEFAULTS |
| 1209 | task_wakeups_monitor_ctl(new_task, &flags, &rate); |
| 1210 | } |
| 1211 | |
| 1212 | #if CONFIG_IO_ACCOUNTING |
| 1213 | uint32_t flags = IOMON_ENABLE; |
| 1214 | task_io_monitor_ctl(new_task, &flags); |
| 1215 | #endif /* CONFIG_IO_ACCOUNTING */ |
| 1216 | |
| 1217 | machine_task_init(new_task, parent_task, inherit_memory); |
| 1218 | |
| 1219 | new_task->task_debug = NULL; |
| 1220 | |
| 1221 | #if DEVELOPMENT || DEBUG |
| 1222 | new_task->task_unnested = FALSE; |
| 1223 | new_task->task_disconnected_count = 0; |
| 1224 | #endif |
| 1225 | queue_init(&new_task->semaphore_list); |
| 1226 | new_task->semaphores_owned = 0; |
| 1227 | |
| 1228 | ipc_task_init(new_task, parent_task); |
| 1229 | |
| 1230 | new_task->vtimers = 0; |
| 1231 | |
| 1232 | new_task->shared_region = NULL; |
| 1233 | |
| 1234 | new_task->affinity_space = NULL; |
| 1235 | |
| 1236 | new_task->t_kpc = 0; |
| 1237 | |
| 1238 | new_task->pidsuspended = FALSE; |
| 1239 | new_task->frozen = FALSE; |
| 1240 | new_task->changing_freeze_state = FALSE; |
| 1241 | new_task->rusage_cpu_flags = 0; |
| 1242 | new_task->rusage_cpu_percentage = 0; |
| 1243 | new_task->rusage_cpu_interval = 0; |
| 1244 | new_task->rusage_cpu_deadline = 0; |
| 1245 | new_task->rusage_cpu_callt = NULL; |
| 1246 | #if MACH_ASSERT |
| 1247 | new_task->suspends_outstanding = 0; |
| 1248 | #endif |
| 1249 | |
| 1250 | #if HYPERVISOR |
| 1251 | new_task->hv_task_target = NULL; |
| 1252 | #endif /* HYPERVISOR */ |
| 1253 | |
| 1254 | #if CONFIG_EMBEDDED |
| 1255 | queue_init(&new_task->task_watchers); |
| 1256 | new_task->num_taskwatchers = 0; |
| 1257 | new_task->watchapplying = 0; |
| 1258 | #endif /* CONFIG_EMBEDDED */ |
| 1259 | |
| 1260 | new_task->mem_notify_reserved = 0; |
| 1261 | new_task->memlimit_attrs_reserved = 0; |
| 1262 | |
| 1263 | new_task->requested_policy = default_task_requested_policy; |
| 1264 | new_task->effective_policy = default_task_effective_policy; |
| 1265 | |
| 1266 | task_importance_init_from_parent(new_task, parent_task); |
| 1267 | |
| 1268 | if (parent_task != TASK_NULL) { |
| 1269 | new_task->sec_token = parent_task->sec_token; |
| 1270 | new_task->audit_token = parent_task->audit_token; |
| 1271 | |
| 1272 | /* inherit the parent's shared region */ |
| 1273 | shared_region = vm_shared_region_get(parent_task); |
| 1274 | vm_shared_region_set(new_task, shared_region); |
| 1275 | |
| 1276 | if(task_has_64Bit_addr(parent_task)) { |
| 1277 | task_set_64Bit_addr(new_task); |
| 1278 | } |
| 1279 | |
| 1280 | if(task_has_64Bit_data(parent_task)) { |
| 1281 | task_set_64Bit_data(new_task); |
| 1282 | } |
| 1283 | |
| 1284 | new_task->all_image_info_addr = parent_task->all_image_info_addr; |
| 1285 | new_task->all_image_info_size = parent_task->all_image_info_size; |
| 1286 | |
| 1287 | if (inherit_memory && parent_task->affinity_space) |
| 1288 | task_affinity_create(parent_task, new_task); |
| 1289 | |
| 1290 | new_task->pset_hint = parent_task->pset_hint = task_choose_pset(parent_task); |
| 1291 | |
| 1292 | new_task->priority = BASEPRI_DEFAULT; |
| 1293 | new_task->max_priority = MAXPRI_USER; |
| 1294 | |
| 1295 | task_policy_create(new_task, parent_task); |
| 1296 | } else { |
| 1297 | new_task->sec_token = KERNEL_SECURITY_TOKEN; |
| 1298 | new_task->audit_token = KERNEL_AUDIT_TOKEN; |
| 1299 | #ifdef __LP64__ |
| 1300 | if(is_64bit) { |
| 1301 | task_set_64Bit_addr(new_task); |
| 1302 | } |
| 1303 | #endif |
| 1304 | |
| 1305 | if(is_64bit_data) { |
| 1306 | task_set_64Bit_data(new_task); |
| 1307 | } |
| 1308 | |
| 1309 | new_task->all_image_info_addr = (mach_vm_address_t)0; |
| 1310 | new_task->all_image_info_size = (mach_vm_size_t)0; |
| 1311 | |
| 1312 | new_task->pset_hint = PROCESSOR_SET_NULL; |
| 1313 | |
| 1314 | if (kernel_task == TASK_NULL) { |
| 1315 | new_task->priority = BASEPRI_KERNEL; |
| 1316 | new_task->max_priority = MAXPRI_KERNEL; |
| 1317 | } else { |
| 1318 | new_task->priority = BASEPRI_DEFAULT; |
| 1319 | new_task->max_priority = MAXPRI_USER; |
| 1320 | } |
| 1321 | } |
| 1322 | |
| 1323 | bzero(new_task->coalition, sizeof(new_task->coalition)); |
| 1324 | for (int i = 0; i < COALITION_NUM_TYPES; i++) |
| 1325 | queue_chain_init(new_task->task_coalition[i]); |
| 1326 | |
| 1327 | /* Allocate I/O Statistics */ |
| 1328 | new_task->task_io_stats = (io_stat_info_t)kalloc(sizeof(struct io_stat_info)); |
| 1329 | assert(new_task->task_io_stats != NULL); |
| 1330 | bzero(new_task->task_io_stats, sizeof(struct io_stat_info)); |
| 1331 | |
| 1332 | bzero(&(new_task->cpu_time_eqos_stats), sizeof(new_task->cpu_time_eqos_stats)); |
| 1333 | bzero(&(new_task->cpu_time_rqos_stats), sizeof(new_task->cpu_time_rqos_stats)); |
| 1334 | |
| 1335 | bzero(&new_task->extmod_statistics, sizeof(new_task->extmod_statistics)); |
| 1336 | |
| 1337 | /* Copy resource acc. info from Parent for Corpe Forked task. */ |
| 1338 | if (parent_task != NULL && (t_flags & TF_CORPSE_FORK)) { |
| 1339 | task_rollup_accounting_info(new_task, parent_task); |
| 1340 | } else { |
| 1341 | /* Initialize to zero for standard fork/spawn case */ |
| 1342 | new_task->total_user_time = 0; |
| 1343 | new_task->total_system_time = 0; |
| 1344 | new_task->total_ptime = 0; |
| 1345 | new_task->total_runnable_time = 0; |
| 1346 | new_task->faults = 0; |
| 1347 | new_task->pageins = 0; |
| 1348 | new_task->cow_faults = 0; |
| 1349 | new_task->messages_sent = 0; |
| 1350 | new_task->messages_received = 0; |
| 1351 | new_task->syscalls_mach = 0; |
| 1352 | new_task->syscalls_unix = 0; |
| 1353 | new_task->c_switch = 0; |
| 1354 | new_task->p_switch = 0; |
| 1355 | new_task->ps_switch = 0; |
| 1356 | new_task->low_mem_notified_warn = 0; |
| 1357 | new_task->low_mem_notified_critical = 0; |
| 1358 | new_task->purged_memory_warn = 0; |
| 1359 | new_task->purged_memory_critical = 0; |
| 1360 | new_task->low_mem_privileged_listener = 0; |
| 1361 | new_task->memlimit_is_active = 0; |
| 1362 | new_task->memlimit_is_fatal = 0; |
| 1363 | new_task->memlimit_active_exc_resource = 0; |
| 1364 | new_task->memlimit_inactive_exc_resource = 0; |
| 1365 | new_task->task_timer_wakeups_bin_1 = 0; |
| 1366 | new_task->task_timer_wakeups_bin_2 = 0; |
| 1367 | new_task->task_gpu_ns = 0; |
| 1368 | new_task->task_immediate_writes = 0; |
| 1369 | new_task->task_deferred_writes = 0; |
| 1370 | new_task->task_invalidated_writes = 0; |
| 1371 | new_task->task_metadata_writes = 0; |
| 1372 | new_task->task_energy = 0; |
| 1373 | #if MONOTONIC |
| 1374 | memset(&new_task->task_monotonic, 0, sizeof(new_task->task_monotonic)); |
| 1375 | #endif /* MONOTONIC */ |
| 1376 | } |
| 1377 | |
| 1378 | |
| 1379 | #if CONFIG_COALITIONS |
| 1380 | if (!(t_flags & TF_CORPSE_FORK)) { |
| 1381 | /* TODO: there is no graceful failure path here... */ |
| 1382 | if (parent_coalitions && parent_coalitions[COALITION_TYPE_RESOURCE]) { |
| 1383 | coalitions_adopt_task(parent_coalitions, new_task); |
| 1384 | } else if (parent_task && parent_task->coalition[COALITION_TYPE_RESOURCE]) { |
| 1385 | /* |
| 1386 | * all tasks at least have a resource coalition, so |
| 1387 | * if the parent has one then inherit all coalitions |
| 1388 | * the parent is a part of |
| 1389 | */ |
| 1390 | coalitions_adopt_task(parent_task->coalition, new_task); |
| 1391 | } else { |
| 1392 | /* TODO: assert that new_task will be PID 1 (launchd) */ |
| 1393 | coalitions_adopt_init_task(new_task); |
| 1394 | } |
| 1395 | /* |
| 1396 | * on exec, we need to transfer the coalition roles from the |
| 1397 | * parent task to the exec copy task. |
| 1398 | */ |
| 1399 | if (parent_task && (t_procflags & TPF_EXEC_COPY)) { |
| 1400 | int coal_roles[COALITION_NUM_TYPES]; |
| 1401 | task_coalition_roles(parent_task, coal_roles); |
| 1402 | (void)coalitions_set_roles(new_task->coalition, new_task, coal_roles); |
| 1403 | } |
| 1404 | } else { |
| 1405 | coalitions_adopt_corpse_task(new_task); |
| 1406 | } |
| 1407 | |
| 1408 | if (new_task->coalition[COALITION_TYPE_RESOURCE] == COALITION_NULL) { |
| 1409 | panic("created task is not a member of a resource coalition" ); |
| 1410 | } |
| 1411 | #endif /* CONFIG_COALITIONS */ |
| 1412 | |
| 1413 | new_task->dispatchqueue_offset = 0; |
| 1414 | if (parent_task != NULL) { |
| 1415 | new_task->dispatchqueue_offset = parent_task->dispatchqueue_offset; |
| 1416 | } |
| 1417 | |
| 1418 | new_task->task_volatile_objects = 0; |
| 1419 | new_task->task_nonvolatile_objects = 0; |
| 1420 | new_task->task_purgeable_disowning = FALSE; |
| 1421 | new_task->task_purgeable_disowned = FALSE; |
| 1422 | queue_init(&new_task->task_objq); |
| 1423 | task_objq_lock_init(new_task); |
| 1424 | |
| 1425 | #if __arm64__ |
| 1426 | new_task->task_legacy_footprint = FALSE; |
| 1427 | #endif /* __arm64__ */ |
| 1428 | new_task->task_region_footprint = FALSE; |
| 1429 | new_task->task_has_crossed_thread_limit = FALSE; |
| 1430 | new_task->task_thread_limit = 0; |
| 1431 | #if CONFIG_SECLUDED_MEMORY |
| 1432 | new_task->task_can_use_secluded_mem = FALSE; |
| 1433 | new_task->task_could_use_secluded_mem = FALSE; |
| 1434 | new_task->task_could_also_use_secluded_mem = FALSE; |
| 1435 | new_task->task_suppressed_secluded = FALSE; |
| 1436 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1437 | |
| 1438 | /* |
| 1439 | * t_flags is set up above. But since we don't |
| 1440 | * support darkwake mode being set that way |
| 1441 | * currently, we clear it out here explicitly. |
| 1442 | */ |
| 1443 | new_task->t_flags &= ~(TF_DARKWAKE_MODE); |
| 1444 | |
| 1445 | queue_init(&new_task->io_user_clients); |
| 1446 | |
| 1447 | ipc_task_enable(new_task); |
| 1448 | |
| 1449 | lck_mtx_lock(&tasks_threads_lock); |
| 1450 | queue_enter(&tasks, new_task, task_t, tasks); |
| 1451 | tasks_count++; |
| 1452 | if (tasks_suspend_state) { |
| 1453 | task_suspend_internal(new_task); |
| 1454 | } |
| 1455 | lck_mtx_unlock(&tasks_threads_lock); |
| 1456 | |
| 1457 | *child_task = new_task; |
| 1458 | return(KERN_SUCCESS); |
| 1459 | } |
| 1460 | |
| 1461 | /* |
| 1462 | * task_rollup_accounting_info |
| 1463 | * |
| 1464 | * Roll up accounting stats. Used to rollup stats |
| 1465 | * for exec copy task and corpse fork. |
| 1466 | */ |
| 1467 | void |
| 1468 | task_rollup_accounting_info(task_t to_task, task_t from_task) |
| 1469 | { |
| 1470 | assert(from_task != to_task); |
| 1471 | |
| 1472 | to_task->total_user_time = from_task->total_user_time; |
| 1473 | to_task->total_system_time = from_task->total_system_time; |
| 1474 | to_task->total_ptime = from_task->total_ptime; |
| 1475 | to_task->total_runnable_time = from_task->total_runnable_time; |
| 1476 | to_task->faults = from_task->faults; |
| 1477 | to_task->pageins = from_task->pageins; |
| 1478 | to_task->cow_faults = from_task->cow_faults; |
| 1479 | to_task->messages_sent = from_task->messages_sent; |
| 1480 | to_task->messages_received = from_task->messages_received; |
| 1481 | to_task->syscalls_mach = from_task->syscalls_mach; |
| 1482 | to_task->syscalls_unix = from_task->syscalls_unix; |
| 1483 | to_task->c_switch = from_task->c_switch; |
| 1484 | to_task->p_switch = from_task->p_switch; |
| 1485 | to_task->ps_switch = from_task->ps_switch; |
| 1486 | to_task->extmod_statistics = from_task->extmod_statistics; |
| 1487 | to_task->low_mem_notified_warn = from_task->low_mem_notified_warn; |
| 1488 | to_task->low_mem_notified_critical = from_task->low_mem_notified_critical; |
| 1489 | to_task->purged_memory_warn = from_task->purged_memory_warn; |
| 1490 | to_task->purged_memory_critical = from_task->purged_memory_critical; |
| 1491 | to_task->low_mem_privileged_listener = from_task->low_mem_privileged_listener; |
| 1492 | *to_task->task_io_stats = *from_task->task_io_stats; |
| 1493 | to_task->cpu_time_eqos_stats = from_task->cpu_time_eqos_stats; |
| 1494 | to_task->cpu_time_rqos_stats = from_task->cpu_time_rqos_stats; |
| 1495 | to_task->task_timer_wakeups_bin_1 = from_task->task_timer_wakeups_bin_1; |
| 1496 | to_task->task_timer_wakeups_bin_2 = from_task->task_timer_wakeups_bin_2; |
| 1497 | to_task->task_gpu_ns = from_task->task_gpu_ns; |
| 1498 | to_task->task_immediate_writes = from_task->task_immediate_writes; |
| 1499 | to_task->task_deferred_writes = from_task->task_deferred_writes; |
| 1500 | to_task->task_invalidated_writes = from_task->task_invalidated_writes; |
| 1501 | to_task->task_metadata_writes = from_task->task_metadata_writes; |
| 1502 | to_task->task_energy = from_task->task_energy; |
| 1503 | |
| 1504 | /* Skip ledger roll up for memory accounting entries */ |
| 1505 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time); |
| 1506 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.platform_idle_wakeups); |
| 1507 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.interrupt_wakeups); |
| 1508 | #if CONFIG_SCHED_SFI |
| 1509 | for (sfi_class_id_t class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 1510 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.sfi_wait_times[class_id]); |
| 1511 | } |
| 1512 | #endif |
| 1513 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_me); |
| 1514 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_others); |
| 1515 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.physical_writes); |
| 1516 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.logical_writes); |
| 1517 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.energy_billed_to_me); |
| 1518 | ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.energy_billed_to_others); |
| 1519 | } |
| 1520 | |
| 1521 | int task_dropped_imp_count = 0; |
| 1522 | |
| 1523 | /* |
| 1524 | * task_deallocate: |
| 1525 | * |
| 1526 | * Drop a reference on a task. |
| 1527 | */ |
| 1528 | void |
| 1529 | task_deallocate( |
| 1530 | task_t task) |
| 1531 | { |
| 1532 | ledger_amount_t credit, debit, interrupt_wakeups, platform_idle_wakeups; |
| 1533 | uint32_t refs; |
| 1534 | |
| 1535 | if (task == TASK_NULL) |
| 1536 | return; |
| 1537 | |
| 1538 | refs = task_deallocate_internal(task); |
| 1539 | |
| 1540 | #if IMPORTANCE_INHERITANCE |
| 1541 | if (refs > 1) |
| 1542 | return; |
| 1543 | |
| 1544 | atomic_load_explicit(&task->ref_count, memory_order_acquire); |
| 1545 | |
| 1546 | if (refs == 1) { |
| 1547 | /* |
| 1548 | * If last ref potentially comes from the task's importance, |
| 1549 | * disconnect it. But more task refs may be added before |
| 1550 | * that completes, so wait for the reference to go to zero |
| 1551 | * naturually (it may happen on a recursive task_deallocate() |
| 1552 | * from the ipc_importance_disconnect_task() call). |
| 1553 | */ |
| 1554 | if (IIT_NULL != task->task_imp_base) |
| 1555 | ipc_importance_disconnect_task(task); |
| 1556 | return; |
| 1557 | } |
| 1558 | #else |
| 1559 | if (refs > 0) |
| 1560 | return; |
| 1561 | |
| 1562 | atomic_load_explicit(&task->ref_count, memory_order_acquire); |
| 1563 | |
| 1564 | #endif /* IMPORTANCE_INHERITANCE */ |
| 1565 | |
| 1566 | lck_mtx_lock(&tasks_threads_lock); |
| 1567 | queue_remove(&terminated_tasks, task, task_t, tasks); |
| 1568 | terminated_tasks_count--; |
| 1569 | lck_mtx_unlock(&tasks_threads_lock); |
| 1570 | |
| 1571 | /* |
| 1572 | * remove the reference on atm descriptor |
| 1573 | */ |
| 1574 | task_atm_reset(task); |
| 1575 | |
| 1576 | /* |
| 1577 | * remove the reference on bank context |
| 1578 | */ |
| 1579 | task_bank_reset(task); |
| 1580 | |
| 1581 | if (task->task_io_stats) |
| 1582 | kfree(task->task_io_stats, sizeof(struct io_stat_info)); |
| 1583 | |
| 1584 | /* |
| 1585 | * Give the machine dependent code a chance |
| 1586 | * to perform cleanup before ripping apart |
| 1587 | * the task. |
| 1588 | */ |
| 1589 | machine_task_terminate(task); |
| 1590 | |
| 1591 | ipc_task_terminate(task); |
| 1592 | |
| 1593 | /* let iokit know */ |
| 1594 | iokit_task_terminate(task); |
| 1595 | |
| 1596 | if (task->affinity_space) |
| 1597 | task_affinity_deallocate(task); |
| 1598 | |
| 1599 | #if MACH_ASSERT |
| 1600 | if (task->ledger != NULL && |
| 1601 | task->map != NULL && |
| 1602 | task->map->pmap != NULL && |
| 1603 | task->map->pmap->ledger != NULL) { |
| 1604 | assert(task->ledger == task->map->pmap->ledger); |
| 1605 | } |
| 1606 | #endif /* MACH_ASSERT */ |
| 1607 | |
| 1608 | vm_purgeable_disown(task); |
| 1609 | assert(task->task_purgeable_disowned); |
| 1610 | if (task->task_volatile_objects != 0 || |
| 1611 | task->task_nonvolatile_objects != 0) { |
| 1612 | panic("task_deallocate(%p): " |
| 1613 | "volatile_objects=%d nonvolatile_objects=%d\n" , |
| 1614 | task, |
| 1615 | task->task_volatile_objects, |
| 1616 | task->task_nonvolatile_objects); |
| 1617 | } |
| 1618 | |
| 1619 | vm_map_deallocate(task->map); |
| 1620 | is_release(task->itk_space); |
| 1621 | |
| 1622 | ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups, |
| 1623 | &interrupt_wakeups, &debit); |
| 1624 | ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups, |
| 1625 | &platform_idle_wakeups, &debit); |
| 1626 | |
| 1627 | #if defined(CONFIG_SCHED_MULTIQ) |
| 1628 | sched_group_destroy(task->sched_group); |
| 1629 | #endif |
| 1630 | |
| 1631 | /* Accumulate statistics for dead tasks */ |
| 1632 | lck_spin_lock(&dead_task_statistics_lock); |
| 1633 | dead_task_statistics.total_user_time += task->total_user_time; |
| 1634 | dead_task_statistics.total_system_time += task->total_system_time; |
| 1635 | |
| 1636 | dead_task_statistics.task_interrupt_wakeups += interrupt_wakeups; |
| 1637 | dead_task_statistics.task_platform_idle_wakeups += platform_idle_wakeups; |
| 1638 | |
| 1639 | dead_task_statistics.task_timer_wakeups_bin_1 += task->task_timer_wakeups_bin_1; |
| 1640 | dead_task_statistics.task_timer_wakeups_bin_2 += task->task_timer_wakeups_bin_2; |
| 1641 | dead_task_statistics.total_ptime += task->total_ptime; |
| 1642 | dead_task_statistics.total_pset_switches += task->ps_switch; |
| 1643 | dead_task_statistics.task_gpu_ns += task->task_gpu_ns; |
| 1644 | dead_task_statistics.task_energy += task->task_energy; |
| 1645 | |
| 1646 | lck_spin_unlock(&dead_task_statistics_lock); |
| 1647 | lck_mtx_destroy(&task->lock, &task_lck_grp); |
| 1648 | |
| 1649 | if (!ledger_get_entries(task->ledger, task_ledgers.tkm_private, &credit, |
| 1650 | &debit)) { |
| 1651 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_private.alloc); |
| 1652 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_private.free); |
| 1653 | } |
| 1654 | if (!ledger_get_entries(task->ledger, task_ledgers.tkm_shared, &credit, |
| 1655 | &debit)) { |
| 1656 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_shared.alloc); |
| 1657 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_shared.free); |
| 1658 | } |
| 1659 | ledger_dereference(task->ledger); |
| 1660 | |
| 1661 | #if TASK_REFERENCE_LEAK_DEBUG |
| 1662 | btlog_remove_entries_for_element(task_ref_btlog, task); |
| 1663 | #endif |
| 1664 | |
| 1665 | #if CONFIG_COALITIONS |
| 1666 | task_release_coalitions(task); |
| 1667 | #endif /* CONFIG_COALITIONS */ |
| 1668 | |
| 1669 | bzero(task->coalition, sizeof(task->coalition)); |
| 1670 | |
| 1671 | #if MACH_BSD |
| 1672 | /* clean up collected information since last reference to task is gone */ |
| 1673 | if (task->corpse_info) { |
| 1674 | void *corpse_info_kernel = kcdata_memory_get_begin_addr(task->corpse_info); |
| 1675 | task_crashinfo_destroy(task->corpse_info); |
| 1676 | task->corpse_info = NULL; |
| 1677 | if (corpse_info_kernel) { |
| 1678 | kfree(corpse_info_kernel, CORPSEINFO_ALLOCATION_SIZE); |
| 1679 | } |
| 1680 | } |
| 1681 | #endif |
| 1682 | |
| 1683 | #if CONFIG_MACF |
| 1684 | if (task->crash_label) { |
| 1685 | mac_exc_free_label(task->crash_label); |
| 1686 | task->crash_label = NULL; |
| 1687 | } |
| 1688 | #endif |
| 1689 | |
| 1690 | assert(queue_empty(&task->task_objq)); |
| 1691 | |
| 1692 | zfree(task_zone, task); |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * task_name_deallocate: |
| 1697 | * |
| 1698 | * Drop a reference on a task name. |
| 1699 | */ |
| 1700 | void |
| 1701 | task_name_deallocate( |
| 1702 | task_name_t task_name) |
| 1703 | { |
| 1704 | return(task_deallocate((task_t)task_name)); |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * task_inspect_deallocate: |
| 1709 | * |
| 1710 | * Drop a task inspection reference. |
| 1711 | */ |
| 1712 | void |
| 1713 | task_inspect_deallocate( |
| 1714 | task_inspect_t task_inspect) |
| 1715 | { |
| 1716 | return(task_deallocate((task_t)task_inspect)); |
| 1717 | } |
| 1718 | |
| 1719 | /* |
| 1720 | * task_suspension_token_deallocate: |
| 1721 | * |
| 1722 | * Drop a reference on a task suspension token. |
| 1723 | */ |
| 1724 | void |
| 1725 | task_suspension_token_deallocate( |
| 1726 | task_suspension_token_t token) |
| 1727 | { |
| 1728 | return(task_deallocate((task_t)token)); |
| 1729 | } |
| 1730 | |
| 1731 | |
| 1732 | /* |
| 1733 | * task_collect_crash_info: |
| 1734 | * |
| 1735 | * collect crash info from bsd and mach based data |
| 1736 | */ |
| 1737 | kern_return_t |
| 1738 | task_collect_crash_info( |
| 1739 | task_t task, |
| 1740 | #ifdef CONFIG_MACF |
| 1741 | struct label *crash_label, |
| 1742 | #endif |
| 1743 | int is_corpse_fork) |
| 1744 | { |
| 1745 | kern_return_t kr = KERN_SUCCESS; |
| 1746 | |
| 1747 | kcdata_descriptor_t crash_data = NULL; |
| 1748 | kcdata_descriptor_t crash_data_release = NULL; |
| 1749 | mach_msg_type_number_t size = CORPSEINFO_ALLOCATION_SIZE; |
| 1750 | mach_vm_offset_t crash_data_ptr = 0; |
| 1751 | void *crash_data_kernel = NULL; |
| 1752 | void *crash_data_kernel_release = NULL; |
| 1753 | #if CONFIG_MACF |
| 1754 | struct label *label, *free_label; |
| 1755 | #endif |
| 1756 | |
| 1757 | if (!corpses_enabled()) { |
| 1758 | return KERN_NOT_SUPPORTED; |
| 1759 | } |
| 1760 | |
| 1761 | #if CONFIG_MACF |
| 1762 | free_label = label = mac_exc_create_label(); |
| 1763 | #endif |
| 1764 | |
| 1765 | task_lock(task); |
| 1766 | |
| 1767 | assert(is_corpse_fork || task->bsd_info != NULL); |
| 1768 | if (task->corpse_info == NULL && (is_corpse_fork || task->bsd_info != NULL)) { |
| 1769 | #if CONFIG_MACF |
| 1770 | /* Set the crash label, used by the exception delivery mac hook */ |
| 1771 | free_label = task->crash_label; // Most likely NULL. |
| 1772 | task->crash_label = label; |
| 1773 | mac_exc_update_task_crash_label(task, crash_label); |
| 1774 | #endif |
| 1775 | task_unlock(task); |
| 1776 | |
| 1777 | crash_data_kernel = (void *) kalloc(CORPSEINFO_ALLOCATION_SIZE); |
| 1778 | if (crash_data_kernel == NULL) { |
| 1779 | kr = KERN_RESOURCE_SHORTAGE; |
| 1780 | goto out_no_lock; |
| 1781 | } |
| 1782 | bzero(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE); |
| 1783 | crash_data_ptr = (mach_vm_offset_t) crash_data_kernel; |
| 1784 | |
| 1785 | /* Do not get a corpse ref for corpse fork */ |
| 1786 | crash_data = task_crashinfo_alloc_init((mach_vm_address_t)crash_data_ptr, size, |
| 1787 | is_corpse_fork ? 0 : CORPSE_CRASHINFO_HAS_REF, |
| 1788 | KCFLAG_USE_MEMCOPY); |
| 1789 | if (crash_data) { |
| 1790 | task_lock(task); |
| 1791 | crash_data_release = task->corpse_info; |
| 1792 | crash_data_kernel_release = kcdata_memory_get_begin_addr(crash_data_release); |
| 1793 | task->corpse_info = crash_data; |
| 1794 | |
| 1795 | task_unlock(task); |
| 1796 | kr = KERN_SUCCESS; |
| 1797 | } else { |
| 1798 | kfree(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE); |
| 1799 | kr = KERN_FAILURE; |
| 1800 | } |
| 1801 | |
| 1802 | if (crash_data_release != NULL) { |
| 1803 | task_crashinfo_destroy(crash_data_release); |
| 1804 | } |
| 1805 | if (crash_data_kernel_release != NULL) { |
| 1806 | kfree(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE); |
| 1807 | } |
| 1808 | } else { |
| 1809 | task_unlock(task); |
| 1810 | } |
| 1811 | |
| 1812 | out_no_lock: |
| 1813 | #if CONFIG_MACF |
| 1814 | if (free_label != NULL) { |
| 1815 | mac_exc_free_label(free_label); |
| 1816 | } |
| 1817 | #endif |
| 1818 | return kr; |
| 1819 | } |
| 1820 | |
| 1821 | /* |
| 1822 | * task_deliver_crash_notification: |
| 1823 | * |
| 1824 | * Makes outcall to registered host port for a corpse. |
| 1825 | */ |
| 1826 | kern_return_t |
| 1827 | task_deliver_crash_notification( |
| 1828 | task_t task, |
| 1829 | thread_t thread, |
| 1830 | exception_type_t etype, |
| 1831 | mach_exception_subcode_t subcode) |
| 1832 | { |
| 1833 | kcdata_descriptor_t crash_info = task->corpse_info; |
| 1834 | thread_t th_iter = NULL; |
| 1835 | kern_return_t kr = KERN_SUCCESS; |
| 1836 | wait_interrupt_t wsave; |
| 1837 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 1838 | ipc_port_t task_port, old_notify; |
| 1839 | |
| 1840 | if (crash_info == NULL) |
| 1841 | return KERN_FAILURE; |
| 1842 | |
| 1843 | task_lock(task); |
| 1844 | if (task_is_a_corpse_fork(task)) { |
| 1845 | /* Populate code with EXC_{RESOURCE,GUARD} for corpse fork */ |
| 1846 | code[0] = etype; |
| 1847 | code[1] = subcode; |
| 1848 | } else { |
| 1849 | /* Populate code with EXC_CRASH for corpses */ |
| 1850 | code[0] = EXC_CRASH; |
| 1851 | code[1] = 0; |
| 1852 | /* Update the code[1] if the boot-arg corpse_for_fatal_memkill is set */ |
| 1853 | if (corpse_for_fatal_memkill) { |
| 1854 | code[1] = subcode; |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | queue_iterate(&task->threads, th_iter, thread_t, task_threads) |
| 1859 | { |
| 1860 | if (th_iter->corpse_dup == FALSE) { |
| 1861 | ipc_thread_reset(th_iter); |
| 1862 | } |
| 1863 | } |
| 1864 | task_unlock(task); |
| 1865 | |
| 1866 | /* Arm the no-sender notification for taskport */ |
| 1867 | task_reference(task); |
| 1868 | task_port = convert_task_to_port(task); |
| 1869 | ip_lock(task_port); |
| 1870 | assert(ip_active(task_port)); |
| 1871 | ipc_port_nsrequest(task_port, task_port->ip_mscount, ipc_port_make_sonce_locked(task_port), &old_notify); |
| 1872 | /* port unlocked */ |
| 1873 | assert(IP_NULL == old_notify); |
| 1874 | |
| 1875 | wsave = thread_interrupt_level(THREAD_UNINT); |
| 1876 | kr = exception_triage_thread(EXC_CORPSE_NOTIFY, code, EXCEPTION_CODE_MAX, thread); |
| 1877 | if (kr != KERN_SUCCESS) { |
| 1878 | printf("Failed to send exception EXC_CORPSE_NOTIFY. error code: %d for pid %d\n" , kr, task_pid(task)); |
| 1879 | } |
| 1880 | |
| 1881 | (void)thread_interrupt_level(wsave); |
| 1882 | |
| 1883 | /* |
| 1884 | * Drop the send right on task port, will fire the |
| 1885 | * no-sender notification if exception deliver failed. |
| 1886 | */ |
| 1887 | ipc_port_release_send(task_port); |
| 1888 | return kr; |
| 1889 | } |
| 1890 | |
| 1891 | /* |
| 1892 | * task_terminate: |
| 1893 | * |
| 1894 | * Terminate the specified task. See comments on thread_terminate |
| 1895 | * (kern/thread.c) about problems with terminating the "current task." |
| 1896 | */ |
| 1897 | |
| 1898 | kern_return_t |
| 1899 | task_terminate( |
| 1900 | task_t task) |
| 1901 | { |
| 1902 | if (task == TASK_NULL) |
| 1903 | return (KERN_INVALID_ARGUMENT); |
| 1904 | |
| 1905 | if (task->bsd_info) |
| 1906 | return (KERN_FAILURE); |
| 1907 | |
| 1908 | return (task_terminate_internal(task)); |
| 1909 | } |
| 1910 | |
| 1911 | #if MACH_ASSERT |
| 1912 | extern int proc_pid(struct proc *); |
| 1913 | extern void proc_name_kdp(task_t t, char *buf, int size); |
| 1914 | #endif /* MACH_ASSERT */ |
| 1915 | |
| 1916 | #define VM_MAP_PARTIAL_REAP 0x54 /* 0x150 */ |
| 1917 | static void |
| 1918 | __unused task_partial_reap(task_t task, __unused int pid) |
| 1919 | { |
| 1920 | unsigned int reclaimed_resident = 0; |
| 1921 | unsigned int reclaimed_compressed = 0; |
| 1922 | uint64_t task_page_count; |
| 1923 | |
| 1924 | task_page_count = (get_task_phys_footprint(task) / PAGE_SIZE_64); |
| 1925 | |
| 1926 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_START), |
| 1927 | pid, task_page_count, 0, 0, 0); |
| 1928 | |
| 1929 | vm_map_partial_reap(task->map, &reclaimed_resident, &reclaimed_compressed); |
| 1930 | |
| 1931 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_END), |
| 1932 | pid, reclaimed_resident, reclaimed_compressed, 0, 0); |
| 1933 | } |
| 1934 | |
| 1935 | kern_return_t |
| 1936 | task_mark_corpse(task_t task) |
| 1937 | { |
| 1938 | kern_return_t kr = KERN_SUCCESS; |
| 1939 | thread_t self_thread; |
| 1940 | (void) self_thread; |
| 1941 | wait_interrupt_t wsave; |
| 1942 | #if CONFIG_MACF |
| 1943 | struct label *crash_label = NULL; |
| 1944 | #endif |
| 1945 | |
| 1946 | assert(task != kernel_task); |
| 1947 | assert(task == current_task()); |
| 1948 | assert(!task_is_a_corpse(task)); |
| 1949 | |
| 1950 | #if CONFIG_MACF |
| 1951 | crash_label = mac_exc_create_label_for_proc((struct proc*)task->bsd_info); |
| 1952 | #endif |
| 1953 | |
| 1954 | kr = task_collect_crash_info(task, |
| 1955 | #if CONFIG_MACF |
| 1956 | crash_label, |
| 1957 | #endif |
| 1958 | FALSE); |
| 1959 | if (kr != KERN_SUCCESS) { |
| 1960 | goto out; |
| 1961 | } |
| 1962 | |
| 1963 | self_thread = current_thread(); |
| 1964 | |
| 1965 | wsave = thread_interrupt_level(THREAD_UNINT); |
| 1966 | task_lock(task); |
| 1967 | |
| 1968 | task_set_corpse_pending_report(task); |
| 1969 | task_set_corpse(task); |
| 1970 | task->crashed_thread_id = thread_tid(self_thread); |
| 1971 | |
| 1972 | kr = task_start_halt_locked(task, TRUE); |
| 1973 | assert(kr == KERN_SUCCESS); |
| 1974 | |
| 1975 | ipc_task_reset(task); |
| 1976 | /* Remove the naked send right for task port, needed to arm no sender notification */ |
| 1977 | task_set_special_port(task, TASK_KERNEL_PORT, IPC_PORT_NULL); |
| 1978 | ipc_task_enable(task); |
| 1979 | |
| 1980 | task_unlock(task); |
| 1981 | /* terminate the ipc space */ |
| 1982 | ipc_space_terminate(task->itk_space); |
| 1983 | |
| 1984 | /* Add it to global corpse task list */ |
| 1985 | task_add_to_corpse_task_list(task); |
| 1986 | |
| 1987 | task_start_halt(task); |
| 1988 | thread_terminate_internal(self_thread); |
| 1989 | |
| 1990 | (void) thread_interrupt_level(wsave); |
| 1991 | assert(task->halting == TRUE); |
| 1992 | |
| 1993 | out: |
| 1994 | #if CONFIG_MACF |
| 1995 | mac_exc_free_label(crash_label); |
| 1996 | #endif |
| 1997 | return kr; |
| 1998 | } |
| 1999 | |
| 2000 | /* |
| 2001 | * task_clear_corpse |
| 2002 | * |
| 2003 | * Clears the corpse pending bit on task. |
| 2004 | * Removes inspection bit on the threads. |
| 2005 | */ |
| 2006 | void |
| 2007 | task_clear_corpse(task_t task) |
| 2008 | { |
| 2009 | thread_t th_iter = NULL; |
| 2010 | |
| 2011 | task_lock(task); |
| 2012 | queue_iterate(&task->threads, th_iter, thread_t, task_threads) |
| 2013 | { |
| 2014 | thread_mtx_lock(th_iter); |
| 2015 | th_iter->inspection = FALSE; |
| 2016 | thread_mtx_unlock(th_iter); |
| 2017 | } |
| 2018 | |
| 2019 | thread_terminate_crashed_threads(); |
| 2020 | /* remove the pending corpse report flag */ |
| 2021 | task_clear_corpse_pending_report(task); |
| 2022 | |
| 2023 | task_unlock(task); |
| 2024 | } |
| 2025 | |
| 2026 | /* |
| 2027 | * task_port_notify |
| 2028 | * |
| 2029 | * Called whenever the Mach port system detects no-senders on |
| 2030 | * the task port of a corpse. |
| 2031 | * Each notification that comes in should terminate the task (corpse). |
| 2032 | */ |
| 2033 | void |
| 2034 | task_port_notify(mach_msg_header_t *msg) |
| 2035 | { |
| 2036 | mach_no_senders_notification_t *notification = (void *)msg; |
| 2037 | ipc_port_t port = notification->not_header.msgh_remote_port; |
| 2038 | task_t task; |
| 2039 | |
| 2040 | assert(ip_active(port)); |
| 2041 | assert(IKOT_TASK == ip_kotype(port)); |
| 2042 | task = (task_t) port->ip_kobject; |
| 2043 | |
| 2044 | assert(task_is_a_corpse(task)); |
| 2045 | |
| 2046 | /* Remove the task from global corpse task list */ |
| 2047 | task_remove_from_corpse_task_list(task); |
| 2048 | |
| 2049 | task_clear_corpse(task); |
| 2050 | task_terminate_internal(task); |
| 2051 | } |
| 2052 | |
| 2053 | /* |
| 2054 | * task_wait_till_threads_terminate_locked |
| 2055 | * |
| 2056 | * Wait till all the threads in the task are terminated. |
| 2057 | * Might release the task lock and re-acquire it. |
| 2058 | */ |
| 2059 | void |
| 2060 | task_wait_till_threads_terminate_locked(task_t task) |
| 2061 | { |
| 2062 | /* wait for all the threads in the task to terminate */ |
| 2063 | while (task->active_thread_count != 0) { |
| 2064 | assert_wait((event_t)&task->active_thread_count, THREAD_UNINT); |
| 2065 | task_unlock(task); |
| 2066 | thread_block(THREAD_CONTINUE_NULL); |
| 2067 | |
| 2068 | task_lock(task); |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * task_duplicate_map_and_threads |
| 2074 | * |
| 2075 | * Copy vmmap of source task. |
| 2076 | * Copy active threads from source task to destination task. |
| 2077 | * Source task would be suspended during the copy. |
| 2078 | */ |
| 2079 | kern_return_t |
| 2080 | task_duplicate_map_and_threads( |
| 2081 | task_t task, |
| 2082 | void *p, |
| 2083 | task_t new_task, |
| 2084 | thread_t *thread_ret, |
| 2085 | uint64_t **udata_buffer, |
| 2086 | int *size, |
| 2087 | int *num_udata) |
| 2088 | { |
| 2089 | kern_return_t kr = KERN_SUCCESS; |
| 2090 | int active; |
| 2091 | thread_t thread, self, thread_return = THREAD_NULL; |
| 2092 | thread_t new_thread = THREAD_NULL, first_thread = THREAD_NULL; |
| 2093 | thread_t *thread_array; |
| 2094 | uint32_t active_thread_count = 0, array_count = 0, i; |
| 2095 | vm_map_t oldmap; |
| 2096 | uint64_t *buffer = NULL; |
| 2097 | int buf_size = 0; |
| 2098 | int est_knotes = 0, num_knotes = 0; |
| 2099 | |
| 2100 | self = current_thread(); |
| 2101 | |
| 2102 | /* |
| 2103 | * Suspend the task to copy thread state, use the internal |
| 2104 | * variant so that no user-space process can resume |
| 2105 | * the task from under us |
| 2106 | */ |
| 2107 | kr = task_suspend_internal(task); |
| 2108 | if (kr != KERN_SUCCESS) { |
| 2109 | return kr; |
| 2110 | } |
| 2111 | |
| 2112 | if (task->map->disable_vmentry_reuse == TRUE) { |
| 2113 | /* |
| 2114 | * Quite likely GuardMalloc (or some debugging tool) |
| 2115 | * is being used on this task. And it has gone through |
| 2116 | * its limit. Making a corpse will likely encounter |
| 2117 | * a lot of VM entries that will need COW. |
| 2118 | * |
| 2119 | * Skip it. |
| 2120 | */ |
| 2121 | #if DEVELOPMENT || DEBUG |
| 2122 | memorystatus_abort_vm_map_fork(task); |
| 2123 | #endif |
| 2124 | task_resume_internal(task); |
| 2125 | return KERN_FAILURE; |
| 2126 | } |
| 2127 | |
| 2128 | /* Check with VM if vm_map_fork is allowed for this task */ |
| 2129 | if (memorystatus_allowed_vm_map_fork(task)) { |
| 2130 | |
| 2131 | /* Setup new task's vmmap, switch from parent task's map to it COW map */ |
| 2132 | oldmap = new_task->map; |
| 2133 | new_task->map = vm_map_fork(new_task->ledger, |
| 2134 | task->map, |
| 2135 | (VM_MAP_FORK_SHARE_IF_INHERIT_NONE | |
| 2136 | VM_MAP_FORK_PRESERVE_PURGEABLE | |
| 2137 | VM_MAP_FORK_CORPSE_FOOTPRINT)); |
| 2138 | vm_map_deallocate(oldmap); |
| 2139 | |
| 2140 | /* copy ledgers that impact the memory footprint */ |
| 2141 | vm_map_copy_footprint_ledgers(task, new_task); |
| 2142 | |
| 2143 | /* Get all the udata pointers from kqueue */ |
| 2144 | est_knotes = kevent_proc_copy_uptrs(p, NULL, 0); |
| 2145 | if (est_knotes > 0) { |
| 2146 | buf_size = (est_knotes + 32) * sizeof(uint64_t); |
| 2147 | buffer = (uint64_t *) kalloc(buf_size); |
| 2148 | num_knotes = kevent_proc_copy_uptrs(p, buffer, buf_size); |
| 2149 | if (num_knotes > est_knotes + 32) { |
| 2150 | num_knotes = est_knotes + 32; |
| 2151 | } |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | active_thread_count = task->active_thread_count; |
| 2156 | if (active_thread_count == 0) { |
| 2157 | if (buffer != NULL) { |
| 2158 | kfree(buffer, buf_size); |
| 2159 | } |
| 2160 | task_resume_internal(task); |
| 2161 | return KERN_FAILURE; |
| 2162 | } |
| 2163 | |
| 2164 | thread_array = (thread_t *) kalloc(sizeof(thread_t) * active_thread_count); |
| 2165 | |
| 2166 | /* Iterate all the threads and drop the task lock before calling thread_create_with_continuation */ |
| 2167 | task_lock(task); |
| 2168 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2169 | /* Skip inactive threads */ |
| 2170 | active = thread->active; |
| 2171 | if (!active) { |
| 2172 | continue; |
| 2173 | } |
| 2174 | |
| 2175 | if (array_count >= active_thread_count) { |
| 2176 | break; |
| 2177 | } |
| 2178 | |
| 2179 | thread_array[array_count++] = thread; |
| 2180 | thread_reference(thread); |
| 2181 | } |
| 2182 | task_unlock(task); |
| 2183 | |
| 2184 | for (i = 0; i < array_count; i++) { |
| 2185 | |
| 2186 | kr = thread_create_with_continuation(new_task, &new_thread, (thread_continue_t)thread_corpse_continue); |
| 2187 | if (kr != KERN_SUCCESS) { |
| 2188 | break; |
| 2189 | } |
| 2190 | |
| 2191 | /* Equivalent of current thread in corpse */ |
| 2192 | if (thread_array[i] == self) { |
| 2193 | thread_return = new_thread; |
| 2194 | new_task->crashed_thread_id = thread_tid(new_thread); |
| 2195 | } else if (first_thread == NULL) { |
| 2196 | first_thread = new_thread; |
| 2197 | } else { |
| 2198 | /* drop the extra ref returned by thread_create_with_continuation */ |
| 2199 | thread_deallocate(new_thread); |
| 2200 | } |
| 2201 | |
| 2202 | kr = thread_dup2(thread_array[i], new_thread); |
| 2203 | if (kr != KERN_SUCCESS) { |
| 2204 | thread_mtx_lock(new_thread); |
| 2205 | new_thread->corpse_dup = TRUE; |
| 2206 | thread_mtx_unlock(new_thread); |
| 2207 | continue; |
| 2208 | } |
| 2209 | |
| 2210 | /* Copy thread name */ |
| 2211 | bsd_copythreadname(new_thread->uthread, thread_array[i]->uthread); |
| 2212 | new_thread->thread_tag = thread_array[i]->thread_tag; |
| 2213 | thread_copy_resource_info(new_thread, thread_array[i]); |
| 2214 | } |
| 2215 | |
| 2216 | /* return the first thread if we couldn't find the equivalent of current */ |
| 2217 | if (thread_return == THREAD_NULL) { |
| 2218 | thread_return = first_thread; |
| 2219 | } |
| 2220 | else if (first_thread != THREAD_NULL) { |
| 2221 | /* drop the extra ref returned by thread_create_with_continuation */ |
| 2222 | thread_deallocate(first_thread); |
| 2223 | } |
| 2224 | |
| 2225 | task_resume_internal(task); |
| 2226 | |
| 2227 | for (i = 0; i < array_count; i++) { |
| 2228 | thread_deallocate(thread_array[i]); |
| 2229 | } |
| 2230 | kfree(thread_array, sizeof(thread_t) * active_thread_count); |
| 2231 | |
| 2232 | if (kr == KERN_SUCCESS) { |
| 2233 | *thread_ret = thread_return; |
| 2234 | *udata_buffer = buffer; |
| 2235 | *size = buf_size; |
| 2236 | *num_udata = num_knotes; |
| 2237 | } else { |
| 2238 | if (thread_return != THREAD_NULL) { |
| 2239 | thread_deallocate(thread_return); |
| 2240 | } |
| 2241 | if (buffer != NULL) { |
| 2242 | kfree(buffer, buf_size); |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | return kr; |
| 2247 | } |
| 2248 | |
| 2249 | #if CONFIG_SECLUDED_MEMORY |
| 2250 | extern void task_set_can_use_secluded_mem_locked( |
| 2251 | task_t task, |
| 2252 | boolean_t can_use_secluded_mem); |
| 2253 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2254 | |
| 2255 | kern_return_t |
| 2256 | task_terminate_internal( |
| 2257 | task_t task) |
| 2258 | { |
| 2259 | thread_t thread, self; |
| 2260 | task_t self_task; |
| 2261 | boolean_t interrupt_save; |
| 2262 | int pid = 0; |
| 2263 | |
| 2264 | assert(task != kernel_task); |
| 2265 | |
| 2266 | self = current_thread(); |
| 2267 | self_task = self->task; |
| 2268 | |
| 2269 | /* |
| 2270 | * Get the task locked and make sure that we are not racing |
| 2271 | * with someone else trying to terminate us. |
| 2272 | */ |
| 2273 | if (task == self_task) |
| 2274 | task_lock(task); |
| 2275 | else |
| 2276 | if (task < self_task) { |
| 2277 | task_lock(task); |
| 2278 | task_lock(self_task); |
| 2279 | } |
| 2280 | else { |
| 2281 | task_lock(self_task); |
| 2282 | task_lock(task); |
| 2283 | } |
| 2284 | |
| 2285 | #if CONFIG_SECLUDED_MEMORY |
| 2286 | if (task->task_can_use_secluded_mem) { |
| 2287 | task_set_can_use_secluded_mem_locked(task, FALSE); |
| 2288 | } |
| 2289 | task->task_could_use_secluded_mem = FALSE; |
| 2290 | task->task_could_also_use_secluded_mem = FALSE; |
| 2291 | |
| 2292 | if (task->task_suppressed_secluded) { |
| 2293 | stop_secluded_suppression(task); |
| 2294 | } |
| 2295 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2296 | |
| 2297 | if (!task->active) { |
| 2298 | /* |
| 2299 | * Task is already being terminated. |
| 2300 | * Just return an error. If we are dying, this will |
| 2301 | * just get us to our AST special handler and that |
| 2302 | * will get us to finalize the termination of ourselves. |
| 2303 | */ |
| 2304 | task_unlock(task); |
| 2305 | if (self_task != task) |
| 2306 | task_unlock(self_task); |
| 2307 | |
| 2308 | return (KERN_FAILURE); |
| 2309 | } |
| 2310 | |
| 2311 | if (task_corpse_pending_report(task)) { |
| 2312 | /* |
| 2313 | * Task is marked for reporting as corpse. |
| 2314 | * Just return an error. This will |
| 2315 | * just get us to our AST special handler and that |
| 2316 | * will get us to finish the path to death |
| 2317 | */ |
| 2318 | task_unlock(task); |
| 2319 | if (self_task != task) |
| 2320 | task_unlock(self_task); |
| 2321 | |
| 2322 | return (KERN_FAILURE); |
| 2323 | } |
| 2324 | |
| 2325 | if (self_task != task) |
| 2326 | task_unlock(self_task); |
| 2327 | |
| 2328 | /* |
| 2329 | * Make sure the current thread does not get aborted out of |
| 2330 | * the waits inside these operations. |
| 2331 | */ |
| 2332 | interrupt_save = thread_interrupt_level(THREAD_UNINT); |
| 2333 | |
| 2334 | /* |
| 2335 | * Indicate that we want all the threads to stop executing |
| 2336 | * at user space by holding the task (we would have held |
| 2337 | * each thread independently in thread_terminate_internal - |
| 2338 | * but this way we may be more likely to already find it |
| 2339 | * held there). Mark the task inactive, and prevent |
| 2340 | * further task operations via the task port. |
| 2341 | */ |
| 2342 | task_hold_locked(task); |
| 2343 | task->active = FALSE; |
| 2344 | ipc_task_disable(task); |
| 2345 | |
| 2346 | #if CONFIG_TELEMETRY |
| 2347 | /* |
| 2348 | * Notify telemetry that this task is going away. |
| 2349 | */ |
| 2350 | telemetry_task_ctl_locked(task, TF_TELEMETRY, 0); |
| 2351 | #endif |
| 2352 | |
| 2353 | /* |
| 2354 | * Terminate each thread in the task. |
| 2355 | */ |
| 2356 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2357 | thread_terminate_internal(thread); |
| 2358 | } |
| 2359 | |
| 2360 | #ifdef MACH_BSD |
| 2361 | if (task->bsd_info != NULL && !task_is_exec_copy(task)) { |
| 2362 | pid = proc_pid(task->bsd_info); |
| 2363 | } |
| 2364 | #endif /* MACH_BSD */ |
| 2365 | |
| 2366 | task_unlock(task); |
| 2367 | |
| 2368 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, |
| 2369 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
| 2370 | |
| 2371 | /* Early object reap phase */ |
| 2372 | |
| 2373 | // PR-17045188: Revisit implementation |
| 2374 | // task_partial_reap(task, pid); |
| 2375 | |
| 2376 | #if CONFIG_EMBEDDED |
| 2377 | /* |
| 2378 | * remove all task watchers |
| 2379 | */ |
| 2380 | task_removewatchers(task); |
| 2381 | |
| 2382 | #endif /* CONFIG_EMBEDDED */ |
| 2383 | |
| 2384 | /* |
| 2385 | * Destroy all synchronizers owned by the task. |
| 2386 | */ |
| 2387 | task_synchronizer_destroy_all(task); |
| 2388 | |
| 2389 | /* |
| 2390 | * Destroy the IPC space, leaving just a reference for it. |
| 2391 | */ |
| 2392 | ipc_space_terminate(task->itk_space); |
| 2393 | |
| 2394 | #if 00 |
| 2395 | /* if some ledgers go negative on tear-down again... */ |
| 2396 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2397 | task_ledgers.phys_footprint); |
| 2398 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2399 | task_ledgers.internal); |
| 2400 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2401 | task_ledgers.internal_compressed); |
| 2402 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2403 | task_ledgers.iokit_mapped); |
| 2404 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2405 | task_ledgers.alternate_accounting); |
| 2406 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 2407 | task_ledgers.alternate_accounting_compressed); |
| 2408 | #endif |
| 2409 | |
| 2410 | /* |
| 2411 | * If the current thread is a member of the task |
| 2412 | * being terminated, then the last reference to |
| 2413 | * the task will not be dropped until the thread |
| 2414 | * is finally reaped. To avoid incurring the |
| 2415 | * expense of removing the address space regions |
| 2416 | * at reap time, we do it explictly here. |
| 2417 | */ |
| 2418 | |
| 2419 | vm_map_lock(task->map); |
| 2420 | vm_map_disable_hole_optimization(task->map); |
| 2421 | vm_map_unlock(task->map); |
| 2422 | |
| 2423 | #if MACH_ASSERT |
| 2424 | /* |
| 2425 | * Identify the pmap's process, in case the pmap ledgers drift |
| 2426 | * and we have to report it. |
| 2427 | */ |
| 2428 | char procname[17]; |
| 2429 | if (task->bsd_info && !task_is_exec_copy(task)) { |
| 2430 | pid = proc_pid(task->bsd_info); |
| 2431 | proc_name_kdp(task, procname, sizeof (procname)); |
| 2432 | } else { |
| 2433 | pid = 0; |
| 2434 | strlcpy(procname, "<unknown>" , sizeof (procname)); |
| 2435 | } |
| 2436 | pmap_set_process(task->map->pmap, pid, procname); |
| 2437 | #endif /* MACH_ASSERT */ |
| 2438 | |
| 2439 | vm_map_remove(task->map, |
| 2440 | task->map->min_offset, |
| 2441 | task->map->max_offset, |
| 2442 | /* |
| 2443 | * Final cleanup: |
| 2444 | * + no unnesting |
| 2445 | * + remove immutable mappings |
| 2446 | * + allow gaps in range |
| 2447 | */ |
| 2448 | (VM_MAP_REMOVE_NO_UNNESTING | |
| 2449 | VM_MAP_REMOVE_IMMUTABLE | |
| 2450 | VM_MAP_REMOVE_GAPS_OK)); |
| 2451 | |
| 2452 | /* release our shared region */ |
| 2453 | vm_shared_region_set(task, NULL); |
| 2454 | |
| 2455 | |
| 2456 | lck_mtx_lock(&tasks_threads_lock); |
| 2457 | queue_remove(&tasks, task, task_t, tasks); |
| 2458 | queue_enter(&terminated_tasks, task, task_t, tasks); |
| 2459 | tasks_count--; |
| 2460 | terminated_tasks_count++; |
| 2461 | lck_mtx_unlock(&tasks_threads_lock); |
| 2462 | |
| 2463 | /* |
| 2464 | * We no longer need to guard against being aborted, so restore |
| 2465 | * the previous interruptible state. |
| 2466 | */ |
| 2467 | thread_interrupt_level(interrupt_save); |
| 2468 | |
| 2469 | #if KPC |
| 2470 | /* force the task to release all ctrs */ |
| 2471 | if (task->t_kpc & TASK_KPC_FORCED_ALL_CTRS) |
| 2472 | kpc_force_all_ctrs(task, 0); |
| 2473 | #endif /* KPC */ |
| 2474 | |
| 2475 | #if CONFIG_COALITIONS |
| 2476 | /* |
| 2477 | * Leave our coalitions. (drop activation but not reference) |
| 2478 | */ |
| 2479 | coalitions_remove_task(task); |
| 2480 | #endif |
| 2481 | |
| 2482 | /* |
| 2483 | * Get rid of the task active reference on itself. |
| 2484 | */ |
| 2485 | task_deallocate(task); |
| 2486 | |
| 2487 | return (KERN_SUCCESS); |
| 2488 | } |
| 2489 | |
| 2490 | void |
| 2491 | tasks_system_suspend(boolean_t suspend) |
| 2492 | { |
| 2493 | task_t task; |
| 2494 | |
| 2495 | lck_mtx_lock(&tasks_threads_lock); |
| 2496 | assert(tasks_suspend_state != suspend); |
| 2497 | tasks_suspend_state = suspend; |
| 2498 | queue_iterate(&tasks, task, task_t, tasks) { |
| 2499 | if (task == kernel_task) { |
| 2500 | continue; |
| 2501 | } |
| 2502 | suspend ? task_suspend_internal(task) : task_resume_internal(task); |
| 2503 | } |
| 2504 | lck_mtx_unlock(&tasks_threads_lock); |
| 2505 | } |
| 2506 | |
| 2507 | /* |
| 2508 | * task_start_halt: |
| 2509 | * |
| 2510 | * Shut the current task down (except for the current thread) in |
| 2511 | * preparation for dramatic changes to the task (probably exec). |
| 2512 | * We hold the task and mark all other threads in the task for |
| 2513 | * termination. |
| 2514 | */ |
| 2515 | kern_return_t |
| 2516 | task_start_halt(task_t task) |
| 2517 | { |
| 2518 | kern_return_t kr = KERN_SUCCESS; |
| 2519 | task_lock(task); |
| 2520 | kr = task_start_halt_locked(task, FALSE); |
| 2521 | task_unlock(task); |
| 2522 | return kr; |
| 2523 | } |
| 2524 | |
| 2525 | static kern_return_t |
| 2526 | task_start_halt_locked(task_t task, boolean_t should_mark_corpse) |
| 2527 | { |
| 2528 | thread_t thread, self; |
| 2529 | uint64_t dispatchqueue_offset; |
| 2530 | |
| 2531 | assert(task != kernel_task); |
| 2532 | |
| 2533 | self = current_thread(); |
| 2534 | |
| 2535 | if (task != self->task && !task_is_a_corpse_fork(task)) |
| 2536 | return (KERN_INVALID_ARGUMENT); |
| 2537 | |
| 2538 | if (task->halting || !task->active || !self->active) { |
| 2539 | /* |
| 2540 | * Task or current thread is already being terminated. |
| 2541 | * Hurry up and return out of the current kernel context |
| 2542 | * so that we run our AST special handler to terminate |
| 2543 | * ourselves. |
| 2544 | */ |
| 2545 | return (KERN_FAILURE); |
| 2546 | } |
| 2547 | |
| 2548 | task->halting = TRUE; |
| 2549 | |
| 2550 | /* |
| 2551 | * Mark all the threads to keep them from starting any more |
| 2552 | * user-level execution. The thread_terminate_internal code |
| 2553 | * would do this on a thread by thread basis anyway, but this |
| 2554 | * gives us a better chance of not having to wait there. |
| 2555 | */ |
| 2556 | task_hold_locked(task); |
| 2557 | dispatchqueue_offset = get_dispatchqueue_offset_from_proc(task->bsd_info); |
| 2558 | |
| 2559 | /* |
| 2560 | * Terminate all the other threads in the task. |
| 2561 | */ |
| 2562 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
| 2563 | { |
| 2564 | if (should_mark_corpse) { |
| 2565 | thread_mtx_lock(thread); |
| 2566 | thread->inspection = TRUE; |
| 2567 | thread_mtx_unlock(thread); |
| 2568 | } |
| 2569 | if (thread != self) |
| 2570 | thread_terminate_internal(thread); |
| 2571 | } |
| 2572 | task->dispatchqueue_offset = dispatchqueue_offset; |
| 2573 | |
| 2574 | task_release_locked(task); |
| 2575 | |
| 2576 | return KERN_SUCCESS; |
| 2577 | } |
| 2578 | |
| 2579 | |
| 2580 | /* |
| 2581 | * task_complete_halt: |
| 2582 | * |
| 2583 | * Complete task halt by waiting for threads to terminate, then clean |
| 2584 | * up task resources (VM, port namespace, etc...) and then let the |
| 2585 | * current thread go in the (practically empty) task context. |
| 2586 | * |
| 2587 | * Note: task->halting flag is not cleared in order to avoid creation |
| 2588 | * of new thread in old exec'ed task. |
| 2589 | */ |
| 2590 | void |
| 2591 | task_complete_halt(task_t task) |
| 2592 | { |
| 2593 | task_lock(task); |
| 2594 | assert(task->halting); |
| 2595 | assert(task == current_task()); |
| 2596 | |
| 2597 | /* |
| 2598 | * Wait for the other threads to get shut down. |
| 2599 | * When the last other thread is reaped, we'll be |
| 2600 | * woken up. |
| 2601 | */ |
| 2602 | if (task->thread_count > 1) { |
| 2603 | assert_wait((event_t)&task->halting, THREAD_UNINT); |
| 2604 | task_unlock(task); |
| 2605 | thread_block(THREAD_CONTINUE_NULL); |
| 2606 | } else { |
| 2607 | task_unlock(task); |
| 2608 | } |
| 2609 | |
| 2610 | /* |
| 2611 | * Give the machine dependent code a chance |
| 2612 | * to perform cleanup of task-level resources |
| 2613 | * associated with the current thread before |
| 2614 | * ripping apart the task. |
| 2615 | */ |
| 2616 | machine_task_terminate(task); |
| 2617 | |
| 2618 | /* |
| 2619 | * Destroy all synchronizers owned by the task. |
| 2620 | */ |
| 2621 | task_synchronizer_destroy_all(task); |
| 2622 | |
| 2623 | /* |
| 2624 | * Destroy the contents of the IPC space, leaving just |
| 2625 | * a reference for it. |
| 2626 | */ |
| 2627 | ipc_space_clean(task->itk_space); |
| 2628 | |
| 2629 | /* |
| 2630 | * Clean out the address space, as we are going to be |
| 2631 | * getting a new one. |
| 2632 | */ |
| 2633 | vm_map_remove(task->map, task->map->min_offset, |
| 2634 | task->map->max_offset, |
| 2635 | /* |
| 2636 | * Final cleanup: |
| 2637 | * + no unnesting |
| 2638 | * + remove immutable mappings |
| 2639 | * + allow gaps in the range |
| 2640 | */ |
| 2641 | (VM_MAP_REMOVE_NO_UNNESTING | |
| 2642 | VM_MAP_REMOVE_IMMUTABLE | |
| 2643 | VM_MAP_REMOVE_GAPS_OK)); |
| 2644 | |
| 2645 | /* |
| 2646 | * Kick out any IOKitUser handles to the task. At best they're stale, |
| 2647 | * at worst someone is racing a SUID exec. |
| 2648 | */ |
| 2649 | iokit_task_terminate(task); |
| 2650 | } |
| 2651 | |
| 2652 | /* |
| 2653 | * task_hold_locked: |
| 2654 | * |
| 2655 | * Suspend execution of the specified task. |
| 2656 | * This is a recursive-style suspension of the task, a count of |
| 2657 | * suspends is maintained. |
| 2658 | * |
| 2659 | * CONDITIONS: the task is locked and active. |
| 2660 | */ |
| 2661 | void |
| 2662 | task_hold_locked( |
| 2663 | task_t task) |
| 2664 | { |
| 2665 | thread_t thread; |
| 2666 | |
| 2667 | assert(task->active); |
| 2668 | |
| 2669 | if (task->suspend_count++ > 0) |
| 2670 | return; |
| 2671 | |
| 2672 | if (task->bsd_info) { |
| 2673 | workq_proc_suspended(task->bsd_info); |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * Iterate through all the threads and hold them. |
| 2678 | */ |
| 2679 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2680 | thread_mtx_lock(thread); |
| 2681 | thread_hold(thread); |
| 2682 | thread_mtx_unlock(thread); |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | /* |
| 2687 | * task_hold: |
| 2688 | * |
| 2689 | * Same as the internal routine above, except that is must lock |
| 2690 | * and verify that the task is active. This differs from task_suspend |
| 2691 | * in that it places a kernel hold on the task rather than just a |
| 2692 | * user-level hold. This keeps users from over resuming and setting |
| 2693 | * it running out from under the kernel. |
| 2694 | * |
| 2695 | * CONDITIONS: the caller holds a reference on the task |
| 2696 | */ |
| 2697 | kern_return_t |
| 2698 | task_hold( |
| 2699 | task_t task) |
| 2700 | { |
| 2701 | if (task == TASK_NULL) |
| 2702 | return (KERN_INVALID_ARGUMENT); |
| 2703 | |
| 2704 | task_lock(task); |
| 2705 | |
| 2706 | if (!task->active) { |
| 2707 | task_unlock(task); |
| 2708 | |
| 2709 | return (KERN_FAILURE); |
| 2710 | } |
| 2711 | |
| 2712 | task_hold_locked(task); |
| 2713 | task_unlock(task); |
| 2714 | |
| 2715 | return (KERN_SUCCESS); |
| 2716 | } |
| 2717 | |
| 2718 | kern_return_t |
| 2719 | task_wait( |
| 2720 | task_t task, |
| 2721 | boolean_t until_not_runnable) |
| 2722 | { |
| 2723 | if (task == TASK_NULL) |
| 2724 | return (KERN_INVALID_ARGUMENT); |
| 2725 | |
| 2726 | task_lock(task); |
| 2727 | |
| 2728 | if (!task->active) { |
| 2729 | task_unlock(task); |
| 2730 | |
| 2731 | return (KERN_FAILURE); |
| 2732 | } |
| 2733 | |
| 2734 | task_wait_locked(task, until_not_runnable); |
| 2735 | task_unlock(task); |
| 2736 | |
| 2737 | return (KERN_SUCCESS); |
| 2738 | } |
| 2739 | |
| 2740 | /* |
| 2741 | * task_wait_locked: |
| 2742 | * |
| 2743 | * Wait for all threads in task to stop. |
| 2744 | * |
| 2745 | * Conditions: |
| 2746 | * Called with task locked, active, and held. |
| 2747 | */ |
| 2748 | void |
| 2749 | task_wait_locked( |
| 2750 | task_t task, |
| 2751 | boolean_t until_not_runnable) |
| 2752 | { |
| 2753 | thread_t thread, self; |
| 2754 | |
| 2755 | assert(task->active); |
| 2756 | assert(task->suspend_count > 0); |
| 2757 | |
| 2758 | self = current_thread(); |
| 2759 | |
| 2760 | /* |
| 2761 | * Iterate through all the threads and wait for them to |
| 2762 | * stop. Do not wait for the current thread if it is within |
| 2763 | * the task. |
| 2764 | */ |
| 2765 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2766 | if (thread != self) |
| 2767 | thread_wait(thread, until_not_runnable); |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | /* |
| 2772 | * task_release_locked: |
| 2773 | * |
| 2774 | * Release a kernel hold on a task. |
| 2775 | * |
| 2776 | * CONDITIONS: the task is locked and active |
| 2777 | */ |
| 2778 | void |
| 2779 | task_release_locked( |
| 2780 | task_t task) |
| 2781 | { |
| 2782 | thread_t thread; |
| 2783 | |
| 2784 | assert(task->active); |
| 2785 | assert(task->suspend_count > 0); |
| 2786 | |
| 2787 | if (--task->suspend_count > 0) |
| 2788 | return; |
| 2789 | |
| 2790 | if (task->bsd_info) { |
| 2791 | workq_proc_resumed(task->bsd_info); |
| 2792 | } |
| 2793 | |
| 2794 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2795 | thread_mtx_lock(thread); |
| 2796 | thread_release(thread); |
| 2797 | thread_mtx_unlock(thread); |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | /* |
| 2802 | * task_release: |
| 2803 | * |
| 2804 | * Same as the internal routine above, except that it must lock |
| 2805 | * and verify that the task is active. |
| 2806 | * |
| 2807 | * CONDITIONS: The caller holds a reference to the task |
| 2808 | */ |
| 2809 | kern_return_t |
| 2810 | task_release( |
| 2811 | task_t task) |
| 2812 | { |
| 2813 | if (task == TASK_NULL) |
| 2814 | return (KERN_INVALID_ARGUMENT); |
| 2815 | |
| 2816 | task_lock(task); |
| 2817 | |
| 2818 | if (!task->active) { |
| 2819 | task_unlock(task); |
| 2820 | |
| 2821 | return (KERN_FAILURE); |
| 2822 | } |
| 2823 | |
| 2824 | task_release_locked(task); |
| 2825 | task_unlock(task); |
| 2826 | |
| 2827 | return (KERN_SUCCESS); |
| 2828 | } |
| 2829 | |
| 2830 | kern_return_t |
| 2831 | task_threads( |
| 2832 | task_t task, |
| 2833 | thread_act_array_t *threads_out, |
| 2834 | mach_msg_type_number_t *count) |
| 2835 | { |
| 2836 | mach_msg_type_number_t actual; |
| 2837 | thread_t *thread_list; |
| 2838 | thread_t thread; |
| 2839 | vm_size_t size, size_needed; |
| 2840 | void *addr; |
| 2841 | unsigned int i, j; |
| 2842 | |
| 2843 | if (task == TASK_NULL) |
| 2844 | return (KERN_INVALID_ARGUMENT); |
| 2845 | |
| 2846 | size = 0; addr = NULL; |
| 2847 | |
| 2848 | for (;;) { |
| 2849 | task_lock(task); |
| 2850 | if (!task->active) { |
| 2851 | task_unlock(task); |
| 2852 | |
| 2853 | if (size != 0) |
| 2854 | kfree(addr, size); |
| 2855 | |
| 2856 | return (KERN_FAILURE); |
| 2857 | } |
| 2858 | |
| 2859 | actual = task->thread_count; |
| 2860 | |
| 2861 | /* do we have the memory we need? */ |
| 2862 | size_needed = actual * sizeof (mach_port_t); |
| 2863 | if (size_needed <= size) |
| 2864 | break; |
| 2865 | |
| 2866 | /* unlock the task and allocate more memory */ |
| 2867 | task_unlock(task); |
| 2868 | |
| 2869 | if (size != 0) |
| 2870 | kfree(addr, size); |
| 2871 | |
| 2872 | assert(size_needed > 0); |
| 2873 | size = size_needed; |
| 2874 | |
| 2875 | addr = kalloc(size); |
| 2876 | if (addr == 0) |
| 2877 | return (KERN_RESOURCE_SHORTAGE); |
| 2878 | } |
| 2879 | |
| 2880 | /* OK, have memory and the task is locked & active */ |
| 2881 | thread_list = (thread_t *)addr; |
| 2882 | |
| 2883 | i = j = 0; |
| 2884 | |
| 2885 | for (thread = (thread_t)queue_first(&task->threads); i < actual; |
| 2886 | ++i, thread = (thread_t)queue_next(&thread->task_threads)) { |
| 2887 | thread_reference_internal(thread); |
| 2888 | thread_list[j++] = thread; |
| 2889 | } |
| 2890 | |
| 2891 | assert(queue_end(&task->threads, (queue_entry_t)thread)); |
| 2892 | |
| 2893 | actual = j; |
| 2894 | size_needed = actual * sizeof (mach_port_t); |
| 2895 | |
| 2896 | /* can unlock task now that we've got the thread refs */ |
| 2897 | task_unlock(task); |
| 2898 | |
| 2899 | if (actual == 0) { |
| 2900 | /* no threads, so return null pointer and deallocate memory */ |
| 2901 | |
| 2902 | *threads_out = NULL; |
| 2903 | *count = 0; |
| 2904 | |
| 2905 | if (size != 0) |
| 2906 | kfree(addr, size); |
| 2907 | } |
| 2908 | else { |
| 2909 | /* if we allocated too much, must copy */ |
| 2910 | |
| 2911 | if (size_needed < size) { |
| 2912 | void *newaddr; |
| 2913 | |
| 2914 | newaddr = kalloc(size_needed); |
| 2915 | if (newaddr == 0) { |
| 2916 | for (i = 0; i < actual; ++i) |
| 2917 | thread_deallocate(thread_list[i]); |
| 2918 | kfree(addr, size); |
| 2919 | return (KERN_RESOURCE_SHORTAGE); |
| 2920 | } |
| 2921 | |
| 2922 | bcopy(addr, newaddr, size_needed); |
| 2923 | kfree(addr, size); |
| 2924 | thread_list = (thread_t *)newaddr; |
| 2925 | } |
| 2926 | |
| 2927 | *threads_out = thread_list; |
| 2928 | *count = actual; |
| 2929 | |
| 2930 | /* do the conversion that Mig should handle */ |
| 2931 | |
| 2932 | for (i = 0; i < actual; ++i) |
| 2933 | ((ipc_port_t *) thread_list)[i] = convert_thread_to_port(thread_list[i]); |
| 2934 | } |
| 2935 | |
| 2936 | return (KERN_SUCCESS); |
| 2937 | } |
| 2938 | |
| 2939 | #define TASK_HOLD_NORMAL 0 |
| 2940 | #define TASK_HOLD_PIDSUSPEND 1 |
| 2941 | #define TASK_HOLD_LEGACY 2 |
| 2942 | #define TASK_HOLD_LEGACY_ALL 3 |
| 2943 | |
| 2944 | static kern_return_t |
| 2945 | place_task_hold ( |
| 2946 | task_t task, |
| 2947 | int mode) |
| 2948 | { |
| 2949 | if (!task->active && !task_is_a_corpse(task)) { |
| 2950 | return (KERN_FAILURE); |
| 2951 | } |
| 2952 | |
| 2953 | /* Return success for corpse task */ |
| 2954 | if (task_is_a_corpse(task)) { |
| 2955 | return KERN_SUCCESS; |
| 2956 | } |
| 2957 | |
| 2958 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2959 | MACHDBG_CODE(DBG_MACH_IPC,MACH_TASK_SUSPEND) | DBG_FUNC_NONE, |
| 2960 | task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id, |
| 2961 | task->user_stop_count, task->user_stop_count + 1, 0); |
| 2962 | |
| 2963 | #if MACH_ASSERT |
| 2964 | current_task()->suspends_outstanding++; |
| 2965 | #endif |
| 2966 | |
| 2967 | if (mode == TASK_HOLD_LEGACY) |
| 2968 | task->legacy_stop_count++; |
| 2969 | |
| 2970 | if (task->user_stop_count++ > 0) { |
| 2971 | /* |
| 2972 | * If the stop count was positive, the task is |
| 2973 | * already stopped and we can exit. |
| 2974 | */ |
| 2975 | return (KERN_SUCCESS); |
| 2976 | } |
| 2977 | |
| 2978 | /* |
| 2979 | * Put a kernel-level hold on the threads in the task (all |
| 2980 | * user-level task suspensions added together represent a |
| 2981 | * single kernel-level hold). We then wait for the threads |
| 2982 | * to stop executing user code. |
| 2983 | */ |
| 2984 | task_hold_locked(task); |
| 2985 | task_wait_locked(task, FALSE); |
| 2986 | |
| 2987 | return (KERN_SUCCESS); |
| 2988 | } |
| 2989 | |
| 2990 | static kern_return_t |
| 2991 | release_task_hold ( |
| 2992 | task_t task, |
| 2993 | int mode) |
| 2994 | { |
| 2995 | boolean_t release = FALSE; |
| 2996 | |
| 2997 | if (!task->active && !task_is_a_corpse(task)) { |
| 2998 | return (KERN_FAILURE); |
| 2999 | } |
| 3000 | |
| 3001 | /* Return success for corpse task */ |
| 3002 | if (task_is_a_corpse(task)) { |
| 3003 | return KERN_SUCCESS; |
| 3004 | } |
| 3005 | |
| 3006 | if (mode == TASK_HOLD_PIDSUSPEND) { |
| 3007 | if (task->pidsuspended == FALSE) { |
| 3008 | return (KERN_FAILURE); |
| 3009 | } |
| 3010 | task->pidsuspended = FALSE; |
| 3011 | } |
| 3012 | |
| 3013 | if (task->user_stop_count > (task->pidsuspended ? 1 : 0)) { |
| 3014 | |
| 3015 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3016 | MACHDBG_CODE(DBG_MACH_IPC,MACH_TASK_RESUME) | DBG_FUNC_NONE, |
| 3017 | task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id, |
| 3018 | task->user_stop_count, mode, task->legacy_stop_count); |
| 3019 | |
| 3020 | #if MACH_ASSERT |
| 3021 | /* |
| 3022 | * This is obviously not robust; if we suspend one task and then resume a different one, |
| 3023 | * we'll fly under the radar. This is only meant to catch the common case of a crashed |
| 3024 | * or buggy suspender. |
| 3025 | */ |
| 3026 | current_task()->suspends_outstanding--; |
| 3027 | #endif |
| 3028 | |
| 3029 | if (mode == TASK_HOLD_LEGACY_ALL) { |
| 3030 | if (task->legacy_stop_count >= task->user_stop_count) { |
| 3031 | task->user_stop_count = 0; |
| 3032 | release = TRUE; |
| 3033 | } else { |
| 3034 | task->user_stop_count -= task->legacy_stop_count; |
| 3035 | } |
| 3036 | task->legacy_stop_count = 0; |
| 3037 | } else { |
| 3038 | if (mode == TASK_HOLD_LEGACY && task->legacy_stop_count > 0) |
| 3039 | task->legacy_stop_count--; |
| 3040 | if (--task->user_stop_count == 0) |
| 3041 | release = TRUE; |
| 3042 | } |
| 3043 | } |
| 3044 | else { |
| 3045 | return (KERN_FAILURE); |
| 3046 | } |
| 3047 | |
| 3048 | /* |
| 3049 | * Release the task if necessary. |
| 3050 | */ |
| 3051 | if (release) |
| 3052 | task_release_locked(task); |
| 3053 | |
| 3054 | return (KERN_SUCCESS); |
| 3055 | } |
| 3056 | |
| 3057 | |
| 3058 | /* |
| 3059 | * task_suspend: |
| 3060 | * |
| 3061 | * Implement an (old-fashioned) user-level suspension on a task. |
| 3062 | * |
| 3063 | * Because the user isn't expecting to have to manage a suspension |
| 3064 | * token, we'll track it for him in the kernel in the form of a naked |
| 3065 | * send right to the task's resume port. All such send rights |
| 3066 | * account for a single suspension against the task (unlike task_suspend2() |
| 3067 | * where each caller gets a unique suspension count represented by a |
| 3068 | * unique send-once right). |
| 3069 | * |
| 3070 | * Conditions: |
| 3071 | * The caller holds a reference to the task |
| 3072 | */ |
| 3073 | kern_return_t |
| 3074 | task_suspend( |
| 3075 | task_t task) |
| 3076 | { |
| 3077 | kern_return_t kr; |
| 3078 | mach_port_t port, send, old_notify; |
| 3079 | mach_port_name_t name; |
| 3080 | |
| 3081 | if (task == TASK_NULL || task == kernel_task) |
| 3082 | return (KERN_INVALID_ARGUMENT); |
| 3083 | |
| 3084 | task_lock(task); |
| 3085 | |
| 3086 | /* |
| 3087 | * Claim a send right on the task resume port, and request a no-senders |
| 3088 | * notification on that port (if none outstanding). |
| 3089 | */ |
| 3090 | if (task->itk_resume == IP_NULL) { |
| 3091 | task->itk_resume = ipc_port_alloc_kernel(); |
| 3092 | if (!IP_VALID(task->itk_resume)) |
| 3093 | panic("failed to create resume port" ); |
| 3094 | ipc_kobject_set(task->itk_resume, (ipc_kobject_t)task, IKOT_TASK_RESUME); |
| 3095 | } |
| 3096 | |
| 3097 | port = task->itk_resume; |
| 3098 | ip_lock(port); |
| 3099 | assert(ip_active(port)); |
| 3100 | |
| 3101 | send = ipc_port_make_send_locked(port); |
| 3102 | assert(IP_VALID(send)); |
| 3103 | |
| 3104 | if (port->ip_nsrequest == IP_NULL) { |
| 3105 | ipc_port_nsrequest(port, port->ip_mscount, ipc_port_make_sonce_locked(port), &old_notify); |
| 3106 | assert(old_notify == IP_NULL); |
| 3107 | /* port unlocked */ |
| 3108 | } else { |
| 3109 | ip_unlock(port); |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | * place a legacy hold on the task. |
| 3114 | */ |
| 3115 | kr = place_task_hold(task, TASK_HOLD_LEGACY); |
| 3116 | if (kr != KERN_SUCCESS) { |
| 3117 | task_unlock(task); |
| 3118 | ipc_port_release_send(send); |
| 3119 | return kr; |
| 3120 | } |
| 3121 | |
| 3122 | task_unlock(task); |
| 3123 | |
| 3124 | /* |
| 3125 | * Copyout the send right into the calling task's IPC space. It won't know it is there, |
| 3126 | * but we'll look it up when calling a traditional resume. Any IPC operations that |
| 3127 | * deallocate the send right will auto-release the suspension. |
| 3128 | */ |
| 3129 | if ((kr = ipc_kmsg_copyout_object(current_task()->itk_space, (ipc_object_t)send, |
| 3130 | MACH_MSG_TYPE_MOVE_SEND, &name)) != KERN_SUCCESS) { |
| 3131 | printf("warning: %s(%d) failed to copyout suspension token for pid %d with error: %d\n" , |
| 3132 | proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info), |
| 3133 | task_pid(task), kr); |
| 3134 | return (kr); |
| 3135 | } |
| 3136 | |
| 3137 | return (kr); |
| 3138 | } |
| 3139 | |
| 3140 | /* |
| 3141 | * task_resume: |
| 3142 | * Release a user hold on a task. |
| 3143 | * |
| 3144 | * Conditions: |
| 3145 | * The caller holds a reference to the task |
| 3146 | */ |
| 3147 | kern_return_t |
| 3148 | task_resume( |
| 3149 | task_t task) |
| 3150 | { |
| 3151 | kern_return_t kr; |
| 3152 | mach_port_name_t resume_port_name; |
| 3153 | ipc_entry_t resume_port_entry; |
| 3154 | ipc_space_t space = current_task()->itk_space; |
| 3155 | |
| 3156 | if (task == TASK_NULL || task == kernel_task ) |
| 3157 | return (KERN_INVALID_ARGUMENT); |
| 3158 | |
| 3159 | /* release a legacy task hold */ |
| 3160 | task_lock(task); |
| 3161 | kr = release_task_hold(task, TASK_HOLD_LEGACY); |
| 3162 | task_unlock(task); |
| 3163 | |
| 3164 | is_write_lock(space); |
| 3165 | if (is_active(space) && IP_VALID(task->itk_resume) && |
| 3166 | ipc_hash_lookup(space, (ipc_object_t)task->itk_resume, &resume_port_name, &resume_port_entry) == TRUE) { |
| 3167 | /* |
| 3168 | * We found a suspension token in the caller's IPC space. Release a send right to indicate that |
| 3169 | * we are holding one less legacy hold on the task from this caller. If the release failed, |
| 3170 | * go ahead and drop all the rights, as someone either already released our holds or the task |
| 3171 | * is gone. |
| 3172 | */ |
| 3173 | if (kr == KERN_SUCCESS) |
| 3174 | ipc_right_dealloc(space, resume_port_name, resume_port_entry); |
| 3175 | else |
| 3176 | ipc_right_destroy(space, resume_port_name, resume_port_entry, FALSE, 0); |
| 3177 | /* space unlocked */ |
| 3178 | } else { |
| 3179 | is_write_unlock(space); |
| 3180 | if (kr == KERN_SUCCESS) |
| 3181 | printf("warning: %s(%d) performed out-of-band resume on pid %d\n" , |
| 3182 | proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info), |
| 3183 | task_pid(task)); |
| 3184 | } |
| 3185 | |
| 3186 | return kr; |
| 3187 | } |
| 3188 | |
| 3189 | /* |
| 3190 | * Suspend the target task. |
| 3191 | * Making/holding a token/reference/port is the callers responsibility. |
| 3192 | */ |
| 3193 | kern_return_t |
| 3194 | task_suspend_internal(task_t task) |
| 3195 | { |
| 3196 | kern_return_t kr; |
| 3197 | |
| 3198 | if (task == TASK_NULL || task == kernel_task) |
| 3199 | return (KERN_INVALID_ARGUMENT); |
| 3200 | |
| 3201 | task_lock(task); |
| 3202 | kr = place_task_hold(task, TASK_HOLD_NORMAL); |
| 3203 | task_unlock(task); |
| 3204 | return (kr); |
| 3205 | } |
| 3206 | |
| 3207 | /* |
| 3208 | * Suspend the target task, and return a suspension token. The token |
| 3209 | * represents a reference on the suspended task. |
| 3210 | */ |
| 3211 | kern_return_t |
| 3212 | task_suspend2( |
| 3213 | task_t task, |
| 3214 | task_suspension_token_t *suspend_token) |
| 3215 | { |
| 3216 | kern_return_t kr; |
| 3217 | |
| 3218 | kr = task_suspend_internal(task); |
| 3219 | if (kr != KERN_SUCCESS) { |
| 3220 | *suspend_token = TASK_NULL; |
| 3221 | return (kr); |
| 3222 | } |
| 3223 | |
| 3224 | /* |
| 3225 | * Take a reference on the target task and return that to the caller |
| 3226 | * as a "suspension token," which can be converted into an SO right to |
| 3227 | * the now-suspended task's resume port. |
| 3228 | */ |
| 3229 | task_reference_internal(task); |
| 3230 | *suspend_token = task; |
| 3231 | |
| 3232 | return (KERN_SUCCESS); |
| 3233 | } |
| 3234 | |
| 3235 | /* |
| 3236 | * Resume the task |
| 3237 | * (reference/token/port management is caller's responsibility). |
| 3238 | */ |
| 3239 | kern_return_t |
| 3240 | task_resume_internal( |
| 3241 | task_suspension_token_t task) |
| 3242 | { |
| 3243 | kern_return_t kr; |
| 3244 | |
| 3245 | if (task == TASK_NULL || task == kernel_task) |
| 3246 | return (KERN_INVALID_ARGUMENT); |
| 3247 | |
| 3248 | task_lock(task); |
| 3249 | kr = release_task_hold(task, TASK_HOLD_NORMAL); |
| 3250 | task_unlock(task); |
| 3251 | return (kr); |
| 3252 | } |
| 3253 | |
| 3254 | /* |
| 3255 | * Resume the task using a suspension token. Consumes the token's ref. |
| 3256 | */ |
| 3257 | kern_return_t |
| 3258 | task_resume2( |
| 3259 | task_suspension_token_t task) |
| 3260 | { |
| 3261 | kern_return_t kr; |
| 3262 | |
| 3263 | kr = task_resume_internal(task); |
| 3264 | task_suspension_token_deallocate(task); |
| 3265 | |
| 3266 | return (kr); |
| 3267 | } |
| 3268 | |
| 3269 | boolean_t |
| 3270 | task_suspension_notify(mach_msg_header_t *) |
| 3271 | { |
| 3272 | ipc_port_t port = (ipc_port_t) request_header->msgh_remote_port; |
| 3273 | task_t task = convert_port_to_task_suspension_token(port); |
| 3274 | mach_msg_type_number_t not_count; |
| 3275 | |
| 3276 | if (task == TASK_NULL || task == kernel_task) |
| 3277 | return TRUE; /* nothing to do */ |
| 3278 | |
| 3279 | switch (request_header->msgh_id) { |
| 3280 | |
| 3281 | case MACH_NOTIFY_SEND_ONCE: |
| 3282 | /* release the hold held by this specific send-once right */ |
| 3283 | task_lock(task); |
| 3284 | release_task_hold(task, TASK_HOLD_NORMAL); |
| 3285 | task_unlock(task); |
| 3286 | break; |
| 3287 | |
| 3288 | case MACH_NOTIFY_NO_SENDERS: |
| 3289 | not_count = ((mach_no_senders_notification_t *)request_header)->not_count; |
| 3290 | |
| 3291 | task_lock(task); |
| 3292 | ip_lock(port); |
| 3293 | if (port->ip_mscount == not_count) { |
| 3294 | |
| 3295 | /* release all the [remaining] outstanding legacy holds */ |
| 3296 | assert(port->ip_nsrequest == IP_NULL); |
| 3297 | ip_unlock(port); |
| 3298 | release_task_hold(task, TASK_HOLD_LEGACY_ALL); |
| 3299 | task_unlock(task); |
| 3300 | |
| 3301 | } else if (port->ip_nsrequest == IP_NULL) { |
| 3302 | ipc_port_t old_notify; |
| 3303 | |
| 3304 | task_unlock(task); |
| 3305 | /* new send rights, re-arm notification at current make-send count */ |
| 3306 | ipc_port_nsrequest(port, port->ip_mscount, ipc_port_make_sonce_locked(port), &old_notify); |
| 3307 | assert(old_notify == IP_NULL); |
| 3308 | /* port unlocked */ |
| 3309 | } else { |
| 3310 | ip_unlock(port); |
| 3311 | task_unlock(task); |
| 3312 | } |
| 3313 | break; |
| 3314 | |
| 3315 | default: |
| 3316 | break; |
| 3317 | } |
| 3318 | |
| 3319 | task_suspension_token_deallocate(task); /* drop token reference */ |
| 3320 | return TRUE; |
| 3321 | } |
| 3322 | |
| 3323 | kern_return_t |
| 3324 | task_pidsuspend_locked(task_t task) |
| 3325 | { |
| 3326 | kern_return_t kr; |
| 3327 | |
| 3328 | if (task->pidsuspended) { |
| 3329 | kr = KERN_FAILURE; |
| 3330 | goto out; |
| 3331 | } |
| 3332 | |
| 3333 | task->pidsuspended = TRUE; |
| 3334 | |
| 3335 | kr = place_task_hold(task, TASK_HOLD_PIDSUSPEND); |
| 3336 | if (kr != KERN_SUCCESS) { |
| 3337 | task->pidsuspended = FALSE; |
| 3338 | } |
| 3339 | out: |
| 3340 | return(kr); |
| 3341 | } |
| 3342 | |
| 3343 | |
| 3344 | /* |
| 3345 | * task_pidsuspend: |
| 3346 | * |
| 3347 | * Suspends a task by placing a hold on its threads. |
| 3348 | * |
| 3349 | * Conditions: |
| 3350 | * The caller holds a reference to the task |
| 3351 | */ |
| 3352 | kern_return_t |
| 3353 | task_pidsuspend( |
| 3354 | task_t task) |
| 3355 | { |
| 3356 | kern_return_t kr; |
| 3357 | |
| 3358 | if (task == TASK_NULL || task == kernel_task) |
| 3359 | return (KERN_INVALID_ARGUMENT); |
| 3360 | |
| 3361 | task_lock(task); |
| 3362 | |
| 3363 | kr = task_pidsuspend_locked(task); |
| 3364 | |
| 3365 | task_unlock(task); |
| 3366 | |
| 3367 | return (kr); |
| 3368 | } |
| 3369 | |
| 3370 | /* |
| 3371 | * task_pidresume: |
| 3372 | * Resumes a previously suspended task. |
| 3373 | * |
| 3374 | * Conditions: |
| 3375 | * The caller holds a reference to the task |
| 3376 | */ |
| 3377 | kern_return_t |
| 3378 | task_pidresume( |
| 3379 | task_t task) |
| 3380 | { |
| 3381 | kern_return_t kr; |
| 3382 | |
| 3383 | if (task == TASK_NULL || task == kernel_task) |
| 3384 | return (KERN_INVALID_ARGUMENT); |
| 3385 | |
| 3386 | task_lock(task); |
| 3387 | |
| 3388 | #if CONFIG_FREEZE |
| 3389 | |
| 3390 | while (task->changing_freeze_state) { |
| 3391 | |
| 3392 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 3393 | task_unlock(task); |
| 3394 | thread_block(THREAD_CONTINUE_NULL); |
| 3395 | |
| 3396 | task_lock(task); |
| 3397 | } |
| 3398 | task->changing_freeze_state = TRUE; |
| 3399 | #endif |
| 3400 | |
| 3401 | kr = release_task_hold(task, TASK_HOLD_PIDSUSPEND); |
| 3402 | |
| 3403 | task_unlock(task); |
| 3404 | |
| 3405 | #if CONFIG_FREEZE |
| 3406 | |
| 3407 | task_lock(task); |
| 3408 | |
| 3409 | if (kr == KERN_SUCCESS) |
| 3410 | task->frozen = FALSE; |
| 3411 | task->changing_freeze_state = FALSE; |
| 3412 | thread_wakeup(&task->changing_freeze_state); |
| 3413 | |
| 3414 | task_unlock(task); |
| 3415 | #endif |
| 3416 | |
| 3417 | return (kr); |
| 3418 | } |
| 3419 | |
| 3420 | |
| 3421 | #if DEVELOPMENT || DEBUG |
| 3422 | |
| 3423 | extern void IOSleep(int); |
| 3424 | |
| 3425 | kern_return_t |
| 3426 | task_disconnect_page_mappings(task_t task) |
| 3427 | { |
| 3428 | int n; |
| 3429 | |
| 3430 | if (task == TASK_NULL || task == kernel_task) |
| 3431 | return (KERN_INVALID_ARGUMENT); |
| 3432 | |
| 3433 | /* |
| 3434 | * this function is used to strip all of the mappings from |
| 3435 | * the pmap for the specified task to force the task to |
| 3436 | * re-fault all of the pages it is actively using... this |
| 3437 | * allows us to approximate the true working set of the |
| 3438 | * specified task. We only engage if at least 1 of the |
| 3439 | * threads in the task is runnable, but we want to continuously |
| 3440 | * sweep (at least for a while - I've arbitrarily set the limit at |
| 3441 | * 100 sweeps to be re-looked at as we gain experience) to get a better |
| 3442 | * view into what areas within a page are being visited (as opposed to only |
| 3443 | * seeing the first fault of a page after the task becomes |
| 3444 | * runnable)... in the future I may |
| 3445 | * try to block until awakened by a thread in this task |
| 3446 | * being made runnable, but for now we'll periodically poll from the |
| 3447 | * user level debug tool driving the sysctl |
| 3448 | */ |
| 3449 | for (n = 0; n < 100; n++) { |
| 3450 | thread_t thread; |
| 3451 | boolean_t runnable; |
| 3452 | boolean_t do_unnest; |
| 3453 | int page_count; |
| 3454 | |
| 3455 | runnable = FALSE; |
| 3456 | do_unnest = FALSE; |
| 3457 | |
| 3458 | task_lock(task); |
| 3459 | |
| 3460 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3461 | |
| 3462 | if (thread->state & TH_RUN) { |
| 3463 | runnable = TRUE; |
| 3464 | break; |
| 3465 | } |
| 3466 | } |
| 3467 | if (n == 0) |
| 3468 | task->task_disconnected_count++; |
| 3469 | |
| 3470 | if (task->task_unnested == FALSE) { |
| 3471 | if (runnable == TRUE) { |
| 3472 | task->task_unnested = TRUE; |
| 3473 | do_unnest = TRUE; |
| 3474 | } |
| 3475 | } |
| 3476 | task_unlock(task); |
| 3477 | |
| 3478 | if (runnable == FALSE) |
| 3479 | break; |
| 3480 | |
| 3481 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_START, |
| 3482 | task, do_unnest, task->task_disconnected_count, 0, 0); |
| 3483 | |
| 3484 | page_count = vm_map_disconnect_page_mappings(task->map, do_unnest); |
| 3485 | |
| 3486 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_END, |
| 3487 | task, page_count, 0, 0, 0); |
| 3488 | |
| 3489 | if ((n % 5) == 4) |
| 3490 | IOSleep(1); |
| 3491 | } |
| 3492 | return (KERN_SUCCESS); |
| 3493 | } |
| 3494 | |
| 3495 | #endif |
| 3496 | |
| 3497 | |
| 3498 | #if CONFIG_FREEZE |
| 3499 | |
| 3500 | /* |
| 3501 | * task_freeze: |
| 3502 | * |
| 3503 | * Freeze a task. |
| 3504 | * |
| 3505 | * Conditions: |
| 3506 | * The caller holds a reference to the task |
| 3507 | */ |
| 3508 | extern void vm_wake_compactor_swapper(void); |
| 3509 | extern queue_head_t c_swapout_list_head; |
| 3510 | |
| 3511 | kern_return_t |
| 3512 | task_freeze( |
| 3513 | task_t task, |
| 3514 | uint32_t *purgeable_count, |
| 3515 | uint32_t *wired_count, |
| 3516 | uint32_t *clean_count, |
| 3517 | uint32_t *dirty_count, |
| 3518 | uint32_t dirty_budget, |
| 3519 | uint32_t *shared_count, |
| 3520 | int *freezer_error_code, |
| 3521 | boolean_t eval_only) |
| 3522 | { |
| 3523 | kern_return_t kr = KERN_SUCCESS; |
| 3524 | |
| 3525 | if (task == TASK_NULL || task == kernel_task) |
| 3526 | return (KERN_INVALID_ARGUMENT); |
| 3527 | |
| 3528 | task_lock(task); |
| 3529 | |
| 3530 | while (task->changing_freeze_state) { |
| 3531 | |
| 3532 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 3533 | task_unlock(task); |
| 3534 | thread_block(THREAD_CONTINUE_NULL); |
| 3535 | |
| 3536 | task_lock(task); |
| 3537 | } |
| 3538 | if (task->frozen) { |
| 3539 | task_unlock(task); |
| 3540 | return (KERN_FAILURE); |
| 3541 | } |
| 3542 | task->changing_freeze_state = TRUE; |
| 3543 | |
| 3544 | task_unlock(task); |
| 3545 | |
| 3546 | kr = vm_map_freeze(task->map, |
| 3547 | purgeable_count, |
| 3548 | wired_count, |
| 3549 | clean_count, |
| 3550 | dirty_count, |
| 3551 | dirty_budget, |
| 3552 | shared_count, |
| 3553 | freezer_error_code, |
| 3554 | eval_only); |
| 3555 | |
| 3556 | task_lock(task); |
| 3557 | |
| 3558 | if ((kr == KERN_SUCCESS) && (eval_only == FALSE)) { |
| 3559 | task->frozen = TRUE; |
| 3560 | } |
| 3561 | |
| 3562 | task->changing_freeze_state = FALSE; |
| 3563 | thread_wakeup(&task->changing_freeze_state); |
| 3564 | |
| 3565 | task_unlock(task); |
| 3566 | |
| 3567 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && |
| 3568 | (eval_only == FALSE)) { |
| 3569 | vm_wake_compactor_swapper(); |
| 3570 | /* |
| 3571 | * We do an explicit wakeup of the swapout thread here |
| 3572 | * because the compact_and_swap routines don't have |
| 3573 | * knowledge about these kind of "per-task packed c_segs" |
| 3574 | * and so will not be evaluating whether we need to do |
| 3575 | * a wakeup there. |
| 3576 | */ |
| 3577 | thread_wakeup((event_t)&c_swapout_list_head); |
| 3578 | } |
| 3579 | |
| 3580 | return (kr); |
| 3581 | } |
| 3582 | |
| 3583 | /* |
| 3584 | * task_thaw: |
| 3585 | * |
| 3586 | * Thaw a currently frozen task. |
| 3587 | * |
| 3588 | * Conditions: |
| 3589 | * The caller holds a reference to the task |
| 3590 | */ |
| 3591 | kern_return_t |
| 3592 | task_thaw( |
| 3593 | task_t task) |
| 3594 | { |
| 3595 | if (task == TASK_NULL || task == kernel_task) |
| 3596 | return (KERN_INVALID_ARGUMENT); |
| 3597 | |
| 3598 | task_lock(task); |
| 3599 | |
| 3600 | while (task->changing_freeze_state) { |
| 3601 | |
| 3602 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 3603 | task_unlock(task); |
| 3604 | thread_block(THREAD_CONTINUE_NULL); |
| 3605 | |
| 3606 | task_lock(task); |
| 3607 | } |
| 3608 | if (!task->frozen) { |
| 3609 | task_unlock(task); |
| 3610 | return (KERN_FAILURE); |
| 3611 | } |
| 3612 | task->frozen = FALSE; |
| 3613 | |
| 3614 | task_unlock(task); |
| 3615 | |
| 3616 | return (KERN_SUCCESS); |
| 3617 | } |
| 3618 | |
| 3619 | #endif /* CONFIG_FREEZE */ |
| 3620 | |
| 3621 | kern_return_t |
| 3622 | host_security_set_task_token( |
| 3623 | host_security_t host_security, |
| 3624 | task_t task, |
| 3625 | security_token_t sec_token, |
| 3626 | audit_token_t audit_token, |
| 3627 | host_priv_t host_priv) |
| 3628 | { |
| 3629 | ipc_port_t host_port; |
| 3630 | kern_return_t kr; |
| 3631 | |
| 3632 | if (task == TASK_NULL) |
| 3633 | return(KERN_INVALID_ARGUMENT); |
| 3634 | |
| 3635 | if (host_security == HOST_NULL) |
| 3636 | return(KERN_INVALID_SECURITY); |
| 3637 | |
| 3638 | task_lock(task); |
| 3639 | task->sec_token = sec_token; |
| 3640 | task->audit_token = audit_token; |
| 3641 | |
| 3642 | task_unlock(task); |
| 3643 | |
| 3644 | if (host_priv != HOST_PRIV_NULL) { |
| 3645 | kr = host_get_host_priv_port(host_priv, &host_port); |
| 3646 | } else { |
| 3647 | kr = host_get_host_port(host_priv_self(), &host_port); |
| 3648 | } |
| 3649 | assert(kr == KERN_SUCCESS); |
| 3650 | kr = task_set_special_port(task, TASK_HOST_PORT, host_port); |
| 3651 | return(kr); |
| 3652 | } |
| 3653 | |
| 3654 | kern_return_t |
| 3655 | task_send_trace_memory( |
| 3656 | task_t target_task, |
| 3657 | __unused uint32_t pid, |
| 3658 | __unused uint64_t uniqueid) |
| 3659 | { |
| 3660 | kern_return_t kr = KERN_INVALID_ARGUMENT; |
| 3661 | if (target_task == TASK_NULL) |
| 3662 | return (KERN_INVALID_ARGUMENT); |
| 3663 | |
| 3664 | #if CONFIG_ATM |
| 3665 | kr = atm_send_proc_inspect_notification(target_task, |
| 3666 | pid, |
| 3667 | uniqueid); |
| 3668 | |
| 3669 | #endif |
| 3670 | return (kr); |
| 3671 | } |
| 3672 | /* |
| 3673 | * This routine was added, pretty much exclusively, for registering the |
| 3674 | * RPC glue vector for in-kernel short circuited tasks. Rather than |
| 3675 | * removing it completely, I have only disabled that feature (which was |
| 3676 | * the only feature at the time). It just appears that we are going to |
| 3677 | * want to add some user data to tasks in the future (i.e. bsd info, |
| 3678 | * task names, etc...), so I left it in the formal task interface. |
| 3679 | */ |
| 3680 | kern_return_t |
| 3681 | task_set_info( |
| 3682 | task_t task, |
| 3683 | task_flavor_t flavor, |
| 3684 | __unused task_info_t task_info_in, /* pointer to IN array */ |
| 3685 | __unused mach_msg_type_number_t task_info_count) |
| 3686 | { |
| 3687 | if (task == TASK_NULL) |
| 3688 | return(KERN_INVALID_ARGUMENT); |
| 3689 | |
| 3690 | switch (flavor) { |
| 3691 | |
| 3692 | #if CONFIG_ATM |
| 3693 | case TASK_TRACE_MEMORY_INFO: |
| 3694 | { |
| 3695 | if (task_info_count != TASK_TRACE_MEMORY_INFO_COUNT) |
| 3696 | return (KERN_INVALID_ARGUMENT); |
| 3697 | |
| 3698 | assert(task_info_in != NULL); |
| 3699 | task_trace_memory_info_t mem_info; |
| 3700 | mem_info = (task_trace_memory_info_t) task_info_in; |
| 3701 | kern_return_t kr = atm_register_trace_memory(task, |
| 3702 | mem_info->user_memory_address, |
| 3703 | mem_info->buffer_size); |
| 3704 | return kr; |
| 3705 | } |
| 3706 | |
| 3707 | #endif |
| 3708 | default: |
| 3709 | return (KERN_INVALID_ARGUMENT); |
| 3710 | } |
| 3711 | return (KERN_SUCCESS); |
| 3712 | } |
| 3713 | |
| 3714 | int radar_20146450 = 1; |
| 3715 | kern_return_t |
| 3716 | task_info( |
| 3717 | task_t task, |
| 3718 | task_flavor_t flavor, |
| 3719 | task_info_t task_info_out, |
| 3720 | mach_msg_type_number_t *task_info_count) |
| 3721 | { |
| 3722 | kern_return_t error = KERN_SUCCESS; |
| 3723 | mach_msg_type_number_t original_task_info_count; |
| 3724 | |
| 3725 | if (task == TASK_NULL) |
| 3726 | return (KERN_INVALID_ARGUMENT); |
| 3727 | |
| 3728 | original_task_info_count = *task_info_count; |
| 3729 | task_lock(task); |
| 3730 | |
| 3731 | if ((task != current_task()) && (!task->active)) { |
| 3732 | task_unlock(task); |
| 3733 | return (KERN_INVALID_ARGUMENT); |
| 3734 | } |
| 3735 | |
| 3736 | switch (flavor) { |
| 3737 | |
| 3738 | case TASK_BASIC_INFO_32: |
| 3739 | case TASK_BASIC2_INFO_32: |
| 3740 | #if defined(__arm__) || defined(__arm64__) |
| 3741 | case TASK_BASIC_INFO_64: |
| 3742 | #endif |
| 3743 | { |
| 3744 | task_basic_info_32_t basic_info; |
| 3745 | vm_map_t map; |
| 3746 | clock_sec_t secs; |
| 3747 | clock_usec_t usecs; |
| 3748 | |
| 3749 | if (*task_info_count < TASK_BASIC_INFO_32_COUNT) { |
| 3750 | error = KERN_INVALID_ARGUMENT; |
| 3751 | break; |
| 3752 | } |
| 3753 | |
| 3754 | basic_info = (task_basic_info_32_t)task_info_out; |
| 3755 | |
| 3756 | map = (task == kernel_task)? kernel_map: task->map; |
| 3757 | basic_info->virtual_size = (typeof(basic_info->virtual_size))map->size; |
| 3758 | if (flavor == TASK_BASIC2_INFO_32) { |
| 3759 | /* |
| 3760 | * The "BASIC2" flavor gets the maximum resident |
| 3761 | * size instead of the current resident size... |
| 3762 | */ |
| 3763 | basic_info->resident_size = pmap_resident_max(map->pmap); |
| 3764 | } else { |
| 3765 | basic_info->resident_size = pmap_resident_count(map->pmap); |
| 3766 | } |
| 3767 | basic_info->resident_size *= PAGE_SIZE; |
| 3768 | |
| 3769 | basic_info->policy = ((task != kernel_task)? |
| 3770 | POLICY_TIMESHARE: POLICY_RR); |
| 3771 | basic_info->suspend_count = task->user_stop_count; |
| 3772 | |
| 3773 | absolutetime_to_microtime(task->total_user_time, &secs, &usecs); |
| 3774 | basic_info->user_time.seconds = |
| 3775 | (typeof(basic_info->user_time.seconds))secs; |
| 3776 | basic_info->user_time.microseconds = usecs; |
| 3777 | |
| 3778 | absolutetime_to_microtime(task->total_system_time, &secs, &usecs); |
| 3779 | basic_info->system_time.seconds = |
| 3780 | (typeof(basic_info->system_time.seconds))secs; |
| 3781 | basic_info->system_time.microseconds = usecs; |
| 3782 | |
| 3783 | *task_info_count = TASK_BASIC_INFO_32_COUNT; |
| 3784 | break; |
| 3785 | } |
| 3786 | |
| 3787 | #if defined(__arm__) || defined(__arm64__) |
| 3788 | case TASK_BASIC_INFO_64_2: |
| 3789 | { |
| 3790 | task_basic_info_64_2_t basic_info; |
| 3791 | vm_map_t map; |
| 3792 | clock_sec_t secs; |
| 3793 | clock_usec_t usecs; |
| 3794 | |
| 3795 | if (*task_info_count < TASK_BASIC_INFO_64_2_COUNT) { |
| 3796 | error = KERN_INVALID_ARGUMENT; |
| 3797 | break; |
| 3798 | } |
| 3799 | |
| 3800 | basic_info = (task_basic_info_64_2_t)task_info_out; |
| 3801 | |
| 3802 | map = (task == kernel_task)? kernel_map: task->map; |
| 3803 | basic_info->virtual_size = map->size; |
| 3804 | basic_info->resident_size = |
| 3805 | (mach_vm_size_t)(pmap_resident_count(map->pmap)) |
| 3806 | * PAGE_SIZE_64; |
| 3807 | |
| 3808 | basic_info->policy = ((task != kernel_task)? |
| 3809 | POLICY_TIMESHARE: POLICY_RR); |
| 3810 | basic_info->suspend_count = task->user_stop_count; |
| 3811 | |
| 3812 | absolutetime_to_microtime(task->total_user_time, &secs, &usecs); |
| 3813 | basic_info->user_time.seconds = |
| 3814 | (typeof(basic_info->user_time.seconds))secs; |
| 3815 | basic_info->user_time.microseconds = usecs; |
| 3816 | |
| 3817 | absolutetime_to_microtime(task->total_system_time, &secs, &usecs); |
| 3818 | basic_info->system_time.seconds = |
| 3819 | (typeof(basic_info->system_time.seconds))secs; |
| 3820 | basic_info->system_time.microseconds = usecs; |
| 3821 | |
| 3822 | *task_info_count = TASK_BASIC_INFO_64_2_COUNT; |
| 3823 | break; |
| 3824 | } |
| 3825 | |
| 3826 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 3827 | case TASK_BASIC_INFO_64: |
| 3828 | { |
| 3829 | task_basic_info_64_t basic_info; |
| 3830 | vm_map_t map; |
| 3831 | clock_sec_t secs; |
| 3832 | clock_usec_t usecs; |
| 3833 | |
| 3834 | if (*task_info_count < TASK_BASIC_INFO_64_COUNT) { |
| 3835 | error = KERN_INVALID_ARGUMENT; |
| 3836 | break; |
| 3837 | } |
| 3838 | |
| 3839 | basic_info = (task_basic_info_64_t)task_info_out; |
| 3840 | |
| 3841 | map = (task == kernel_task)? kernel_map: task->map; |
| 3842 | basic_info->virtual_size = map->size; |
| 3843 | basic_info->resident_size = |
| 3844 | (mach_vm_size_t)(pmap_resident_count(map->pmap)) |
| 3845 | * PAGE_SIZE_64; |
| 3846 | |
| 3847 | basic_info->policy = ((task != kernel_task)? |
| 3848 | POLICY_TIMESHARE: POLICY_RR); |
| 3849 | basic_info->suspend_count = task->user_stop_count; |
| 3850 | |
| 3851 | absolutetime_to_microtime(task->total_user_time, &secs, &usecs); |
| 3852 | basic_info->user_time.seconds = |
| 3853 | (typeof(basic_info->user_time.seconds))secs; |
| 3854 | basic_info->user_time.microseconds = usecs; |
| 3855 | |
| 3856 | absolutetime_to_microtime(task->total_system_time, &secs, &usecs); |
| 3857 | basic_info->system_time.seconds = |
| 3858 | (typeof(basic_info->system_time.seconds))secs; |
| 3859 | basic_info->system_time.microseconds = usecs; |
| 3860 | |
| 3861 | *task_info_count = TASK_BASIC_INFO_64_COUNT; |
| 3862 | break; |
| 3863 | } |
| 3864 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 3865 | |
| 3866 | case MACH_TASK_BASIC_INFO: |
| 3867 | { |
| 3868 | mach_task_basic_info_t basic_info; |
| 3869 | vm_map_t map; |
| 3870 | clock_sec_t secs; |
| 3871 | clock_usec_t usecs; |
| 3872 | |
| 3873 | if (*task_info_count < MACH_TASK_BASIC_INFO_COUNT) { |
| 3874 | error = KERN_INVALID_ARGUMENT; |
| 3875 | break; |
| 3876 | } |
| 3877 | |
| 3878 | basic_info = (mach_task_basic_info_t)task_info_out; |
| 3879 | |
| 3880 | map = (task == kernel_task) ? kernel_map : task->map; |
| 3881 | |
| 3882 | basic_info->virtual_size = map->size; |
| 3883 | |
| 3884 | basic_info->resident_size = |
| 3885 | (mach_vm_size_t)(pmap_resident_count(map->pmap)); |
| 3886 | basic_info->resident_size *= PAGE_SIZE_64; |
| 3887 | |
| 3888 | basic_info->resident_size_max = |
| 3889 | (mach_vm_size_t)(pmap_resident_max(map->pmap)); |
| 3890 | basic_info->resident_size_max *= PAGE_SIZE_64; |
| 3891 | |
| 3892 | basic_info->policy = ((task != kernel_task) ? |
| 3893 | POLICY_TIMESHARE : POLICY_RR); |
| 3894 | |
| 3895 | basic_info->suspend_count = task->user_stop_count; |
| 3896 | |
| 3897 | absolutetime_to_microtime(task->total_user_time, &secs, &usecs); |
| 3898 | basic_info->user_time.seconds = |
| 3899 | (typeof(basic_info->user_time.seconds))secs; |
| 3900 | basic_info->user_time.microseconds = usecs; |
| 3901 | |
| 3902 | absolutetime_to_microtime(task->total_system_time, &secs, &usecs); |
| 3903 | basic_info->system_time.seconds = |
| 3904 | (typeof(basic_info->system_time.seconds))secs; |
| 3905 | basic_info->system_time.microseconds = usecs; |
| 3906 | |
| 3907 | *task_info_count = MACH_TASK_BASIC_INFO_COUNT; |
| 3908 | break; |
| 3909 | } |
| 3910 | |
| 3911 | case TASK_THREAD_TIMES_INFO: |
| 3912 | { |
| 3913 | task_thread_times_info_t times_info; |
| 3914 | thread_t thread; |
| 3915 | |
| 3916 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) { |
| 3917 | error = KERN_INVALID_ARGUMENT; |
| 3918 | break; |
| 3919 | } |
| 3920 | |
| 3921 | times_info = (task_thread_times_info_t) task_info_out; |
| 3922 | times_info->user_time.seconds = 0; |
| 3923 | times_info->user_time.microseconds = 0; |
| 3924 | times_info->system_time.seconds = 0; |
| 3925 | times_info->system_time.microseconds = 0; |
| 3926 | |
| 3927 | |
| 3928 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3929 | time_value_t user_time, system_time; |
| 3930 | |
| 3931 | if (thread->options & TH_OPT_IDLE_THREAD) |
| 3932 | continue; |
| 3933 | |
| 3934 | thread_read_times(thread, &user_time, &system_time, NULL); |
| 3935 | |
| 3936 | time_value_add(×_info->user_time, &user_time); |
| 3937 | time_value_add(×_info->system_time, &system_time); |
| 3938 | } |
| 3939 | |
| 3940 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT; |
| 3941 | break; |
| 3942 | } |
| 3943 | |
| 3944 | case TASK_ABSOLUTETIME_INFO: |
| 3945 | { |
| 3946 | task_absolutetime_info_t info; |
| 3947 | thread_t thread; |
| 3948 | |
| 3949 | if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) { |
| 3950 | error = KERN_INVALID_ARGUMENT; |
| 3951 | break; |
| 3952 | } |
| 3953 | |
| 3954 | info = (task_absolutetime_info_t)task_info_out; |
| 3955 | info->threads_user = info->threads_system = 0; |
| 3956 | |
| 3957 | |
| 3958 | info->total_user = task->total_user_time; |
| 3959 | info->total_system = task->total_system_time; |
| 3960 | |
| 3961 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3962 | uint64_t tval; |
| 3963 | spl_t x; |
| 3964 | |
| 3965 | if (thread->options & TH_OPT_IDLE_THREAD) |
| 3966 | continue; |
| 3967 | |
| 3968 | x = splsched(); |
| 3969 | thread_lock(thread); |
| 3970 | |
| 3971 | tval = timer_grab(&thread->user_timer); |
| 3972 | info->threads_user += tval; |
| 3973 | info->total_user += tval; |
| 3974 | |
| 3975 | tval = timer_grab(&thread->system_timer); |
| 3976 | if (thread->precise_user_kernel_time) { |
| 3977 | info->threads_system += tval; |
| 3978 | info->total_system += tval; |
| 3979 | } else { |
| 3980 | /* system_timer may represent either sys or user */ |
| 3981 | info->threads_user += tval; |
| 3982 | info->total_user += tval; |
| 3983 | } |
| 3984 | |
| 3985 | thread_unlock(thread); |
| 3986 | splx(x); |
| 3987 | } |
| 3988 | |
| 3989 | |
| 3990 | *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT; |
| 3991 | break; |
| 3992 | } |
| 3993 | |
| 3994 | case TASK_DYLD_INFO: |
| 3995 | { |
| 3996 | task_dyld_info_t info; |
| 3997 | |
| 3998 | /* |
| 3999 | * We added the format field to TASK_DYLD_INFO output. For |
| 4000 | * temporary backward compatibility, accept the fact that |
| 4001 | * clients may ask for the old version - distinquished by the |
| 4002 | * size of the expected result structure. |
| 4003 | */ |
| 4004 | #define TASK_LEGACY_DYLD_INFO_COUNT \ |
| 4005 | offsetof(struct task_dyld_info, all_image_info_format)/sizeof(natural_t) |
| 4006 | |
| 4007 | if (*task_info_count < TASK_LEGACY_DYLD_INFO_COUNT) { |
| 4008 | error = KERN_INVALID_ARGUMENT; |
| 4009 | break; |
| 4010 | } |
| 4011 | |
| 4012 | info = (task_dyld_info_t)task_info_out; |
| 4013 | info->all_image_info_addr = task->all_image_info_addr; |
| 4014 | info->all_image_info_size = task->all_image_info_size; |
| 4015 | |
| 4016 | /* only set format on output for those expecting it */ |
| 4017 | if (*task_info_count >= TASK_DYLD_INFO_COUNT) { |
| 4018 | info->all_image_info_format = task_has_64Bit_addr(task) ? |
| 4019 | TASK_DYLD_ALL_IMAGE_INFO_64 : |
| 4020 | TASK_DYLD_ALL_IMAGE_INFO_32 ; |
| 4021 | *task_info_count = TASK_DYLD_INFO_COUNT; |
| 4022 | } else { |
| 4023 | *task_info_count = TASK_LEGACY_DYLD_INFO_COUNT; |
| 4024 | } |
| 4025 | break; |
| 4026 | } |
| 4027 | |
| 4028 | case TASK_EXTMOD_INFO: |
| 4029 | { |
| 4030 | task_extmod_info_t info; |
| 4031 | void *p; |
| 4032 | |
| 4033 | if (*task_info_count < TASK_EXTMOD_INFO_COUNT) { |
| 4034 | error = KERN_INVALID_ARGUMENT; |
| 4035 | break; |
| 4036 | } |
| 4037 | |
| 4038 | info = (task_extmod_info_t)task_info_out; |
| 4039 | |
| 4040 | p = get_bsdtask_info(task); |
| 4041 | if (p) { |
| 4042 | proc_getexecutableuuid(p, info->task_uuid, sizeof(info->task_uuid)); |
| 4043 | } else { |
| 4044 | bzero(info->task_uuid, sizeof(info->task_uuid)); |
| 4045 | } |
| 4046 | info->extmod_statistics = task->extmod_statistics; |
| 4047 | *task_info_count = TASK_EXTMOD_INFO_COUNT; |
| 4048 | |
| 4049 | break; |
| 4050 | } |
| 4051 | |
| 4052 | case TASK_KERNELMEMORY_INFO: |
| 4053 | { |
| 4054 | task_kernelmemory_info_t tkm_info; |
| 4055 | ledger_amount_t credit, debit; |
| 4056 | |
| 4057 | if (*task_info_count < TASK_KERNELMEMORY_INFO_COUNT) { |
| 4058 | error = KERN_INVALID_ARGUMENT; |
| 4059 | break; |
| 4060 | } |
| 4061 | |
| 4062 | tkm_info = (task_kernelmemory_info_t) task_info_out; |
| 4063 | tkm_info->total_palloc = 0; |
| 4064 | tkm_info->total_pfree = 0; |
| 4065 | tkm_info->total_salloc = 0; |
| 4066 | tkm_info->total_sfree = 0; |
| 4067 | |
| 4068 | if (task == kernel_task) { |
| 4069 | /* |
| 4070 | * All shared allocs/frees from other tasks count against |
| 4071 | * the kernel private memory usage. If we are looking up |
| 4072 | * info for the kernel task, gather from everywhere. |
| 4073 | */ |
| 4074 | task_unlock(task); |
| 4075 | |
| 4076 | /* start by accounting for all the terminated tasks against the kernel */ |
| 4077 | tkm_info->total_palloc = tasks_tkm_private.alloc + tasks_tkm_shared.alloc; |
| 4078 | tkm_info->total_pfree = tasks_tkm_private.free + tasks_tkm_shared.free; |
| 4079 | |
| 4080 | /* count all other task/thread shared alloc/free against the kernel */ |
| 4081 | lck_mtx_lock(&tasks_threads_lock); |
| 4082 | |
| 4083 | /* XXX this really shouldn't be using the function parameter 'task' as a local var! */ |
| 4084 | queue_iterate(&tasks, task, task_t, tasks) { |
| 4085 | if (task == kernel_task) { |
| 4086 | if (ledger_get_entries(task->ledger, |
| 4087 | task_ledgers.tkm_private, &credit, |
| 4088 | &debit) == KERN_SUCCESS) { |
| 4089 | tkm_info->total_palloc += credit; |
| 4090 | tkm_info->total_pfree += debit; |
| 4091 | } |
| 4092 | } |
| 4093 | if (!ledger_get_entries(task->ledger, |
| 4094 | task_ledgers.tkm_shared, &credit, &debit)) { |
| 4095 | tkm_info->total_palloc += credit; |
| 4096 | tkm_info->total_pfree += debit; |
| 4097 | } |
| 4098 | } |
| 4099 | lck_mtx_unlock(&tasks_threads_lock); |
| 4100 | } else { |
| 4101 | if (!ledger_get_entries(task->ledger, |
| 4102 | task_ledgers.tkm_private, &credit, &debit)) { |
| 4103 | tkm_info->total_palloc = credit; |
| 4104 | tkm_info->total_pfree = debit; |
| 4105 | } |
| 4106 | if (!ledger_get_entries(task->ledger, |
| 4107 | task_ledgers.tkm_shared, &credit, &debit)) { |
| 4108 | tkm_info->total_salloc = credit; |
| 4109 | tkm_info->total_sfree = debit; |
| 4110 | } |
| 4111 | task_unlock(task); |
| 4112 | } |
| 4113 | |
| 4114 | *task_info_count = TASK_KERNELMEMORY_INFO_COUNT; |
| 4115 | return KERN_SUCCESS; |
| 4116 | } |
| 4117 | |
| 4118 | /* OBSOLETE */ |
| 4119 | case TASK_SCHED_FIFO_INFO: |
| 4120 | { |
| 4121 | |
| 4122 | if (*task_info_count < POLICY_FIFO_BASE_COUNT) { |
| 4123 | error = KERN_INVALID_ARGUMENT; |
| 4124 | break; |
| 4125 | } |
| 4126 | |
| 4127 | error = KERN_INVALID_POLICY; |
| 4128 | break; |
| 4129 | } |
| 4130 | |
| 4131 | /* OBSOLETE */ |
| 4132 | case TASK_SCHED_RR_INFO: |
| 4133 | { |
| 4134 | policy_rr_base_t rr_base; |
| 4135 | uint32_t quantum_time; |
| 4136 | uint64_t quantum_ns; |
| 4137 | |
| 4138 | if (*task_info_count < POLICY_RR_BASE_COUNT) { |
| 4139 | error = KERN_INVALID_ARGUMENT; |
| 4140 | break; |
| 4141 | } |
| 4142 | |
| 4143 | rr_base = (policy_rr_base_t) task_info_out; |
| 4144 | |
| 4145 | if (task != kernel_task) { |
| 4146 | error = KERN_INVALID_POLICY; |
| 4147 | break; |
| 4148 | } |
| 4149 | |
| 4150 | rr_base->base_priority = task->priority; |
| 4151 | |
| 4152 | quantum_time = SCHED(initial_quantum_size)(THREAD_NULL); |
| 4153 | absolutetime_to_nanoseconds(quantum_time, &quantum_ns); |
| 4154 | |
| 4155 | rr_base->quantum = (uint32_t)(quantum_ns / 1000 / 1000); |
| 4156 | |
| 4157 | *task_info_count = POLICY_RR_BASE_COUNT; |
| 4158 | break; |
| 4159 | } |
| 4160 | |
| 4161 | /* OBSOLETE */ |
| 4162 | case TASK_SCHED_TIMESHARE_INFO: |
| 4163 | { |
| 4164 | policy_timeshare_base_t ts_base; |
| 4165 | |
| 4166 | if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) { |
| 4167 | error = KERN_INVALID_ARGUMENT; |
| 4168 | break; |
| 4169 | } |
| 4170 | |
| 4171 | ts_base = (policy_timeshare_base_t) task_info_out; |
| 4172 | |
| 4173 | if (task == kernel_task) { |
| 4174 | error = KERN_INVALID_POLICY; |
| 4175 | break; |
| 4176 | } |
| 4177 | |
| 4178 | ts_base->base_priority = task->priority; |
| 4179 | |
| 4180 | *task_info_count = POLICY_TIMESHARE_BASE_COUNT; |
| 4181 | break; |
| 4182 | } |
| 4183 | |
| 4184 | case TASK_SECURITY_TOKEN: |
| 4185 | { |
| 4186 | security_token_t *sec_token_p; |
| 4187 | |
| 4188 | if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) { |
| 4189 | error = KERN_INVALID_ARGUMENT; |
| 4190 | break; |
| 4191 | } |
| 4192 | |
| 4193 | sec_token_p = (security_token_t *) task_info_out; |
| 4194 | |
| 4195 | *sec_token_p = task->sec_token; |
| 4196 | |
| 4197 | *task_info_count = TASK_SECURITY_TOKEN_COUNT; |
| 4198 | break; |
| 4199 | } |
| 4200 | |
| 4201 | case TASK_AUDIT_TOKEN: |
| 4202 | { |
| 4203 | audit_token_t *audit_token_p; |
| 4204 | |
| 4205 | if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) { |
| 4206 | error = KERN_INVALID_ARGUMENT; |
| 4207 | break; |
| 4208 | } |
| 4209 | |
| 4210 | audit_token_p = (audit_token_t *) task_info_out; |
| 4211 | |
| 4212 | *audit_token_p = task->audit_token; |
| 4213 | |
| 4214 | *task_info_count = TASK_AUDIT_TOKEN_COUNT; |
| 4215 | break; |
| 4216 | } |
| 4217 | |
| 4218 | case TASK_SCHED_INFO: |
| 4219 | error = KERN_INVALID_ARGUMENT; |
| 4220 | break; |
| 4221 | |
| 4222 | case TASK_EVENTS_INFO: |
| 4223 | { |
| 4224 | task_events_info_t events_info; |
| 4225 | thread_t thread; |
| 4226 | |
| 4227 | if (*task_info_count < TASK_EVENTS_INFO_COUNT) { |
| 4228 | error = KERN_INVALID_ARGUMENT; |
| 4229 | break; |
| 4230 | } |
| 4231 | |
| 4232 | events_info = (task_events_info_t) task_info_out; |
| 4233 | |
| 4234 | |
| 4235 | events_info->faults = task->faults; |
| 4236 | events_info->pageins = task->pageins; |
| 4237 | events_info->cow_faults = task->cow_faults; |
| 4238 | events_info->messages_sent = task->messages_sent; |
| 4239 | events_info->messages_received = task->messages_received; |
| 4240 | events_info->syscalls_mach = task->syscalls_mach; |
| 4241 | events_info->syscalls_unix = task->syscalls_unix; |
| 4242 | |
| 4243 | events_info->csw = task->c_switch; |
| 4244 | |
| 4245 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4246 | events_info->csw += thread->c_switch; |
| 4247 | events_info->syscalls_mach += thread->syscalls_mach; |
| 4248 | events_info->syscalls_unix += thread->syscalls_unix; |
| 4249 | } |
| 4250 | |
| 4251 | |
| 4252 | *task_info_count = TASK_EVENTS_INFO_COUNT; |
| 4253 | break; |
| 4254 | } |
| 4255 | case TASK_AFFINITY_TAG_INFO: |
| 4256 | { |
| 4257 | if (*task_info_count < TASK_AFFINITY_TAG_INFO_COUNT) { |
| 4258 | error = KERN_INVALID_ARGUMENT; |
| 4259 | break; |
| 4260 | } |
| 4261 | |
| 4262 | error = task_affinity_info(task, task_info_out, task_info_count); |
| 4263 | break; |
| 4264 | } |
| 4265 | case TASK_POWER_INFO: |
| 4266 | { |
| 4267 | if (*task_info_count < TASK_POWER_INFO_COUNT) { |
| 4268 | error = KERN_INVALID_ARGUMENT; |
| 4269 | break; |
| 4270 | } |
| 4271 | |
| 4272 | task_power_info_locked(task, (task_power_info_t)task_info_out, NULL, NULL); |
| 4273 | break; |
| 4274 | } |
| 4275 | |
| 4276 | case TASK_POWER_INFO_V2: |
| 4277 | { |
| 4278 | if (*task_info_count < TASK_POWER_INFO_V2_COUNT_OLD) { |
| 4279 | error = KERN_INVALID_ARGUMENT; |
| 4280 | break; |
| 4281 | } |
| 4282 | task_power_info_v2_t tpiv2 = (task_power_info_v2_t) task_info_out; |
| 4283 | task_power_info_locked(task, &tpiv2->cpu_energy, &tpiv2->gpu_energy, tpiv2); |
| 4284 | break; |
| 4285 | } |
| 4286 | |
| 4287 | case TASK_VM_INFO: |
| 4288 | case TASK_VM_INFO_PURGEABLE: |
| 4289 | { |
| 4290 | task_vm_info_t vm_info; |
| 4291 | vm_map_t map; |
| 4292 | |
| 4293 | if (*task_info_count < TASK_VM_INFO_REV0_COUNT) { |
| 4294 | error = KERN_INVALID_ARGUMENT; |
| 4295 | break; |
| 4296 | } |
| 4297 | |
| 4298 | vm_info = (task_vm_info_t)task_info_out; |
| 4299 | |
| 4300 | if (task == kernel_task) { |
| 4301 | map = kernel_map; |
| 4302 | /* no lock */ |
| 4303 | } else { |
| 4304 | map = task->map; |
| 4305 | vm_map_lock_read(map); |
| 4306 | } |
| 4307 | |
| 4308 | vm_info->virtual_size = (typeof(vm_info->virtual_size))map->size; |
| 4309 | vm_info->region_count = map->hdr.nentries; |
| 4310 | vm_info->page_size = vm_map_page_size(map); |
| 4311 | |
| 4312 | vm_info->resident_size = pmap_resident_count(map->pmap); |
| 4313 | vm_info->resident_size *= PAGE_SIZE; |
| 4314 | vm_info->resident_size_peak = pmap_resident_max(map->pmap); |
| 4315 | vm_info->resident_size_peak *= PAGE_SIZE; |
| 4316 | |
| 4317 | #define _VM_INFO(_name) \ |
| 4318 | vm_info->_name = ((mach_vm_size_t) map->pmap->stats._name) * PAGE_SIZE |
| 4319 | |
| 4320 | _VM_INFO(device); |
| 4321 | _VM_INFO(device_peak); |
| 4322 | _VM_INFO(external); |
| 4323 | _VM_INFO(external_peak); |
| 4324 | _VM_INFO(internal); |
| 4325 | _VM_INFO(internal_peak); |
| 4326 | _VM_INFO(reusable); |
| 4327 | _VM_INFO(reusable_peak); |
| 4328 | _VM_INFO(compressed); |
| 4329 | _VM_INFO(compressed_peak); |
| 4330 | _VM_INFO(compressed_lifetime); |
| 4331 | |
| 4332 | vm_info->purgeable_volatile_pmap = 0; |
| 4333 | vm_info->purgeable_volatile_resident = 0; |
| 4334 | vm_info->purgeable_volatile_virtual = 0; |
| 4335 | if (task == kernel_task) { |
| 4336 | /* |
| 4337 | * We do not maintain the detailed stats for the |
| 4338 | * kernel_pmap, so just count everything as |
| 4339 | * "internal"... |
| 4340 | */ |
| 4341 | vm_info->internal = vm_info->resident_size; |
| 4342 | /* |
| 4343 | * ... but since the memory held by the VM compressor |
| 4344 | * in the kernel address space ought to be attributed |
| 4345 | * to user-space tasks, we subtract it from "internal" |
| 4346 | * to give memory reporting tools a more accurate idea |
| 4347 | * of what the kernel itself is actually using, instead |
| 4348 | * of making it look like the kernel is leaking memory |
| 4349 | * when the system is under memory pressure. |
| 4350 | */ |
| 4351 | vm_info->internal -= (VM_PAGE_COMPRESSOR_COUNT * |
| 4352 | PAGE_SIZE); |
| 4353 | } else { |
| 4354 | mach_vm_size_t volatile_virtual_size; |
| 4355 | mach_vm_size_t volatile_resident_size; |
| 4356 | mach_vm_size_t volatile_compressed_size; |
| 4357 | mach_vm_size_t volatile_pmap_size; |
| 4358 | mach_vm_size_t volatile_compressed_pmap_size; |
| 4359 | kern_return_t kr; |
| 4360 | |
| 4361 | if (flavor == TASK_VM_INFO_PURGEABLE) { |
| 4362 | kr = vm_map_query_volatile( |
| 4363 | map, |
| 4364 | &volatile_virtual_size, |
| 4365 | &volatile_resident_size, |
| 4366 | &volatile_compressed_size, |
| 4367 | &volatile_pmap_size, |
| 4368 | &volatile_compressed_pmap_size); |
| 4369 | if (kr == KERN_SUCCESS) { |
| 4370 | vm_info->purgeable_volatile_pmap = |
| 4371 | volatile_pmap_size; |
| 4372 | if (radar_20146450) { |
| 4373 | vm_info->compressed -= |
| 4374 | volatile_compressed_pmap_size; |
| 4375 | } |
| 4376 | vm_info->purgeable_volatile_resident = |
| 4377 | volatile_resident_size; |
| 4378 | vm_info->purgeable_volatile_virtual = |
| 4379 | volatile_virtual_size; |
| 4380 | } |
| 4381 | } |
| 4382 | } |
| 4383 | *task_info_count = TASK_VM_INFO_REV0_COUNT; |
| 4384 | |
| 4385 | if (original_task_info_count >= TASK_VM_INFO_REV1_COUNT) { |
| 4386 | vm_info->phys_footprint = |
| 4387 | (mach_vm_size_t) get_task_phys_footprint(task); |
| 4388 | *task_info_count = TASK_VM_INFO_REV1_COUNT; |
| 4389 | } |
| 4390 | if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) { |
| 4391 | vm_info->min_address = map->min_offset; |
| 4392 | vm_info->max_address = map->max_offset; |
| 4393 | *task_info_count = TASK_VM_INFO_REV2_COUNT; |
| 4394 | } |
| 4395 | |
| 4396 | if (task != kernel_task) { |
| 4397 | vm_map_unlock_read(map); |
| 4398 | } |
| 4399 | |
| 4400 | break; |
| 4401 | } |
| 4402 | |
| 4403 | case TASK_WAIT_STATE_INFO: |
| 4404 | { |
| 4405 | /* |
| 4406 | * Deprecated flavor. Currently allowing some results until all users |
| 4407 | * stop calling it. The results may not be accurate. |
| 4408 | */ |
| 4409 | task_wait_state_info_t wait_state_info; |
| 4410 | uint64_t total_sfi_ledger_val = 0; |
| 4411 | |
| 4412 | if (*task_info_count < TASK_WAIT_STATE_INFO_COUNT) { |
| 4413 | error = KERN_INVALID_ARGUMENT; |
| 4414 | break; |
| 4415 | } |
| 4416 | |
| 4417 | wait_state_info = (task_wait_state_info_t) task_info_out; |
| 4418 | |
| 4419 | wait_state_info->total_wait_state_time = 0; |
| 4420 | bzero(wait_state_info->_reserved, sizeof(wait_state_info->_reserved)); |
| 4421 | |
| 4422 | #if CONFIG_SCHED_SFI |
| 4423 | int i, prev_lentry = -1; |
| 4424 | int64_t val_credit, val_debit; |
| 4425 | |
| 4426 | for (i = 0; i < MAX_SFI_CLASS_ID; i++){ |
| 4427 | val_credit =0; |
| 4428 | /* |
| 4429 | * checking with prev_lentry != entry ensures adjacent classes |
| 4430 | * which share the same ledger do not add wait times twice. |
| 4431 | * Note: Use ledger() call to get data for each individual sfi class. |
| 4432 | */ |
| 4433 | if (prev_lentry != task_ledgers.sfi_wait_times[i] && |
| 4434 | KERN_SUCCESS == ledger_get_entries(task->ledger, |
| 4435 | task_ledgers.sfi_wait_times[i], &val_credit, &val_debit)) { |
| 4436 | total_sfi_ledger_val += val_credit; |
| 4437 | } |
| 4438 | prev_lentry = task_ledgers.sfi_wait_times[i]; |
| 4439 | } |
| 4440 | |
| 4441 | #endif /* CONFIG_SCHED_SFI */ |
| 4442 | wait_state_info->total_wait_sfi_state_time = total_sfi_ledger_val; |
| 4443 | *task_info_count = TASK_WAIT_STATE_INFO_COUNT; |
| 4444 | |
| 4445 | break; |
| 4446 | } |
| 4447 | case TASK_VM_INFO_PURGEABLE_ACCOUNT: |
| 4448 | { |
| 4449 | #if DEVELOPMENT || DEBUG |
| 4450 | pvm_account_info_t acnt_info; |
| 4451 | |
| 4452 | if (*task_info_count < PVM_ACCOUNT_INFO_COUNT) { |
| 4453 | error = KERN_INVALID_ARGUMENT; |
| 4454 | break; |
| 4455 | } |
| 4456 | |
| 4457 | if (task_info_out == NULL) { |
| 4458 | error = KERN_INVALID_ARGUMENT; |
| 4459 | break; |
| 4460 | } |
| 4461 | |
| 4462 | acnt_info = (pvm_account_info_t) task_info_out; |
| 4463 | |
| 4464 | error = vm_purgeable_account(task, acnt_info); |
| 4465 | |
| 4466 | *task_info_count = PVM_ACCOUNT_INFO_COUNT; |
| 4467 | |
| 4468 | break; |
| 4469 | #else /* DEVELOPMENT || DEBUG */ |
| 4470 | error = KERN_NOT_SUPPORTED; |
| 4471 | break; |
| 4472 | #endif /* DEVELOPMENT || DEBUG */ |
| 4473 | } |
| 4474 | case TASK_FLAGS_INFO: |
| 4475 | { |
| 4476 | task_flags_info_t flags_info; |
| 4477 | |
| 4478 | if (*task_info_count < TASK_FLAGS_INFO_COUNT) { |
| 4479 | error = KERN_INVALID_ARGUMENT; |
| 4480 | break; |
| 4481 | } |
| 4482 | |
| 4483 | flags_info = (task_flags_info_t)task_info_out; |
| 4484 | |
| 4485 | /* only publish the 64-bit flag of the task */ |
| 4486 | flags_info->flags = task->t_flags & (TF_64B_ADDR | TF_64B_DATA); |
| 4487 | |
| 4488 | *task_info_count = TASK_FLAGS_INFO_COUNT; |
| 4489 | break; |
| 4490 | } |
| 4491 | |
| 4492 | case TASK_DEBUG_INFO_INTERNAL: |
| 4493 | { |
| 4494 | #if DEVELOPMENT || DEBUG |
| 4495 | task_debug_info_internal_t dbg_info; |
| 4496 | if (*task_info_count < TASK_DEBUG_INFO_INTERNAL_COUNT) { |
| 4497 | error = KERN_NOT_SUPPORTED; |
| 4498 | break; |
| 4499 | } |
| 4500 | |
| 4501 | if (task_info_out == NULL) { |
| 4502 | error = KERN_INVALID_ARGUMENT; |
| 4503 | break; |
| 4504 | } |
| 4505 | dbg_info = (task_debug_info_internal_t) task_info_out; |
| 4506 | dbg_info->ipc_space_size = 0; |
| 4507 | if (task->itk_space){ |
| 4508 | dbg_info->ipc_space_size = task->itk_space->is_table_size; |
| 4509 | } |
| 4510 | |
| 4511 | dbg_info->suspend_count = task->suspend_count; |
| 4512 | |
| 4513 | error = KERN_SUCCESS; |
| 4514 | *task_info_count = TASK_DEBUG_INFO_INTERNAL_COUNT; |
| 4515 | break; |
| 4516 | #else /* DEVELOPMENT || DEBUG */ |
| 4517 | error = KERN_NOT_SUPPORTED; |
| 4518 | break; |
| 4519 | #endif /* DEVELOPMENT || DEBUG */ |
| 4520 | } |
| 4521 | default: |
| 4522 | error = KERN_INVALID_ARGUMENT; |
| 4523 | } |
| 4524 | |
| 4525 | task_unlock(task); |
| 4526 | return (error); |
| 4527 | } |
| 4528 | |
| 4529 | /* |
| 4530 | * task_info_from_user |
| 4531 | * |
| 4532 | * When calling task_info from user space, |
| 4533 | * this function will be executed as mig server side |
| 4534 | * instead of calling directly into task_info. |
| 4535 | * This gives the possibility to perform more security |
| 4536 | * checks on task_port. |
| 4537 | * |
| 4538 | * In the case of TASK_DYLD_INFO, we require the more |
| 4539 | * privileged task_port not the less-privileged task_name_port. |
| 4540 | * |
| 4541 | */ |
| 4542 | kern_return_t |
| 4543 | task_info_from_user( |
| 4544 | mach_port_t task_port, |
| 4545 | task_flavor_t flavor, |
| 4546 | task_info_t task_info_out, |
| 4547 | mach_msg_type_number_t *task_info_count) |
| 4548 | { |
| 4549 | task_t task; |
| 4550 | kern_return_t ret; |
| 4551 | |
| 4552 | if (flavor == TASK_DYLD_INFO) |
| 4553 | task = convert_port_to_task(task_port); |
| 4554 | else |
| 4555 | task = convert_port_to_task_name(task_port); |
| 4556 | |
| 4557 | ret = task_info(task, flavor, task_info_out, task_info_count); |
| 4558 | |
| 4559 | task_deallocate(task); |
| 4560 | |
| 4561 | return ret; |
| 4562 | } |
| 4563 | |
| 4564 | /* |
| 4565 | * task_power_info |
| 4566 | * |
| 4567 | * Returns power stats for the task. |
| 4568 | * Note: Called with task locked. |
| 4569 | */ |
| 4570 | void |
| 4571 | task_power_info_locked( |
| 4572 | task_t task, |
| 4573 | task_power_info_t info, |
| 4574 | gpu_energy_data_t ginfo, |
| 4575 | task_power_info_v2_t infov2) |
| 4576 | { |
| 4577 | thread_t thread; |
| 4578 | ledger_amount_t tmp; |
| 4579 | |
| 4580 | task_lock_assert_owned(task); |
| 4581 | |
| 4582 | ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups, |
| 4583 | (ledger_amount_t *)&info->task_interrupt_wakeups, &tmp); |
| 4584 | ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups, |
| 4585 | (ledger_amount_t *)&info->task_platform_idle_wakeups, &tmp); |
| 4586 | |
| 4587 | info->task_timer_wakeups_bin_1 = task->task_timer_wakeups_bin_1; |
| 4588 | info->task_timer_wakeups_bin_2 = task->task_timer_wakeups_bin_2; |
| 4589 | |
| 4590 | info->total_user = task->total_user_time; |
| 4591 | info->total_system = task->total_system_time; |
| 4592 | |
| 4593 | #if CONFIG_EMBEDDED |
| 4594 | if (infov2) { |
| 4595 | infov2->task_energy = task->task_energy; |
| 4596 | } |
| 4597 | #endif |
| 4598 | |
| 4599 | if (ginfo) { |
| 4600 | ginfo->task_gpu_utilisation = task->task_gpu_ns; |
| 4601 | } |
| 4602 | |
| 4603 | if (infov2) { |
| 4604 | infov2->task_ptime = task->total_ptime; |
| 4605 | infov2->task_pset_switches = task->ps_switch; |
| 4606 | } |
| 4607 | |
| 4608 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4609 | uint64_t tval; |
| 4610 | spl_t x; |
| 4611 | |
| 4612 | if (thread->options & TH_OPT_IDLE_THREAD) |
| 4613 | continue; |
| 4614 | |
| 4615 | x = splsched(); |
| 4616 | thread_lock(thread); |
| 4617 | |
| 4618 | info->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1; |
| 4619 | info->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2; |
| 4620 | |
| 4621 | #if CONFIG_EMBEDDED |
| 4622 | if (infov2) { |
| 4623 | infov2->task_energy += ml_energy_stat(thread); |
| 4624 | } |
| 4625 | #endif |
| 4626 | |
| 4627 | tval = timer_grab(&thread->user_timer); |
| 4628 | info->total_user += tval; |
| 4629 | |
| 4630 | if (infov2) { |
| 4631 | tval = timer_grab(&thread->ptime); |
| 4632 | infov2->task_ptime += tval; |
| 4633 | infov2->task_pset_switches += thread->ps_switch; |
| 4634 | } |
| 4635 | |
| 4636 | tval = timer_grab(&thread->system_timer); |
| 4637 | if (thread->precise_user_kernel_time) { |
| 4638 | info->total_system += tval; |
| 4639 | } else { |
| 4640 | /* system_timer may represent either sys or user */ |
| 4641 | info->total_user += tval; |
| 4642 | } |
| 4643 | |
| 4644 | if (ginfo) { |
| 4645 | ginfo->task_gpu_utilisation += ml_gpu_stat(thread); |
| 4646 | } |
| 4647 | thread_unlock(thread); |
| 4648 | splx(x); |
| 4649 | } |
| 4650 | } |
| 4651 | |
| 4652 | /* |
| 4653 | * task_gpu_utilisation |
| 4654 | * |
| 4655 | * Returns the total gpu time used by the all the threads of the task |
| 4656 | * (both dead and alive) |
| 4657 | */ |
| 4658 | uint64_t |
| 4659 | task_gpu_utilisation( |
| 4660 | task_t task) |
| 4661 | { |
| 4662 | uint64_t gpu_time = 0; |
| 4663 | #if !CONFIG_EMBEDDED |
| 4664 | thread_t thread; |
| 4665 | |
| 4666 | task_lock(task); |
| 4667 | gpu_time += task->task_gpu_ns; |
| 4668 | |
| 4669 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4670 | spl_t x; |
| 4671 | x = splsched(); |
| 4672 | thread_lock(thread); |
| 4673 | gpu_time += ml_gpu_stat(thread); |
| 4674 | thread_unlock(thread); |
| 4675 | splx(x); |
| 4676 | } |
| 4677 | |
| 4678 | task_unlock(task); |
| 4679 | #else /* CONFIG_EMBEDDED */ |
| 4680 | /* silence compiler warning */ |
| 4681 | (void)task; |
| 4682 | #endif /* !CONFIG_EMBEDDED */ |
| 4683 | return gpu_time; |
| 4684 | } |
| 4685 | |
| 4686 | /* |
| 4687 | * task_energy |
| 4688 | * |
| 4689 | * Returns the total energy used by the all the threads of the task |
| 4690 | * (both dead and alive) |
| 4691 | */ |
| 4692 | uint64_t |
| 4693 | task_energy( |
| 4694 | task_t task) |
| 4695 | { |
| 4696 | uint64_t energy = 0; |
| 4697 | thread_t thread; |
| 4698 | |
| 4699 | task_lock(task); |
| 4700 | energy += task->task_energy; |
| 4701 | |
| 4702 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4703 | spl_t x; |
| 4704 | x = splsched(); |
| 4705 | thread_lock(thread); |
| 4706 | energy += ml_energy_stat(thread); |
| 4707 | thread_unlock(thread); |
| 4708 | splx(x); |
| 4709 | } |
| 4710 | |
| 4711 | task_unlock(task); |
| 4712 | return energy; |
| 4713 | } |
| 4714 | |
| 4715 | |
| 4716 | uint64_t |
| 4717 | task_cpu_ptime( |
| 4718 | __unused task_t task) |
| 4719 | { |
| 4720 | return 0; |
| 4721 | } |
| 4722 | |
| 4723 | |
| 4724 | /* This function updates the cpu time in the arrays for each |
| 4725 | * effective and requested QoS class |
| 4726 | */ |
| 4727 | void |
| 4728 | task_update_cpu_time_qos_stats( |
| 4729 | task_t task, |
| 4730 | uint64_t *eqos_stats, |
| 4731 | uint64_t *rqos_stats) |
| 4732 | { |
| 4733 | if (!eqos_stats && !rqos_stats) { |
| 4734 | return; |
| 4735 | } |
| 4736 | |
| 4737 | task_lock(task); |
| 4738 | thread_t thread; |
| 4739 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4740 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 4741 | continue; |
| 4742 | } |
| 4743 | |
| 4744 | thread_update_qos_cpu_time(thread); |
| 4745 | } |
| 4746 | |
| 4747 | if (eqos_stats) { |
| 4748 | eqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_eqos_stats.cpu_time_qos_default; |
| 4749 | eqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_eqos_stats.cpu_time_qos_maintenance; |
| 4750 | eqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_eqos_stats.cpu_time_qos_background; |
| 4751 | eqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_eqos_stats.cpu_time_qos_utility; |
| 4752 | eqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_eqos_stats.cpu_time_qos_legacy; |
| 4753 | eqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; |
| 4754 | eqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; |
| 4755 | } |
| 4756 | |
| 4757 | if (rqos_stats) { |
| 4758 | rqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_rqos_stats.cpu_time_qos_default; |
| 4759 | rqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_rqos_stats.cpu_time_qos_maintenance; |
| 4760 | rqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_rqos_stats.cpu_time_qos_background; |
| 4761 | rqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_rqos_stats.cpu_time_qos_utility; |
| 4762 | rqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_rqos_stats.cpu_time_qos_legacy; |
| 4763 | rqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_rqos_stats.cpu_time_qos_user_initiated; |
| 4764 | rqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_rqos_stats.cpu_time_qos_user_interactive; |
| 4765 | } |
| 4766 | |
| 4767 | task_unlock(task); |
| 4768 | } |
| 4769 | |
| 4770 | kern_return_t |
| 4771 | task_purgable_info( |
| 4772 | task_t task, |
| 4773 | task_purgable_info_t *stats) |
| 4774 | { |
| 4775 | if (task == TASK_NULL || stats == NULL) |
| 4776 | return KERN_INVALID_ARGUMENT; |
| 4777 | /* Take task reference */ |
| 4778 | task_reference(task); |
| 4779 | vm_purgeable_stats((vm_purgeable_info_t)stats, task); |
| 4780 | /* Drop task reference */ |
| 4781 | task_deallocate(task); |
| 4782 | return KERN_SUCCESS; |
| 4783 | } |
| 4784 | |
| 4785 | void |
| 4786 | task_vtimer_set( |
| 4787 | task_t task, |
| 4788 | integer_t which) |
| 4789 | { |
| 4790 | thread_t thread; |
| 4791 | spl_t x; |
| 4792 | |
| 4793 | task_lock(task); |
| 4794 | |
| 4795 | task->vtimers |= which; |
| 4796 | |
| 4797 | switch (which) { |
| 4798 | |
| 4799 | case TASK_VTIMER_USER: |
| 4800 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4801 | x = splsched(); |
| 4802 | thread_lock(thread); |
| 4803 | if (thread->precise_user_kernel_time) |
| 4804 | thread->vtimer_user_save = timer_grab(&thread->user_timer); |
| 4805 | else |
| 4806 | thread->vtimer_user_save = timer_grab(&thread->system_timer); |
| 4807 | thread_unlock(thread); |
| 4808 | splx(x); |
| 4809 | } |
| 4810 | break; |
| 4811 | |
| 4812 | case TASK_VTIMER_PROF: |
| 4813 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4814 | x = splsched(); |
| 4815 | thread_lock(thread); |
| 4816 | thread->vtimer_prof_save = timer_grab(&thread->user_timer); |
| 4817 | thread->vtimer_prof_save += timer_grab(&thread->system_timer); |
| 4818 | thread_unlock(thread); |
| 4819 | splx(x); |
| 4820 | } |
| 4821 | break; |
| 4822 | |
| 4823 | case TASK_VTIMER_RLIM: |
| 4824 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4825 | x = splsched(); |
| 4826 | thread_lock(thread); |
| 4827 | thread->vtimer_rlim_save = timer_grab(&thread->user_timer); |
| 4828 | thread->vtimer_rlim_save += timer_grab(&thread->system_timer); |
| 4829 | thread_unlock(thread); |
| 4830 | splx(x); |
| 4831 | } |
| 4832 | break; |
| 4833 | } |
| 4834 | |
| 4835 | task_unlock(task); |
| 4836 | } |
| 4837 | |
| 4838 | void |
| 4839 | task_vtimer_clear( |
| 4840 | task_t task, |
| 4841 | integer_t which) |
| 4842 | { |
| 4843 | assert(task == current_task()); |
| 4844 | |
| 4845 | task_lock(task); |
| 4846 | |
| 4847 | task->vtimers &= ~which; |
| 4848 | |
| 4849 | task_unlock(task); |
| 4850 | } |
| 4851 | |
| 4852 | void |
| 4853 | task_vtimer_update( |
| 4854 | __unused |
| 4855 | task_t task, |
| 4856 | integer_t which, |
| 4857 | uint32_t *microsecs) |
| 4858 | { |
| 4859 | thread_t thread = current_thread(); |
| 4860 | uint32_t tdelt = 0; |
| 4861 | clock_sec_t secs = 0; |
| 4862 | uint64_t tsum; |
| 4863 | |
| 4864 | assert(task == current_task()); |
| 4865 | |
| 4866 | spl_t s = splsched(); |
| 4867 | thread_lock(thread); |
| 4868 | |
| 4869 | if ((task->vtimers & which) != (uint32_t)which) { |
| 4870 | thread_unlock(thread); |
| 4871 | splx(s); |
| 4872 | return; |
| 4873 | } |
| 4874 | |
| 4875 | switch (which) { |
| 4876 | |
| 4877 | case TASK_VTIMER_USER: |
| 4878 | if (thread->precise_user_kernel_time) { |
| 4879 | tdelt = (uint32_t)timer_delta(&thread->user_timer, |
| 4880 | &thread->vtimer_user_save); |
| 4881 | } else { |
| 4882 | tdelt = (uint32_t)timer_delta(&thread->system_timer, |
| 4883 | &thread->vtimer_user_save); |
| 4884 | } |
| 4885 | absolutetime_to_microtime(tdelt, &secs, microsecs); |
| 4886 | break; |
| 4887 | |
| 4888 | case TASK_VTIMER_PROF: |
| 4889 | tsum = timer_grab(&thread->user_timer); |
| 4890 | tsum += timer_grab(&thread->system_timer); |
| 4891 | tdelt = (uint32_t)(tsum - thread->vtimer_prof_save); |
| 4892 | absolutetime_to_microtime(tdelt, &secs, microsecs); |
| 4893 | /* if the time delta is smaller than a usec, ignore */ |
| 4894 | if (*microsecs != 0) |
| 4895 | thread->vtimer_prof_save = tsum; |
| 4896 | break; |
| 4897 | |
| 4898 | case TASK_VTIMER_RLIM: |
| 4899 | tsum = timer_grab(&thread->user_timer); |
| 4900 | tsum += timer_grab(&thread->system_timer); |
| 4901 | tdelt = (uint32_t)(tsum - thread->vtimer_rlim_save); |
| 4902 | thread->vtimer_rlim_save = tsum; |
| 4903 | absolutetime_to_microtime(tdelt, &secs, microsecs); |
| 4904 | break; |
| 4905 | } |
| 4906 | |
| 4907 | thread_unlock(thread); |
| 4908 | splx(s); |
| 4909 | } |
| 4910 | |
| 4911 | /* |
| 4912 | * task_assign: |
| 4913 | * |
| 4914 | * Change the assigned processor set for the task |
| 4915 | */ |
| 4916 | kern_return_t |
| 4917 | task_assign( |
| 4918 | __unused task_t task, |
| 4919 | __unused processor_set_t new_pset, |
| 4920 | __unused boolean_t assign_threads) |
| 4921 | { |
| 4922 | return(KERN_FAILURE); |
| 4923 | } |
| 4924 | |
| 4925 | /* |
| 4926 | * task_assign_default: |
| 4927 | * |
| 4928 | * Version of task_assign to assign to default processor set. |
| 4929 | */ |
| 4930 | kern_return_t |
| 4931 | task_assign_default( |
| 4932 | task_t task, |
| 4933 | boolean_t assign_threads) |
| 4934 | { |
| 4935 | return (task_assign(task, &pset0, assign_threads)); |
| 4936 | } |
| 4937 | |
| 4938 | /* |
| 4939 | * task_get_assignment |
| 4940 | * |
| 4941 | * Return name of processor set that task is assigned to. |
| 4942 | */ |
| 4943 | kern_return_t |
| 4944 | task_get_assignment( |
| 4945 | task_t task, |
| 4946 | processor_set_t *pset) |
| 4947 | { |
| 4948 | if (!task || !task->active) |
| 4949 | return KERN_FAILURE; |
| 4950 | |
| 4951 | *pset = &pset0; |
| 4952 | |
| 4953 | return KERN_SUCCESS; |
| 4954 | } |
| 4955 | |
| 4956 | uint64_t |
| 4957 | get_task_dispatchqueue_offset( |
| 4958 | task_t task) |
| 4959 | { |
| 4960 | return task->dispatchqueue_offset; |
| 4961 | } |
| 4962 | |
| 4963 | /* |
| 4964 | * task_policy |
| 4965 | * |
| 4966 | * Set scheduling policy and parameters, both base and limit, for |
| 4967 | * the given task. Policy must be a policy which is enabled for the |
| 4968 | * processor set. Change contained threads if requested. |
| 4969 | */ |
| 4970 | kern_return_t |
| 4971 | task_policy( |
| 4972 | __unused task_t task, |
| 4973 | __unused policy_t policy_id, |
| 4974 | __unused policy_base_t base, |
| 4975 | __unused mach_msg_type_number_t count, |
| 4976 | __unused boolean_t set_limit, |
| 4977 | __unused boolean_t change) |
| 4978 | { |
| 4979 | return(KERN_FAILURE); |
| 4980 | } |
| 4981 | |
| 4982 | /* |
| 4983 | * task_set_policy |
| 4984 | * |
| 4985 | * Set scheduling policy and parameters, both base and limit, for |
| 4986 | * the given task. Policy can be any policy implemented by the |
| 4987 | * processor set, whether enabled or not. Change contained threads |
| 4988 | * if requested. |
| 4989 | */ |
| 4990 | kern_return_t |
| 4991 | task_set_policy( |
| 4992 | __unused task_t task, |
| 4993 | __unused processor_set_t pset, |
| 4994 | __unused policy_t policy_id, |
| 4995 | __unused policy_base_t base, |
| 4996 | __unused mach_msg_type_number_t base_count, |
| 4997 | __unused policy_limit_t limit, |
| 4998 | __unused mach_msg_type_number_t limit_count, |
| 4999 | __unused boolean_t change) |
| 5000 | { |
| 5001 | return(KERN_FAILURE); |
| 5002 | } |
| 5003 | |
| 5004 | kern_return_t |
| 5005 | task_set_ras_pc( |
| 5006 | __unused task_t task, |
| 5007 | __unused vm_offset_t pc, |
| 5008 | __unused vm_offset_t endpc) |
| 5009 | { |
| 5010 | return KERN_FAILURE; |
| 5011 | } |
| 5012 | |
| 5013 | void |
| 5014 | task_synchronizer_destroy_all(task_t task) |
| 5015 | { |
| 5016 | /* |
| 5017 | * Destroy owned semaphores |
| 5018 | */ |
| 5019 | semaphore_destroy_all(task); |
| 5020 | } |
| 5021 | |
| 5022 | /* |
| 5023 | * Install default (machine-dependent) initial thread state |
| 5024 | * on the task. Subsequent thread creation will have this initial |
| 5025 | * state set on the thread by machine_thread_inherit_taskwide(). |
| 5026 | * Flavors and structures are exactly the same as those to thread_set_state() |
| 5027 | */ |
| 5028 | kern_return_t |
| 5029 | task_set_state( |
| 5030 | task_t task, |
| 5031 | int flavor, |
| 5032 | thread_state_t state, |
| 5033 | mach_msg_type_number_t state_count) |
| 5034 | { |
| 5035 | kern_return_t ret; |
| 5036 | |
| 5037 | if (task == TASK_NULL) { |
| 5038 | return (KERN_INVALID_ARGUMENT); |
| 5039 | } |
| 5040 | |
| 5041 | task_lock(task); |
| 5042 | |
| 5043 | if (!task->active) { |
| 5044 | task_unlock(task); |
| 5045 | return (KERN_FAILURE); |
| 5046 | } |
| 5047 | |
| 5048 | ret = machine_task_set_state(task, flavor, state, state_count); |
| 5049 | |
| 5050 | task_unlock(task); |
| 5051 | return ret; |
| 5052 | } |
| 5053 | |
| 5054 | /* |
| 5055 | * Examine the default (machine-dependent) initial thread state |
| 5056 | * on the task, as set by task_set_state(). Flavors and structures |
| 5057 | * are exactly the same as those passed to thread_get_state(). |
| 5058 | */ |
| 5059 | kern_return_t |
| 5060 | task_get_state( |
| 5061 | task_t task, |
| 5062 | int flavor, |
| 5063 | thread_state_t state, |
| 5064 | mach_msg_type_number_t *state_count) |
| 5065 | { |
| 5066 | kern_return_t ret; |
| 5067 | |
| 5068 | if (task == TASK_NULL) { |
| 5069 | return (KERN_INVALID_ARGUMENT); |
| 5070 | } |
| 5071 | |
| 5072 | task_lock(task); |
| 5073 | |
| 5074 | if (!task->active) { |
| 5075 | task_unlock(task); |
| 5076 | return (KERN_FAILURE); |
| 5077 | } |
| 5078 | |
| 5079 | ret = machine_task_get_state(task, flavor, state, state_count); |
| 5080 | |
| 5081 | task_unlock(task); |
| 5082 | return ret; |
| 5083 | } |
| 5084 | |
| 5085 | |
| 5086 | static kern_return_t __attribute__((noinline,not_tail_called)) |
| 5087 | PROC_VIOLATED_GUARD__SEND_EXC_GUARD_AND_SUSPEND( |
| 5088 | mach_exception_code_t code, |
| 5089 | mach_exception_subcode_t subcode, |
| 5090 | void *reason) |
| 5091 | { |
| 5092 | #ifdef MACH_BSD |
| 5093 | if (1 == proc_selfpid()) |
| 5094 | return KERN_NOT_SUPPORTED; // initproc is immune |
| 5095 | #endif |
| 5096 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX] = { |
| 5097 | [0] = code, |
| 5098 | [1] = subcode, |
| 5099 | }; |
| 5100 | task_t task = current_task(); |
| 5101 | kern_return_t kr; |
| 5102 | |
| 5103 | /* (See jetsam-related comments below) */ |
| 5104 | |
| 5105 | proc_memstat_terminated(task->bsd_info, TRUE); |
| 5106 | kr = task_enqueue_exception_with_corpse(task, EXC_GUARD, codes, 2, reason); |
| 5107 | proc_memstat_terminated(task->bsd_info, FALSE); |
| 5108 | return kr; |
| 5109 | } |
| 5110 | |
| 5111 | kern_return_t |
| 5112 | task_violated_guard( |
| 5113 | mach_exception_code_t code, |
| 5114 | mach_exception_subcode_t subcode, |
| 5115 | void *reason) |
| 5116 | { |
| 5117 | return PROC_VIOLATED_GUARD__SEND_EXC_GUARD_AND_SUSPEND(code, subcode, reason); |
| 5118 | } |
| 5119 | |
| 5120 | |
| 5121 | #if CONFIG_MEMORYSTATUS |
| 5122 | |
| 5123 | boolean_t |
| 5124 | task_get_memlimit_is_active(task_t task) |
| 5125 | { |
| 5126 | assert (task != NULL); |
| 5127 | |
| 5128 | if (task->memlimit_is_active == 1) { |
| 5129 | return(TRUE); |
| 5130 | } else { |
| 5131 | return (FALSE); |
| 5132 | } |
| 5133 | } |
| 5134 | |
| 5135 | void |
| 5136 | task_set_memlimit_is_active(task_t task, boolean_t memlimit_is_active) |
| 5137 | { |
| 5138 | assert (task != NULL); |
| 5139 | |
| 5140 | if (memlimit_is_active) { |
| 5141 | task->memlimit_is_active = 1; |
| 5142 | } else { |
| 5143 | task->memlimit_is_active = 0; |
| 5144 | } |
| 5145 | } |
| 5146 | |
| 5147 | boolean_t |
| 5148 | task_get_memlimit_is_fatal(task_t task) |
| 5149 | { |
| 5150 | assert(task != NULL); |
| 5151 | |
| 5152 | if (task->memlimit_is_fatal == 1) { |
| 5153 | return(TRUE); |
| 5154 | } else { |
| 5155 | return(FALSE); |
| 5156 | } |
| 5157 | } |
| 5158 | |
| 5159 | void |
| 5160 | task_set_memlimit_is_fatal(task_t task, boolean_t memlimit_is_fatal) |
| 5161 | { |
| 5162 | assert (task != NULL); |
| 5163 | |
| 5164 | if (memlimit_is_fatal) { |
| 5165 | task->memlimit_is_fatal = 1; |
| 5166 | } else { |
| 5167 | task->memlimit_is_fatal = 0; |
| 5168 | } |
| 5169 | } |
| 5170 | |
| 5171 | boolean_t |
| 5172 | task_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
| 5173 | { |
| 5174 | boolean_t triggered = FALSE; |
| 5175 | |
| 5176 | assert(task == current_task()); |
| 5177 | |
| 5178 | /* |
| 5179 | * Returns true, if task has already triggered an exc_resource exception. |
| 5180 | */ |
| 5181 | |
| 5182 | if (memlimit_is_active) { |
| 5183 | triggered = (task->memlimit_active_exc_resource ? TRUE : FALSE); |
| 5184 | } else { |
| 5185 | triggered = (task->memlimit_inactive_exc_resource ? TRUE : FALSE); |
| 5186 | } |
| 5187 | |
| 5188 | return(triggered); |
| 5189 | } |
| 5190 | |
| 5191 | void |
| 5192 | task_mark_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
| 5193 | { |
| 5194 | assert(task == current_task()); |
| 5195 | |
| 5196 | /* |
| 5197 | * We allow one exc_resource per process per active/inactive limit. |
| 5198 | * The limit's fatal attribute does not come into play. |
| 5199 | */ |
| 5200 | |
| 5201 | if (memlimit_is_active) { |
| 5202 | task->memlimit_active_exc_resource = 1; |
| 5203 | } else { |
| 5204 | task->memlimit_inactive_exc_resource = 1; |
| 5205 | } |
| 5206 | } |
| 5207 | |
| 5208 | #define HWM_USERCORE_MINSPACE 250 // free space (in MB) required *after* core file creation |
| 5209 | |
| 5210 | void __attribute__((noinline)) |
| 5211 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , boolean_t is_fatal) |
| 5212 | { |
| 5213 | task_t task = current_task(); |
| 5214 | int pid = 0; |
| 5215 | const char *procname = "unknown" ; |
| 5216 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 5217 | boolean_t send_sync_exc_resource = FALSE; |
| 5218 | |
| 5219 | #ifdef MACH_BSD |
| 5220 | pid = proc_selfpid(); |
| 5221 | |
| 5222 | if (pid == 1) { |
| 5223 | /* |
| 5224 | * Cannot have ReportCrash analyzing |
| 5225 | * a suspended initproc. |
| 5226 | */ |
| 5227 | return; |
| 5228 | } |
| 5229 | |
| 5230 | if (task->bsd_info != NULL) { |
| 5231 | procname = proc_name_address(current_task()->bsd_info); |
| 5232 | send_sync_exc_resource = proc_send_synchronous_EXC_RESOURCE(current_task()->bsd_info); |
| 5233 | } |
| 5234 | #endif |
| 5235 | #if CONFIG_COREDUMP |
| 5236 | if (hwm_user_cores) { |
| 5237 | int error; |
| 5238 | uint64_t starttime, end; |
| 5239 | clock_sec_t secs = 0; |
| 5240 | uint32_t microsecs = 0; |
| 5241 | |
| 5242 | starttime = mach_absolute_time(); |
| 5243 | /* |
| 5244 | * Trigger a coredump of this process. Don't proceed unless we know we won't |
| 5245 | * be filling up the disk; and ignore the core size resource limit for this |
| 5246 | * core file. |
| 5247 | */ |
| 5248 | if ((error = coredump(current_task()->bsd_info, HWM_USERCORE_MINSPACE, COREDUMP_IGNORE_ULIMIT)) != 0) { |
| 5249 | printf("couldn't take coredump of %s[%d]: %d\n" , procname, pid, error); |
| 5250 | } |
| 5251 | /* |
| 5252 | * coredump() leaves the task suspended. |
| 5253 | */ |
| 5254 | task_resume_internal(current_task()); |
| 5255 | |
| 5256 | end = mach_absolute_time(); |
| 5257 | absolutetime_to_microtime(end - starttime, &secs, µsecs); |
| 5258 | printf("coredump of %s[%d] taken in %d secs %d microsecs\n" , |
| 5259 | proc_name_address(current_task()->bsd_info), pid, (int)secs, microsecs); |
| 5260 | } |
| 5261 | #endif /* CONFIG_COREDUMP */ |
| 5262 | |
| 5263 | if (disable_exc_resource) { |
| 5264 | printf("process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
| 5265 | "supressed by a boot-arg.\n" , procname, pid, max_footprint_mb); |
| 5266 | return; |
| 5267 | } |
| 5268 | |
| 5269 | /* |
| 5270 | * A task that has triggered an EXC_RESOURCE, should not be |
| 5271 | * jetsammed when the device is under memory pressure. Here |
| 5272 | * we set the P_MEMSTAT_TERMINATED flag so that the process |
| 5273 | * will be skipped if the memorystatus_thread wakes up. |
| 5274 | */ |
| 5275 | proc_memstat_terminated(current_task()->bsd_info, TRUE); |
| 5276 | |
| 5277 | code[0] = code[1] = 0; |
| 5278 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_MEMORY); |
| 5279 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_HIGH_WATERMARK); |
| 5280 | EXC_RESOURCE_HWM_ENCODE_LIMIT(code[0], max_footprint_mb); |
| 5281 | |
| 5282 | /* |
| 5283 | * Do not generate a corpse fork if the violation is a fatal one |
| 5284 | * or the process wants synchronous EXC_RESOURCE exceptions. |
| 5285 | */ |
| 5286 | if (is_fatal || send_sync_exc_resource || exc_via_corpse_forking == 0) { |
| 5287 | /* Do not send a EXC_RESOURCE if corpse_for_fatal_memkill is set */ |
| 5288 | if (send_sync_exc_resource || corpse_for_fatal_memkill == 0) { |
| 5289 | /* |
| 5290 | * Use the _internal_ variant so that no user-space |
| 5291 | * process can resume our task from under us. |
| 5292 | */ |
| 5293 | task_suspend_internal(task); |
| 5294 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 5295 | task_resume_internal(task); |
| 5296 | } |
| 5297 | } else { |
| 5298 | if (audio_active) { |
| 5299 | printf("process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
| 5300 | "supressed due to audio playback.\n" , procname, pid, max_footprint_mb); |
| 5301 | } else { |
| 5302 | task_enqueue_exception_with_corpse(task, EXC_RESOURCE, |
| 5303 | code, EXCEPTION_CODE_MAX, NULL); |
| 5304 | } |
| 5305 | } |
| 5306 | |
| 5307 | /* |
| 5308 | * After the EXC_RESOURCE has been handled, we must clear the |
| 5309 | * P_MEMSTAT_TERMINATED flag so that the process can again be |
| 5310 | * considered for jetsam if the memorystatus_thread wakes up. |
| 5311 | */ |
| 5312 | proc_memstat_terminated(current_task()->bsd_info, FALSE); /* clear the flag */ |
| 5313 | } |
| 5314 | |
| 5315 | /* |
| 5316 | * Callback invoked when a task exceeds its physical footprint limit. |
| 5317 | */ |
| 5318 | void |
| 5319 | (int warning, __unused const void *param0, __unused const void *param1) |
| 5320 | { |
| 5321 | ledger_amount_t , ; |
| 5322 | task_t task; |
| 5323 | boolean_t is_warning; |
| 5324 | boolean_t memlimit_is_active; |
| 5325 | boolean_t memlimit_is_fatal; |
| 5326 | |
| 5327 | if (warning == LEDGER_WARNING_DIPPED_BELOW) { |
| 5328 | /* |
| 5329 | * Task memory limits only provide a warning on the way up. |
| 5330 | */ |
| 5331 | return; |
| 5332 | } else if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
| 5333 | /* |
| 5334 | * This task is in danger of violating a memory limit, |
| 5335 | * It has exceeded a percentage level of the limit. |
| 5336 | */ |
| 5337 | is_warning = TRUE; |
| 5338 | } else { |
| 5339 | /* |
| 5340 | * The task has exceeded the physical footprint limit. |
| 5341 | * This is not a warning but a true limit violation. |
| 5342 | */ |
| 5343 | is_warning = FALSE; |
| 5344 | } |
| 5345 | |
| 5346 | task = current_task(); |
| 5347 | |
| 5348 | ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max_footprint); |
| 5349 | max_footprint_mb = max_footprint >> 20; |
| 5350 | |
| 5351 | memlimit_is_active = task_get_memlimit_is_active(task); |
| 5352 | memlimit_is_fatal = task_get_memlimit_is_fatal(task); |
| 5353 | |
| 5354 | /* |
| 5355 | * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception. |
| 5356 | * We only generate the exception once per process per memlimit (active/inactive limit). |
| 5357 | * To enforce this, we monitor state based on the memlimit's active/inactive attribute |
| 5358 | * and we disable it by marking that memlimit as exception triggered. |
| 5359 | */ |
| 5360 | if ((is_warning == FALSE) && (!task_has_triggered_exc_resource(task, memlimit_is_active))) { |
| 5361 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND((int)max_footprint_mb, memlimit_is_fatal); |
| 5362 | memorystatus_log_exception((int)max_footprint_mb, memlimit_is_active, memlimit_is_fatal); |
| 5363 | task_mark_has_triggered_exc_resource(task, memlimit_is_active); |
| 5364 | } |
| 5365 | |
| 5366 | memorystatus_on_ledger_footprint_exceeded(is_warning, memlimit_is_active, memlimit_is_fatal); |
| 5367 | } |
| 5368 | |
| 5369 | extern int (void); |
| 5370 | |
| 5371 | kern_return_t |
| 5372 | ( |
| 5373 | task_t task, |
| 5374 | int new_limit_mb, |
| 5375 | int *old_limit_mb) |
| 5376 | { |
| 5377 | kern_return_t error; |
| 5378 | |
| 5379 | boolean_t memlimit_is_active; |
| 5380 | boolean_t memlimit_is_fatal; |
| 5381 | |
| 5382 | if ((error = proc_check_footprint_priv())) { |
| 5383 | return (KERN_NO_ACCESS); |
| 5384 | } |
| 5385 | |
| 5386 | /* |
| 5387 | * This call should probably be obsoleted. |
| 5388 | * But for now, we default to current state. |
| 5389 | */ |
| 5390 | memlimit_is_active = task_get_memlimit_is_active(task); |
| 5391 | memlimit_is_fatal = task_get_memlimit_is_fatal(task); |
| 5392 | |
| 5393 | return task_set_phys_footprint_limit_internal(task, new_limit_mb, old_limit_mb, memlimit_is_active, memlimit_is_fatal); |
| 5394 | } |
| 5395 | |
| 5396 | kern_return_t |
| 5397 | ( |
| 5398 | int limit_mb, |
| 5399 | int *converted_limit_mb) |
| 5400 | { |
| 5401 | if (limit_mb == -1) { |
| 5402 | /* |
| 5403 | * No limit |
| 5404 | */ |
| 5405 | if (max_task_footprint != 0) { |
| 5406 | *converted_limit_mb = (int)(max_task_footprint / 1024 / 1024); /* bytes to MB */ |
| 5407 | } else { |
| 5408 | *converted_limit_mb = (int)(LEDGER_LIMIT_INFINITY >> 20); |
| 5409 | } |
| 5410 | } else { |
| 5411 | /* nothing to convert */ |
| 5412 | *converted_limit_mb = limit_mb; |
| 5413 | } |
| 5414 | return (KERN_SUCCESS); |
| 5415 | } |
| 5416 | |
| 5417 | |
| 5418 | kern_return_t |
| 5419 | ( |
| 5420 | task_t task, |
| 5421 | int new_limit_mb, |
| 5422 | int *old_limit_mb, |
| 5423 | boolean_t memlimit_is_active, |
| 5424 | boolean_t memlimit_is_fatal) |
| 5425 | { |
| 5426 | ledger_amount_t old; |
| 5427 | |
| 5428 | ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &old); |
| 5429 | |
| 5430 | /* |
| 5431 | * Check that limit >> 20 will not give an "unexpected" 32-bit |
| 5432 | * result. There are, however, implicit assumptions that -1 mb limit |
| 5433 | * equates to LEDGER_LIMIT_INFINITY. |
| 5434 | */ |
| 5435 | assert(((old & 0xFFF0000000000000LL) == 0) || (old == LEDGER_LIMIT_INFINITY)); |
| 5436 | |
| 5437 | if (old_limit_mb) { |
| 5438 | *old_limit_mb = (int)(old >> 20); |
| 5439 | } |
| 5440 | |
| 5441 | if (new_limit_mb == -1) { |
| 5442 | /* |
| 5443 | * Caller wishes to remove the limit. |
| 5444 | */ |
| 5445 | ledger_set_limit(task->ledger, task_ledgers.phys_footprint, |
| 5446 | max_task_footprint ? max_task_footprint : LEDGER_LIMIT_INFINITY, |
| 5447 | max_task_footprint ? max_task_footprint_warning_level : 0); |
| 5448 | |
| 5449 | task_lock(task); |
| 5450 | task_set_memlimit_is_active(task, memlimit_is_active); |
| 5451 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
| 5452 | task_unlock(task); |
| 5453 | |
| 5454 | return (KERN_SUCCESS); |
| 5455 | } |
| 5456 | |
| 5457 | #ifdef CONFIG_NOMONITORS |
| 5458 | return (KERN_SUCCESS); |
| 5459 | #endif /* CONFIG_NOMONITORS */ |
| 5460 | |
| 5461 | task_lock(task); |
| 5462 | |
| 5463 | if ((memlimit_is_active == task_get_memlimit_is_active(task)) && |
| 5464 | (memlimit_is_fatal == task_get_memlimit_is_fatal(task)) && |
| 5465 | (((ledger_amount_t)new_limit_mb << 20) == old)) { |
| 5466 | /* |
| 5467 | * memlimit state is not changing |
| 5468 | */ |
| 5469 | task_unlock(task); |
| 5470 | return(KERN_SUCCESS); |
| 5471 | } |
| 5472 | |
| 5473 | task_set_memlimit_is_active(task, memlimit_is_active); |
| 5474 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
| 5475 | |
| 5476 | ledger_set_limit(task->ledger, task_ledgers.phys_footprint, |
| 5477 | (ledger_amount_t)new_limit_mb << 20, PHYS_FOOTPRINT_WARNING_LEVEL); |
| 5478 | |
| 5479 | if (task == current_task()) { |
| 5480 | ledger_check_new_balance(current_thread(), task->ledger, |
| 5481 | task_ledgers.phys_footprint); |
| 5482 | } |
| 5483 | |
| 5484 | task_unlock(task); |
| 5485 | |
| 5486 | return (KERN_SUCCESS); |
| 5487 | } |
| 5488 | |
| 5489 | kern_return_t |
| 5490 | ( |
| 5491 | task_t task, |
| 5492 | int *limit_mb) |
| 5493 | { |
| 5494 | ledger_amount_t limit; |
| 5495 | |
| 5496 | ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &limit); |
| 5497 | /* |
| 5498 | * Check that limit >> 20 will not give an "unexpected" signed, 32-bit |
| 5499 | * result. There are, however, implicit assumptions that -1 mb limit |
| 5500 | * equates to LEDGER_LIMIT_INFINITY. |
| 5501 | */ |
| 5502 | assert(((limit & 0xFFF0000000000000LL) == 0) || (limit == LEDGER_LIMIT_INFINITY)); |
| 5503 | *limit_mb = (int)(limit >> 20); |
| 5504 | |
| 5505 | return (KERN_SUCCESS); |
| 5506 | } |
| 5507 | #else /* CONFIG_MEMORYSTATUS */ |
| 5508 | kern_return_t |
| 5509 | task_set_phys_footprint_limit( |
| 5510 | __unused task_t task, |
| 5511 | __unused int new_limit_mb, |
| 5512 | __unused int *old_limit_mb) |
| 5513 | { |
| 5514 | return (KERN_FAILURE); |
| 5515 | } |
| 5516 | |
| 5517 | kern_return_t |
| 5518 | task_get_phys_footprint_limit( |
| 5519 | __unused task_t task, |
| 5520 | __unused int *limit_mb) |
| 5521 | { |
| 5522 | return (KERN_FAILURE); |
| 5523 | } |
| 5524 | #endif /* CONFIG_MEMORYSTATUS */ |
| 5525 | |
| 5526 | void |
| 5527 | task_set_thread_limit(task_t task, uint16_t thread_limit) |
| 5528 | { |
| 5529 | assert(task != kernel_task); |
| 5530 | if (thread_limit <= TASK_MAX_THREAD_LIMIT) { |
| 5531 | task_lock(task); |
| 5532 | task->task_thread_limit = thread_limit; |
| 5533 | task_unlock(task); |
| 5534 | } |
| 5535 | } |
| 5536 | |
| 5537 | /* |
| 5538 | * We need to export some functions to other components that |
| 5539 | * are currently implemented in macros within the osfmk |
| 5540 | * component. Just export them as functions of the same name. |
| 5541 | */ |
| 5542 | boolean_t is_kerneltask(task_t t) |
| 5543 | { |
| 5544 | if (t == kernel_task) |
| 5545 | return (TRUE); |
| 5546 | |
| 5547 | return (FALSE); |
| 5548 | } |
| 5549 | |
| 5550 | boolean_t is_corpsetask(task_t t) |
| 5551 | { |
| 5552 | return (task_is_a_corpse(t)); |
| 5553 | } |
| 5554 | |
| 5555 | #undef current_task |
| 5556 | task_t current_task(void); |
| 5557 | task_t current_task(void) |
| 5558 | { |
| 5559 | return (current_task_fast()); |
| 5560 | } |
| 5561 | |
| 5562 | #undef task_reference |
| 5563 | void task_reference(task_t task); |
| 5564 | void |
| 5565 | task_reference( |
| 5566 | task_t task) |
| 5567 | { |
| 5568 | if (task != TASK_NULL) |
| 5569 | task_reference_internal(task); |
| 5570 | } |
| 5571 | |
| 5572 | /* defined in bsd/kern/kern_prot.c */ |
| 5573 | extern int get_audit_token_pid(audit_token_t *audit_token); |
| 5574 | |
| 5575 | int task_pid(task_t task) |
| 5576 | { |
| 5577 | if (task) |
| 5578 | return get_audit_token_pid(&task->audit_token); |
| 5579 | return -1; |
| 5580 | } |
| 5581 | |
| 5582 | |
| 5583 | /* |
| 5584 | * This routine finds a thread in a task by its unique id |
| 5585 | * Returns a referenced thread or THREAD_NULL if the thread was not found |
| 5586 | * |
| 5587 | * TODO: This is super inefficient - it's an O(threads in task) list walk! |
| 5588 | * We should make a tid hash, or transition all tid clients to thread ports |
| 5589 | * |
| 5590 | * Precondition: No locks held (will take task lock) |
| 5591 | */ |
| 5592 | thread_t |
| 5593 | task_findtid(task_t task, uint64_t tid) |
| 5594 | { |
| 5595 | thread_t self = current_thread(); |
| 5596 | thread_t found_thread = THREAD_NULL; |
| 5597 | thread_t iter_thread = THREAD_NULL; |
| 5598 | |
| 5599 | /* Short-circuit the lookup if we're looking up ourselves */ |
| 5600 | if (tid == self->thread_id || tid == TID_NULL) { |
| 5601 | assert(self->task == task); |
| 5602 | |
| 5603 | thread_reference(self); |
| 5604 | |
| 5605 | return self; |
| 5606 | } |
| 5607 | |
| 5608 | task_lock(task); |
| 5609 | |
| 5610 | queue_iterate(&task->threads, iter_thread, thread_t, task_threads) { |
| 5611 | if (iter_thread->thread_id == tid) { |
| 5612 | found_thread = iter_thread; |
| 5613 | thread_reference(found_thread); |
| 5614 | break; |
| 5615 | } |
| 5616 | } |
| 5617 | |
| 5618 | task_unlock(task); |
| 5619 | |
| 5620 | return (found_thread); |
| 5621 | } |
| 5622 | |
| 5623 | int pid_from_task(task_t task) |
| 5624 | { |
| 5625 | int pid = -1; |
| 5626 | |
| 5627 | if (task->bsd_info) { |
| 5628 | pid = proc_pid(task->bsd_info); |
| 5629 | } else { |
| 5630 | pid = task_pid(task); |
| 5631 | } |
| 5632 | |
| 5633 | return pid; |
| 5634 | } |
| 5635 | |
| 5636 | /* |
| 5637 | * Control the CPU usage monitor for a task. |
| 5638 | */ |
| 5639 | kern_return_t |
| 5640 | task_cpu_usage_monitor_ctl(task_t task, uint32_t *flags) |
| 5641 | { |
| 5642 | int error = KERN_SUCCESS; |
| 5643 | |
| 5644 | if (*flags & CPUMON_MAKE_FATAL) { |
| 5645 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_CPUMON; |
| 5646 | } else { |
| 5647 | error = KERN_INVALID_ARGUMENT; |
| 5648 | } |
| 5649 | |
| 5650 | return error; |
| 5651 | } |
| 5652 | |
| 5653 | /* |
| 5654 | * Control the wakeups monitor for a task. |
| 5655 | */ |
| 5656 | kern_return_t |
| 5657 | task_wakeups_monitor_ctl(task_t task, uint32_t *flags, int32_t *rate_hz) |
| 5658 | { |
| 5659 | ledger_t ledger = task->ledger; |
| 5660 | |
| 5661 | task_lock(task); |
| 5662 | if (*flags & WAKEMON_GET_PARAMS) { |
| 5663 | ledger_amount_t limit; |
| 5664 | uint64_t period; |
| 5665 | |
| 5666 | ledger_get_limit(ledger, task_ledgers.interrupt_wakeups, &limit); |
| 5667 | ledger_get_period(ledger, task_ledgers.interrupt_wakeups, &period); |
| 5668 | |
| 5669 | if (limit != LEDGER_LIMIT_INFINITY) { |
| 5670 | /* |
| 5671 | * An active limit means the wakeups monitor is enabled. |
| 5672 | */ |
| 5673 | *rate_hz = (int32_t)(limit / (int64_t)(period / NSEC_PER_SEC)); |
| 5674 | *flags = WAKEMON_ENABLE; |
| 5675 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON) { |
| 5676 | *flags |= WAKEMON_MAKE_FATAL; |
| 5677 | } |
| 5678 | } else { |
| 5679 | *flags = WAKEMON_DISABLE; |
| 5680 | *rate_hz = -1; |
| 5681 | } |
| 5682 | |
| 5683 | /* |
| 5684 | * If WAKEMON_GET_PARAMS is present in flags, all other flags are ignored. |
| 5685 | */ |
| 5686 | task_unlock(task); |
| 5687 | return KERN_SUCCESS; |
| 5688 | } |
| 5689 | |
| 5690 | if (*flags & WAKEMON_ENABLE) { |
| 5691 | if (*flags & WAKEMON_SET_DEFAULTS) { |
| 5692 | *rate_hz = task_wakeups_monitor_rate; |
| 5693 | } |
| 5694 | |
| 5695 | #ifndef CONFIG_NOMONITORS |
| 5696 | if (*flags & WAKEMON_MAKE_FATAL) { |
| 5697 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
| 5698 | } |
| 5699 | #endif /* CONFIG_NOMONITORS */ |
| 5700 | |
| 5701 | if (*rate_hz <= 0) { |
| 5702 | task_unlock(task); |
| 5703 | return KERN_INVALID_ARGUMENT; |
| 5704 | } |
| 5705 | |
| 5706 | #ifndef CONFIG_NOMONITORS |
| 5707 | ledger_set_limit(ledger, task_ledgers.interrupt_wakeups, *rate_hz * task_wakeups_monitor_interval, |
| 5708 | task_wakeups_monitor_ustackshots_trigger_pct); |
| 5709 | ledger_set_period(ledger, task_ledgers.interrupt_wakeups, task_wakeups_monitor_interval * NSEC_PER_SEC); |
| 5710 | ledger_enable_callback(ledger, task_ledgers.interrupt_wakeups); |
| 5711 | #endif /* CONFIG_NOMONITORS */ |
| 5712 | } else if (*flags & WAKEMON_DISABLE) { |
| 5713 | /* |
| 5714 | * Caller wishes to disable wakeups monitor on the task. |
| 5715 | * |
| 5716 | * Disable telemetry if it was triggered by the wakeups monitor, and |
| 5717 | * remove the limit & callback on the wakeups ledger entry. |
| 5718 | */ |
| 5719 | #if CONFIG_TELEMETRY |
| 5720 | telemetry_task_ctl_locked(task, TF_WAKEMON_WARNING, 0); |
| 5721 | #endif |
| 5722 | ledger_disable_refill(ledger, task_ledgers.interrupt_wakeups); |
| 5723 | ledger_disable_callback(ledger, task_ledgers.interrupt_wakeups); |
| 5724 | } |
| 5725 | |
| 5726 | task_unlock(task); |
| 5727 | return KERN_SUCCESS; |
| 5728 | } |
| 5729 | |
| 5730 | void |
| 5731 | task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1) |
| 5732 | { |
| 5733 | if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
| 5734 | #if CONFIG_TELEMETRY |
| 5735 | /* |
| 5736 | * This task is in danger of violating the wakeups monitor. Enable telemetry on this task |
| 5737 | * so there are micro-stackshots available if and when EXC_RESOURCE is triggered. |
| 5738 | */ |
| 5739 | telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 1); |
| 5740 | #endif |
| 5741 | return; |
| 5742 | } |
| 5743 | |
| 5744 | #if CONFIG_TELEMETRY |
| 5745 | /* |
| 5746 | * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or |
| 5747 | * exceeded the limit, turn telemetry off for the task. |
| 5748 | */ |
| 5749 | telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 0); |
| 5750 | #endif |
| 5751 | |
| 5752 | if (warning == 0) { |
| 5753 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(); |
| 5754 | } |
| 5755 | } |
| 5756 | |
| 5757 | void __attribute__((noinline)) |
| 5758 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void) |
| 5759 | { |
| 5760 | task_t task = current_task(); |
| 5761 | int pid = 0; |
| 5762 | const char *procname = "unknown" ; |
| 5763 | boolean_t fatal; |
| 5764 | kern_return_t kr; |
| 5765 | #ifdef EXC_RESOURCE_MONITORS |
| 5766 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 5767 | #endif /* EXC_RESOURCE_MONITORS */ |
| 5768 | struct ledger_entry_info lei; |
| 5769 | |
| 5770 | #ifdef MACH_BSD |
| 5771 | pid = proc_selfpid(); |
| 5772 | if (task->bsd_info != NULL) |
| 5773 | procname = proc_name_address(current_task()->bsd_info); |
| 5774 | #endif |
| 5775 | |
| 5776 | ledger_get_entry_info(task->ledger, task_ledgers.interrupt_wakeups, &lei); |
| 5777 | |
| 5778 | /* |
| 5779 | * Disable the exception notification so we don't overwhelm |
| 5780 | * the listener with an endless stream of redundant exceptions. |
| 5781 | * TODO: detect whether another thread is already reporting the violation. |
| 5782 | */ |
| 5783 | uint32_t flags = WAKEMON_DISABLE; |
| 5784 | task_wakeups_monitor_ctl(task, &flags, NULL); |
| 5785 | |
| 5786 | fatal = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
| 5787 | trace_resource_violation(RMON_CPUWAKES_VIOLATED, &lei); |
| 5788 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught waking the CPU %llu times " |
| 5789 | "over ~%llu seconds, averaging %llu wakes / second and " |
| 5790 | "violating a %slimit of %llu wakes over %llu seconds.\n" , |
| 5791 | procname, pid, |
| 5792 | lei.lei_balance, lei.lei_last_refill / NSEC_PER_SEC, |
| 5793 | lei.lei_last_refill == 0 ? 0 : |
| 5794 | (NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill), |
| 5795 | fatal ? "FATAL " : "" , |
| 5796 | lei.lei_limit, lei.lei_refill_period / NSEC_PER_SEC); |
| 5797 | |
| 5798 | kr = send_resource_violation(send_cpu_wakes_violation, task, &lei, |
| 5799 | fatal ? kRNFatalLimitFlag : 0); |
| 5800 | if (kr) { |
| 5801 | printf("send_resource_violation(CPU wakes, ...): error %#x\n" , kr); |
| 5802 | } |
| 5803 | |
| 5804 | #ifdef EXC_RESOURCE_MONITORS |
| 5805 | if (disable_exc_resource) { |
| 5806 | printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 5807 | "supressed by a boot-arg\n" , procname, pid); |
| 5808 | return; |
| 5809 | } |
| 5810 | if (audio_active) { |
| 5811 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 5812 | "supressed due to audio playback\n" , procname, pid); |
| 5813 | return; |
| 5814 | } |
| 5815 | if (lei.lei_last_refill == 0) { |
| 5816 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 5817 | "supressed due to lei.lei_last_refill = 0 \n" , procname, pid); |
| 5818 | } |
| 5819 | |
| 5820 | code[0] = code[1] = 0; |
| 5821 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_WAKEUPS); |
| 5822 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_WAKEUPS_MONITOR); |
| 5823 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_PERMITTED(code[0], |
| 5824 | NSEC_PER_SEC * lei.lei_limit / lei.lei_refill_period); |
| 5825 | EXC_RESOURCE_CPUMONITOR_ENCODE_OBSERVATION_INTERVAL(code[0], |
| 5826 | lei.lei_last_refill); |
| 5827 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_OBSERVED(code[1], |
| 5828 | NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill); |
| 5829 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 5830 | #endif /* EXC_RESOURCE_MONITORS */ |
| 5831 | |
| 5832 | if (fatal) { |
| 5833 | task_terminate_internal(task); |
| 5834 | } |
| 5835 | } |
| 5836 | |
| 5837 | static boolean_t |
| 5838 | global_update_logical_writes(int64_t io_delta) |
| 5839 | { |
| 5840 | int64_t old_count, new_count; |
| 5841 | boolean_t needs_telemetry; |
| 5842 | |
| 5843 | do { |
| 5844 | new_count = old_count = global_logical_writes_count; |
| 5845 | new_count += io_delta; |
| 5846 | if (new_count >= io_telemetry_limit) { |
| 5847 | new_count = 0; |
| 5848 | needs_telemetry = TRUE; |
| 5849 | } else { |
| 5850 | needs_telemetry = FALSE; |
| 5851 | } |
| 5852 | } while(!OSCompareAndSwap64(old_count, new_count, &global_logical_writes_count)); |
| 5853 | return needs_telemetry; |
| 5854 | } |
| 5855 | |
| 5856 | void task_update_logical_writes(task_t task, uint32_t io_size, int flags, void *vp) |
| 5857 | { |
| 5858 | int64_t io_delta = 0; |
| 5859 | boolean_t needs_telemetry = FALSE; |
| 5860 | |
| 5861 | if ((!task) || (!io_size) || (!vp)) |
| 5862 | return; |
| 5863 | |
| 5864 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_DATA_WRITE)) | DBG_FUNC_NONE, |
| 5865 | task_pid(task), io_size, flags, (uintptr_t)VM_KERNEL_ADDRPERM(vp), 0); |
| 5866 | DTRACE_IO4(logical_writes, struct task *, task, uint32_t, io_size, int, flags, vnode *, vp); |
| 5867 | switch(flags) { |
| 5868 | case TASK_WRITE_IMMEDIATE: |
| 5869 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_immediate_writes)); |
| 5870 | ledger_credit(task->ledger, task_ledgers.logical_writes, io_size); |
| 5871 | break; |
| 5872 | case TASK_WRITE_DEFERRED: |
| 5873 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_deferred_writes)); |
| 5874 | ledger_credit(task->ledger, task_ledgers.logical_writes, io_size); |
| 5875 | break; |
| 5876 | case TASK_WRITE_INVALIDATED: |
| 5877 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_invalidated_writes)); |
| 5878 | ledger_debit(task->ledger, task_ledgers.logical_writes, io_size); |
| 5879 | break; |
| 5880 | case TASK_WRITE_METADATA: |
| 5881 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_metadata_writes)); |
| 5882 | ledger_credit(task->ledger, task_ledgers.logical_writes, io_size); |
| 5883 | break; |
| 5884 | } |
| 5885 | |
| 5886 | io_delta = (flags == TASK_WRITE_INVALIDATED) ? ((int64_t)io_size * -1ll) : ((int64_t)io_size); |
| 5887 | if (io_telemetry_limit != 0) { |
| 5888 | /* If io_telemetry_limit is 0, disable global updates and I/O telemetry */ |
| 5889 | needs_telemetry = global_update_logical_writes(io_delta); |
| 5890 | if (needs_telemetry) { |
| 5891 | act_set_io_telemetry_ast(current_thread()); |
| 5892 | } |
| 5893 | } |
| 5894 | } |
| 5895 | |
| 5896 | /* |
| 5897 | * Control the I/O monitor for a task. |
| 5898 | */ |
| 5899 | kern_return_t |
| 5900 | task_io_monitor_ctl(task_t task, uint32_t *flags) |
| 5901 | { |
| 5902 | ledger_t ledger = task->ledger; |
| 5903 | |
| 5904 | task_lock(task); |
| 5905 | if (*flags & IOMON_ENABLE) { |
| 5906 | /* Configure the physical I/O ledger */ |
| 5907 | ledger_set_limit(ledger, task_ledgers.physical_writes, (task_iomon_limit_mb * 1024 * 1024), 0); |
| 5908 | ledger_set_period(ledger, task_ledgers.physical_writes, (task_iomon_interval_secs * NSEC_PER_SEC)); |
| 5909 | |
| 5910 | /* Configure the logical I/O ledger */ |
| 5911 | ledger_set_limit(ledger, task_ledgers.logical_writes, (task_iomon_limit_mb * 1024 * 1024), 0); |
| 5912 | ledger_set_period(ledger, task_ledgers.logical_writes, (task_iomon_interval_secs * NSEC_PER_SEC)); |
| 5913 | |
| 5914 | } else if (*flags & IOMON_DISABLE) { |
| 5915 | /* |
| 5916 | * Caller wishes to disable I/O monitor on the task. |
| 5917 | */ |
| 5918 | ledger_disable_refill(ledger, task_ledgers.physical_writes); |
| 5919 | ledger_disable_callback(ledger, task_ledgers.physical_writes); |
| 5920 | ledger_disable_refill(ledger, task_ledgers.logical_writes); |
| 5921 | ledger_disable_callback(ledger, task_ledgers.logical_writes); |
| 5922 | } |
| 5923 | |
| 5924 | task_unlock(task); |
| 5925 | return KERN_SUCCESS; |
| 5926 | } |
| 5927 | |
| 5928 | void |
| 5929 | task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1) |
| 5930 | { |
| 5931 | if (warning == 0) { |
| 5932 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO((int)param0); |
| 5933 | } |
| 5934 | } |
| 5935 | |
| 5936 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor) |
| 5937 | { |
| 5938 | int pid = 0; |
| 5939 | task_t task = current_task(); |
| 5940 | #ifdef EXC_RESOURCE_MONITORS |
| 5941 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 5942 | #endif /* EXC_RESOURCE_MONITORS */ |
| 5943 | struct ledger_entry_info lei; |
| 5944 | kern_return_t kr; |
| 5945 | |
| 5946 | #ifdef MACH_BSD |
| 5947 | pid = proc_selfpid(); |
| 5948 | #endif |
| 5949 | /* |
| 5950 | * Get the ledger entry info. We need to do this before disabling the exception |
| 5951 | * to get correct values for all fields. |
| 5952 | */ |
| 5953 | switch(flavor) { |
| 5954 | case FLAVOR_IO_PHYSICAL_WRITES: |
| 5955 | ledger_get_entry_info(task->ledger, task_ledgers.physical_writes, &lei); |
| 5956 | break; |
| 5957 | case FLAVOR_IO_LOGICAL_WRITES: |
| 5958 | ledger_get_entry_info(task->ledger, task_ledgers.logical_writes, &lei); |
| 5959 | break; |
| 5960 | } |
| 5961 | |
| 5962 | |
| 5963 | /* |
| 5964 | * Disable the exception notification so we don't overwhelm |
| 5965 | * the listener with an endless stream of redundant exceptions. |
| 5966 | * TODO: detect whether another thread is already reporting the violation. |
| 5967 | */ |
| 5968 | uint32_t flags = IOMON_DISABLE; |
| 5969 | task_io_monitor_ctl(task, &flags); |
| 5970 | |
| 5971 | if (flavor == FLAVOR_IO_LOGICAL_WRITES) { |
| 5972 | trace_resource_violation(RMON_LOGWRITES_VIOLATED, &lei); |
| 5973 | } |
| 5974 | os_log(OS_LOG_DEFAULT, "process [%d] caught causing excessive I/O (flavor: %d). Task I/O: %lld MB. [Limit : %lld MB per %lld secs]\n" , |
| 5975 | pid, flavor, (lei.lei_balance / (1024 * 1024)), (lei.lei_limit / (1024 * 1024)), (lei.lei_refill_period / NSEC_PER_SEC)); |
| 5976 | |
| 5977 | kr = send_resource_violation(send_disk_writes_violation, task, &lei, kRNFlagsNone); |
| 5978 | if (kr) { |
| 5979 | printf("send_resource_violation(disk_writes, ...): error %#x\n" , kr); |
| 5980 | } |
| 5981 | |
| 5982 | #ifdef EXC_RESOURCE_MONITORS |
| 5983 | code[0] = code[1] = 0; |
| 5984 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_IO); |
| 5985 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], flavor); |
| 5986 | EXC_RESOURCE_IO_ENCODE_INTERVAL(code[0], (lei.lei_refill_period / NSEC_PER_SEC)); |
| 5987 | EXC_RESOURCE_IO_ENCODE_LIMIT(code[0], (lei.lei_limit / (1024 * 1024))); |
| 5988 | EXC_RESOURCE_IO_ENCODE_OBSERVED(code[1], (lei.lei_balance / (1024 * 1024))); |
| 5989 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 5990 | #endif /* EXC_RESOURCE_MONITORS */ |
| 5991 | } |
| 5992 | |
| 5993 | /* Placeholders for the task set/get voucher interfaces */ |
| 5994 | kern_return_t |
| 5995 | task_get_mach_voucher( |
| 5996 | task_t task, |
| 5997 | mach_voucher_selector_t __unused which, |
| 5998 | ipc_voucher_t *voucher) |
| 5999 | { |
| 6000 | if (TASK_NULL == task) |
| 6001 | return KERN_INVALID_TASK; |
| 6002 | |
| 6003 | *voucher = NULL; |
| 6004 | return KERN_SUCCESS; |
| 6005 | } |
| 6006 | |
| 6007 | kern_return_t |
| 6008 | task_set_mach_voucher( |
| 6009 | task_t task, |
| 6010 | ipc_voucher_t __unused voucher) |
| 6011 | { |
| 6012 | if (TASK_NULL == task) |
| 6013 | return KERN_INVALID_TASK; |
| 6014 | |
| 6015 | return KERN_SUCCESS; |
| 6016 | } |
| 6017 | |
| 6018 | kern_return_t |
| 6019 | task_swap_mach_voucher( |
| 6020 | task_t task, |
| 6021 | ipc_voucher_t new_voucher, |
| 6022 | ipc_voucher_t *in_out_old_voucher) |
| 6023 | { |
| 6024 | if (TASK_NULL == task) |
| 6025 | return KERN_INVALID_TASK; |
| 6026 | |
| 6027 | *in_out_old_voucher = new_voucher; |
| 6028 | return KERN_SUCCESS; |
| 6029 | } |
| 6030 | |
| 6031 | void task_set_gpu_denied(task_t task, boolean_t denied) |
| 6032 | { |
| 6033 | task_lock(task); |
| 6034 | |
| 6035 | if (denied) { |
| 6036 | task->t_flags |= TF_GPU_DENIED; |
| 6037 | } else { |
| 6038 | task->t_flags &= ~TF_GPU_DENIED; |
| 6039 | } |
| 6040 | |
| 6041 | task_unlock(task); |
| 6042 | } |
| 6043 | |
| 6044 | boolean_t task_is_gpu_denied(task_t task) |
| 6045 | { |
| 6046 | /* We don't need the lock to read this flag */ |
| 6047 | return (task->t_flags & TF_GPU_DENIED) ? TRUE : FALSE; |
| 6048 | } |
| 6049 | |
| 6050 | |
| 6051 | uint64_t get_task_memory_region_count(task_t task) |
| 6052 | { |
| 6053 | vm_map_t map; |
| 6054 | map = (task == kernel_task) ? kernel_map: task->map; |
| 6055 | return((uint64_t)get_map_nentries(map)); |
| 6056 | } |
| 6057 | |
| 6058 | static void |
| 6059 | kdebug_trace_dyld_internal(uint32_t base_code, |
| 6060 | struct dyld_kernel_image_info *info) |
| 6061 | { |
| 6062 | static_assert(sizeof(info->uuid) >= 16); |
| 6063 | |
| 6064 | #if defined(__LP64__) |
| 6065 | uint64_t *uuid = (uint64_t *)&(info->uuid); |
| 6066 | |
| 6067 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6068 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code), uuid[0], |
| 6069 | uuid[1], info->load_addr, |
| 6070 | (uint64_t)info->fsid.val[0] | ((uint64_t)info->fsid.val[1] << 32), |
| 6071 | 0); |
| 6072 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6073 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 1), |
| 6074 | (uint64_t)info->fsobjid.fid_objno | |
| 6075 | ((uint64_t)info->fsobjid.fid_generation << 32), |
| 6076 | 0, 0, 0, 0); |
| 6077 | #else /* defined(__LP64__) */ |
| 6078 | uint32_t *uuid = (uint32_t *)&(info->uuid); |
| 6079 | |
| 6080 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6081 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 2), uuid[0], |
| 6082 | uuid[1], uuid[2], uuid[3], 0); |
| 6083 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6084 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 3), |
| 6085 | (uint32_t)info->load_addr, info->fsid.val[0], info->fsid.val[1], |
| 6086 | info->fsobjid.fid_objno, 0); |
| 6087 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6088 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 4), |
| 6089 | info->fsobjid.fid_generation, 0, 0, 0, 0); |
| 6090 | #endif /* !defined(__LP64__) */ |
| 6091 | } |
| 6092 | |
| 6093 | static kern_return_t |
| 6094 | kdebug_trace_dyld(task_t task, uint32_t base_code, |
| 6095 | vm_map_copy_t infos_copy, mach_msg_type_number_t infos_len) |
| 6096 | { |
| 6097 | kern_return_t kr; |
| 6098 | dyld_kernel_image_info_array_t infos; |
| 6099 | vm_map_offset_t map_data; |
| 6100 | vm_offset_t data; |
| 6101 | |
| 6102 | if (!infos_copy) { |
| 6103 | return KERN_INVALID_ADDRESS; |
| 6104 | } |
| 6105 | |
| 6106 | if (!kdebug_enable || |
| 6107 | !kdebug_debugid_enabled(KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, 0))) |
| 6108 | { |
| 6109 | vm_map_copy_discard(infos_copy); |
| 6110 | return KERN_SUCCESS; |
| 6111 | } |
| 6112 | |
| 6113 | if (task == NULL || task != current_task()) { |
| 6114 | return KERN_INVALID_TASK; |
| 6115 | } |
| 6116 | |
| 6117 | kr = vm_map_copyout(ipc_kernel_map, &map_data, (vm_map_copy_t)infos_copy); |
| 6118 | if (kr != KERN_SUCCESS) { |
| 6119 | return kr; |
| 6120 | } |
| 6121 | |
| 6122 | infos = CAST_DOWN(dyld_kernel_image_info_array_t, map_data); |
| 6123 | |
| 6124 | for (mach_msg_type_number_t i = 0; i < infos_len; i++) { |
| 6125 | kdebug_trace_dyld_internal(base_code, &(infos[i])); |
| 6126 | } |
| 6127 | |
| 6128 | data = CAST_DOWN(vm_offset_t, map_data); |
| 6129 | mach_vm_deallocate(ipc_kernel_map, data, infos_len * sizeof(infos[0])); |
| 6130 | return KERN_SUCCESS; |
| 6131 | } |
| 6132 | |
| 6133 | kern_return_t |
| 6134 | task_register_dyld_image_infos(task_t task, |
| 6135 | dyld_kernel_image_info_array_t infos_copy, |
| 6136 | mach_msg_type_number_t infos_len) |
| 6137 | { |
| 6138 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_MAP_A, |
| 6139 | (vm_map_copy_t)infos_copy, infos_len); |
| 6140 | } |
| 6141 | |
| 6142 | kern_return_t |
| 6143 | task_unregister_dyld_image_infos(task_t task, |
| 6144 | dyld_kernel_image_info_array_t infos_copy, |
| 6145 | mach_msg_type_number_t infos_len) |
| 6146 | { |
| 6147 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_UNMAP_A, |
| 6148 | (vm_map_copy_t)infos_copy, infos_len); |
| 6149 | } |
| 6150 | |
| 6151 | kern_return_t |
| 6152 | task_get_dyld_image_infos(__unused task_t task, |
| 6153 | __unused dyld_kernel_image_info_array_t * dyld_images, |
| 6154 | __unused mach_msg_type_number_t * dyld_imagesCnt) |
| 6155 | { |
| 6156 | return KERN_NOT_SUPPORTED; |
| 6157 | } |
| 6158 | |
| 6159 | kern_return_t |
| 6160 | task_register_dyld_shared_cache_image_info(task_t task, |
| 6161 | dyld_kernel_image_info_t cache_img, |
| 6162 | __unused boolean_t no_cache, |
| 6163 | __unused boolean_t private_cache) |
| 6164 | { |
| 6165 | if (task == NULL || task != current_task()) { |
| 6166 | return KERN_INVALID_TASK; |
| 6167 | } |
| 6168 | |
| 6169 | kdebug_trace_dyld_internal(DBG_DYLD_UUID_SHARED_CACHE_A, &cache_img); |
| 6170 | return KERN_SUCCESS; |
| 6171 | } |
| 6172 | |
| 6173 | kern_return_t |
| 6174 | task_register_dyld_set_dyld_state(__unused task_t task, |
| 6175 | __unused uint8_t dyld_state) |
| 6176 | { |
| 6177 | return KERN_NOT_SUPPORTED; |
| 6178 | } |
| 6179 | |
| 6180 | kern_return_t |
| 6181 | task_register_dyld_get_process_state(__unused task_t task, |
| 6182 | __unused dyld_kernel_process_info_t * dyld_process_state) |
| 6183 | { |
| 6184 | return KERN_NOT_SUPPORTED; |
| 6185 | } |
| 6186 | |
| 6187 | kern_return_t |
| 6188 | task_inspect(task_inspect_t task_insp, task_inspect_flavor_t flavor, |
| 6189 | task_inspect_info_t info_out, mach_msg_type_number_t *size_in_out) |
| 6190 | { |
| 6191 | #if MONOTONIC |
| 6192 | task_t task = (task_t)task_insp; |
| 6193 | kern_return_t kr = KERN_SUCCESS; |
| 6194 | mach_msg_type_number_t size; |
| 6195 | |
| 6196 | if (task == TASK_NULL) { |
| 6197 | return KERN_INVALID_ARGUMENT; |
| 6198 | } |
| 6199 | |
| 6200 | size = *size_in_out; |
| 6201 | |
| 6202 | switch (flavor) { |
| 6203 | case TASK_INSPECT_BASIC_COUNTS: { |
| 6204 | struct task_inspect_basic_counts *bc; |
| 6205 | uint64_t task_counts[MT_CORE_NFIXED]; |
| 6206 | |
| 6207 | if (size < TASK_INSPECT_BASIC_COUNTS_COUNT) { |
| 6208 | kr = KERN_INVALID_ARGUMENT; |
| 6209 | break; |
| 6210 | } |
| 6211 | |
| 6212 | mt_fixed_task_counts(task, task_counts); |
| 6213 | bc = (struct task_inspect_basic_counts *)info_out; |
| 6214 | #ifdef MT_CORE_INSTRS |
| 6215 | bc->instructions = task_counts[MT_CORE_INSTRS]; |
| 6216 | #else /* defined(MT_CORE_INSTRS) */ |
| 6217 | bc->instructions = 0; |
| 6218 | #endif /* !defined(MT_CORE_INSTRS) */ |
| 6219 | bc->cycles = task_counts[MT_CORE_CYCLES]; |
| 6220 | size = TASK_INSPECT_BASIC_COUNTS_COUNT; |
| 6221 | break; |
| 6222 | } |
| 6223 | default: |
| 6224 | kr = KERN_INVALID_ARGUMENT; |
| 6225 | break; |
| 6226 | } |
| 6227 | |
| 6228 | if (kr == KERN_SUCCESS) { |
| 6229 | *size_in_out = size; |
| 6230 | } |
| 6231 | return kr; |
| 6232 | #else /* MONOTONIC */ |
| 6233 | #pragma unused(task_insp, flavor, info_out, size_in_out) |
| 6234 | return KERN_NOT_SUPPORTED; |
| 6235 | #endif /* !MONOTONIC */ |
| 6236 | } |
| 6237 | |
| 6238 | #if CONFIG_SECLUDED_MEMORY |
| 6239 | int num_tasks_can_use_secluded_mem = 0; |
| 6240 | |
| 6241 | void |
| 6242 | task_set_can_use_secluded_mem( |
| 6243 | task_t task, |
| 6244 | boolean_t can_use_secluded_mem) |
| 6245 | { |
| 6246 | if (!task->task_could_use_secluded_mem) { |
| 6247 | return; |
| 6248 | } |
| 6249 | task_lock(task); |
| 6250 | task_set_can_use_secluded_mem_locked(task, can_use_secluded_mem); |
| 6251 | task_unlock(task); |
| 6252 | } |
| 6253 | |
| 6254 | void |
| 6255 | task_set_can_use_secluded_mem_locked( |
| 6256 | task_t task, |
| 6257 | boolean_t can_use_secluded_mem) |
| 6258 | { |
| 6259 | assert(task->task_could_use_secluded_mem); |
| 6260 | if (can_use_secluded_mem && |
| 6261 | secluded_for_apps && /* global boot-arg */ |
| 6262 | !task->task_can_use_secluded_mem) { |
| 6263 | assert(num_tasks_can_use_secluded_mem >= 0); |
| 6264 | OSAddAtomic(+1, |
| 6265 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
| 6266 | task->task_can_use_secluded_mem = TRUE; |
| 6267 | } else if (!can_use_secluded_mem && |
| 6268 | task->task_can_use_secluded_mem) { |
| 6269 | assert(num_tasks_can_use_secluded_mem > 0); |
| 6270 | OSAddAtomic(-1, |
| 6271 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
| 6272 | task->task_can_use_secluded_mem = FALSE; |
| 6273 | } |
| 6274 | } |
| 6275 | |
| 6276 | void |
| 6277 | task_set_could_use_secluded_mem( |
| 6278 | task_t task, |
| 6279 | boolean_t could_use_secluded_mem) |
| 6280 | { |
| 6281 | task->task_could_use_secluded_mem = could_use_secluded_mem; |
| 6282 | } |
| 6283 | |
| 6284 | void |
| 6285 | task_set_could_also_use_secluded_mem( |
| 6286 | task_t task, |
| 6287 | boolean_t could_also_use_secluded_mem) |
| 6288 | { |
| 6289 | task->task_could_also_use_secluded_mem = could_also_use_secluded_mem; |
| 6290 | } |
| 6291 | |
| 6292 | boolean_t |
| 6293 | task_can_use_secluded_mem( |
| 6294 | task_t task, |
| 6295 | boolean_t is_alloc) |
| 6296 | { |
| 6297 | if (task->task_can_use_secluded_mem) { |
| 6298 | assert(task->task_could_use_secluded_mem); |
| 6299 | assert(num_tasks_can_use_secluded_mem > 0); |
| 6300 | return TRUE; |
| 6301 | } |
| 6302 | if (task->task_could_also_use_secluded_mem && |
| 6303 | num_tasks_can_use_secluded_mem > 0) { |
| 6304 | assert(num_tasks_can_use_secluded_mem > 0); |
| 6305 | return TRUE; |
| 6306 | } |
| 6307 | |
| 6308 | /* |
| 6309 | * If a single task is using more than some amount of |
| 6310 | * memory, allow it to dip into secluded and also begin |
| 6311 | * suppression of secluded memory until the tasks exits. |
| 6312 | */ |
| 6313 | if (is_alloc && secluded_shutoff_trigger != 0) { |
| 6314 | uint64_t phys_used = get_task_phys_footprint(task); |
| 6315 | if (phys_used > secluded_shutoff_trigger) { |
| 6316 | start_secluded_suppression(task); |
| 6317 | return TRUE; |
| 6318 | } |
| 6319 | } |
| 6320 | |
| 6321 | return FALSE; |
| 6322 | } |
| 6323 | |
| 6324 | boolean_t |
| 6325 | task_could_use_secluded_mem( |
| 6326 | task_t task) |
| 6327 | { |
| 6328 | return task->task_could_use_secluded_mem; |
| 6329 | } |
| 6330 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 6331 | |
| 6332 | queue_head_t * |
| 6333 | task_io_user_clients(task_t task) |
| 6334 | { |
| 6335 | return (&task->io_user_clients); |
| 6336 | } |
| 6337 | |
| 6338 | void |
| 6339 | task_copy_fields_for_exec(task_t dst_task, task_t src_task) |
| 6340 | { |
| 6341 | dst_task->vtimers = src_task->vtimers; |
| 6342 | } |
| 6343 | |
| 6344 | #if DEVELOPMENT || DEBUG |
| 6345 | int vm_region_footprint = 0; |
| 6346 | #endif /* DEVELOPMENT || DEBUG */ |
| 6347 | |
| 6348 | boolean_t |
| 6349 | (void) |
| 6350 | { |
| 6351 | #if DEVELOPMENT || DEBUG |
| 6352 | if (vm_region_footprint) { |
| 6353 | /* system-wide override */ |
| 6354 | return TRUE; |
| 6355 | } |
| 6356 | #endif /* DEVELOPMENT || DEBUG */ |
| 6357 | return current_task()->task_region_footprint; |
| 6358 | } |
| 6359 | |
| 6360 | void |
| 6361 | ( |
| 6362 | boolean_t newval) |
| 6363 | { |
| 6364 | task_t curtask; |
| 6365 | |
| 6366 | curtask = current_task(); |
| 6367 | task_lock(curtask); |
| 6368 | if (newval) { |
| 6369 | curtask->task_region_footprint = TRUE; |
| 6370 | } else { |
| 6371 | curtask->task_region_footprint = FALSE; |
| 6372 | } |
| 6373 | task_unlock(curtask); |
| 6374 | } |
| 6375 | |
| 6376 | void |
| 6377 | task_set_darkwake_mode(task_t task, boolean_t set_mode) |
| 6378 | { |
| 6379 | assert(task); |
| 6380 | |
| 6381 | task_lock(task); |
| 6382 | |
| 6383 | if (set_mode) { |
| 6384 | task->t_flags |= TF_DARKWAKE_MODE; |
| 6385 | } else { |
| 6386 | task->t_flags &= ~(TF_DARKWAKE_MODE); |
| 6387 | } |
| 6388 | |
| 6389 | task_unlock(task); |
| 6390 | } |
| 6391 | |
| 6392 | boolean_t |
| 6393 | task_get_darkwake_mode(task_t task) |
| 6394 | { |
| 6395 | assert(task); |
| 6396 | return ((task->t_flags & TF_DARKWAKE_MODE) != 0); |
| 6397 | } |
| 6398 | |
| 6399 | #if __arm64__ |
| 6400 | void |
| 6401 | task_set_legacy_footprint( |
| 6402 | task_t task, |
| 6403 | boolean_t new_val) |
| 6404 | { |
| 6405 | task_lock(task); |
| 6406 | task->task_legacy_footprint = new_val; |
| 6407 | task_unlock(task); |
| 6408 | } |
| 6409 | #endif /* __arm64__ */ |
| 6410 | |