| 1 | /* |
| 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: sched_prim.c |
| 60 | * Author: Avadis Tevanian, Jr. |
| 61 | * Date: 1986 |
| 62 | * |
| 63 | * Scheduling primitives |
| 64 | * |
| 65 | */ |
| 66 | |
| 67 | #include <debug.h> |
| 68 | |
| 69 | #include <mach/mach_types.h> |
| 70 | #include <mach/machine.h> |
| 71 | #include <mach/policy.h> |
| 72 | #include <mach/sync_policy.h> |
| 73 | #include <mach/thread_act.h> |
| 74 | |
| 75 | #include <machine/machine_routines.h> |
| 76 | #include <machine/sched_param.h> |
| 77 | #include <machine/machine_cpu.h> |
| 78 | #include <machine/machlimits.h> |
| 79 | #include <machine/atomic.h> |
| 80 | |
| 81 | #include <machine/commpage.h> |
| 82 | |
| 83 | #include <kern/kern_types.h> |
| 84 | #include <kern/backtrace.h> |
| 85 | #include <kern/clock.h> |
| 86 | #include <kern/counters.h> |
| 87 | #include <kern/cpu_number.h> |
| 88 | #include <kern/cpu_data.h> |
| 89 | #include <kern/smp.h> |
| 90 | #include <kern/debug.h> |
| 91 | #include <kern/macro_help.h> |
| 92 | #include <kern/machine.h> |
| 93 | #include <kern/misc_protos.h> |
| 94 | #if MONOTONIC |
| 95 | #include <kern/monotonic.h> |
| 96 | #endif /* MONOTONIC */ |
| 97 | #include <kern/processor.h> |
| 98 | #include <kern/queue.h> |
| 99 | #include <kern/sched.h> |
| 100 | #include <kern/sched_prim.h> |
| 101 | #include <kern/sfi.h> |
| 102 | #include <kern/syscall_subr.h> |
| 103 | #include <kern/task.h> |
| 104 | #include <kern/thread.h> |
| 105 | #include <kern/ledger.h> |
| 106 | #include <kern/timer_queue.h> |
| 107 | #include <kern/waitq.h> |
| 108 | #include <kern/policy_internal.h> |
| 109 | #include <kern/cpu_quiesce.h> |
| 110 | |
| 111 | #include <vm/pmap.h> |
| 112 | #include <vm/vm_kern.h> |
| 113 | #include <vm/vm_map.h> |
| 114 | #include <vm/vm_pageout.h> |
| 115 | |
| 116 | #include <mach/sdt.h> |
| 117 | #include <mach/mach_host.h> |
| 118 | #include <mach/host_info.h> |
| 119 | |
| 120 | #include <sys/kdebug.h> |
| 121 | #include <kperf/kperf.h> |
| 122 | #include <kern/kpc.h> |
| 123 | #include <san/kasan.h> |
| 124 | #include <kern/pms.h> |
| 125 | #include <kern/host.h> |
| 126 | #include <stdatomic.h> |
| 127 | |
| 128 | int rt_runq_count(processor_set_t pset) |
| 129 | { |
| 130 | return atomic_load_explicit(&SCHED(rt_runq)(pset)->count, memory_order_relaxed); |
| 131 | } |
| 132 | |
| 133 | void rt_runq_count_incr(processor_set_t pset) |
| 134 | { |
| 135 | atomic_fetch_add_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed); |
| 136 | } |
| 137 | |
| 138 | void rt_runq_count_decr(processor_set_t pset) |
| 139 | { |
| 140 | atomic_fetch_sub_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed); |
| 141 | } |
| 142 | |
| 143 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
| 144 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
| 145 | |
| 146 | #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */ |
| 147 | int default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; |
| 148 | |
| 149 | #define MAX_UNSAFE_QUANTA 800 |
| 150 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; |
| 151 | |
| 152 | #define MAX_POLL_QUANTA 2 |
| 153 | int max_poll_quanta = MAX_POLL_QUANTA; |
| 154 | |
| 155 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ |
| 156 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; |
| 157 | |
| 158 | uint64_t max_poll_computation; |
| 159 | |
| 160 | uint64_t max_unsafe_computation; |
| 161 | uint64_t sched_safe_duration; |
| 162 | |
| 163 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 164 | |
| 165 | uint32_t std_quantum; |
| 166 | uint32_t min_std_quantum; |
| 167 | uint32_t bg_quantum; |
| 168 | |
| 169 | uint32_t std_quantum_us; |
| 170 | uint32_t bg_quantum_us; |
| 171 | |
| 172 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 173 | |
| 174 | uint32_t thread_depress_time; |
| 175 | uint32_t default_timeshare_computation; |
| 176 | uint32_t default_timeshare_constraint; |
| 177 | |
| 178 | uint32_t max_rt_quantum; |
| 179 | uint32_t min_rt_quantum; |
| 180 | |
| 181 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 182 | |
| 183 | unsigned sched_tick; |
| 184 | uint32_t sched_tick_interval; |
| 185 | |
| 186 | /* Timeshare load calculation interval (15ms) */ |
| 187 | uint32_t sched_load_compute_interval_us = 15000; |
| 188 | uint64_t sched_load_compute_interval_abs; |
| 189 | static _Atomic uint64_t sched_load_compute_deadline; |
| 190 | |
| 191 | uint32_t sched_pri_shifts[TH_BUCKET_MAX]; |
| 192 | uint32_t sched_fixed_shift; |
| 193 | |
| 194 | uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */ |
| 195 | |
| 196 | /* Allow foreground to decay past default to resolve inversions */ |
| 197 | #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2) |
| 198 | int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; |
| 199 | |
| 200 | /* Defaults for timer deadline profiling */ |
| 201 | #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <= |
| 202 | * 2ms */ |
| 203 | #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines |
| 204 | <= 5ms */ |
| 205 | |
| 206 | uint64_t timer_deadline_tracking_bin_1; |
| 207 | uint64_t timer_deadline_tracking_bin_2; |
| 208 | |
| 209 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 210 | |
| 211 | thread_t sched_maintenance_thread; |
| 212 | |
| 213 | #if __arm__ || __arm64__ |
| 214 | /* interrupts disabled lock to guard recommended cores state */ |
| 215 | decl_simple_lock_data(static,sched_recommended_cores_lock); |
| 216 | static void sched_recommended_cores_maintenance(void); |
| 217 | static void sched_update_recommended_cores(uint32_t recommended_cores); |
| 218 | |
| 219 | uint64_t perfcontrol_failsafe_starvation_threshold; |
| 220 | extern char *proc_name_address(struct proc *p); |
| 221 | |
| 222 | #endif /* __arm__ || __arm64__ */ |
| 223 | |
| 224 | uint64_t sched_one_second_interval; |
| 225 | |
| 226 | /* Forwards */ |
| 227 | |
| 228 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 229 | |
| 230 | static void load_shift_init(void); |
| 231 | static void preempt_pri_init(void); |
| 232 | |
| 233 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 234 | |
| 235 | #if CONFIG_SCHED_IDLE_IN_PLACE |
| 236 | static thread_t thread_select_idle( |
| 237 | thread_t thread, |
| 238 | processor_t processor); |
| 239 | #endif |
| 240 | |
| 241 | thread_t processor_idle( |
| 242 | thread_t thread, |
| 243 | processor_t processor); |
| 244 | |
| 245 | ast_t |
| 246 | csw_check_locked( processor_t processor, |
| 247 | processor_set_t pset, |
| 248 | ast_t check_reason); |
| 249 | |
| 250 | static void processor_setrun( |
| 251 | processor_t processor, |
| 252 | thread_t thread, |
| 253 | integer_t options); |
| 254 | |
| 255 | static void |
| 256 | sched_realtime_timebase_init(void); |
| 257 | |
| 258 | static void |
| 259 | sched_timer_deadline_tracking_init(void); |
| 260 | |
| 261 | #if DEBUG |
| 262 | extern int debug_task; |
| 263 | #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args) |
| 264 | #else |
| 265 | #define TLOG(a, fmt, args...) do {} while (0) |
| 266 | #endif |
| 267 | |
| 268 | static processor_t |
| 269 | thread_bind_internal( |
| 270 | thread_t thread, |
| 271 | processor_t processor); |
| 272 | |
| 273 | static void |
| 274 | sched_vm_group_maintenance(void); |
| 275 | |
| 276 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 277 | int8_t sched_load_shifts[NRQS]; |
| 278 | bitmap_t sched_preempt_pri[BITMAP_LEN(NRQS)]; |
| 279 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 280 | |
| 281 | const struct sched_dispatch_table *sched_current_dispatch = NULL; |
| 282 | |
| 283 | /* |
| 284 | * Statically allocate a buffer to hold the longest possible |
| 285 | * scheduler description string, as currently implemented. |
| 286 | * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/ |
| 287 | * to export to userspace via sysctl(3). If either version |
| 288 | * changes, update the other. |
| 289 | * |
| 290 | * Note that in addition to being an upper bound on the strings |
| 291 | * in the kernel, it's also an exact parameter to PE_get_default(), |
| 292 | * which interrogates the device tree on some platforms. That |
| 293 | * API requires the caller know the exact size of the device tree |
| 294 | * property, so we need both a legacy size (32) and the current size |
| 295 | * (48) to deal with old and new device trees. The device tree property |
| 296 | * is similarly padded to a fixed size so that the same kernel image |
| 297 | * can run on multiple devices with different schedulers configured |
| 298 | * in the device tree. |
| 299 | */ |
| 300 | char sched_string[SCHED_STRING_MAX_LENGTH]; |
| 301 | |
| 302 | uint32_t sched_debug_flags = SCHED_DEBUG_FLAG_CHOOSE_PROCESSOR_TRACEPOINTS; |
| 303 | |
| 304 | /* Global flag which indicates whether Background Stepper Context is enabled */ |
| 305 | static int cpu_throttle_enabled = 1; |
| 306 | |
| 307 | #if DEBUG |
| 308 | |
| 309 | /* Since using the indirect function dispatch table has a negative impact on |
| 310 | * context switch performance, only allow DEBUG kernels to use that mechanism. |
| 311 | */ |
| 312 | static void |
| 313 | sched_init_override(void) |
| 314 | { |
| 315 | char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' }; |
| 316 | |
| 317 | /* Check for runtime selection of the scheduler algorithm */ |
| 318 | if (!PE_parse_boot_argn("sched" , sched_arg, sizeof (sched_arg))) { |
| 319 | sched_arg[0] = '\0'; |
| 320 | } |
| 321 | if (strlen(sched_arg) > 0) { |
| 322 | if (0) { |
| 323 | /* Allow pattern below */ |
| 324 | #if defined(CONFIG_SCHED_TRADITIONAL) |
| 325 | } else if (0 == strcmp(sched_arg, sched_traditional_dispatch.sched_name)) { |
| 326 | sched_current_dispatch = &sched_traditional_dispatch; |
| 327 | } else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) { |
| 328 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
| 329 | #endif |
| 330 | #if defined(CONFIG_SCHED_MULTIQ) |
| 331 | } else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) { |
| 332 | sched_current_dispatch = &sched_multiq_dispatch; |
| 333 | } else if (0 == strcmp(sched_arg, sched_dualq_dispatch.sched_name)) { |
| 334 | sched_current_dispatch = &sched_dualq_dispatch; |
| 335 | #endif |
| 336 | } else { |
| 337 | #if defined(CONFIG_SCHED_TRADITIONAL) |
| 338 | printf("Unrecognized scheduler algorithm: %s\n" , sched_arg); |
| 339 | printf("Scheduler: Using instead: %s\n" , sched_traditional_with_pset_runqueue_dispatch.sched_name); |
| 340 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
| 341 | #else |
| 342 | panic("Unrecognized scheduler algorithm: %s" , sched_arg); |
| 343 | #endif |
| 344 | } |
| 345 | kprintf("Scheduler: Runtime selection of %s\n" , SCHED(sched_name)); |
| 346 | } else { |
| 347 | #if defined(CONFIG_SCHED_MULTIQ) |
| 348 | sched_current_dispatch = &sched_dualq_dispatch; |
| 349 | #elif defined(CONFIG_SCHED_TRADITIONAL) |
| 350 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
| 351 | #else |
| 352 | #error No default scheduler implementation |
| 353 | #endif |
| 354 | kprintf("Scheduler: Default of %s\n" , SCHED(sched_name)); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | #endif /* DEBUG */ |
| 359 | |
| 360 | void |
| 361 | sched_init(void) |
| 362 | { |
| 363 | #if DEBUG |
| 364 | sched_init_override(); |
| 365 | #else /* DEBUG */ |
| 366 | kprintf("Scheduler: Default of %s\n" , SCHED(sched_name)); |
| 367 | #endif /* DEBUG */ |
| 368 | |
| 369 | if (!PE_parse_boot_argn("sched_pri_decay_limit" , &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) { |
| 370 | /* No boot-args, check in device tree */ |
| 371 | if (!PE_get_default("kern.sched_pri_decay_limit" , |
| 372 | &sched_pri_decay_band_limit, |
| 373 | sizeof(sched_pri_decay_band_limit))) { |
| 374 | /* Allow decay all the way to normal limits */ |
| 375 | sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | kprintf("Setting scheduler priority decay band limit %d\n" , sched_pri_decay_band_limit); |
| 380 | |
| 381 | if (PE_parse_boot_argn("sched_debug" , &sched_debug_flags, sizeof(sched_debug_flags))) { |
| 382 | kprintf("Scheduler: Debug flags 0x%08x\n" , sched_debug_flags); |
| 383 | } |
| 384 | strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string)); |
| 385 | |
| 386 | cpu_quiescent_counter_init(); |
| 387 | |
| 388 | SCHED(init)(); |
| 389 | SCHED(rt_init)(&pset0); |
| 390 | sched_timer_deadline_tracking_init(); |
| 391 | |
| 392 | SCHED(pset_init)(&pset0); |
| 393 | SCHED(processor_init)(master_processor); |
| 394 | } |
| 395 | |
| 396 | void |
| 397 | sched_timebase_init(void) |
| 398 | { |
| 399 | uint64_t abstime; |
| 400 | |
| 401 | clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime); |
| 402 | sched_one_second_interval = abstime; |
| 403 | |
| 404 | SCHED(timebase_init)(); |
| 405 | sched_realtime_timebase_init(); |
| 406 | } |
| 407 | |
| 408 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 409 | |
| 410 | void |
| 411 | sched_timeshare_init(void) |
| 412 | { |
| 413 | /* |
| 414 | * Calculate the timeslicing quantum |
| 415 | * in us. |
| 416 | */ |
| 417 | if (default_preemption_rate < 1) |
| 418 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
| 419 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
| 420 | |
| 421 | printf("standard timeslicing quantum is %d us\n" , std_quantum_us); |
| 422 | |
| 423 | if (default_bg_preemption_rate < 1) |
| 424 | default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; |
| 425 | bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate; |
| 426 | |
| 427 | printf("standard background quantum is %d us\n" , bg_quantum_us); |
| 428 | |
| 429 | load_shift_init(); |
| 430 | preempt_pri_init(); |
| 431 | sched_tick = 0; |
| 432 | } |
| 433 | |
| 434 | void |
| 435 | sched_timeshare_timebase_init(void) |
| 436 | { |
| 437 | uint64_t abstime; |
| 438 | uint32_t shift; |
| 439 | |
| 440 | /* standard timeslicing quantum */ |
| 441 | clock_interval_to_absolutetime_interval( |
| 442 | std_quantum_us, NSEC_PER_USEC, &abstime); |
| 443 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 444 | std_quantum = (uint32_t)abstime; |
| 445 | |
| 446 | /* smallest remaining quantum (250 us) */ |
| 447 | clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime); |
| 448 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 449 | min_std_quantum = (uint32_t)abstime; |
| 450 | |
| 451 | /* quantum for background tasks */ |
| 452 | clock_interval_to_absolutetime_interval( |
| 453 | bg_quantum_us, NSEC_PER_USEC, &abstime); |
| 454 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 455 | bg_quantum = (uint32_t)abstime; |
| 456 | |
| 457 | /* scheduler tick interval */ |
| 458 | clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT, |
| 459 | NSEC_PER_USEC, &abstime); |
| 460 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 461 | sched_tick_interval = (uint32_t)abstime; |
| 462 | |
| 463 | /* timeshare load calculation interval & deadline initialization */ |
| 464 | clock_interval_to_absolutetime_interval(sched_load_compute_interval_us, NSEC_PER_USEC, &sched_load_compute_interval_abs); |
| 465 | sched_load_compute_deadline = sched_load_compute_interval_abs; |
| 466 | |
| 467 | /* |
| 468 | * Compute conversion factor from usage to |
| 469 | * timesharing priorities with 5/8 ** n aging. |
| 470 | */ |
| 471 | abstime = (abstime * 5) / 3; |
| 472 | for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift) |
| 473 | abstime >>= 1; |
| 474 | sched_fixed_shift = shift; |
| 475 | |
| 476 | for (uint32_t i = 0 ; i < TH_BUCKET_MAX ; i++) |
| 477 | sched_pri_shifts[i] = INT8_MAX; |
| 478 | |
| 479 | max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum; |
| 480 | sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum; |
| 481 | |
| 482 | max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum; |
| 483 | thread_depress_time = 1 * std_quantum; |
| 484 | default_timeshare_computation = std_quantum / 2; |
| 485 | default_timeshare_constraint = std_quantum; |
| 486 | |
| 487 | #if __arm__ || __arm64__ |
| 488 | perfcontrol_failsafe_starvation_threshold = (2 * sched_tick_interval); |
| 489 | #endif /* __arm__ || __arm64__ */ |
| 490 | } |
| 491 | |
| 492 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 493 | |
| 494 | void |
| 495 | pset_rt_init(processor_set_t pset) |
| 496 | { |
| 497 | rt_lock_init(pset); |
| 498 | |
| 499 | pset->rt_runq.count = 0; |
| 500 | queue_init(&pset->rt_runq.queue); |
| 501 | memset(&pset->rt_runq.runq_stats, 0, sizeof pset->rt_runq.runq_stats); |
| 502 | } |
| 503 | |
| 504 | rt_queue_t |
| 505 | sched_rtglobal_runq(processor_set_t pset) |
| 506 | { |
| 507 | (void)pset; |
| 508 | |
| 509 | return &pset0.rt_runq; |
| 510 | } |
| 511 | |
| 512 | void |
| 513 | sched_rtglobal_init(processor_set_t pset) |
| 514 | { |
| 515 | if (pset == &pset0) { |
| 516 | return pset_rt_init(pset); |
| 517 | } |
| 518 | |
| 519 | /* Only pset0 rt_runq is used, so make it easy to detect |
| 520 | * buggy accesses to others. |
| 521 | */ |
| 522 | memset(&pset->rt_runq, 0xfd, sizeof pset->rt_runq); |
| 523 | } |
| 524 | |
| 525 | void |
| 526 | sched_rtglobal_queue_shutdown(processor_t processor) |
| 527 | { |
| 528 | (void)processor; |
| 529 | } |
| 530 | |
| 531 | static void |
| 532 | sched_realtime_timebase_init(void) |
| 533 | { |
| 534 | uint64_t abstime; |
| 535 | |
| 536 | /* smallest rt computaton (50 us) */ |
| 537 | clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime); |
| 538 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 539 | min_rt_quantum = (uint32_t)abstime; |
| 540 | |
| 541 | /* maximum rt computation (50 ms) */ |
| 542 | clock_interval_to_absolutetime_interval( |
| 543 | 50, 1000*NSEC_PER_USEC, &abstime); |
| 544 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 545 | max_rt_quantum = (uint32_t)abstime; |
| 546 | |
| 547 | } |
| 548 | |
| 549 | void |
| 550 | sched_check_spill(processor_set_t pset, thread_t thread) |
| 551 | { |
| 552 | (void)pset; |
| 553 | (void)thread; |
| 554 | |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | bool |
| 559 | sched_thread_should_yield(processor_t processor, thread_t thread) |
| 560 | { |
| 561 | (void)thread; |
| 562 | |
| 563 | return (!SCHED(processor_queue_empty)(processor) || rt_runq_count(processor->processor_set) > 0); |
| 564 | } |
| 565 | |
| 566 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 567 | |
| 568 | /* |
| 569 | * Set up values for timeshare |
| 570 | * loading factors. |
| 571 | */ |
| 572 | static void |
| 573 | load_shift_init(void) |
| 574 | { |
| 575 | int8_t k, *p = sched_load_shifts; |
| 576 | uint32_t i, j; |
| 577 | |
| 578 | uint32_t sched_decay_penalty = 1; |
| 579 | |
| 580 | if (PE_parse_boot_argn("sched_decay_penalty" , &sched_decay_penalty, sizeof (sched_decay_penalty))) { |
| 581 | kprintf("Overriding scheduler decay penalty %u\n" , sched_decay_penalty); |
| 582 | } |
| 583 | |
| 584 | if (PE_parse_boot_argn("sched_decay_usage_age_factor" , &sched_decay_usage_age_factor, sizeof (sched_decay_usage_age_factor))) { |
| 585 | kprintf("Overriding scheduler decay usage age factor %u\n" , sched_decay_usage_age_factor); |
| 586 | } |
| 587 | |
| 588 | if (sched_decay_penalty == 0) { |
| 589 | /* |
| 590 | * There is no penalty for timeshare threads for using too much |
| 591 | * CPU, so set all load shifts to INT8_MIN. Even under high load, |
| 592 | * sched_pri_shift will be >INT8_MAX, and there will be no |
| 593 | * penalty applied to threads (nor will sched_usage be updated per |
| 594 | * thread). |
| 595 | */ |
| 596 | for (i = 0; i < NRQS; i++) { |
| 597 | sched_load_shifts[i] = INT8_MIN; |
| 598 | } |
| 599 | |
| 600 | return; |
| 601 | } |
| 602 | |
| 603 | *p++ = INT8_MIN; *p++ = 0; |
| 604 | |
| 605 | /* |
| 606 | * For a given system load "i", the per-thread priority |
| 607 | * penalty per quantum of CPU usage is ~2^k priority |
| 608 | * levels. "sched_decay_penalty" can cause more |
| 609 | * array entries to be filled with smaller "k" values |
| 610 | */ |
| 611 | for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) { |
| 612 | for (j <<= 1; (i < j) && (i < NRQS); ++i) |
| 613 | *p++ = k; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | static void |
| 618 | preempt_pri_init(void) |
| 619 | { |
| 620 | bitmap_t *p = sched_preempt_pri; |
| 621 | |
| 622 | for (int i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i) |
| 623 | bitmap_set(p, i); |
| 624 | |
| 625 | for (int i = BASEPRI_PREEMPT; i <= MAXPRI; ++i) |
| 626 | bitmap_set(p, i); |
| 627 | } |
| 628 | |
| 629 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 630 | |
| 631 | /* |
| 632 | * Thread wait timer expiration. |
| 633 | */ |
| 634 | void |
| 635 | thread_timer_expire( |
| 636 | void *p0, |
| 637 | __unused void *p1) |
| 638 | { |
| 639 | thread_t thread = p0; |
| 640 | spl_t s; |
| 641 | |
| 642 | assert_thread_magic(thread); |
| 643 | |
| 644 | s = splsched(); |
| 645 | thread_lock(thread); |
| 646 | if (--thread->wait_timer_active == 0) { |
| 647 | if (thread->wait_timer_is_set) { |
| 648 | thread->wait_timer_is_set = FALSE; |
| 649 | clear_wait_internal(thread, THREAD_TIMED_OUT); |
| 650 | } |
| 651 | } |
| 652 | thread_unlock(thread); |
| 653 | splx(s); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * thread_unblock: |
| 658 | * |
| 659 | * Unblock thread on wake up. |
| 660 | * |
| 661 | * Returns TRUE if the thread should now be placed on the runqueue. |
| 662 | * |
| 663 | * Thread must be locked. |
| 664 | * |
| 665 | * Called at splsched(). |
| 666 | */ |
| 667 | boolean_t |
| 668 | thread_unblock( |
| 669 | thread_t thread, |
| 670 | wait_result_t wresult) |
| 671 | { |
| 672 | boolean_t ready_for_runq = FALSE; |
| 673 | thread_t cthread = current_thread(); |
| 674 | uint32_t new_run_count; |
| 675 | int old_thread_state; |
| 676 | |
| 677 | /* |
| 678 | * Set wait_result. |
| 679 | */ |
| 680 | thread->wait_result = wresult; |
| 681 | |
| 682 | /* |
| 683 | * Cancel pending wait timer. |
| 684 | */ |
| 685 | if (thread->wait_timer_is_set) { |
| 686 | if (timer_call_cancel(&thread->wait_timer)) |
| 687 | thread->wait_timer_active--; |
| 688 | thread->wait_timer_is_set = FALSE; |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * Update scheduling state: not waiting, |
| 693 | * set running. |
| 694 | */ |
| 695 | old_thread_state = thread->state; |
| 696 | thread->state = (old_thread_state | TH_RUN) & |
| 697 | ~(TH_WAIT|TH_UNINT|TH_WAIT_REPORT); |
| 698 | |
| 699 | if ((old_thread_state & TH_RUN) == 0) { |
| 700 | uint64_t ctime = mach_approximate_time(); |
| 701 | thread->last_made_runnable_time = thread->last_basepri_change_time = ctime; |
| 702 | timer_start(&thread->runnable_timer, ctime); |
| 703 | |
| 704 | ready_for_runq = TRUE; |
| 705 | |
| 706 | if (old_thread_state & TH_WAIT_REPORT) { |
| 707 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); |
| 708 | } |
| 709 | |
| 710 | /* Update the runnable thread count */ |
| 711 | new_run_count = sched_run_incr(thread); |
| 712 | } else { |
| 713 | /* |
| 714 | * Either the thread is idling in place on another processor, |
| 715 | * or it hasn't finished context switching yet. |
| 716 | */ |
| 717 | #if CONFIG_SCHED_IDLE_IN_PLACE |
| 718 | if (thread->state & TH_IDLE) { |
| 719 | processor_t processor = thread->last_processor; |
| 720 | |
| 721 | if (processor != current_processor()) |
| 722 | machine_signal_idle(processor); |
| 723 | } |
| 724 | #else |
| 725 | assert((thread->state & TH_IDLE) == 0); |
| 726 | #endif |
| 727 | /* |
| 728 | * The run count is only dropped after the context switch completes |
| 729 | * and the thread is still waiting, so we should not run_incr here |
| 730 | */ |
| 731 | new_run_count = sched_run_buckets[TH_BUCKET_RUN]; |
| 732 | } |
| 733 | |
| 734 | |
| 735 | /* |
| 736 | * Calculate deadline for real-time threads. |
| 737 | */ |
| 738 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 739 | uint64_t ctime; |
| 740 | |
| 741 | ctime = mach_absolute_time(); |
| 742 | thread->realtime.deadline = thread->realtime.constraint + ctime; |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Clear old quantum, fail-safe computation, etc. |
| 747 | */ |
| 748 | thread->quantum_remaining = 0; |
| 749 | thread->computation_metered = 0; |
| 750 | thread->reason = AST_NONE; |
| 751 | thread->block_hint = kThreadWaitNone; |
| 752 | |
| 753 | /* Obtain power-relevant interrupt and "platform-idle exit" statistics. |
| 754 | * We also account for "double hop" thread signaling via |
| 755 | * the thread callout infrastructure. |
| 756 | * DRK: consider removing the callout wakeup counters in the future |
| 757 | * they're present for verification at the moment. |
| 758 | */ |
| 759 | boolean_t aticontext, pidle; |
| 760 | ml_get_power_state(&aticontext, &pidle); |
| 761 | |
| 762 | if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) { |
| 763 | DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); |
| 764 | |
| 765 | uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd); |
| 766 | |
| 767 | if (ttd) { |
| 768 | if (ttd <= timer_deadline_tracking_bin_1) |
| 769 | thread->thread_timer_wakeups_bin_1++; |
| 770 | else |
| 771 | if (ttd <= timer_deadline_tracking_bin_2) |
| 772 | thread->thread_timer_wakeups_bin_2++; |
| 773 | } |
| 774 | |
| 775 | ledger_credit_thread(thread, thread->t_ledger, |
| 776 | task_ledgers.interrupt_wakeups, 1); |
| 777 | if (pidle) { |
| 778 | ledger_credit_thread(thread, thread->t_ledger, |
| 779 | task_ledgers.platform_idle_wakeups, 1); |
| 780 | } |
| 781 | |
| 782 | } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) { |
| 783 | /* TODO: what about an interrupt that does a wake taken on a callout thread? */ |
| 784 | if (cthread->callout_woken_from_icontext) { |
| 785 | ledger_credit_thread(thread, thread->t_ledger, |
| 786 | task_ledgers.interrupt_wakeups, 1); |
| 787 | thread->thread_callout_interrupt_wakeups++; |
| 788 | |
| 789 | if (cthread->callout_woken_from_platform_idle) { |
| 790 | ledger_credit_thread(thread, thread->t_ledger, |
| 791 | task_ledgers.platform_idle_wakeups, 1); |
| 792 | thread->thread_callout_platform_idle_wakeups++; |
| 793 | } |
| 794 | |
| 795 | cthread->callout_woke_thread = TRUE; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) { |
| 800 | thread->callout_woken_from_icontext = aticontext; |
| 801 | thread->callout_woken_from_platform_idle = pidle; |
| 802 | thread->callout_woke_thread = FALSE; |
| 803 | } |
| 804 | |
| 805 | #if KPERF |
| 806 | if (ready_for_runq) { |
| 807 | kperf_make_runnable(thread, aticontext); |
| 808 | } |
| 809 | #endif /* KPERF */ |
| 810 | |
| 811 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 812 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, |
| 813 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, |
| 814 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 815 | |
| 816 | DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); |
| 817 | |
| 818 | return (ready_for_runq); |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * Routine: thread_go |
| 823 | * Purpose: |
| 824 | * Unblock and dispatch thread. |
| 825 | * Conditions: |
| 826 | * thread lock held, IPC locks may be held. |
| 827 | * thread must have been pulled from wait queue under same lock hold. |
| 828 | * thread must have been waiting |
| 829 | * Returns: |
| 830 | * KERN_SUCCESS - Thread was set running |
| 831 | * |
| 832 | * TODO: This should return void |
| 833 | */ |
| 834 | kern_return_t |
| 835 | thread_go( |
| 836 | thread_t thread, |
| 837 | wait_result_t wresult) |
| 838 | { |
| 839 | assert_thread_magic(thread); |
| 840 | |
| 841 | assert(thread->at_safe_point == FALSE); |
| 842 | assert(thread->wait_event == NO_EVENT64); |
| 843 | assert(thread->waitq == NULL); |
| 844 | |
| 845 | assert(!(thread->state & (TH_TERMINATE|TH_TERMINATE2))); |
| 846 | assert(thread->state & TH_WAIT); |
| 847 | |
| 848 | |
| 849 | if (thread_unblock(thread, wresult)) { |
| 850 | #if SCHED_TRACE_THREAD_WAKEUPS |
| 851 | backtrace(&thread->thread_wakeup_bt[0], |
| 852 | (sizeof(thread->thread_wakeup_bt)/sizeof(uintptr_t))); |
| 853 | #endif |
| 854 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); |
| 855 | } |
| 856 | |
| 857 | return (KERN_SUCCESS); |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Routine: thread_mark_wait_locked |
| 862 | * Purpose: |
| 863 | * Mark a thread as waiting. If, given the circumstances, |
| 864 | * it doesn't want to wait (i.e. already aborted), then |
| 865 | * indicate that in the return value. |
| 866 | * Conditions: |
| 867 | * at splsched() and thread is locked. |
| 868 | */ |
| 869 | __private_extern__ |
| 870 | wait_result_t |
| 871 | thread_mark_wait_locked( |
| 872 | thread_t thread, |
| 873 | wait_interrupt_t interruptible_orig) |
| 874 | { |
| 875 | boolean_t at_safe_point; |
| 876 | wait_interrupt_t interruptible = interruptible_orig; |
| 877 | |
| 878 | assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2|TH_WAIT_REPORT))); |
| 879 | |
| 880 | /* |
| 881 | * The thread may have certain types of interrupts/aborts masked |
| 882 | * off. Even if the wait location says these types of interrupts |
| 883 | * are OK, we have to honor mask settings (outer-scoped code may |
| 884 | * not be able to handle aborts at the moment). |
| 885 | */ |
| 886 | interruptible &= TH_OPT_INTMASK; |
| 887 | if (interruptible > (thread->options & TH_OPT_INTMASK)) |
| 888 | interruptible = thread->options & TH_OPT_INTMASK; |
| 889 | |
| 890 | at_safe_point = (interruptible == THREAD_ABORTSAFE); |
| 891 | |
| 892 | if ( interruptible == THREAD_UNINT || |
| 893 | !(thread->sched_flags & TH_SFLAG_ABORT) || |
| 894 | (!at_safe_point && |
| 895 | (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) { |
| 896 | |
| 897 | if ( !(thread->state & TH_TERMINATE)) |
| 898 | DTRACE_SCHED(sleep); |
| 899 | |
| 900 | int state_bits = TH_WAIT; |
| 901 | if (!interruptible) { |
| 902 | state_bits |= TH_UNINT; |
| 903 | } |
| 904 | if (thread->sched_call) { |
| 905 | wait_interrupt_t mask = THREAD_WAIT_NOREPORT_USER; |
| 906 | if (is_kerneltask(thread->task)) { |
| 907 | mask = THREAD_WAIT_NOREPORT_KERNEL; |
| 908 | } |
| 909 | if ((interruptible_orig & mask) == 0) { |
| 910 | state_bits |= TH_WAIT_REPORT; |
| 911 | } |
| 912 | } |
| 913 | thread->state |= state_bits; |
| 914 | thread->at_safe_point = at_safe_point; |
| 915 | |
| 916 | /* TODO: pass this through assert_wait instead, have |
| 917 | * assert_wait just take a struct as an argument */ |
| 918 | assert(!thread->block_hint); |
| 919 | thread->block_hint = thread->pending_block_hint; |
| 920 | thread->pending_block_hint = kThreadWaitNone; |
| 921 | |
| 922 | return (thread->wait_result = THREAD_WAITING); |
| 923 | } else { |
| 924 | if (thread->sched_flags & TH_SFLAG_ABORTSAFELY) |
| 925 | thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK; |
| 926 | } |
| 927 | thread->pending_block_hint = kThreadWaitNone; |
| 928 | |
| 929 | return (thread->wait_result = THREAD_INTERRUPTED); |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * Routine: thread_interrupt_level |
| 934 | * Purpose: |
| 935 | * Set the maximum interruptible state for the |
| 936 | * current thread. The effective value of any |
| 937 | * interruptible flag passed into assert_wait |
| 938 | * will never exceed this. |
| 939 | * |
| 940 | * Useful for code that must not be interrupted, |
| 941 | * but which calls code that doesn't know that. |
| 942 | * Returns: |
| 943 | * The old interrupt level for the thread. |
| 944 | */ |
| 945 | __private_extern__ |
| 946 | wait_interrupt_t |
| 947 | thread_interrupt_level( |
| 948 | wait_interrupt_t new_level) |
| 949 | { |
| 950 | thread_t thread = current_thread(); |
| 951 | wait_interrupt_t result = thread->options & TH_OPT_INTMASK; |
| 952 | |
| 953 | thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK); |
| 954 | |
| 955 | return result; |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * assert_wait: |
| 960 | * |
| 961 | * Assert that the current thread is about to go to |
| 962 | * sleep until the specified event occurs. |
| 963 | */ |
| 964 | wait_result_t |
| 965 | assert_wait( |
| 966 | event_t event, |
| 967 | wait_interrupt_t interruptible) |
| 968 | { |
| 969 | if (__improbable(event == NO_EVENT)) |
| 970 | panic("%s() called with NO_EVENT" , __func__); |
| 971 | |
| 972 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 973 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
| 974 | VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0); |
| 975 | |
| 976 | struct waitq *waitq; |
| 977 | waitq = global_eventq(event); |
| 978 | return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * assert_wait_queue: |
| 983 | * |
| 984 | * Return the global waitq for the specified event |
| 985 | */ |
| 986 | struct waitq * |
| 987 | assert_wait_queue( |
| 988 | event_t event) |
| 989 | { |
| 990 | return global_eventq(event); |
| 991 | } |
| 992 | |
| 993 | wait_result_t |
| 994 | assert_wait_timeout( |
| 995 | event_t event, |
| 996 | wait_interrupt_t interruptible, |
| 997 | uint32_t interval, |
| 998 | uint32_t scale_factor) |
| 999 | { |
| 1000 | thread_t thread = current_thread(); |
| 1001 | wait_result_t wresult; |
| 1002 | uint64_t deadline; |
| 1003 | spl_t s; |
| 1004 | |
| 1005 | if (__improbable(event == NO_EVENT)) |
| 1006 | panic("%s() called with NO_EVENT" , __func__); |
| 1007 | |
| 1008 | struct waitq *waitq; |
| 1009 | waitq = global_eventq(event); |
| 1010 | |
| 1011 | s = splsched(); |
| 1012 | waitq_lock(waitq); |
| 1013 | |
| 1014 | clock_interval_to_deadline(interval, scale_factor, &deadline); |
| 1015 | |
| 1016 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1017 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
| 1018 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1019 | |
| 1020 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
| 1021 | interruptible, |
| 1022 | TIMEOUT_URGENCY_SYS_NORMAL, |
| 1023 | deadline, TIMEOUT_NO_LEEWAY, |
| 1024 | thread); |
| 1025 | |
| 1026 | waitq_unlock(waitq); |
| 1027 | splx(s); |
| 1028 | return wresult; |
| 1029 | } |
| 1030 | |
| 1031 | wait_result_t |
| 1032 | assert_wait_timeout_with_leeway( |
| 1033 | event_t event, |
| 1034 | wait_interrupt_t interruptible, |
| 1035 | wait_timeout_urgency_t urgency, |
| 1036 | uint32_t interval, |
| 1037 | uint32_t leeway, |
| 1038 | uint32_t scale_factor) |
| 1039 | { |
| 1040 | thread_t thread = current_thread(); |
| 1041 | wait_result_t wresult; |
| 1042 | uint64_t deadline; |
| 1043 | uint64_t abstime; |
| 1044 | uint64_t slop; |
| 1045 | uint64_t now; |
| 1046 | spl_t s; |
| 1047 | |
| 1048 | if (__improbable(event == NO_EVENT)) |
| 1049 | panic("%s() called with NO_EVENT" , __func__); |
| 1050 | |
| 1051 | now = mach_absolute_time(); |
| 1052 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); |
| 1053 | deadline = now + abstime; |
| 1054 | |
| 1055 | clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop); |
| 1056 | |
| 1057 | struct waitq *waitq; |
| 1058 | waitq = global_eventq(event); |
| 1059 | |
| 1060 | s = splsched(); |
| 1061 | waitq_lock(waitq); |
| 1062 | |
| 1063 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1064 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
| 1065 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1066 | |
| 1067 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
| 1068 | interruptible, |
| 1069 | urgency, deadline, slop, |
| 1070 | thread); |
| 1071 | |
| 1072 | waitq_unlock(waitq); |
| 1073 | splx(s); |
| 1074 | return wresult; |
| 1075 | } |
| 1076 | |
| 1077 | wait_result_t |
| 1078 | assert_wait_deadline( |
| 1079 | event_t event, |
| 1080 | wait_interrupt_t interruptible, |
| 1081 | uint64_t deadline) |
| 1082 | { |
| 1083 | thread_t thread = current_thread(); |
| 1084 | wait_result_t wresult; |
| 1085 | spl_t s; |
| 1086 | |
| 1087 | if (__improbable(event == NO_EVENT)) |
| 1088 | panic("%s() called with NO_EVENT" , __func__); |
| 1089 | |
| 1090 | struct waitq *waitq; |
| 1091 | waitq = global_eventq(event); |
| 1092 | |
| 1093 | s = splsched(); |
| 1094 | waitq_lock(waitq); |
| 1095 | |
| 1096 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1097 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
| 1098 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1099 | |
| 1100 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
| 1101 | interruptible, |
| 1102 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, |
| 1103 | TIMEOUT_NO_LEEWAY, thread); |
| 1104 | waitq_unlock(waitq); |
| 1105 | splx(s); |
| 1106 | return wresult; |
| 1107 | } |
| 1108 | |
| 1109 | wait_result_t |
| 1110 | assert_wait_deadline_with_leeway( |
| 1111 | event_t event, |
| 1112 | wait_interrupt_t interruptible, |
| 1113 | wait_timeout_urgency_t urgency, |
| 1114 | uint64_t deadline, |
| 1115 | uint64_t leeway) |
| 1116 | { |
| 1117 | thread_t thread = current_thread(); |
| 1118 | wait_result_t wresult; |
| 1119 | spl_t s; |
| 1120 | |
| 1121 | if (__improbable(event == NO_EVENT)) |
| 1122 | panic("%s() called with NO_EVENT" , __func__); |
| 1123 | |
| 1124 | struct waitq *waitq; |
| 1125 | waitq = global_eventq(event); |
| 1126 | |
| 1127 | s = splsched(); |
| 1128 | waitq_lock(waitq); |
| 1129 | |
| 1130 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1131 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
| 1132 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1133 | |
| 1134 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
| 1135 | interruptible, |
| 1136 | urgency, deadline, leeway, |
| 1137 | thread); |
| 1138 | waitq_unlock(waitq); |
| 1139 | splx(s); |
| 1140 | return wresult; |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * thread_isoncpu: |
| 1145 | * |
| 1146 | * Return TRUE if a thread is running on a processor such that an AST |
| 1147 | * is needed to pull it out of userspace execution, or if executing in |
| 1148 | * the kernel, bring to a context switch boundary that would cause |
| 1149 | * thread state to be serialized in the thread PCB. |
| 1150 | * |
| 1151 | * Thread locked, returns the same way. While locked, fields |
| 1152 | * like "state" cannot change. "runq" can change only from set to unset. |
| 1153 | */ |
| 1154 | static inline boolean_t |
| 1155 | thread_isoncpu(thread_t thread) |
| 1156 | { |
| 1157 | /* Not running or runnable */ |
| 1158 | if (!(thread->state & TH_RUN)) |
| 1159 | return (FALSE); |
| 1160 | |
| 1161 | /* Waiting on a runqueue, not currently running */ |
| 1162 | /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */ |
| 1163 | if (thread->runq != PROCESSOR_NULL) |
| 1164 | return (FALSE); |
| 1165 | |
| 1166 | /* |
| 1167 | * Thread does not have a stack yet |
| 1168 | * It could be on the stack alloc queue or preparing to be invoked |
| 1169 | */ |
| 1170 | if (!thread->kernel_stack) |
| 1171 | return (FALSE); |
| 1172 | |
| 1173 | /* |
| 1174 | * Thread must be running on a processor, or |
| 1175 | * about to run, or just did run. In all these |
| 1176 | * cases, an AST to the processor is needed |
| 1177 | * to guarantee that the thread is kicked out |
| 1178 | * of userspace and the processor has |
| 1179 | * context switched (and saved register state). |
| 1180 | */ |
| 1181 | return (TRUE); |
| 1182 | } |
| 1183 | |
| 1184 | /* |
| 1185 | * thread_stop: |
| 1186 | * |
| 1187 | * Force a preemption point for a thread and wait |
| 1188 | * for it to stop running on a CPU. If a stronger |
| 1189 | * guarantee is requested, wait until no longer |
| 1190 | * runnable. Arbitrates access among |
| 1191 | * multiple stop requests. (released by unstop) |
| 1192 | * |
| 1193 | * The thread must enter a wait state and stop via a |
| 1194 | * separate means. |
| 1195 | * |
| 1196 | * Returns FALSE if interrupted. |
| 1197 | */ |
| 1198 | boolean_t |
| 1199 | thread_stop( |
| 1200 | thread_t thread, |
| 1201 | boolean_t until_not_runnable) |
| 1202 | { |
| 1203 | wait_result_t wresult; |
| 1204 | spl_t s = splsched(); |
| 1205 | boolean_t oncpu; |
| 1206 | |
| 1207 | wake_lock(thread); |
| 1208 | thread_lock(thread); |
| 1209 | |
| 1210 | while (thread->state & TH_SUSP) { |
| 1211 | thread->wake_active = TRUE; |
| 1212 | thread_unlock(thread); |
| 1213 | |
| 1214 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
| 1215 | wake_unlock(thread); |
| 1216 | splx(s); |
| 1217 | |
| 1218 | if (wresult == THREAD_WAITING) |
| 1219 | wresult = thread_block(THREAD_CONTINUE_NULL); |
| 1220 | |
| 1221 | if (wresult != THREAD_AWAKENED) |
| 1222 | return (FALSE); |
| 1223 | |
| 1224 | s = splsched(); |
| 1225 | wake_lock(thread); |
| 1226 | thread_lock(thread); |
| 1227 | } |
| 1228 | |
| 1229 | thread->state |= TH_SUSP; |
| 1230 | |
| 1231 | while ((oncpu = thread_isoncpu(thread)) || |
| 1232 | (until_not_runnable && (thread->state & TH_RUN))) { |
| 1233 | processor_t processor; |
| 1234 | |
| 1235 | if (oncpu) { |
| 1236 | assert(thread->state & TH_RUN); |
| 1237 | processor = thread->chosen_processor; |
| 1238 | cause_ast_check(processor); |
| 1239 | } |
| 1240 | |
| 1241 | thread->wake_active = TRUE; |
| 1242 | thread_unlock(thread); |
| 1243 | |
| 1244 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
| 1245 | wake_unlock(thread); |
| 1246 | splx(s); |
| 1247 | |
| 1248 | if (wresult == THREAD_WAITING) |
| 1249 | wresult = thread_block(THREAD_CONTINUE_NULL); |
| 1250 | |
| 1251 | if (wresult != THREAD_AWAKENED) { |
| 1252 | thread_unstop(thread); |
| 1253 | return (FALSE); |
| 1254 | } |
| 1255 | |
| 1256 | s = splsched(); |
| 1257 | wake_lock(thread); |
| 1258 | thread_lock(thread); |
| 1259 | } |
| 1260 | |
| 1261 | thread_unlock(thread); |
| 1262 | wake_unlock(thread); |
| 1263 | splx(s); |
| 1264 | |
| 1265 | /* |
| 1266 | * We return with the thread unlocked. To prevent it from |
| 1267 | * transitioning to a runnable state (or from TH_RUN to |
| 1268 | * being on the CPU), the caller must ensure the thread |
| 1269 | * is stopped via an external means (such as an AST) |
| 1270 | */ |
| 1271 | |
| 1272 | return (TRUE); |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * thread_unstop: |
| 1277 | * |
| 1278 | * Release a previous stop request and set |
| 1279 | * the thread running if appropriate. |
| 1280 | * |
| 1281 | * Use only after a successful stop operation. |
| 1282 | */ |
| 1283 | void |
| 1284 | thread_unstop( |
| 1285 | thread_t thread) |
| 1286 | { |
| 1287 | spl_t s = splsched(); |
| 1288 | |
| 1289 | wake_lock(thread); |
| 1290 | thread_lock(thread); |
| 1291 | |
| 1292 | assert((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) != TH_SUSP); |
| 1293 | |
| 1294 | if (thread->state & TH_SUSP) { |
| 1295 | thread->state &= ~TH_SUSP; |
| 1296 | |
| 1297 | if (thread->wake_active) { |
| 1298 | thread->wake_active = FALSE; |
| 1299 | thread_unlock(thread); |
| 1300 | |
| 1301 | thread_wakeup(&thread->wake_active); |
| 1302 | wake_unlock(thread); |
| 1303 | splx(s); |
| 1304 | |
| 1305 | return; |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | thread_unlock(thread); |
| 1310 | wake_unlock(thread); |
| 1311 | splx(s); |
| 1312 | } |
| 1313 | |
| 1314 | /* |
| 1315 | * thread_wait: |
| 1316 | * |
| 1317 | * Wait for a thread to stop running. (non-interruptible) |
| 1318 | * |
| 1319 | */ |
| 1320 | void |
| 1321 | thread_wait( |
| 1322 | thread_t thread, |
| 1323 | boolean_t until_not_runnable) |
| 1324 | { |
| 1325 | wait_result_t wresult; |
| 1326 | boolean_t oncpu; |
| 1327 | processor_t processor; |
| 1328 | spl_t s = splsched(); |
| 1329 | |
| 1330 | wake_lock(thread); |
| 1331 | thread_lock(thread); |
| 1332 | |
| 1333 | /* |
| 1334 | * Wait until not running on a CPU. If stronger requirement |
| 1335 | * desired, wait until not runnable. Assumption: if thread is |
| 1336 | * on CPU, then TH_RUN is set, so we're not waiting in any case |
| 1337 | * where the original, pure "TH_RUN" check would have let us |
| 1338 | * finish. |
| 1339 | */ |
| 1340 | while ((oncpu = thread_isoncpu(thread)) || |
| 1341 | (until_not_runnable && (thread->state & TH_RUN))) { |
| 1342 | |
| 1343 | if (oncpu) { |
| 1344 | assert(thread->state & TH_RUN); |
| 1345 | processor = thread->chosen_processor; |
| 1346 | cause_ast_check(processor); |
| 1347 | } |
| 1348 | |
| 1349 | thread->wake_active = TRUE; |
| 1350 | thread_unlock(thread); |
| 1351 | |
| 1352 | wresult = assert_wait(&thread->wake_active, THREAD_UNINT); |
| 1353 | wake_unlock(thread); |
| 1354 | splx(s); |
| 1355 | |
| 1356 | if (wresult == THREAD_WAITING) |
| 1357 | thread_block(THREAD_CONTINUE_NULL); |
| 1358 | |
| 1359 | s = splsched(); |
| 1360 | wake_lock(thread); |
| 1361 | thread_lock(thread); |
| 1362 | } |
| 1363 | |
| 1364 | thread_unlock(thread); |
| 1365 | wake_unlock(thread); |
| 1366 | splx(s); |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * Routine: clear_wait_internal |
| 1371 | * |
| 1372 | * Clear the wait condition for the specified thread. |
| 1373 | * Start the thread executing if that is appropriate. |
| 1374 | * Arguments: |
| 1375 | * thread thread to awaken |
| 1376 | * result Wakeup result the thread should see |
| 1377 | * Conditions: |
| 1378 | * At splsched |
| 1379 | * the thread is locked. |
| 1380 | * Returns: |
| 1381 | * KERN_SUCCESS thread was rousted out a wait |
| 1382 | * KERN_FAILURE thread was waiting but could not be rousted |
| 1383 | * KERN_NOT_WAITING thread was not waiting |
| 1384 | */ |
| 1385 | __private_extern__ kern_return_t |
| 1386 | clear_wait_internal( |
| 1387 | thread_t thread, |
| 1388 | wait_result_t wresult) |
| 1389 | { |
| 1390 | uint32_t i = LockTimeOutUsec; |
| 1391 | struct waitq *waitq = thread->waitq; |
| 1392 | |
| 1393 | do { |
| 1394 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) |
| 1395 | return (KERN_FAILURE); |
| 1396 | |
| 1397 | if (waitq != NULL) { |
| 1398 | if (!waitq_pull_thread_locked(waitq, thread)) { |
| 1399 | thread_unlock(thread); |
| 1400 | delay(1); |
| 1401 | if (i > 0 && !machine_timeout_suspended()) |
| 1402 | i--; |
| 1403 | thread_lock(thread); |
| 1404 | if (waitq != thread->waitq) |
| 1405 | return KERN_NOT_WAITING; |
| 1406 | continue; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | /* TODO: Can we instead assert TH_TERMINATE is not set? */ |
| 1411 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) |
| 1412 | return (thread_go(thread, wresult)); |
| 1413 | else |
| 1414 | return (KERN_NOT_WAITING); |
| 1415 | } while (i > 0); |
| 1416 | |
| 1417 | panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n" , |
| 1418 | thread, waitq, cpu_number()); |
| 1419 | |
| 1420 | return (KERN_FAILURE); |
| 1421 | } |
| 1422 | |
| 1423 | |
| 1424 | /* |
| 1425 | * clear_wait: |
| 1426 | * |
| 1427 | * Clear the wait condition for the specified thread. Start the thread |
| 1428 | * executing if that is appropriate. |
| 1429 | * |
| 1430 | * parameters: |
| 1431 | * thread thread to awaken |
| 1432 | * result Wakeup result the thread should see |
| 1433 | */ |
| 1434 | kern_return_t |
| 1435 | clear_wait( |
| 1436 | thread_t thread, |
| 1437 | wait_result_t result) |
| 1438 | { |
| 1439 | kern_return_t ret; |
| 1440 | spl_t s; |
| 1441 | |
| 1442 | s = splsched(); |
| 1443 | thread_lock(thread); |
| 1444 | ret = clear_wait_internal(thread, result); |
| 1445 | thread_unlock(thread); |
| 1446 | splx(s); |
| 1447 | return ret; |
| 1448 | } |
| 1449 | |
| 1450 | |
| 1451 | /* |
| 1452 | * thread_wakeup_prim: |
| 1453 | * |
| 1454 | * Common routine for thread_wakeup, thread_wakeup_with_result, |
| 1455 | * and thread_wakeup_one. |
| 1456 | * |
| 1457 | */ |
| 1458 | kern_return_t |
| 1459 | thread_wakeup_prim( |
| 1460 | event_t event, |
| 1461 | boolean_t one_thread, |
| 1462 | wait_result_t result) |
| 1463 | { |
| 1464 | if (__improbable(event == NO_EVENT)) |
| 1465 | panic("%s() called with NO_EVENT" , __func__); |
| 1466 | |
| 1467 | struct waitq *wq = global_eventq(event); |
| 1468 | |
| 1469 | if (one_thread) |
| 1470 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); |
| 1471 | else |
| 1472 | return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Wakeup a specified thread if and only if it's waiting for this event |
| 1477 | */ |
| 1478 | kern_return_t |
| 1479 | thread_wakeup_thread( |
| 1480 | event_t event, |
| 1481 | thread_t thread) |
| 1482 | { |
| 1483 | if (__improbable(event == NO_EVENT)) |
| 1484 | panic("%s() called with NO_EVENT" , __func__); |
| 1485 | |
| 1486 | if (__improbable(thread == THREAD_NULL)) |
| 1487 | panic("%s() called with THREAD_NULL" , __func__); |
| 1488 | |
| 1489 | struct waitq *wq = global_eventq(event); |
| 1490 | |
| 1491 | return waitq_wakeup64_thread(wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED); |
| 1492 | } |
| 1493 | |
| 1494 | /* |
| 1495 | * Wakeup a thread waiting on an event and promote it to a priority. |
| 1496 | * |
| 1497 | * Requires woken thread to un-promote itself when done. |
| 1498 | */ |
| 1499 | kern_return_t |
| 1500 | thread_wakeup_one_with_pri( |
| 1501 | event_t event, |
| 1502 | int priority) |
| 1503 | { |
| 1504 | if (__improbable(event == NO_EVENT)) |
| 1505 | panic("%s() called with NO_EVENT" , __func__); |
| 1506 | |
| 1507 | struct waitq *wq = global_eventq(event); |
| 1508 | |
| 1509 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); |
| 1510 | } |
| 1511 | |
| 1512 | /* |
| 1513 | * Wakeup a thread waiting on an event, |
| 1514 | * promote it to a priority, |
| 1515 | * and return a reference to the woken thread. |
| 1516 | * |
| 1517 | * Requires woken thread to un-promote itself when done. |
| 1518 | */ |
| 1519 | thread_t |
| 1520 | thread_wakeup_identify(event_t event, |
| 1521 | int priority) |
| 1522 | { |
| 1523 | if (__improbable(event == NO_EVENT)) |
| 1524 | panic("%s() called with NO_EVENT" , __func__); |
| 1525 | |
| 1526 | struct waitq *wq = global_eventq(event); |
| 1527 | |
| 1528 | return waitq_wakeup64_identify(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * thread_bind: |
| 1533 | * |
| 1534 | * Force the current thread to execute on the specified processor. |
| 1535 | * Takes effect after the next thread_block(). |
| 1536 | * |
| 1537 | * Returns the previous binding. PROCESSOR_NULL means |
| 1538 | * not bound. |
| 1539 | * |
| 1540 | * XXX - DO NOT export this to users - XXX |
| 1541 | */ |
| 1542 | processor_t |
| 1543 | thread_bind( |
| 1544 | processor_t processor) |
| 1545 | { |
| 1546 | thread_t self = current_thread(); |
| 1547 | processor_t prev; |
| 1548 | spl_t s; |
| 1549 | |
| 1550 | s = splsched(); |
| 1551 | thread_lock(self); |
| 1552 | |
| 1553 | prev = thread_bind_internal(self, processor); |
| 1554 | |
| 1555 | thread_unlock(self); |
| 1556 | splx(s); |
| 1557 | |
| 1558 | return (prev); |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * thread_bind_internal: |
| 1563 | * |
| 1564 | * If the specified thread is not the current thread, and it is currently |
| 1565 | * running on another CPU, a remote AST must be sent to that CPU to cause |
| 1566 | * the thread to migrate to its bound processor. Otherwise, the migration |
| 1567 | * will occur at the next quantum expiration or blocking point. |
| 1568 | * |
| 1569 | * When the thread is the current thread, and explicit thread_block() should |
| 1570 | * be used to force the current processor to context switch away and |
| 1571 | * let the thread migrate to the bound processor. |
| 1572 | * |
| 1573 | * Thread must be locked, and at splsched. |
| 1574 | */ |
| 1575 | |
| 1576 | static processor_t |
| 1577 | thread_bind_internal( |
| 1578 | thread_t thread, |
| 1579 | processor_t processor) |
| 1580 | { |
| 1581 | processor_t prev; |
| 1582 | |
| 1583 | /* <rdar://problem/15102234> */ |
| 1584 | assert(thread->sched_pri < BASEPRI_RTQUEUES); |
| 1585 | /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */ |
| 1586 | assert(thread->runq == PROCESSOR_NULL); |
| 1587 | |
| 1588 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0); |
| 1589 | |
| 1590 | prev = thread->bound_processor; |
| 1591 | thread->bound_processor = processor; |
| 1592 | |
| 1593 | return (prev); |
| 1594 | } |
| 1595 | |
| 1596 | /* |
| 1597 | * thread_vm_bind_group_add: |
| 1598 | * |
| 1599 | * The "VM bind group" is a special mechanism to mark a collection |
| 1600 | * of threads from the VM subsystem that, in general, should be scheduled |
| 1601 | * with only one CPU of parallelism. To accomplish this, we initially |
| 1602 | * bind all the threads to the master processor, which has the effect |
| 1603 | * that only one of the threads in the group can execute at once, including |
| 1604 | * preempting threads in the group that are a lower priority. Future |
| 1605 | * mechanisms may use more dynamic mechanisms to prevent the collection |
| 1606 | * of VM threads from using more CPU time than desired. |
| 1607 | * |
| 1608 | * The current implementation can result in priority inversions where |
| 1609 | * compute-bound priority 95 or realtime threads that happen to have |
| 1610 | * landed on the master processor prevent the VM threads from running. |
| 1611 | * When this situation is detected, we unbind the threads for one |
| 1612 | * scheduler tick to allow the scheduler to run the threads an |
| 1613 | * additional CPUs, before restoring the binding (assuming high latency |
| 1614 | * is no longer a problem). |
| 1615 | */ |
| 1616 | |
| 1617 | /* |
| 1618 | * The current max is provisioned for: |
| 1619 | * vm_compressor_swap_trigger_thread (92) |
| 1620 | * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE |
| 1621 | * vm_pageout_continue (92) |
| 1622 | * memorystatus_thread (95) |
| 1623 | */ |
| 1624 | #define MAX_VM_BIND_GROUP_COUNT (5) |
| 1625 | decl_simple_lock_data(static,sched_vm_group_list_lock); |
| 1626 | static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT]; |
| 1627 | static int sched_vm_group_thread_count; |
| 1628 | static boolean_t sched_vm_group_temporarily_unbound = FALSE; |
| 1629 | |
| 1630 | void |
| 1631 | thread_vm_bind_group_add(void) |
| 1632 | { |
| 1633 | thread_t self = current_thread(); |
| 1634 | |
| 1635 | thread_reference_internal(self); |
| 1636 | self->options |= TH_OPT_SCHED_VM_GROUP; |
| 1637 | |
| 1638 | simple_lock(&sched_vm_group_list_lock); |
| 1639 | assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT); |
| 1640 | sched_vm_group_thread_list[sched_vm_group_thread_count++] = self; |
| 1641 | simple_unlock(&sched_vm_group_list_lock); |
| 1642 | |
| 1643 | thread_bind(master_processor); |
| 1644 | |
| 1645 | /* Switch to bound processor if not already there */ |
| 1646 | thread_block(THREAD_CONTINUE_NULL); |
| 1647 | } |
| 1648 | |
| 1649 | static void |
| 1650 | sched_vm_group_maintenance(void) |
| 1651 | { |
| 1652 | uint64_t ctime = mach_absolute_time(); |
| 1653 | uint64_t longtime = ctime - sched_tick_interval; |
| 1654 | int i; |
| 1655 | spl_t s; |
| 1656 | boolean_t high_latency_observed = FALSE; |
| 1657 | boolean_t runnable_and_not_on_runq_observed = FALSE; |
| 1658 | boolean_t bind_target_changed = FALSE; |
| 1659 | processor_t bind_target = PROCESSOR_NULL; |
| 1660 | |
| 1661 | /* Make sure nobody attempts to add new threads while we are enumerating them */ |
| 1662 | simple_lock(&sched_vm_group_list_lock); |
| 1663 | |
| 1664 | s = splsched(); |
| 1665 | |
| 1666 | for (i=0; i < sched_vm_group_thread_count; i++) { |
| 1667 | thread_t thread = sched_vm_group_thread_list[i]; |
| 1668 | assert(thread != THREAD_NULL); |
| 1669 | thread_lock(thread); |
| 1670 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) { |
| 1671 | if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) { |
| 1672 | high_latency_observed = TRUE; |
| 1673 | } else if (thread->runq == PROCESSOR_NULL) { |
| 1674 | /* There are some cases where a thread be transitiong that also fall into this case */ |
| 1675 | runnable_and_not_on_runq_observed = TRUE; |
| 1676 | } |
| 1677 | } |
| 1678 | thread_unlock(thread); |
| 1679 | |
| 1680 | if (high_latency_observed && runnable_and_not_on_runq_observed) { |
| 1681 | /* All the things we are looking for are true, stop looking */ |
| 1682 | break; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | splx(s); |
| 1687 | |
| 1688 | if (sched_vm_group_temporarily_unbound) { |
| 1689 | /* If we turned off binding, make sure everything is OK before rebinding */ |
| 1690 | if (!high_latency_observed) { |
| 1691 | /* rebind */ |
| 1692 | bind_target_changed = TRUE; |
| 1693 | bind_target = master_processor; |
| 1694 | sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */ |
| 1695 | } |
| 1696 | } else { |
| 1697 | /* |
| 1698 | * Check if we're in a bad state, which is defined by high |
| 1699 | * latency with no core currently executing a thread. If a |
| 1700 | * single thread is making progress on a CPU, that means the |
| 1701 | * binding concept to reduce parallelism is working as |
| 1702 | * designed. |
| 1703 | */ |
| 1704 | if (high_latency_observed && !runnable_and_not_on_runq_observed) { |
| 1705 | /* unbind */ |
| 1706 | bind_target_changed = TRUE; |
| 1707 | bind_target = PROCESSOR_NULL; |
| 1708 | sched_vm_group_temporarily_unbound = TRUE; |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | if (bind_target_changed) { |
| 1713 | s = splsched(); |
| 1714 | for (i=0; i < sched_vm_group_thread_count; i++) { |
| 1715 | thread_t thread = sched_vm_group_thread_list[i]; |
| 1716 | boolean_t removed; |
| 1717 | assert(thread != THREAD_NULL); |
| 1718 | |
| 1719 | thread_lock(thread); |
| 1720 | removed = thread_run_queue_remove(thread); |
| 1721 | if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) { |
| 1722 | thread_bind_internal(thread, bind_target); |
| 1723 | } else { |
| 1724 | /* |
| 1725 | * Thread was in the middle of being context-switched-to, |
| 1726 | * or was in the process of blocking. To avoid switching the bind |
| 1727 | * state out mid-flight, defer the change if possible. |
| 1728 | */ |
| 1729 | if (bind_target == PROCESSOR_NULL) { |
| 1730 | thread_bind_internal(thread, bind_target); |
| 1731 | } else { |
| 1732 | sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */ |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | if (removed) { |
| 1737 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); |
| 1738 | } |
| 1739 | thread_unlock(thread); |
| 1740 | } |
| 1741 | splx(s); |
| 1742 | } |
| 1743 | |
| 1744 | simple_unlock(&sched_vm_group_list_lock); |
| 1745 | } |
| 1746 | |
| 1747 | /* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT |
| 1748 | * rebalancing opportunity exists when a core is (instantaneously) idle, but |
| 1749 | * other SMT-capable cores may be over-committed. TODO: some possible negatives: |
| 1750 | * IPI thrash if this core does not remain idle following the load balancing ASTs |
| 1751 | * Idle "thrash", when IPI issue is followed by idle entry/core power down |
| 1752 | * followed by a wakeup shortly thereafter. |
| 1753 | */ |
| 1754 | |
| 1755 | #if (DEVELOPMENT || DEBUG) |
| 1756 | int sched_smt_balance = 1; |
| 1757 | #endif |
| 1758 | |
| 1759 | #if __SMP__ |
| 1760 | /* Invoked with pset locked, returns with pset unlocked */ |
| 1761 | void |
| 1762 | sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) { |
| 1763 | processor_t ast_processor = NULL; |
| 1764 | |
| 1765 | #if (DEVELOPMENT || DEBUG) |
| 1766 | if (__improbable(sched_smt_balance == 0)) |
| 1767 | goto smt_balance_exit; |
| 1768 | #endif |
| 1769 | |
| 1770 | assert(cprocessor == current_processor()); |
| 1771 | if (cprocessor->is_SMT == FALSE) |
| 1772 | goto smt_balance_exit; |
| 1773 | |
| 1774 | processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary; |
| 1775 | |
| 1776 | /* Determine if both this processor and its sibling are idle, |
| 1777 | * indicating an SMT rebalancing opportunity. |
| 1778 | */ |
| 1779 | if (sib_processor->state != PROCESSOR_IDLE) |
| 1780 | goto smt_balance_exit; |
| 1781 | |
| 1782 | processor_t sprocessor; |
| 1783 | |
| 1784 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 1785 | uint64_t running_secondary_map = (cpset->cpu_state_map[PROCESSOR_RUNNING] & |
| 1786 | ~cpset->primary_map); |
| 1787 | for (int cpuid = lsb_first(running_secondary_map); cpuid >= 0; cpuid = lsb_next(running_secondary_map, cpuid)) { |
| 1788 | sprocessor = processor_array[cpuid]; |
| 1789 | if ((sprocessor->processor_primary->state == PROCESSOR_RUNNING) && |
| 1790 | (sprocessor->current_pri < BASEPRI_RTQUEUES)) { |
| 1791 | |
| 1792 | ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL); |
| 1793 | if (ipi_type != SCHED_IPI_NONE) { |
| 1794 | assert(sprocessor != cprocessor); |
| 1795 | ast_processor = sprocessor; |
| 1796 | break; |
| 1797 | } |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | smt_balance_exit: |
| 1802 | pset_unlock(cpset); |
| 1803 | |
| 1804 | if (ast_processor) { |
| 1805 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0); |
| 1806 | sched_ipi_perform(ast_processor, ipi_type); |
| 1807 | } |
| 1808 | } |
| 1809 | #else |
| 1810 | /* Invoked with pset locked, returns with pset unlocked */ |
| 1811 | void |
| 1812 | sched_SMT_balance(__unused processor_t cprocessor, processor_set_t cpset) |
| 1813 | { |
| 1814 | pset_unlock(cpset); |
| 1815 | } |
| 1816 | #endif /* __SMP__ */ |
| 1817 | |
| 1818 | static processor_t choose_processor_for_realtime_thread(processor_set_t pset); |
| 1819 | static bool all_available_primaries_are_running_realtime_threads(processor_set_t pset); |
| 1820 | int sched_allow_rt_smt = 1; |
| 1821 | |
| 1822 | /* |
| 1823 | * thread_select: |
| 1824 | * |
| 1825 | * Select a new thread for the current processor to execute. |
| 1826 | * |
| 1827 | * May select the current thread, which must be locked. |
| 1828 | */ |
| 1829 | static thread_t |
| 1830 | thread_select(thread_t thread, |
| 1831 | processor_t processor, |
| 1832 | ast_t *reason) |
| 1833 | { |
| 1834 | processor_set_t pset = processor->processor_set; |
| 1835 | thread_t new_thread = THREAD_NULL; |
| 1836 | |
| 1837 | assert(processor == current_processor()); |
| 1838 | assert((thread->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); |
| 1839 | |
| 1840 | do { |
| 1841 | /* |
| 1842 | * Update the priority. |
| 1843 | */ |
| 1844 | if (SCHED(can_update_priority)(thread)) |
| 1845 | SCHED(update_priority)(thread); |
| 1846 | |
| 1847 | processor_state_update_from_thread(processor, thread); |
| 1848 | |
| 1849 | pset_lock(pset); |
| 1850 | |
| 1851 | assert(processor->state != PROCESSOR_OFF_LINE); |
| 1852 | |
| 1853 | if (!processor->is_recommended) { |
| 1854 | /* |
| 1855 | * The performance controller has provided a hint to not dispatch more threads, |
| 1856 | * unless they are bound to us (and thus we are the only option |
| 1857 | */ |
| 1858 | if (!SCHED(processor_bound_count)(processor)) { |
| 1859 | goto idle; |
| 1860 | } |
| 1861 | } else if (processor->processor_primary != processor) { |
| 1862 | /* |
| 1863 | * Should this secondary SMT processor attempt to find work? For pset runqueue systems, |
| 1864 | * we should look for work only under the same conditions that choose_processor() |
| 1865 | * would have assigned work, which is when all primary processors have been assigned work. |
| 1866 | * |
| 1867 | * An exception is that bound threads are dispatched to a processor without going through |
| 1868 | * choose_processor(), so in those cases we should continue trying to dequeue work. |
| 1869 | */ |
| 1870 | if (!SCHED(processor_bound_count)(processor)) { |
| 1871 | if ((pset->recommended_bitmask & pset->primary_map & pset->cpu_state_map[PROCESSOR_IDLE]) != 0) { |
| 1872 | goto idle; |
| 1873 | } |
| 1874 | |
| 1875 | /* There are no idle primaries */ |
| 1876 | |
| 1877 | if (processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) { |
| 1878 | bool secondary_can_run_realtime_thread = sched_allow_rt_smt && rt_runq_count(pset) && all_available_primaries_are_running_realtime_threads(pset); |
| 1879 | if (!secondary_can_run_realtime_thread) { |
| 1880 | goto idle; |
| 1881 | } |
| 1882 | } |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | /* |
| 1887 | * Test to see if the current thread should continue |
| 1888 | * to run on this processor. Must not be attempting to wait, and not |
| 1889 | * bound to a different processor, nor be in the wrong |
| 1890 | * processor set, nor be forced to context switch by TH_SUSP. |
| 1891 | * |
| 1892 | * Note that there are never any RT threads in the regular runqueue. |
| 1893 | * |
| 1894 | * This code is very insanely tricky. |
| 1895 | */ |
| 1896 | |
| 1897 | /* i.e. not waiting, not TH_SUSP'ed */ |
| 1898 | boolean_t still_running = ((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN); |
| 1899 | |
| 1900 | /* |
| 1901 | * Threads running on SMT processors are forced to context switch. Don't rebalance realtime threads. |
| 1902 | * TODO: This should check if it's worth it to rebalance, i.e. 'are there any idle primary processors' |
| 1903 | */ |
| 1904 | boolean_t needs_smt_rebalance = (thread->sched_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor); |
| 1905 | |
| 1906 | boolean_t affinity_mismatch = (thread->affinity_set != AFFINITY_SET_NULL && thread->affinity_set->aset_pset != pset); |
| 1907 | |
| 1908 | boolean_t bound_elsewhere = (thread->bound_processor != PROCESSOR_NULL && thread->bound_processor != processor); |
| 1909 | |
| 1910 | boolean_t avoid_processor = (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread)); |
| 1911 | |
| 1912 | if (still_running && !needs_smt_rebalance && !affinity_mismatch && !bound_elsewhere && !avoid_processor) { |
| 1913 | /* |
| 1914 | * This thread is eligible to keep running on this processor. |
| 1915 | * |
| 1916 | * RT threads with un-expired quantum stay on processor, |
| 1917 | * unless there's a valid RT thread with an earlier deadline. |
| 1918 | */ |
| 1919 | if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) { |
| 1920 | if (rt_runq_count(pset) > 0) { |
| 1921 | |
| 1922 | rt_lock_lock(pset); |
| 1923 | |
| 1924 | if (rt_runq_count(pset) > 0) { |
| 1925 | |
| 1926 | thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
| 1927 | |
| 1928 | if (next_rt->realtime.deadline < processor->deadline && |
| 1929 | (next_rt->bound_processor == PROCESSOR_NULL || |
| 1930 | next_rt->bound_processor == processor)) { |
| 1931 | /* The next RT thread is better, so pick it off the runqueue. */ |
| 1932 | goto pick_new_rt_thread; |
| 1933 | } |
| 1934 | } |
| 1935 | |
| 1936 | rt_lock_unlock(pset); |
| 1937 | } |
| 1938 | |
| 1939 | /* This is still the best RT thread to run. */ |
| 1940 | processor->deadline = thread->realtime.deadline; |
| 1941 | |
| 1942 | sched_update_pset_load_average(pset); |
| 1943 | |
| 1944 | processor_t next_rt_processor = PROCESSOR_NULL; |
| 1945 | sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE; |
| 1946 | |
| 1947 | if (rt_runq_count(pset) > 0) { |
| 1948 | next_rt_processor = choose_processor_for_realtime_thread(pset); |
| 1949 | if (next_rt_processor) { |
| 1950 | next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT); |
| 1951 | } |
| 1952 | } |
| 1953 | pset_unlock(pset); |
| 1954 | |
| 1955 | if (next_rt_processor) { |
| 1956 | sched_ipi_perform(next_rt_processor, next_rt_ipi_type); |
| 1957 | } |
| 1958 | |
| 1959 | return (thread); |
| 1960 | } |
| 1961 | |
| 1962 | if ((rt_runq_count(pset) == 0) && |
| 1963 | SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) { |
| 1964 | /* This thread is still the highest priority runnable (non-idle) thread */ |
| 1965 | processor->deadline = UINT64_MAX; |
| 1966 | |
| 1967 | sched_update_pset_load_average(pset); |
| 1968 | pset_unlock(pset); |
| 1969 | |
| 1970 | return (thread); |
| 1971 | } |
| 1972 | } else { |
| 1973 | /* |
| 1974 | * This processor must context switch. |
| 1975 | * If it's due to a rebalance, we should aggressively find this thread a new home. |
| 1976 | */ |
| 1977 | if (needs_smt_rebalance || affinity_mismatch || bound_elsewhere || avoid_processor) |
| 1978 | *reason |= AST_REBALANCE; |
| 1979 | } |
| 1980 | |
| 1981 | /* OK, so we're not going to run the current thread. Look at the RT queue. */ |
| 1982 | if (rt_runq_count(pset) > 0) { |
| 1983 | |
| 1984 | rt_lock_lock(pset); |
| 1985 | |
| 1986 | if (rt_runq_count(pset) > 0) { |
| 1987 | thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
| 1988 | |
| 1989 | if (__probable((next_rt->bound_processor == PROCESSOR_NULL || |
| 1990 | (next_rt->bound_processor == processor)))) { |
| 1991 | pick_new_rt_thread: |
| 1992 | new_thread = qe_dequeue_head(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
| 1993 | |
| 1994 | new_thread->runq = PROCESSOR_NULL; |
| 1995 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); |
| 1996 | rt_runq_count_decr(pset); |
| 1997 | |
| 1998 | processor->deadline = new_thread->realtime.deadline; |
| 1999 | processor_state_update_from_thread(processor, new_thread); |
| 2000 | |
| 2001 | rt_lock_unlock(pset); |
| 2002 | sched_update_pset_load_average(pset); |
| 2003 | |
| 2004 | processor_t ast_processor = PROCESSOR_NULL; |
| 2005 | processor_t next_rt_processor = PROCESSOR_NULL; |
| 2006 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 2007 | sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE; |
| 2008 | |
| 2009 | if (processor->processor_secondary != NULL) { |
| 2010 | processor_t sprocessor = processor->processor_secondary; |
| 2011 | if ((sprocessor->state == PROCESSOR_RUNNING) || (sprocessor->state == PROCESSOR_DISPATCHING)) { |
| 2012 | ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL); |
| 2013 | ast_processor = sprocessor; |
| 2014 | } |
| 2015 | } |
| 2016 | if (rt_runq_count(pset) > 0) { |
| 2017 | next_rt_processor = choose_processor_for_realtime_thread(pset); |
| 2018 | if (next_rt_processor) { |
| 2019 | next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT); |
| 2020 | } |
| 2021 | } |
| 2022 | pset_unlock(pset); |
| 2023 | |
| 2024 | if (ast_processor) { |
| 2025 | sched_ipi_perform(ast_processor, ipi_type); |
| 2026 | } |
| 2027 | |
| 2028 | if (next_rt_processor) { |
| 2029 | sched_ipi_perform(next_rt_processor, next_rt_ipi_type); |
| 2030 | } |
| 2031 | |
| 2032 | return (new_thread); |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | rt_lock_unlock(pset); |
| 2037 | } |
| 2038 | |
| 2039 | processor->deadline = UINT64_MAX; |
| 2040 | |
| 2041 | /* No RT threads, so let's look at the regular threads. */ |
| 2042 | if ((new_thread = SCHED(choose_thread)(processor, MINPRI, *reason)) != THREAD_NULL) { |
| 2043 | sched_update_pset_load_average(pset); |
| 2044 | processor_state_update_from_thread(processor, new_thread); |
| 2045 | pset_unlock(pset); |
| 2046 | return (new_thread); |
| 2047 | } |
| 2048 | |
| 2049 | #if __SMP__ |
| 2050 | if (SCHED(steal_thread_enabled)) { |
| 2051 | /* |
| 2052 | * No runnable threads, attempt to steal |
| 2053 | * from other processors. Returns with pset lock dropped. |
| 2054 | */ |
| 2055 | |
| 2056 | if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) { |
| 2057 | return (new_thread); |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | * If other threads have appeared, shortcut |
| 2062 | * around again. |
| 2063 | */ |
| 2064 | if (!SCHED(processor_queue_empty)(processor) || rt_runq_count(pset) > 0) |
| 2065 | continue; |
| 2066 | |
| 2067 | pset_lock(pset); |
| 2068 | } |
| 2069 | #endif |
| 2070 | |
| 2071 | idle: |
| 2072 | /* |
| 2073 | * Nothing is runnable, so set this processor idle if it |
| 2074 | * was running. |
| 2075 | */ |
| 2076 | if (processor->state == PROCESSOR_RUNNING) { |
| 2077 | pset_update_processor_state(pset, processor, PROCESSOR_IDLE); |
| 2078 | } |
| 2079 | |
| 2080 | #if __SMP__ |
| 2081 | /* Invoked with pset locked, returns with pset unlocked */ |
| 2082 | SCHED(processor_balance)(processor, pset); |
| 2083 | #else |
| 2084 | pset_unlock(pset); |
| 2085 | #endif |
| 2086 | |
| 2087 | #if CONFIG_SCHED_IDLE_IN_PLACE |
| 2088 | /* |
| 2089 | * Choose idle thread if fast idle is not possible. |
| 2090 | */ |
| 2091 | if (processor->processor_primary != processor) |
| 2092 | return (processor->idle_thread); |
| 2093 | |
| 2094 | if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES) |
| 2095 | return (processor->idle_thread); |
| 2096 | |
| 2097 | /* |
| 2098 | * Perform idling activities directly without a |
| 2099 | * context switch. Return dispatched thread, |
| 2100 | * else check again for a runnable thread. |
| 2101 | */ |
| 2102 | new_thread = thread_select_idle(thread, processor); |
| 2103 | |
| 2104 | #else /* !CONFIG_SCHED_IDLE_IN_PLACE */ |
| 2105 | |
| 2106 | /* |
| 2107 | * Do a full context switch to idle so that the current |
| 2108 | * thread can start running on another processor without |
| 2109 | * waiting for the fast-idled processor to wake up. |
| 2110 | */ |
| 2111 | new_thread = processor->idle_thread; |
| 2112 | |
| 2113 | #endif /* !CONFIG_SCHED_IDLE_IN_PLACE */ |
| 2114 | |
| 2115 | } while (new_thread == THREAD_NULL); |
| 2116 | |
| 2117 | return (new_thread); |
| 2118 | } |
| 2119 | |
| 2120 | #if CONFIG_SCHED_IDLE_IN_PLACE |
| 2121 | /* |
| 2122 | * thread_select_idle: |
| 2123 | * |
| 2124 | * Idle the processor using the current thread context. |
| 2125 | * |
| 2126 | * Called with thread locked, then dropped and relocked. |
| 2127 | */ |
| 2128 | static thread_t |
| 2129 | thread_select_idle( |
| 2130 | thread_t thread, |
| 2131 | processor_t processor) |
| 2132 | { |
| 2133 | thread_t new_thread; |
| 2134 | uint64_t arg1, arg2; |
| 2135 | int urgency; |
| 2136 | |
| 2137 | sched_run_decr(thread); |
| 2138 | |
| 2139 | thread->state |= TH_IDLE; |
| 2140 | processor_state_update_idle(procssor); |
| 2141 | |
| 2142 | /* Reload precise timing global policy to thread-local policy */ |
| 2143 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); |
| 2144 | |
| 2145 | thread_unlock(thread); |
| 2146 | |
| 2147 | /* |
| 2148 | * Switch execution timing to processor idle thread. |
| 2149 | */ |
| 2150 | processor->last_dispatch = mach_absolute_time(); |
| 2151 | |
| 2152 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
| 2153 | commpage_update_mach_approximate_time(processor->last_dispatch); |
| 2154 | #endif |
| 2155 | |
| 2156 | thread->last_run_time = processor->last_dispatch; |
| 2157 | processor_timer_switch_thread(processor->last_dispatch, |
| 2158 | &processor->idle_thread->system_timer); |
| 2159 | PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer; |
| 2160 | |
| 2161 | |
| 2162 | /* |
| 2163 | * Cancel the quantum timer while idling. |
| 2164 | */ |
| 2165 | timer_call_quantum_timer_cancel(&processor->quantum_timer); |
| 2166 | processor->first_timeslice = FALSE; |
| 2167 | |
| 2168 | if (thread->sched_call) { |
| 2169 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); |
| 2170 | } |
| 2171 | |
| 2172 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL); |
| 2173 | |
| 2174 | /* |
| 2175 | * Enable interrupts and perform idling activities. No |
| 2176 | * preemption due to TH_IDLE being set. |
| 2177 | */ |
| 2178 | spllo(); new_thread = processor_idle(thread, processor); |
| 2179 | |
| 2180 | /* |
| 2181 | * Return at splsched. |
| 2182 | */ |
| 2183 | if (thread->sched_call) { |
| 2184 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); |
| 2185 | } |
| 2186 | |
| 2187 | thread_lock(thread); |
| 2188 | |
| 2189 | /* |
| 2190 | * If awakened, switch to thread timer and start a new quantum. |
| 2191 | * Otherwise skip; we will context switch to another thread or return here. |
| 2192 | */ |
| 2193 | if (!(thread->state & TH_WAIT)) { |
| 2194 | uint64_t time_now = processor->last_dispatch = mach_absolute_time(); |
| 2195 | processor_timer_switch_thread(time_now, &thread->system_timer); |
| 2196 | timer_update(&thread->runnable_timer, time_now); |
| 2197 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; |
| 2198 | thread_quantum_init(thread); |
| 2199 | processor->quantum_end = time_now + thread->quantum_remaining; |
| 2200 | timer_call_quantum_timer_enter(&processor->quantum_timer, |
| 2201 | thread, processor->quantum_end, time_now); |
| 2202 | processor->first_timeslice = TRUE; |
| 2203 | |
| 2204 | thread->computation_epoch = time_now; |
| 2205 | } |
| 2206 | |
| 2207 | thread->state &= ~TH_IDLE; |
| 2208 | |
| 2209 | urgency = thread_get_urgency(thread, &arg1, &arg2); |
| 2210 | |
| 2211 | thread_tell_urgency(urgency, arg1, arg2, 0, new_thread); |
| 2212 | |
| 2213 | sched_run_incr(thread); |
| 2214 | |
| 2215 | return (new_thread); |
| 2216 | } |
| 2217 | #endif /* CONFIG_SCHED_IDLE_IN_PLACE */ |
| 2218 | |
| 2219 | /* |
| 2220 | * thread_invoke |
| 2221 | * |
| 2222 | * Called at splsched with neither thread locked. |
| 2223 | * |
| 2224 | * Perform a context switch and start executing the new thread. |
| 2225 | * |
| 2226 | * Returns FALSE when the context switch didn't happen. |
| 2227 | * The reference to the new thread is still consumed. |
| 2228 | * |
| 2229 | * "self" is what is currently running on the processor, |
| 2230 | * "thread" is the new thread to context switch to |
| 2231 | * (which may be the same thread in some cases) |
| 2232 | */ |
| 2233 | static boolean_t |
| 2234 | thread_invoke( |
| 2235 | thread_t self, |
| 2236 | thread_t thread, |
| 2237 | ast_t reason) |
| 2238 | { |
| 2239 | if (__improbable(get_preemption_level() != 0)) { |
| 2240 | int pl = get_preemption_level(); |
| 2241 | panic("thread_invoke: preemption_level %d, possible cause: %s" , |
| 2242 | pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" : |
| 2243 | "blocking while holding a spinlock, or within interrupt context" )); |
| 2244 | } |
| 2245 | |
| 2246 | thread_continue_t continuation = self->continuation; |
| 2247 | void *parameter = self->parameter; |
| 2248 | processor_t processor; |
| 2249 | |
| 2250 | uint64_t ctime = mach_absolute_time(); |
| 2251 | |
| 2252 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
| 2253 | commpage_update_mach_approximate_time(ctime); |
| 2254 | #endif |
| 2255 | |
| 2256 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 2257 | if ((thread->state & TH_IDLE) == 0) |
| 2258 | sched_timeshare_consider_maintenance(ctime); |
| 2259 | #endif |
| 2260 | |
| 2261 | #if MONOTONIC |
| 2262 | mt_sched_update(self); |
| 2263 | #endif /* MONOTONIC */ |
| 2264 | |
| 2265 | assert_thread_magic(self); |
| 2266 | assert(self == current_thread()); |
| 2267 | assert(self->runq == PROCESSOR_NULL); |
| 2268 | assert((self->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); |
| 2269 | |
| 2270 | thread_lock(thread); |
| 2271 | |
| 2272 | assert_thread_magic(thread); |
| 2273 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); |
| 2274 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor()); |
| 2275 | assert(thread->runq == PROCESSOR_NULL); |
| 2276 | |
| 2277 | /* Reload precise timing global policy to thread-local policy */ |
| 2278 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); |
| 2279 | |
| 2280 | /* Update SFI class based on other factors */ |
| 2281 | thread->sfi_class = sfi_thread_classify(thread); |
| 2282 | |
| 2283 | /* Update the same_pri_latency for the thread (used by perfcontrol callouts) */ |
| 2284 | thread->same_pri_latency = ctime - thread->last_basepri_change_time; |
| 2285 | /* |
| 2286 | * In case a base_pri update happened between the timestamp and |
| 2287 | * taking the thread lock |
| 2288 | */ |
| 2289 | if (ctime <= thread->last_basepri_change_time) |
| 2290 | thread->same_pri_latency = ctime - thread->last_made_runnable_time; |
| 2291 | |
| 2292 | /* Allow realtime threads to hang onto a stack. */ |
| 2293 | if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack) |
| 2294 | self->reserved_stack = self->kernel_stack; |
| 2295 | |
| 2296 | /* Prepare for spin debugging */ |
| 2297 | #if INTERRUPT_MASKED_DEBUG |
| 2298 | ml_spin_debug_clear(thread); |
| 2299 | #endif |
| 2300 | |
| 2301 | if (continuation != NULL) { |
| 2302 | if (!thread->kernel_stack) { |
| 2303 | /* |
| 2304 | * If we are using a privileged stack, |
| 2305 | * check to see whether we can exchange it with |
| 2306 | * that of the other thread. |
| 2307 | */ |
| 2308 | if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack) |
| 2309 | goto need_stack; |
| 2310 | |
| 2311 | /* |
| 2312 | * Context switch by performing a stack handoff. |
| 2313 | */ |
| 2314 | continuation = thread->continuation; |
| 2315 | parameter = thread->parameter; |
| 2316 | |
| 2317 | processor = current_processor(); |
| 2318 | processor->active_thread = thread; |
| 2319 | processor_state_update_from_thread(processor, thread); |
| 2320 | |
| 2321 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
| 2322 | if (thread->last_processor->processor_set != processor->processor_set) |
| 2323 | thread->ps_switch++; |
| 2324 | thread->p_switch++; |
| 2325 | } |
| 2326 | thread->last_processor = processor; |
| 2327 | thread->c_switch++; |
| 2328 | ast_context(thread); |
| 2329 | |
| 2330 | thread_unlock(thread); |
| 2331 | |
| 2332 | self->reason = reason; |
| 2333 | |
| 2334 | processor->last_dispatch = ctime; |
| 2335 | self->last_run_time = ctime; |
| 2336 | processor_timer_switch_thread(ctime, &thread->system_timer); |
| 2337 | timer_update(&thread->runnable_timer, ctime); |
| 2338 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; |
| 2339 | |
| 2340 | /* |
| 2341 | * Since non-precise user/kernel time doesn't update the state timer |
| 2342 | * during privilege transitions, synthesize an event now. |
| 2343 | */ |
| 2344 | if (!thread->precise_user_kernel_time) { |
| 2345 | timer_update(PROCESSOR_DATA(processor, current_state), ctime); |
| 2346 | } |
| 2347 | |
| 2348 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2349 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE, |
| 2350 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 2351 | |
| 2352 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) { |
| 2353 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, |
| 2354 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
| 2355 | } |
| 2356 | |
| 2357 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
| 2358 | |
| 2359 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
| 2360 | |
| 2361 | #if KPERF |
| 2362 | kperf_off_cpu(self); |
| 2363 | #endif /* KPERF */ |
| 2364 | |
| 2365 | TLOG(1, "thread_invoke: calling stack_handoff\n" ); |
| 2366 | stack_handoff(self, thread); |
| 2367 | |
| 2368 | /* 'self' is now off core */ |
| 2369 | assert(thread == current_thread_volatile()); |
| 2370 | |
| 2371 | DTRACE_SCHED(on__cpu); |
| 2372 | |
| 2373 | #if KPERF |
| 2374 | kperf_on_cpu(thread, continuation, NULL); |
| 2375 | #endif /* KPERF */ |
| 2376 | |
| 2377 | thread_dispatch(self, thread); |
| 2378 | |
| 2379 | #if KASAN |
| 2380 | /* Old thread's stack has been moved to the new thread, so explicitly |
| 2381 | * unpoison it. */ |
| 2382 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); |
| 2383 | #endif |
| 2384 | |
| 2385 | thread->continuation = thread->parameter = NULL; |
| 2386 | |
| 2387 | counter(c_thread_invoke_hits++); |
| 2388 | |
| 2389 | assert(continuation); |
| 2390 | call_continuation(continuation, parameter, thread->wait_result, TRUE); |
| 2391 | /*NOTREACHED*/ |
| 2392 | } |
| 2393 | else if (thread == self) { |
| 2394 | /* same thread but with continuation */ |
| 2395 | ast_context(self); |
| 2396 | counter(++c_thread_invoke_same); |
| 2397 | |
| 2398 | thread_unlock(self); |
| 2399 | |
| 2400 | #if KPERF |
| 2401 | kperf_on_cpu(thread, continuation, NULL); |
| 2402 | #endif /* KPERF */ |
| 2403 | |
| 2404 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2405 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, |
| 2406 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 2407 | |
| 2408 | #if KASAN |
| 2409 | /* stack handoff to self - no thread_dispatch(), so clear the stack |
| 2410 | * and free the fakestack directly */ |
| 2411 | kasan_fakestack_drop(self); |
| 2412 | kasan_fakestack_gc(self); |
| 2413 | kasan_unpoison_stack(self->kernel_stack, kernel_stack_size); |
| 2414 | #endif |
| 2415 | |
| 2416 | self->continuation = self->parameter = NULL; |
| 2417 | |
| 2418 | call_continuation(continuation, parameter, self->wait_result, TRUE); |
| 2419 | /*NOTREACHED*/ |
| 2420 | } |
| 2421 | } else { |
| 2422 | /* |
| 2423 | * Check that the other thread has a stack |
| 2424 | */ |
| 2425 | if (!thread->kernel_stack) { |
| 2426 | need_stack: |
| 2427 | if (!stack_alloc_try(thread)) { |
| 2428 | counter(c_thread_invoke_misses++); |
| 2429 | thread_unlock(thread); |
| 2430 | thread_stack_enqueue(thread); |
| 2431 | return (FALSE); |
| 2432 | } |
| 2433 | } else if (thread == self) { |
| 2434 | ast_context(self); |
| 2435 | counter(++c_thread_invoke_same); |
| 2436 | thread_unlock(self); |
| 2437 | |
| 2438 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2439 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, |
| 2440 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 2441 | |
| 2442 | return (TRUE); |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * Context switch by full context save. |
| 2448 | */ |
| 2449 | processor = current_processor(); |
| 2450 | processor->active_thread = thread; |
| 2451 | processor_state_update_from_thread(processor, thread); |
| 2452 | |
| 2453 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
| 2454 | if (thread->last_processor->processor_set != processor->processor_set) |
| 2455 | thread->ps_switch++; |
| 2456 | thread->p_switch++; |
| 2457 | } |
| 2458 | thread->last_processor = processor; |
| 2459 | thread->c_switch++; |
| 2460 | ast_context(thread); |
| 2461 | |
| 2462 | thread_unlock(thread); |
| 2463 | |
| 2464 | counter(c_thread_invoke_csw++); |
| 2465 | |
| 2466 | self->reason = reason; |
| 2467 | |
| 2468 | processor->last_dispatch = ctime; |
| 2469 | self->last_run_time = ctime; |
| 2470 | processor_timer_switch_thread(ctime, &thread->system_timer); |
| 2471 | timer_update(&thread->runnable_timer, ctime); |
| 2472 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; |
| 2473 | |
| 2474 | /* |
| 2475 | * Since non-precise user/kernel time doesn't update the state timer |
| 2476 | * during privilege transitions, synthesize an event now. |
| 2477 | */ |
| 2478 | if (!thread->precise_user_kernel_time) { |
| 2479 | timer_update(PROCESSOR_DATA(processor, current_state), ctime); |
| 2480 | } |
| 2481 | |
| 2482 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2483 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, |
| 2484 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 2485 | |
| 2486 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) { |
| 2487 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, |
| 2488 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
| 2489 | } |
| 2490 | |
| 2491 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
| 2492 | |
| 2493 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
| 2494 | |
| 2495 | #if KPERF |
| 2496 | kperf_off_cpu(self); |
| 2497 | #endif /* KPERF */ |
| 2498 | |
| 2499 | /* |
| 2500 | * This is where we actually switch register context, |
| 2501 | * and address space if required. We will next run |
| 2502 | * as a result of a subsequent context switch. |
| 2503 | * |
| 2504 | * Once registers are switched and the processor is running "thread", |
| 2505 | * the stack variables and non-volatile registers will contain whatever |
| 2506 | * was there the last time that thread blocked. No local variables should |
| 2507 | * be used after this point, except for the special case of "thread", which |
| 2508 | * the platform layer returns as the previous thread running on the processor |
| 2509 | * via the function call ABI as a return register, and "self", which may have |
| 2510 | * been stored on the stack or a non-volatile register, but a stale idea of |
| 2511 | * what was on the CPU is newly-accurate because that thread is again |
| 2512 | * running on the CPU. |
| 2513 | */ |
| 2514 | assert(continuation == self->continuation); |
| 2515 | thread = machine_switch_context(self, continuation, thread); |
| 2516 | assert(self == current_thread_volatile()); |
| 2517 | TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n" , self, continuation, thread); |
| 2518 | |
| 2519 | DTRACE_SCHED(on__cpu); |
| 2520 | |
| 2521 | #if KPERF |
| 2522 | kperf_on_cpu(self, NULL, __builtin_frame_address(0)); |
| 2523 | #endif /* KPERF */ |
| 2524 | |
| 2525 | /* |
| 2526 | * We have been resumed and are set to run. |
| 2527 | */ |
| 2528 | thread_dispatch(thread, self); |
| 2529 | |
| 2530 | if (continuation) { |
| 2531 | self->continuation = self->parameter = NULL; |
| 2532 | |
| 2533 | call_continuation(continuation, parameter, self->wait_result, TRUE); |
| 2534 | /*NOTREACHED*/ |
| 2535 | } |
| 2536 | |
| 2537 | return (TRUE); |
| 2538 | } |
| 2539 | |
| 2540 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 2541 | /* |
| 2542 | * pset_cancel_deferred_dispatch: |
| 2543 | * |
| 2544 | * Cancels all ASTs that we can cancel for the given processor set |
| 2545 | * if the current processor is running the last runnable thread in the |
| 2546 | * system. |
| 2547 | * |
| 2548 | * This function assumes the current thread is runnable. This must |
| 2549 | * be called with the pset unlocked. |
| 2550 | */ |
| 2551 | static void |
| 2552 | pset_cancel_deferred_dispatch( |
| 2553 | processor_set_t pset, |
| 2554 | processor_t processor) |
| 2555 | { |
| 2556 | processor_t active_processor = NULL; |
| 2557 | uint32_t sampled_sched_run_count; |
| 2558 | |
| 2559 | pset_lock(pset); |
| 2560 | sampled_sched_run_count = (volatile uint32_t) sched_run_buckets[TH_BUCKET_RUN]; |
| 2561 | |
| 2562 | /* |
| 2563 | * If we have emptied the run queue, and our current thread is runnable, we |
| 2564 | * should tell any processors that are still DISPATCHING that they will |
| 2565 | * probably not have any work to do. In the event that there are no |
| 2566 | * pending signals that we can cancel, this is also uninteresting. |
| 2567 | * |
| 2568 | * In the unlikely event that another thread becomes runnable while we are |
| 2569 | * doing this (sched_run_count is atomically updated, not guarded), the |
| 2570 | * codepath making it runnable SHOULD (a dangerous word) need the pset lock |
| 2571 | * in order to dispatch it to a processor in our pset. So, the other |
| 2572 | * codepath will wait while we squash all cancelable ASTs, get the pset |
| 2573 | * lock, and then dispatch the freshly runnable thread. So this should be |
| 2574 | * correct (we won't accidentally have a runnable thread that hasn't been |
| 2575 | * dispatched to an idle processor), if not ideal (we may be restarting the |
| 2576 | * dispatch process, which could have some overhead). |
| 2577 | */ |
| 2578 | |
| 2579 | if ((sampled_sched_run_count == 1) && (pset->pending_deferred_AST_cpu_mask)) { |
| 2580 | uint64_t dispatching_map = (pset->cpu_state_map[PROCESSOR_DISPATCHING] & |
| 2581 | pset->pending_deferred_AST_cpu_mask & |
| 2582 | ~pset->pending_AST_cpu_mask); |
| 2583 | for (int cpuid = lsb_first(dispatching_map); cpuid >= 0; cpuid = lsb_next(dispatching_map, cpuid)) { |
| 2584 | active_processor = processor_array[cpuid]; |
| 2585 | /* |
| 2586 | * If a processor is DISPATCHING, it could be because of |
| 2587 | * a cancelable signal. |
| 2588 | * |
| 2589 | * IF the processor is not our |
| 2590 | * current processor (the current processor should not |
| 2591 | * be DISPATCHING, so this is a bit paranoid), AND there |
| 2592 | * is a cancelable signal pending on the processor, AND |
| 2593 | * there is no non-cancelable signal pending (as there is |
| 2594 | * no point trying to backtrack on bringing the processor |
| 2595 | * up if a signal we cannot cancel is outstanding), THEN |
| 2596 | * it should make sense to roll back the processor state |
| 2597 | * to the IDLE state. |
| 2598 | * |
| 2599 | * If the racey nature of this approach (as the signal |
| 2600 | * will be arbitrated by hardware, and can fire as we |
| 2601 | * roll back state) results in the core responding |
| 2602 | * despite being pushed back to the IDLE state, it |
| 2603 | * should be no different than if the core took some |
| 2604 | * interrupt while IDLE. |
| 2605 | */ |
| 2606 | if (active_processor != processor) { |
| 2607 | /* |
| 2608 | * Squash all of the processor state back to some |
| 2609 | * reasonable facsimile of PROCESSOR_IDLE. |
| 2610 | */ |
| 2611 | |
| 2612 | assert(active_processor->next_thread == THREAD_NULL); |
| 2613 | processor_state_update_idle(active_processor); |
| 2614 | active_processor->deadline = UINT64_MAX; |
| 2615 | pset_update_processor_state(pset, active_processor, PROCESSOR_IDLE); |
| 2616 | bit_clear(pset->pending_deferred_AST_cpu_mask, active_processor->cpu_id); |
| 2617 | machine_signal_idle_cancel(active_processor); |
| 2618 | } |
| 2619 | |
| 2620 | } |
| 2621 | } |
| 2622 | |
| 2623 | pset_unlock(pset); |
| 2624 | } |
| 2625 | #else |
| 2626 | /* We don't support deferred ASTs; everything is candycanes and sunshine. */ |
| 2627 | #endif |
| 2628 | |
| 2629 | static void |
| 2630 | thread_csw_callout( |
| 2631 | thread_t old, |
| 2632 | thread_t new, |
| 2633 | uint64_t timestamp) |
| 2634 | { |
| 2635 | perfcontrol_event event = (new->state & TH_IDLE) ? IDLE : CONTEXT_SWITCH; |
| 2636 | uint64_t same_pri_latency = (new->state & TH_IDLE) ? 0 : new->same_pri_latency; |
| 2637 | machine_switch_perfcontrol_context(event, timestamp, 0, |
| 2638 | same_pri_latency, old, new); |
| 2639 | } |
| 2640 | |
| 2641 | |
| 2642 | /* |
| 2643 | * thread_dispatch: |
| 2644 | * |
| 2645 | * Handle threads at context switch. Re-dispatch other thread |
| 2646 | * if still running, otherwise update run state and perform |
| 2647 | * special actions. Update quantum for other thread and begin |
| 2648 | * the quantum for ourselves. |
| 2649 | * |
| 2650 | * "thread" is the old thread that we have switched away from. |
| 2651 | * "self" is the new current thread that we have context switched to |
| 2652 | * |
| 2653 | * Called at splsched. |
| 2654 | */ |
| 2655 | void |
| 2656 | thread_dispatch( |
| 2657 | thread_t thread, |
| 2658 | thread_t self) |
| 2659 | { |
| 2660 | processor_t processor = self->last_processor; |
| 2661 | |
| 2662 | assert(processor == current_processor()); |
| 2663 | assert(self == current_thread_volatile()); |
| 2664 | assert(thread != self); |
| 2665 | |
| 2666 | if (thread != THREAD_NULL) { |
| 2667 | /* |
| 2668 | * Do the perfcontrol callout for context switch. |
| 2669 | * The reason we do this here is: |
| 2670 | * - thread_dispatch() is called from various places that are not |
| 2671 | * the direct context switch path for eg. processor shutdown etc. |
| 2672 | * So adding the callout here covers all those cases. |
| 2673 | * - We want this callout as early as possible to be close |
| 2674 | * to the timestamp taken in thread_invoke() |
| 2675 | * - We want to avoid holding the thread lock while doing the |
| 2676 | * callout |
| 2677 | * - We do not want to callout if "thread" is NULL. |
| 2678 | */ |
| 2679 | thread_csw_callout(thread, self, processor->last_dispatch); |
| 2680 | |
| 2681 | #if KASAN |
| 2682 | if (thread->continuation != NULL) { |
| 2683 | /* |
| 2684 | * Thread has a continuation and the normal stack is going away. |
| 2685 | * Unpoison the stack and mark all fakestack objects as unused. |
| 2686 | */ |
| 2687 | kasan_fakestack_drop(thread); |
| 2688 | if (thread->kernel_stack) { |
| 2689 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | /* |
| 2694 | * Free all unused fakestack objects. |
| 2695 | */ |
| 2696 | kasan_fakestack_gc(thread); |
| 2697 | #endif |
| 2698 | |
| 2699 | /* |
| 2700 | * If blocked at a continuation, discard |
| 2701 | * the stack. |
| 2702 | */ |
| 2703 | if (thread->continuation != NULL && thread->kernel_stack != 0) |
| 2704 | stack_free(thread); |
| 2705 | |
| 2706 | if (thread->state & TH_IDLE) { |
| 2707 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2708 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
| 2709 | (uintptr_t)thread_tid(thread), 0, thread->state, |
| 2710 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 2711 | } else { |
| 2712 | int64_t consumed; |
| 2713 | int64_t remainder = 0; |
| 2714 | |
| 2715 | if (processor->quantum_end > processor->last_dispatch) |
| 2716 | remainder = processor->quantum_end - |
| 2717 | processor->last_dispatch; |
| 2718 | |
| 2719 | consumed = thread->quantum_remaining - remainder; |
| 2720 | |
| 2721 | if ((thread->reason & AST_LEDGER) == 0) { |
| 2722 | /* |
| 2723 | * Bill CPU time to both the task and |
| 2724 | * the individual thread. |
| 2725 | */ |
| 2726 | ledger_credit_thread(thread, thread->t_ledger, |
| 2727 | task_ledgers.cpu_time, consumed); |
| 2728 | ledger_credit_thread(thread, thread->t_threadledger, |
| 2729 | thread_ledgers.cpu_time, consumed); |
| 2730 | if (thread->t_bankledger) { |
| 2731 | ledger_credit_thread(thread, thread->t_bankledger, |
| 2732 | bank_ledgers.cpu_time, |
| 2733 | (consumed - thread->t_deduct_bank_ledger_time)); |
| 2734 | } |
| 2735 | thread->t_deduct_bank_ledger_time = 0; |
| 2736 | } |
| 2737 | |
| 2738 | wake_lock(thread); |
| 2739 | thread_lock(thread); |
| 2740 | |
| 2741 | /* |
| 2742 | * Apply a priority floor if the thread holds a kernel resource |
| 2743 | * Do this before checking starting_pri to avoid overpenalizing |
| 2744 | * repeated rwlock blockers. |
| 2745 | */ |
| 2746 | if (__improbable(thread->rwlock_count != 0)) |
| 2747 | lck_rw_set_promotion_locked(thread); |
| 2748 | |
| 2749 | boolean_t keep_quantum = processor->first_timeslice; |
| 2750 | |
| 2751 | /* |
| 2752 | * Treat a thread which has dropped priority since it got on core |
| 2753 | * as having expired its quantum. |
| 2754 | */ |
| 2755 | if (processor->starting_pri > thread->sched_pri) |
| 2756 | keep_quantum = FALSE; |
| 2757 | |
| 2758 | /* Compute remainder of current quantum. */ |
| 2759 | if (keep_quantum && |
| 2760 | processor->quantum_end > processor->last_dispatch) |
| 2761 | thread->quantum_remaining = (uint32_t)remainder; |
| 2762 | else |
| 2763 | thread->quantum_remaining = 0; |
| 2764 | |
| 2765 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 2766 | /* |
| 2767 | * Cancel the deadline if the thread has |
| 2768 | * consumed the entire quantum. |
| 2769 | */ |
| 2770 | if (thread->quantum_remaining == 0) { |
| 2771 | thread->realtime.deadline = UINT64_MAX; |
| 2772 | } |
| 2773 | } else { |
| 2774 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 2775 | /* |
| 2776 | * For non-realtime threads treat a tiny |
| 2777 | * remaining quantum as an expired quantum |
| 2778 | * but include what's left next time. |
| 2779 | */ |
| 2780 | if (thread->quantum_remaining < min_std_quantum) { |
| 2781 | thread->reason |= AST_QUANTUM; |
| 2782 | thread->quantum_remaining += SCHED(initial_quantum_size)(thread); |
| 2783 | } |
| 2784 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 2785 | } |
| 2786 | |
| 2787 | /* |
| 2788 | * If we are doing a direct handoff then |
| 2789 | * take the remainder of the quantum. |
| 2790 | */ |
| 2791 | if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) { |
| 2792 | self->quantum_remaining = thread->quantum_remaining; |
| 2793 | thread->reason |= AST_QUANTUM; |
| 2794 | thread->quantum_remaining = 0; |
| 2795 | } else { |
| 2796 | #if defined(CONFIG_SCHED_MULTIQ) |
| 2797 | if (SCHED(sched_groups_enabled) && |
| 2798 | thread->sched_group == self->sched_group) { |
| 2799 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2800 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF), |
| 2801 | self->reason, (uintptr_t)thread_tid(thread), |
| 2802 | self->quantum_remaining, thread->quantum_remaining, 0); |
| 2803 | |
| 2804 | self->quantum_remaining = thread->quantum_remaining; |
| 2805 | thread->quantum_remaining = 0; |
| 2806 | /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */ |
| 2807 | } |
| 2808 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ |
| 2809 | } |
| 2810 | |
| 2811 | thread->computation_metered += (processor->last_dispatch - thread->computation_epoch); |
| 2812 | |
| 2813 | if (!(thread->state & TH_WAIT)) { |
| 2814 | /* |
| 2815 | * Still runnable. |
| 2816 | */ |
| 2817 | thread->last_made_runnable_time = thread->last_basepri_change_time = processor->last_dispatch; |
| 2818 | |
| 2819 | machine_thread_going_off_core(thread, FALSE, processor->last_dispatch); |
| 2820 | |
| 2821 | ast_t reason = thread->reason; |
| 2822 | sched_options_t options = SCHED_NONE; |
| 2823 | |
| 2824 | if (reason & AST_REBALANCE) { |
| 2825 | options |= SCHED_REBALANCE; |
| 2826 | if (reason & AST_QUANTUM) { |
| 2827 | /* |
| 2828 | * Having gone to the trouble of forcing this thread off a less preferred core, |
| 2829 | * we should force the preferable core to reschedule immediately to give this |
| 2830 | * thread a chance to run instead of just sitting on the run queue where |
| 2831 | * it may just be stolen back by the idle core we just forced it off. |
| 2832 | * But only do this at the end of a quantum to prevent cascading effects. |
| 2833 | */ |
| 2834 | options |= SCHED_PREEMPT; |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | if (reason & AST_QUANTUM) |
| 2839 | options |= SCHED_TAILQ; |
| 2840 | else if (reason & AST_PREEMPT) |
| 2841 | options |= SCHED_HEADQ; |
| 2842 | else |
| 2843 | options |= (SCHED_PREEMPT | SCHED_TAILQ); |
| 2844 | |
| 2845 | thread_setrun(thread, options); |
| 2846 | |
| 2847 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2848 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
| 2849 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, |
| 2850 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 2851 | |
| 2852 | if (thread->wake_active) { |
| 2853 | thread->wake_active = FALSE; |
| 2854 | thread_unlock(thread); |
| 2855 | |
| 2856 | thread_wakeup(&thread->wake_active); |
| 2857 | } else { |
| 2858 | thread_unlock(thread); |
| 2859 | } |
| 2860 | |
| 2861 | wake_unlock(thread); |
| 2862 | } else { |
| 2863 | /* |
| 2864 | * Waiting. |
| 2865 | */ |
| 2866 | boolean_t should_terminate = FALSE; |
| 2867 | uint32_t new_run_count; |
| 2868 | int thread_state = thread->state; |
| 2869 | |
| 2870 | /* Only the first call to thread_dispatch |
| 2871 | * after explicit termination should add |
| 2872 | * the thread to the termination queue |
| 2873 | */ |
| 2874 | if ((thread_state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) { |
| 2875 | should_terminate = TRUE; |
| 2876 | thread_state |= TH_TERMINATE2; |
| 2877 | } |
| 2878 | |
| 2879 | timer_stop(&thread->runnable_timer, processor->last_dispatch); |
| 2880 | |
| 2881 | thread_state &= ~TH_RUN; |
| 2882 | thread->state = thread_state; |
| 2883 | |
| 2884 | thread->last_made_runnable_time = thread->last_basepri_change_time = THREAD_NOT_RUNNABLE; |
| 2885 | thread->chosen_processor = PROCESSOR_NULL; |
| 2886 | |
| 2887 | new_run_count = sched_run_decr(thread); |
| 2888 | |
| 2889 | #if CONFIG_SCHED_SFI |
| 2890 | if (thread->reason & AST_SFI) { |
| 2891 | thread->wait_sfi_begin_time = processor->last_dispatch; |
| 2892 | } |
| 2893 | #endif |
| 2894 | |
| 2895 | machine_thread_going_off_core(thread, should_terminate, processor->last_dispatch); |
| 2896 | |
| 2897 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2898 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
| 2899 | (uintptr_t)thread_tid(thread), thread->reason, thread_state, |
| 2900 | new_run_count, 0); |
| 2901 | |
| 2902 | if (thread_state & TH_WAIT_REPORT) { |
| 2903 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); |
| 2904 | } |
| 2905 | |
| 2906 | if (thread->wake_active) { |
| 2907 | thread->wake_active = FALSE; |
| 2908 | thread_unlock(thread); |
| 2909 | |
| 2910 | thread_wakeup(&thread->wake_active); |
| 2911 | } else { |
| 2912 | thread_unlock(thread); |
| 2913 | } |
| 2914 | |
| 2915 | wake_unlock(thread); |
| 2916 | |
| 2917 | if (should_terminate) |
| 2918 | thread_terminate_enqueue(thread); |
| 2919 | } |
| 2920 | } |
| 2921 | } |
| 2922 | |
| 2923 | int urgency = THREAD_URGENCY_NONE; |
| 2924 | uint64_t latency = 0; |
| 2925 | |
| 2926 | /* Update (new) current thread and reprogram quantum timer */ |
| 2927 | thread_lock(self); |
| 2928 | |
| 2929 | if (!(self->state & TH_IDLE)) { |
| 2930 | uint64_t arg1, arg2; |
| 2931 | |
| 2932 | #if CONFIG_SCHED_SFI |
| 2933 | ast_t new_ast; |
| 2934 | |
| 2935 | new_ast = sfi_thread_needs_ast(self, NULL); |
| 2936 | |
| 2937 | if (new_ast != AST_NONE) { |
| 2938 | ast_on(new_ast); |
| 2939 | } |
| 2940 | #endif |
| 2941 | |
| 2942 | assertf(processor->last_dispatch >= self->last_made_runnable_time, |
| 2943 | "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx" , |
| 2944 | processor->last_dispatch, self->last_made_runnable_time); |
| 2945 | |
| 2946 | assert(self->last_made_runnable_time <= self->last_basepri_change_time); |
| 2947 | |
| 2948 | latency = processor->last_dispatch - self->last_made_runnable_time; |
| 2949 | assert(latency >= self->same_pri_latency); |
| 2950 | |
| 2951 | urgency = thread_get_urgency(self, &arg1, &arg2); |
| 2952 | |
| 2953 | thread_tell_urgency(urgency, arg1, arg2, latency, self); |
| 2954 | |
| 2955 | /* |
| 2956 | * Get a new quantum if none remaining. |
| 2957 | */ |
| 2958 | if (self->quantum_remaining == 0) { |
| 2959 | thread_quantum_init(self); |
| 2960 | } |
| 2961 | |
| 2962 | /* |
| 2963 | * Set up quantum timer and timeslice. |
| 2964 | */ |
| 2965 | processor->quantum_end = processor->last_dispatch + self->quantum_remaining; |
| 2966 | timer_call_quantum_timer_enter(&processor->quantum_timer, self, |
| 2967 | processor->quantum_end, processor->last_dispatch); |
| 2968 | |
| 2969 | processor->first_timeslice = TRUE; |
| 2970 | } else { |
| 2971 | timer_call_quantum_timer_cancel(&processor->quantum_timer); |
| 2972 | processor->first_timeslice = FALSE; |
| 2973 | |
| 2974 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self); |
| 2975 | } |
| 2976 | |
| 2977 | assert(self->block_hint == kThreadWaitNone); |
| 2978 | self->computation_epoch = processor->last_dispatch; |
| 2979 | self->reason = AST_NONE; |
| 2980 | processor->starting_pri = self->sched_pri; |
| 2981 | |
| 2982 | thread_unlock(self); |
| 2983 | |
| 2984 | machine_thread_going_on_core(self, urgency, latency, self->same_pri_latency, |
| 2985 | processor->last_dispatch); |
| 2986 | |
| 2987 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 2988 | /* |
| 2989 | * TODO: Can we state that redispatching our old thread is also |
| 2990 | * uninteresting? |
| 2991 | */ |
| 2992 | if ((((volatile uint32_t)sched_run_buckets[TH_BUCKET_RUN]) == 1) && |
| 2993 | !(self->state & TH_IDLE)) { |
| 2994 | pset_cancel_deferred_dispatch(processor->processor_set, processor); |
| 2995 | } |
| 2996 | #endif |
| 2997 | } |
| 2998 | |
| 2999 | /* |
| 3000 | * thread_block_reason: |
| 3001 | * |
| 3002 | * Forces a reschedule, blocking the caller if a wait |
| 3003 | * has been asserted. |
| 3004 | * |
| 3005 | * If a continuation is specified, then thread_invoke will |
| 3006 | * attempt to discard the thread's kernel stack. When the |
| 3007 | * thread resumes, it will execute the continuation function |
| 3008 | * on a new kernel stack. |
| 3009 | */ |
| 3010 | counter(mach_counter_t c_thread_block_calls = 0;) |
| 3011 | |
| 3012 | wait_result_t |
| 3013 | thread_block_reason( |
| 3014 | thread_continue_t continuation, |
| 3015 | void *parameter, |
| 3016 | ast_t reason) |
| 3017 | { |
| 3018 | thread_t self = current_thread(); |
| 3019 | processor_t processor; |
| 3020 | thread_t new_thread; |
| 3021 | spl_t s; |
| 3022 | |
| 3023 | counter(++c_thread_block_calls); |
| 3024 | |
| 3025 | s = splsched(); |
| 3026 | |
| 3027 | processor = current_processor(); |
| 3028 | |
| 3029 | /* If we're explicitly yielding, force a subsequent quantum */ |
| 3030 | if (reason & AST_YIELD) |
| 3031 | processor->first_timeslice = FALSE; |
| 3032 | |
| 3033 | /* We're handling all scheduling AST's */ |
| 3034 | ast_off(AST_SCHEDULING); |
| 3035 | |
| 3036 | #if PROC_REF_DEBUG |
| 3037 | if ((continuation != NULL) && (self->task != kernel_task)) { |
| 3038 | if (uthread_get_proc_refcount(self->uthread) != 0) { |
| 3039 | panic("thread_block_reason with continuation uthread %p with uu_proc_refcount != 0" , self->uthread); |
| 3040 | } |
| 3041 | } |
| 3042 | #endif |
| 3043 | |
| 3044 | self->continuation = continuation; |
| 3045 | self->parameter = parameter; |
| 3046 | |
| 3047 | if (self->state & ~(TH_RUN | TH_IDLE)) { |
| 3048 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3049 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK), |
| 3050 | reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0); |
| 3051 | } |
| 3052 | |
| 3053 | do { |
| 3054 | thread_lock(self); |
| 3055 | new_thread = thread_select(self, processor, &reason); |
| 3056 | thread_unlock(self); |
| 3057 | } while (!thread_invoke(self, new_thread, reason)); |
| 3058 | |
| 3059 | splx(s); |
| 3060 | |
| 3061 | return (self->wait_result); |
| 3062 | } |
| 3063 | |
| 3064 | /* |
| 3065 | * thread_block: |
| 3066 | * |
| 3067 | * Block the current thread if a wait has been asserted. |
| 3068 | */ |
| 3069 | wait_result_t |
| 3070 | thread_block( |
| 3071 | thread_continue_t continuation) |
| 3072 | { |
| 3073 | return thread_block_reason(continuation, NULL, AST_NONE); |
| 3074 | } |
| 3075 | |
| 3076 | wait_result_t |
| 3077 | thread_block_parameter( |
| 3078 | thread_continue_t continuation, |
| 3079 | void *parameter) |
| 3080 | { |
| 3081 | return thread_block_reason(continuation, parameter, AST_NONE); |
| 3082 | } |
| 3083 | |
| 3084 | /* |
| 3085 | * thread_run: |
| 3086 | * |
| 3087 | * Switch directly from the current thread to the |
| 3088 | * new thread, handing off our quantum if appropriate. |
| 3089 | * |
| 3090 | * New thread must be runnable, and not on a run queue. |
| 3091 | * |
| 3092 | * Called at splsched. |
| 3093 | */ |
| 3094 | int |
| 3095 | thread_run( |
| 3096 | thread_t self, |
| 3097 | thread_continue_t continuation, |
| 3098 | void *parameter, |
| 3099 | thread_t new_thread) |
| 3100 | { |
| 3101 | ast_t reason = AST_HANDOFF; |
| 3102 | |
| 3103 | self->continuation = continuation; |
| 3104 | self->parameter = parameter; |
| 3105 | |
| 3106 | while (!thread_invoke(self, new_thread, reason)) { |
| 3107 | /* the handoff failed, so we have to fall back to the normal block path */ |
| 3108 | processor_t processor = current_processor(); |
| 3109 | |
| 3110 | reason = AST_NONE; |
| 3111 | |
| 3112 | thread_lock(self); |
| 3113 | new_thread = thread_select(self, processor, &reason); |
| 3114 | thread_unlock(self); |
| 3115 | } |
| 3116 | |
| 3117 | return (self->wait_result); |
| 3118 | } |
| 3119 | |
| 3120 | /* |
| 3121 | * thread_continue: |
| 3122 | * |
| 3123 | * Called at splsched when a thread first receives |
| 3124 | * a new stack after a continuation. |
| 3125 | */ |
| 3126 | void |
| 3127 | thread_continue( |
| 3128 | thread_t thread) |
| 3129 | { |
| 3130 | thread_t self = current_thread(); |
| 3131 | thread_continue_t continuation; |
| 3132 | void *parameter; |
| 3133 | |
| 3134 | DTRACE_SCHED(on__cpu); |
| 3135 | |
| 3136 | continuation = self->continuation; |
| 3137 | parameter = self->parameter; |
| 3138 | |
| 3139 | #if KPERF |
| 3140 | kperf_on_cpu(self, continuation, NULL); |
| 3141 | #endif |
| 3142 | |
| 3143 | thread_dispatch(thread, self); |
| 3144 | |
| 3145 | self->continuation = self->parameter = NULL; |
| 3146 | |
| 3147 | #if INTERRUPT_MASKED_DEBUG |
| 3148 | /* Reset interrupt-masked spin debugging timeout */ |
| 3149 | ml_spin_debug_clear(self); |
| 3150 | #endif |
| 3151 | |
| 3152 | TLOG(1, "thread_continue: calling call_continuation\n" ); |
| 3153 | |
| 3154 | boolean_t enable_interrupts = thread != THREAD_NULL; |
| 3155 | call_continuation(continuation, parameter, self->wait_result, enable_interrupts); |
| 3156 | /*NOTREACHED*/ |
| 3157 | } |
| 3158 | |
| 3159 | void |
| 3160 | thread_quantum_init(thread_t thread) |
| 3161 | { |
| 3162 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 3163 | thread->quantum_remaining = thread->realtime.computation; |
| 3164 | } else { |
| 3165 | thread->quantum_remaining = SCHED(initial_quantum_size)(thread); |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | uint32_t |
| 3170 | sched_timeshare_initial_quantum_size(thread_t thread) |
| 3171 | { |
| 3172 | if ((thread != THREAD_NULL) && thread->th_sched_bucket == TH_BUCKET_SHARE_BG) |
| 3173 | return bg_quantum; |
| 3174 | else |
| 3175 | return std_quantum; |
| 3176 | } |
| 3177 | |
| 3178 | /* |
| 3179 | * run_queue_init: |
| 3180 | * |
| 3181 | * Initialize a run queue before first use. |
| 3182 | */ |
| 3183 | void |
| 3184 | run_queue_init( |
| 3185 | run_queue_t rq) |
| 3186 | { |
| 3187 | rq->highq = NOPRI; |
| 3188 | for (u_int i = 0; i < BITMAP_LEN(NRQS); i++) |
| 3189 | rq->bitmap[i] = 0; |
| 3190 | rq->urgency = rq->count = 0; |
| 3191 | for (int i = 0; i < NRQS; i++) |
| 3192 | queue_init(&rq->queues[i]); |
| 3193 | } |
| 3194 | |
| 3195 | /* |
| 3196 | * run_queue_dequeue: |
| 3197 | * |
| 3198 | * Perform a dequeue operation on a run queue, |
| 3199 | * and return the resulting thread. |
| 3200 | * |
| 3201 | * The run queue must be locked (see thread_run_queue_remove() |
| 3202 | * for more info), and not empty. |
| 3203 | */ |
| 3204 | thread_t |
| 3205 | run_queue_dequeue( |
| 3206 | run_queue_t rq, |
| 3207 | integer_t options) |
| 3208 | { |
| 3209 | thread_t thread; |
| 3210 | queue_t queue = &rq->queues[rq->highq]; |
| 3211 | |
| 3212 | if (options & SCHED_HEADQ) { |
| 3213 | thread = qe_dequeue_head(queue, struct thread, runq_links); |
| 3214 | } else { |
| 3215 | thread = qe_dequeue_tail(queue, struct thread, runq_links); |
| 3216 | } |
| 3217 | |
| 3218 | assert(thread != THREAD_NULL); |
| 3219 | assert_thread_magic(thread); |
| 3220 | |
| 3221 | thread->runq = PROCESSOR_NULL; |
| 3222 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 3223 | rq->count--; |
| 3224 | if (SCHED(priority_is_urgent)(rq->highq)) { |
| 3225 | rq->urgency--; assert(rq->urgency >= 0); |
| 3226 | } |
| 3227 | if (queue_empty(queue)) { |
| 3228 | bitmap_clear(rq->bitmap, rq->highq); |
| 3229 | rq->highq = bitmap_first(rq->bitmap, NRQS); |
| 3230 | } |
| 3231 | |
| 3232 | return thread; |
| 3233 | } |
| 3234 | |
| 3235 | /* |
| 3236 | * run_queue_enqueue: |
| 3237 | * |
| 3238 | * Perform a enqueue operation on a run queue. |
| 3239 | * |
| 3240 | * The run queue must be locked (see thread_run_queue_remove() |
| 3241 | * for more info). |
| 3242 | */ |
| 3243 | boolean_t |
| 3244 | run_queue_enqueue( |
| 3245 | run_queue_t rq, |
| 3246 | thread_t thread, |
| 3247 | integer_t options) |
| 3248 | { |
| 3249 | queue_t queue = &rq->queues[thread->sched_pri]; |
| 3250 | boolean_t result = FALSE; |
| 3251 | |
| 3252 | assert_thread_magic(thread); |
| 3253 | |
| 3254 | if (queue_empty(queue)) { |
| 3255 | enqueue_tail(queue, &thread->runq_links); |
| 3256 | |
| 3257 | rq_bitmap_set(rq->bitmap, thread->sched_pri); |
| 3258 | if (thread->sched_pri > rq->highq) { |
| 3259 | rq->highq = thread->sched_pri; |
| 3260 | result = TRUE; |
| 3261 | } |
| 3262 | } else { |
| 3263 | if (options & SCHED_TAILQ) |
| 3264 | enqueue_tail(queue, &thread->runq_links); |
| 3265 | else |
| 3266 | enqueue_head(queue, &thread->runq_links); |
| 3267 | } |
| 3268 | if (SCHED(priority_is_urgent)(thread->sched_pri)) |
| 3269 | rq->urgency++; |
| 3270 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 3271 | rq->count++; |
| 3272 | |
| 3273 | return (result); |
| 3274 | } |
| 3275 | |
| 3276 | /* |
| 3277 | * run_queue_remove: |
| 3278 | * |
| 3279 | * Remove a specific thread from a runqueue. |
| 3280 | * |
| 3281 | * The run queue must be locked. |
| 3282 | */ |
| 3283 | void |
| 3284 | run_queue_remove( |
| 3285 | run_queue_t rq, |
| 3286 | thread_t thread) |
| 3287 | { |
| 3288 | assert(thread->runq != PROCESSOR_NULL); |
| 3289 | assert_thread_magic(thread); |
| 3290 | |
| 3291 | remqueue(&thread->runq_links); |
| 3292 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 3293 | rq->count--; |
| 3294 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
| 3295 | rq->urgency--; assert(rq->urgency >= 0); |
| 3296 | } |
| 3297 | |
| 3298 | if (queue_empty(&rq->queues[thread->sched_pri])) { |
| 3299 | /* update run queue status */ |
| 3300 | bitmap_clear(rq->bitmap, thread->sched_pri); |
| 3301 | rq->highq = bitmap_first(rq->bitmap, NRQS); |
| 3302 | } |
| 3303 | |
| 3304 | thread->runq = PROCESSOR_NULL; |
| 3305 | } |
| 3306 | |
| 3307 | /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */ |
| 3308 | void |
| 3309 | sched_rtglobal_runq_scan(sched_update_scan_context_t scan_context) |
| 3310 | { |
| 3311 | spl_t s; |
| 3312 | thread_t thread; |
| 3313 | |
| 3314 | processor_set_t pset = &pset0; |
| 3315 | |
| 3316 | s = splsched(); |
| 3317 | rt_lock_lock(pset); |
| 3318 | |
| 3319 | qe_foreach_element_safe(thread, &pset->rt_runq.queue, runq_links) { |
| 3320 | if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) { |
| 3321 | scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time; |
| 3322 | } |
| 3323 | } |
| 3324 | |
| 3325 | rt_lock_unlock(pset); |
| 3326 | splx(s); |
| 3327 | } |
| 3328 | |
| 3329 | int64_t |
| 3330 | sched_rtglobal_runq_count_sum(void) |
| 3331 | { |
| 3332 | return pset0.rt_runq.runq_stats.count_sum; |
| 3333 | } |
| 3334 | |
| 3335 | /* |
| 3336 | * realtime_queue_insert: |
| 3337 | * |
| 3338 | * Enqueue a thread for realtime execution. |
| 3339 | */ |
| 3340 | static boolean_t |
| 3341 | realtime_queue_insert(processor_t processor, processor_set_t pset, thread_t thread) |
| 3342 | { |
| 3343 | queue_t queue = &SCHED(rt_runq)(pset)->queue; |
| 3344 | uint64_t deadline = thread->realtime.deadline; |
| 3345 | boolean_t preempt = FALSE; |
| 3346 | |
| 3347 | rt_lock_lock(pset); |
| 3348 | |
| 3349 | if (queue_empty(queue)) { |
| 3350 | enqueue_tail(queue, &thread->runq_links); |
| 3351 | preempt = TRUE; |
| 3352 | } else { |
| 3353 | /* Insert into rt_runq in thread deadline order */ |
| 3354 | queue_entry_t iter; |
| 3355 | qe_foreach(iter, queue) { |
| 3356 | thread_t iter_thread = qe_element(iter, struct thread, runq_links); |
| 3357 | assert_thread_magic(iter_thread); |
| 3358 | |
| 3359 | if (deadline < iter_thread->realtime.deadline) { |
| 3360 | if (iter == queue_first(queue)) |
| 3361 | preempt = TRUE; |
| 3362 | insque(&thread->runq_links, queue_prev(iter)); |
| 3363 | break; |
| 3364 | } else if (iter == queue_last(queue)) { |
| 3365 | enqueue_tail(queue, &thread->runq_links); |
| 3366 | break; |
| 3367 | } |
| 3368 | } |
| 3369 | } |
| 3370 | |
| 3371 | thread->runq = processor; |
| 3372 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); |
| 3373 | rt_runq_count_incr(pset); |
| 3374 | |
| 3375 | rt_lock_unlock(pset); |
| 3376 | |
| 3377 | return (preempt); |
| 3378 | } |
| 3379 | |
| 3380 | /* |
| 3381 | * realtime_setrun: |
| 3382 | * |
| 3383 | * Dispatch a thread for realtime execution. |
| 3384 | * |
| 3385 | * Thread must be locked. Associated pset must |
| 3386 | * be locked, and is returned unlocked. |
| 3387 | */ |
| 3388 | static void |
| 3389 | realtime_setrun( |
| 3390 | processor_t processor, |
| 3391 | thread_t thread) |
| 3392 | { |
| 3393 | processor_set_t pset = processor->processor_set; |
| 3394 | pset_assert_locked(pset); |
| 3395 | ast_t preempt; |
| 3396 | |
| 3397 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 3398 | |
| 3399 | thread->chosen_processor = processor; |
| 3400 | |
| 3401 | /* <rdar://problem/15102234> */ |
| 3402 | assert(thread->bound_processor == PROCESSOR_NULL); |
| 3403 | |
| 3404 | /* |
| 3405 | * Dispatch directly onto idle processor. |
| 3406 | */ |
| 3407 | if ( (thread->bound_processor == processor) |
| 3408 | && processor->state == PROCESSOR_IDLE) { |
| 3409 | |
| 3410 | processor->next_thread = thread; |
| 3411 | processor_state_update_from_thread(processor, thread); |
| 3412 | processor->deadline = thread->realtime.deadline; |
| 3413 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
| 3414 | |
| 3415 | ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_BOUND_THR); |
| 3416 | pset_unlock(pset); |
| 3417 | sched_ipi_perform(processor, ipi_type); |
| 3418 | return; |
| 3419 | } |
| 3420 | |
| 3421 | if (processor->current_pri < BASEPRI_RTQUEUES) |
| 3422 | preempt = (AST_PREEMPT | AST_URGENT); |
| 3423 | else if (thread->realtime.deadline < processor->deadline) |
| 3424 | preempt = (AST_PREEMPT | AST_URGENT); |
| 3425 | else |
| 3426 | preempt = AST_NONE; |
| 3427 | |
| 3428 | realtime_queue_insert(processor, pset, thread); |
| 3429 | |
| 3430 | ipi_type = SCHED_IPI_NONE; |
| 3431 | if (preempt != AST_NONE) { |
| 3432 | if (processor->state == PROCESSOR_IDLE) { |
| 3433 | processor->next_thread = THREAD_NULL; |
| 3434 | processor_state_update_from_thread(processor, thread); |
| 3435 | processor->deadline = thread->realtime.deadline; |
| 3436 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
| 3437 | if (processor == current_processor()) { |
| 3438 | ast_on(preempt); |
| 3439 | } else { |
| 3440 | ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_PREEMPT); |
| 3441 | } |
| 3442 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
| 3443 | if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) { |
| 3444 | processor_state_update_from_thread(processor, thread); |
| 3445 | processor->deadline = thread->realtime.deadline; |
| 3446 | } |
| 3447 | } else { |
| 3448 | if (processor == current_processor()) { |
| 3449 | ast_on(preempt); |
| 3450 | } else { |
| 3451 | ipi_type = sched_ipi_action(processor, thread, false, SCHED_IPI_EVENT_PREEMPT); |
| 3452 | } |
| 3453 | } |
| 3454 | } else { |
| 3455 | /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */ |
| 3456 | } |
| 3457 | |
| 3458 | pset_unlock(pset); |
| 3459 | sched_ipi_perform(processor, ipi_type); |
| 3460 | } |
| 3461 | |
| 3462 | |
| 3463 | sched_ipi_type_t sched_ipi_deferred_policy(processor_set_t pset, processor_t dst, |
| 3464 | __unused sched_ipi_event_t event) |
| 3465 | { |
| 3466 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3467 | if (!bit_test(pset->pending_deferred_AST_cpu_mask, dst->cpu_id)) { |
| 3468 | return SCHED_IPI_DEFERRED; |
| 3469 | } |
| 3470 | #else /* CONFIG_SCHED_DEFERRED_AST */ |
| 3471 | panic("Request for deferred IPI on an unsupported platform; pset: %p CPU: %d" , pset, dst->cpu_id); |
| 3472 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 3473 | return SCHED_IPI_NONE; |
| 3474 | } |
| 3475 | |
| 3476 | sched_ipi_type_t sched_ipi_action(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) |
| 3477 | { |
| 3478 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 3479 | assert(dst != NULL); |
| 3480 | |
| 3481 | processor_set_t pset = dst->processor_set; |
| 3482 | if (current_processor() == dst) { |
| 3483 | return SCHED_IPI_NONE; |
| 3484 | } |
| 3485 | |
| 3486 | if (bit_test(pset->pending_AST_cpu_mask, dst->cpu_id)) { |
| 3487 | return SCHED_IPI_NONE; |
| 3488 | } |
| 3489 | |
| 3490 | ipi_type = SCHED(ipi_policy)(dst, thread, dst_idle, event); |
| 3491 | switch(ipi_type) { |
| 3492 | case SCHED_IPI_NONE: |
| 3493 | return SCHED_IPI_NONE; |
| 3494 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3495 | case SCHED_IPI_DEFERRED: |
| 3496 | bit_set(pset->pending_deferred_AST_cpu_mask, dst->cpu_id); |
| 3497 | break; |
| 3498 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 3499 | default: |
| 3500 | bit_set(pset->pending_AST_cpu_mask, dst->cpu_id); |
| 3501 | break; |
| 3502 | } |
| 3503 | return ipi_type; |
| 3504 | } |
| 3505 | |
| 3506 | sched_ipi_type_t sched_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) |
| 3507 | { |
| 3508 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 3509 | boolean_t deferred_ipi_supported = false; |
| 3510 | processor_set_t pset = dst->processor_set; |
| 3511 | |
| 3512 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3513 | deferred_ipi_supported = true; |
| 3514 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 3515 | |
| 3516 | switch(event) { |
| 3517 | case SCHED_IPI_EVENT_SPILL: |
| 3518 | case SCHED_IPI_EVENT_SMT_REBAL: |
| 3519 | case SCHED_IPI_EVENT_REBALANCE: |
| 3520 | case SCHED_IPI_EVENT_BOUND_THR: |
| 3521 | /* |
| 3522 | * The spill, SMT rebalance, rebalance and the bound thread |
| 3523 | * scenarios use immediate IPIs always. |
| 3524 | */ |
| 3525 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 3526 | break; |
| 3527 | case SCHED_IPI_EVENT_PREEMPT: |
| 3528 | /* In the preemption case, use immediate IPIs for RT threads */ |
| 3529 | if (thread && (thread->sched_pri >= BASEPRI_RTQUEUES)) { |
| 3530 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 3531 | break; |
| 3532 | } |
| 3533 | |
| 3534 | /* |
| 3535 | * For Non-RT threads preemption, |
| 3536 | * If the core is active, use immediate IPIs. |
| 3537 | * If the core is idle, use deferred IPIs if supported; otherwise immediate IPI. |
| 3538 | */ |
| 3539 | if (deferred_ipi_supported && dst_idle) { |
| 3540 | return sched_ipi_deferred_policy(pset, dst, event); |
| 3541 | } |
| 3542 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 3543 | break; |
| 3544 | default: |
| 3545 | panic("Unrecognized scheduler IPI event type %d" , event); |
| 3546 | } |
| 3547 | assert(ipi_type != SCHED_IPI_NONE); |
| 3548 | return ipi_type; |
| 3549 | } |
| 3550 | |
| 3551 | void sched_ipi_perform(processor_t dst, sched_ipi_type_t ipi) |
| 3552 | { |
| 3553 | switch (ipi) { |
| 3554 | case SCHED_IPI_NONE: |
| 3555 | break; |
| 3556 | case SCHED_IPI_IDLE: |
| 3557 | machine_signal_idle(dst); |
| 3558 | break; |
| 3559 | case SCHED_IPI_IMMEDIATE: |
| 3560 | cause_ast_check(dst); |
| 3561 | break; |
| 3562 | case SCHED_IPI_DEFERRED: |
| 3563 | machine_signal_idle_deferred(dst); |
| 3564 | break; |
| 3565 | default: |
| 3566 | panic("Unrecognized scheduler IPI type: %d" , ipi); |
| 3567 | } |
| 3568 | } |
| 3569 | |
| 3570 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 3571 | |
| 3572 | boolean_t |
| 3573 | priority_is_urgent(int priority) |
| 3574 | { |
| 3575 | return bitmap_test(sched_preempt_pri, priority) ? TRUE : FALSE; |
| 3576 | } |
| 3577 | |
| 3578 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 3579 | |
| 3580 | /* |
| 3581 | * processor_setrun: |
| 3582 | * |
| 3583 | * Dispatch a thread for execution on a |
| 3584 | * processor. |
| 3585 | * |
| 3586 | * Thread must be locked. Associated pset must |
| 3587 | * be locked, and is returned unlocked. |
| 3588 | */ |
| 3589 | static void |
| 3590 | processor_setrun( |
| 3591 | processor_t processor, |
| 3592 | thread_t thread, |
| 3593 | integer_t options) |
| 3594 | { |
| 3595 | processor_set_t pset = processor->processor_set; |
| 3596 | pset_assert_locked(pset); |
| 3597 | ast_t preempt; |
| 3598 | enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing; |
| 3599 | |
| 3600 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 3601 | |
| 3602 | thread->chosen_processor = processor; |
| 3603 | |
| 3604 | /* |
| 3605 | * Dispatch directly onto idle processor. |
| 3606 | */ |
| 3607 | if ( (SCHED(direct_dispatch_to_idle_processors) || |
| 3608 | thread->bound_processor == processor) |
| 3609 | && processor->state == PROCESSOR_IDLE) { |
| 3610 | |
| 3611 | processor->next_thread = thread; |
| 3612 | processor_state_update_from_thread(processor, thread); |
| 3613 | processor->deadline = UINT64_MAX; |
| 3614 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
| 3615 | |
| 3616 | ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_BOUND_THR); |
| 3617 | pset_unlock(pset); |
| 3618 | sched_ipi_perform(processor, ipi_type); |
| 3619 | return; |
| 3620 | } |
| 3621 | |
| 3622 | /* |
| 3623 | * Set preemption mode. |
| 3624 | */ |
| 3625 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3626 | /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */ |
| 3627 | #endif |
| 3628 | if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri) |
| 3629 | preempt = (AST_PREEMPT | AST_URGENT); |
| 3630 | else if(processor->active_thread && thread_eager_preemption(processor->active_thread)) |
| 3631 | preempt = (AST_PREEMPT | AST_URGENT); |
| 3632 | else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) { |
| 3633 | if(SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) { |
| 3634 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
| 3635 | } else { |
| 3636 | preempt = AST_NONE; |
| 3637 | } |
| 3638 | } else |
| 3639 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
| 3640 | |
| 3641 | if ((options & (SCHED_PREEMPT|SCHED_REBALANCE)) == (SCHED_PREEMPT|SCHED_REBALANCE)) { |
| 3642 | /* |
| 3643 | * Having gone to the trouble of forcing this thread off a less preferred core, |
| 3644 | * we should force the preferable core to reschedule immediately to give this |
| 3645 | * thread a chance to run instead of just sitting on the run queue where |
| 3646 | * it may just be stolen back by the idle core we just forced it off. |
| 3647 | */ |
| 3648 | preempt |= AST_PREEMPT; |
| 3649 | } |
| 3650 | |
| 3651 | SCHED(processor_enqueue)(processor, thread, options); |
| 3652 | sched_update_pset_load_average(pset); |
| 3653 | |
| 3654 | if (preempt != AST_NONE) { |
| 3655 | if (processor->state == PROCESSOR_IDLE) { |
| 3656 | processor->next_thread = THREAD_NULL; |
| 3657 | processor_state_update_from_thread(processor, thread); |
| 3658 | processor->deadline = UINT64_MAX; |
| 3659 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
| 3660 | ipi_action = eExitIdle; |
| 3661 | } else if ( processor->state == PROCESSOR_DISPATCHING) { |
| 3662 | if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) { |
| 3663 | processor_state_update_from_thread(processor, thread); |
| 3664 | processor->deadline = UINT64_MAX; |
| 3665 | } |
| 3666 | } else if ( (processor->state == PROCESSOR_RUNNING || |
| 3667 | processor->state == PROCESSOR_SHUTDOWN) && |
| 3668 | (thread->sched_pri >= processor->current_pri)) { |
| 3669 | ipi_action = eInterruptRunning; |
| 3670 | } |
| 3671 | } else { |
| 3672 | /* |
| 3673 | * New thread is not important enough to preempt what is running, but |
| 3674 | * special processor states may need special handling |
| 3675 | */ |
| 3676 | if (processor->state == PROCESSOR_SHUTDOWN && |
| 3677 | thread->sched_pri >= processor->current_pri ) { |
| 3678 | ipi_action = eInterruptRunning; |
| 3679 | } else if (processor->state == PROCESSOR_IDLE) { |
| 3680 | |
| 3681 | processor->next_thread = THREAD_NULL; |
| 3682 | processor_state_update_from_thread(processor, thread); |
| 3683 | processor->deadline = UINT64_MAX; |
| 3684 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
| 3685 | |
| 3686 | ipi_action = eExitIdle; |
| 3687 | } |
| 3688 | } |
| 3689 | |
| 3690 | if (ipi_action != eDoNothing) { |
| 3691 | if (processor == current_processor()) { |
| 3692 | if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE) |
| 3693 | ast_on(preempt); |
| 3694 | } else { |
| 3695 | sched_ipi_event_t event = (options & SCHED_REBALANCE) ? SCHED_IPI_EVENT_REBALANCE : SCHED_IPI_EVENT_PREEMPT; |
| 3696 | ipi_type = sched_ipi_action(processor, thread, (ipi_action == eExitIdle), event); |
| 3697 | } |
| 3698 | } |
| 3699 | pset_unlock(pset); |
| 3700 | sched_ipi_perform(processor, ipi_type); |
| 3701 | } |
| 3702 | |
| 3703 | /* |
| 3704 | * choose_next_pset: |
| 3705 | * |
| 3706 | * Return the next sibling pset containing |
| 3707 | * available processors. |
| 3708 | * |
| 3709 | * Returns the original pset if none other is |
| 3710 | * suitable. |
| 3711 | */ |
| 3712 | static processor_set_t |
| 3713 | choose_next_pset( |
| 3714 | processor_set_t pset) |
| 3715 | { |
| 3716 | processor_set_t nset = pset; |
| 3717 | |
| 3718 | do { |
| 3719 | nset = next_pset(nset); |
| 3720 | } while (nset->online_processor_count < 1 && nset != pset); |
| 3721 | |
| 3722 | return (nset); |
| 3723 | } |
| 3724 | |
| 3725 | /* |
| 3726 | * choose_processor: |
| 3727 | * |
| 3728 | * Choose a processor for the thread, beginning at |
| 3729 | * the pset. Accepts an optional processor hint in |
| 3730 | * the pset. |
| 3731 | * |
| 3732 | * Returns a processor, possibly from a different pset. |
| 3733 | * |
| 3734 | * The thread must be locked. The pset must be locked, |
| 3735 | * and the resulting pset is locked on return. |
| 3736 | */ |
| 3737 | processor_t |
| 3738 | choose_processor( |
| 3739 | processor_set_t starting_pset, |
| 3740 | processor_t processor, |
| 3741 | thread_t thread) |
| 3742 | { |
| 3743 | processor_set_t pset = starting_pset; |
| 3744 | processor_set_t nset; |
| 3745 | |
| 3746 | assert(thread->sched_pri <= BASEPRI_RTQUEUES); |
| 3747 | |
| 3748 | /* |
| 3749 | * Prefer the hinted processor, when appropriate. |
| 3750 | */ |
| 3751 | |
| 3752 | /* Fold last processor hint from secondary processor to its primary */ |
| 3753 | if (processor != PROCESSOR_NULL) { |
| 3754 | processor = processor->processor_primary; |
| 3755 | } |
| 3756 | |
| 3757 | /* |
| 3758 | * Only consult platform layer if pset is active, which |
| 3759 | * it may not be in some cases when a multi-set system |
| 3760 | * is going to sleep. |
| 3761 | */ |
| 3762 | if (pset->online_processor_count) { |
| 3763 | if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) { |
| 3764 | processor_t mc_processor = machine_choose_processor(pset, processor); |
| 3765 | if (mc_processor != PROCESSOR_NULL) |
| 3766 | processor = mc_processor->processor_primary; |
| 3767 | } |
| 3768 | } |
| 3769 | |
| 3770 | /* |
| 3771 | * At this point, we may have a processor hint, and we may have |
| 3772 | * an initial starting pset. If the hint is not in the pset, or |
| 3773 | * if the hint is for a processor in an invalid state, discard |
| 3774 | * the hint. |
| 3775 | */ |
| 3776 | if (processor != PROCESSOR_NULL) { |
| 3777 | if (processor->processor_set != pset) { |
| 3778 | processor = PROCESSOR_NULL; |
| 3779 | } else if (!processor->is_recommended) { |
| 3780 | processor = PROCESSOR_NULL; |
| 3781 | } else { |
| 3782 | switch (processor->state) { |
| 3783 | case PROCESSOR_START: |
| 3784 | case PROCESSOR_SHUTDOWN: |
| 3785 | case PROCESSOR_OFF_LINE: |
| 3786 | /* |
| 3787 | * Hint is for a processor that cannot support running new threads. |
| 3788 | */ |
| 3789 | processor = PROCESSOR_NULL; |
| 3790 | break; |
| 3791 | case PROCESSOR_IDLE: |
| 3792 | /* |
| 3793 | * Hint is for an idle processor. Assume it is no worse than any other |
| 3794 | * idle processor. The platform layer had an opportunity to provide |
| 3795 | * the "least cost idle" processor above. |
| 3796 | */ |
| 3797 | return (processor); |
| 3798 | case PROCESSOR_RUNNING: |
| 3799 | case PROCESSOR_DISPATCHING: |
| 3800 | /* |
| 3801 | * Hint is for an active CPU. This fast-path allows |
| 3802 | * realtime threads to preempt non-realtime threads |
| 3803 | * to regain their previous executing processor. |
| 3804 | */ |
| 3805 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && |
| 3806 | (processor->current_pri < BASEPRI_RTQUEUES)) |
| 3807 | return (processor); |
| 3808 | |
| 3809 | /* Otherwise, use hint as part of search below */ |
| 3810 | break; |
| 3811 | default: |
| 3812 | processor = PROCESSOR_NULL; |
| 3813 | break; |
| 3814 | } |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | /* |
| 3819 | * Iterate through the processor sets to locate |
| 3820 | * an appropriate processor. Seed results with |
| 3821 | * a last-processor hint, if available, so that |
| 3822 | * a search must find something strictly better |
| 3823 | * to replace it. |
| 3824 | * |
| 3825 | * A primary/secondary pair of SMT processors are |
| 3826 | * "unpaired" if the primary is busy but its |
| 3827 | * corresponding secondary is idle (so the physical |
| 3828 | * core has full use of its resources). |
| 3829 | */ |
| 3830 | |
| 3831 | integer_t lowest_priority = MAXPRI + 1; |
| 3832 | integer_t lowest_secondary_priority = MAXPRI + 1; |
| 3833 | integer_t lowest_unpaired_primary_priority = MAXPRI + 1; |
| 3834 | integer_t lowest_count = INT_MAX; |
| 3835 | uint64_t furthest_deadline = 1; |
| 3836 | processor_t lp_processor = PROCESSOR_NULL; |
| 3837 | processor_t lp_unpaired_primary_processor = PROCESSOR_NULL; |
| 3838 | processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL; |
| 3839 | processor_t lp_paired_secondary_processor = PROCESSOR_NULL; |
| 3840 | processor_t lc_processor = PROCESSOR_NULL; |
| 3841 | processor_t fd_processor = PROCESSOR_NULL; |
| 3842 | |
| 3843 | if (processor != PROCESSOR_NULL) { |
| 3844 | /* All other states should be enumerated above. */ |
| 3845 | assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING); |
| 3846 | |
| 3847 | lowest_priority = processor->current_pri; |
| 3848 | lp_processor = processor; |
| 3849 | |
| 3850 | if (processor->current_pri >= BASEPRI_RTQUEUES) { |
| 3851 | furthest_deadline = processor->deadline; |
| 3852 | fd_processor = processor; |
| 3853 | } |
| 3854 | |
| 3855 | lowest_count = SCHED(processor_runq_count)(processor); |
| 3856 | lc_processor = processor; |
| 3857 | } |
| 3858 | |
| 3859 | do { |
| 3860 | /* |
| 3861 | * Choose an idle processor, in pset traversal order |
| 3862 | */ |
| 3863 | |
| 3864 | uint64_t idle_primary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & |
| 3865 | pset->primary_map & |
| 3866 | pset->recommended_bitmask & |
| 3867 | ~pset->pending_AST_cpu_mask); |
| 3868 | |
| 3869 | int cpuid = lsb_first(idle_primary_map); |
| 3870 | if (cpuid >= 0) { |
| 3871 | processor = processor_array[cpuid]; |
| 3872 | return processor; |
| 3873 | } |
| 3874 | |
| 3875 | /* |
| 3876 | * Otherwise, enumerate active and idle processors to find primary candidates |
| 3877 | * with lower priority/etc. |
| 3878 | */ |
| 3879 | |
| 3880 | uint64_t active_map = ((pset->cpu_state_map[PROCESSOR_RUNNING] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & |
| 3881 | pset->recommended_bitmask & |
| 3882 | ~pset->pending_AST_cpu_mask); |
| 3883 | active_map = bit_ror64(active_map, (pset->last_chosen + 1)); |
| 3884 | for (int rotid = lsb_first(active_map); rotid >= 0; rotid = lsb_next(active_map, rotid)) { |
| 3885 | cpuid = ((rotid + pset->last_chosen + 1) & 63); |
| 3886 | processor = processor_array[cpuid]; |
| 3887 | |
| 3888 | integer_t cpri = processor->current_pri; |
| 3889 | if (processor->processor_primary != processor) { |
| 3890 | if (cpri < lowest_secondary_priority) { |
| 3891 | lowest_secondary_priority = cpri; |
| 3892 | lp_paired_secondary_processor = processor; |
| 3893 | } |
| 3894 | } else { |
| 3895 | if (cpri < lowest_priority) { |
| 3896 | lowest_priority = cpri; |
| 3897 | lp_processor = processor; |
| 3898 | } |
| 3899 | } |
| 3900 | |
| 3901 | if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) { |
| 3902 | furthest_deadline = processor->deadline; |
| 3903 | fd_processor = processor; |
| 3904 | } |
| 3905 | |
| 3906 | integer_t ccount = SCHED(processor_runq_count)(processor); |
| 3907 | if (ccount < lowest_count) { |
| 3908 | lowest_count = ccount; |
| 3909 | lc_processor = processor; |
| 3910 | } |
| 3911 | } |
| 3912 | |
| 3913 | /* |
| 3914 | * For SMT configs, these idle secondary processors must have active primary. Otherwise |
| 3915 | * the idle primary would have short-circuited the loop above |
| 3916 | */ |
| 3917 | uint64_t idle_secondary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & |
| 3918 | ~pset->primary_map & |
| 3919 | pset->recommended_bitmask & |
| 3920 | ~pset->pending_AST_cpu_mask); |
| 3921 | |
| 3922 | for (cpuid = lsb_first(idle_secondary_map); cpuid >= 0; cpuid = lsb_next(idle_secondary_map, cpuid)) { |
| 3923 | processor = processor_array[cpuid]; |
| 3924 | |
| 3925 | processor_t cprimary = processor->processor_primary; |
| 3926 | |
| 3927 | if (!cprimary->is_recommended) { |
| 3928 | continue; |
| 3929 | } |
| 3930 | if (bit_test(pset->pending_AST_cpu_mask, cprimary->cpu_id)) { |
| 3931 | continue; |
| 3932 | } |
| 3933 | |
| 3934 | /* If the primary processor is offline or starting up, it's not a candidate for this path */ |
| 3935 | if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) { |
| 3936 | integer_t primary_pri = cprimary->current_pri; |
| 3937 | |
| 3938 | if (primary_pri < lowest_unpaired_primary_priority) { |
| 3939 | lowest_unpaired_primary_priority = primary_pri; |
| 3940 | lp_unpaired_primary_processor = cprimary; |
| 3941 | lp_unpaired_secondary_processor = processor; |
| 3942 | } |
| 3943 | } |
| 3944 | } |
| 3945 | |
| 3946 | |
| 3947 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 3948 | |
| 3949 | /* |
| 3950 | * For realtime threads, the most important aspect is |
| 3951 | * scheduling latency, so we attempt to assign threads |
| 3952 | * to good preemption candidates (assuming an idle primary |
| 3953 | * processor was not available above). |
| 3954 | */ |
| 3955 | |
| 3956 | if (thread->sched_pri > lowest_unpaired_primary_priority) { |
| 3957 | pset->last_chosen = lp_unpaired_primary_processor->cpu_id; |
| 3958 | return lp_unpaired_primary_processor; |
| 3959 | } |
| 3960 | if (thread->sched_pri > lowest_priority) { |
| 3961 | pset->last_chosen = lp_processor->cpu_id; |
| 3962 | return lp_processor; |
| 3963 | } |
| 3964 | if (sched_allow_rt_smt && (thread->sched_pri > lowest_secondary_priority)) { |
| 3965 | pset->last_chosen = lp_paired_secondary_processor->cpu_id; |
| 3966 | return lp_paired_secondary_processor; |
| 3967 | } |
| 3968 | if (thread->realtime.deadline < furthest_deadline) |
| 3969 | return fd_processor; |
| 3970 | |
| 3971 | /* |
| 3972 | * If all primary and secondary CPUs are busy with realtime |
| 3973 | * threads with deadlines earlier than us, move on to next |
| 3974 | * pset. |
| 3975 | */ |
| 3976 | } |
| 3977 | else { |
| 3978 | |
| 3979 | if (thread->sched_pri > lowest_unpaired_primary_priority) { |
| 3980 | pset->last_chosen = lp_unpaired_primary_processor->cpu_id; |
| 3981 | return lp_unpaired_primary_processor; |
| 3982 | } |
| 3983 | if (thread->sched_pri > lowest_priority) { |
| 3984 | pset->last_chosen = lp_processor->cpu_id; |
| 3985 | return lp_processor; |
| 3986 | } |
| 3987 | |
| 3988 | /* |
| 3989 | * If all primary processor in this pset are running a higher |
| 3990 | * priority thread, move on to next pset. Only when we have |
| 3991 | * exhausted this search do we fall back to other heuristics. |
| 3992 | */ |
| 3993 | } |
| 3994 | |
| 3995 | /* |
| 3996 | * Move onto the next processor set. |
| 3997 | */ |
| 3998 | nset = next_pset(pset); |
| 3999 | |
| 4000 | if (nset != starting_pset) { |
| 4001 | pset_unlock(pset); |
| 4002 | |
| 4003 | pset = nset; |
| 4004 | pset_lock(pset); |
| 4005 | } |
| 4006 | } while (nset != starting_pset); |
| 4007 | |
| 4008 | /* |
| 4009 | * Make sure that we pick a running processor, |
| 4010 | * and that the correct processor set is locked. |
| 4011 | * Since we may have unlock the candidate processor's |
| 4012 | * pset, it may have changed state. |
| 4013 | * |
| 4014 | * All primary processors are running a higher priority |
| 4015 | * thread, so the only options left are enqueuing on |
| 4016 | * the secondary processor that would perturb the least priority |
| 4017 | * primary, or the least busy primary. |
| 4018 | */ |
| 4019 | do { |
| 4020 | |
| 4021 | /* lowest_priority is evaluated in the main loops above */ |
| 4022 | if (lp_unpaired_secondary_processor != PROCESSOR_NULL) { |
| 4023 | processor = lp_unpaired_secondary_processor; |
| 4024 | lp_unpaired_secondary_processor = PROCESSOR_NULL; |
| 4025 | } else if (lp_paired_secondary_processor != PROCESSOR_NULL) { |
| 4026 | processor = lp_paired_secondary_processor; |
| 4027 | lp_paired_secondary_processor = PROCESSOR_NULL; |
| 4028 | } else if (lc_processor != PROCESSOR_NULL) { |
| 4029 | processor = lc_processor; |
| 4030 | lc_processor = PROCESSOR_NULL; |
| 4031 | } else { |
| 4032 | /* |
| 4033 | * All processors are executing higher |
| 4034 | * priority threads, and the lowest_count |
| 4035 | * candidate was not usable |
| 4036 | */ |
| 4037 | processor = master_processor; |
| 4038 | } |
| 4039 | |
| 4040 | /* |
| 4041 | * Check that the correct processor set is |
| 4042 | * returned locked. |
| 4043 | */ |
| 4044 | if (pset != processor->processor_set) { |
| 4045 | pset_unlock(pset); |
| 4046 | pset = processor->processor_set; |
| 4047 | pset_lock(pset); |
| 4048 | } |
| 4049 | |
| 4050 | /* |
| 4051 | * We must verify that the chosen processor is still available. |
| 4052 | * master_processor is an exception, since we may need to preempt |
| 4053 | * a running thread on it during processor shutdown (for sleep), |
| 4054 | * and that thread needs to be enqueued on its runqueue to run |
| 4055 | * when the processor is restarted. |
| 4056 | */ |
| 4057 | if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)) |
| 4058 | processor = PROCESSOR_NULL; |
| 4059 | |
| 4060 | } while (processor == PROCESSOR_NULL); |
| 4061 | |
| 4062 | pset->last_chosen = processor->cpu_id; |
| 4063 | return processor; |
| 4064 | } |
| 4065 | |
| 4066 | /* |
| 4067 | * thread_setrun: |
| 4068 | * |
| 4069 | * Dispatch thread for execution, onto an idle |
| 4070 | * processor or run queue, and signal a preemption |
| 4071 | * as appropriate. |
| 4072 | * |
| 4073 | * Thread must be locked. |
| 4074 | */ |
| 4075 | void |
| 4076 | thread_setrun( |
| 4077 | thread_t thread, |
| 4078 | integer_t options) |
| 4079 | { |
| 4080 | processor_t processor; |
| 4081 | processor_set_t pset; |
| 4082 | |
| 4083 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); |
| 4084 | assert(thread->runq == PROCESSOR_NULL); |
| 4085 | |
| 4086 | /* |
| 4087 | * Update priority if needed. |
| 4088 | */ |
| 4089 | if (SCHED(can_update_priority)(thread)) |
| 4090 | SCHED(update_priority)(thread); |
| 4091 | |
| 4092 | thread->sfi_class = sfi_thread_classify(thread); |
| 4093 | |
| 4094 | assert(thread->runq == PROCESSOR_NULL); |
| 4095 | |
| 4096 | #if __SMP__ |
| 4097 | if (thread->bound_processor == PROCESSOR_NULL) { |
| 4098 | /* |
| 4099 | * Unbound case. |
| 4100 | */ |
| 4101 | if (thread->affinity_set != AFFINITY_SET_NULL) { |
| 4102 | /* |
| 4103 | * Use affinity set policy hint. |
| 4104 | */ |
| 4105 | pset = thread->affinity_set->aset_pset; |
| 4106 | pset_lock(pset); |
| 4107 | |
| 4108 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); |
| 4109 | pset = processor->processor_set; |
| 4110 | |
| 4111 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
| 4112 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); |
| 4113 | } else if (thread->last_processor != PROCESSOR_NULL) { |
| 4114 | /* |
| 4115 | * Simple (last processor) affinity case. |
| 4116 | */ |
| 4117 | processor = thread->last_processor; |
| 4118 | pset = processor->processor_set; |
| 4119 | pset_lock(pset); |
| 4120 | processor = SCHED(choose_processor)(pset, processor, thread); |
| 4121 | pset = processor->processor_set; |
| 4122 | |
| 4123 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
| 4124 | (uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0); |
| 4125 | } else { |
| 4126 | /* |
| 4127 | * No Affinity case: |
| 4128 | * |
| 4129 | * Utilitize a per task hint to spread threads |
| 4130 | * among the available processor sets. |
| 4131 | */ |
| 4132 | task_t task = thread->task; |
| 4133 | |
| 4134 | pset = task->pset_hint; |
| 4135 | if (pset == PROCESSOR_SET_NULL) |
| 4136 | pset = current_processor()->processor_set; |
| 4137 | |
| 4138 | pset = choose_next_pset(pset); |
| 4139 | pset_lock(pset); |
| 4140 | |
| 4141 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); |
| 4142 | pset = processor->processor_set; |
| 4143 | task->pset_hint = pset; |
| 4144 | |
| 4145 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
| 4146 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); |
| 4147 | } |
| 4148 | } else { |
| 4149 | /* |
| 4150 | * Bound case: |
| 4151 | * |
| 4152 | * Unconditionally dispatch on the processor. |
| 4153 | */ |
| 4154 | processor = thread->bound_processor; |
| 4155 | pset = processor->processor_set; |
| 4156 | pset_lock(pset); |
| 4157 | |
| 4158 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
| 4159 | (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0); |
| 4160 | } |
| 4161 | #else /* !__SMP__ */ |
| 4162 | /* Only one processor to choose */ |
| 4163 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == master_processor); |
| 4164 | processor = master_processor; |
| 4165 | pset = processor->processor_set; |
| 4166 | pset_lock(pset); |
| 4167 | #endif /* !__SMP__ */ |
| 4168 | |
| 4169 | /* |
| 4170 | * Dispatch the thread on the chosen processor. |
| 4171 | * TODO: This should be based on sched_mode, not sched_pri |
| 4172 | */ |
| 4173 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 4174 | realtime_setrun(processor, thread); |
| 4175 | } else { |
| 4176 | processor_setrun(processor, thread, options); |
| 4177 | } |
| 4178 | /* pset is now unlocked */ |
| 4179 | if (thread->bound_processor == PROCESSOR_NULL) { |
| 4180 | SCHED(check_spill)(pset, thread); |
| 4181 | } |
| 4182 | } |
| 4183 | |
| 4184 | processor_set_t |
| 4185 | task_choose_pset( |
| 4186 | task_t task) |
| 4187 | { |
| 4188 | processor_set_t pset = task->pset_hint; |
| 4189 | |
| 4190 | if (pset != PROCESSOR_SET_NULL) |
| 4191 | pset = choose_next_pset(pset); |
| 4192 | |
| 4193 | return (pset); |
| 4194 | } |
| 4195 | |
| 4196 | /* |
| 4197 | * Check for a preemption point in |
| 4198 | * the current context. |
| 4199 | * |
| 4200 | * Called at splsched with thread locked. |
| 4201 | */ |
| 4202 | ast_t |
| 4203 | csw_check( |
| 4204 | processor_t processor, |
| 4205 | ast_t check_reason) |
| 4206 | { |
| 4207 | processor_set_t pset = processor->processor_set; |
| 4208 | ast_t result; |
| 4209 | |
| 4210 | pset_lock(pset); |
| 4211 | |
| 4212 | /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */ |
| 4213 | bit_clear(pset->pending_AST_cpu_mask, processor->cpu_id); |
| 4214 | |
| 4215 | result = csw_check_locked(processor, pset, check_reason); |
| 4216 | |
| 4217 | pset_unlock(pset); |
| 4218 | |
| 4219 | return result; |
| 4220 | } |
| 4221 | |
| 4222 | /* |
| 4223 | * Check for preemption at splsched with |
| 4224 | * pset and thread locked |
| 4225 | */ |
| 4226 | ast_t |
| 4227 | csw_check_locked( |
| 4228 | processor_t processor, |
| 4229 | processor_set_t pset, |
| 4230 | ast_t check_reason) |
| 4231 | { |
| 4232 | ast_t result; |
| 4233 | thread_t thread = processor->active_thread; |
| 4234 | |
| 4235 | if (processor->first_timeslice) { |
| 4236 | if (rt_runq_count(pset) > 0) |
| 4237 | return (check_reason | AST_PREEMPT | AST_URGENT); |
| 4238 | } |
| 4239 | else { |
| 4240 | if (rt_runq_count(pset) > 0) { |
| 4241 | if (BASEPRI_RTQUEUES > processor->current_pri) |
| 4242 | return (check_reason | AST_PREEMPT | AST_URGENT); |
| 4243 | else |
| 4244 | return (check_reason | AST_PREEMPT); |
| 4245 | } |
| 4246 | } |
| 4247 | |
| 4248 | #if __SMP__ |
| 4249 | /* |
| 4250 | * If the current thread is running on a processor that is no longer recommended, |
| 4251 | * urgently preempt it, at which point thread_select() should |
| 4252 | * try to idle the processor and re-dispatch the thread to a recommended processor. |
| 4253 | */ |
| 4254 | if (!processor->is_recommended) { |
| 4255 | return (check_reason | AST_PREEMPT | AST_URGENT); |
| 4256 | } |
| 4257 | #endif |
| 4258 | |
| 4259 | result = SCHED(processor_csw_check)(processor); |
| 4260 | if (result != AST_NONE) |
| 4261 | return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE)); |
| 4262 | |
| 4263 | #if __SMP__ |
| 4264 | /* |
| 4265 | * Same for avoid-processor |
| 4266 | * |
| 4267 | * TODO: Should these set AST_REBALANCE? |
| 4268 | */ |
| 4269 | if (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread)) { |
| 4270 | return (check_reason | AST_PREEMPT); |
| 4271 | } |
| 4272 | |
| 4273 | /* |
| 4274 | * Even though we could continue executing on this processor, a |
| 4275 | * secondary SMT core should try to shed load to another primary core. |
| 4276 | * |
| 4277 | * TODO: Should this do the same check that thread_select does? i.e. |
| 4278 | * if no bound threads target this processor, and idle primaries exist, preempt |
| 4279 | * The case of RT threads existing is already taken care of above |
| 4280 | */ |
| 4281 | |
| 4282 | if (processor->current_pri < BASEPRI_RTQUEUES && |
| 4283 | processor->processor_primary != processor) |
| 4284 | return (check_reason | AST_PREEMPT); |
| 4285 | #endif |
| 4286 | |
| 4287 | if (thread->state & TH_SUSP) |
| 4288 | return (check_reason | AST_PREEMPT); |
| 4289 | |
| 4290 | #if CONFIG_SCHED_SFI |
| 4291 | /* |
| 4292 | * Current thread may not need to be preempted, but maybe needs |
| 4293 | * an SFI wait? |
| 4294 | */ |
| 4295 | result = sfi_thread_needs_ast(thread, NULL); |
| 4296 | if (result != AST_NONE) |
| 4297 | return (check_reason | result); |
| 4298 | #endif |
| 4299 | |
| 4300 | return (AST_NONE); |
| 4301 | } |
| 4302 | |
| 4303 | /* |
| 4304 | * set_sched_pri: |
| 4305 | * |
| 4306 | * Set the scheduled priority of the specified thread. |
| 4307 | * |
| 4308 | * This may cause the thread to change queues. |
| 4309 | * |
| 4310 | * Thread must be locked. |
| 4311 | */ |
| 4312 | void |
| 4313 | set_sched_pri( |
| 4314 | thread_t thread, |
| 4315 | int new_priority, |
| 4316 | set_sched_pri_options_t options) |
| 4317 | { |
| 4318 | thread_t cthread = current_thread(); |
| 4319 | boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE; |
| 4320 | int curgency, nurgency; |
| 4321 | uint64_t urgency_param1, urgency_param2; |
| 4322 | boolean_t removed_from_runq = FALSE; |
| 4323 | |
| 4324 | bool lazy_update = ((options & SETPRI_LAZY) == SETPRI_LAZY); |
| 4325 | |
| 4326 | int old_priority = thread->sched_pri; |
| 4327 | |
| 4328 | /* If we're already at this priority, no need to mess with the runqueue */ |
| 4329 | if (new_priority == old_priority) |
| 4330 | return; |
| 4331 | |
| 4332 | if (is_current_thread) { |
| 4333 | assert(thread->runq == PROCESSOR_NULL); |
| 4334 | curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); |
| 4335 | } else { |
| 4336 | removed_from_runq = thread_run_queue_remove(thread); |
| 4337 | } |
| 4338 | |
| 4339 | thread->sched_pri = new_priority; |
| 4340 | |
| 4341 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY), |
| 4342 | (uintptr_t)thread_tid(thread), |
| 4343 | thread->base_pri, |
| 4344 | thread->sched_pri, |
| 4345 | thread->sched_usage, |
| 4346 | 0); |
| 4347 | |
| 4348 | if (is_current_thread) { |
| 4349 | nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); |
| 4350 | /* |
| 4351 | * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS |
| 4352 | * class alterations from user space to occur relatively infrequently, hence |
| 4353 | * those are lazily handled. QoS classes have distinct priority bands, and QoS |
| 4354 | * inheritance is expected to involve priority changes. |
| 4355 | */ |
| 4356 | uint64_t ctime = mach_approximate_time(); |
| 4357 | if (nurgency != curgency) { |
| 4358 | thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread); |
| 4359 | } |
| 4360 | machine_thread_going_on_core(thread, nurgency, 0, 0, ctime); |
| 4361 | } |
| 4362 | |
| 4363 | if (removed_from_runq) |
| 4364 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); |
| 4365 | else if (thread->state & TH_RUN) { |
| 4366 | processor_t processor = thread->last_processor; |
| 4367 | |
| 4368 | if (is_current_thread) { |
| 4369 | processor_state_update_from_thread(processor, thread); |
| 4370 | |
| 4371 | /* |
| 4372 | * When dropping in priority, check if the thread no longer belongs on core. |
| 4373 | * If a thread raises its own priority, don't aggressively rebalance it. |
| 4374 | * <rdar://problem/31699165> |
| 4375 | */ |
| 4376 | if (!lazy_update && new_priority < old_priority) { |
| 4377 | ast_t preempt; |
| 4378 | |
| 4379 | if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE) |
| 4380 | ast_on(preempt); |
| 4381 | } |
| 4382 | } else if (!lazy_update && processor != PROCESSOR_NULL && |
| 4383 | processor != current_processor() && processor->active_thread == thread) { |
| 4384 | cause_ast_check(processor); |
| 4385 | } |
| 4386 | } |
| 4387 | } |
| 4388 | |
| 4389 | /* |
| 4390 | * thread_run_queue_remove_for_handoff |
| 4391 | * |
| 4392 | * Pull a thread or its (recursive) push target out of the runqueue |
| 4393 | * so that it is ready for thread_run() |
| 4394 | * |
| 4395 | * Called at splsched |
| 4396 | * |
| 4397 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. |
| 4398 | * This may be different than the thread that was passed in. |
| 4399 | */ |
| 4400 | thread_t |
| 4401 | thread_run_queue_remove_for_handoff(thread_t thread) { |
| 4402 | |
| 4403 | thread_t pulled_thread = THREAD_NULL; |
| 4404 | |
| 4405 | thread_lock(thread); |
| 4406 | |
| 4407 | /* |
| 4408 | * Check that the thread is not bound |
| 4409 | * to a different processor, and that realtime |
| 4410 | * is not involved. |
| 4411 | * |
| 4412 | * Next, pull it off its run queue. If it |
| 4413 | * doesn't come, it's not eligible. |
| 4414 | */ |
| 4415 | |
| 4416 | processor_t processor = current_processor(); |
| 4417 | if (processor->current_pri < BASEPRI_RTQUEUES && thread->sched_pri < BASEPRI_RTQUEUES && |
| 4418 | (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor)) { |
| 4419 | |
| 4420 | if (thread_run_queue_remove(thread)) |
| 4421 | pulled_thread = thread; |
| 4422 | } |
| 4423 | |
| 4424 | thread_unlock(thread); |
| 4425 | |
| 4426 | return pulled_thread; |
| 4427 | } |
| 4428 | |
| 4429 | /* |
| 4430 | * thread_run_queue_remove: |
| 4431 | * |
| 4432 | * Remove a thread from its current run queue and |
| 4433 | * return TRUE if successful. |
| 4434 | * |
| 4435 | * Thread must be locked. |
| 4436 | * |
| 4437 | * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the |
| 4438 | * run queues because the caller locked the thread. Otherwise |
| 4439 | * the thread is on a run queue, but could be chosen for dispatch |
| 4440 | * and removed by another processor under a different lock, which |
| 4441 | * will set thread->runq to PROCESSOR_NULL. |
| 4442 | * |
| 4443 | * Hence the thread select path must not rely on anything that could |
| 4444 | * be changed under the thread lock after calling this function, |
| 4445 | * most importantly thread->sched_pri. |
| 4446 | */ |
| 4447 | boolean_t |
| 4448 | thread_run_queue_remove( |
| 4449 | thread_t thread) |
| 4450 | { |
| 4451 | boolean_t removed = FALSE; |
| 4452 | processor_t processor = thread->runq; |
| 4453 | |
| 4454 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) { |
| 4455 | /* Thread isn't runnable */ |
| 4456 | assert(thread->runq == PROCESSOR_NULL); |
| 4457 | return FALSE; |
| 4458 | } |
| 4459 | |
| 4460 | if (processor == PROCESSOR_NULL) { |
| 4461 | /* |
| 4462 | * The thread is either not on the runq, |
| 4463 | * or is in the midst of being removed from the runq. |
| 4464 | * |
| 4465 | * runq is set to NULL under the pset lock, not the thread |
| 4466 | * lock, so the thread may still be in the process of being dequeued |
| 4467 | * from the runq. It will wait in invoke for the thread lock to be |
| 4468 | * dropped. |
| 4469 | */ |
| 4470 | |
| 4471 | return FALSE; |
| 4472 | } |
| 4473 | |
| 4474 | if (thread->sched_pri < BASEPRI_RTQUEUES) { |
| 4475 | return SCHED(processor_queue_remove)(processor, thread); |
| 4476 | } |
| 4477 | |
| 4478 | processor_set_t pset = processor->processor_set; |
| 4479 | |
| 4480 | rt_lock_lock(pset); |
| 4481 | |
| 4482 | if (thread->runq != PROCESSOR_NULL) { |
| 4483 | /* |
| 4484 | * Thread is on the RT run queue and we have a lock on |
| 4485 | * that run queue. |
| 4486 | */ |
| 4487 | |
| 4488 | remqueue(&thread->runq_links); |
| 4489 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); |
| 4490 | rt_runq_count_decr(pset); |
| 4491 | |
| 4492 | thread->runq = PROCESSOR_NULL; |
| 4493 | |
| 4494 | removed = TRUE; |
| 4495 | } |
| 4496 | |
| 4497 | rt_lock_unlock(pset); |
| 4498 | |
| 4499 | return (removed); |
| 4500 | } |
| 4501 | |
| 4502 | /* |
| 4503 | * Put the thread back where it goes after a thread_run_queue_remove |
| 4504 | * |
| 4505 | * Thread must have been removed under the same thread lock hold |
| 4506 | * |
| 4507 | * thread locked, at splsched |
| 4508 | */ |
| 4509 | void |
| 4510 | thread_run_queue_reinsert(thread_t thread, integer_t options) |
| 4511 | { |
| 4512 | assert(thread->runq == PROCESSOR_NULL); |
| 4513 | assert(thread->state & (TH_RUN)); |
| 4514 | |
| 4515 | thread_setrun(thread, options); |
| 4516 | } |
| 4517 | |
| 4518 | void |
| 4519 | sys_override_cpu_throttle(boolean_t enable_override) |
| 4520 | { |
| 4521 | if (enable_override) |
| 4522 | cpu_throttle_enabled = 0; |
| 4523 | else |
| 4524 | cpu_throttle_enabled = 1; |
| 4525 | } |
| 4526 | |
| 4527 | int |
| 4528 | thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2) |
| 4529 | { |
| 4530 | if (thread == NULL || (thread->state & TH_IDLE)) { |
| 4531 | *arg1 = 0; |
| 4532 | *arg2 = 0; |
| 4533 | |
| 4534 | return (THREAD_URGENCY_NONE); |
| 4535 | } else if (thread->sched_mode == TH_MODE_REALTIME) { |
| 4536 | *arg1 = thread->realtime.period; |
| 4537 | *arg2 = thread->realtime.deadline; |
| 4538 | |
| 4539 | return (THREAD_URGENCY_REAL_TIME); |
| 4540 | } else if (cpu_throttle_enabled && |
| 4541 | ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { |
| 4542 | /* |
| 4543 | * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted |
| 4544 | */ |
| 4545 | *arg1 = thread->sched_pri; |
| 4546 | *arg2 = thread->base_pri; |
| 4547 | |
| 4548 | return (THREAD_URGENCY_BACKGROUND); |
| 4549 | } else { |
| 4550 | /* For otherwise unclassified threads, report throughput QoS |
| 4551 | * parameters |
| 4552 | */ |
| 4553 | *arg1 = proc_get_effective_thread_policy(thread, TASK_POLICY_THROUGH_QOS); |
| 4554 | *arg2 = proc_get_effective_task_policy(thread->task, TASK_POLICY_THROUGH_QOS); |
| 4555 | |
| 4556 | return (THREAD_URGENCY_NORMAL); |
| 4557 | } |
| 4558 | } |
| 4559 | |
| 4560 | perfcontrol_class_t |
| 4561 | thread_get_perfcontrol_class(thread_t thread) |
| 4562 | { |
| 4563 | /* Special case handling */ |
| 4564 | if (thread->state & TH_IDLE) |
| 4565 | return PERFCONTROL_CLASS_IDLE; |
| 4566 | if (thread->task == kernel_task) |
| 4567 | return PERFCONTROL_CLASS_KERNEL; |
| 4568 | if (thread->sched_mode == TH_MODE_REALTIME) |
| 4569 | return PERFCONTROL_CLASS_REALTIME; |
| 4570 | |
| 4571 | /* perfcontrol_class based on base_pri */ |
| 4572 | if (thread->base_pri <= MAXPRI_THROTTLE) |
| 4573 | return PERFCONTROL_CLASS_BACKGROUND; |
| 4574 | else if (thread->base_pri <= BASEPRI_UTILITY) |
| 4575 | return PERFCONTROL_CLASS_UTILITY; |
| 4576 | else if (thread->base_pri <= BASEPRI_DEFAULT) |
| 4577 | return PERFCONTROL_CLASS_NONUI; |
| 4578 | else if (thread->base_pri <= BASEPRI_FOREGROUND) |
| 4579 | return PERFCONTROL_CLASS_UI; |
| 4580 | else |
| 4581 | return PERFCONTROL_CLASS_ABOVEUI; |
| 4582 | } |
| 4583 | |
| 4584 | /* |
| 4585 | * This is the processor idle loop, which just looks for other threads |
| 4586 | * to execute. Processor idle threads invoke this without supplying a |
| 4587 | * current thread to idle without an asserted wait state. |
| 4588 | * |
| 4589 | * Returns a the next thread to execute if dispatched directly. |
| 4590 | */ |
| 4591 | |
| 4592 | #if 0 |
| 4593 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__) |
| 4594 | #else |
| 4595 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0) |
| 4596 | #endif |
| 4597 | |
| 4598 | thread_t |
| 4599 | processor_idle( |
| 4600 | thread_t thread, |
| 4601 | processor_t processor) |
| 4602 | { |
| 4603 | processor_set_t pset = processor->processor_set; |
| 4604 | thread_t new_thread; |
| 4605 | int state; |
| 4606 | (void)splsched(); |
| 4607 | |
| 4608 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4609 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, |
| 4610 | (uintptr_t)thread_tid(thread), 0, 0, 0, 0); |
| 4611 | |
| 4612 | SCHED_STATS_CPU_IDLE_START(processor); |
| 4613 | |
| 4614 | uint64_t ctime = mach_absolute_time(); |
| 4615 | |
| 4616 | timer_switch(&PROCESSOR_DATA(processor, system_state), ctime, &PROCESSOR_DATA(processor, idle_state)); |
| 4617 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state); |
| 4618 | |
| 4619 | cpu_quiescent_counter_leave(ctime); |
| 4620 | |
| 4621 | while (1) { |
| 4622 | /* |
| 4623 | * Ensure that updates to my processor and pset state, |
| 4624 | * made by the IPI source processor before sending the IPI, |
| 4625 | * are visible on this processor now (even though we don't |
| 4626 | * take the pset lock yet). |
| 4627 | */ |
| 4628 | atomic_thread_fence(memory_order_acquire); |
| 4629 | |
| 4630 | if (processor->state != PROCESSOR_IDLE) |
| 4631 | break; |
| 4632 | if (bit_test(pset->pending_AST_cpu_mask, processor->cpu_id)) |
| 4633 | break; |
| 4634 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4635 | if (bit_test(pset->pending_deferred_AST_cpu_mask, processor->cpu_id)) |
| 4636 | break; |
| 4637 | #endif |
| 4638 | if (processor->is_recommended && (processor->processor_primary == processor)) { |
| 4639 | if (rt_runq_count(pset)) |
| 4640 | break; |
| 4641 | } else { |
| 4642 | if (SCHED(processor_bound_count)(processor)) |
| 4643 | break; |
| 4644 | } |
| 4645 | |
| 4646 | #if CONFIG_SCHED_IDLE_IN_PLACE |
| 4647 | if (thread != THREAD_NULL) { |
| 4648 | /* Did idle-in-place thread wake up */ |
| 4649 | if ((thread->state & (TH_WAIT|TH_SUSP)) != TH_WAIT || thread->wake_active) |
| 4650 | break; |
| 4651 | } |
| 4652 | #endif |
| 4653 | |
| 4654 | IDLE_KERNEL_DEBUG_CONSTANT( |
| 4655 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -1, 0); |
| 4656 | |
| 4657 | machine_track_platform_idle(TRUE); |
| 4658 | |
| 4659 | machine_idle(); |
| 4660 | |
| 4661 | machine_track_platform_idle(FALSE); |
| 4662 | |
| 4663 | (void)splsched(); |
| 4664 | |
| 4665 | /* |
| 4666 | * Check if we should call sched_timeshare_consider_maintenance() here. |
| 4667 | * The CPU was woken out of idle due to an interrupt and we should do the |
| 4668 | * call only if the processor is still idle. If the processor is non-idle, |
| 4669 | * the threads running on the processor would do the call as part of |
| 4670 | * context swithing. |
| 4671 | */ |
| 4672 | if (processor->state == PROCESSOR_IDLE) { |
| 4673 | sched_timeshare_consider_maintenance(mach_absolute_time()); |
| 4674 | } |
| 4675 | |
| 4676 | IDLE_KERNEL_DEBUG_CONSTANT( |
| 4677 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -2, 0); |
| 4678 | |
| 4679 | if (!SCHED(processor_queue_empty)(processor)) { |
| 4680 | /* Secondary SMT processors respond to directed wakeups |
| 4681 | * exclusively. Some platforms induce 'spurious' SMT wakeups. |
| 4682 | */ |
| 4683 | if (processor->processor_primary == processor) |
| 4684 | break; |
| 4685 | } |
| 4686 | } |
| 4687 | |
| 4688 | ctime = mach_absolute_time(); |
| 4689 | |
| 4690 | timer_switch(&PROCESSOR_DATA(processor, idle_state), ctime, &PROCESSOR_DATA(processor, system_state)); |
| 4691 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state); |
| 4692 | |
| 4693 | cpu_quiescent_counter_join(ctime); |
| 4694 | |
| 4695 | pset_lock(pset); |
| 4696 | |
| 4697 | /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */ |
| 4698 | bit_clear(pset->pending_AST_cpu_mask, processor->cpu_id); |
| 4699 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4700 | bit_clear(pset->pending_deferred_AST_cpu_mask, processor->cpu_id); |
| 4701 | #endif |
| 4702 | |
| 4703 | state = processor->state; |
| 4704 | if (state == PROCESSOR_DISPATCHING) { |
| 4705 | /* |
| 4706 | * Commmon case -- cpu dispatched. |
| 4707 | */ |
| 4708 | new_thread = processor->next_thread; |
| 4709 | processor->next_thread = THREAD_NULL; |
| 4710 | pset_update_processor_state(pset, processor, PROCESSOR_RUNNING); |
| 4711 | |
| 4712 | if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) || |
| 4713 | (rt_runq_count(pset) > 0)) ) { |
| 4714 | /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */ |
| 4715 | processor_state_update_idle(processor); |
| 4716 | processor->deadline = UINT64_MAX; |
| 4717 | |
| 4718 | pset_unlock(pset); |
| 4719 | |
| 4720 | thread_lock(new_thread); |
| 4721 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq_count(pset), 0, 0); |
| 4722 | thread_setrun(new_thread, SCHED_HEADQ); |
| 4723 | thread_unlock(new_thread); |
| 4724 | |
| 4725 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4726 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, |
| 4727 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); |
| 4728 | |
| 4729 | return (THREAD_NULL); |
| 4730 | } |
| 4731 | |
| 4732 | sched_update_pset_load_average(pset); |
| 4733 | |
| 4734 | pset_unlock(pset); |
| 4735 | |
| 4736 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4737 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, |
| 4738 | (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0); |
| 4739 | |
| 4740 | return (new_thread); |
| 4741 | |
| 4742 | } else if (state == PROCESSOR_IDLE) { |
| 4743 | pset_update_processor_state(pset, processor, PROCESSOR_RUNNING); |
| 4744 | processor_state_update_idle(processor); |
| 4745 | processor->deadline = UINT64_MAX; |
| 4746 | |
| 4747 | } else if (state == PROCESSOR_SHUTDOWN) { |
| 4748 | /* |
| 4749 | * Going off-line. Force a |
| 4750 | * reschedule. |
| 4751 | */ |
| 4752 | if ((new_thread = processor->next_thread) != THREAD_NULL) { |
| 4753 | processor->next_thread = THREAD_NULL; |
| 4754 | processor_state_update_idle(processor); |
| 4755 | processor->deadline = UINT64_MAX; |
| 4756 | |
| 4757 | pset_unlock(pset); |
| 4758 | |
| 4759 | thread_lock(new_thread); |
| 4760 | thread_setrun(new_thread, SCHED_HEADQ); |
| 4761 | thread_unlock(new_thread); |
| 4762 | |
| 4763 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4764 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, |
| 4765 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); |
| 4766 | |
| 4767 | return (THREAD_NULL); |
| 4768 | } |
| 4769 | } |
| 4770 | |
| 4771 | pset_unlock(pset); |
| 4772 | |
| 4773 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4774 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, |
| 4775 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); |
| 4776 | |
| 4777 | return (THREAD_NULL); |
| 4778 | } |
| 4779 | |
| 4780 | /* |
| 4781 | * Each processor has a dedicated thread which |
| 4782 | * executes the idle loop when there is no suitable |
| 4783 | * previous context. |
| 4784 | */ |
| 4785 | void |
| 4786 | idle_thread(void) |
| 4787 | { |
| 4788 | processor_t processor = current_processor(); |
| 4789 | thread_t new_thread; |
| 4790 | |
| 4791 | new_thread = processor_idle(THREAD_NULL, processor); |
| 4792 | if (new_thread != THREAD_NULL) { |
| 4793 | thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread); |
| 4794 | /*NOTREACHED*/ |
| 4795 | } |
| 4796 | |
| 4797 | thread_block((thread_continue_t)idle_thread); |
| 4798 | /*NOTREACHED*/ |
| 4799 | } |
| 4800 | |
| 4801 | kern_return_t |
| 4802 | idle_thread_create( |
| 4803 | processor_t processor) |
| 4804 | { |
| 4805 | kern_return_t result; |
| 4806 | thread_t thread; |
| 4807 | spl_t s; |
| 4808 | char name[MAXTHREADNAMESIZE]; |
| 4809 | |
| 4810 | result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread); |
| 4811 | if (result != KERN_SUCCESS) |
| 4812 | return (result); |
| 4813 | |
| 4814 | snprintf(name, sizeof(name), "idle #%d" , processor->cpu_id); |
| 4815 | thread_set_thread_name(thread, name); |
| 4816 | |
| 4817 | s = splsched(); |
| 4818 | thread_lock(thread); |
| 4819 | thread->bound_processor = processor; |
| 4820 | processor->idle_thread = thread; |
| 4821 | thread->sched_pri = thread->base_pri = IDLEPRI; |
| 4822 | thread->state = (TH_RUN | TH_IDLE); |
| 4823 | thread->options |= TH_OPT_IDLE_THREAD; |
| 4824 | thread_unlock(thread); |
| 4825 | splx(s); |
| 4826 | |
| 4827 | thread_deallocate(thread); |
| 4828 | |
| 4829 | return (KERN_SUCCESS); |
| 4830 | } |
| 4831 | |
| 4832 | /* |
| 4833 | * sched_startup: |
| 4834 | * |
| 4835 | * Kicks off scheduler services. |
| 4836 | * |
| 4837 | * Called at splsched. |
| 4838 | */ |
| 4839 | void |
| 4840 | sched_startup(void) |
| 4841 | { |
| 4842 | kern_return_t result; |
| 4843 | thread_t thread; |
| 4844 | |
| 4845 | simple_lock_init(&sched_vm_group_list_lock, 0); |
| 4846 | |
| 4847 | #if __arm__ || __arm64__ |
| 4848 | simple_lock_init(&sched_recommended_cores_lock, 0); |
| 4849 | #endif /* __arm__ || __arm64__ */ |
| 4850 | |
| 4851 | result = kernel_thread_start_priority((thread_continue_t)sched_init_thread, |
| 4852 | (void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread); |
| 4853 | if (result != KERN_SUCCESS) |
| 4854 | panic("sched_startup" ); |
| 4855 | |
| 4856 | thread_deallocate(thread); |
| 4857 | |
| 4858 | assert_thread_magic(thread); |
| 4859 | |
| 4860 | /* |
| 4861 | * Yield to the sched_init_thread once, to |
| 4862 | * initialize our own thread after being switched |
| 4863 | * back to. |
| 4864 | * |
| 4865 | * The current thread is the only other thread |
| 4866 | * active at this point. |
| 4867 | */ |
| 4868 | thread_block(THREAD_CONTINUE_NULL); |
| 4869 | } |
| 4870 | |
| 4871 | #if __arm64__ |
| 4872 | static _Atomic uint64_t sched_perfcontrol_callback_deadline; |
| 4873 | #endif /* __arm64__ */ |
| 4874 | |
| 4875 | |
| 4876 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 4877 | |
| 4878 | static volatile uint64_t sched_maintenance_deadline; |
| 4879 | static uint64_t sched_tick_last_abstime; |
| 4880 | static uint64_t sched_tick_delta; |
| 4881 | uint64_t sched_tick_max_delta; |
| 4882 | |
| 4883 | |
| 4884 | /* |
| 4885 | * sched_init_thread: |
| 4886 | * |
| 4887 | * Perform periodic bookkeeping functions about ten |
| 4888 | * times per second. |
| 4889 | */ |
| 4890 | void |
| 4891 | sched_timeshare_maintenance_continue(void) |
| 4892 | { |
| 4893 | uint64_t sched_tick_ctime, late_time; |
| 4894 | |
| 4895 | struct sched_update_scan_context scan_context = { |
| 4896 | .earliest_bg_make_runnable_time = UINT64_MAX, |
| 4897 | .earliest_normal_make_runnable_time = UINT64_MAX, |
| 4898 | .earliest_rt_make_runnable_time = UINT64_MAX |
| 4899 | }; |
| 4900 | |
| 4901 | sched_tick_ctime = mach_absolute_time(); |
| 4902 | |
| 4903 | if (__improbable(sched_tick_last_abstime == 0)) { |
| 4904 | sched_tick_last_abstime = sched_tick_ctime; |
| 4905 | late_time = 0; |
| 4906 | sched_tick_delta = 1; |
| 4907 | } else { |
| 4908 | late_time = sched_tick_ctime - sched_tick_last_abstime; |
| 4909 | sched_tick_delta = late_time / sched_tick_interval; |
| 4910 | /* Ensure a delta of 1, since the interval could be slightly |
| 4911 | * smaller than the sched_tick_interval due to dispatch |
| 4912 | * latencies. |
| 4913 | */ |
| 4914 | sched_tick_delta = MAX(sched_tick_delta, 1); |
| 4915 | |
| 4916 | /* In the event interrupt latencies or platform |
| 4917 | * idle events that advanced the timebase resulted |
| 4918 | * in periods where no threads were dispatched, |
| 4919 | * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA |
| 4920 | * iterations. |
| 4921 | */ |
| 4922 | sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA); |
| 4923 | |
| 4924 | sched_tick_last_abstime = sched_tick_ctime; |
| 4925 | sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta); |
| 4926 | } |
| 4927 | |
| 4928 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START, |
| 4929 | sched_tick_delta, late_time, 0, 0, 0); |
| 4930 | |
| 4931 | /* Add a number of pseudo-ticks corresponding to the elapsed interval |
| 4932 | * This could be greater than 1 if substantial intervals where |
| 4933 | * all processors are idle occur, which rarely occurs in practice. |
| 4934 | */ |
| 4935 | |
| 4936 | sched_tick += sched_tick_delta; |
| 4937 | |
| 4938 | update_vm_info(); |
| 4939 | |
| 4940 | /* |
| 4941 | * Compute various averages. |
| 4942 | */ |
| 4943 | compute_averages(sched_tick_delta); |
| 4944 | |
| 4945 | /* |
| 4946 | * Scan the run queues for threads which |
| 4947 | * may need to be updated, and find the earliest runnable thread on the runqueue |
| 4948 | * to report its latency. |
| 4949 | */ |
| 4950 | SCHED(thread_update_scan)(&scan_context); |
| 4951 | |
| 4952 | SCHED(rt_runq_scan)(&scan_context); |
| 4953 | |
| 4954 | uint64_t ctime = mach_absolute_time(); |
| 4955 | |
| 4956 | uint64_t bg_max_latency = (ctime > scan_context.earliest_bg_make_runnable_time) ? |
| 4957 | ctime - scan_context.earliest_bg_make_runnable_time : 0; |
| 4958 | |
| 4959 | uint64_t default_max_latency = (ctime > scan_context.earliest_normal_make_runnable_time) ? |
| 4960 | ctime - scan_context.earliest_normal_make_runnable_time : 0; |
| 4961 | |
| 4962 | uint64_t realtime_max_latency = (ctime > scan_context.earliest_rt_make_runnable_time) ? |
| 4963 | ctime - scan_context.earliest_rt_make_runnable_time : 0; |
| 4964 | |
| 4965 | machine_max_runnable_latency(bg_max_latency, default_max_latency, realtime_max_latency); |
| 4966 | |
| 4967 | /* |
| 4968 | * Check to see if the special sched VM group needs attention. |
| 4969 | */ |
| 4970 | sched_vm_group_maintenance(); |
| 4971 | |
| 4972 | #if __arm__ || __arm64__ |
| 4973 | /* Check to see if the recommended cores failsafe is active */ |
| 4974 | sched_recommended_cores_maintenance(); |
| 4975 | #endif /* __arm__ || __arm64__ */ |
| 4976 | |
| 4977 | |
| 4978 | #if DEBUG || DEVELOPMENT |
| 4979 | #if __x86_64__ |
| 4980 | #include <i386/misc_protos.h> |
| 4981 | /* Check for long-duration interrupts */ |
| 4982 | mp_interrupt_watchdog(); |
| 4983 | #endif /* __x86_64__ */ |
| 4984 | #endif /* DEBUG || DEVELOPMENT */ |
| 4985 | |
| 4986 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END, |
| 4987 | sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG], |
| 4988 | sched_pri_shifts[TH_BUCKET_SHARE_UT], sched_pri_shifts[TH_BUCKET_SHARE_DF], 0); |
| 4989 | |
| 4990 | assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT); |
| 4991 | thread_block((thread_continue_t)sched_timeshare_maintenance_continue); |
| 4992 | /*NOTREACHED*/ |
| 4993 | } |
| 4994 | |
| 4995 | static uint64_t sched_maintenance_wakeups; |
| 4996 | |
| 4997 | /* |
| 4998 | * Determine if the set of routines formerly driven by a maintenance timer |
| 4999 | * must be invoked, based on a deadline comparison. Signals the scheduler |
| 5000 | * maintenance thread on deadline expiration. Must be invoked at an interval |
| 5001 | * lower than the "sched_tick_interval", currently accomplished by |
| 5002 | * invocation via the quantum expiration timer and at context switch time. |
| 5003 | * Performance matters: this routine reuses a timestamp approximating the |
| 5004 | * current absolute time received from the caller, and should perform |
| 5005 | * no more than a comparison against the deadline in the common case. |
| 5006 | */ |
| 5007 | void |
| 5008 | sched_timeshare_consider_maintenance(uint64_t ctime) { |
| 5009 | |
| 5010 | cpu_quiescent_counter_checkin(ctime); |
| 5011 | |
| 5012 | uint64_t deadline = sched_maintenance_deadline; |
| 5013 | |
| 5014 | if (__improbable(ctime >= deadline)) { |
| 5015 | if (__improbable(current_thread() == sched_maintenance_thread)) |
| 5016 | return; |
| 5017 | OSMemoryBarrier(); |
| 5018 | |
| 5019 | uint64_t ndeadline = ctime + sched_tick_interval; |
| 5020 | |
| 5021 | if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) { |
| 5022 | thread_wakeup((event_t)sched_timeshare_maintenance_continue); |
| 5023 | sched_maintenance_wakeups++; |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | uint64_t load_compute_deadline = __c11_atomic_load(&sched_load_compute_deadline, memory_order_relaxed); |
| 5028 | |
| 5029 | if (__improbable(load_compute_deadline && ctime >= load_compute_deadline)) { |
| 5030 | uint64_t new_deadline = 0; |
| 5031 | if (__c11_atomic_compare_exchange_strong(&sched_load_compute_deadline, &load_compute_deadline, new_deadline, |
| 5032 | memory_order_relaxed, memory_order_relaxed)) { |
| 5033 | compute_sched_load(); |
| 5034 | new_deadline = ctime + sched_load_compute_interval_abs; |
| 5035 | __c11_atomic_store(&sched_load_compute_deadline, new_deadline, memory_order_relaxed); |
| 5036 | } |
| 5037 | } |
| 5038 | |
| 5039 | #if __arm64__ |
| 5040 | uint64_t perf_deadline = __c11_atomic_load(&sched_perfcontrol_callback_deadline, memory_order_relaxed); |
| 5041 | |
| 5042 | if (__improbable(perf_deadline && ctime >= perf_deadline)) { |
| 5043 | /* CAS in 0, if success, make callback. Otherwise let the next context switch check again. */ |
| 5044 | if (__c11_atomic_compare_exchange_strong(&sched_perfcontrol_callback_deadline, &perf_deadline, 0, |
| 5045 | memory_order_relaxed, memory_order_relaxed)) { |
| 5046 | machine_perfcontrol_deadline_passed(perf_deadline); |
| 5047 | } |
| 5048 | } |
| 5049 | #endif /* __arm64__ */ |
| 5050 | |
| 5051 | } |
| 5052 | |
| 5053 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 5054 | |
| 5055 | void |
| 5056 | sched_init_thread(void (*continuation)(void)) |
| 5057 | { |
| 5058 | thread_block(THREAD_CONTINUE_NULL); |
| 5059 | |
| 5060 | thread_t thread = current_thread(); |
| 5061 | |
| 5062 | thread_set_thread_name(thread, "sched_maintenance_thread" ); |
| 5063 | |
| 5064 | sched_maintenance_thread = thread; |
| 5065 | |
| 5066 | continuation(); |
| 5067 | |
| 5068 | /*NOTREACHED*/ |
| 5069 | } |
| 5070 | |
| 5071 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 5072 | |
| 5073 | /* |
| 5074 | * thread_update_scan / runq_scan: |
| 5075 | * |
| 5076 | * Scan the run queues to account for timesharing threads |
| 5077 | * which need to be updated. |
| 5078 | * |
| 5079 | * Scanner runs in two passes. Pass one squirrels likely |
| 5080 | * threads away in an array, pass two does the update. |
| 5081 | * |
| 5082 | * This is necessary because the run queue is locked for |
| 5083 | * the candidate scan, but the thread is locked for the update. |
| 5084 | * |
| 5085 | * Array should be sized to make forward progress, without |
| 5086 | * disabling preemption for long periods. |
| 5087 | */ |
| 5088 | |
| 5089 | #define THREAD_UPDATE_SIZE 128 |
| 5090 | |
| 5091 | static thread_t thread_update_array[THREAD_UPDATE_SIZE]; |
| 5092 | static uint32_t thread_update_count = 0; |
| 5093 | |
| 5094 | /* Returns TRUE if thread was added, FALSE if thread_update_array is full */ |
| 5095 | boolean_t |
| 5096 | thread_update_add_thread(thread_t thread) |
| 5097 | { |
| 5098 | if (thread_update_count == THREAD_UPDATE_SIZE) |
| 5099 | return (FALSE); |
| 5100 | |
| 5101 | thread_update_array[thread_update_count++] = thread; |
| 5102 | thread_reference_internal(thread); |
| 5103 | return (TRUE); |
| 5104 | } |
| 5105 | |
| 5106 | void |
| 5107 | thread_update_process_threads(void) |
| 5108 | { |
| 5109 | assert(thread_update_count <= THREAD_UPDATE_SIZE); |
| 5110 | |
| 5111 | for (uint32_t i = 0 ; i < thread_update_count ; i++) { |
| 5112 | thread_t thread = thread_update_array[i]; |
| 5113 | assert_thread_magic(thread); |
| 5114 | thread_update_array[i] = THREAD_NULL; |
| 5115 | |
| 5116 | spl_t s = splsched(); |
| 5117 | thread_lock(thread); |
| 5118 | if (!(thread->state & (TH_WAIT)) && thread->sched_stamp != sched_tick) { |
| 5119 | SCHED(update_priority)(thread); |
| 5120 | } |
| 5121 | thread_unlock(thread); |
| 5122 | splx(s); |
| 5123 | |
| 5124 | thread_deallocate(thread); |
| 5125 | } |
| 5126 | |
| 5127 | thread_update_count = 0; |
| 5128 | } |
| 5129 | |
| 5130 | /* |
| 5131 | * Scan a runq for candidate threads. |
| 5132 | * |
| 5133 | * Returns TRUE if retry is needed. |
| 5134 | */ |
| 5135 | boolean_t |
| 5136 | runq_scan( |
| 5137 | run_queue_t runq, |
| 5138 | sched_update_scan_context_t scan_context) |
| 5139 | { |
| 5140 | int count = runq->count; |
| 5141 | int queue_index; |
| 5142 | |
| 5143 | assert(count >= 0); |
| 5144 | |
| 5145 | if (count == 0) |
| 5146 | return FALSE; |
| 5147 | |
| 5148 | for (queue_index = bitmap_first(runq->bitmap, NRQS); |
| 5149 | queue_index >= 0; |
| 5150 | queue_index = bitmap_next(runq->bitmap, queue_index)) { |
| 5151 | |
| 5152 | thread_t thread; |
| 5153 | queue_t queue = &runq->queues[queue_index]; |
| 5154 | |
| 5155 | qe_foreach_element(thread, queue, runq_links) { |
| 5156 | assert(count > 0); |
| 5157 | assert_thread_magic(thread); |
| 5158 | |
| 5159 | if (thread->sched_stamp != sched_tick && |
| 5160 | thread->sched_mode == TH_MODE_TIMESHARE) { |
| 5161 | if (thread_update_add_thread(thread) == FALSE) |
| 5162 | return TRUE; |
| 5163 | } |
| 5164 | |
| 5165 | if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { |
| 5166 | if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) { |
| 5167 | scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time; |
| 5168 | } |
| 5169 | } else { |
| 5170 | if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) { |
| 5171 | scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time; |
| 5172 | } |
| 5173 | } |
| 5174 | count--; |
| 5175 | } |
| 5176 | } |
| 5177 | |
| 5178 | return FALSE; |
| 5179 | } |
| 5180 | |
| 5181 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 5182 | |
| 5183 | boolean_t |
| 5184 | thread_eager_preemption(thread_t thread) |
| 5185 | { |
| 5186 | return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0); |
| 5187 | } |
| 5188 | |
| 5189 | void |
| 5190 | thread_set_eager_preempt(thread_t thread) |
| 5191 | { |
| 5192 | spl_t x; |
| 5193 | processor_t p; |
| 5194 | ast_t ast = AST_NONE; |
| 5195 | |
| 5196 | x = splsched(); |
| 5197 | p = current_processor(); |
| 5198 | |
| 5199 | thread_lock(thread); |
| 5200 | thread->sched_flags |= TH_SFLAG_EAGERPREEMPT; |
| 5201 | |
| 5202 | if (thread == current_thread()) { |
| 5203 | |
| 5204 | ast = csw_check(p, AST_NONE); |
| 5205 | thread_unlock(thread); |
| 5206 | if (ast != AST_NONE) { |
| 5207 | (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast); |
| 5208 | } |
| 5209 | } else { |
| 5210 | p = thread->last_processor; |
| 5211 | |
| 5212 | if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING && |
| 5213 | p->active_thread == thread) { |
| 5214 | cause_ast_check(p); |
| 5215 | } |
| 5216 | |
| 5217 | thread_unlock(thread); |
| 5218 | } |
| 5219 | |
| 5220 | splx(x); |
| 5221 | } |
| 5222 | |
| 5223 | void |
| 5224 | thread_clear_eager_preempt(thread_t thread) |
| 5225 | { |
| 5226 | spl_t x; |
| 5227 | |
| 5228 | x = splsched(); |
| 5229 | thread_lock(thread); |
| 5230 | |
| 5231 | thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT; |
| 5232 | |
| 5233 | thread_unlock(thread); |
| 5234 | splx(x); |
| 5235 | } |
| 5236 | |
| 5237 | /* |
| 5238 | * Scheduling statistics |
| 5239 | */ |
| 5240 | void |
| 5241 | sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri) |
| 5242 | { |
| 5243 | struct processor_sched_statistics *stats; |
| 5244 | boolean_t to_realtime = FALSE; |
| 5245 | |
| 5246 | stats = &processor->processor_data.sched_stats; |
| 5247 | stats->csw_count++; |
| 5248 | |
| 5249 | if (otherpri >= BASEPRI_REALTIME) { |
| 5250 | stats->rt_sched_count++; |
| 5251 | to_realtime = TRUE; |
| 5252 | } |
| 5253 | |
| 5254 | if ((reasons & AST_PREEMPT) != 0) { |
| 5255 | stats->preempt_count++; |
| 5256 | |
| 5257 | if (selfpri >= BASEPRI_REALTIME) { |
| 5258 | stats->preempted_rt_count++; |
| 5259 | } |
| 5260 | |
| 5261 | if (to_realtime) { |
| 5262 | stats->preempted_by_rt_count++; |
| 5263 | } |
| 5264 | |
| 5265 | } |
| 5266 | } |
| 5267 | |
| 5268 | void |
| 5269 | sched_stats_handle_runq_change(struct runq_stats *stats, int old_count) |
| 5270 | { |
| 5271 | uint64_t timestamp = mach_absolute_time(); |
| 5272 | |
| 5273 | stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count; |
| 5274 | stats->last_change_timestamp = timestamp; |
| 5275 | } |
| 5276 | |
| 5277 | /* |
| 5278 | * For calls from assembly code |
| 5279 | */ |
| 5280 | #undef thread_wakeup |
| 5281 | void |
| 5282 | thread_wakeup( |
| 5283 | event_t x); |
| 5284 | |
| 5285 | void |
| 5286 | thread_wakeup( |
| 5287 | event_t x) |
| 5288 | { |
| 5289 | thread_wakeup_with_result(x, THREAD_AWAKENED); |
| 5290 | } |
| 5291 | |
| 5292 | boolean_t |
| 5293 | preemption_enabled(void) |
| 5294 | { |
| 5295 | return (get_preemption_level() == 0 && ml_get_interrupts_enabled()); |
| 5296 | } |
| 5297 | |
| 5298 | static void |
| 5299 | sched_timer_deadline_tracking_init(void) { |
| 5300 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1); |
| 5301 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2); |
| 5302 | } |
| 5303 | |
| 5304 | #if __arm__ || __arm64__ |
| 5305 | |
| 5306 | uint32_t perfcontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
| 5307 | uint32_t perfcontrol_requested_recommended_core_count = MAX_CPUS; |
| 5308 | bool perfcontrol_failsafe_active = false; |
| 5309 | bool perfcontrol_sleep_override = false; |
| 5310 | |
| 5311 | uint64_t perfcontrol_failsafe_maintenance_runnable_time; |
| 5312 | uint64_t perfcontrol_failsafe_activation_time; |
| 5313 | uint64_t perfcontrol_failsafe_deactivation_time; |
| 5314 | |
| 5315 | /* data covering who likely caused it and how long they ran */ |
| 5316 | #define FAILSAFE_NAME_LEN 33 /* (2*MAXCOMLEN)+1 from size of p_name */ |
| 5317 | char perfcontrol_failsafe_name[FAILSAFE_NAME_LEN]; |
| 5318 | int perfcontrol_failsafe_pid; |
| 5319 | uint64_t perfcontrol_failsafe_tid; |
| 5320 | uint64_t perfcontrol_failsafe_thread_timer_at_start; |
| 5321 | uint64_t perfcontrol_failsafe_thread_timer_last_seen; |
| 5322 | uint32_t perfcontrol_failsafe_recommended_at_trigger; |
| 5323 | |
| 5324 | /* |
| 5325 | * Perf controller calls here to update the recommended core bitmask. |
| 5326 | * If the failsafe is active, we don't immediately apply the new value. |
| 5327 | * Instead, we store the new request and use it after the failsafe deactivates. |
| 5328 | * |
| 5329 | * If the failsafe is not active, immediately apply the update. |
| 5330 | * |
| 5331 | * No scheduler locks are held, no other locks are held that scheduler might depend on, |
| 5332 | * interrupts are enabled |
| 5333 | * |
| 5334 | * currently prototype is in osfmk/arm/machine_routines.h |
| 5335 | */ |
| 5336 | void |
| 5337 | sched_perfcontrol_update_recommended_cores(uint32_t recommended_cores) |
| 5338 | { |
| 5339 | assert(preemption_enabled()); |
| 5340 | |
| 5341 | spl_t s = splsched(); |
| 5342 | simple_lock(&sched_recommended_cores_lock); |
| 5343 | |
| 5344 | perfcontrol_requested_recommended_cores = recommended_cores; |
| 5345 | perfcontrol_requested_recommended_core_count = __builtin_popcountll(recommended_cores); |
| 5346 | |
| 5347 | if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false)) |
| 5348 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores); |
| 5349 | else |
| 5350 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 5351 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE, |
| 5352 | perfcontrol_requested_recommended_cores, |
| 5353 | sched_maintenance_thread->last_made_runnable_time, 0, 0, 0); |
| 5354 | |
| 5355 | simple_unlock(&sched_recommended_cores_lock); |
| 5356 | splx(s); |
| 5357 | } |
| 5358 | |
| 5359 | void |
| 5360 | sched_override_recommended_cores_for_sleep(void) |
| 5361 | { |
| 5362 | spl_t s = splsched(); |
| 5363 | simple_lock(&sched_recommended_cores_lock); |
| 5364 | |
| 5365 | if (perfcontrol_sleep_override == false) { |
| 5366 | perfcontrol_sleep_override = true; |
| 5367 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED); |
| 5368 | } |
| 5369 | |
| 5370 | simple_unlock(&sched_recommended_cores_lock); |
| 5371 | splx(s); |
| 5372 | } |
| 5373 | |
| 5374 | void |
| 5375 | sched_restore_recommended_cores_after_sleep(void) |
| 5376 | { |
| 5377 | spl_t s = splsched(); |
| 5378 | simple_lock(&sched_recommended_cores_lock); |
| 5379 | |
| 5380 | if (perfcontrol_sleep_override == true) { |
| 5381 | perfcontrol_sleep_override = false; |
| 5382 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores); |
| 5383 | } |
| 5384 | |
| 5385 | simple_unlock(&sched_recommended_cores_lock); |
| 5386 | splx(s); |
| 5387 | } |
| 5388 | |
| 5389 | /* |
| 5390 | * Consider whether we need to activate the recommended cores failsafe |
| 5391 | * |
| 5392 | * Called from quantum timer interrupt context of a realtime thread |
| 5393 | * No scheduler locks are held, interrupts are disabled |
| 5394 | */ |
| 5395 | void |
| 5396 | sched_consider_recommended_cores(uint64_t ctime, thread_t cur_thread) |
| 5397 | { |
| 5398 | /* |
| 5399 | * Check if a realtime thread is starving the system |
| 5400 | * and bringing up non-recommended cores would help |
| 5401 | * |
| 5402 | * TODO: Is this the correct check for recommended == possible cores? |
| 5403 | * TODO: Validate the checks without the relevant lock are OK. |
| 5404 | */ |
| 5405 | |
| 5406 | if (__improbable(perfcontrol_failsafe_active == TRUE)) { |
| 5407 | /* keep track of how long the responsible thread runs */ |
| 5408 | |
| 5409 | simple_lock(&sched_recommended_cores_lock); |
| 5410 | |
| 5411 | if (perfcontrol_failsafe_active == TRUE && |
| 5412 | cur_thread->thread_id == perfcontrol_failsafe_tid) { |
| 5413 | perfcontrol_failsafe_thread_timer_last_seen = timer_grab(&cur_thread->user_timer) + |
| 5414 | timer_grab(&cur_thread->system_timer); |
| 5415 | } |
| 5416 | |
| 5417 | simple_unlock(&sched_recommended_cores_lock); |
| 5418 | |
| 5419 | /* we're already trying to solve the problem, so bail */ |
| 5420 | return; |
| 5421 | } |
| 5422 | |
| 5423 | /* The failsafe won't help if there are no more processors to enable */ |
| 5424 | if (__probable(perfcontrol_requested_recommended_core_count >= processor_count)) |
| 5425 | return; |
| 5426 | |
| 5427 | uint64_t too_long_ago = ctime - perfcontrol_failsafe_starvation_threshold; |
| 5428 | |
| 5429 | /* Use the maintenance thread as our canary in the coal mine */ |
| 5430 | thread_t m_thread = sched_maintenance_thread; |
| 5431 | |
| 5432 | /* If it doesn't look bad, nothing to see here */ |
| 5433 | if (__probable(m_thread->last_made_runnable_time >= too_long_ago)) |
| 5434 | return; |
| 5435 | |
| 5436 | /* It looks bad, take the lock to be sure */ |
| 5437 | thread_lock(m_thread); |
| 5438 | |
| 5439 | if (m_thread->runq == PROCESSOR_NULL || |
| 5440 | (m_thread->state & (TH_RUN|TH_WAIT)) != TH_RUN || |
| 5441 | m_thread->last_made_runnable_time >= too_long_ago) { |
| 5442 | /* |
| 5443 | * Maintenance thread is either on cpu or blocked, and |
| 5444 | * therefore wouldn't benefit from more cores |
| 5445 | */ |
| 5446 | thread_unlock(m_thread); |
| 5447 | return; |
| 5448 | } |
| 5449 | |
| 5450 | uint64_t maintenance_runnable_time = m_thread->last_made_runnable_time; |
| 5451 | |
| 5452 | thread_unlock(m_thread); |
| 5453 | |
| 5454 | /* |
| 5455 | * There are cores disabled at perfcontrol's recommendation, but the |
| 5456 | * system is so overloaded that the maintenance thread can't run. |
| 5457 | * That likely means that perfcontrol can't run either, so it can't fix |
| 5458 | * the recommendation. We have to kick in a failsafe to keep from starving. |
| 5459 | * |
| 5460 | * When the maintenance thread has been starved for too long, |
| 5461 | * ignore the recommendation from perfcontrol and light up all the cores. |
| 5462 | * |
| 5463 | * TODO: Consider weird states like boot, sleep, or debugger |
| 5464 | */ |
| 5465 | |
| 5466 | simple_lock(&sched_recommended_cores_lock); |
| 5467 | |
| 5468 | if (perfcontrol_failsafe_active == TRUE) { |
| 5469 | simple_unlock(&sched_recommended_cores_lock); |
| 5470 | return; |
| 5471 | } |
| 5472 | |
| 5473 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 5474 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_START, |
| 5475 | perfcontrol_requested_recommended_cores, maintenance_runnable_time, 0, 0, 0); |
| 5476 | |
| 5477 | perfcontrol_failsafe_active = TRUE; |
| 5478 | perfcontrol_failsafe_activation_time = mach_absolute_time(); |
| 5479 | perfcontrol_failsafe_maintenance_runnable_time = maintenance_runnable_time; |
| 5480 | perfcontrol_failsafe_recommended_at_trigger = perfcontrol_requested_recommended_cores; |
| 5481 | |
| 5482 | /* Capture some data about who screwed up (assuming that the thread on core is at fault) */ |
| 5483 | task_t task = cur_thread->task; |
| 5484 | perfcontrol_failsafe_pid = task_pid(task); |
| 5485 | strlcpy(perfcontrol_failsafe_name, proc_name_address(task->bsd_info), sizeof(perfcontrol_failsafe_name)); |
| 5486 | |
| 5487 | perfcontrol_failsafe_tid = cur_thread->thread_id; |
| 5488 | |
| 5489 | /* Blame the thread for time it has run recently */ |
| 5490 | uint64_t recent_computation = (ctime - cur_thread->computation_epoch) + cur_thread->computation_metered; |
| 5491 | |
| 5492 | uint64_t last_seen = timer_grab(&cur_thread->user_timer) + timer_grab(&cur_thread->system_timer); |
| 5493 | |
| 5494 | /* Compute the start time of the bad behavior in terms of the thread's on core time */ |
| 5495 | perfcontrol_failsafe_thread_timer_at_start = last_seen - recent_computation; |
| 5496 | perfcontrol_failsafe_thread_timer_last_seen = last_seen; |
| 5497 | |
| 5498 | /* Ignore the previously recommended core configuration */ |
| 5499 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED); |
| 5500 | |
| 5501 | simple_unlock(&sched_recommended_cores_lock); |
| 5502 | } |
| 5503 | |
| 5504 | /* |
| 5505 | * Now that our bacon has been saved by the failsafe, consider whether to turn it off |
| 5506 | * |
| 5507 | * Runs in the context of the maintenance thread, no locks held |
| 5508 | */ |
| 5509 | static void |
| 5510 | sched_recommended_cores_maintenance(void) |
| 5511 | { |
| 5512 | /* Common case - no failsafe, nothing to be done here */ |
| 5513 | if (__probable(perfcontrol_failsafe_active == FALSE)) |
| 5514 | return; |
| 5515 | |
| 5516 | uint64_t ctime = mach_absolute_time(); |
| 5517 | |
| 5518 | boolean_t print_diagnostic = FALSE; |
| 5519 | char p_name[FAILSAFE_NAME_LEN] = "" ; |
| 5520 | |
| 5521 | spl_t s = splsched(); |
| 5522 | simple_lock(&sched_recommended_cores_lock); |
| 5523 | |
| 5524 | /* Check again, under the lock, to avoid races */ |
| 5525 | if (perfcontrol_failsafe_active == FALSE) |
| 5526 | goto out; |
| 5527 | |
| 5528 | /* |
| 5529 | * Ensure that the other cores get another few ticks to run some threads |
| 5530 | * If we don't have this hysteresis, the maintenance thread is the first |
| 5531 | * to run, and then it immediately kills the other cores |
| 5532 | */ |
| 5533 | if ((ctime - perfcontrol_failsafe_activation_time) < perfcontrol_failsafe_starvation_threshold) |
| 5534 | goto out; |
| 5535 | |
| 5536 | /* Capture some diagnostic state under the lock so we can print it out later */ |
| 5537 | |
| 5538 | int pid = perfcontrol_failsafe_pid; |
| 5539 | uint64_t tid = perfcontrol_failsafe_tid; |
| 5540 | |
| 5541 | uint64_t thread_usage = perfcontrol_failsafe_thread_timer_last_seen - |
| 5542 | perfcontrol_failsafe_thread_timer_at_start; |
| 5543 | uint32_t rec_cores_before = perfcontrol_failsafe_recommended_at_trigger; |
| 5544 | uint32_t rec_cores_after = perfcontrol_requested_recommended_cores; |
| 5545 | uint64_t failsafe_duration = ctime - perfcontrol_failsafe_activation_time; |
| 5546 | strlcpy(p_name, perfcontrol_failsafe_name, sizeof(p_name)); |
| 5547 | |
| 5548 | print_diagnostic = TRUE; |
| 5549 | |
| 5550 | /* Deactivate the failsafe and reinstate the requested recommendation settings */ |
| 5551 | |
| 5552 | perfcontrol_failsafe_deactivation_time = ctime; |
| 5553 | perfcontrol_failsafe_active = FALSE; |
| 5554 | |
| 5555 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 5556 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_END, |
| 5557 | perfcontrol_requested_recommended_cores, failsafe_duration, 0, 0, 0); |
| 5558 | |
| 5559 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores); |
| 5560 | |
| 5561 | out: |
| 5562 | simple_unlock(&sched_recommended_cores_lock); |
| 5563 | splx(s); |
| 5564 | |
| 5565 | if (print_diagnostic) { |
| 5566 | uint64_t failsafe_duration_ms = 0, thread_usage_ms = 0; |
| 5567 | |
| 5568 | absolutetime_to_nanoseconds(failsafe_duration, &failsafe_duration_ms); |
| 5569 | failsafe_duration_ms = failsafe_duration_ms / NSEC_PER_MSEC; |
| 5570 | |
| 5571 | absolutetime_to_nanoseconds(thread_usage, &thread_usage_ms); |
| 5572 | thread_usage_ms = thread_usage_ms / NSEC_PER_MSEC; |
| 5573 | |
| 5574 | printf("recommended core failsafe kicked in for %lld ms " |
| 5575 | "likely due to %s[%d] thread 0x%llx spending " |
| 5576 | "%lld ms on cpu at realtime priority - " |
| 5577 | "new recommendation: 0x%x -> 0x%x\n" , |
| 5578 | failsafe_duration_ms, p_name, pid, tid, thread_usage_ms, |
| 5579 | rec_cores_before, rec_cores_after); |
| 5580 | } |
| 5581 | } |
| 5582 | |
| 5583 | /* |
| 5584 | * Apply a new recommended cores mask to the processors it affects |
| 5585 | * Runs after considering failsafes and such |
| 5586 | * |
| 5587 | * Iterate over processors and update their ->is_recommended field. |
| 5588 | * If a processor is running, we let it drain out at its next |
| 5589 | * quantum expiration or blocking point. If a processor is idle, there |
| 5590 | * may be more work for it to do, so IPI it. |
| 5591 | * |
| 5592 | * interrupts disabled, sched_recommended_cores_lock is held |
| 5593 | */ |
| 5594 | static void |
| 5595 | sched_update_recommended_cores(uint32_t recommended_cores) |
| 5596 | { |
| 5597 | processor_set_t pset, nset; |
| 5598 | processor_t processor; |
| 5599 | uint64_t needs_exit_idle_mask = 0x0; |
| 5600 | |
| 5601 | processor = processor_list; |
| 5602 | pset = processor->processor_set; |
| 5603 | |
| 5604 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_START, |
| 5605 | recommended_cores, perfcontrol_failsafe_active, 0, 0); |
| 5606 | |
| 5607 | if (__builtin_popcount(recommended_cores) == 0) { |
| 5608 | bit_set(recommended_cores, master_processor->cpu_id); /* add boot processor or we hang */ |
| 5609 | } |
| 5610 | |
| 5611 | /* First set recommended cores */ |
| 5612 | pset_lock(pset); |
| 5613 | do { |
| 5614 | |
| 5615 | nset = processor->processor_set; |
| 5616 | if (nset != pset) { |
| 5617 | pset_unlock(pset); |
| 5618 | pset = nset; |
| 5619 | pset_lock(pset); |
| 5620 | } |
| 5621 | |
| 5622 | if (bit_test(recommended_cores, processor->cpu_id)) { |
| 5623 | processor->is_recommended = TRUE; |
| 5624 | bit_set(pset->recommended_bitmask, processor->cpu_id); |
| 5625 | |
| 5626 | if (processor->state == PROCESSOR_IDLE) { |
| 5627 | if (processor != current_processor()) { |
| 5628 | bit_set(needs_exit_idle_mask, processor->cpu_id); |
| 5629 | } |
| 5630 | } |
| 5631 | } |
| 5632 | } while ((processor = processor->processor_list) != NULL); |
| 5633 | pset_unlock(pset); |
| 5634 | |
| 5635 | /* Now shutdown not recommended cores */ |
| 5636 | processor = processor_list; |
| 5637 | pset = processor->processor_set; |
| 5638 | |
| 5639 | pset_lock(pset); |
| 5640 | do { |
| 5641 | |
| 5642 | nset = processor->processor_set; |
| 5643 | if (nset != pset) { |
| 5644 | pset_unlock(pset); |
| 5645 | pset = nset; |
| 5646 | pset_lock(pset); |
| 5647 | } |
| 5648 | |
| 5649 | if (!bit_test(recommended_cores, processor->cpu_id)) { |
| 5650 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 5651 | |
| 5652 | processor->is_recommended = FALSE; |
| 5653 | bit_clear(pset->recommended_bitmask, processor->cpu_id); |
| 5654 | |
| 5655 | if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) { |
| 5656 | ipi_type = SCHED_IPI_IMMEDIATE; |
| 5657 | } |
| 5658 | SCHED(processor_queue_shutdown)(processor); |
| 5659 | /* pset unlocked */ |
| 5660 | |
| 5661 | SCHED(rt_queue_shutdown)(processor); |
| 5662 | |
| 5663 | if (ipi_type != SCHED_IPI_NONE) { |
| 5664 | if (processor == current_processor()) { |
| 5665 | ast_on(AST_PREEMPT); |
| 5666 | } else { |
| 5667 | sched_ipi_perform(processor, ipi_type); |
| 5668 | } |
| 5669 | } |
| 5670 | |
| 5671 | pset_lock(pset); |
| 5672 | } |
| 5673 | } while ((processor = processor->processor_list) != NULL); |
| 5674 | pset_unlock(pset); |
| 5675 | |
| 5676 | /* Issue all pending IPIs now that the pset lock has been dropped */ |
| 5677 | for (int cpuid = lsb_first(needs_exit_idle_mask); cpuid >= 0; cpuid = lsb_next(needs_exit_idle_mask, cpuid)) { |
| 5678 | processor = processor_array[cpuid]; |
| 5679 | machine_signal_idle(processor); |
| 5680 | } |
| 5681 | |
| 5682 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_END, |
| 5683 | needs_exit_idle_mask, 0, 0, 0); |
| 5684 | } |
| 5685 | #endif /* __arm__ || __arm64__ */ |
| 5686 | |
| 5687 | void thread_set_options(uint32_t thopt) { |
| 5688 | spl_t x; |
| 5689 | thread_t t = current_thread(); |
| 5690 | |
| 5691 | x = splsched(); |
| 5692 | thread_lock(t); |
| 5693 | |
| 5694 | t->options |= thopt; |
| 5695 | |
| 5696 | thread_unlock(t); |
| 5697 | splx(x); |
| 5698 | } |
| 5699 | |
| 5700 | void thread_set_pending_block_hint(thread_t thread, block_hint_t block_hint) { |
| 5701 | thread->pending_block_hint = block_hint; |
| 5702 | } |
| 5703 | |
| 5704 | uint32_t qos_max_parallelism(int qos, uint64_t options) |
| 5705 | { |
| 5706 | return SCHED(qos_max_parallelism)(qos, options); |
| 5707 | } |
| 5708 | |
| 5709 | uint32_t sched_qos_max_parallelism(__unused int qos, uint64_t options) |
| 5710 | { |
| 5711 | host_basic_info_data_t hinfo; |
| 5712 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 5713 | /* Query the machine layer for core information */ |
| 5714 | __assert_only kern_return_t kret = host_info(host_self(), HOST_BASIC_INFO, |
| 5715 | (host_info_t)&hinfo, &count); |
| 5716 | assert(kret == KERN_SUCCESS); |
| 5717 | |
| 5718 | /* We would not want multiple realtime threads running on the |
| 5719 | * same physical core; even for SMT capable machines. |
| 5720 | */ |
| 5721 | if (options & QOS_PARALLELISM_REALTIME) { |
| 5722 | return hinfo.physical_cpu; |
| 5723 | } |
| 5724 | |
| 5725 | if (options & QOS_PARALLELISM_COUNT_LOGICAL) { |
| 5726 | return hinfo.logical_cpu; |
| 5727 | } else { |
| 5728 | return hinfo.physical_cpu; |
| 5729 | } |
| 5730 | } |
| 5731 | |
| 5732 | #if __arm64__ |
| 5733 | |
| 5734 | /* |
| 5735 | * Set up or replace old timer with new timer |
| 5736 | * |
| 5737 | * Returns true if canceled old timer, false if it did not |
| 5738 | */ |
| 5739 | boolean_t |
| 5740 | sched_perfcontrol_update_callback_deadline(uint64_t new_deadline) |
| 5741 | { |
| 5742 | /* |
| 5743 | * Exchange deadline for new deadline, if old deadline was nonzero, |
| 5744 | * then I cancelled the callback, otherwise I didn't |
| 5745 | */ |
| 5746 | |
| 5747 | uint64_t old_deadline = __c11_atomic_load(&sched_perfcontrol_callback_deadline, |
| 5748 | memory_order_relaxed); |
| 5749 | |
| 5750 | |
| 5751 | while (!__c11_atomic_compare_exchange_weak(&sched_perfcontrol_callback_deadline, |
| 5752 | &old_deadline, new_deadline, |
| 5753 | memory_order_relaxed, memory_order_relaxed)); |
| 5754 | |
| 5755 | |
| 5756 | /* now old_deadline contains previous value, which might not be the same if it raced */ |
| 5757 | |
| 5758 | return (old_deadline != 0) ? TRUE : FALSE; |
| 5759 | } |
| 5760 | |
| 5761 | #endif /* __arm64__ */ |
| 5762 | |
| 5763 | void |
| 5764 | sched_update_pset_load_average(processor_set_t pset) |
| 5765 | { |
| 5766 | int load = ((bit_count(pset->cpu_state_map[PROCESSOR_RUNNING]) + pset->pset_runq.count + rt_runq_count(pset)) << PSET_LOAD_NUMERATOR_SHIFT); |
| 5767 | int new_load_average = (pset->load_average + load) >> 1; |
| 5768 | |
| 5769 | pset->load_average = new_load_average; |
| 5770 | |
| 5771 | #if (DEVELOPMENT || DEBUG) |
| 5772 | #endif |
| 5773 | } |
| 5774 | |
| 5775 | /* pset is locked */ |
| 5776 | static processor_t |
| 5777 | choose_processor_for_realtime_thread(processor_set_t pset) |
| 5778 | { |
| 5779 | uint64_t cpu_map = (pset->cpu_bitmask & pset->recommended_bitmask & ~pset->pending_AST_cpu_mask); |
| 5780 | |
| 5781 | for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) { |
| 5782 | processor_t processor = processor_array[cpuid]; |
| 5783 | |
| 5784 | if (processor->processor_primary != processor) { |
| 5785 | continue; |
| 5786 | } |
| 5787 | |
| 5788 | if (processor->state == PROCESSOR_IDLE) { |
| 5789 | return processor; |
| 5790 | } |
| 5791 | |
| 5792 | if ((processor->state != PROCESSOR_RUNNING) && (processor->state != PROCESSOR_DISPATCHING)) { |
| 5793 | continue; |
| 5794 | } |
| 5795 | |
| 5796 | if (processor->current_pri >= BASEPRI_RTQUEUES) { |
| 5797 | continue; |
| 5798 | } |
| 5799 | |
| 5800 | return processor; |
| 5801 | |
| 5802 | } |
| 5803 | |
| 5804 | if (!sched_allow_rt_smt) { |
| 5805 | return PROCESSOR_NULL; |
| 5806 | } |
| 5807 | |
| 5808 | /* Consider secondary processors */ |
| 5809 | for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) { |
| 5810 | processor_t processor = processor_array[cpuid]; |
| 5811 | |
| 5812 | if (processor->processor_primary == processor) { |
| 5813 | continue; |
| 5814 | } |
| 5815 | |
| 5816 | if (processor->state == PROCESSOR_IDLE) { |
| 5817 | return processor; |
| 5818 | } |
| 5819 | |
| 5820 | if ((processor->state != PROCESSOR_RUNNING) && (processor->state != PROCESSOR_DISPATCHING)) { |
| 5821 | continue; |
| 5822 | } |
| 5823 | |
| 5824 | if (processor->current_pri >= BASEPRI_RTQUEUES) { |
| 5825 | continue; |
| 5826 | } |
| 5827 | |
| 5828 | return processor; |
| 5829 | |
| 5830 | } |
| 5831 | |
| 5832 | return PROCESSOR_NULL; |
| 5833 | } |
| 5834 | |
| 5835 | /* pset is locked */ |
| 5836 | static bool |
| 5837 | all_available_primaries_are_running_realtime_threads(processor_set_t pset) |
| 5838 | { |
| 5839 | uint64_t cpu_map = (pset->cpu_bitmask & pset->recommended_bitmask); |
| 5840 | |
| 5841 | for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) { |
| 5842 | processor_t processor = processor_array[cpuid]; |
| 5843 | |
| 5844 | if (processor->processor_primary != processor) { |
| 5845 | continue; |
| 5846 | } |
| 5847 | |
| 5848 | if (processor->state == PROCESSOR_IDLE) { |
| 5849 | return false; |
| 5850 | } |
| 5851 | |
| 5852 | if (processor->state == PROCESSOR_DISPATCHING) { |
| 5853 | return false; |
| 5854 | } |
| 5855 | |
| 5856 | if (processor->state != PROCESSOR_RUNNING) { |
| 5857 | /* |
| 5858 | * All other processor states are considered unavailable to run |
| 5859 | * realtime threads. In particular, we prefer an available secondary |
| 5860 | * processor over the risk of leaving a realtime thread on the run queue |
| 5861 | * while waiting for a processor in PROCESSOR_START state, |
| 5862 | * which should anyway be a rare case. |
| 5863 | */ |
| 5864 | continue; |
| 5865 | } |
| 5866 | |
| 5867 | if (processor->current_pri < BASEPRI_RTQUEUES) { |
| 5868 | return false; |
| 5869 | } |
| 5870 | } |
| 5871 | |
| 5872 | return true; |
| 5873 | } |
| 5874 | |
| 5875 | |
| 5876 | |