| 1 | /* |
| 2 | * Copyright (c) 2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <kern/cpu_data.h> |
| 29 | #include <kern/kern_types.h> |
| 30 | #include <kern/locks.h> |
| 31 | #include <kern/ltable.h> |
| 32 | #include <kern/zalloc.h> |
| 33 | #include <libkern/OSAtomic.h> |
| 34 | #include <pexpert/pexpert.h> |
| 35 | #include <vm/vm_kern.h> |
| 36 | |
| 37 | |
| 38 | #define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align))) |
| 39 | #define ROUNDDOWN(x,y) (((x)/(y))*(y)) |
| 40 | |
| 41 | /* ---------------------------------------------------------------------- |
| 42 | * |
| 43 | * Lockless Link Table Interface |
| 44 | * |
| 45 | * ---------------------------------------------------------------------- */ |
| 46 | |
| 47 | vm_size_t g_lt_max_tbl_size; |
| 48 | static lck_grp_t g_lt_lck_grp; |
| 49 | |
| 50 | /* default VA space for link tables (zone allocated) */ |
| 51 | #define DEFAULT_MAX_TABLE_SIZE P2ROUNDUP(8 * 1024 * 1024, PAGE_SIZE) |
| 52 | |
| 53 | #if DEVELOPMENT || DEBUG |
| 54 | /* global for lldb macros */ |
| 55 | uint64_t g_lt_idx_max = LT_IDX_MAX; |
| 56 | #endif |
| 57 | |
| 58 | |
| 59 | /* construct a link table element from an offset and mask into a slab */ |
| 60 | #define lt_elem_ofst_slab(slab, slab_msk, ofst) \ |
| 61 | /* cast through 'void *' to avoid compiler alignment warning messages */ \ |
| 62 | ((struct lt_elem *)((void *)((uintptr_t)(slab) + ((ofst) & (slab_msk))))) |
| 63 | |
| 64 | #if CONFIG_LTABLE_STATS |
| 65 | /* version that makes no assumption on waste within a slab */ |
| 66 | static inline struct lt_elem * |
| 67 | lt_elem_idx(struct link_table *table, uint32_t idx) |
| 68 | { |
| 69 | int slab_idx = idx / table->slab_elem; |
| 70 | struct lt_elem *slab = table->table[slab_idx]; |
| 71 | if (!slab) |
| 72 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n" , |
| 73 | idx, slab_idx, table); |
| 74 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); |
| 75 | return lt_elem_ofst_slab(slab, table->slab_msk, (idx - slab->lt_id.idx) * table->elem_sz); |
| 76 | } |
| 77 | #else /* !CONFIG_LTABLE_STATS */ |
| 78 | /* verion that assumes 100% ultilization of slabs (no waste) */ |
| 79 | static inline struct lt_elem * |
| 80 | lt_elem_idx(struct link_table *table, uint32_t idx) |
| 81 | { |
| 82 | uint32_t ofst = idx * table->elem_sz; |
| 83 | struct lt_elem *slab = table->table[ofst >> table->slab_shift]; |
| 84 | if (!slab) |
| 85 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n" , |
| 86 | idx, (ofst >> table->slab_shift), table); |
| 87 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); |
| 88 | return lt_elem_ofst_slab(slab, table->slab_msk, ofst); |
| 89 | } |
| 90 | #endif /* CONFIG_LTABLE_STATS */ |
| 91 | |
| 92 | static int __assert_only |
| 93 | lt_elem_in_range(struct lt_elem *elem, struct link_table *table) |
| 94 | { |
| 95 | struct lt_elem **base = table->table; |
| 96 | uintptr_t e = (uintptr_t)elem; |
| 97 | assert(base != NULL); |
| 98 | while (*base != NULL) { |
| 99 | uintptr_t b = (uintptr_t)(*base); |
| 100 | if (e >= b && e < b + table->slab_sz) |
| 101 | return 1; |
| 102 | base++; |
| 103 | if ((uintptr_t)base >= (uintptr_t)table->table + PAGE_SIZE) |
| 104 | return 0; |
| 105 | } |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | /** |
| 111 | * lt_elem_invalidate: mark 'elem' as invalid |
| 112 | * |
| 113 | * NOTE: this does _not_ get or put a reference on 'elem' |
| 114 | */ |
| 115 | void lt_elem_invalidate(struct lt_elem *elem) |
| 116 | { |
| 117 | uint32_t __assert_only old = OSBitAndAtomic(~LT_BITS_VALID, &elem->lt_bits); |
| 118 | OSMemoryBarrier(); |
| 119 | assert(((lt_bits_type(old) != LT_RESERVED) && (old & LT_BITS_VALID)) || |
| 120 | ((lt_bits_type(old) == LT_RESERVED) && !(old & LT_BITS_VALID))); |
| 121 | } |
| 122 | |
| 123 | /** |
| 124 | * lt_elem_mkvalid: mark 'elem' as valid |
| 125 | * |
| 126 | * NOTE: this does _not_ get or put a reference on 'elem' |
| 127 | */ |
| 128 | void lt_elem_mkvalid(struct lt_elem *elem) |
| 129 | { |
| 130 | uint32_t __assert_only old = OSBitOrAtomic(LT_BITS_VALID, &elem->lt_bits); |
| 131 | OSMemoryBarrier(); |
| 132 | assert(!(old & LT_BITS_VALID)); |
| 133 | } |
| 134 | |
| 135 | static void lt_elem_set_type(struct lt_elem *elem, int type) |
| 136 | { |
| 137 | uint32_t old_bits, new_bits; |
| 138 | do { |
| 139 | old_bits = elem->lt_bits; |
| 140 | new_bits = (old_bits & ~LT_BITS_TYPE) | |
| 141 | ((type & LT_BITS_TYPE_MASK) << LT_BITS_TYPE_SHIFT); |
| 142 | } while (OSCompareAndSwap(old_bits, new_bits, &elem->lt_bits) == FALSE); |
| 143 | OSMemoryBarrier(); |
| 144 | } |
| 145 | |
| 146 | |
| 147 | /** |
| 148 | * ltable_bootstrap: bootstrap a link table |
| 149 | * |
| 150 | * Called once at system boot |
| 151 | */ |
| 152 | void ltable_bootstrap(void) |
| 153 | { |
| 154 | static int s_is_bootstrapped = 0; |
| 155 | |
| 156 | uint32_t tmp32 = 0; |
| 157 | |
| 158 | if (s_is_bootstrapped) |
| 159 | return; |
| 160 | s_is_bootstrapped = 1; |
| 161 | |
| 162 | g_lt_max_tbl_size = DEFAULT_MAX_TABLE_SIZE; |
| 163 | if (PE_parse_boot_argn("lt_tbl_size" , &tmp32, sizeof(tmp32)) == TRUE) |
| 164 | g_lt_max_tbl_size = (vm_size_t)P2ROUNDUP(tmp32, PAGE_SIZE); |
| 165 | |
| 166 | lck_grp_init(&g_lt_lck_grp, "link_table_locks" , LCK_GRP_ATTR_NULL); |
| 167 | } |
| 168 | |
| 169 | /** |
| 170 | * ltable_init: initialize a link table with given parameters |
| 171 | * |
| 172 | */ |
| 173 | void ltable_init(struct link_table *table, const char *name, |
| 174 | uint32_t max_tbl_elem, uint32_t elem_sz, |
| 175 | ltable_poison_func poison) |
| 176 | { |
| 177 | kern_return_t kr; |
| 178 | uint32_t slab_sz, slab_shift, slab_msk, slab_elem; |
| 179 | zone_t slab_zone; |
| 180 | size_t max_tbl_sz; |
| 181 | struct lt_elem *e, **base; |
| 182 | |
| 183 | #ifndef CONFIG_LTABLE_STATS |
| 184 | /* the element size _must_ be a power of two! */ |
| 185 | if ((elem_sz & (elem_sz - 1)) != 0) |
| 186 | panic("elem_sz:%d for table:'%s' must be a power of two!" , |
| 187 | elem_sz, name); |
| 188 | #endif |
| 189 | |
| 190 | /* |
| 191 | * First, allocate a single page of memory to act as the base |
| 192 | * for the table's element slabs |
| 193 | */ |
| 194 | kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&base, |
| 195 | PAGE_SIZE, 0, KMA_NOPAGEWAIT, VM_KERN_MEMORY_LTABLE); |
| 196 | if (kr != KERN_SUCCESS) |
| 197 | panic("Cannot initialize %s table: " |
| 198 | "kernel_memory_allocate failed:%d\n" , name, kr); |
| 199 | memset(base, 0, PAGE_SIZE); |
| 200 | |
| 201 | /* |
| 202 | * Based on the maximum table size, calculate the slab size: |
| 203 | * we allocate 1 page of slab pointers for the table, and we need to |
| 204 | * index elements of 'elem_sz', this gives us the slab size based on |
| 205 | * the maximum size the table should grow. |
| 206 | */ |
| 207 | max_tbl_sz = (max_tbl_elem * elem_sz); |
| 208 | max_tbl_sz = P2ROUNDUP(max_tbl_sz, PAGE_SIZE); |
| 209 | |
| 210 | /* system maximum table size divided by number of slots in a page */ |
| 211 | slab_sz = (uint32_t)(max_tbl_sz / (PAGE_SIZE / (sizeof(void *)))); |
| 212 | if (slab_sz < PAGE_SIZE) |
| 213 | slab_sz = PAGE_SIZE; |
| 214 | |
| 215 | /* make sure the slab size is a power of two */ |
| 216 | slab_shift = 0; |
| 217 | slab_msk = ~0; |
| 218 | for (uint32_t i = 0; i < 31; i++) { |
| 219 | uint32_t bit = (1 << i); |
| 220 | if ((slab_sz & bit) == slab_sz) { |
| 221 | slab_shift = i; |
| 222 | slab_msk = 0; |
| 223 | for (uint32_t j = 0; j < i; j++) |
| 224 | slab_msk |= (1 << j); |
| 225 | break; |
| 226 | } |
| 227 | slab_sz &= ~bit; |
| 228 | } |
| 229 | slab_elem = slab_sz / elem_sz; |
| 230 | |
| 231 | /* initialize the table's slab zone (for table growth) */ |
| 232 | ltdbg("Initializing %s zone: slab:%d (%d,0x%x) max:%ld" , |
| 233 | name, slab_sz, slab_shift, slab_msk, max_tbl_sz); |
| 234 | slab_zone = zinit(slab_sz, max_tbl_sz, slab_sz, name); |
| 235 | assert(slab_zone != ZONE_NULL); |
| 236 | |
| 237 | /* allocate the first slab and populate it */ |
| 238 | base[0] = (struct lt_elem *)zalloc(slab_zone); |
| 239 | if (base[0] == NULL) |
| 240 | panic("Can't allocate a %s table slab from zone:%p" , |
| 241 | name, slab_zone); |
| 242 | |
| 243 | memset(base[0], 0, slab_sz); |
| 244 | |
| 245 | /* setup the initial freelist */ |
| 246 | ltdbg("initializing %d links (%d bytes each)..." , slab_elem, elem_sz); |
| 247 | for (unsigned l = 0; l < slab_elem; l++) { |
| 248 | e = lt_elem_ofst_slab(base[0], slab_msk, l * elem_sz); |
| 249 | e->lt_id.idx = l; |
| 250 | /* |
| 251 | * setting generation to 0 ensures that a setid of 0 is |
| 252 | * invalid because the generation will be incremented before |
| 253 | * each element's allocation. |
| 254 | */ |
| 255 | e->lt_id.generation = 0; |
| 256 | e->lt_next_idx = l + 1; |
| 257 | } |
| 258 | |
| 259 | /* make sure the last free element points to a never-valid idx */ |
| 260 | e = lt_elem_ofst_slab(base[0], slab_msk, (slab_elem - 1) * elem_sz); |
| 261 | e->lt_next_idx = LT_IDX_MAX; |
| 262 | |
| 263 | lck_mtx_init(&table->lock, &g_lt_lck_grp, LCK_ATTR_NULL); |
| 264 | |
| 265 | table->slab_sz = slab_sz; |
| 266 | table->slab_shift = slab_shift; |
| 267 | table->slab_msk = slab_msk; |
| 268 | table->slab_elem = slab_elem; |
| 269 | table->slab_zone = slab_zone; |
| 270 | |
| 271 | table->elem_sz = elem_sz; |
| 272 | table->nelem = slab_elem; |
| 273 | table->used_elem = 0; |
| 274 | table->elem_sz = elem_sz; |
| 275 | table->poison = poison; |
| 276 | |
| 277 | table->table = base; |
| 278 | table->next_free_slab = &base[1]; |
| 279 | table->free_list.id = base[0]->lt_id.id; |
| 280 | |
| 281 | #if CONFIG_LTABLE_STATS |
| 282 | table->nslabs = 1; |
| 283 | table->nallocs = 0; |
| 284 | table->nreallocs = 0; |
| 285 | table->npreposts = 0; |
| 286 | table->nreservations = 0; |
| 287 | table->nreserved_releases = 0; |
| 288 | |
| 289 | table->max_used = 0; |
| 290 | table->avg_used = 0; |
| 291 | table->max_reservations = 0; |
| 292 | table->avg_reservations = 0; |
| 293 | #endif |
| 294 | } |
| 295 | |
| 296 | |
| 297 | /** |
| 298 | * ltable_grow: grow a link table by adding another 'slab' of table elements |
| 299 | * |
| 300 | * Conditions: |
| 301 | * table mutex is unlocked |
| 302 | * calling thread can block |
| 303 | */ |
| 304 | void ltable_grow(struct link_table *table, uint32_t min_free) |
| 305 | { |
| 306 | struct lt_elem *slab, **slot; |
| 307 | struct lt_elem *e = NULL, *first_new_elem, *last_new_elem; |
| 308 | struct ltable_id free_id; |
| 309 | uint32_t free_elem; |
| 310 | |
| 311 | assert(get_preemption_level() == 0); |
| 312 | assert(table && table->slab_zone); |
| 313 | |
| 314 | lck_mtx_lock(&table->lock); |
| 315 | |
| 316 | free_elem = table->nelem - table->used_elem; |
| 317 | |
| 318 | /* |
| 319 | * If the caller just wanted to ensure a minimum number of elements, |
| 320 | * do that (and don't just blindly grow the table). Also, don't grow |
| 321 | * the table unnecessarily - we could have been beaten by a higher |
| 322 | * priority thread who acquired the lock and grew the table before we |
| 323 | * got here. |
| 324 | */ |
| 325 | if (free_elem > min_free) { |
| 326 | lck_mtx_unlock(&table->lock); |
| 327 | return; |
| 328 | } |
| 329 | |
| 330 | /* we are now committed to table growth */ |
| 331 | ltdbg_v("BEGIN" ); |
| 332 | |
| 333 | if (table->next_free_slab == NULL) { |
| 334 | /* |
| 335 | * before we panic, check one more time to see if any other |
| 336 | * threads have free'd from space in the table. |
| 337 | */ |
| 338 | if ((table->nelem - table->used_elem) > 0) { |
| 339 | /* there's at least 1 free element: don't panic yet */ |
| 340 | lck_mtx_unlock(&table->lock); |
| 341 | return; |
| 342 | } |
| 343 | panic("No more room to grow table: %p (nelem: %d, used: %d)" , |
| 344 | table, table->nelem, table->used_elem); |
| 345 | } |
| 346 | slot = table->next_free_slab; |
| 347 | table->next_free_slab++; |
| 348 | if ((uintptr_t)table->next_free_slab >= (uintptr_t)table->table + PAGE_SIZE) |
| 349 | table->next_free_slab = NULL; |
| 350 | |
| 351 | assert(*slot == NULL); |
| 352 | |
| 353 | /* allocate another slab */ |
| 354 | slab = (struct lt_elem *)zalloc(table->slab_zone); |
| 355 | if (slab == NULL) |
| 356 | panic("Can't allocate a %s table (%p) slab from zone:%p" , |
| 357 | table->slab_zone->zone_name, table, table->slab_zone); |
| 358 | |
| 359 | memset(slab, 0, table->slab_sz); |
| 360 | |
| 361 | /* put the new elements into a freelist */ |
| 362 | ltdbg_v(" init %d new links..." , table->slab_elem); |
| 363 | for (unsigned l = 0; l < table->slab_elem; l++) { |
| 364 | uint32_t idx = l + table->nelem; |
| 365 | if (idx >= (LT_IDX_MAX - 1)) |
| 366 | break; /* the last element of the last slab */ |
| 367 | e = lt_elem_ofst_slab(slab, table->slab_msk, l * table->elem_sz); |
| 368 | e->lt_id.idx = idx; |
| 369 | e->lt_next_idx = idx + 1; |
| 370 | } |
| 371 | last_new_elem = e; |
| 372 | assert(last_new_elem != NULL); |
| 373 | |
| 374 | first_new_elem = lt_elem_ofst_slab(slab, table->slab_msk, 0); |
| 375 | |
| 376 | /* update table book keeping, and atomically swap the freelist head */ |
| 377 | *slot = slab; |
| 378 | if (table->nelem + table->slab_elem >= LT_IDX_MAX) |
| 379 | table->nelem = LT_IDX_MAX - 1; |
| 380 | else |
| 381 | table->nelem += table->slab_elem; |
| 382 | |
| 383 | #if CONFIG_LTABLE_STATS |
| 384 | table->nslabs += 1; |
| 385 | #endif |
| 386 | |
| 387 | /* |
| 388 | * The atomic swap of the free list head marks the end of table |
| 389 | * growth. Incoming requests may now use the newly allocated slab |
| 390 | * of table elements |
| 391 | */ |
| 392 | free_id = table->free_list; |
| 393 | /* connect the existing free list to the end of the new free list */ |
| 394 | last_new_elem->lt_next_idx = free_id.idx; |
| 395 | while (OSCompareAndSwap64(free_id.id, first_new_elem->lt_id.id, |
| 396 | &table->free_list.id) == FALSE) { |
| 397 | OSMemoryBarrier(); |
| 398 | free_id = table->free_list; |
| 399 | last_new_elem->lt_next_idx = free_id.idx; |
| 400 | } |
| 401 | OSMemoryBarrier(); |
| 402 | |
| 403 | lck_mtx_unlock(&table->lock); |
| 404 | |
| 405 | return; |
| 406 | } |
| 407 | |
| 408 | #if DEVELOPMENT || DEBUG |
| 409 | |
| 410 | int |
| 411 | ltable_nelem(struct link_table *table) |
| 412 | { |
| 413 | int nelem = 0; |
| 414 | |
| 415 | lck_mtx_lock(&table->lock); |
| 416 | |
| 417 | nelem = table->used_elem; |
| 418 | |
| 419 | lck_mtx_unlock(&table->lock); |
| 420 | |
| 421 | return nelem; |
| 422 | } |
| 423 | #endif |
| 424 | |
| 425 | /** |
| 426 | * ltable_alloc_elem: allocate one or more elements from a given table |
| 427 | * |
| 428 | * The returned element(s) will be of type 'type', but will remain invalid. |
| 429 | * |
| 430 | * If the caller has disabled preemption, then this function may (rarely) spin |
| 431 | * waiting either for another thread to either release 'nelem' table elements, |
| 432 | * or grow the table. |
| 433 | * |
| 434 | * If the caller can block, then this function may (rarely) block while |
| 435 | * the table grows to meet the demand for 'nelem' element(s). |
| 436 | */ |
| 437 | __attribute__((noinline)) |
| 438 | struct lt_elem *ltable_alloc_elem(struct link_table *table, int type, |
| 439 | int nelem, int nattempts) |
| 440 | { |
| 441 | int nspins = 0, ntries = 0, nalloc = 0; |
| 442 | uint32_t table_size; |
| 443 | struct lt_elem *elem = NULL; |
| 444 | struct ltable_id free_id, next_id; |
| 445 | |
| 446 | static const int max_retries = 500; |
| 447 | |
| 448 | if (type != LT_ELEM && type != LT_LINK && type != LT_RESERVED) |
| 449 | panic("link_table_aloc of invalid elem type:%d from table @%p" , |
| 450 | type, table); |
| 451 | |
| 452 | assert(nelem > 0); |
| 453 | |
| 454 | /* |
| 455 | * If the callers only wants to try a certain number of times, make it |
| 456 | * look like we've already made (MAX - nattempts) tries at allocation |
| 457 | */ |
| 458 | if (nattempts > 0 && nattempts <= max_retries) { |
| 459 | ntries = max_retries - nattempts; |
| 460 | } |
| 461 | |
| 462 | try_again: |
| 463 | elem = NULL; |
| 464 | if (ntries++ > max_retries) { |
| 465 | struct lt_elem *tmp; |
| 466 | if (nattempts > 0) { |
| 467 | /* |
| 468 | * The caller specified a particular number of |
| 469 | * attempts before failure, so it's expected that |
| 470 | * they're prepared to handle a NULL return. |
| 471 | */ |
| 472 | return NULL; |
| 473 | } |
| 474 | |
| 475 | if (table->used_elem + nelem >= table_size) |
| 476 | panic("No more room to grow table: 0x%p size:%d, used:%d, requested elem:%d" , |
| 477 | table, table_size, table->used_elem, nelem); |
| 478 | if (nelem == 1) |
| 479 | panic("Too many alloc retries: %d, table:%p, type:%d, nelem:%d" , |
| 480 | ntries, table, type, nelem); |
| 481 | /* don't panic: try allocating one-at-a-time */ |
| 482 | while (nelem > 0) { |
| 483 | tmp = ltable_alloc_elem(table, type, 1, nattempts); |
| 484 | if (elem) |
| 485 | lt_elem_list_link(table, tmp, elem); |
| 486 | elem = tmp; |
| 487 | --nelem; |
| 488 | } |
| 489 | assert(elem != NULL); |
| 490 | return elem; |
| 491 | } |
| 492 | |
| 493 | nalloc = 0; |
| 494 | table_size = table->nelem; |
| 495 | |
| 496 | if (table->used_elem + nelem >= table_size) { |
| 497 | if (get_preemption_level() != 0) { |
| 498 | #if CONFIG_LTABLE_STATS |
| 499 | table->nspins += 1; |
| 500 | #endif |
| 501 | /* |
| 502 | * We may have just raced with table growth: check |
| 503 | * again to make sure there really isn't any space. |
| 504 | */ |
| 505 | if (++nspins > 4) |
| 506 | panic("Can't grow table %p with preemption" |
| 507 | " disabled!" , table); |
| 508 | delay(1); |
| 509 | goto try_again; |
| 510 | } |
| 511 | ltable_grow(table, nelem); |
| 512 | goto try_again; |
| 513 | } |
| 514 | |
| 515 | /* read this value only once before the CAS */ |
| 516 | free_id = table->free_list; |
| 517 | if (free_id.idx >= table_size) |
| 518 | goto try_again; |
| 519 | |
| 520 | /* |
| 521 | * Find the item on the free list which will become the new free list |
| 522 | * head, but be careful not to modify any memory (read only)! Other |
| 523 | * threads can alter table state at any time up until the CAS. We |
| 524 | * don't modify any memory until we've successfully swapped out the |
| 525 | * free list head with the one we've investigated. |
| 526 | */ |
| 527 | for (struct lt_elem *next_elem = lt_elem_idx(table, free_id.idx); |
| 528 | nalloc < nelem; |
| 529 | nalloc++) { |
| 530 | elem = next_elem; |
| 531 | next_id.generation = 0; |
| 532 | next_id.idx = next_elem->lt_next_idx; |
| 533 | if (next_id.idx < table->nelem) { |
| 534 | next_elem = lt_elem_idx(table, next_id.idx); |
| 535 | next_id.id = next_elem->lt_id.id; |
| 536 | } else { |
| 537 | goto try_again; |
| 538 | } |
| 539 | } |
| 540 | /* 'elem' points to the last element being allocated */ |
| 541 | |
| 542 | if (OSCompareAndSwap64(free_id.id, next_id.id, |
| 543 | &table->free_list.id) == FALSE) |
| 544 | goto try_again; |
| 545 | |
| 546 | /* load barrier */ |
| 547 | OSMemoryBarrier(); |
| 548 | |
| 549 | /* |
| 550 | * After the CAS, we know that we own free_id, and it points to a |
| 551 | * valid table entry (checked above). Grab the table pointer and |
| 552 | * reset some values. |
| 553 | */ |
| 554 | OSAddAtomic(nelem, &table->used_elem); |
| 555 | |
| 556 | /* end the list of allocated elements */ |
| 557 | elem->lt_next_idx = LT_IDX_MAX; |
| 558 | /* reset 'elem' to point to the first allocated element */ |
| 559 | elem = lt_elem_idx(table, free_id.idx); |
| 560 | |
| 561 | /* |
| 562 | * Update the generation count, and return the element(s) |
| 563 | * with a single reference (and no valid bit). If the |
| 564 | * caller immediately calls _put() on any element, then |
| 565 | * it will be released back to the free list. If the caller |
| 566 | * subsequently marks the element as valid, then the put |
| 567 | * will simply drop the reference. |
| 568 | */ |
| 569 | for (struct lt_elem *tmp = elem; ; ) { |
| 570 | assert(!lt_bits_valid(tmp->lt_bits) && |
| 571 | (lt_bits_refcnt(tmp->lt_bits) == 0)); |
| 572 | --nalloc; |
| 573 | tmp->lt_id.generation += 1; |
| 574 | tmp->lt_bits = 1; |
| 575 | lt_elem_set_type(tmp, type); |
| 576 | if (tmp->lt_next_idx == LT_IDX_MAX) |
| 577 | break; |
| 578 | assert(tmp->lt_next_idx != LT_IDX_MAX); |
| 579 | tmp = lt_elem_idx(table, tmp->lt_next_idx); |
| 580 | } |
| 581 | assert(nalloc == 0); |
| 582 | |
| 583 | #if CONFIG_LTABLE_STATS |
| 584 | uint64_t nreservations; |
| 585 | table->nallocs += nelem; |
| 586 | if (type == LT_RESERVED) |
| 587 | OSIncrementAtomic64(&table->nreservations); |
| 588 | nreservations = table->nreservations; |
| 589 | if (table->used_elem > table->max_used) |
| 590 | table->max_used = table->used_elem; |
| 591 | if (nreservations > table->max_reservations) |
| 592 | table->max_reservations = nreservations; |
| 593 | table->avg_used = (table->avg_used + table->used_elem) / 2; |
| 594 | table->avg_reservations = (table->avg_reservations + nreservations) / 2; |
| 595 | #endif |
| 596 | |
| 597 | return elem; |
| 598 | } |
| 599 | |
| 600 | |
| 601 | /** |
| 602 | * ltable_realloc_elem: convert a reserved element to a particular type |
| 603 | * |
| 604 | * This funciton is used to convert reserved elements (not yet marked valid) |
| 605 | * to the given 'type'. The generation of 'elem' is incremented, the element |
| 606 | * is disconnected from any list to which it belongs, and its type is set to |
| 607 | * 'type'. |
| 608 | */ |
| 609 | void ltable_realloc_elem(struct link_table *table, struct lt_elem *elem, int type) |
| 610 | { |
| 611 | (void)table; |
| 612 | assert(lt_elem_in_range(elem, table) && |
| 613 | !lt_bits_valid(elem->lt_bits)); |
| 614 | |
| 615 | #if CONFIG_LTABLE_STATS |
| 616 | table->nreallocs += 1; |
| 617 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED && type != LT_RESERVED) { |
| 618 | /* |
| 619 | * This isn't under any lock, so we'll clamp it. |
| 620 | * the stats are meant to be informative, not perfectly |
| 621 | * accurate |
| 622 | */ |
| 623 | OSDecrementAtomic64(&table->nreservations); |
| 624 | } |
| 625 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; |
| 626 | #endif |
| 627 | |
| 628 | /* |
| 629 | * Return the same element with a new generation count, and a |
| 630 | * (potentially) new type. Don't touch the refcount: the caller |
| 631 | * is responsible for getting that (and the valid bit) correct. |
| 632 | */ |
| 633 | elem->lt_id.generation += 1; |
| 634 | elem->lt_next_idx = LT_IDX_MAX; |
| 635 | lt_elem_set_type(elem, type); |
| 636 | |
| 637 | return; |
| 638 | } |
| 639 | |
| 640 | |
| 641 | /** |
| 642 | * ltable_free_elem: release an element back to a link table |
| 643 | * |
| 644 | * Do not call this function directly: use ltable_[get|put]_elem! |
| 645 | * |
| 646 | * Conditions: |
| 647 | * 'elem' was originally allocated from 'table' |
| 648 | * 'elem' is _not_ marked valid |
| 649 | * 'elem' has a reference count of 0 |
| 650 | */ |
| 651 | static void ltable_free_elem(struct link_table *table, struct lt_elem *elem) |
| 652 | { |
| 653 | struct ltable_id next_id; |
| 654 | |
| 655 | assert(lt_elem_in_range(elem, table) && |
| 656 | !lt_bits_valid(elem->lt_bits) && |
| 657 | (lt_bits_refcnt(elem->lt_bits) == 0)); |
| 658 | |
| 659 | OSDecrementAtomic(&table->used_elem); |
| 660 | |
| 661 | #if CONFIG_LTABLE_STATS |
| 662 | table->avg_used = (table->avg_used + table->used_elem) / 2; |
| 663 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED) |
| 664 | OSDecrementAtomic64(&table->nreservations); |
| 665 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; |
| 666 | #endif |
| 667 | |
| 668 | elem->lt_bits = 0; |
| 669 | |
| 670 | if (table->poison) |
| 671 | (table->poison)(table, elem); |
| 672 | |
| 673 | again: |
| 674 | next_id = table->free_list; |
| 675 | if (next_id.idx >= table->nelem) |
| 676 | elem->lt_next_idx = LT_IDX_MAX; |
| 677 | else |
| 678 | elem->lt_next_idx = next_id.idx; |
| 679 | |
| 680 | /* store barrier */ |
| 681 | OSMemoryBarrier(); |
| 682 | if (OSCompareAndSwap64(next_id.id, elem->lt_id.id, |
| 683 | &table->free_list.id) == FALSE) |
| 684 | goto again; |
| 685 | } |
| 686 | |
| 687 | |
| 688 | /** |
| 689 | * ltable_get_elem: get a reference to a table element identified by 'id' |
| 690 | * |
| 691 | * Returns a reference to the table element associated with the given 'id', or |
| 692 | * NULL if the 'id' was invalid or does not exist in 'table'. The caller is |
| 693 | * responsible to release the reference using ltable_put_elem(). |
| 694 | * |
| 695 | * NOTE: if the table element pointed to by 'id' is marked as invalid, |
| 696 | * this function will return NULL. |
| 697 | */ |
| 698 | struct lt_elem *ltable_get_elem(struct link_table *table, uint64_t id) |
| 699 | { |
| 700 | struct lt_elem *elem; |
| 701 | uint32_t idx, bits, new_bits; |
| 702 | |
| 703 | /* |
| 704 | * Here we have a reference to the table which is guaranteed to remain |
| 705 | * valid until we drop the reference |
| 706 | */ |
| 707 | |
| 708 | idx = ((struct ltable_id *)&id)->idx; |
| 709 | |
| 710 | if (idx >= table->nelem) |
| 711 | panic("id:0x%llx : idx:%d > %d" , id, idx, table->nelem); |
| 712 | |
| 713 | elem = lt_elem_idx(table, idx); |
| 714 | |
| 715 | /* verify the validity by taking a reference on the table object */ |
| 716 | bits = elem->lt_bits; |
| 717 | if (!lt_bits_valid(bits)) |
| 718 | return NULL; |
| 719 | |
| 720 | /* |
| 721 | * do a pre-verify on the element ID to potentially |
| 722 | * avoid 2 compare-and-swaps |
| 723 | */ |
| 724 | if (elem->lt_id.id != id) |
| 725 | return NULL; |
| 726 | |
| 727 | new_bits = bits + 1; |
| 728 | |
| 729 | /* check for overflow */ |
| 730 | assert(lt_bits_refcnt(new_bits) > 0); |
| 731 | |
| 732 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { |
| 733 | /* |
| 734 | * either the element became invalid, |
| 735 | * or someone else grabbed/removed a reference. |
| 736 | */ |
| 737 | bits = elem->lt_bits; |
| 738 | if (!lt_bits_valid(bits)) { |
| 739 | /* don't return invalid elements */ |
| 740 | return NULL; |
| 741 | } |
| 742 | new_bits = bits + 1; |
| 743 | assert(lt_bits_refcnt(new_bits) > 0); |
| 744 | } |
| 745 | |
| 746 | /* load barrier */ |
| 747 | OSMemoryBarrier(); |
| 748 | |
| 749 | /* check to see that our reference is to the same generation! */ |
| 750 | if (elem->lt_id.id != id) { |
| 751 | /* |
| 752 | ltdbg("ID:0x%llx table generation (%d) != %d", |
| 753 | id, elem->lt_id.generation, |
| 754 | ((struct ltable_id *)&id)->generation); |
| 755 | */ |
| 756 | ltable_put_elem(table, elem); |
| 757 | return NULL; |
| 758 | } |
| 759 | |
| 760 | /* We now have a reference on a valid object */ |
| 761 | return elem; |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * ltable_put_elem: release a reference to table element |
| 766 | * |
| 767 | * This function releases a reference taken on a table element via |
| 768 | * ltable_get_elem(). This function will release the element back to 'table' |
| 769 | * when the reference count goes to 0 AND the element has been marked as |
| 770 | * invalid. |
| 771 | */ |
| 772 | void ltable_put_elem(struct link_table *table, struct lt_elem *elem) |
| 773 | { |
| 774 | uint32_t bits, new_bits; |
| 775 | |
| 776 | assert(lt_elem_in_range(elem, table)); |
| 777 | |
| 778 | bits = elem->lt_bits; |
| 779 | new_bits = bits - 1; |
| 780 | |
| 781 | /* check for underflow */ |
| 782 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); |
| 783 | |
| 784 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { |
| 785 | bits = elem->lt_bits; |
| 786 | new_bits = bits - 1; |
| 787 | /* catch underflow */ |
| 788 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); |
| 789 | } |
| 790 | |
| 791 | /* load barrier */ |
| 792 | OSMemoryBarrier(); |
| 793 | |
| 794 | /* |
| 795 | * if this was the last reference, and it was marked as invalid, |
| 796 | * then we can add this link object back to the free list |
| 797 | */ |
| 798 | if (!lt_bits_valid(new_bits) && (lt_bits_refcnt(new_bits) == 0)) |
| 799 | ltable_free_elem(table, elem); |
| 800 | |
| 801 | return; |
| 802 | } |
| 803 | |
| 804 | |
| 805 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 806 | * |
| 807 | * API: lt_elem_list_... |
| 808 | * |
| 809 | * Reuse the free list linkage member, 'lt_next_idx' of a table element |
| 810 | * in a slightly more generic singly-linked list. All members of this |
| 811 | * list have been allocated from a table, but have not been made valid. |
| 812 | * |
| 813 | * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/ |
| 814 | |
| 815 | /** |
| 816 | * lt_elem_list_link: link a child onto a parent |
| 817 | * |
| 818 | * Note that if 'parent' is the head of a list, this function will follow that |
| 819 | * list and attach 'child' to the end of it. In the simplest case, this |
| 820 | * results in: parent->child |
| 821 | * however this could also result in: parent->...->child |
| 822 | */ |
| 823 | int lt_elem_list_link(struct link_table *table, struct lt_elem *parent, struct lt_elem *child) |
| 824 | { |
| 825 | int nelem = 1; |
| 826 | |
| 827 | assert(lt_elem_in_range(parent, table)); |
| 828 | |
| 829 | /* find the end of the parent's list */ |
| 830 | while (parent->lt_next_idx != LT_IDX_MAX) { |
| 831 | assert(parent->lt_next_idx < table->nelem); |
| 832 | parent = lt_elem_idx(table, parent->lt_next_idx); |
| 833 | nelem++; |
| 834 | } |
| 835 | |
| 836 | if (child) { |
| 837 | assert(lt_elem_in_range(child, table)); |
| 838 | parent->lt_next_idx = child->lt_id.idx; |
| 839 | } |
| 840 | |
| 841 | return nelem; |
| 842 | } |
| 843 | |
| 844 | |
| 845 | /** |
| 846 | * lt_elem_list_first: obtain a pointer to the first element of a list. |
| 847 | * |
| 848 | * This function converts the head of a singly-linked list, 'id', into a real |
| 849 | * lt_elem object and returns a pointer to the object. |
| 850 | * |
| 851 | * It does _not_ take an extra reference on the object: the list implicitly |
| 852 | * holds that reference. |
| 853 | */ |
| 854 | struct lt_elem *lt_elem_list_first(struct link_table *table, uint64_t id) |
| 855 | { |
| 856 | uint32_t idx; |
| 857 | struct lt_elem *elem = NULL; |
| 858 | |
| 859 | if (id == 0) |
| 860 | return NULL; |
| 861 | |
| 862 | idx = ((struct ltable_id *)&id)->idx; |
| 863 | |
| 864 | if (idx > table->nelem) |
| 865 | panic("Invalid element for id:0x%llx" , id); |
| 866 | elem = lt_elem_idx(table, idx); |
| 867 | |
| 868 | /* invalid element: reserved ID was probably already reallocated */ |
| 869 | if (elem->lt_id.id != id) |
| 870 | return NULL; |
| 871 | |
| 872 | /* the returned element should _not_ be marked valid! */ |
| 873 | if (lt_bits_valid(elem->lt_bits) || |
| 874 | lt_bits_type(elem->lt_bits) != LT_RESERVED || |
| 875 | lt_bits_refcnt(elem->lt_bits) != 1) { |
| 876 | panic("Valid/unreserved element %p (0x%x) in reserved list" , |
| 877 | elem, elem->lt_bits); |
| 878 | } |
| 879 | |
| 880 | return elem; |
| 881 | } |
| 882 | |
| 883 | |
| 884 | /** |
| 885 | * lt_elem_list_next: return the item subsequent to 'elem' in a list |
| 886 | * |
| 887 | * Note that this will return NULL if 'elem' is actually the end of the list. |
| 888 | */ |
| 889 | struct lt_elem *lt_elem_list_next(struct link_table *table, struct lt_elem *head) |
| 890 | { |
| 891 | struct lt_elem *elem; |
| 892 | |
| 893 | if (!head) |
| 894 | return NULL; |
| 895 | if (head->lt_next_idx >= table->nelem) |
| 896 | return NULL; |
| 897 | |
| 898 | elem = lt_elem_idx(table, head->lt_next_idx); |
| 899 | assert(lt_elem_in_range(elem, table)); |
| 900 | |
| 901 | return elem; |
| 902 | } |
| 903 | |
| 904 | |
| 905 | /** |
| 906 | * lt_elem_list_break: break a list in two around 'elem' |
| 907 | * |
| 908 | * This function will reset the next_idx field of 'elem' (making it the end of |
| 909 | * the list), and return the element subsequent to 'elem' in the list |
| 910 | * (which could be NULL) |
| 911 | */ |
| 912 | struct lt_elem *lt_elem_list_break(struct link_table *table, struct lt_elem *elem) |
| 913 | { |
| 914 | struct lt_elem *next; |
| 915 | |
| 916 | if (!elem) |
| 917 | return NULL; |
| 918 | next = lt_elem_list_next(table, elem); |
| 919 | elem->lt_next_idx = LT_IDX_MAX; |
| 920 | |
| 921 | return next; |
| 922 | } |
| 923 | |
| 924 | |
| 925 | /** |
| 926 | * lt_elem_list_pop: pop an item off the head of a list |
| 927 | * |
| 928 | * The list head is pointed to by '*id', the element corresponding to '*id' is |
| 929 | * returned by this function, and the new list head is returned in the in/out |
| 930 | * parameter, '*id'. The caller is responsible for the reference on the |
| 931 | * returned object. A realloc is done to reset the type of the object, but it |
| 932 | * is still left invalid. |
| 933 | */ |
| 934 | struct lt_elem *lt_elem_list_pop(struct link_table *table, uint64_t *id, int type) |
| 935 | { |
| 936 | struct lt_elem *first, *next; |
| 937 | |
| 938 | if (!id || *id == 0) |
| 939 | return NULL; |
| 940 | |
| 941 | /* pop an item off the reserved stack */ |
| 942 | |
| 943 | first = lt_elem_list_first(table, *id); |
| 944 | if (!first) { |
| 945 | *id = 0; |
| 946 | return NULL; |
| 947 | } |
| 948 | |
| 949 | next = lt_elem_list_next(table, first); |
| 950 | if (next) |
| 951 | *id = next->lt_id.id; |
| 952 | else |
| 953 | *id = 0; |
| 954 | |
| 955 | ltable_realloc_elem(table, first, type); |
| 956 | |
| 957 | return first; |
| 958 | } |
| 959 | |
| 960 | /** |
| 961 | * lt_elem_list_release: free an entire list of reserved elements |
| 962 | * |
| 963 | * All elements in the list whose first member is 'head' will be released back |
| 964 | * to 'table' as free elements. The 'type' parameter is used in development |
| 965 | * kernels to assert that all elements on the list are of the given type. |
| 966 | */ |
| 967 | int lt_elem_list_release(struct link_table *table, struct lt_elem *head, |
| 968 | int __assert_only type) |
| 969 | { |
| 970 | struct lt_elem *elem; |
| 971 | struct ltable_id free_id; |
| 972 | int nelem = 0; |
| 973 | |
| 974 | if (!head) |
| 975 | return 0; |
| 976 | |
| 977 | for (elem = head; ; ) { |
| 978 | assert(lt_elem_in_range(elem, table)); |
| 979 | assert(!lt_bits_valid(elem->lt_bits) && (lt_bits_refcnt(elem->lt_bits) == 1)); |
| 980 | assert(lt_bits_type(elem->lt_bits) == type); |
| 981 | |
| 982 | nelem++; |
| 983 | elem->lt_bits = 0; |
| 984 | if (table->poison) |
| 985 | (table->poison)(table, elem); |
| 986 | |
| 987 | if (elem->lt_next_idx == LT_IDX_MAX) |
| 988 | break; |
| 989 | assert(elem->lt_next_idx < table->nelem); |
| 990 | elem = lt_elem_idx(table, elem->lt_next_idx); |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * 'elem' now points to the end of our list, and 'head' points to the |
| 995 | * beginning. We want to atomically swap the free list pointer with |
| 996 | * the 'head' and ensure that 'elem' points to the previous free list |
| 997 | * head. |
| 998 | */ |
| 999 | |
| 1000 | again: |
| 1001 | free_id = table->free_list; |
| 1002 | if (free_id.idx >= table->nelem) |
| 1003 | elem->lt_next_idx = LT_IDX_MAX; |
| 1004 | else |
| 1005 | elem->lt_next_idx = free_id.idx; |
| 1006 | |
| 1007 | /* store barrier */ |
| 1008 | OSMemoryBarrier(); |
| 1009 | if (OSCompareAndSwap64(free_id.id, head->lt_id.id, |
| 1010 | &table->free_list.id) == FALSE) |
| 1011 | goto again; |
| 1012 | |
| 1013 | OSAddAtomic(-nelem, &table->used_elem); |
| 1014 | return nelem; |
| 1015 | } |
| 1016 | |