| 1 | /* |
| 2 | * Copyright (c) 2010-2018 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | |
| 32 | #include <kern/kern_types.h> |
| 33 | #include <kern/ledger.h> |
| 34 | #include <kern/kalloc.h> |
| 35 | #include <kern/task.h> |
| 36 | #include <kern/thread.h> |
| 37 | |
| 38 | #include <kern/processor.h> |
| 39 | #include <kern/machine.h> |
| 40 | #include <kern/queue.h> |
| 41 | #include <kern/policy_internal.h> |
| 42 | |
| 43 | #include <sys/errno.h> |
| 44 | |
| 45 | #include <libkern/OSAtomic.h> |
| 46 | #include <mach/mach_types.h> |
| 47 | #include <os/overflow.h> |
| 48 | |
| 49 | #include <vm/pmap.h> |
| 50 | |
| 51 | /* |
| 52 | * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for |
| 53 | * ledger actions (LEDGER_ACTION_BLOCK, etc). |
| 54 | */ |
| 55 | #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */ |
| 56 | #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */ |
| 57 | #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */ |
| 58 | #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */ |
| 59 | #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */ |
| 60 | #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */ |
| 61 | #define LF_WARNED 0x2000 /* callback was called for balance warning */ |
| 62 | #define LF_TRACKING_MAX 0x4000 /* track max balance. Exclusive w.r.t refill */ |
| 63 | #define LF_PANIC_ON_NEGATIVE 0x8000 /* panic if it goes negative */ |
| 64 | #define LF_TRACK_CREDIT_ONLY 0x10000 /* only update "credit" */ |
| 65 | |
| 66 | /* Determine whether a ledger entry exists and has been initialized and active */ |
| 67 | #define ENTRY_VALID(l, e) \ |
| 68 | (((l) != NULL) && ((e) >= 0) && ((e) < (l)->l_size) && \ |
| 69 | (((l)->l_entries[e].le_flags & LF_ENTRY_ACTIVE) == LF_ENTRY_ACTIVE)) |
| 70 | |
| 71 | #define ASSERT(a) assert(a) |
| 72 | |
| 73 | #ifdef LEDGER_DEBUG |
| 74 | int ledger_debug = 0; |
| 75 | |
| 76 | #define lprintf(a) if (ledger_debug) { \ |
| 77 | printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \ |
| 78 | printf a ; \ |
| 79 | } |
| 80 | #else |
| 81 | #define lprintf(a) |
| 82 | #endif |
| 83 | |
| 84 | struct ledger_callback { |
| 85 | ledger_callback_t lc_func; |
| 86 | const void *lc_param0; |
| 87 | const void *lc_param1; |
| 88 | }; |
| 89 | |
| 90 | struct entry_template { |
| 91 | char et_key[LEDGER_NAME_MAX]; |
| 92 | char et_group[LEDGER_NAME_MAX]; |
| 93 | char et_units[LEDGER_NAME_MAX]; |
| 94 | uint32_t et_flags; |
| 95 | struct ledger_callback *et_callback; |
| 96 | }; |
| 97 | |
| 98 | lck_grp_t ledger_lck_grp; |
| 99 | |
| 100 | /* |
| 101 | * Modifying the reference count, table size, or table contents requires |
| 102 | * holding the lt_lock. Modfying the table address requires both lt_lock |
| 103 | * and setting the inuse bit. This means that the lt_entries field can be |
| 104 | * safely dereferenced if you hold either the lock or the inuse bit. The |
| 105 | * inuse bit exists solely to allow us to swap in a new, larger entries |
| 106 | * table without requiring a full lock to be acquired on each lookup. |
| 107 | * Accordingly, the inuse bit should never be held for longer than it takes |
| 108 | * to extract a value from the table - i.e., 2 or 3 memory references. |
| 109 | */ |
| 110 | struct ledger_template { |
| 111 | const char *lt_name; |
| 112 | int lt_refs; |
| 113 | int lt_cnt; |
| 114 | int lt_table_size; |
| 115 | volatile uint32_t lt_inuse; |
| 116 | lck_mtx_t lt_lock; |
| 117 | zone_t lt_zone; |
| 118 | bool lt_initialized; |
| 119 | struct entry_template *lt_entries; |
| 120 | }; |
| 121 | |
| 122 | #define template_lock(template) lck_mtx_lock(&(template)->lt_lock) |
| 123 | #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock) |
| 124 | |
| 125 | #define TEMPLATE_INUSE(s, t) { \ |
| 126 | s = splsched(); \ |
| 127 | while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \ |
| 128 | ; \ |
| 129 | } |
| 130 | |
| 131 | #define TEMPLATE_IDLE(s, t) { \ |
| 132 | (t)->lt_inuse = 0; \ |
| 133 | splx(s); \ |
| 134 | } |
| 135 | |
| 136 | static int ledger_cnt = 0; |
| 137 | /* ledger ast helper functions */ |
| 138 | static uint32_t ledger_check_needblock(ledger_t l, uint64_t now); |
| 139 | static kern_return_t ledger_perform_blocking(ledger_t l); |
| 140 | static uint32_t flag_set(volatile uint32_t *flags, uint32_t bit); |
| 141 | static uint32_t flag_clear(volatile uint32_t *flags, uint32_t bit); |
| 142 | |
| 143 | static void ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, |
| 144 | int entry, struct ledger_entry *le); |
| 145 | |
| 146 | #if 0 |
| 147 | static void |
| 148 | debug_callback(const void *p0, __unused const void *p1) |
| 149 | { |
| 150 | printf("ledger: resource exhausted [%s] for task %p\n" , |
| 151 | (const char *)p0, p1); |
| 152 | } |
| 153 | #endif |
| 154 | |
| 155 | /************************************/ |
| 156 | |
| 157 | static uint64_t |
| 158 | abstime_to_nsecs(uint64_t abstime) |
| 159 | { |
| 160 | uint64_t nsecs; |
| 161 | |
| 162 | absolutetime_to_nanoseconds(abstime, &nsecs); |
| 163 | return (nsecs); |
| 164 | } |
| 165 | |
| 166 | static uint64_t |
| 167 | nsecs_to_abstime(uint64_t nsecs) |
| 168 | { |
| 169 | uint64_t abstime; |
| 170 | |
| 171 | nanoseconds_to_absolutetime(nsecs, &abstime); |
| 172 | return (abstime); |
| 173 | } |
| 174 | |
| 175 | void |
| 176 | ledger_init(void) |
| 177 | { |
| 178 | lck_grp_init(&ledger_lck_grp, "ledger" , LCK_GRP_ATTR_NULL); |
| 179 | } |
| 180 | |
| 181 | ledger_template_t |
| 182 | ledger_template_create(const char *name) |
| 183 | { |
| 184 | ledger_template_t template; |
| 185 | |
| 186 | template = (ledger_template_t)kalloc(sizeof (*template)); |
| 187 | if (template == NULL) |
| 188 | return (NULL); |
| 189 | |
| 190 | template->lt_name = name; |
| 191 | template->lt_refs = 1; |
| 192 | template->lt_cnt = 0; |
| 193 | template->lt_table_size = 1; |
| 194 | template->lt_inuse = 0; |
| 195 | template->lt_zone = NULL; |
| 196 | lck_mtx_init(&template->lt_lock, &ledger_lck_grp, LCK_ATTR_NULL); |
| 197 | |
| 198 | template->lt_entries = (struct entry_template *) |
| 199 | kalloc(sizeof (struct entry_template) * template->lt_table_size); |
| 200 | if (template->lt_entries == NULL) { |
| 201 | kfree(template, sizeof (*template)); |
| 202 | template = NULL; |
| 203 | } |
| 204 | |
| 205 | return (template); |
| 206 | } |
| 207 | |
| 208 | void |
| 209 | ledger_template_dereference(ledger_template_t template) |
| 210 | { |
| 211 | template_lock(template); |
| 212 | template->lt_refs--; |
| 213 | template_unlock(template); |
| 214 | |
| 215 | if (template->lt_refs == 0) |
| 216 | kfree(template, sizeof (*template)); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Add a new entry to the list of entries in a ledger template. There is |
| 221 | * currently no mechanism to remove an entry. Implementing such a mechanism |
| 222 | * would require us to maintain per-entry reference counts, which we would |
| 223 | * prefer to avoid if possible. |
| 224 | */ |
| 225 | int |
| 226 | ledger_entry_add(ledger_template_t template, const char *key, |
| 227 | const char *group, const char *units) |
| 228 | { |
| 229 | int idx; |
| 230 | struct entry_template *et; |
| 231 | |
| 232 | if ((key == NULL) || (strlen(key) >= LEDGER_NAME_MAX) || (template->lt_zone != NULL)) |
| 233 | return (-1); |
| 234 | |
| 235 | template_lock(template); |
| 236 | |
| 237 | /* If the table is full, attempt to double its size */ |
| 238 | if (template->lt_cnt == template->lt_table_size) { |
| 239 | struct entry_template *new_entries, *old_entries; |
| 240 | int old_cnt, old_sz, new_sz = 0; |
| 241 | spl_t s; |
| 242 | |
| 243 | old_cnt = template->lt_table_size; |
| 244 | old_sz = old_cnt * (int)(sizeof(struct entry_template)); |
| 245 | /* double old_sz allocation, but check for overflow */ |
| 246 | if (os_mul_overflow(old_sz, 2, &new_sz)) { |
| 247 | template_unlock(template); |
| 248 | return -1; |
| 249 | } |
| 250 | new_entries = kalloc(new_sz); |
| 251 | if (new_entries == NULL) { |
| 252 | template_unlock(template); |
| 253 | return -1; |
| 254 | } |
| 255 | memcpy(new_entries, template->lt_entries, old_sz); |
| 256 | memset(((char *)new_entries) + old_sz, 0, old_sz); |
| 257 | /* assume: if the sz didn't overflow, neither will the count */ |
| 258 | template->lt_table_size = old_cnt * 2; |
| 259 | |
| 260 | old_entries = template->lt_entries; |
| 261 | |
| 262 | TEMPLATE_INUSE(s, template); |
| 263 | template->lt_entries = new_entries; |
| 264 | TEMPLATE_IDLE(s, template); |
| 265 | |
| 266 | kfree(old_entries, old_sz); |
| 267 | } |
| 268 | |
| 269 | et = &template->lt_entries[template->lt_cnt]; |
| 270 | strlcpy(et->et_key, key, LEDGER_NAME_MAX); |
| 271 | strlcpy(et->et_group, group, LEDGER_NAME_MAX); |
| 272 | strlcpy(et->et_units, units, LEDGER_NAME_MAX); |
| 273 | et->et_flags = LF_ENTRY_ACTIVE; |
| 274 | et->et_callback = NULL; |
| 275 | |
| 276 | idx = template->lt_cnt++; |
| 277 | template_unlock(template); |
| 278 | |
| 279 | return (idx); |
| 280 | } |
| 281 | |
| 282 | |
| 283 | kern_return_t |
| 284 | ledger_entry_setactive(ledger_t ledger, int entry) |
| 285 | { |
| 286 | struct ledger_entry *le; |
| 287 | |
| 288 | if ((ledger == NULL) || (entry < 0) || (entry >= ledger->l_size)) |
| 289 | return (KERN_INVALID_ARGUMENT); |
| 290 | |
| 291 | le = &ledger->l_entries[entry]; |
| 292 | if ((le->le_flags & LF_ENTRY_ACTIVE) == 0) { |
| 293 | flag_set(&le->le_flags, LF_ENTRY_ACTIVE); |
| 294 | } |
| 295 | return (KERN_SUCCESS); |
| 296 | } |
| 297 | |
| 298 | |
| 299 | int |
| 300 | ledger_key_lookup(ledger_template_t template, const char *key) |
| 301 | { |
| 302 | int idx; |
| 303 | |
| 304 | template_lock(template); |
| 305 | for (idx = 0; idx < template->lt_cnt; idx++) |
| 306 | if (template->lt_entries != NULL && |
| 307 | (strcmp(key, template->lt_entries[idx].et_key) == 0)) |
| 308 | break; |
| 309 | |
| 310 | if (idx >= template->lt_cnt) |
| 311 | idx = -1; |
| 312 | template_unlock(template); |
| 313 | |
| 314 | return (idx); |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Complete the initialization of ledger template |
| 319 | * by initializing ledger zone. After initializing |
| 320 | * the ledger zone, adding an entry in the ledger |
| 321 | * template would fail. |
| 322 | */ |
| 323 | void |
| 324 | ledger_template_complete(ledger_template_t template) |
| 325 | { |
| 326 | size_t ledger_size; |
| 327 | ledger_size = sizeof(struct ledger) + (template->lt_cnt * sizeof(struct ledger_entry)); |
| 328 | template->lt_zone = zinit(ledger_size, CONFIG_TASK_MAX * ledger_size, |
| 329 | ledger_size, |
| 330 | template->lt_name); |
| 331 | template->lt_initialized = true; |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * Like ledger_template_complete, except we'll ask |
| 336 | * the pmap layer to manage allocations for us. |
| 337 | * Meant for ledgers that should be owned by the |
| 338 | * pmap layer. |
| 339 | */ |
| 340 | void |
| 341 | ledger_template_complete_secure_alloc(ledger_template_t template) |
| 342 | { |
| 343 | size_t ledger_size; |
| 344 | ledger_size = sizeof(struct ledger) + (template->lt_cnt * sizeof(struct ledger_entry)); |
| 345 | pmap_ledger_alloc_init(ledger_size); |
| 346 | template->lt_initialized = true; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Create a new ledger based on the specified template. As part of the |
| 351 | * ledger creation we need to allocate space for a table of ledger entries. |
| 352 | * The size of the table is based on the size of the template at the time |
| 353 | * the ledger is created. If additional entries are added to the template |
| 354 | * after the ledger is created, they will not be tracked in this ledger. |
| 355 | */ |
| 356 | ledger_t |
| 357 | ledger_instantiate(ledger_template_t template, int entry_type) |
| 358 | { |
| 359 | ledger_t ledger; |
| 360 | size_t cnt; |
| 361 | int i; |
| 362 | |
| 363 | template_lock(template); |
| 364 | template->lt_refs++; |
| 365 | cnt = template->lt_cnt; |
| 366 | template_unlock(template); |
| 367 | |
| 368 | if (template->lt_zone) { |
| 369 | ledger = (ledger_t)zalloc(template->lt_zone); |
| 370 | } else { |
| 371 | ledger = pmap_ledger_alloc(); |
| 372 | } |
| 373 | |
| 374 | if (ledger == NULL) { |
| 375 | ledger_template_dereference(template); |
| 376 | return LEDGER_NULL; |
| 377 | } |
| 378 | |
| 379 | ledger->l_template = template; |
| 380 | ledger->l_id = ledger_cnt++; |
| 381 | ledger->l_refs = 1; |
| 382 | ledger->l_size = (int32_t)cnt; |
| 383 | |
| 384 | template_lock(template); |
| 385 | assert(ledger->l_size <= template->lt_cnt); |
| 386 | for (i = 0; i < ledger->l_size; i++) { |
| 387 | struct ledger_entry *le = &ledger->l_entries[i]; |
| 388 | struct entry_template *et = &template->lt_entries[i]; |
| 389 | |
| 390 | le->le_flags = et->et_flags; |
| 391 | /* make entry inactive by removing active bit */ |
| 392 | if (entry_type == LEDGER_CREATE_INACTIVE_ENTRIES) |
| 393 | flag_clear(&le->le_flags, LF_ENTRY_ACTIVE); |
| 394 | /* |
| 395 | * If template has a callback, this entry is opted-in, |
| 396 | * by default. |
| 397 | */ |
| 398 | if (et->et_callback != NULL) |
| 399 | flag_set(&le->le_flags, LEDGER_ACTION_CALLBACK); |
| 400 | le->le_credit = 0; |
| 401 | le->le_debit = 0; |
| 402 | le->le_limit = LEDGER_LIMIT_INFINITY; |
| 403 | le->le_warn_level = LEDGER_LIMIT_INFINITY; |
| 404 | le->_le.le_refill.le_refill_period = 0; |
| 405 | le->_le.le_refill.le_last_refill = 0; |
| 406 | } |
| 407 | template_unlock(template); |
| 408 | |
| 409 | return (ledger); |
| 410 | } |
| 411 | |
| 412 | static uint32_t |
| 413 | flag_set(volatile uint32_t *flags, uint32_t bit) |
| 414 | { |
| 415 | return (OSBitOrAtomic(bit, flags)); |
| 416 | } |
| 417 | |
| 418 | static uint32_t |
| 419 | flag_clear(volatile uint32_t *flags, uint32_t bit) |
| 420 | { |
| 421 | return (OSBitAndAtomic(~bit, flags)); |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * Take a reference on a ledger |
| 426 | */ |
| 427 | kern_return_t |
| 428 | ledger_reference(ledger_t ledger) |
| 429 | { |
| 430 | if (!LEDGER_VALID(ledger)) |
| 431 | return (KERN_INVALID_ARGUMENT); |
| 432 | OSIncrementAtomic(&ledger->l_refs); |
| 433 | return (KERN_SUCCESS); |
| 434 | } |
| 435 | |
| 436 | int |
| 437 | ledger_reference_count(ledger_t ledger) |
| 438 | { |
| 439 | if (!LEDGER_VALID(ledger)) |
| 440 | return (-1); |
| 441 | |
| 442 | return (ledger->l_refs); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Remove a reference on a ledger. If this is the last reference, |
| 447 | * deallocate the unused ledger. |
| 448 | */ |
| 449 | kern_return_t |
| 450 | ledger_dereference(ledger_t ledger) |
| 451 | { |
| 452 | int v; |
| 453 | |
| 454 | if (!LEDGER_VALID(ledger)) |
| 455 | return (KERN_INVALID_ARGUMENT); |
| 456 | |
| 457 | v = OSDecrementAtomic(&ledger->l_refs); |
| 458 | ASSERT(v >= 1); |
| 459 | |
| 460 | /* Just released the last reference. Free it. */ |
| 461 | if (v == 1) { |
| 462 | if (ledger->l_template->lt_zone) { |
| 463 | zfree(ledger->l_template->lt_zone, ledger); |
| 464 | } else { |
| 465 | pmap_ledger_free(ledger); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | return (KERN_SUCCESS); |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Determine whether an entry has exceeded its warning level. |
| 474 | */ |
| 475 | static inline int |
| 476 | warn_level_exceeded(struct ledger_entry *le) |
| 477 | { |
| 478 | ledger_amount_t balance; |
| 479 | |
| 480 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 481 | assert(le->le_debit == 0); |
| 482 | } else { |
| 483 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * XXX - Currently, we only support warnings for ledgers which |
| 488 | * use positive limits. |
| 489 | */ |
| 490 | balance = le->le_credit - le->le_debit; |
| 491 | if ((le->le_warn_level != LEDGER_LIMIT_INFINITY) && (balance > le->le_warn_level)) |
| 492 | return (1); |
| 493 | return (0); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Determine whether an entry has exceeded its limit. |
| 498 | */ |
| 499 | static inline int |
| 500 | limit_exceeded(struct ledger_entry *le) |
| 501 | { |
| 502 | ledger_amount_t balance; |
| 503 | |
| 504 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 505 | assert(le->le_debit == 0); |
| 506 | } else { |
| 507 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 508 | } |
| 509 | |
| 510 | balance = le->le_credit - le->le_debit; |
| 511 | if ((le->le_limit <= 0) && (balance < le->le_limit)) |
| 512 | return (1); |
| 513 | |
| 514 | if ((le->le_limit > 0) && (balance > le->le_limit)) |
| 515 | return (1); |
| 516 | return (0); |
| 517 | } |
| 518 | |
| 519 | static inline struct ledger_callback * |
| 520 | entry_get_callback(ledger_t ledger, int entry) |
| 521 | { |
| 522 | struct ledger_callback *callback; |
| 523 | spl_t s; |
| 524 | |
| 525 | TEMPLATE_INUSE(s, ledger->l_template); |
| 526 | callback = ledger->l_template->lt_entries[entry].et_callback; |
| 527 | TEMPLATE_IDLE(s, ledger->l_template); |
| 528 | |
| 529 | return (callback); |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * If the ledger value is positive, wake up anybody waiting on it. |
| 534 | */ |
| 535 | static inline void |
| 536 | ledger_limit_entry_wakeup(struct ledger_entry *le) |
| 537 | { |
| 538 | uint32_t flags; |
| 539 | |
| 540 | if (!limit_exceeded(le)) { |
| 541 | flags = flag_clear(&le->le_flags, LF_CALLED_BACK); |
| 542 | |
| 543 | while (le->le_flags & LF_WAKE_NEEDED) { |
| 544 | flag_clear(&le->le_flags, LF_WAKE_NEEDED); |
| 545 | thread_wakeup((event_t)le); |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Refill the coffers. |
| 552 | */ |
| 553 | static void |
| 554 | ledger_refill(uint64_t now, ledger_t ledger, int entry) |
| 555 | { |
| 556 | uint64_t elapsed, period, periods; |
| 557 | struct ledger_entry *le; |
| 558 | ledger_amount_t balance, due; |
| 559 | |
| 560 | assert(entry >= 0 && entry < ledger->l_size); |
| 561 | |
| 562 | le = &ledger->l_entries[entry]; |
| 563 | |
| 564 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
| 565 | |
| 566 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 567 | assert(le->le_debit == 0); |
| 568 | return; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * If another thread is handling the refill already, we're not |
| 573 | * needed. |
| 574 | */ |
| 575 | if (flag_set(&le->le_flags, LF_REFILL_INPROGRESS) & LF_REFILL_INPROGRESS) { |
| 576 | return; |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * If the timestamp we're about to use to refill is older than the |
| 581 | * last refill, then someone else has already refilled this ledger |
| 582 | * and there's nothing for us to do here. |
| 583 | */ |
| 584 | if (now <= le->_le.le_refill.le_last_refill) { |
| 585 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
| 586 | return; |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * See how many refill periods have passed since we last |
| 591 | * did a refill. |
| 592 | */ |
| 593 | period = le->_le.le_refill.le_refill_period; |
| 594 | elapsed = now - le->_le.le_refill.le_last_refill; |
| 595 | if ((period == 0) || (elapsed < period)) { |
| 596 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
| 597 | return; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Optimize for the most common case of only one or two |
| 602 | * periods elapsing. |
| 603 | */ |
| 604 | periods = 0; |
| 605 | while ((periods < 2) && (elapsed > 0)) { |
| 606 | periods++; |
| 607 | elapsed -= period; |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * OK, it's been a long time. Do a divide to figure out |
| 612 | * how long. |
| 613 | */ |
| 614 | if (elapsed > 0) |
| 615 | periods = (now - le->_le.le_refill.le_last_refill) / period; |
| 616 | |
| 617 | balance = le->le_credit - le->le_debit; |
| 618 | due = periods * le->le_limit; |
| 619 | |
| 620 | if (balance - due < 0) |
| 621 | due = balance; |
| 622 | |
| 623 | assertf(due >= 0,"now=%llu, ledger=%p, entry=%d, balance=%lld, due=%lld" , now, ledger, entry, balance, due); |
| 624 | |
| 625 | OSAddAtomic64(due, &le->le_debit); |
| 626 | |
| 627 | assert(le->le_debit >= 0); |
| 628 | |
| 629 | /* |
| 630 | * If we've completely refilled the pool, set the refill time to now. |
| 631 | * Otherwise set it to the time at which it last should have been |
| 632 | * fully refilled. |
| 633 | */ |
| 634 | if (balance == due) |
| 635 | le->_le.le_refill.le_last_refill = now; |
| 636 | else |
| 637 | le->_le.le_refill.le_last_refill += (le->_le.le_refill.le_refill_period * periods); |
| 638 | |
| 639 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
| 640 | |
| 641 | lprintf(("Refill %lld %lld->%lld\n" , periods, balance, balance - due)); |
| 642 | if (!limit_exceeded(le)) |
| 643 | ledger_limit_entry_wakeup(le); |
| 644 | } |
| 645 | |
| 646 | void |
| 647 | ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, |
| 648 | int entry, struct ledger_entry *le) |
| 649 | { |
| 650 | if (le->le_flags & LF_TRACKING_MAX) { |
| 651 | ledger_amount_t balance = le->le_credit - le->le_debit; |
| 652 | |
| 653 | if (balance > le->_le._le_max.le_lifetime_max){ |
| 654 | le->_le._le_max.le_lifetime_max = balance; |
| 655 | } |
| 656 | |
| 657 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 658 | if (balance > le->_le._le_max.le_interval_max) { |
| 659 | le->_le._le_max.le_interval_max = balance; |
| 660 | } |
| 661 | #endif /* LEDGER_CONFIG_INTERVAL_MAX */ |
| 662 | } |
| 663 | |
| 664 | /* Check to see whether we're due a refill */ |
| 665 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 666 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 667 | |
| 668 | uint64_t now = mach_absolute_time(); |
| 669 | if ((now - le->_le.le_refill.le_last_refill) > le->_le.le_refill.le_refill_period) |
| 670 | ledger_refill(now, ledger, entry); |
| 671 | } |
| 672 | |
| 673 | if (limit_exceeded(le)) { |
| 674 | /* |
| 675 | * We've exceeded the limit for this entry. There |
| 676 | * are several possible ways to handle it. We can block, |
| 677 | * we can execute a callback, or we can ignore it. In |
| 678 | * either of the first two cases, we want to set the AST |
| 679 | * flag so we can take the appropriate action just before |
| 680 | * leaving the kernel. The one caveat is that if we have |
| 681 | * already called the callback, we don't want to do it |
| 682 | * again until it gets rearmed. |
| 683 | */ |
| 684 | if ((le->le_flags & LEDGER_ACTION_BLOCK) || |
| 685 | (!(le->le_flags & LF_CALLED_BACK) && |
| 686 | entry_get_callback(ledger, entry))) { |
| 687 | act_set_astledger_async(thread); |
| 688 | } |
| 689 | } else { |
| 690 | /* |
| 691 | * The balance on the account is below the limit. |
| 692 | * |
| 693 | * If there are any threads blocked on this entry, now would |
| 694 | * be a good time to wake them up. |
| 695 | */ |
| 696 | if (le->le_flags & LF_WAKE_NEEDED) |
| 697 | ledger_limit_entry_wakeup(le); |
| 698 | |
| 699 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 700 | /* |
| 701 | * Client has requested that a callback be invoked whenever |
| 702 | * the ledger's balance crosses into or out of the warning |
| 703 | * level. |
| 704 | */ |
| 705 | if (warn_level_exceeded(le)) { |
| 706 | /* |
| 707 | * This ledger's balance is above the warning level. |
| 708 | */ |
| 709 | if ((le->le_flags & LF_WARNED) == 0) { |
| 710 | /* |
| 711 | * If we are above the warning level and |
| 712 | * have not yet invoked the callback, |
| 713 | * set the AST so it can be done before returning |
| 714 | * to userland. |
| 715 | */ |
| 716 | act_set_astledger_async(thread); |
| 717 | } |
| 718 | } else { |
| 719 | /* |
| 720 | * This ledger's balance is below the warning level. |
| 721 | */ |
| 722 | if (le->le_flags & LF_WARNED) { |
| 723 | /* |
| 724 | * If we are below the warning level and |
| 725 | * the LF_WARNED flag is still set, we need |
| 726 | * to invoke the callback to let the client |
| 727 | * know the ledger balance is now back below |
| 728 | * the warning level. |
| 729 | */ |
| 730 | act_set_astledger_async(thread); |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | if ((le->le_flags & LF_PANIC_ON_NEGATIVE) && |
| 737 | (le->le_credit < le->le_debit)) { |
| 738 | panic("ledger_entry_check_new_balance(%p,%d): negative ledger %p credit:%lld debit:%lld balance:%lld\n" , |
| 739 | ledger, entry, le, |
| 740 | le->le_credit, |
| 741 | le->le_debit, |
| 742 | le->le_credit - le->le_debit); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | void |
| 747 | ledger_check_new_balance(thread_t thread, ledger_t ledger, int entry) |
| 748 | { |
| 749 | struct ledger_entry *le; |
| 750 | assert(entry > 0 && entry <= ledger->l_size); |
| 751 | le = &ledger->l_entries[entry]; |
| 752 | ledger_entry_check_new_balance(thread, ledger, entry, le); |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * Add value to an entry in a ledger for a specific thread. |
| 757 | */ |
| 758 | kern_return_t |
| 759 | ledger_credit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) |
| 760 | { |
| 761 | ledger_amount_t old, new; |
| 762 | struct ledger_entry *le; |
| 763 | |
| 764 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) |
| 765 | return (KERN_INVALID_VALUE); |
| 766 | |
| 767 | if (amount == 0) |
| 768 | return (KERN_SUCCESS); |
| 769 | |
| 770 | le = &ledger->l_entries[entry]; |
| 771 | |
| 772 | old = OSAddAtomic64(amount, &le->le_credit); |
| 773 | new = old + amount; |
| 774 | lprintf(("%p Credit %lld->%lld\n" , thread, old, new)); |
| 775 | |
| 776 | if (thread) { |
| 777 | ledger_entry_check_new_balance(thread, ledger, entry, le); |
| 778 | } |
| 779 | |
| 780 | return (KERN_SUCCESS); |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * Add value to an entry in a ledger. |
| 785 | */ |
| 786 | kern_return_t |
| 787 | ledger_credit(ledger_t ledger, int entry, ledger_amount_t amount) |
| 788 | { |
| 789 | return ledger_credit_thread(current_thread(), ledger, entry, amount); |
| 790 | } |
| 791 | |
| 792 | /* |
| 793 | * Add value to an entry in a ledger; do not check balance after update. |
| 794 | */ |
| 795 | kern_return_t |
| 796 | ledger_credit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) |
| 797 | { |
| 798 | return ledger_credit_thread(NULL, ledger, entry, amount); |
| 799 | } |
| 800 | |
| 801 | /* Add all of one ledger's values into another. |
| 802 | * They must have been created from the same template. |
| 803 | * This is not done atomically. Another thread (if not otherwise synchronized) |
| 804 | * may see bogus values when comparing one entry to another. |
| 805 | * As each entry's credit & debit are modified one at a time, the warning/limit |
| 806 | * may spuriously trip, or spuriously fail to trip, or another thread (if not |
| 807 | * otherwise synchronized) may see a bogus balance. |
| 808 | */ |
| 809 | kern_return_t |
| 810 | ledger_rollup(ledger_t to_ledger, ledger_t from_ledger) |
| 811 | { |
| 812 | int i; |
| 813 | |
| 814 | assert(to_ledger->l_template == from_ledger->l_template); |
| 815 | |
| 816 | for (i = 0; i < to_ledger->l_size; i++) { |
| 817 | ledger_rollup_entry(to_ledger, from_ledger, i); |
| 818 | } |
| 819 | |
| 820 | return (KERN_SUCCESS); |
| 821 | } |
| 822 | |
| 823 | /* Add one ledger entry value to another. |
| 824 | * They must have been created from the same template. |
| 825 | * Since the credit and debit values are added one |
| 826 | * at a time, other thread might read the a bogus value. |
| 827 | */ |
| 828 | kern_return_t |
| 829 | ledger_rollup_entry(ledger_t to_ledger, ledger_t from_ledger, int entry) |
| 830 | { |
| 831 | struct ledger_entry *from_le, *to_le; |
| 832 | |
| 833 | assert(to_ledger->l_template == from_ledger->l_template); |
| 834 | if (ENTRY_VALID(from_ledger, entry) && ENTRY_VALID(to_ledger, entry)) { |
| 835 | from_le = &from_ledger->l_entries[entry]; |
| 836 | to_le = &to_ledger->l_entries[entry]; |
| 837 | OSAddAtomic64(from_le->le_credit, &to_le->le_credit); |
| 838 | OSAddAtomic64(from_le->le_debit, &to_le->le_debit); |
| 839 | } |
| 840 | |
| 841 | return (KERN_SUCCESS); |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller. |
| 846 | * Note that some clients of ledgers (notably, task wakeup statistics) require that |
| 847 | * le_credit only ever increase as a function of ledger_credit(). |
| 848 | */ |
| 849 | kern_return_t |
| 850 | ledger_zero_balance(ledger_t ledger, int entry) |
| 851 | { |
| 852 | struct ledger_entry *le; |
| 853 | ledger_amount_t debit, credit; |
| 854 | |
| 855 | if (!ENTRY_VALID(ledger, entry)) |
| 856 | return (KERN_INVALID_VALUE); |
| 857 | |
| 858 | le = &ledger->l_entries[entry]; |
| 859 | |
| 860 | top: |
| 861 | debit = le->le_debit; |
| 862 | credit = le->le_credit; |
| 863 | |
| 864 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 865 | assert(le->le_debit == 0); |
| 866 | if (!OSCompareAndSwap64(credit, 0, &le->le_credit)) { |
| 867 | goto top; |
| 868 | } |
| 869 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_credit, 0)); |
| 870 | } else if (credit > debit) { |
| 871 | if (!OSCompareAndSwap64(debit, credit, &le->le_debit)) |
| 872 | goto top; |
| 873 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_debit, le->le_credit)); |
| 874 | } else if (credit < debit) { |
| 875 | if (!OSCompareAndSwap64(credit, debit, &le->le_credit)) |
| 876 | goto top; |
| 877 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_credit, le->le_debit)); |
| 878 | } |
| 879 | |
| 880 | return (KERN_SUCCESS); |
| 881 | } |
| 882 | |
| 883 | kern_return_t |
| 884 | ledger_get_limit(ledger_t ledger, int entry, ledger_amount_t *limit) |
| 885 | { |
| 886 | struct ledger_entry *le; |
| 887 | |
| 888 | if (!ENTRY_VALID(ledger, entry)) |
| 889 | return (KERN_INVALID_VALUE); |
| 890 | |
| 891 | le = &ledger->l_entries[entry]; |
| 892 | *limit = le->le_limit; |
| 893 | |
| 894 | lprintf(("ledger_get_limit: %lld\n" , *limit)); |
| 895 | |
| 896 | return (KERN_SUCCESS); |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * Adjust the limit of a limited resource. This does not affect the |
| 901 | * current balance, so the change doesn't affect the thread until the |
| 902 | * next refill. |
| 903 | * |
| 904 | * warn_level: If non-zero, causes the callback to be invoked when |
| 905 | * the balance exceeds this level. Specified as a percentage [of the limit]. |
| 906 | */ |
| 907 | kern_return_t |
| 908 | ledger_set_limit(ledger_t ledger, int entry, ledger_amount_t limit, |
| 909 | uint8_t warn_level_percentage) |
| 910 | { |
| 911 | struct ledger_entry *le; |
| 912 | |
| 913 | if (!ENTRY_VALID(ledger, entry)) |
| 914 | return (KERN_INVALID_VALUE); |
| 915 | |
| 916 | lprintf(("ledger_set_limit: %lld\n" , limit)); |
| 917 | le = &ledger->l_entries[entry]; |
| 918 | |
| 919 | if (limit == LEDGER_LIMIT_INFINITY) { |
| 920 | /* |
| 921 | * Caller wishes to disable the limit. This will implicitly |
| 922 | * disable automatic refill, as refills implicitly depend |
| 923 | * on the limit. |
| 924 | */ |
| 925 | ledger_disable_refill(ledger, entry); |
| 926 | } |
| 927 | |
| 928 | le->le_limit = limit; |
| 929 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 930 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 931 | le->_le.le_refill.le_last_refill = 0; |
| 932 | } |
| 933 | flag_clear(&le->le_flags, LF_CALLED_BACK); |
| 934 | flag_clear(&le->le_flags, LF_WARNED); |
| 935 | ledger_limit_entry_wakeup(le); |
| 936 | |
| 937 | if (warn_level_percentage != 0) { |
| 938 | assert(warn_level_percentage <= 100); |
| 939 | assert(limit > 0); /* no negative limit support for warnings */ |
| 940 | assert(limit != LEDGER_LIMIT_INFINITY); /* warn % without limit makes no sense */ |
| 941 | le->le_warn_level = (le->le_limit * warn_level_percentage) / 100; |
| 942 | } else { |
| 943 | le->le_warn_level = LEDGER_LIMIT_INFINITY; |
| 944 | } |
| 945 | |
| 946 | return (KERN_SUCCESS); |
| 947 | } |
| 948 | |
| 949 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 950 | kern_return_t |
| 951 | ledger_get_interval_max(ledger_t ledger, int entry, |
| 952 | ledger_amount_t *max_interval_balance, int reset) |
| 953 | { |
| 954 | struct ledger_entry *le; |
| 955 | le = &ledger->l_entries[entry]; |
| 956 | |
| 957 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { |
| 958 | return (KERN_INVALID_VALUE); |
| 959 | } |
| 960 | |
| 961 | *max_interval_balance = le->_le._le_max.le_interval_max; |
| 962 | lprintf(("ledger_get_interval_max: %lld%s\n" , *max_interval_balance, |
| 963 | (reset) ? " --> 0" : "" )); |
| 964 | |
| 965 | if (reset) { |
| 966 | le->_le._le_max.le_interval_max = 0; |
| 967 | } |
| 968 | |
| 969 | return (KERN_SUCCESS); |
| 970 | } |
| 971 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 972 | |
| 973 | kern_return_t |
| 974 | ledger_get_lifetime_max(ledger_t ledger, int entry, |
| 975 | ledger_amount_t *max_lifetime_balance) |
| 976 | { |
| 977 | struct ledger_entry *le; |
| 978 | le = &ledger->l_entries[entry]; |
| 979 | |
| 980 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { |
| 981 | return (KERN_INVALID_VALUE); |
| 982 | } |
| 983 | |
| 984 | *max_lifetime_balance = le->_le._le_max.le_lifetime_max; |
| 985 | lprintf(("ledger_get_lifetime_max: %lld\n" , *max_lifetime_balance)); |
| 986 | |
| 987 | return (KERN_SUCCESS); |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * Enable tracking of periodic maximums for this ledger entry. |
| 992 | */ |
| 993 | kern_return_t |
| 994 | ledger_track_maximum(ledger_template_t template, int entry, |
| 995 | __unused int period_in_secs) |
| 996 | { |
| 997 | template_lock(template); |
| 998 | |
| 999 | if ((entry < 0) || (entry >= template->lt_cnt)) { |
| 1000 | template_unlock(template); |
| 1001 | return (KERN_INVALID_VALUE); |
| 1002 | } |
| 1003 | |
| 1004 | /* Refill is incompatible with max tracking. */ |
| 1005 | if (template->lt_entries[entry].et_flags & LF_REFILL_SCHEDULED) { |
| 1006 | return (KERN_INVALID_VALUE); |
| 1007 | } |
| 1008 | |
| 1009 | template->lt_entries[entry].et_flags |= LF_TRACKING_MAX; |
| 1010 | template_unlock(template); |
| 1011 | |
| 1012 | return (KERN_SUCCESS); |
| 1013 | } |
| 1014 | |
| 1015 | kern_return_t |
| 1016 | ledger_panic_on_negative(ledger_template_t template, int entry) |
| 1017 | { |
| 1018 | template_lock(template); |
| 1019 | |
| 1020 | if ((entry < 0) || (entry >= template->lt_cnt)) { |
| 1021 | template_unlock(template); |
| 1022 | return (KERN_INVALID_VALUE); |
| 1023 | } |
| 1024 | |
| 1025 | template->lt_entries[entry].et_flags |= LF_PANIC_ON_NEGATIVE; |
| 1026 | |
| 1027 | template_unlock(template); |
| 1028 | |
| 1029 | return (KERN_SUCCESS); |
| 1030 | } |
| 1031 | |
| 1032 | kern_return_t |
| 1033 | ledger_track_credit_only(ledger_template_t template, int entry) |
| 1034 | { |
| 1035 | template_lock(template); |
| 1036 | |
| 1037 | if ((entry < 0) || (entry >= template->lt_cnt)) { |
| 1038 | template_unlock(template); |
| 1039 | return (KERN_INVALID_VALUE); |
| 1040 | } |
| 1041 | |
| 1042 | template->lt_entries[entry].et_flags |= LF_TRACK_CREDIT_ONLY; |
| 1043 | |
| 1044 | template_unlock(template); |
| 1045 | |
| 1046 | return (KERN_SUCCESS); |
| 1047 | } |
| 1048 | |
| 1049 | /* |
| 1050 | * Add a callback to be executed when the resource goes into deficit. |
| 1051 | */ |
| 1052 | kern_return_t |
| 1053 | ledger_set_callback(ledger_template_t template, int entry, |
| 1054 | ledger_callback_t func, const void *param0, const void *param1) |
| 1055 | { |
| 1056 | struct entry_template *et; |
| 1057 | struct ledger_callback *old_cb, *new_cb; |
| 1058 | |
| 1059 | if ((entry < 0) || (entry >= template->lt_cnt)) |
| 1060 | return (KERN_INVALID_VALUE); |
| 1061 | |
| 1062 | if (func) { |
| 1063 | new_cb = (struct ledger_callback *)kalloc(sizeof (*new_cb)); |
| 1064 | new_cb->lc_func = func; |
| 1065 | new_cb->lc_param0 = param0; |
| 1066 | new_cb->lc_param1 = param1; |
| 1067 | } else { |
| 1068 | new_cb = NULL; |
| 1069 | } |
| 1070 | |
| 1071 | template_lock(template); |
| 1072 | et = &template->lt_entries[entry]; |
| 1073 | old_cb = et->et_callback; |
| 1074 | et->et_callback = new_cb; |
| 1075 | template_unlock(template); |
| 1076 | if (old_cb) |
| 1077 | kfree(old_cb, sizeof (*old_cb)); |
| 1078 | |
| 1079 | return (KERN_SUCCESS); |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * Disable callback notification for a specific ledger entry. |
| 1084 | * |
| 1085 | * Otherwise, if using a ledger template which specified a |
| 1086 | * callback function (ledger_set_callback()), it will be invoked when |
| 1087 | * the resource goes into deficit. |
| 1088 | */ |
| 1089 | kern_return_t |
| 1090 | ledger_disable_callback(ledger_t ledger, int entry) |
| 1091 | { |
| 1092 | if (!ENTRY_VALID(ledger, entry)) |
| 1093 | return (KERN_INVALID_VALUE); |
| 1094 | |
| 1095 | /* |
| 1096 | * le_warn_level is used to indicate *if* this ledger has a warning configured, |
| 1097 | * in addition to what that warning level is set to. |
| 1098 | * This means a side-effect of ledger_disable_callback() is that the |
| 1099 | * warning level is forgotten. |
| 1100 | */ |
| 1101 | ledger->l_entries[entry].le_warn_level = LEDGER_LIMIT_INFINITY; |
| 1102 | flag_clear(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); |
| 1103 | return (KERN_SUCCESS); |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * Enable callback notification for a specific ledger entry. |
| 1108 | * |
| 1109 | * This is only needed if ledger_disable_callback() has previously |
| 1110 | * been invoked against an entry; there must already be a callback |
| 1111 | * configured. |
| 1112 | */ |
| 1113 | kern_return_t |
| 1114 | ledger_enable_callback(ledger_t ledger, int entry) |
| 1115 | { |
| 1116 | if (!ENTRY_VALID(ledger, entry)) |
| 1117 | return (KERN_INVALID_VALUE); |
| 1118 | |
| 1119 | assert(entry_get_callback(ledger, entry) != NULL); |
| 1120 | |
| 1121 | flag_set(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); |
| 1122 | return (KERN_SUCCESS); |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Query the automatic refill period for this ledger entry. |
| 1127 | * |
| 1128 | * A period of 0 means this entry has none configured. |
| 1129 | */ |
| 1130 | kern_return_t |
| 1131 | ledger_get_period(ledger_t ledger, int entry, uint64_t *period) |
| 1132 | { |
| 1133 | struct ledger_entry *le; |
| 1134 | |
| 1135 | if (!ENTRY_VALID(ledger, entry)) |
| 1136 | return (KERN_INVALID_VALUE); |
| 1137 | |
| 1138 | le = &ledger->l_entries[entry]; |
| 1139 | *period = abstime_to_nsecs(le->_le.le_refill.le_refill_period); |
| 1140 | lprintf(("ledger_get_period: %llx\n" , *period)); |
| 1141 | return (KERN_SUCCESS); |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * Adjust the automatic refill period. |
| 1146 | */ |
| 1147 | kern_return_t |
| 1148 | ledger_set_period(ledger_t ledger, int entry, uint64_t period) |
| 1149 | { |
| 1150 | struct ledger_entry *le; |
| 1151 | |
| 1152 | lprintf(("ledger_set_period: %llx\n" , period)); |
| 1153 | if (!ENTRY_VALID(ledger, entry)) |
| 1154 | return (KERN_INVALID_VALUE); |
| 1155 | |
| 1156 | le = &ledger->l_entries[entry]; |
| 1157 | |
| 1158 | /* |
| 1159 | * A refill period refills the ledger in multiples of the limit, |
| 1160 | * so if you haven't set one yet, you need a lesson on ledgers. |
| 1161 | */ |
| 1162 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
| 1163 | |
| 1164 | if (le->le_flags & LF_TRACKING_MAX) { |
| 1165 | /* |
| 1166 | * Refill is incompatible with rolling max tracking. |
| 1167 | */ |
| 1168 | return (KERN_INVALID_VALUE); |
| 1169 | } |
| 1170 | |
| 1171 | le->_le.le_refill.le_refill_period = nsecs_to_abstime(period); |
| 1172 | |
| 1173 | /* |
| 1174 | * Set the 'starting time' for the next refill to now. Since |
| 1175 | * we're resetting the balance to zero here, we consider this |
| 1176 | * moment the starting time for accumulating a balance that |
| 1177 | * counts towards the limit. |
| 1178 | */ |
| 1179 | le->_le.le_refill.le_last_refill = mach_absolute_time(); |
| 1180 | ledger_zero_balance(ledger, entry); |
| 1181 | |
| 1182 | flag_set(&le->le_flags, LF_REFILL_SCHEDULED); |
| 1183 | |
| 1184 | return (KERN_SUCCESS); |
| 1185 | } |
| 1186 | |
| 1187 | /* |
| 1188 | * Disable automatic refill. |
| 1189 | */ |
| 1190 | kern_return_t |
| 1191 | ledger_disable_refill(ledger_t ledger, int entry) |
| 1192 | { |
| 1193 | struct ledger_entry *le; |
| 1194 | |
| 1195 | if (!ENTRY_VALID(ledger, entry)) |
| 1196 | return (KERN_INVALID_VALUE); |
| 1197 | |
| 1198 | le = &ledger->l_entries[entry]; |
| 1199 | |
| 1200 | flag_clear(&le->le_flags, LF_REFILL_SCHEDULED); |
| 1201 | |
| 1202 | return (KERN_SUCCESS); |
| 1203 | } |
| 1204 | |
| 1205 | kern_return_t |
| 1206 | ledger_get_actions(ledger_t ledger, int entry, int *actions) |
| 1207 | { |
| 1208 | if (!ENTRY_VALID(ledger, entry)) |
| 1209 | return (KERN_INVALID_VALUE); |
| 1210 | |
| 1211 | *actions = ledger->l_entries[entry].le_flags & LEDGER_ACTION_MASK; |
| 1212 | lprintf(("ledger_get_actions: %#x\n" , *actions)); |
| 1213 | return (KERN_SUCCESS); |
| 1214 | } |
| 1215 | |
| 1216 | kern_return_t |
| 1217 | ledger_set_action(ledger_t ledger, int entry, int action) |
| 1218 | { |
| 1219 | lprintf(("ledger_set_action: %#x\n" , action)); |
| 1220 | if (!ENTRY_VALID(ledger, entry)) |
| 1221 | return (KERN_INVALID_VALUE); |
| 1222 | |
| 1223 | flag_set(&ledger->l_entries[entry].le_flags, action); |
| 1224 | return (KERN_SUCCESS); |
| 1225 | } |
| 1226 | |
| 1227 | kern_return_t |
| 1228 | ledger_debit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) |
| 1229 | { |
| 1230 | struct ledger_entry *le; |
| 1231 | ledger_amount_t old, new; |
| 1232 | |
| 1233 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) |
| 1234 | return (KERN_INVALID_ARGUMENT); |
| 1235 | |
| 1236 | if (amount == 0) |
| 1237 | return (KERN_SUCCESS); |
| 1238 | |
| 1239 | le = &ledger->l_entries[entry]; |
| 1240 | |
| 1241 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 1242 | assert(le->le_debit == 0); |
| 1243 | old = OSAddAtomic64(-amount, &le->le_credit); |
| 1244 | new = old - amount; |
| 1245 | } else { |
| 1246 | old = OSAddAtomic64(amount, &le->le_debit); |
| 1247 | new = old + amount; |
| 1248 | } |
| 1249 | lprintf(("%p Debit %lld->%lld\n" , thread, old, new)); |
| 1250 | |
| 1251 | if (thread) { |
| 1252 | ledger_entry_check_new_balance(thread, ledger, entry, le); |
| 1253 | } |
| 1254 | |
| 1255 | return (KERN_SUCCESS); |
| 1256 | } |
| 1257 | |
| 1258 | kern_return_t |
| 1259 | ledger_debit(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1260 | { |
| 1261 | return ledger_debit_thread(current_thread(), ledger, entry, amount); |
| 1262 | } |
| 1263 | |
| 1264 | kern_return_t |
| 1265 | ledger_debit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1266 | { |
| 1267 | return ledger_debit_thread(NULL, ledger, entry, amount); |
| 1268 | } |
| 1269 | |
| 1270 | void |
| 1271 | ledger_ast(thread_t thread) |
| 1272 | { |
| 1273 | struct ledger *l = thread->t_ledger; |
| 1274 | struct ledger *thl; |
| 1275 | uint32_t block; |
| 1276 | uint64_t now; |
| 1277 | uint8_t task_flags; |
| 1278 | uint8_t task_percentage; |
| 1279 | uint64_t task_interval; |
| 1280 | |
| 1281 | kern_return_t ret; |
| 1282 | task_t task = thread->task; |
| 1283 | |
| 1284 | lprintf(("Ledger AST for %p\n" , thread)); |
| 1285 | |
| 1286 | ASSERT(task != NULL); |
| 1287 | ASSERT(thread == current_thread()); |
| 1288 | |
| 1289 | top: |
| 1290 | /* |
| 1291 | * Take a self-consistent snapshot of the CPU usage monitor parameters. The task |
| 1292 | * can change them at any point (with the task locked). |
| 1293 | */ |
| 1294 | task_lock(task); |
| 1295 | task_flags = task->rusage_cpu_flags; |
| 1296 | task_percentage = task->rusage_cpu_perthr_percentage; |
| 1297 | task_interval = task->rusage_cpu_perthr_interval; |
| 1298 | task_unlock(task); |
| 1299 | |
| 1300 | /* |
| 1301 | * Make sure this thread is up to date with regards to any task-wide per-thread |
| 1302 | * CPU limit, but only if it doesn't have a thread-private blocking CPU limit. |
| 1303 | */ |
| 1304 | if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) && |
| 1305 | ((thread->options & TH_OPT_PRVT_CPULIMIT) == 0)) { |
| 1306 | uint8_t percentage; |
| 1307 | uint64_t interval; |
| 1308 | int action; |
| 1309 | |
| 1310 | thread_get_cpulimit(&action, &percentage, &interval); |
| 1311 | |
| 1312 | /* |
| 1313 | * If the thread's CPU limits no longer match the task's, or the |
| 1314 | * task has a limit but the thread doesn't, update the limit. |
| 1315 | */ |
| 1316 | if (((thread->options & TH_OPT_PROC_CPULIMIT) == 0) || |
| 1317 | (interval != task_interval) || (percentage != task_percentage)) { |
| 1318 | thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION, task_percentage, task_interval); |
| 1319 | assert((thread->options & TH_OPT_PROC_CPULIMIT) != 0); |
| 1320 | } |
| 1321 | } else if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) && |
| 1322 | (thread->options & TH_OPT_PROC_CPULIMIT)) { |
| 1323 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); |
| 1324 | |
| 1325 | /* |
| 1326 | * Task no longer has a per-thread CPU limit; remove this thread's |
| 1327 | * corresponding CPU limit. |
| 1328 | */ |
| 1329 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); |
| 1330 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * If the task or thread is being terminated, let's just get on with it |
| 1335 | */ |
| 1336 | if ((l == NULL) || !task->active || task->halting || !thread->active) |
| 1337 | return; |
| 1338 | |
| 1339 | /* |
| 1340 | * Examine all entries in deficit to see which might be eligble for |
| 1341 | * an automatic refill, which require callbacks to be issued, and |
| 1342 | * which require blocking. |
| 1343 | */ |
| 1344 | block = 0; |
| 1345 | now = mach_absolute_time(); |
| 1346 | |
| 1347 | /* |
| 1348 | * Note that thread->t_threadledger may have been changed by the |
| 1349 | * thread_set_cpulimit() call above - so don't examine it until afterwards. |
| 1350 | */ |
| 1351 | thl = thread->t_threadledger; |
| 1352 | if (LEDGER_VALID(thl)) { |
| 1353 | block |= ledger_check_needblock(thl, now); |
| 1354 | } |
| 1355 | block |= ledger_check_needblock(l, now); |
| 1356 | |
| 1357 | /* |
| 1358 | * If we are supposed to block on the availability of one or more |
| 1359 | * resources, find the first entry in deficit for which we should wait. |
| 1360 | * Schedule a refill if necessary and then sleep until the resource |
| 1361 | * becomes available. |
| 1362 | */ |
| 1363 | if (block) { |
| 1364 | if (LEDGER_VALID(thl)) { |
| 1365 | ret = ledger_perform_blocking(thl); |
| 1366 | if (ret != KERN_SUCCESS) |
| 1367 | goto top; |
| 1368 | } |
| 1369 | ret = ledger_perform_blocking(l); |
| 1370 | if (ret != KERN_SUCCESS) |
| 1371 | goto top; |
| 1372 | } /* block */ |
| 1373 | } |
| 1374 | |
| 1375 | static uint32_t |
| 1376 | ledger_check_needblock(ledger_t l, uint64_t now) |
| 1377 | { |
| 1378 | int i; |
| 1379 | uint32_t flags, block = 0; |
| 1380 | struct ledger_entry *le; |
| 1381 | struct ledger_callback *lc; |
| 1382 | |
| 1383 | |
| 1384 | for (i = 0; i < l->l_size; i++) { |
| 1385 | le = &l->l_entries[i]; |
| 1386 | |
| 1387 | lc = entry_get_callback(l, i); |
| 1388 | |
| 1389 | if (limit_exceeded(le) == FALSE) { |
| 1390 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 1391 | /* |
| 1392 | * If needed, invoke the callback as a warning. |
| 1393 | * This needs to happen both when the balance rises above |
| 1394 | * the warning level, and also when it dips back below it. |
| 1395 | */ |
| 1396 | assert(lc != NULL); |
| 1397 | /* |
| 1398 | * See comments for matching logic in ledger_check_new_balance(). |
| 1399 | */ |
| 1400 | if (warn_level_exceeded(le)) { |
| 1401 | flags = flag_set(&le->le_flags, LF_WARNED); |
| 1402 | if ((flags & LF_WARNED) == 0) { |
| 1403 | lc->lc_func(LEDGER_WARNING_ROSE_ABOVE, lc->lc_param0, lc->lc_param1); |
| 1404 | } |
| 1405 | } else { |
| 1406 | flags = flag_clear(&le->le_flags, LF_WARNED); |
| 1407 | if (flags & LF_WARNED) { |
| 1408 | lc->lc_func(LEDGER_WARNING_DIPPED_BELOW, lc->lc_param0, lc->lc_param1); |
| 1409 | } |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | continue; |
| 1414 | } |
| 1415 | |
| 1416 | /* We're over the limit, so refill if we are eligible and past due. */ |
| 1417 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 1418 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 1419 | |
| 1420 | if ((le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period) > now) { |
| 1421 | ledger_refill(now, l, i); |
| 1422 | if (limit_exceeded(le) == FALSE) |
| 1423 | continue; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | if (le->le_flags & LEDGER_ACTION_BLOCK) |
| 1428 | block = 1; |
| 1429 | if ((le->le_flags & LEDGER_ACTION_CALLBACK) == 0) |
| 1430 | continue; |
| 1431 | |
| 1432 | /* |
| 1433 | * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to |
| 1434 | * be a registered callback. |
| 1435 | */ |
| 1436 | assert(lc != NULL); |
| 1437 | flags = flag_set(&le->le_flags, LF_CALLED_BACK); |
| 1438 | /* Callback has already been called */ |
| 1439 | if (flags & LF_CALLED_BACK) |
| 1440 | continue; |
| 1441 | lc->lc_func(FALSE, lc->lc_param0, lc->lc_param1); |
| 1442 | } |
| 1443 | return(block); |
| 1444 | } |
| 1445 | |
| 1446 | |
| 1447 | /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */ |
| 1448 | static kern_return_t |
| 1449 | ledger_perform_blocking(ledger_t l) |
| 1450 | { |
| 1451 | int i; |
| 1452 | kern_return_t ret; |
| 1453 | struct ledger_entry *le; |
| 1454 | |
| 1455 | for (i = 0; i < l->l_size; i++) { |
| 1456 | le = &l->l_entries[i]; |
| 1457 | if ((!limit_exceeded(le)) || |
| 1458 | ((le->le_flags & LEDGER_ACTION_BLOCK) == 0)) |
| 1459 | continue; |
| 1460 | |
| 1461 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 1462 | |
| 1463 | /* Prepare to sleep until the resource is refilled */ |
| 1464 | ret = assert_wait_deadline(le, THREAD_INTERRUPTIBLE, |
| 1465 | le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period); |
| 1466 | if (ret != THREAD_WAITING) |
| 1467 | return(KERN_SUCCESS); |
| 1468 | |
| 1469 | /* Mark that somebody is waiting on this entry */ |
| 1470 | flag_set(&le->le_flags, LF_WAKE_NEEDED); |
| 1471 | |
| 1472 | ret = thread_block_reason(THREAD_CONTINUE_NULL, NULL, |
| 1473 | AST_LEDGER); |
| 1474 | if (ret != THREAD_AWAKENED) |
| 1475 | return(KERN_SUCCESS); |
| 1476 | |
| 1477 | /* |
| 1478 | * The world may have changed while we were asleep. |
| 1479 | * Some other resource we need may have gone into |
| 1480 | * deficit. Or maybe we're supposed to die now. |
| 1481 | * Go back to the top and reevaluate. |
| 1482 | */ |
| 1483 | return(KERN_FAILURE); |
| 1484 | } |
| 1485 | return(KERN_SUCCESS); |
| 1486 | } |
| 1487 | |
| 1488 | |
| 1489 | kern_return_t |
| 1490 | ledger_get_entries(ledger_t ledger, int entry, ledger_amount_t *credit, |
| 1491 | ledger_amount_t *debit) |
| 1492 | { |
| 1493 | struct ledger_entry *le; |
| 1494 | |
| 1495 | if (!ENTRY_VALID(ledger, entry)) |
| 1496 | return (KERN_INVALID_ARGUMENT); |
| 1497 | |
| 1498 | le = &ledger->l_entries[entry]; |
| 1499 | |
| 1500 | *credit = le->le_credit; |
| 1501 | *debit = le->le_debit; |
| 1502 | |
| 1503 | return (KERN_SUCCESS); |
| 1504 | } |
| 1505 | |
| 1506 | kern_return_t |
| 1507 | ledger_reset_callback_state(ledger_t ledger, int entry) |
| 1508 | { |
| 1509 | struct ledger_entry *le; |
| 1510 | |
| 1511 | if (!ENTRY_VALID(ledger, entry)) |
| 1512 | return (KERN_INVALID_ARGUMENT); |
| 1513 | |
| 1514 | le = &ledger->l_entries[entry]; |
| 1515 | |
| 1516 | flag_clear(&le->le_flags, LF_CALLED_BACK); |
| 1517 | |
| 1518 | return (KERN_SUCCESS); |
| 1519 | } |
| 1520 | |
| 1521 | kern_return_t |
| 1522 | ledger_disable_panic_on_negative(ledger_t ledger, int entry) |
| 1523 | { |
| 1524 | struct ledger_entry *le; |
| 1525 | |
| 1526 | if (!ENTRY_VALID(ledger, entry)) |
| 1527 | return (KERN_INVALID_ARGUMENT); |
| 1528 | |
| 1529 | le = &ledger->l_entries[entry]; |
| 1530 | |
| 1531 | flag_clear(&le->le_flags, LF_PANIC_ON_NEGATIVE); |
| 1532 | |
| 1533 | return (KERN_SUCCESS); |
| 1534 | } |
| 1535 | |
| 1536 | kern_return_t |
| 1537 | ledger_get_panic_on_negative(ledger_t ledger, int entry, int *panic_on_negative) |
| 1538 | { |
| 1539 | struct ledger_entry *le; |
| 1540 | |
| 1541 | if (!ENTRY_VALID(ledger, entry)) |
| 1542 | return (KERN_INVALID_ARGUMENT); |
| 1543 | |
| 1544 | le = &ledger->l_entries[entry]; |
| 1545 | |
| 1546 | if (le->le_flags & LF_PANIC_ON_NEGATIVE) { |
| 1547 | *panic_on_negative = TRUE; |
| 1548 | } else { |
| 1549 | *panic_on_negative = FALSE; |
| 1550 | } |
| 1551 | |
| 1552 | return (KERN_SUCCESS); |
| 1553 | } |
| 1554 | |
| 1555 | kern_return_t |
| 1556 | ledger_get_balance(ledger_t ledger, int entry, ledger_amount_t *balance) |
| 1557 | { |
| 1558 | struct ledger_entry *le; |
| 1559 | |
| 1560 | if (!ENTRY_VALID(ledger, entry)) |
| 1561 | return (KERN_INVALID_ARGUMENT); |
| 1562 | |
| 1563 | le = &ledger->l_entries[entry]; |
| 1564 | |
| 1565 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 1566 | assert(le->le_debit == 0); |
| 1567 | } else { |
| 1568 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 1569 | } |
| 1570 | |
| 1571 | *balance = le->le_credit - le->le_debit; |
| 1572 | |
| 1573 | return (KERN_SUCCESS); |
| 1574 | } |
| 1575 | |
| 1576 | int |
| 1577 | ledger_template_info(void **buf, int *len) |
| 1578 | { |
| 1579 | struct ledger_template_info *lti; |
| 1580 | struct entry_template *et; |
| 1581 | int i; |
| 1582 | ledger_t l; |
| 1583 | |
| 1584 | /* |
| 1585 | * Since all tasks share a ledger template, we'll just use the |
| 1586 | * caller's as the source. |
| 1587 | */ |
| 1588 | l = current_task()->ledger; |
| 1589 | if ((*len < 0) || (l == NULL)) |
| 1590 | return (EINVAL); |
| 1591 | |
| 1592 | if (*len > l->l_size) |
| 1593 | *len = l->l_size; |
| 1594 | lti = kalloc((*len) * sizeof (struct ledger_template_info)); |
| 1595 | if (lti == NULL) |
| 1596 | return (ENOMEM); |
| 1597 | *buf = lti; |
| 1598 | |
| 1599 | template_lock(l->l_template); |
| 1600 | et = l->l_template->lt_entries; |
| 1601 | |
| 1602 | for (i = 0; i < *len; i++) { |
| 1603 | memset(lti, 0, sizeof (*lti)); |
| 1604 | strlcpy(lti->lti_name, et->et_key, LEDGER_NAME_MAX); |
| 1605 | strlcpy(lti->lti_group, et->et_group, LEDGER_NAME_MAX); |
| 1606 | strlcpy(lti->lti_units, et->et_units, LEDGER_NAME_MAX); |
| 1607 | et++; |
| 1608 | lti++; |
| 1609 | } |
| 1610 | template_unlock(l->l_template); |
| 1611 | |
| 1612 | return (0); |
| 1613 | } |
| 1614 | |
| 1615 | static void |
| 1616 | ledger_fill_entry_info(struct ledger_entry *le, |
| 1617 | struct ledger_entry_info *lei, |
| 1618 | uint64_t now) |
| 1619 | { |
| 1620 | assert(le != NULL); |
| 1621 | assert(lei != NULL); |
| 1622 | |
| 1623 | memset(lei, 0, sizeof (*lei)); |
| 1624 | |
| 1625 | lei->lei_limit = le->le_limit; |
| 1626 | lei->lei_credit = le->le_credit; |
| 1627 | lei->lei_debit = le->le_debit; |
| 1628 | lei->lei_balance = lei->lei_credit - lei->lei_debit; |
| 1629 | lei->lei_refill_period = (le->le_flags & LF_REFILL_SCHEDULED) ? |
| 1630 | abstime_to_nsecs(le->_le.le_refill.le_refill_period) : 0; |
| 1631 | lei->lei_last_refill = abstime_to_nsecs(now - le->_le.le_refill.le_last_refill); |
| 1632 | } |
| 1633 | |
| 1634 | int |
| 1635 | ledger_get_task_entry_info_multiple(task_t task, void **buf, int *len) |
| 1636 | { |
| 1637 | struct ledger_entry_info *lei; |
| 1638 | struct ledger_entry *le; |
| 1639 | uint64_t now = mach_absolute_time(); |
| 1640 | int i; |
| 1641 | ledger_t l; |
| 1642 | |
| 1643 | if ((*len < 0) || ((l = task->ledger) == NULL)) |
| 1644 | return (EINVAL); |
| 1645 | |
| 1646 | if (*len > l->l_size) |
| 1647 | *len = l->l_size; |
| 1648 | lei = kalloc((*len) * sizeof (struct ledger_entry_info)); |
| 1649 | if (lei == NULL) |
| 1650 | return (ENOMEM); |
| 1651 | *buf = lei; |
| 1652 | |
| 1653 | le = l->l_entries; |
| 1654 | |
| 1655 | for (i = 0; i < *len; i++) { |
| 1656 | ledger_fill_entry_info(le, lei, now); |
| 1657 | le++; |
| 1658 | lei++; |
| 1659 | } |
| 1660 | |
| 1661 | return (0); |
| 1662 | } |
| 1663 | |
| 1664 | void |
| 1665 | ledger_get_entry_info(ledger_t ledger, |
| 1666 | int entry, |
| 1667 | struct ledger_entry_info *lei) |
| 1668 | { |
| 1669 | uint64_t now = mach_absolute_time(); |
| 1670 | |
| 1671 | assert(ledger != NULL); |
| 1672 | assert(lei != NULL); |
| 1673 | |
| 1674 | if (entry >= 0 && entry < ledger->l_size) { |
| 1675 | struct ledger_entry *le = &ledger->l_entries[entry]; |
| 1676 | ledger_fill_entry_info(le, lei, now); |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | int |
| 1681 | ledger_info(task_t task, struct ledger_info *info) |
| 1682 | { |
| 1683 | ledger_t l; |
| 1684 | |
| 1685 | if ((l = task->ledger) == NULL) |
| 1686 | return (ENOENT); |
| 1687 | |
| 1688 | memset(info, 0, sizeof (*info)); |
| 1689 | |
| 1690 | strlcpy(info->li_name, l->l_template->lt_name, LEDGER_NAME_MAX); |
| 1691 | info->li_id = l->l_id; |
| 1692 | info->li_entries = l->l_size; |
| 1693 | return (0); |
| 1694 | } |
| 1695 | |
| 1696 | #ifdef LEDGER_DEBUG |
| 1697 | int |
| 1698 | ledger_limit(task_t task, struct ledger_limit_args *args) |
| 1699 | { |
| 1700 | ledger_t l; |
| 1701 | int64_t limit; |
| 1702 | int idx; |
| 1703 | |
| 1704 | if ((l = task->ledger) == NULL) |
| 1705 | return (EINVAL); |
| 1706 | |
| 1707 | idx = ledger_key_lookup(l->l_template, args->lla_name); |
| 1708 | if ((idx < 0) || (idx >= l->l_size)) |
| 1709 | return (EINVAL); |
| 1710 | |
| 1711 | /* |
| 1712 | * XXX - this doesn't really seem like the right place to have |
| 1713 | * a context-sensitive conversion of userspace units into kernel |
| 1714 | * units. For now I'll handwave and say that the ledger() system |
| 1715 | * call isn't meant for civilians to use - they should be using |
| 1716 | * the process policy interfaces. |
| 1717 | */ |
| 1718 | if (idx == task_ledgers.cpu_time) { |
| 1719 | int64_t nsecs; |
| 1720 | |
| 1721 | if (args->lla_refill_period) { |
| 1722 | /* |
| 1723 | * If a refill is scheduled, then the limit is |
| 1724 | * specified as a percentage of one CPU. The |
| 1725 | * syscall specifies the refill period in terms of |
| 1726 | * milliseconds, so we need to convert to nsecs. |
| 1727 | */ |
| 1728 | args->lla_refill_period *= 1000000; |
| 1729 | nsecs = args->lla_limit * |
| 1730 | (args->lla_refill_period / 100); |
| 1731 | lprintf(("CPU limited to %lld nsecs per second\n" , |
| 1732 | nsecs)); |
| 1733 | } else { |
| 1734 | /* |
| 1735 | * If no refill is scheduled, then this is a |
| 1736 | * fixed amount of CPU time (in nsecs) that can |
| 1737 | * be consumed. |
| 1738 | */ |
| 1739 | nsecs = args->lla_limit; |
| 1740 | lprintf(("CPU limited to %lld nsecs\n" , nsecs)); |
| 1741 | } |
| 1742 | limit = nsecs_to_abstime(nsecs); |
| 1743 | } else { |
| 1744 | limit = args->lla_limit; |
| 1745 | lprintf(("%s limited to %lld\n" , args->lla_name, limit)); |
| 1746 | } |
| 1747 | |
| 1748 | if (args->lla_refill_period > 0) |
| 1749 | ledger_set_period(l, idx, args->lla_refill_period); |
| 1750 | |
| 1751 | ledger_set_limit(l, idx, limit); |
| 1752 | flag_set(&l->l_entries[idx].le_flags, LEDGER_ACTION_BLOCK); |
| 1753 | return (0); |
| 1754 | } |
| 1755 | #endif |
| 1756 | |