| 1 | /* |
| 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | * processor.c: processor and processor_set manipulation routines. |
| 61 | */ |
| 62 | |
| 63 | #include <mach/boolean.h> |
| 64 | #include <mach/policy.h> |
| 65 | #include <mach/processor.h> |
| 66 | #include <mach/processor_info.h> |
| 67 | #include <mach/vm_param.h> |
| 68 | #include <kern/cpu_number.h> |
| 69 | #include <kern/host.h> |
| 70 | #include <kern/machine.h> |
| 71 | #include <kern/misc_protos.h> |
| 72 | #include <kern/processor.h> |
| 73 | #include <kern/sched.h> |
| 74 | #include <kern/task.h> |
| 75 | #include <kern/thread.h> |
| 76 | #include <kern/ipc_host.h> |
| 77 | #include <kern/ipc_tt.h> |
| 78 | #include <ipc/ipc_port.h> |
| 79 | #include <kern/kalloc.h> |
| 80 | |
| 81 | #include <security/mac_mach_internal.h> |
| 82 | |
| 83 | #if defined(CONFIG_XNUPOST) |
| 84 | |
| 85 | #include <tests/xnupost.h> |
| 86 | |
| 87 | #endif /* CONFIG_XNUPOST */ |
| 88 | |
| 89 | /* |
| 90 | * Exported interface |
| 91 | */ |
| 92 | #include <mach/mach_host_server.h> |
| 93 | #include <mach/processor_set_server.h> |
| 94 | |
| 95 | struct processor_set pset0; |
| 96 | struct pset_node pset_node0; |
| 97 | decl_simple_lock_data(static,pset_node_lock) |
| 98 | |
| 99 | queue_head_t tasks; |
| 100 | queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */ |
| 101 | queue_head_t corpse_tasks; |
| 102 | int tasks_count; |
| 103 | int terminated_tasks_count; |
| 104 | queue_head_t threads; |
| 105 | int threads_count; |
| 106 | decl_lck_mtx_data(,tasks_threads_lock) |
| 107 | decl_lck_mtx_data(,tasks_corpse_lock) |
| 108 | |
| 109 | processor_t processor_list; |
| 110 | unsigned int processor_count; |
| 111 | static processor_t processor_list_tail; |
| 112 | decl_simple_lock_data(,processor_list_lock) |
| 113 | |
| 114 | uint32_t processor_avail_count; |
| 115 | |
| 116 | processor_t master_processor; |
| 117 | int master_cpu = 0; |
| 118 | boolean_t sched_stats_active = FALSE; |
| 119 | |
| 120 | processor_t processor_array[MAX_SCHED_CPUS] = { 0 }; |
| 121 | |
| 122 | #if defined(CONFIG_XNUPOST) |
| 123 | kern_return_t ipi_test(void); |
| 124 | extern void arm64_ipi_test(void); |
| 125 | |
| 126 | kern_return_t |
| 127 | ipi_test() |
| 128 | { |
| 129 | #if __arm64__ |
| 130 | processor_t p; |
| 131 | |
| 132 | for (p = processor_list; p != NULL; p = p->processor_list) { |
| 133 | thread_bind(p); |
| 134 | thread_block(THREAD_CONTINUE_NULL); |
| 135 | kprintf("Running IPI test on cpu %d\n" , p->cpu_id); |
| 136 | arm64_ipi_test(); |
| 137 | } |
| 138 | |
| 139 | /* unbind thread from specific cpu */ |
| 140 | thread_bind(PROCESSOR_NULL); |
| 141 | thread_block(THREAD_CONTINUE_NULL); |
| 142 | |
| 143 | T_PASS("Done running IPI tests" ); |
| 144 | #else |
| 145 | T_PASS("Unsupported platform. Not running IPI tests" ); |
| 146 | |
| 147 | #endif /* __arm64__ */ |
| 148 | |
| 149 | return KERN_SUCCESS; |
| 150 | } |
| 151 | #endif /* defined(CONFIG_XNUPOST) */ |
| 152 | |
| 153 | |
| 154 | void |
| 155 | processor_bootstrap(void) |
| 156 | { |
| 157 | pset_init(&pset0, &pset_node0); |
| 158 | pset_node0.psets = &pset0; |
| 159 | |
| 160 | simple_lock_init(&pset_node_lock, 0); |
| 161 | |
| 162 | queue_init(&tasks); |
| 163 | queue_init(&terminated_tasks); |
| 164 | queue_init(&threads); |
| 165 | queue_init(&corpse_tasks); |
| 166 | |
| 167 | simple_lock_init(&processor_list_lock, 0); |
| 168 | |
| 169 | master_processor = cpu_to_processor(master_cpu); |
| 170 | |
| 171 | processor_init(master_processor, master_cpu, &pset0); |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Initialize the given processor for the cpu |
| 176 | * indicated by cpu_id, and assign to the |
| 177 | * specified processor set. |
| 178 | */ |
| 179 | void |
| 180 | processor_init( |
| 181 | processor_t processor, |
| 182 | int cpu_id, |
| 183 | processor_set_t pset) |
| 184 | { |
| 185 | spl_t s; |
| 186 | |
| 187 | if (processor != master_processor) { |
| 188 | /* Scheduler state for master_processor initialized in sched_init() */ |
| 189 | SCHED(processor_init)(processor); |
| 190 | } |
| 191 | |
| 192 | assert(cpu_id < MAX_SCHED_CPUS); |
| 193 | |
| 194 | processor->state = PROCESSOR_OFF_LINE; |
| 195 | processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL; |
| 196 | processor->processor_set = pset; |
| 197 | processor_state_update_idle(processor); |
| 198 | processor->starting_pri = MINPRI; |
| 199 | processor->cpu_id = cpu_id; |
| 200 | timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor); |
| 201 | processor->quantum_end = UINT64_MAX; |
| 202 | processor->deadline = UINT64_MAX; |
| 203 | processor->first_timeslice = FALSE; |
| 204 | processor->processor_primary = processor; /* no SMT relationship known at this point */ |
| 205 | processor->processor_secondary = NULL; |
| 206 | processor->is_SMT = FALSE; |
| 207 | processor->is_recommended = (pset->recommended_bitmask & (1ULL << cpu_id)) ? TRUE : FALSE; |
| 208 | processor->processor_self = IP_NULL; |
| 209 | processor_data_init(processor); |
| 210 | processor->processor_list = NULL; |
| 211 | processor->cpu_quiesce_state = CPU_QUIESCE_COUNTER_NONE; |
| 212 | processor->cpu_quiesce_last_checkin = 0; |
| 213 | |
| 214 | s = splsched(); |
| 215 | pset_lock(pset); |
| 216 | bit_set(pset->cpu_bitmask, cpu_id); |
| 217 | if (pset->cpu_set_count++ == 0) |
| 218 | pset->cpu_set_low = pset->cpu_set_hi = cpu_id; |
| 219 | else { |
| 220 | pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low; |
| 221 | pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi; |
| 222 | } |
| 223 | pset_unlock(pset); |
| 224 | splx(s); |
| 225 | |
| 226 | simple_lock(&processor_list_lock); |
| 227 | if (processor_list == NULL) |
| 228 | processor_list = processor; |
| 229 | else |
| 230 | processor_list_tail->processor_list = processor; |
| 231 | processor_list_tail = processor; |
| 232 | processor_count++; |
| 233 | processor_array[cpu_id] = processor; |
| 234 | simple_unlock(&processor_list_lock); |
| 235 | } |
| 236 | |
| 237 | void |
| 238 | processor_set_primary( |
| 239 | processor_t processor, |
| 240 | processor_t primary) |
| 241 | { |
| 242 | assert(processor->processor_primary == primary || processor->processor_primary == processor); |
| 243 | /* Re-adjust primary point for this (possibly) secondary processor */ |
| 244 | processor->processor_primary = primary; |
| 245 | |
| 246 | assert(primary->processor_secondary == NULL || primary->processor_secondary == processor); |
| 247 | if (primary != processor) { |
| 248 | /* Link primary to secondary, assumes a 2-way SMT model |
| 249 | * We'll need to move to a queue if any future architecture |
| 250 | * requires otherwise. |
| 251 | */ |
| 252 | assert(processor->processor_secondary == NULL); |
| 253 | primary->processor_secondary = processor; |
| 254 | /* Mark both processors as SMT siblings */ |
| 255 | primary->is_SMT = TRUE; |
| 256 | processor->is_SMT = TRUE; |
| 257 | |
| 258 | processor_set_t pset = processor->processor_set; |
| 259 | atomic_bit_clear(&pset->primary_map, processor->cpu_id, memory_order_relaxed); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | processor_set_t |
| 264 | processor_pset( |
| 265 | processor_t processor) |
| 266 | { |
| 267 | return (processor->processor_set); |
| 268 | } |
| 269 | |
| 270 | void |
| 271 | processor_state_update_idle(processor_t processor) |
| 272 | { |
| 273 | processor->current_pri = IDLEPRI; |
| 274 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
| 275 | processor->current_recommended_pset_type = PSET_SMP; |
| 276 | processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE; |
| 277 | } |
| 278 | |
| 279 | void |
| 280 | processor_state_update_from_thread(processor_t processor, thread_t thread) |
| 281 | { |
| 282 | processor->current_pri = thread->sched_pri; |
| 283 | processor->current_sfi_class = thread->sfi_class; |
| 284 | processor->current_recommended_pset_type = recommended_pset_type(thread); |
| 285 | processor->current_perfctl_class = thread_get_perfcontrol_class(thread); |
| 286 | } |
| 287 | |
| 288 | void |
| 289 | processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class, |
| 290 | pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class) |
| 291 | { |
| 292 | processor->current_pri = pri; |
| 293 | processor->current_sfi_class = sfi_class; |
| 294 | processor->current_recommended_pset_type = pset_type; |
| 295 | processor->current_perfctl_class = perfctl_class; |
| 296 | } |
| 297 | |
| 298 | pset_node_t |
| 299 | pset_node_root(void) |
| 300 | { |
| 301 | return &pset_node0; |
| 302 | } |
| 303 | |
| 304 | processor_set_t |
| 305 | pset_create( |
| 306 | pset_node_t node) |
| 307 | { |
| 308 | /* some schedulers do not support multiple psets */ |
| 309 | if (SCHED(multiple_psets_enabled) == FALSE) |
| 310 | return processor_pset(master_processor); |
| 311 | |
| 312 | processor_set_t *prev, pset = kalloc(sizeof (*pset)); |
| 313 | |
| 314 | if (pset != PROCESSOR_SET_NULL) { |
| 315 | pset_init(pset, node); |
| 316 | |
| 317 | simple_lock(&pset_node_lock); |
| 318 | |
| 319 | prev = &node->psets; |
| 320 | while (*prev != PROCESSOR_SET_NULL) |
| 321 | prev = &(*prev)->pset_list; |
| 322 | |
| 323 | *prev = pset; |
| 324 | |
| 325 | simple_unlock(&pset_node_lock); |
| 326 | } |
| 327 | |
| 328 | return (pset); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Find processor set in specified node with specified cluster_id. |
| 333 | * Returns default_pset if not found. |
| 334 | */ |
| 335 | processor_set_t |
| 336 | pset_find( |
| 337 | uint32_t cluster_id, |
| 338 | processor_set_t default_pset) |
| 339 | { |
| 340 | simple_lock(&pset_node_lock); |
| 341 | pset_node_t node = &pset_node0; |
| 342 | processor_set_t pset = NULL; |
| 343 | |
| 344 | do { |
| 345 | pset = node->psets; |
| 346 | while (pset != NULL) { |
| 347 | if (pset->pset_cluster_id == cluster_id) |
| 348 | break; |
| 349 | pset = pset->pset_list; |
| 350 | } |
| 351 | } while ((node = node->node_list) != NULL); |
| 352 | simple_unlock(&pset_node_lock); |
| 353 | if (pset == NULL) |
| 354 | return default_pset; |
| 355 | return (pset); |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Initialize the given processor_set structure. |
| 360 | */ |
| 361 | void |
| 362 | pset_init( |
| 363 | processor_set_t pset, |
| 364 | pset_node_t node) |
| 365 | { |
| 366 | if (pset != &pset0) { |
| 367 | /* Scheduler state for pset0 initialized in sched_init() */ |
| 368 | SCHED(pset_init)(pset); |
| 369 | SCHED(rt_init)(pset); |
| 370 | } |
| 371 | |
| 372 | pset->online_processor_count = 0; |
| 373 | pset->load_average = 0; |
| 374 | pset->cpu_set_low = pset->cpu_set_hi = 0; |
| 375 | pset->cpu_set_count = 0; |
| 376 | pset->last_chosen = -1; |
| 377 | pset->cpu_bitmask = 0; |
| 378 | pset->recommended_bitmask = ~0ULL; |
| 379 | pset->primary_map = ~0ULL; |
| 380 | pset->cpu_state_map[PROCESSOR_OFF_LINE] = ~0ULL; |
| 381 | for (uint i = PROCESSOR_SHUTDOWN; i < PROCESSOR_STATE_LEN; i++) { |
| 382 | pset->cpu_state_map[i] = 0; |
| 383 | } |
| 384 | pset->pending_AST_cpu_mask = 0; |
| 385 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 386 | pset->pending_deferred_AST_cpu_mask = 0; |
| 387 | #endif |
| 388 | pset->pending_spill_cpu_mask = 0; |
| 389 | pset_lock_init(pset); |
| 390 | pset->pset_self = IP_NULL; |
| 391 | pset->pset_name_self = IP_NULL; |
| 392 | pset->pset_list = PROCESSOR_SET_NULL; |
| 393 | pset->node = node; |
| 394 | pset->pset_cluster_type = PSET_SMP; |
| 395 | pset->pset_cluster_id = 0; |
| 396 | } |
| 397 | |
| 398 | kern_return_t |
| 399 | processor_info_count( |
| 400 | processor_flavor_t flavor, |
| 401 | mach_msg_type_number_t *count) |
| 402 | { |
| 403 | switch (flavor) { |
| 404 | |
| 405 | case PROCESSOR_BASIC_INFO: |
| 406 | *count = PROCESSOR_BASIC_INFO_COUNT; |
| 407 | break; |
| 408 | |
| 409 | case PROCESSOR_CPU_LOAD_INFO: |
| 410 | *count = PROCESSOR_CPU_LOAD_INFO_COUNT; |
| 411 | break; |
| 412 | |
| 413 | default: |
| 414 | return (cpu_info_count(flavor, count)); |
| 415 | } |
| 416 | |
| 417 | return (KERN_SUCCESS); |
| 418 | } |
| 419 | |
| 420 | |
| 421 | kern_return_t |
| 422 | processor_info( |
| 423 | processor_t processor, |
| 424 | processor_flavor_t flavor, |
| 425 | host_t *host, |
| 426 | processor_info_t info, |
| 427 | mach_msg_type_number_t *count) |
| 428 | { |
| 429 | int cpu_id, state; |
| 430 | kern_return_t result; |
| 431 | |
| 432 | if (processor == PROCESSOR_NULL) |
| 433 | return (KERN_INVALID_ARGUMENT); |
| 434 | |
| 435 | cpu_id = processor->cpu_id; |
| 436 | |
| 437 | switch (flavor) { |
| 438 | |
| 439 | case PROCESSOR_BASIC_INFO: |
| 440 | { |
| 441 | processor_basic_info_t basic_info; |
| 442 | |
| 443 | if (*count < PROCESSOR_BASIC_INFO_COUNT) |
| 444 | return (KERN_FAILURE); |
| 445 | |
| 446 | basic_info = (processor_basic_info_t) info; |
| 447 | basic_info->cpu_type = slot_type(cpu_id); |
| 448 | basic_info->cpu_subtype = slot_subtype(cpu_id); |
| 449 | state = processor->state; |
| 450 | if (state == PROCESSOR_OFF_LINE) |
| 451 | basic_info->running = FALSE; |
| 452 | else |
| 453 | basic_info->running = TRUE; |
| 454 | basic_info->slot_num = cpu_id; |
| 455 | if (processor == master_processor) |
| 456 | basic_info->is_master = TRUE; |
| 457 | else |
| 458 | basic_info->is_master = FALSE; |
| 459 | |
| 460 | *count = PROCESSOR_BASIC_INFO_COUNT; |
| 461 | *host = &realhost; |
| 462 | |
| 463 | return (KERN_SUCCESS); |
| 464 | } |
| 465 | |
| 466 | case PROCESSOR_CPU_LOAD_INFO: |
| 467 | { |
| 468 | processor_cpu_load_info_t cpu_load_info; |
| 469 | timer_t idle_state; |
| 470 | uint64_t idle_time_snapshot1, idle_time_snapshot2; |
| 471 | uint64_t idle_time_tstamp1, idle_time_tstamp2; |
| 472 | |
| 473 | /* |
| 474 | * We capture the accumulated idle time twice over |
| 475 | * the course of this function, as well as the timestamps |
| 476 | * when each were last updated. Since these are |
| 477 | * all done using non-atomic racy mechanisms, the |
| 478 | * most we can infer is whether values are stable. |
| 479 | * timer_grab() is the only function that can be |
| 480 | * used reliably on another processor's per-processor |
| 481 | * data. |
| 482 | */ |
| 483 | |
| 484 | if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) |
| 485 | return (KERN_FAILURE); |
| 486 | |
| 487 | cpu_load_info = (processor_cpu_load_info_t) info; |
| 488 | if (precise_user_kernel_time) { |
| 489 | cpu_load_info->cpu_ticks[CPU_STATE_USER] = |
| 490 | (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval); |
| 491 | cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = |
| 492 | (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval); |
| 493 | } else { |
| 494 | uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) + |
| 495 | timer_grab(&PROCESSOR_DATA(processor, system_state)); |
| 496 | |
| 497 | cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval); |
| 498 | cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0; |
| 499 | } |
| 500 | |
| 501 | idle_state = &PROCESSOR_DATA(processor, idle_state); |
| 502 | idle_time_snapshot1 = timer_grab(idle_state); |
| 503 | idle_time_tstamp1 = idle_state->tstamp; |
| 504 | |
| 505 | /* |
| 506 | * Idle processors are not continually updating their |
| 507 | * per-processor idle timer, so it may be extremely |
| 508 | * out of date, resulting in an over-representation |
| 509 | * of non-idle time between two measurement |
| 510 | * intervals by e.g. top(1). If we are non-idle, or |
| 511 | * have evidence that the timer is being updated |
| 512 | * concurrently, we consider its value up-to-date. |
| 513 | */ |
| 514 | if (PROCESSOR_DATA(processor, current_state) != idle_state) { |
| 515 | cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = |
| 516 | (uint32_t)(idle_time_snapshot1 / hz_tick_interval); |
| 517 | } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) || |
| 518 | (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){ |
| 519 | /* Idle timer is being updated concurrently, second stamp is good enough */ |
| 520 | cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = |
| 521 | (uint32_t)(idle_time_snapshot2 / hz_tick_interval); |
| 522 | } else { |
| 523 | /* |
| 524 | * Idle timer may be very stale. Fortunately we have established |
| 525 | * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging |
| 526 | */ |
| 527 | idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1; |
| 528 | |
| 529 | cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = |
| 530 | (uint32_t)(idle_time_snapshot1 / hz_tick_interval); |
| 531 | } |
| 532 | |
| 533 | cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0; |
| 534 | |
| 535 | *count = PROCESSOR_CPU_LOAD_INFO_COUNT; |
| 536 | *host = &realhost; |
| 537 | |
| 538 | return (KERN_SUCCESS); |
| 539 | } |
| 540 | |
| 541 | default: |
| 542 | result = cpu_info(flavor, cpu_id, info, count); |
| 543 | if (result == KERN_SUCCESS) |
| 544 | *host = &realhost; |
| 545 | |
| 546 | return (result); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | kern_return_t |
| 551 | processor_start( |
| 552 | processor_t processor) |
| 553 | { |
| 554 | processor_set_t pset; |
| 555 | thread_t thread; |
| 556 | kern_return_t result; |
| 557 | spl_t s; |
| 558 | |
| 559 | if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL) |
| 560 | return (KERN_INVALID_ARGUMENT); |
| 561 | |
| 562 | if (processor == master_processor) { |
| 563 | processor_t prev; |
| 564 | |
| 565 | prev = thread_bind(processor); |
| 566 | thread_block(THREAD_CONTINUE_NULL); |
| 567 | |
| 568 | result = cpu_start(processor->cpu_id); |
| 569 | |
| 570 | thread_bind(prev); |
| 571 | |
| 572 | return (result); |
| 573 | } |
| 574 | |
| 575 | s = splsched(); |
| 576 | pset = processor->processor_set; |
| 577 | pset_lock(pset); |
| 578 | if (processor->state != PROCESSOR_OFF_LINE) { |
| 579 | pset_unlock(pset); |
| 580 | splx(s); |
| 581 | |
| 582 | return (KERN_FAILURE); |
| 583 | } |
| 584 | |
| 585 | pset_update_processor_state(pset, processor, PROCESSOR_START); |
| 586 | pset_unlock(pset); |
| 587 | splx(s); |
| 588 | |
| 589 | /* |
| 590 | * Create the idle processor thread. |
| 591 | */ |
| 592 | if (processor->idle_thread == THREAD_NULL) { |
| 593 | result = idle_thread_create(processor); |
| 594 | if (result != KERN_SUCCESS) { |
| 595 | s = splsched(); |
| 596 | pset_lock(pset); |
| 597 | pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); |
| 598 | pset_unlock(pset); |
| 599 | splx(s); |
| 600 | |
| 601 | return (result); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * If there is no active thread, the processor |
| 607 | * has never been started. Create a dedicated |
| 608 | * start up thread. |
| 609 | */ |
| 610 | if ( processor->active_thread == THREAD_NULL && |
| 611 | processor->next_thread == THREAD_NULL ) { |
| 612 | result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread); |
| 613 | if (result != KERN_SUCCESS) { |
| 614 | s = splsched(); |
| 615 | pset_lock(pset); |
| 616 | pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); |
| 617 | pset_unlock(pset); |
| 618 | splx(s); |
| 619 | |
| 620 | return (result); |
| 621 | } |
| 622 | |
| 623 | s = splsched(); |
| 624 | thread_lock(thread); |
| 625 | thread->bound_processor = processor; |
| 626 | processor->next_thread = thread; |
| 627 | thread->state = TH_RUN; |
| 628 | thread->last_made_runnable_time = mach_absolute_time(); |
| 629 | thread_unlock(thread); |
| 630 | splx(s); |
| 631 | |
| 632 | thread_deallocate(thread); |
| 633 | } |
| 634 | |
| 635 | if (processor->processor_self == IP_NULL) |
| 636 | ipc_processor_init(processor); |
| 637 | |
| 638 | result = cpu_start(processor->cpu_id); |
| 639 | if (result != KERN_SUCCESS) { |
| 640 | s = splsched(); |
| 641 | pset_lock(pset); |
| 642 | pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); |
| 643 | pset_unlock(pset); |
| 644 | splx(s); |
| 645 | |
| 646 | return (result); |
| 647 | } |
| 648 | |
| 649 | ipc_processor_enable(processor); |
| 650 | |
| 651 | return (KERN_SUCCESS); |
| 652 | } |
| 653 | |
| 654 | kern_return_t |
| 655 | processor_exit( |
| 656 | processor_t processor) |
| 657 | { |
| 658 | if (processor == PROCESSOR_NULL) |
| 659 | return(KERN_INVALID_ARGUMENT); |
| 660 | |
| 661 | return(processor_shutdown(processor)); |
| 662 | } |
| 663 | |
| 664 | kern_return_t |
| 665 | processor_control( |
| 666 | processor_t processor, |
| 667 | processor_info_t info, |
| 668 | mach_msg_type_number_t count) |
| 669 | { |
| 670 | if (processor == PROCESSOR_NULL) |
| 671 | return(KERN_INVALID_ARGUMENT); |
| 672 | |
| 673 | return(cpu_control(processor->cpu_id, info, count)); |
| 674 | } |
| 675 | |
| 676 | kern_return_t |
| 677 | processor_set_create( |
| 678 | __unused host_t host, |
| 679 | __unused processor_set_t *new_set, |
| 680 | __unused processor_set_t *new_name) |
| 681 | { |
| 682 | return(KERN_FAILURE); |
| 683 | } |
| 684 | |
| 685 | kern_return_t |
| 686 | processor_set_destroy( |
| 687 | __unused processor_set_t pset) |
| 688 | { |
| 689 | return(KERN_FAILURE); |
| 690 | } |
| 691 | |
| 692 | kern_return_t |
| 693 | processor_get_assignment( |
| 694 | processor_t processor, |
| 695 | processor_set_t *pset) |
| 696 | { |
| 697 | int state; |
| 698 | |
| 699 | if (processor == PROCESSOR_NULL) |
| 700 | return(KERN_INVALID_ARGUMENT); |
| 701 | |
| 702 | state = processor->state; |
| 703 | if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE) |
| 704 | return(KERN_FAILURE); |
| 705 | |
| 706 | *pset = &pset0; |
| 707 | |
| 708 | return(KERN_SUCCESS); |
| 709 | } |
| 710 | |
| 711 | kern_return_t |
| 712 | processor_set_info( |
| 713 | processor_set_t pset, |
| 714 | int flavor, |
| 715 | host_t *host, |
| 716 | processor_set_info_t info, |
| 717 | mach_msg_type_number_t *count) |
| 718 | { |
| 719 | if (pset == PROCESSOR_SET_NULL) |
| 720 | return(KERN_INVALID_ARGUMENT); |
| 721 | |
| 722 | if (flavor == PROCESSOR_SET_BASIC_INFO) { |
| 723 | processor_set_basic_info_t basic_info; |
| 724 | |
| 725 | if (*count < PROCESSOR_SET_BASIC_INFO_COUNT) |
| 726 | return(KERN_FAILURE); |
| 727 | |
| 728 | basic_info = (processor_set_basic_info_t) info; |
| 729 | basic_info->processor_count = processor_avail_count; |
| 730 | basic_info->default_policy = POLICY_TIMESHARE; |
| 731 | |
| 732 | *count = PROCESSOR_SET_BASIC_INFO_COUNT; |
| 733 | *host = &realhost; |
| 734 | return(KERN_SUCCESS); |
| 735 | } |
| 736 | else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) { |
| 737 | policy_timeshare_base_t ts_base; |
| 738 | |
| 739 | if (*count < POLICY_TIMESHARE_BASE_COUNT) |
| 740 | return(KERN_FAILURE); |
| 741 | |
| 742 | ts_base = (policy_timeshare_base_t) info; |
| 743 | ts_base->base_priority = BASEPRI_DEFAULT; |
| 744 | |
| 745 | *count = POLICY_TIMESHARE_BASE_COUNT; |
| 746 | *host = &realhost; |
| 747 | return(KERN_SUCCESS); |
| 748 | } |
| 749 | else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) { |
| 750 | policy_fifo_base_t fifo_base; |
| 751 | |
| 752 | if (*count < POLICY_FIFO_BASE_COUNT) |
| 753 | return(KERN_FAILURE); |
| 754 | |
| 755 | fifo_base = (policy_fifo_base_t) info; |
| 756 | fifo_base->base_priority = BASEPRI_DEFAULT; |
| 757 | |
| 758 | *count = POLICY_FIFO_BASE_COUNT; |
| 759 | *host = &realhost; |
| 760 | return(KERN_SUCCESS); |
| 761 | } |
| 762 | else if (flavor == PROCESSOR_SET_RR_DEFAULT) { |
| 763 | policy_rr_base_t rr_base; |
| 764 | |
| 765 | if (*count < POLICY_RR_BASE_COUNT) |
| 766 | return(KERN_FAILURE); |
| 767 | |
| 768 | rr_base = (policy_rr_base_t) info; |
| 769 | rr_base->base_priority = BASEPRI_DEFAULT; |
| 770 | rr_base->quantum = 1; |
| 771 | |
| 772 | *count = POLICY_RR_BASE_COUNT; |
| 773 | *host = &realhost; |
| 774 | return(KERN_SUCCESS); |
| 775 | } |
| 776 | else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) { |
| 777 | policy_timeshare_limit_t ts_limit; |
| 778 | |
| 779 | if (*count < POLICY_TIMESHARE_LIMIT_COUNT) |
| 780 | return(KERN_FAILURE); |
| 781 | |
| 782 | ts_limit = (policy_timeshare_limit_t) info; |
| 783 | ts_limit->max_priority = MAXPRI_KERNEL; |
| 784 | |
| 785 | *count = POLICY_TIMESHARE_LIMIT_COUNT; |
| 786 | *host = &realhost; |
| 787 | return(KERN_SUCCESS); |
| 788 | } |
| 789 | else if (flavor == PROCESSOR_SET_FIFO_LIMITS) { |
| 790 | policy_fifo_limit_t fifo_limit; |
| 791 | |
| 792 | if (*count < POLICY_FIFO_LIMIT_COUNT) |
| 793 | return(KERN_FAILURE); |
| 794 | |
| 795 | fifo_limit = (policy_fifo_limit_t) info; |
| 796 | fifo_limit->max_priority = MAXPRI_KERNEL; |
| 797 | |
| 798 | *count = POLICY_FIFO_LIMIT_COUNT; |
| 799 | *host = &realhost; |
| 800 | return(KERN_SUCCESS); |
| 801 | } |
| 802 | else if (flavor == PROCESSOR_SET_RR_LIMITS) { |
| 803 | policy_rr_limit_t rr_limit; |
| 804 | |
| 805 | if (*count < POLICY_RR_LIMIT_COUNT) |
| 806 | return(KERN_FAILURE); |
| 807 | |
| 808 | rr_limit = (policy_rr_limit_t) info; |
| 809 | rr_limit->max_priority = MAXPRI_KERNEL; |
| 810 | |
| 811 | *count = POLICY_RR_LIMIT_COUNT; |
| 812 | *host = &realhost; |
| 813 | return(KERN_SUCCESS); |
| 814 | } |
| 815 | else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) { |
| 816 | int *enabled; |
| 817 | |
| 818 | if (*count < (sizeof(*enabled)/sizeof(int))) |
| 819 | return(KERN_FAILURE); |
| 820 | |
| 821 | enabled = (int *) info; |
| 822 | *enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO; |
| 823 | |
| 824 | *count = sizeof(*enabled)/sizeof(int); |
| 825 | *host = &realhost; |
| 826 | return(KERN_SUCCESS); |
| 827 | } |
| 828 | |
| 829 | |
| 830 | *host = HOST_NULL; |
| 831 | return(KERN_INVALID_ARGUMENT); |
| 832 | } |
| 833 | |
| 834 | /* |
| 835 | * processor_set_statistics |
| 836 | * |
| 837 | * Returns scheduling statistics for a processor set. |
| 838 | */ |
| 839 | kern_return_t |
| 840 | processor_set_statistics( |
| 841 | processor_set_t pset, |
| 842 | int flavor, |
| 843 | processor_set_info_t info, |
| 844 | mach_msg_type_number_t *count) |
| 845 | { |
| 846 | if (pset == PROCESSOR_SET_NULL || pset != &pset0) |
| 847 | return (KERN_INVALID_PROCESSOR_SET); |
| 848 | |
| 849 | if (flavor == PROCESSOR_SET_LOAD_INFO) { |
| 850 | processor_set_load_info_t load_info; |
| 851 | |
| 852 | if (*count < PROCESSOR_SET_LOAD_INFO_COUNT) |
| 853 | return(KERN_FAILURE); |
| 854 | |
| 855 | load_info = (processor_set_load_info_t) info; |
| 856 | |
| 857 | load_info->mach_factor = sched_mach_factor; |
| 858 | load_info->load_average = sched_load_average; |
| 859 | |
| 860 | load_info->task_count = tasks_count; |
| 861 | load_info->thread_count = threads_count; |
| 862 | |
| 863 | *count = PROCESSOR_SET_LOAD_INFO_COUNT; |
| 864 | return(KERN_SUCCESS); |
| 865 | } |
| 866 | |
| 867 | return(KERN_INVALID_ARGUMENT); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * processor_set_max_priority: |
| 872 | * |
| 873 | * Specify max priority permitted on processor set. This affects |
| 874 | * newly created and assigned threads. Optionally change existing |
| 875 | * ones. |
| 876 | */ |
| 877 | kern_return_t |
| 878 | processor_set_max_priority( |
| 879 | __unused processor_set_t pset, |
| 880 | __unused int max_priority, |
| 881 | __unused boolean_t change_threads) |
| 882 | { |
| 883 | return (KERN_INVALID_ARGUMENT); |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | * processor_set_policy_enable: |
| 888 | * |
| 889 | * Allow indicated policy on processor set. |
| 890 | */ |
| 891 | |
| 892 | kern_return_t |
| 893 | processor_set_policy_enable( |
| 894 | __unused processor_set_t pset, |
| 895 | __unused int policy) |
| 896 | { |
| 897 | return (KERN_INVALID_ARGUMENT); |
| 898 | } |
| 899 | |
| 900 | /* |
| 901 | * processor_set_policy_disable: |
| 902 | * |
| 903 | * Forbid indicated policy on processor set. Time sharing cannot |
| 904 | * be forbidden. |
| 905 | */ |
| 906 | kern_return_t |
| 907 | processor_set_policy_disable( |
| 908 | __unused processor_set_t pset, |
| 909 | __unused int policy, |
| 910 | __unused boolean_t change_threads) |
| 911 | { |
| 912 | return (KERN_INVALID_ARGUMENT); |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * processor_set_things: |
| 917 | * |
| 918 | * Common internals for processor_set_{threads,tasks} |
| 919 | */ |
| 920 | kern_return_t |
| 921 | processor_set_things( |
| 922 | processor_set_t pset, |
| 923 | void **thing_list, |
| 924 | mach_msg_type_number_t *count, |
| 925 | int type) |
| 926 | { |
| 927 | unsigned int i; |
| 928 | task_t task; |
| 929 | thread_t thread; |
| 930 | |
| 931 | task_t *task_list; |
| 932 | unsigned int actual_tasks; |
| 933 | vm_size_t task_size, task_size_needed; |
| 934 | |
| 935 | thread_t *thread_list; |
| 936 | unsigned int actual_threads; |
| 937 | vm_size_t thread_size, thread_size_needed; |
| 938 | |
| 939 | void *addr, *newaddr; |
| 940 | vm_size_t size, size_needed; |
| 941 | |
| 942 | if (pset == PROCESSOR_SET_NULL || pset != &pset0) |
| 943 | return (KERN_INVALID_ARGUMENT); |
| 944 | |
| 945 | task_size = 0; |
| 946 | task_size_needed = 0; |
| 947 | task_list = NULL; |
| 948 | actual_tasks = 0; |
| 949 | |
| 950 | thread_size = 0; |
| 951 | thread_size_needed = 0; |
| 952 | thread_list = NULL; |
| 953 | actual_threads = 0; |
| 954 | |
| 955 | for (;;) { |
| 956 | lck_mtx_lock(&tasks_threads_lock); |
| 957 | |
| 958 | /* do we have the memory we need? */ |
| 959 | if (type == PSET_THING_THREAD) |
| 960 | thread_size_needed = threads_count * sizeof(void *); |
| 961 | #if !CONFIG_MACF |
| 962 | else |
| 963 | #endif |
| 964 | task_size_needed = tasks_count * sizeof(void *); |
| 965 | |
| 966 | if (task_size_needed <= task_size && |
| 967 | thread_size_needed <= thread_size) |
| 968 | break; |
| 969 | |
| 970 | /* unlock and allocate more memory */ |
| 971 | lck_mtx_unlock(&tasks_threads_lock); |
| 972 | |
| 973 | /* grow task array */ |
| 974 | if (task_size_needed > task_size) { |
| 975 | if (task_size != 0) |
| 976 | kfree(task_list, task_size); |
| 977 | |
| 978 | assert(task_size_needed > 0); |
| 979 | task_size = task_size_needed; |
| 980 | |
| 981 | task_list = (task_t *)kalloc(task_size); |
| 982 | if (task_list == NULL) { |
| 983 | if (thread_size != 0) |
| 984 | kfree(thread_list, thread_size); |
| 985 | return (KERN_RESOURCE_SHORTAGE); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | /* grow thread array */ |
| 990 | if (thread_size_needed > thread_size) { |
| 991 | if (thread_size != 0) |
| 992 | kfree(thread_list, thread_size); |
| 993 | |
| 994 | assert(thread_size_needed > 0); |
| 995 | thread_size = thread_size_needed; |
| 996 | |
| 997 | thread_list = (thread_t *)kalloc(thread_size); |
| 998 | if (thread_list == 0) { |
| 999 | if (task_size != 0) |
| 1000 | kfree(task_list, task_size); |
| 1001 | return (KERN_RESOURCE_SHORTAGE); |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | /* OK, have memory and the list locked */ |
| 1007 | |
| 1008 | /* If we need it, get the thread list */ |
| 1009 | if (type == PSET_THING_THREAD) { |
| 1010 | for (thread = (thread_t)queue_first(&threads); |
| 1011 | !queue_end(&threads, (queue_entry_t)thread); |
| 1012 | thread = (thread_t)queue_next(&thread->threads)) { |
| 1013 | #if defined(SECURE_KERNEL) |
| 1014 | if (thread->task != kernel_task) { |
| 1015 | #endif |
| 1016 | thread_reference_internal(thread); |
| 1017 | thread_list[actual_threads++] = thread; |
| 1018 | #if defined(SECURE_KERNEL) |
| 1019 | } |
| 1020 | #endif |
| 1021 | } |
| 1022 | } |
| 1023 | #if !CONFIG_MACF |
| 1024 | else { |
| 1025 | #endif |
| 1026 | /* get a list of the tasks */ |
| 1027 | for (task = (task_t)queue_first(&tasks); |
| 1028 | !queue_end(&tasks, (queue_entry_t)task); |
| 1029 | task = (task_t)queue_next(&task->tasks)) { |
| 1030 | #if defined(SECURE_KERNEL) |
| 1031 | if (task != kernel_task) { |
| 1032 | #endif |
| 1033 | task_reference_internal(task); |
| 1034 | task_list[actual_tasks++] = task; |
| 1035 | #if defined(SECURE_KERNEL) |
| 1036 | } |
| 1037 | #endif |
| 1038 | } |
| 1039 | #if !CONFIG_MACF |
| 1040 | } |
| 1041 | #endif |
| 1042 | |
| 1043 | lck_mtx_unlock(&tasks_threads_lock); |
| 1044 | |
| 1045 | #if CONFIG_MACF |
| 1046 | unsigned int j, used; |
| 1047 | |
| 1048 | /* for each task, make sure we are allowed to examine it */ |
| 1049 | for (i = used = 0; i < actual_tasks; i++) { |
| 1050 | if (mac_task_check_expose_task(task_list[i])) { |
| 1051 | task_deallocate(task_list[i]); |
| 1052 | continue; |
| 1053 | } |
| 1054 | task_list[used++] = task_list[i]; |
| 1055 | } |
| 1056 | actual_tasks = used; |
| 1057 | task_size_needed = actual_tasks * sizeof(void *); |
| 1058 | |
| 1059 | if (type == PSET_THING_THREAD) { |
| 1060 | |
| 1061 | /* for each thread (if any), make sure it's task is in the allowed list */ |
| 1062 | for (i = used = 0; i < actual_threads; i++) { |
| 1063 | boolean_t found_task = FALSE; |
| 1064 | |
| 1065 | task = thread_list[i]->task; |
| 1066 | for (j = 0; j < actual_tasks; j++) { |
| 1067 | if (task_list[j] == task) { |
| 1068 | found_task = TRUE; |
| 1069 | break; |
| 1070 | } |
| 1071 | } |
| 1072 | if (found_task) |
| 1073 | thread_list[used++] = thread_list[i]; |
| 1074 | else |
| 1075 | thread_deallocate(thread_list[i]); |
| 1076 | } |
| 1077 | actual_threads = used; |
| 1078 | thread_size_needed = actual_threads * sizeof(void *); |
| 1079 | |
| 1080 | /* done with the task list */ |
| 1081 | for (i = 0; i < actual_tasks; i++) |
| 1082 | task_deallocate(task_list[i]); |
| 1083 | kfree(task_list, task_size); |
| 1084 | task_size = 0; |
| 1085 | actual_tasks = 0; |
| 1086 | task_list = NULL; |
| 1087 | } |
| 1088 | #endif |
| 1089 | |
| 1090 | if (type == PSET_THING_THREAD) { |
| 1091 | if (actual_threads == 0) { |
| 1092 | /* no threads available to return */ |
| 1093 | assert(task_size == 0); |
| 1094 | if (thread_size != 0) |
| 1095 | kfree(thread_list, thread_size); |
| 1096 | *thing_list = NULL; |
| 1097 | *count = 0; |
| 1098 | return KERN_SUCCESS; |
| 1099 | } |
| 1100 | size_needed = actual_threads * sizeof(void *); |
| 1101 | size = thread_size; |
| 1102 | addr = thread_list; |
| 1103 | } else { |
| 1104 | if (actual_tasks == 0) { |
| 1105 | /* no tasks available to return */ |
| 1106 | assert(thread_size == 0); |
| 1107 | if (task_size != 0) |
| 1108 | kfree(task_list, task_size); |
| 1109 | *thing_list = NULL; |
| 1110 | *count = 0; |
| 1111 | return KERN_SUCCESS; |
| 1112 | } |
| 1113 | size_needed = actual_tasks * sizeof(void *); |
| 1114 | size = task_size; |
| 1115 | addr = task_list; |
| 1116 | } |
| 1117 | |
| 1118 | /* if we allocated too much, must copy */ |
| 1119 | if (size_needed < size) { |
| 1120 | newaddr = kalloc(size_needed); |
| 1121 | if (newaddr == 0) { |
| 1122 | for (i = 0; i < actual_tasks; i++) { |
| 1123 | if (type == PSET_THING_THREAD) |
| 1124 | thread_deallocate(thread_list[i]); |
| 1125 | else |
| 1126 | task_deallocate(task_list[i]); |
| 1127 | } |
| 1128 | if (size) |
| 1129 | kfree(addr, size); |
| 1130 | return (KERN_RESOURCE_SHORTAGE); |
| 1131 | } |
| 1132 | |
| 1133 | bcopy((void *) addr, (void *) newaddr, size_needed); |
| 1134 | kfree(addr, size); |
| 1135 | |
| 1136 | addr = newaddr; |
| 1137 | size = size_needed; |
| 1138 | } |
| 1139 | |
| 1140 | *thing_list = (void **)addr; |
| 1141 | *count = (unsigned int)size / sizeof(void *); |
| 1142 | |
| 1143 | return (KERN_SUCCESS); |
| 1144 | } |
| 1145 | |
| 1146 | |
| 1147 | /* |
| 1148 | * processor_set_tasks: |
| 1149 | * |
| 1150 | * List all tasks in the processor set. |
| 1151 | */ |
| 1152 | kern_return_t |
| 1153 | processor_set_tasks( |
| 1154 | processor_set_t pset, |
| 1155 | task_array_t *task_list, |
| 1156 | mach_msg_type_number_t *count) |
| 1157 | { |
| 1158 | kern_return_t ret; |
| 1159 | mach_msg_type_number_t i; |
| 1160 | |
| 1161 | ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK); |
| 1162 | if (ret != KERN_SUCCESS) |
| 1163 | return ret; |
| 1164 | |
| 1165 | /* do the conversion that Mig should handle */ |
| 1166 | for (i = 0; i < *count; i++) |
| 1167 | (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]); |
| 1168 | return KERN_SUCCESS; |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * processor_set_threads: |
| 1173 | * |
| 1174 | * List all threads in the processor set. |
| 1175 | */ |
| 1176 | #if defined(SECURE_KERNEL) |
| 1177 | kern_return_t |
| 1178 | processor_set_threads( |
| 1179 | __unused processor_set_t pset, |
| 1180 | __unused thread_array_t *thread_list, |
| 1181 | __unused mach_msg_type_number_t *count) |
| 1182 | { |
| 1183 | return KERN_FAILURE; |
| 1184 | } |
| 1185 | #elif defined(CONFIG_EMBEDDED) |
| 1186 | kern_return_t |
| 1187 | processor_set_threads( |
| 1188 | __unused processor_set_t pset, |
| 1189 | __unused thread_array_t *thread_list, |
| 1190 | __unused mach_msg_type_number_t *count) |
| 1191 | { |
| 1192 | return KERN_NOT_SUPPORTED; |
| 1193 | } |
| 1194 | #else |
| 1195 | kern_return_t |
| 1196 | processor_set_threads( |
| 1197 | processor_set_t pset, |
| 1198 | thread_array_t *thread_list, |
| 1199 | mach_msg_type_number_t *count) |
| 1200 | { |
| 1201 | kern_return_t ret; |
| 1202 | mach_msg_type_number_t i; |
| 1203 | |
| 1204 | ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD); |
| 1205 | if (ret != KERN_SUCCESS) |
| 1206 | return ret; |
| 1207 | |
| 1208 | /* do the conversion that Mig should handle */ |
| 1209 | for (i = 0; i < *count; i++) |
| 1210 | (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]); |
| 1211 | return KERN_SUCCESS; |
| 1212 | } |
| 1213 | #endif |
| 1214 | |
| 1215 | /* |
| 1216 | * processor_set_policy_control |
| 1217 | * |
| 1218 | * Controls the scheduling attributes governing the processor set. |
| 1219 | * Allows control of enabled policies, and per-policy base and limit |
| 1220 | * priorities. |
| 1221 | */ |
| 1222 | kern_return_t |
| 1223 | processor_set_policy_control( |
| 1224 | __unused processor_set_t pset, |
| 1225 | __unused int flavor, |
| 1226 | __unused processor_set_info_t policy_info, |
| 1227 | __unused mach_msg_type_number_t count, |
| 1228 | __unused boolean_t change) |
| 1229 | { |
| 1230 | return (KERN_INVALID_ARGUMENT); |
| 1231 | } |
| 1232 | |
| 1233 | #undef pset_deallocate |
| 1234 | void pset_deallocate(processor_set_t pset); |
| 1235 | void |
| 1236 | pset_deallocate( |
| 1237 | __unused processor_set_t pset) |
| 1238 | { |
| 1239 | return; |
| 1240 | } |
| 1241 | |
| 1242 | #undef pset_reference |
| 1243 | void pset_reference(processor_set_t pset); |
| 1244 | void |
| 1245 | pset_reference( |
| 1246 | __unused processor_set_t pset) |
| 1247 | { |
| 1248 | return; |
| 1249 | } |
| 1250 | |
| 1251 | pset_cluster_type_t |
| 1252 | recommended_pset_type(thread_t thread) |
| 1253 | { |
| 1254 | (void)thread; |
| 1255 | return PSET_SMP; |
| 1256 | } |
| 1257 | |