| 1 | /* |
| 2 | * Copyright (c) 2013-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/mach_types.h> |
| 30 | #include <mach/vm_param.h> |
| 31 | #include <mach/mach_vm.h> |
| 32 | #include <mach/clock_types.h> |
| 33 | #include <sys/errno.h> |
| 34 | #include <sys/stackshot.h> |
| 35 | #ifdef IMPORTANCE_INHERITANCE |
| 36 | #include <ipc/ipc_importance.h> |
| 37 | #endif |
| 38 | #include <sys/appleapiopts.h> |
| 39 | #include <kern/debug.h> |
| 40 | #include <kern/block_hint.h> |
| 41 | #include <uuid/uuid.h> |
| 42 | |
| 43 | #include <kdp/kdp_dyld.h> |
| 44 | #include <kdp/kdp_en_debugger.h> |
| 45 | |
| 46 | #include <libsa/types.h> |
| 47 | #include <libkern/version.h> |
| 48 | #include <libkern/section_keywords.h> |
| 49 | |
| 50 | #include <string.h> /* bcopy */ |
| 51 | |
| 52 | #include <kern/coalition.h> |
| 53 | #include <kern/processor.h> |
| 54 | #include <kern/thread.h> |
| 55 | #include <kern/thread_group.h> |
| 56 | #include <kern/task.h> |
| 57 | #include <kern/telemetry.h> |
| 58 | #include <kern/clock.h> |
| 59 | #include <kern/policy_internal.h> |
| 60 | #include <vm/vm_map.h> |
| 61 | #include <vm/vm_kern.h> |
| 62 | #include <vm/vm_pageout.h> |
| 63 | #include <vm/vm_fault.h> |
| 64 | #include <vm/vm_shared_region.h> |
| 65 | #include <libkern/OSKextLibPrivate.h> |
| 66 | |
| 67 | #if defined(__x86_64__) |
| 68 | #include <i386/mp.h> |
| 69 | #include <i386/cpu_threads.h> |
| 70 | #endif |
| 71 | |
| 72 | #if CONFIG_EMBEDDED |
| 73 | #include <pexpert/pexpert.h> /* For gPanicBase/gPanicBase */ |
| 74 | #endif |
| 75 | |
| 76 | #if MONOTONIC |
| 77 | #include <kern/monotonic.h> |
| 78 | #endif /* MONOTONIC */ |
| 79 | |
| 80 | #include <san/kasan.h> |
| 81 | |
| 82 | extern unsigned int not_in_kdp; |
| 83 | |
| 84 | |
| 85 | /* indicate to the compiler that some accesses are unaligned */ |
| 86 | typedef uint64_t unaligned_u64 __attribute__((aligned(1))); |
| 87 | |
| 88 | extern addr64_t kdp_vtophys(pmap_t pmap, addr64_t va); |
| 89 | |
| 90 | int kdp_snapshot = 0; |
| 91 | static kern_return_t stack_snapshot_ret = 0; |
| 92 | static uint32_t stack_snapshot_bytes_traced = 0; |
| 93 | |
| 94 | static kcdata_descriptor_t stackshot_kcdata_p = NULL; |
| 95 | static void *stack_snapshot_buf; |
| 96 | static uint32_t stack_snapshot_bufsize; |
| 97 | int stack_snapshot_pid; |
| 98 | static uint32_t stack_snapshot_flags; |
| 99 | static uint64_t stack_snapshot_delta_since_timestamp; |
| 100 | static boolean_t panic_stackshot; |
| 101 | |
| 102 | static boolean_t stack_enable_faulting = FALSE; |
| 103 | static struct stackshot_fault_stats fault_stats; |
| 104 | |
| 105 | static unaligned_u64 * stackshot_duration_outer; |
| 106 | static uint64_t stackshot_microsecs; |
| 107 | |
| 108 | void * kernel_stackshot_buf = NULL; /* Pointer to buffer for stackshots triggered from the kernel and retrieved later */ |
| 109 | int kernel_stackshot_buf_size = 0; |
| 110 | |
| 111 | void * stackshot_snapbuf = NULL; /* Used by stack_snapshot2 (to be removed) */ |
| 112 | |
| 113 | __private_extern__ void stackshot_init( void ); |
| 114 | static boolean_t memory_iszero(void *addr, size_t size); |
| 115 | #if CONFIG_TELEMETRY |
| 116 | kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval); |
| 117 | #endif |
| 118 | uint32_t get_stackshot_estsize(uint32_t prev_size_hint); |
| 119 | kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, |
| 120 | size_t stackshot_config_size, boolean_t stackshot_from_user); |
| 121 | kern_return_t do_stackshot(void *); |
| 122 | void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, kcdata_descriptor_t data_p, uint64_t since_timestamp); |
| 123 | boolean_t stackshot_thread_is_idle_worker_unsafe(thread_t thread); |
| 124 | static int kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t *pBytesTraced); |
| 125 | uint32_t kdp_stack_snapshot_bytes_traced(void); |
| 126 | static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap); |
| 127 | static boolean_t kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_result); |
| 128 | static boolean_t kdp_copyin_word(task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results); |
| 129 | static uint64_t proc_was_throttled_from_task(task_t task); |
| 130 | static void stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_t * waitinfo); |
| 131 | static int stackshot_thread_has_valid_waitinfo(thread_t thread); |
| 132 | |
| 133 | #if CONFIG_COALITIONS |
| 134 | static void stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal); |
| 135 | static void stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal); |
| 136 | #endif /* CONFIG_COALITIONS */ |
| 137 | |
| 138 | |
| 139 | extern uint32_t workqueue_get_pwq_state_kdp(void *proc); |
| 140 | |
| 141 | extern int proc_pid(void *p); |
| 142 | extern uint64_t proc_uniqueid(void *p); |
| 143 | extern uint64_t proc_was_throttled(void *p); |
| 144 | extern uint64_t proc_did_throttle(void *p); |
| 145 | extern int proc_exiting(void *p); |
| 146 | extern int proc_in_teardown(void *p); |
| 147 | static uint64_t proc_did_throttle_from_task(task_t task); |
| 148 | extern void proc_name_kdp(task_t task, char * buf, int size); |
| 149 | extern int proc_threadname_kdp(void * uth, char * buf, size_t size); |
| 150 | extern void proc_starttime_kdp(void * p, uint64_t * tv_sec, uint64_t * tv_usec, uint64_t * abstime); |
| 151 | extern int memorystatus_get_pressure_status_kdp(void); |
| 152 | extern void memorystatus_proc_flags_unsafe(void * v, boolean_t *is_dirty, boolean_t *is_dirty_tracked, boolean_t *allow_idle_exit); |
| 153 | |
| 154 | extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */ |
| 155 | extern void bcopy_phys(addr64_t, addr64_t, vm_size_t); |
| 156 | |
| 157 | #if CONFIG_TELEMETRY |
| 158 | extern kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval); |
| 159 | #endif /* CONFIG_TELEMETRY */ |
| 160 | |
| 161 | extern kern_return_t kern_stack_snapshot_with_reason(char* reason); |
| 162 | extern kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user); |
| 163 | |
| 164 | /* |
| 165 | * Validates that the given address is both a valid page and has |
| 166 | * default caching attributes for the current map. Returns |
| 167 | * 0 if the address is invalid, and a kernel virtual address for |
| 168 | * the given address if it is valid. |
| 169 | */ |
| 170 | vm_offset_t machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags); |
| 171 | |
| 172 | #define KDP_FAULT_RESULT_PAGED_OUT 0x1 /* some data was unable to be retrieved */ |
| 173 | #define KDP_FAULT_RESULT_TRIED_FAULT 0x2 /* tried to fault in data */ |
| 174 | #define KDP_FAULT_RESULT_FAULTED_IN 0x4 /* successfully faulted in data */ |
| 175 | |
| 176 | /* |
| 177 | * Looks up the physical translation for the given address in the target map, attempting |
| 178 | * to fault data in if requested and it is not resident. Populates thread_trace_flags if requested |
| 179 | * as well. |
| 180 | */ |
| 181 | vm_offset_t kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results); |
| 182 | |
| 183 | static size_t stackshot_strlcpy(char *dst, const char *src, size_t maxlen); |
| 184 | static void stackshot_memcpy(void *dst, const void *src, size_t len); |
| 185 | |
| 186 | /* Clears caching information used by the above validation routine |
| 187 | * (in case the current map has been changed or cleared). |
| 188 | */ |
| 189 | void machine_trace_thread_clear_validation_cache(void); |
| 190 | |
| 191 | #define MAX_FRAMES 1000 |
| 192 | #define MAX_LOADINFOS 500 |
| 193 | #define TASK_IMP_WALK_LIMIT 20 |
| 194 | |
| 195 | typedef struct thread_snapshot *thread_snapshot_t; |
| 196 | typedef struct task_snapshot *task_snapshot_t; |
| 197 | |
| 198 | #if CONFIG_KDP_INTERACTIVE_DEBUGGING |
| 199 | extern kdp_send_t kdp_en_send_pkt; |
| 200 | #endif |
| 201 | |
| 202 | /* |
| 203 | * Globals to support machine_trace_thread_get_kva. |
| 204 | */ |
| 205 | static vm_offset_t prev_target_page = 0; |
| 206 | static vm_offset_t prev_target_kva = 0; |
| 207 | static boolean_t validate_next_addr = TRUE; |
| 208 | |
| 209 | /* |
| 210 | * Stackshot locking and other defines. |
| 211 | */ |
| 212 | static lck_grp_t *stackshot_subsys_lck_grp; |
| 213 | static lck_grp_attr_t *stackshot_subsys_lck_grp_attr; |
| 214 | static lck_attr_t *stackshot_subsys_lck_attr; |
| 215 | static lck_mtx_t stackshot_subsys_mutex; |
| 216 | |
| 217 | #define STACKSHOT_SUBSYS_LOCK() lck_mtx_lock(&stackshot_subsys_mutex) |
| 218 | #define STACKSHOT_SUBSYS_TRY_LOCK() lck_mtx_try_lock(&stackshot_subsys_mutex) |
| 219 | #define STACKSHOT_SUBSYS_UNLOCK() lck_mtx_unlock(&stackshot_subsys_mutex) |
| 220 | |
| 221 | #define SANE_BOOTPROFILE_TRACEBUF_SIZE (64 * 1024 * 1024) |
| 222 | #define SANE_TRACEBUF_SIZE (8 * 1024 * 1024) |
| 223 | |
| 224 | SECURITY_READ_ONLY_LATE(static uint32_t) max_tracebuf_size = SANE_TRACEBUF_SIZE; |
| 225 | |
| 226 | /* |
| 227 | * We currently set a ceiling of 3 milliseconds spent in the kdp fault path |
| 228 | * for non-panic stackshots where faulting is requested. |
| 229 | */ |
| 230 | #define KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS (3 * NSEC_PER_MSEC) |
| 231 | |
| 232 | #define STACKSHOT_SUPP_SIZE (16 * 1024) /* Minimum stackshot size */ |
| 233 | #define TASK_UUID_AVG_SIZE (16 * sizeof(uuid_t)) /* Average space consumed by UUIDs/task */ |
| 234 | |
| 235 | /* |
| 236 | * Initialize the mutex governing access to the stack snapshot subsystem |
| 237 | * and other stackshot related bits. |
| 238 | */ |
| 239 | __private_extern__ void |
| 240 | stackshot_init( void ) |
| 241 | { |
| 242 | mach_timebase_info_data_t timebase; |
| 243 | |
| 244 | stackshot_subsys_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 245 | |
| 246 | stackshot_subsys_lck_grp = lck_grp_alloc_init("stackshot_subsys_lock" , stackshot_subsys_lck_grp_attr); |
| 247 | |
| 248 | stackshot_subsys_lck_attr = lck_attr_alloc_init(); |
| 249 | |
| 250 | lck_mtx_init(&stackshot_subsys_mutex, stackshot_subsys_lck_grp, stackshot_subsys_lck_attr); |
| 251 | |
| 252 | clock_timebase_info(&timebase); |
| 253 | fault_stats.sfs_system_max_fault_time = ((KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS * timebase.denom)/ timebase.numer); |
| 254 | |
| 255 | PE_parse_boot_argn("stackshot_maxsz" , &max_tracebuf_size, sizeof(max_tracebuf_size)); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Method for grabbing timer values safely, in the sense that no infinite loop will occur |
| 260 | * Certain flavors of the timer_grab function, which would seem to be the thing to use, |
| 261 | * can loop infinitely if called while the timer is in the process of being updated. |
| 262 | * Unfortunately, it is (rarely) possible to get inconsistent top and bottom halves of |
| 263 | * the timer using this method. This seems insoluble, since stackshot runs in a context |
| 264 | * where the timer might be half-updated, and has no way of yielding control just long |
| 265 | * enough to finish the update. |
| 266 | */ |
| 267 | |
| 268 | static uint64_t safe_grab_timer_value(struct timer *t) |
| 269 | { |
| 270 | #if defined(__LP64__) |
| 271 | return t->all_bits; |
| 272 | #else |
| 273 | uint64_t time = t->high_bits; /* endian independent grab */ |
| 274 | time = (time << 32) | t->low_bits; |
| 275 | return time; |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Called with interrupts disabled after stackshot context has been |
| 281 | * initialized. Updates stack_snapshot_ret. |
| 282 | */ |
| 283 | static kern_return_t |
| 284 | stackshot_trap() |
| 285 | { |
| 286 | kern_return_t rv; |
| 287 | |
| 288 | #if defined(__x86_64__) |
| 289 | /* |
| 290 | * Since mp_rendezvous and stackshot both attempt to capture cpus then perform an |
| 291 | * operation, it's essential to apply mutual exclusion to the other when one |
| 292 | * mechanism is in operation, lest there be a deadlock as the mechanisms race to |
| 293 | * capture CPUs. |
| 294 | * |
| 295 | * Further, we assert that invoking stackshot from mp_rendezvous*() is not |
| 296 | * allowed, so we check to ensure there there is no rendezvous in progress before |
| 297 | * trying to grab the lock (if there is, a deadlock will occur when we try to |
| 298 | * grab the lock). This is accomplished by setting cpu_rendezvous_in_progress to |
| 299 | * TRUE in the mp rendezvous action function. If stackshot_trap() is called by |
| 300 | * a subordinate of the call chain within the mp rendezvous action, this flag will |
| 301 | * be set and can be used to detect the inevitable deadlock that would occur |
| 302 | * if this thread tried to grab the rendezvous lock. |
| 303 | */ |
| 304 | |
| 305 | if (current_cpu_datap()->cpu_rendezvous_in_progress == TRUE) { |
| 306 | panic("Calling stackshot from a rendezvous is not allowed!" ); |
| 307 | } |
| 308 | |
| 309 | mp_rendezvous_lock(); |
| 310 | #endif |
| 311 | |
| 312 | rv = DebuggerTrapWithState(DBOP_STACKSHOT, NULL, NULL, NULL, 0, NULL, FALSE, 0); |
| 313 | |
| 314 | #if defined(__x86_64__) |
| 315 | mp_rendezvous_unlock(); |
| 316 | #endif |
| 317 | return (rv); |
| 318 | } |
| 319 | |
| 320 | |
| 321 | kern_return_t |
| 322 | stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, uint64_t delta_since_timestamp, unsigned *bytes_traced) |
| 323 | { |
| 324 | kern_return_t error = KERN_SUCCESS; |
| 325 | boolean_t istate; |
| 326 | |
| 327 | #if DEVELOPMENT || DEBUG |
| 328 | if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) { |
| 329 | error = KERN_NOT_SUPPORTED; |
| 330 | goto out; |
| 331 | } |
| 332 | #endif |
| 333 | if ((buf == NULL) || (size <= 0) || (bytes_traced == NULL)) { |
| 334 | return KERN_INVALID_ARGUMENT; |
| 335 | } |
| 336 | |
| 337 | /* cap in individual stackshot to max_tracebuf_size */ |
| 338 | if (size > max_tracebuf_size) { |
| 339 | size = max_tracebuf_size; |
| 340 | } |
| 341 | |
| 342 | /* Serialize tracing */ |
| 343 | if (flags & STACKSHOT_TRYLOCK) { |
| 344 | if (!STACKSHOT_SUBSYS_TRY_LOCK()) { |
| 345 | return KERN_LOCK_OWNED; |
| 346 | } |
| 347 | } else { |
| 348 | STACKSHOT_SUBSYS_LOCK(); |
| 349 | } |
| 350 | |
| 351 | struct kcdata_descriptor kcdata; |
| 352 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? |
| 353 | KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT; |
| 354 | |
| 355 | error = kcdata_memory_static_init(&kcdata, (mach_vm_address_t)buf, hdr_tag, size, |
| 356 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); |
| 357 | if (error) { |
| 358 | goto out; |
| 359 | } |
| 360 | |
| 361 | istate = ml_set_interrupts_enabled(FALSE); |
| 362 | |
| 363 | /* Preload trace parameters*/ |
| 364 | kdp_snapshot_preflight(pid, buf, size, flags, &kcdata, delta_since_timestamp); |
| 365 | |
| 366 | /* |
| 367 | * Trap to the debugger to obtain a coherent stack snapshot; this populates |
| 368 | * the trace buffer |
| 369 | */ |
| 370 | error = stackshot_trap(); |
| 371 | |
| 372 | ml_set_interrupts_enabled(istate); |
| 373 | |
| 374 | *bytes_traced = kdp_stack_snapshot_bytes_traced(); |
| 375 | |
| 376 | out: |
| 377 | stackshot_kcdata_p = NULL; |
| 378 | STACKSHOT_SUBSYS_UNLOCK(); |
| 379 | return error; |
| 380 | } |
| 381 | |
| 382 | #if CONFIG_TELEMETRY |
| 383 | kern_return_t |
| 384 | stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval) |
| 385 | { |
| 386 | int error = KERN_SUCCESS; |
| 387 | uint32_t bytes_traced = 0; |
| 388 | |
| 389 | *retval = -1; |
| 390 | |
| 391 | /* |
| 392 | * Control related operations |
| 393 | */ |
| 394 | if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_ENABLE) { |
| 395 | telemetry_global_ctl(1); |
| 396 | *retval = 0; |
| 397 | goto exit; |
| 398 | } else if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_DISABLE) { |
| 399 | telemetry_global_ctl(0); |
| 400 | *retval = 0; |
| 401 | goto exit; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Data related operations |
| 406 | */ |
| 407 | *retval = -1; |
| 408 | |
| 409 | if ((((void*)tracebuf) == NULL) || (tracebuf_size == 0)) { |
| 410 | error = KERN_INVALID_ARGUMENT; |
| 411 | goto exit; |
| 412 | } |
| 413 | |
| 414 | STACKSHOT_SUBSYS_LOCK(); |
| 415 | |
| 416 | if (flags & STACKSHOT_GET_MICROSTACKSHOT) { |
| 417 | if (tracebuf_size > max_tracebuf_size) { |
| 418 | error = KERN_INVALID_ARGUMENT; |
| 419 | goto unlock_exit; |
| 420 | } |
| 421 | |
| 422 | bytes_traced = tracebuf_size; |
| 423 | error = telemetry_gather(tracebuf, &bytes_traced, |
| 424 | (flags & STACKSHOT_SET_MICROSTACKSHOT_MARK) ? TRUE : FALSE); |
| 425 | *retval = (int)bytes_traced; |
| 426 | goto unlock_exit; |
| 427 | } |
| 428 | |
| 429 | if (flags & STACKSHOT_GET_BOOT_PROFILE) { |
| 430 | |
| 431 | if (tracebuf_size > SANE_BOOTPROFILE_TRACEBUF_SIZE) { |
| 432 | error = KERN_INVALID_ARGUMENT; |
| 433 | goto unlock_exit; |
| 434 | } |
| 435 | |
| 436 | bytes_traced = tracebuf_size; |
| 437 | error = bootprofile_gather(tracebuf, &bytes_traced); |
| 438 | *retval = (int)bytes_traced; |
| 439 | } |
| 440 | |
| 441 | unlock_exit: |
| 442 | STACKSHOT_SUBSYS_UNLOCK(); |
| 443 | exit: |
| 444 | return error; |
| 445 | } |
| 446 | #endif /* CONFIG_TELEMETRY */ |
| 447 | |
| 448 | /* |
| 449 | * Return the estimated size of a stackshot based on the |
| 450 | * number of currently running threads and tasks. |
| 451 | */ |
| 452 | uint32_t |
| 453 | get_stackshot_estsize(uint32_t prev_size_hint) |
| 454 | { |
| 455 | vm_size_t thread_total; |
| 456 | vm_size_t task_total; |
| 457 | uint32_t estimated_size; |
| 458 | |
| 459 | thread_total = (threads_count * sizeof(struct thread_snapshot)); |
| 460 | task_total = (tasks_count * (sizeof(struct task_snapshot) + TASK_UUID_AVG_SIZE)); |
| 461 | |
| 462 | estimated_size = (uint32_t) VM_MAP_ROUND_PAGE((thread_total + task_total + STACKSHOT_SUPP_SIZE), PAGE_MASK); |
| 463 | if (estimated_size < prev_size_hint) { |
| 464 | estimated_size = (uint32_t) VM_MAP_ROUND_PAGE(prev_size_hint, PAGE_MASK); |
| 465 | } |
| 466 | |
| 467 | return estimated_size; |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * stackshot_remap_buffer: Utility function to remap bytes_traced bytes starting at stackshotbuf |
| 472 | * into the current task's user space and subsequently copy out the address |
| 473 | * at which the buffer has been mapped in user space to out_buffer_addr. |
| 474 | * |
| 475 | * Inputs: stackshotbuf - pointer to the original buffer in the kernel's address space |
| 476 | * bytes_traced - length of the buffer to remap starting from stackshotbuf |
| 477 | * out_buffer_addr - pointer to placeholder where newly mapped buffer will be mapped. |
| 478 | * out_size_addr - pointer to be filled in with the size of the buffer |
| 479 | * |
| 480 | * Outputs: ENOSPC if there is not enough free space in the task's address space to remap the buffer |
| 481 | * EINVAL for all other errors returned by task_remap_buffer/mach_vm_remap |
| 482 | * an error from copyout |
| 483 | */ |
| 484 | static kern_return_t |
| 485 | stackshot_remap_buffer(void *stackshotbuf, uint32_t bytes_traced, uint64_t out_buffer_addr, uint64_t out_size_addr) |
| 486 | { |
| 487 | int error = 0; |
| 488 | mach_vm_offset_t stackshotbuf_user_addr = (mach_vm_offset_t)NULL; |
| 489 | vm_prot_t cur_prot, max_prot; |
| 490 | |
| 491 | error = mach_vm_remap_kernel(get_task_map(current_task()), &stackshotbuf_user_addr, bytes_traced, 0, |
| 492 | VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_NONE, kernel_map, (mach_vm_offset_t)stackshotbuf, FALSE, &cur_prot, &max_prot, VM_INHERIT_DEFAULT); |
| 493 | /* |
| 494 | * If the call to mach_vm_remap fails, we return the appropriate converted error |
| 495 | */ |
| 496 | if (error == KERN_SUCCESS) { |
| 497 | /* |
| 498 | * If we fail to copy out the address or size of the new buffer, we remove the buffer mapping that |
| 499 | * we just made in the task's user space. |
| 500 | */ |
| 501 | error = copyout(CAST_DOWN(void *, &stackshotbuf_user_addr), (user_addr_t)out_buffer_addr, sizeof(stackshotbuf_user_addr)); |
| 502 | if (error != KERN_SUCCESS) { |
| 503 | mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced); |
| 504 | return error; |
| 505 | } |
| 506 | error = copyout(&bytes_traced, (user_addr_t)out_size_addr, sizeof(bytes_traced)); |
| 507 | if (error != KERN_SUCCESS) { |
| 508 | mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced); |
| 509 | return error; |
| 510 | } |
| 511 | } |
| 512 | return error; |
| 513 | } |
| 514 | |
| 515 | kern_return_t |
| 516 | kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user) |
| 517 | { |
| 518 | int error = 0; |
| 519 | boolean_t prev_interrupt_state; |
| 520 | uint32_t bytes_traced = 0; |
| 521 | uint32_t stackshotbuf_size = 0; |
| 522 | void * stackshotbuf = NULL; |
| 523 | kcdata_descriptor_t kcdata_p = NULL; |
| 524 | |
| 525 | void * buf_to_free = NULL; |
| 526 | int size_to_free = 0; |
| 527 | |
| 528 | /* Parsed arguments */ |
| 529 | uint64_t out_buffer_addr; |
| 530 | uint64_t out_size_addr; |
| 531 | int pid = -1; |
| 532 | uint32_t flags; |
| 533 | uint64_t since_timestamp; |
| 534 | uint32_t size_hint = 0; |
| 535 | |
| 536 | if(stackshot_config == NULL) { |
| 537 | return KERN_INVALID_ARGUMENT; |
| 538 | } |
| 539 | #if DEVELOPMENT || DEBUG |
| 540 | /* TBD: ask stackshot clients to avoid issuing stackshots in this |
| 541 | * configuration in lieu of the kernel feature override. |
| 542 | */ |
| 543 | if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) { |
| 544 | return KERN_NOT_SUPPORTED; |
| 545 | } |
| 546 | #endif |
| 547 | |
| 548 | switch (stackshot_config_version) { |
| 549 | case STACKSHOT_CONFIG_TYPE: |
| 550 | if (stackshot_config_size != sizeof(stackshot_config_t)) { |
| 551 | return KERN_INVALID_ARGUMENT; |
| 552 | } |
| 553 | stackshot_config_t *config = (stackshot_config_t *) stackshot_config; |
| 554 | out_buffer_addr = config->sc_out_buffer_addr; |
| 555 | out_size_addr = config->sc_out_size_addr; |
| 556 | pid = config->sc_pid; |
| 557 | flags = config->sc_flags; |
| 558 | since_timestamp = config->sc_delta_timestamp; |
| 559 | if (config->sc_size <= max_tracebuf_size) { |
| 560 | size_hint = config->sc_size; |
| 561 | } |
| 562 | break; |
| 563 | default: |
| 564 | return KERN_NOT_SUPPORTED; |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * Currently saving a kernel buffer and trylock are only supported from the |
| 569 | * internal/KEXT API. |
| 570 | */ |
| 571 | if (stackshot_from_user) { |
| 572 | if (flags & (STACKSHOT_TRYLOCK | STACKSHOT_SAVE_IN_KERNEL_BUFFER | STACKSHOT_FROM_PANIC)) { |
| 573 | return KERN_NO_ACCESS; |
| 574 | } |
| 575 | } else { |
| 576 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
| 577 | return KERN_NOT_SUPPORTED; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | if (!((flags & STACKSHOT_KCDATA_FORMAT) || (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER))) { |
| 582 | return KERN_NOT_SUPPORTED; |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * If we're not saving the buffer in the kernel pointer, we need a place to copy into. |
| 587 | */ |
| 588 | if ((!out_buffer_addr || !out_size_addr) && !(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
| 589 | return KERN_INVALID_ARGUMENT; |
| 590 | } |
| 591 | |
| 592 | if (since_timestamp != 0 && ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) == 0)) { |
| 593 | return KERN_INVALID_ARGUMENT; |
| 594 | } |
| 595 | |
| 596 | #if MONOTONIC |
| 597 | if (!mt_core_supported) { |
| 598 | flags &= ~STACKSHOT_INSTRS_CYCLES; |
| 599 | } |
| 600 | #else /* MONOTONIC */ |
| 601 | flags &= ~STACKSHOT_INSTRS_CYCLES; |
| 602 | #endif /* !MONOTONIC */ |
| 603 | |
| 604 | STACKSHOT_SUBSYS_LOCK(); |
| 605 | |
| 606 | if (flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER) { |
| 607 | /* |
| 608 | * Don't overwrite an existing stackshot |
| 609 | */ |
| 610 | if (kernel_stackshot_buf != NULL) { |
| 611 | error = KERN_MEMORY_PRESENT; |
| 612 | goto error_exit; |
| 613 | } |
| 614 | } else if (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER) { |
| 615 | if ((kernel_stackshot_buf == NULL) || (kernel_stackshot_buf_size <= 0)) { |
| 616 | error = KERN_NOT_IN_SET; |
| 617 | goto error_exit; |
| 618 | } |
| 619 | error = stackshot_remap_buffer(kernel_stackshot_buf, kernel_stackshot_buf_size, |
| 620 | out_buffer_addr, out_size_addr); |
| 621 | /* |
| 622 | * If we successfully remapped the buffer into the user's address space, we |
| 623 | * set buf_to_free and size_to_free so the prior kernel mapping will be removed |
| 624 | * and then clear the kernel stackshot pointer and associated size. |
| 625 | */ |
| 626 | if (error == KERN_SUCCESS) { |
| 627 | buf_to_free = kernel_stackshot_buf; |
| 628 | size_to_free = (int) VM_MAP_ROUND_PAGE(kernel_stackshot_buf_size, PAGE_MASK); |
| 629 | kernel_stackshot_buf = NULL; |
| 630 | kernel_stackshot_buf_size = 0; |
| 631 | } |
| 632 | |
| 633 | goto error_exit; |
| 634 | } |
| 635 | |
| 636 | if (flags & STACKSHOT_GET_BOOT_PROFILE) { |
| 637 | void *bootprofile = NULL; |
| 638 | uint32_t len = 0; |
| 639 | #if CONFIG_TELEMETRY |
| 640 | bootprofile_get(&bootprofile, &len); |
| 641 | #endif |
| 642 | if (!bootprofile || !len) { |
| 643 | error = KERN_NOT_IN_SET; |
| 644 | goto error_exit; |
| 645 | } |
| 646 | error = stackshot_remap_buffer(bootprofile, len, out_buffer_addr, out_size_addr); |
| 647 | goto error_exit; |
| 648 | } |
| 649 | |
| 650 | stackshotbuf_size = get_stackshot_estsize(size_hint); |
| 651 | |
| 652 | for (; stackshotbuf_size <= max_tracebuf_size; stackshotbuf_size <<= 1) { |
| 653 | if (kmem_alloc(kernel_map, (vm_offset_t *)&stackshotbuf, stackshotbuf_size, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) { |
| 654 | error = KERN_RESOURCE_SHORTAGE; |
| 655 | goto error_exit; |
| 656 | } |
| 657 | |
| 658 | |
| 659 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT; |
| 660 | kcdata_p = kcdata_memory_alloc_init((mach_vm_address_t)stackshotbuf, hdr_tag, stackshotbuf_size, |
| 661 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); |
| 662 | |
| 663 | stackshot_duration_outer = NULL; |
| 664 | uint64_t time_start = mach_absolute_time(); |
| 665 | |
| 666 | /* |
| 667 | * Disable interrupts and save the current interrupt state. |
| 668 | */ |
| 669 | prev_interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 670 | |
| 671 | /* |
| 672 | * Load stackshot parameters. |
| 673 | */ |
| 674 | kdp_snapshot_preflight(pid, stackshotbuf, stackshotbuf_size, flags, kcdata_p, since_timestamp); |
| 675 | |
| 676 | error = stackshot_trap(); |
| 677 | |
| 678 | ml_set_interrupts_enabled(prev_interrupt_state); |
| 679 | |
| 680 | /* record the duration that interupts were disabled */ |
| 681 | |
| 682 | uint64_t time_end = mach_absolute_time(); |
| 683 | if (stackshot_duration_outer) { |
| 684 | *stackshot_duration_outer = time_end - time_start; |
| 685 | } |
| 686 | |
| 687 | if (error != KERN_SUCCESS) { |
| 688 | if (kcdata_p != NULL) { |
| 689 | kcdata_memory_destroy(kcdata_p); |
| 690 | kcdata_p = NULL; |
| 691 | stackshot_kcdata_p = NULL; |
| 692 | } |
| 693 | kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size); |
| 694 | stackshotbuf = NULL; |
| 695 | if (error == KERN_INSUFFICIENT_BUFFER_SIZE) { |
| 696 | /* |
| 697 | * If we didn't allocate a big enough buffer, deallocate and try again. |
| 698 | */ |
| 699 | continue; |
| 700 | } else { |
| 701 | goto error_exit; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | bytes_traced = kdp_stack_snapshot_bytes_traced(); |
| 706 | |
| 707 | if (bytes_traced <= 0) { |
| 708 | error = KERN_ABORTED; |
| 709 | goto error_exit; |
| 710 | } |
| 711 | |
| 712 | assert(bytes_traced <= stackshotbuf_size); |
| 713 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
| 714 | error = stackshot_remap_buffer(stackshotbuf, bytes_traced, out_buffer_addr, out_size_addr); |
| 715 | goto error_exit; |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * Save the stackshot in the kernel buffer. |
| 720 | */ |
| 721 | kernel_stackshot_buf = stackshotbuf; |
| 722 | kernel_stackshot_buf_size = bytes_traced; |
| 723 | /* |
| 724 | * Figure out if we didn't use all the pages in the buffer. If so, we set buf_to_free to the beginning of |
| 725 | * the next page after the end of the stackshot in the buffer so that the kmem_free clips the buffer and |
| 726 | * update size_to_free for kmem_free accordingly. |
| 727 | */ |
| 728 | size_to_free = stackshotbuf_size - (int) VM_MAP_ROUND_PAGE(bytes_traced, PAGE_MASK); |
| 729 | |
| 730 | assert(size_to_free >= 0); |
| 731 | |
| 732 | if (size_to_free != 0) { |
| 733 | buf_to_free = (void *)((uint64_t)stackshotbuf + stackshotbuf_size - size_to_free); |
| 734 | } |
| 735 | |
| 736 | stackshotbuf = NULL; |
| 737 | stackshotbuf_size = 0; |
| 738 | goto error_exit; |
| 739 | } |
| 740 | |
| 741 | if (stackshotbuf_size > max_tracebuf_size) { |
| 742 | error = KERN_RESOURCE_SHORTAGE; |
| 743 | } |
| 744 | |
| 745 | error_exit: |
| 746 | if (kcdata_p != NULL) { |
| 747 | kcdata_memory_destroy(kcdata_p); |
| 748 | kcdata_p = NULL; |
| 749 | stackshot_kcdata_p = NULL; |
| 750 | } |
| 751 | |
| 752 | if (stackshotbuf != NULL) { |
| 753 | kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size); |
| 754 | } |
| 755 | if (buf_to_free != NULL) { |
| 756 | kmem_free(kernel_map, (vm_offset_t)buf_to_free, size_to_free); |
| 757 | } |
| 758 | STACKSHOT_SUBSYS_UNLOCK(); |
| 759 | return error; |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * Cache stack snapshot parameters in preparation for a trace. |
| 764 | */ |
| 765 | void |
| 766 | kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, |
| 767 | kcdata_descriptor_t data_p, uint64_t since_timestamp) |
| 768 | { |
| 769 | uint64_t microsecs = 0, secs = 0; |
| 770 | clock_get_calendar_microtime((clock_sec_t *)&secs, (clock_usec_t *)µsecs); |
| 771 | |
| 772 | stackshot_microsecs = microsecs + (secs * USEC_PER_SEC); |
| 773 | stack_snapshot_pid = pid; |
| 774 | stack_snapshot_buf = tracebuf; |
| 775 | stack_snapshot_bufsize = tracebuf_size; |
| 776 | stack_snapshot_flags = flags; |
| 777 | stack_snapshot_delta_since_timestamp = since_timestamp; |
| 778 | |
| 779 | panic_stackshot = ((flags & STACKSHOT_FROM_PANIC) != 0); |
| 780 | |
| 781 | assert(data_p != NULL); |
| 782 | assert(stackshot_kcdata_p == NULL); |
| 783 | stackshot_kcdata_p = data_p; |
| 784 | |
| 785 | stack_snapshot_bytes_traced = 0; |
| 786 | } |
| 787 | |
| 788 | void |
| 789 | panic_stackshot_reset_state() |
| 790 | { |
| 791 | stackshot_kcdata_p = NULL; |
| 792 | } |
| 793 | |
| 794 | boolean_t |
| 795 | stackshot_active() |
| 796 | { |
| 797 | return (stackshot_kcdata_p != NULL); |
| 798 | } |
| 799 | |
| 800 | uint32_t |
| 801 | kdp_stack_snapshot_bytes_traced(void) |
| 802 | { |
| 803 | return stack_snapshot_bytes_traced; |
| 804 | } |
| 805 | |
| 806 | static boolean_t memory_iszero(void *addr, size_t size) |
| 807 | { |
| 808 | char *data = (char *)addr; |
| 809 | for (size_t i = 0; i < size; i++){ |
| 810 | if (data[i] != 0) |
| 811 | return FALSE; |
| 812 | } |
| 813 | return TRUE; |
| 814 | } |
| 815 | |
| 816 | #define kcd_end_address(kcd) ((void *)((uint64_t)((kcd)->kcd_addr_begin) + kcdata_memory_get_used_bytes((kcd)))) |
| 817 | #define kcd_max_address(kcd) ((void *)((kcd)->kcd_addr_begin + (kcd)->kcd_length)) |
| 818 | /* |
| 819 | * Use of the kcd_exit_on_error(action) macro requires a local |
| 820 | * 'kern_return_t error' variable and 'error_exit' label. |
| 821 | */ |
| 822 | #define kcd_exit_on_error(action) \ |
| 823 | do { \ |
| 824 | if (KERN_SUCCESS != (error = (action))) { \ |
| 825 | if (error == KERN_RESOURCE_SHORTAGE) { \ |
| 826 | error = KERN_INSUFFICIENT_BUFFER_SIZE; \ |
| 827 | } \ |
| 828 | goto error_exit; \ |
| 829 | } \ |
| 830 | } while (0); /* end kcd_exit_on_error */ |
| 831 | |
| 832 | static uint64_t |
| 833 | kcdata_get_task_ss_flags(task_t task) |
| 834 | { |
| 835 | uint64_t ss_flags = 0; |
| 836 | boolean_t task_64bit_addr = task_has_64Bit_addr(task); |
| 837 | |
| 838 | if (task_64bit_addr) |
| 839 | ss_flags |= kUser64_p; |
| 840 | if (!task->active || task_is_a_corpse(task) || proc_exiting(task->bsd_info)) |
| 841 | ss_flags |= kTerminatedSnapshot; |
| 842 | if (task->pidsuspended) |
| 843 | ss_flags |= kPidSuspended; |
| 844 | if (task->frozen) |
| 845 | ss_flags |= kFrozen; |
| 846 | if (task->effective_policy.tep_darwinbg == 1) |
| 847 | ss_flags |= kTaskDarwinBG; |
| 848 | if (task->requested_policy.trp_role == TASK_FOREGROUND_APPLICATION) |
| 849 | ss_flags |= kTaskIsForeground; |
| 850 | if (task->requested_policy.trp_boosted == 1) |
| 851 | ss_flags |= kTaskIsBoosted; |
| 852 | if (task->effective_policy.tep_sup_active == 1) |
| 853 | ss_flags |= kTaskIsSuppressed; |
| 854 | #if CONFIG_MEMORYSTATUS |
| 855 | |
| 856 | boolean_t dirty = FALSE, dirty_tracked = FALSE, allow_idle_exit = FALSE; |
| 857 | memorystatus_proc_flags_unsafe(task->bsd_info, &dirty, &dirty_tracked, &allow_idle_exit); |
| 858 | if (dirty) |
| 859 | ss_flags |= kTaskIsDirty; |
| 860 | if (dirty_tracked) |
| 861 | ss_flags |= kTaskIsDirtyTracked; |
| 862 | if (allow_idle_exit) |
| 863 | ss_flags |= kTaskAllowIdleExit; |
| 864 | |
| 865 | #endif |
| 866 | if (task->effective_policy.tep_tal_engaged) |
| 867 | ss_flags |= kTaskTALEngaged; |
| 868 | |
| 869 | ss_flags |= (0x7 & workqueue_get_pwq_state_kdp(task->bsd_info)) << 17; |
| 870 | |
| 871 | #if IMPORTANCE_INHERITANCE |
| 872 | if (task->task_imp_base) { |
| 873 | if (task->task_imp_base->iit_donor) |
| 874 | ss_flags |= kTaskIsImpDonor; |
| 875 | if (task->task_imp_base->iit_live_donor) |
| 876 | ss_flags |= kTaskIsLiveImpDonor; |
| 877 | } |
| 878 | #endif |
| 879 | return ss_flags; |
| 880 | } |
| 881 | |
| 882 | static kern_return_t |
| 883 | kcdata_record_shared_cache_info(kcdata_descriptor_t kcd, task_t task, unaligned_u64 *task_snap_ss_flags) |
| 884 | { |
| 885 | kern_return_t error = KERN_SUCCESS; |
| 886 | mach_vm_address_t out_addr = 0; |
| 887 | |
| 888 | uint64_t shared_cache_slide = 0; |
| 889 | uint64_t shared_cache_base_address = 0; |
| 890 | uint32_t kdp_fault_results = 0; |
| 891 | |
| 892 | assert(task_snap_ss_flags != NULL); |
| 893 | |
| 894 | if (task->shared_region && ml_validate_nofault((vm_offset_t)task->shared_region, sizeof(struct vm_shared_region))) { |
| 895 | struct vm_shared_region *sr = task->shared_region; |
| 896 | shared_cache_base_address = sr->sr_base_address + sr->sr_first_mapping; |
| 897 | } else { |
| 898 | *task_snap_ss_flags |= kTaskSharedRegionInfoUnavailable; |
| 899 | goto error_exit; |
| 900 | } |
| 901 | |
| 902 | /* We haven't copied in the shared region UUID yet as part of setup */ |
| 903 | if (!shared_cache_base_address || !task->shared_region->sr_uuid_copied) { |
| 904 | goto error_exit; |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * No refcounting here, but we are in debugger |
| 909 | * context, so that should be safe. |
| 910 | */ |
| 911 | shared_cache_slide = task->shared_region->sr_slide_info.slide; |
| 912 | |
| 913 | if (task->shared_region == init_task_shared_region) { |
| 914 | /* skip adding shared cache info -- it's the same as the system level one */ |
| 915 | goto error_exit; |
| 916 | } |
| 917 | |
| 918 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64_v2), &out_addr)); |
| 919 | struct dyld_uuid_info_64_v2 *shared_cache_data = (struct dyld_uuid_info_64_v2 *)out_addr; |
| 920 | shared_cache_data->imageLoadAddress = shared_cache_slide; |
| 921 | stackshot_memcpy(shared_cache_data->imageUUID, task->shared_region->sr_uuid, sizeof(task->shared_region->sr_uuid)); |
| 922 | shared_cache_data->imageSlidBaseAddress = shared_cache_base_address; |
| 923 | |
| 924 | error_exit: |
| 925 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
| 926 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; |
| 927 | } |
| 928 | |
| 929 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
| 930 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; |
| 931 | } |
| 932 | |
| 933 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
| 934 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; |
| 935 | } |
| 936 | |
| 937 | return error; |
| 938 | } |
| 939 | |
| 940 | static kern_return_t |
| 941 | kcdata_record_uuid_info(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, unaligned_u64 *task_snap_ss_flags) |
| 942 | { |
| 943 | boolean_t save_loadinfo_p = ((trace_flags & STACKSHOT_SAVE_LOADINFO) != 0); |
| 944 | boolean_t save_kextloadinfo_p = ((trace_flags & STACKSHOT_SAVE_KEXT_LOADINFO) != 0); |
| 945 | boolean_t should_fault = (trace_flags & STACKSHOT_ENABLE_UUID_FAULTING); |
| 946 | |
| 947 | kern_return_t error = KERN_SUCCESS; |
| 948 | mach_vm_address_t out_addr = 0; |
| 949 | |
| 950 | uint32_t uuid_info_count = 0; |
| 951 | mach_vm_address_t uuid_info_addr = 0; |
| 952 | uint64_t uuid_info_timestamp = 0; |
| 953 | uint32_t kdp_fault_results = 0; |
| 954 | |
| 955 | assert(task_snap_ss_flags != NULL); |
| 956 | |
| 957 | int task_pid = pid_from_task(task); |
| 958 | boolean_t task_64bit_addr = task_has_64Bit_addr(task); |
| 959 | |
| 960 | if (save_loadinfo_p && have_pmap && task->active && task_pid > 0) { |
| 961 | /* Read the dyld_all_image_infos struct from the task memory to get UUID array count and location */ |
| 962 | if (task_64bit_addr) { |
| 963 | struct user64_dyld_all_image_infos task_image_infos; |
| 964 | if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos, |
| 965 | sizeof(struct user64_dyld_all_image_infos), should_fault, &kdp_fault_results)) { |
| 966 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; |
| 967 | uuid_info_addr = task_image_infos.uuidArray; |
| 968 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) { |
| 969 | uuid_info_timestamp = task_image_infos.timestamp; |
| 970 | } |
| 971 | } |
| 972 | } else { |
| 973 | struct user32_dyld_all_image_infos task_image_infos; |
| 974 | if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos, |
| 975 | sizeof(struct user32_dyld_all_image_infos), should_fault, &kdp_fault_results)) { |
| 976 | uuid_info_count = task_image_infos.uuidArrayCount; |
| 977 | uuid_info_addr = task_image_infos.uuidArray; |
| 978 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) { |
| 979 | uuid_info_timestamp = task_image_infos.timestamp; |
| 980 | } |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating |
| 986 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info |
| 987 | * for this task. |
| 988 | */ |
| 989 | if (!uuid_info_addr) { |
| 990 | uuid_info_count = 0; |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | if (have_pmap && task_pid == 0) { |
| 995 | if (save_kextloadinfo_p && ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader))) { |
| 996 | uuid_info_count = gLoadedKextSummaries->numSummaries + 1; /* include main kernel UUID */ |
| 997 | } else { |
| 998 | uuid_info_count = 1; /* include kernelcache UUID (embedded) or kernel UUID (desktop) */ |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (task_pid > 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) { |
| 1003 | uint32_t uuid_info_size = (uint32_t)(task_64bit_addr ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
| 1004 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; |
| 1005 | |
| 1006 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, (task_64bit_addr ? KCDATA_TYPE_LIBRARY_LOADINFO64 : KCDATA_TYPE_LIBRARY_LOADINFO), |
| 1007 | uuid_info_size, uuid_info_count, &out_addr)); |
| 1008 | |
| 1009 | /* Copy in the UUID info array |
| 1010 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task_snap |
| 1011 | */ |
| 1012 | if (have_pmap && !kdp_copyin(task->map, uuid_info_addr, (void *)out_addr, uuid_info_array_size, should_fault, &kdp_fault_results)) { |
| 1013 | bzero((void *)out_addr, uuid_info_array_size); |
| 1014 | } |
| 1015 | |
| 1016 | } else if (task_pid == 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) { |
| 1017 | uintptr_t image_load_address; |
| 1018 | |
| 1019 | do { |
| 1020 | |
| 1021 | #if CONFIG_EMBEDDED |
| 1022 | if (kernelcache_uuid_valid && !save_kextloadinfo_p) { |
| 1023 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_KERNELCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64), &out_addr)); |
| 1024 | struct dyld_uuid_info_64 *kc_uuid = (struct dyld_uuid_info_64 *)out_addr; |
| 1025 | kc_uuid->imageLoadAddress = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
| 1026 | stackshot_memcpy(&kc_uuid->imageUUID, &kernelcache_uuid, sizeof(uuid_t)); |
| 1027 | break; |
| 1028 | } |
| 1029 | #endif /* CONFIG_EMBEDDED */ |
| 1030 | |
| 1031 | if (!kernel_uuid || !ml_validate_nofault((vm_offset_t)kernel_uuid, sizeof(uuid_t))) { |
| 1032 | /* Kernel UUID not found or inaccessible */ |
| 1033 | break; |
| 1034 | } |
| 1035 | |
| 1036 | kcd_exit_on_error(kcdata_get_memory_addr_for_array( |
| 1037 | kcd, (sizeof(kernel_uuid_info) == sizeof(struct user64_dyld_uuid_info)) ? KCDATA_TYPE_LIBRARY_LOADINFO64 |
| 1038 | : KCDATA_TYPE_LIBRARY_LOADINFO, |
| 1039 | sizeof(kernel_uuid_info), uuid_info_count, &out_addr)); |
| 1040 | kernel_uuid_info *uuid_info_array = (kernel_uuid_info *)out_addr; |
| 1041 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext); |
| 1042 | uuid_info_array[0].imageLoadAddress = image_load_address; |
| 1043 | stackshot_memcpy(&uuid_info_array[0].imageUUID, kernel_uuid, sizeof(uuid_t)); |
| 1044 | |
| 1045 | if (save_kextloadinfo_p && |
| 1046 | ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader)) && |
| 1047 | ml_validate_nofault((vm_offset_t)(&gLoadedKextSummaries->summaries[0]), |
| 1048 | gLoadedKextSummaries->entry_size * gLoadedKextSummaries->numSummaries)) { |
| 1049 | uint32_t kexti; |
| 1050 | for (kexti=0 ; kexti < gLoadedKextSummaries->numSummaries; kexti++) { |
| 1051 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].address); |
| 1052 | uuid_info_array[kexti + 1].imageLoadAddress = image_load_address; |
| 1053 | stackshot_memcpy(&uuid_info_array[kexti + 1].imageUUID, &gLoadedKextSummaries->summaries[kexti].uuid, sizeof(uuid_t)); |
| 1054 | } |
| 1055 | } |
| 1056 | } while(0); |
| 1057 | } |
| 1058 | |
| 1059 | error_exit: |
| 1060 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
| 1061 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; |
| 1062 | } |
| 1063 | |
| 1064 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
| 1065 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; |
| 1066 | } |
| 1067 | |
| 1068 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
| 1069 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; |
| 1070 | } |
| 1071 | |
| 1072 | return error; |
| 1073 | } |
| 1074 | |
| 1075 | static kern_return_t |
| 1076 | kcdata_record_task_iostats(kcdata_descriptor_t kcd, task_t task) |
| 1077 | { |
| 1078 | kern_return_t error = KERN_SUCCESS; |
| 1079 | mach_vm_address_t out_addr = 0; |
| 1080 | |
| 1081 | /* I/O Statistics if any counters are non zero */ |
| 1082 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); |
| 1083 | if (task->task_io_stats && !memory_iszero(task->task_io_stats, sizeof(struct io_stat_info))) { |
| 1084 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); |
| 1085 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; |
| 1086 | _iostat->ss_disk_reads_count = task->task_io_stats->disk_reads.count; |
| 1087 | _iostat->ss_disk_reads_size = task->task_io_stats->disk_reads.size; |
| 1088 | _iostat->ss_disk_writes_count = (task->task_io_stats->total_io.count - task->task_io_stats->disk_reads.count); |
| 1089 | _iostat->ss_disk_writes_size = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); |
| 1090 | _iostat->ss_paging_count = task->task_io_stats->paging.count; |
| 1091 | _iostat->ss_paging_size = task->task_io_stats->paging.size; |
| 1092 | _iostat->ss_non_paging_count = (task->task_io_stats->total_io.count - task->task_io_stats->paging.count); |
| 1093 | _iostat->ss_non_paging_size = (task->task_io_stats->total_io.size - task->task_io_stats->paging.size); |
| 1094 | _iostat->ss_metadata_count = task->task_io_stats->metadata.count; |
| 1095 | _iostat->ss_metadata_size = task->task_io_stats->metadata.size; |
| 1096 | _iostat->ss_data_count = (task->task_io_stats->total_io.count - task->task_io_stats->metadata.count); |
| 1097 | _iostat->ss_data_size = (task->task_io_stats->total_io.size - task->task_io_stats->metadata.size); |
| 1098 | for(int i = 0; i < IO_NUM_PRIORITIES; i++) { |
| 1099 | _iostat->ss_io_priority_count[i] = task->task_io_stats->io_priority[i].count; |
| 1100 | _iostat->ss_io_priority_size[i] = task->task_io_stats->io_priority[i].size; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | error_exit: |
| 1105 | return error; |
| 1106 | } |
| 1107 | |
| 1108 | #if MONOTONIC |
| 1109 | static kern_return_t |
| 1110 | kcdata_record_task_instrs_cycles(kcdata_descriptor_t kcd, task_t task) |
| 1111 | { |
| 1112 | uint64_t instrs = 0, cycles = 0; |
| 1113 | mt_stackshot_task(task, &instrs, &cycles); |
| 1114 | |
| 1115 | kern_return_t error = KERN_SUCCESS; |
| 1116 | mach_vm_address_t out_addr = 0; |
| 1117 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(struct instrs_cycles_snapshot), &out_addr)); |
| 1118 | struct instrs_cycles_snapshot *instrs_cycles = (struct instrs_cycles_snapshot *)out_addr; |
| 1119 | instrs_cycles->ics_instructions = instrs; |
| 1120 | instrs_cycles->ics_cycles = cycles; |
| 1121 | |
| 1122 | error_exit: |
| 1123 | return error; |
| 1124 | } |
| 1125 | #endif /* MONOTONIC */ |
| 1126 | |
| 1127 | static kern_return_t |
| 1128 | kcdata_record_task_snapshot(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, unaligned_u64 **task_snap_ss_flags) |
| 1129 | { |
| 1130 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
| 1131 | boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_NO_IO_STATS); |
| 1132 | #if MONOTONIC |
| 1133 | boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
| 1134 | #endif /* MONOTONIC */ |
| 1135 | #if __arm__ || __arm64__ |
| 1136 | boolean_t collect_asid = ((trace_flags & STACKSHOT_ASID) != 0); |
| 1137 | #endif |
| 1138 | boolean_t collect_pagetables = ((trace_flags & STACKSHOT_PAGE_TABLES) != 0); |
| 1139 | |
| 1140 | |
| 1141 | kern_return_t error = KERN_SUCCESS; |
| 1142 | mach_vm_address_t out_addr = 0; |
| 1143 | struct task_snapshot_v2 * cur_tsnap = NULL; |
| 1144 | |
| 1145 | assert(task_snap_ss_flags != NULL); |
| 1146 | |
| 1147 | int task_pid = pid_from_task(task); |
| 1148 | uint64_t task_uniqueid = get_task_uniqueid(task); |
| 1149 | uint64_t proc_starttime_secs = 0; |
| 1150 | |
| 1151 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_SNAPSHOT, sizeof(struct task_snapshot_v2), &out_addr)); |
| 1152 | cur_tsnap = (struct task_snapshot_v2 *)out_addr; |
| 1153 | bzero(cur_tsnap, sizeof(*cur_tsnap)); |
| 1154 | |
| 1155 | cur_tsnap->ts_unique_pid = task_uniqueid; |
| 1156 | cur_tsnap->ts_ss_flags = kcdata_get_task_ss_flags(task); |
| 1157 | *task_snap_ss_flags = (unaligned_u64 *)&cur_tsnap->ts_ss_flags; |
| 1158 | cur_tsnap->ts_user_time_in_terminated_threads = task->total_user_time; |
| 1159 | cur_tsnap->ts_system_time_in_terminated_threads = task->total_system_time; |
| 1160 | |
| 1161 | proc_starttime_kdp(task->bsd_info, &proc_starttime_secs, NULL, NULL); |
| 1162 | cur_tsnap->ts_p_start_sec = proc_starttime_secs; |
| 1163 | cur_tsnap->ts_task_size = have_pmap ? get_task_phys_footprint(task) : 0; |
| 1164 | cur_tsnap->ts_max_resident_size = get_task_resident_max(task); |
| 1165 | cur_tsnap->ts_was_throttled = (uint32_t) proc_was_throttled_from_task(task); |
| 1166 | cur_tsnap->ts_did_throttle = (uint32_t) proc_did_throttle_from_task(task); |
| 1167 | |
| 1168 | cur_tsnap->ts_suspend_count = task->suspend_count; |
| 1169 | cur_tsnap->ts_faults = task->faults; |
| 1170 | cur_tsnap->ts_pageins = task->pageins; |
| 1171 | cur_tsnap->ts_cow_faults = task->cow_faults; |
| 1172 | cur_tsnap->ts_latency_qos = (task->effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) ? |
| 1173 | LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | task->effective_policy.tep_latency_qos); |
| 1174 | cur_tsnap->ts_pid = task_pid; |
| 1175 | |
| 1176 | #if __arm__ || __arm64__ |
| 1177 | if (collect_asid && have_pmap) { |
| 1178 | uint32_t asid = task->map->pmap->asid; |
| 1179 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_ASID, sizeof(uint32_t), &out_addr)); |
| 1180 | stackshot_memcpy((void*)out_addr, &asid, sizeof(asid)); |
| 1181 | } |
| 1182 | #endif |
| 1183 | if (collect_pagetables && have_pmap) { |
| 1184 | #if INTERRUPT_MASKED_DEBUG |
| 1185 | // pagetable dumps can be large; reset the interrupt timeout to avoid a panic |
| 1186 | ml_spin_debug_clear_self(); |
| 1187 | #endif |
| 1188 | size_t bytes_dumped = pmap_dump_page_tables(task->map->pmap, kcd_end_address(kcd), kcd_max_address(kcd)); |
| 1189 | if (bytes_dumped == 0) { |
| 1190 | error = KERN_INSUFFICIENT_BUFFER_SIZE; |
| 1191 | goto error_exit; |
| 1192 | } else if (bytes_dumped == (size_t)-1) { |
| 1193 | error = KERN_NOT_SUPPORTED; |
| 1194 | goto error_exit; |
| 1195 | } else { |
| 1196 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, STACKSHOT_KCTYPE_PAGE_TABLES, |
| 1197 | sizeof(uint64_t), (uint32_t)(bytes_dumped / sizeof(uint64_t)), &out_addr)); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | /* Add the BSD process identifiers */ |
| 1202 | if (task_pid != -1 && task->bsd_info != NULL) { |
| 1203 | proc_name_kdp(task, cur_tsnap->ts_p_comm, sizeof(cur_tsnap->ts_p_comm)); |
| 1204 | #if CONFIG_COALITIONS |
| 1205 | if ((trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) && (task->coalition[COALITION_TYPE_JETSAM] != NULL)) { |
| 1206 | uint64_t jetsam_coal_id = coalition_id(task->coalition[COALITION_TYPE_JETSAM]); |
| 1207 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_JETSAM_COALITION, sizeof(jetsam_coal_id), &out_addr)); |
| 1208 | stackshot_memcpy((void*)out_addr, &jetsam_coal_id, sizeof(jetsam_coal_id)); |
| 1209 | } |
| 1210 | #endif /* CONFIG_COALITIONS */ |
| 1211 | } |
| 1212 | else { |
| 1213 | cur_tsnap->ts_p_comm[0] = '\0'; |
| 1214 | #if IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) |
| 1215 | if (task->task_imp_base != NULL) { |
| 1216 | stackshot_strlcpy(cur_tsnap->ts_p_comm, &task->task_imp_base->iit_procname[0], |
| 1217 | MIN((int)sizeof(task->task_imp_base->iit_procname), (int)sizeof(cur_tsnap->ts_p_comm))); |
| 1218 | } |
| 1219 | #endif /* IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) */ |
| 1220 | } |
| 1221 | |
| 1222 | if (collect_iostats) { |
| 1223 | kcd_exit_on_error(kcdata_record_task_iostats(kcd, task)); |
| 1224 | } |
| 1225 | |
| 1226 | #if MONOTONIC |
| 1227 | if (collect_instrs_cycles) { |
| 1228 | kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd, task)); |
| 1229 | } |
| 1230 | #endif /* MONOTONIC */ |
| 1231 | |
| 1232 | error_exit: |
| 1233 | return error; |
| 1234 | } |
| 1235 | |
| 1236 | static kern_return_t |
| 1237 | kcdata_record_task_delta_snapshot(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, unaligned_u64 **task_snap_ss_flags) |
| 1238 | { |
| 1239 | #if !MONOTONIC |
| 1240 | #pragma unused(trace_flags) |
| 1241 | #endif /* !MONOTONIC */ |
| 1242 | kern_return_t error = KERN_SUCCESS; |
| 1243 | struct task_delta_snapshot_v2 * cur_tsnap = NULL; |
| 1244 | mach_vm_address_t out_addr = 0; |
| 1245 | (void) trace_flags; |
| 1246 | #if __arm__ || __arm64__ |
| 1247 | boolean_t collect_asid = ((trace_flags & STACKSHOT_ASID) != 0); |
| 1248 | #endif |
| 1249 | #if MONOTONIC |
| 1250 | boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
| 1251 | #endif /* MONOTONIC */ |
| 1252 | |
| 1253 | uint64_t task_uniqueid = get_task_uniqueid(task); |
| 1254 | assert(task_snap_ss_flags != NULL); |
| 1255 | |
| 1256 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT, sizeof(struct task_delta_snapshot_v2), &out_addr)); |
| 1257 | |
| 1258 | cur_tsnap = (struct task_delta_snapshot_v2 *)out_addr; |
| 1259 | |
| 1260 | cur_tsnap->tds_unique_pid = task_uniqueid; |
| 1261 | cur_tsnap->tds_ss_flags = kcdata_get_task_ss_flags(task); |
| 1262 | *task_snap_ss_flags = (unaligned_u64 *)&cur_tsnap->tds_ss_flags; |
| 1263 | |
| 1264 | cur_tsnap->tds_user_time_in_terminated_threads = task->total_user_time; |
| 1265 | cur_tsnap->tds_system_time_in_terminated_threads = task->total_system_time; |
| 1266 | |
| 1267 | cur_tsnap->tds_task_size = have_pmap ? get_task_phys_footprint(task) : 0; |
| 1268 | |
| 1269 | cur_tsnap->tds_max_resident_size = get_task_resident_max(task); |
| 1270 | cur_tsnap->tds_suspend_count = task->suspend_count; |
| 1271 | cur_tsnap->tds_faults = task->faults; |
| 1272 | cur_tsnap->tds_pageins = task->pageins; |
| 1273 | cur_tsnap->tds_cow_faults = task->cow_faults; |
| 1274 | cur_tsnap->tds_was_throttled = (uint32_t)proc_was_throttled_from_task(task); |
| 1275 | cur_tsnap->tds_did_throttle = (uint32_t)proc_did_throttle_from_task(task); |
| 1276 | cur_tsnap->tds_latency_qos = (task-> effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) |
| 1277 | ? LATENCY_QOS_TIER_UNSPECIFIED |
| 1278 | : ((0xFF << 16) | task-> effective_policy.tep_latency_qos); |
| 1279 | |
| 1280 | #if __arm__ || __arm64__ |
| 1281 | if (collect_asid && have_pmap) { |
| 1282 | uint32_t asid = task->map->pmap->asid; |
| 1283 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_ASID, sizeof(uint32_t), &out_addr)); |
| 1284 | stackshot_memcpy((void*)out_addr, &asid, sizeof(asid)); |
| 1285 | } |
| 1286 | #endif |
| 1287 | |
| 1288 | #if MONOTONIC |
| 1289 | if (collect_instrs_cycles) { |
| 1290 | kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd, task)); |
| 1291 | } |
| 1292 | #endif /* MONOTONIC */ |
| 1293 | |
| 1294 | error_exit: |
| 1295 | return error; |
| 1296 | } |
| 1297 | |
| 1298 | static kern_return_t |
| 1299 | kcdata_record_thread_iostats(kcdata_descriptor_t kcd, thread_t thread) |
| 1300 | { |
| 1301 | kern_return_t error = KERN_SUCCESS; |
| 1302 | mach_vm_address_t out_addr = 0; |
| 1303 | |
| 1304 | /* I/O Statistics */ |
| 1305 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); |
| 1306 | if (thread->thread_io_stats && !memory_iszero(thread->thread_io_stats, sizeof(struct io_stat_info))) { |
| 1307 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); |
| 1308 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; |
| 1309 | _iostat->ss_disk_reads_count = thread->thread_io_stats->disk_reads.count; |
| 1310 | _iostat->ss_disk_reads_size = thread->thread_io_stats->disk_reads.size; |
| 1311 | _iostat->ss_disk_writes_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->disk_reads.count); |
| 1312 | _iostat->ss_disk_writes_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->disk_reads.size); |
| 1313 | _iostat->ss_paging_count = thread->thread_io_stats->paging.count; |
| 1314 | _iostat->ss_paging_size = thread->thread_io_stats->paging.size; |
| 1315 | _iostat->ss_non_paging_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->paging.count); |
| 1316 | _iostat->ss_non_paging_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->paging.size); |
| 1317 | _iostat->ss_metadata_count = thread->thread_io_stats->metadata.count; |
| 1318 | _iostat->ss_metadata_size = thread->thread_io_stats->metadata.size; |
| 1319 | _iostat->ss_data_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->metadata.count); |
| 1320 | _iostat->ss_data_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->metadata.size); |
| 1321 | for(int i = 0; i < IO_NUM_PRIORITIES; i++) { |
| 1322 | _iostat->ss_io_priority_count[i] = thread->thread_io_stats->io_priority[i].count; |
| 1323 | _iostat->ss_io_priority_size[i] = thread->thread_io_stats->io_priority[i].size; |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | error_exit: |
| 1328 | return error; |
| 1329 | } |
| 1330 | |
| 1331 | static kern_return_t |
| 1332 | kcdata_record_thread_snapshot( |
| 1333 | kcdata_descriptor_t kcd, thread_t thread, task_t task, uint32_t trace_flags, boolean_t have_pmap, boolean_t thread_on_core) |
| 1334 | { |
| 1335 | boolean_t dispatch_p = ((trace_flags & STACKSHOT_GET_DQ) != 0); |
| 1336 | boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); |
| 1337 | boolean_t trace_fp_p = false; |
| 1338 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
| 1339 | boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_NO_IO_STATS); |
| 1340 | #if MONOTONIC |
| 1341 | boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
| 1342 | #endif /* MONOTONIC */ |
| 1343 | |
| 1344 | kern_return_t error = KERN_SUCCESS; |
| 1345 | mach_vm_address_t out_addr = 0; |
| 1346 | int saved_count = 0; |
| 1347 | |
| 1348 | struct thread_snapshot_v4 * cur_thread_snap = NULL; |
| 1349 | char cur_thread_name[STACKSHOT_MAX_THREAD_NAME_SIZE]; |
| 1350 | uint64_t tval = 0; |
| 1351 | const boolean_t is_64bit_data = task_has_64Bit_data(task); |
| 1352 | |
| 1353 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_SNAPSHOT, sizeof(struct thread_snapshot_v4), &out_addr)); |
| 1354 | cur_thread_snap = (struct thread_snapshot_v4 *)out_addr; |
| 1355 | |
| 1356 | /* Populate the thread snapshot header */ |
| 1357 | cur_thread_snap->ths_thread_id = thread_tid(thread); |
| 1358 | cur_thread_snap->ths_wait_event = VM_KERNEL_UNSLIDE_OR_PERM(thread->wait_event); |
| 1359 | cur_thread_snap->ths_continuation = VM_KERNEL_UNSLIDE(thread->continuation); |
| 1360 | cur_thread_snap->ths_total_syscalls = thread->syscalls_mach + thread->syscalls_unix; |
| 1361 | |
| 1362 | if (IPC_VOUCHER_NULL != thread->ith_voucher) |
| 1363 | cur_thread_snap->ths_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); |
| 1364 | else |
| 1365 | cur_thread_snap->ths_voucher_identifier = 0; |
| 1366 | |
| 1367 | cur_thread_snap->ths_dqserialnum = 0; |
| 1368 | if (dispatch_p && (task != kernel_task) && (task->active) && have_pmap) { |
| 1369 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); |
| 1370 | if (dqkeyaddr != 0) { |
| 1371 | uint64_t dqaddr = 0; |
| 1372 | boolean_t copyin_ok = kdp_copyin_word(task, dqkeyaddr, &dqaddr, FALSE, NULL); |
| 1373 | if (copyin_ok && dqaddr != 0) { |
| 1374 | uint64_t dqserialnumaddr = dqaddr + get_task_dispatchqueue_serialno_offset(task); |
| 1375 | uint64_t dqserialnum = 0; |
| 1376 | copyin_ok = kdp_copyin_word(task, dqserialnumaddr, &dqserialnum, FALSE, NULL); |
| 1377 | if (copyin_ok) { |
| 1378 | cur_thread_snap->ths_ss_flags |= kHasDispatchSerial; |
| 1379 | cur_thread_snap->ths_dqserialnum = dqserialnum; |
| 1380 | } |
| 1381 | } |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | tval = safe_grab_timer_value(&thread->user_timer); |
| 1386 | cur_thread_snap->ths_user_time = tval; |
| 1387 | tval = safe_grab_timer_value(&thread->system_timer); |
| 1388 | |
| 1389 | if (thread->precise_user_kernel_time) { |
| 1390 | cur_thread_snap->ths_sys_time = tval; |
| 1391 | } else { |
| 1392 | cur_thread_snap->ths_user_time += tval; |
| 1393 | cur_thread_snap->ths_sys_time = 0; |
| 1394 | } |
| 1395 | |
| 1396 | cur_thread_snap->ths_ss_flags = 0; |
| 1397 | if (thread->thread_tag & THREAD_TAG_MAINTHREAD) |
| 1398 | cur_thread_snap->ths_ss_flags |= kThreadMain; |
| 1399 | if (thread->effective_policy.thep_darwinbg) |
| 1400 | cur_thread_snap->ths_ss_flags |= kThreadDarwinBG; |
| 1401 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) |
| 1402 | cur_thread_snap->ths_ss_flags |= kThreadIOPassive; |
| 1403 | if (thread->suspend_count > 0) |
| 1404 | cur_thread_snap->ths_ss_flags |= kThreadSuspended; |
| 1405 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) |
| 1406 | cur_thread_snap->ths_ss_flags |= kGlobalForcedIdle; |
| 1407 | if (thread_on_core) |
| 1408 | cur_thread_snap->ths_ss_flags |= kThreadOnCore; |
| 1409 | if (stackshot_thread_is_idle_worker_unsafe(thread)) |
| 1410 | cur_thread_snap->ths_ss_flags |= kThreadIdleWorker; |
| 1411 | |
| 1412 | /* make sure state flags defined in kcdata.h still match internal flags */ |
| 1413 | static_assert(SS_TH_WAIT == TH_WAIT); |
| 1414 | static_assert(SS_TH_SUSP == TH_SUSP); |
| 1415 | static_assert(SS_TH_RUN == TH_RUN); |
| 1416 | static_assert(SS_TH_UNINT == TH_UNINT); |
| 1417 | static_assert(SS_TH_TERMINATE == TH_TERMINATE); |
| 1418 | static_assert(SS_TH_TERMINATE2 == TH_TERMINATE2); |
| 1419 | static_assert(SS_TH_IDLE == TH_IDLE); |
| 1420 | |
| 1421 | cur_thread_snap->ths_last_run_time = thread->last_run_time; |
| 1422 | cur_thread_snap->ths_last_made_runnable_time = thread->last_made_runnable_time; |
| 1423 | cur_thread_snap->ths_state = thread->state; |
| 1424 | cur_thread_snap->ths_sched_flags = thread->sched_flags; |
| 1425 | cur_thread_snap->ths_base_priority = thread->base_pri; |
| 1426 | cur_thread_snap->ths_sched_priority = thread->sched_pri; |
| 1427 | cur_thread_snap->ths_eqos = thread->effective_policy.thep_qos; |
| 1428 | cur_thread_snap->ths_rqos = thread->requested_policy.thrp_qos; |
| 1429 | cur_thread_snap->ths_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
| 1430 | thread->requested_policy.thrp_qos_workq_override); |
| 1431 | cur_thread_snap->ths_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
| 1432 | cur_thread_snap->ths_thread_t = VM_KERNEL_UNSLIDE_OR_PERM(thread); |
| 1433 | |
| 1434 | static_assert(sizeof(thread->effective_policy) == sizeof(uint64_t)); |
| 1435 | static_assert(sizeof(thread->requested_policy) == sizeof(uint64_t)); |
| 1436 | cur_thread_snap->ths_requested_policy = *(unaligned_u64 *) &thread->requested_policy; |
| 1437 | cur_thread_snap->ths_effective_policy = *(unaligned_u64 *) &thread->effective_policy; |
| 1438 | |
| 1439 | /* if there is thread name then add to buffer */ |
| 1440 | cur_thread_name[0] = '\0'; |
| 1441 | proc_threadname_kdp(thread->uthread, cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE); |
| 1442 | if (strnlen(cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE) > 0) { |
| 1443 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_NAME, sizeof(cur_thread_name), &out_addr)); |
| 1444 | stackshot_memcpy((void *)out_addr, (void *)cur_thread_name, sizeof(cur_thread_name)); |
| 1445 | } |
| 1446 | |
| 1447 | /* record system, user, and runnable times */ |
| 1448 | time_value_t user_time, system_time, runnable_time; |
| 1449 | thread_read_times(thread, &user_time, &system_time, &runnable_time); |
| 1450 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_CPU_TIMES, sizeof(struct stackshot_cpu_times_v2), &out_addr)); |
| 1451 | struct stackshot_cpu_times_v2 *stackshot_cpu_times = (struct stackshot_cpu_times_v2 *)out_addr; |
| 1452 | *stackshot_cpu_times = (struct stackshot_cpu_times_v2){ |
| 1453 | .user_usec = (uint64_t)user_time.seconds * USEC_PER_SEC + user_time.microseconds, |
| 1454 | .system_usec = (uint64_t)system_time.seconds * USEC_PER_SEC + system_time.microseconds, |
| 1455 | .runnable_usec = (uint64_t)runnable_time.seconds * USEC_PER_SEC + runnable_time.microseconds, |
| 1456 | }; |
| 1457 | |
| 1458 | /* Trace user stack, if any */ |
| 1459 | if (!active_kthreads_only_p && task->active && thread->task->map != kernel_map) { |
| 1460 | uint32_t thread_snapshot_flags = 0; |
| 1461 | |
| 1462 | /* Uses 64-bit machine state? */ |
| 1463 | if (is_64bit_data) { |
| 1464 | uint64_t sp = 0; |
| 1465 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
| 1466 | saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE, |
| 1467 | trace_fp_p, &thread_snapshot_flags, &sp); |
| 1468 | if (saved_count > 0) { |
| 1469 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t); |
| 1470 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME64 |
| 1471 | : STACKSHOT_KCTYPE_USER_STACKLR64, |
| 1472 | frame_size, saved_count / frame_size, &out_addr)); |
| 1473 | cur_thread_snap->ths_ss_flags |= kUser64_p; |
| 1474 | } |
| 1475 | #if __x86_64__ |
| 1476 | if (sp) { |
| 1477 | // I'm using 8 here and not sizeof(stack_contents) because this |
| 1478 | // code would not work if you just made stack_contents bigger. |
| 1479 | vm_offset_t kern_virt_addr = machine_trace_thread_get_kva(sp, thread->task->map, &thread_snapshot_flags); |
| 1480 | if (kern_virt_addr && (kern_virt_addr % 8) == 0) { |
| 1481 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_USER_STACKTOP, sizeof(struct stack_snapshot_stacktop), &out_addr)); |
| 1482 | struct stack_snapshot_stacktop *stacktop = (struct stack_snapshot_stacktop *)out_addr; |
| 1483 | stacktop->sp = sp; |
| 1484 | memcpy(stacktop->stack_contents, (void*) kern_virt_addr, 8); |
| 1485 | } |
| 1486 | } |
| 1487 | #endif |
| 1488 | } else { |
| 1489 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
| 1490 | saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE, trace_fp_p, |
| 1491 | &thread_snapshot_flags); |
| 1492 | if (saved_count > 0) { |
| 1493 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t); |
| 1494 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME |
| 1495 | : STACKSHOT_KCTYPE_USER_STACKLR, |
| 1496 | frame_size, saved_count / frame_size, &out_addr)); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | if (thread_snapshot_flags != 0) { |
| 1501 | cur_thread_snap->ths_ss_flags |= thread_snapshot_flags; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | /* Call through to the machine specific trace routines |
| 1506 | * Frames are added past the snapshot header. |
| 1507 | */ |
| 1508 | if (thread->kernel_stack != 0) { |
| 1509 | uint32_t thread_snapshot_flags = 0; |
| 1510 | #if defined(__LP64__) |
| 1511 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
| 1512 | saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p, |
| 1513 | &thread_snapshot_flags, NULL); |
| 1514 | if (saved_count > 0) { |
| 1515 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t); |
| 1516 | cur_thread_snap->ths_ss_flags |= kKernel64_p; |
| 1517 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME64 |
| 1518 | : STACKSHOT_KCTYPE_KERN_STACKLR64, |
| 1519 | frame_size, saved_count / frame_size, &out_addr)); |
| 1520 | } |
| 1521 | #else |
| 1522 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
| 1523 | saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p, |
| 1524 | &thread_snapshot_flags); |
| 1525 | if (saved_count > 0) { |
| 1526 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t); |
| 1527 | kcd_exit_on_error( |
| 1528 | kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME : STACKSHOT_KCTYPE_KERN_STACKLR, |
| 1529 | frame_size, saved_count / frame_size, &out_addr)); |
| 1530 | } |
| 1531 | #endif |
| 1532 | if (thread_snapshot_flags != 0) { |
| 1533 | cur_thread_snap->ths_ss_flags |= thread_snapshot_flags; |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | |
| 1538 | if (collect_iostats) { |
| 1539 | kcd_exit_on_error(kcdata_record_thread_iostats(kcd, thread)); |
| 1540 | } |
| 1541 | |
| 1542 | #if MONOTONIC |
| 1543 | if (collect_instrs_cycles) { |
| 1544 | uint64_t instrs = 0, cycles = 0; |
| 1545 | mt_stackshot_thread(thread, &instrs, &cycles); |
| 1546 | |
| 1547 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(struct instrs_cycles_snapshot), &out_addr)); |
| 1548 | struct instrs_cycles_snapshot *instrs_cycles = (struct instrs_cycles_snapshot *)out_addr; |
| 1549 | instrs_cycles->ics_instructions = instrs; |
| 1550 | instrs_cycles->ics_cycles = cycles; |
| 1551 | } |
| 1552 | #endif /* MONOTONIC */ |
| 1553 | |
| 1554 | error_exit: |
| 1555 | return error; |
| 1556 | } |
| 1557 | |
| 1558 | static int |
| 1559 | kcdata_record_thread_delta_snapshot(struct thread_delta_snapshot_v3 * cur_thread_snap, thread_t thread, boolean_t thread_on_core) |
| 1560 | { |
| 1561 | cur_thread_snap->tds_thread_id = thread_tid(thread); |
| 1562 | if (IPC_VOUCHER_NULL != thread->ith_voucher) |
| 1563 | cur_thread_snap->tds_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); |
| 1564 | else |
| 1565 | cur_thread_snap->tds_voucher_identifier = 0; |
| 1566 | |
| 1567 | cur_thread_snap->tds_ss_flags = 0; |
| 1568 | if (thread->effective_policy.thep_darwinbg) |
| 1569 | cur_thread_snap->tds_ss_flags |= kThreadDarwinBG; |
| 1570 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) |
| 1571 | cur_thread_snap->tds_ss_flags |= kThreadIOPassive; |
| 1572 | if (thread->suspend_count > 0) |
| 1573 | cur_thread_snap->tds_ss_flags |= kThreadSuspended; |
| 1574 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) |
| 1575 | cur_thread_snap->tds_ss_flags |= kGlobalForcedIdle; |
| 1576 | if (thread_on_core) |
| 1577 | cur_thread_snap->tds_ss_flags |= kThreadOnCore; |
| 1578 | if (stackshot_thread_is_idle_worker_unsafe(thread)) |
| 1579 | cur_thread_snap->tds_ss_flags |= kThreadIdleWorker; |
| 1580 | |
| 1581 | cur_thread_snap->tds_last_made_runnable_time = thread->last_made_runnable_time; |
| 1582 | cur_thread_snap->tds_state = thread->state; |
| 1583 | cur_thread_snap->tds_sched_flags = thread->sched_flags; |
| 1584 | cur_thread_snap->tds_base_priority = thread->base_pri; |
| 1585 | cur_thread_snap->tds_sched_priority = thread->sched_pri; |
| 1586 | cur_thread_snap->tds_eqos = thread->effective_policy.thep_qos; |
| 1587 | cur_thread_snap->tds_rqos = thread->requested_policy.thrp_qos; |
| 1588 | cur_thread_snap->tds_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
| 1589 | thread->requested_policy.thrp_qos_workq_override); |
| 1590 | cur_thread_snap->tds_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
| 1591 | |
| 1592 | static_assert(sizeof(thread->effective_policy) == sizeof(uint64_t)); |
| 1593 | static_assert(sizeof(thread->requested_policy) == sizeof(uint64_t)); |
| 1594 | cur_thread_snap->tds_requested_policy = *(unaligned_u64 *) &thread->requested_policy; |
| 1595 | cur_thread_snap->tds_effective_policy = *(unaligned_u64 *) &thread->effective_policy; |
| 1596 | |
| 1597 | return 0; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * Why 12? 12 strikes a decent balance between allocating a large array on |
| 1602 | * the stack and having large kcdata item overheads for recording nonrunable |
| 1603 | * tasks. |
| 1604 | */ |
| 1605 | #define UNIQUEIDSPERFLUSH 12 |
| 1606 | |
| 1607 | struct saved_uniqueids { |
| 1608 | uint64_t ids[UNIQUEIDSPERFLUSH]; |
| 1609 | unsigned count; |
| 1610 | }; |
| 1611 | |
| 1612 | enum thread_classification { |
| 1613 | tc_full_snapshot, /* take a full snapshot */ |
| 1614 | tc_delta_snapshot, /* take a delta snapshot */ |
| 1615 | }; |
| 1616 | |
| 1617 | static enum thread_classification |
| 1618 | classify_thread(thread_t thread, boolean_t * thread_on_core_p, uint32_t trace_flags) |
| 1619 | { |
| 1620 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
| 1621 | |
| 1622 | processor_t last_processor = thread->last_processor; |
| 1623 | |
| 1624 | boolean_t thread_on_core = |
| 1625 | (last_processor != PROCESSOR_NULL && last_processor->state == PROCESSOR_RUNNING && last_processor->active_thread == thread); |
| 1626 | |
| 1627 | *thread_on_core_p = thread_on_core; |
| 1628 | |
| 1629 | /* Capture the full thread snapshot if this is not a delta stackshot or if the thread has run subsequent to the |
| 1630 | * previous full stackshot */ |
| 1631 | if (!collect_delta_stackshot || thread_on_core || (thread->last_run_time > stack_snapshot_delta_since_timestamp)) { |
| 1632 | return tc_full_snapshot; |
| 1633 | } else { |
| 1634 | return tc_delta_snapshot; |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | struct stackshot_context |
| 1639 | { |
| 1640 | int pid; |
| 1641 | uint32_t trace_flags; |
| 1642 | }; |
| 1643 | |
| 1644 | static kern_return_t |
| 1645 | kdp_stackshot_record_task(struct stackshot_context *ctx, task_t task) |
| 1646 | { |
| 1647 | boolean_t active_kthreads_only_p = ((ctx->trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); |
| 1648 | boolean_t save_donating_pids_p = ((ctx->trace_flags & STACKSHOT_SAVE_IMP_DONATION_PIDS) != 0); |
| 1649 | boolean_t collect_delta_stackshot = ((ctx->trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
| 1650 | boolean_t save_owner_info = ((ctx->trace_flags & STACKSHOT_THREAD_WAITINFO) != 0); |
| 1651 | |
| 1652 | |
| 1653 | kern_return_t error = KERN_SUCCESS; |
| 1654 | mach_vm_address_t out_addr = 0; |
| 1655 | int saved_count = 0; |
| 1656 | |
| 1657 | int task_pid = 0; |
| 1658 | uint64_t task_uniqueid = 0; |
| 1659 | int num_delta_thread_snapshots = 0; |
| 1660 | int num_nonrunnable_threads = 0; |
| 1661 | int num_waitinfo_threads = 0; |
| 1662 | |
| 1663 | uint64_t task_start_abstime = 0; |
| 1664 | boolean_t task_delta_stackshot = FALSE; |
| 1665 | boolean_t have_map = FALSE, have_pmap = FALSE; |
| 1666 | boolean_t some_thread_ran = FALSE; |
| 1667 | unaligned_u64 *task_snap_ss_flags = NULL; |
| 1668 | |
| 1669 | if ((task == NULL) || !ml_validate_nofault((vm_offset_t)task, sizeof(struct task))) { |
| 1670 | error = KERN_FAILURE; |
| 1671 | goto error_exit; |
| 1672 | } |
| 1673 | |
| 1674 | have_map = (task->map != NULL) && (ml_validate_nofault((vm_offset_t)(task->map), sizeof(struct _vm_map))); |
| 1675 | have_pmap = have_map && (task->map->pmap != NULL) && (ml_validate_nofault((vm_offset_t)(task->map->pmap), sizeof(struct pmap))); |
| 1676 | |
| 1677 | task_pid = pid_from_task(task); |
| 1678 | task_uniqueid = get_task_uniqueid(task); |
| 1679 | |
| 1680 | if (!task->active || task_is_a_corpse(task)) { |
| 1681 | /* |
| 1682 | * Not interested in terminated tasks without threads, and |
| 1683 | * at the moment, stackshot can't handle a task without a name. |
| 1684 | */ |
| 1685 | if (queue_empty(&task->threads) || task_pid == -1) { |
| 1686 | return KERN_SUCCESS; |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | if (collect_delta_stackshot) { |
| 1691 | proc_starttime_kdp(task->bsd_info, NULL, NULL, &task_start_abstime); |
| 1692 | } |
| 1693 | |
| 1694 | /* Trace everything, unless a process was specified */ |
| 1695 | if ((ctx->pid == -1) || (ctx->pid == task_pid)) { |
| 1696 | |
| 1697 | /* add task snapshot marker */ |
| 1698 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
| 1699 | STACKSHOT_KCCONTAINER_TASK, task_uniqueid)); |
| 1700 | |
| 1701 | if (!collect_delta_stackshot || (task_start_abstime == 0) || |
| 1702 | (task_start_abstime > stack_snapshot_delta_since_timestamp)) { |
| 1703 | kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, &task_snap_ss_flags)); |
| 1704 | } else { |
| 1705 | task_delta_stackshot = TRUE; |
| 1706 | kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, &task_snap_ss_flags)); |
| 1707 | } |
| 1708 | |
| 1709 | /* Iterate over task threads */ |
| 1710 | thread_t thread = THREAD_NULL; |
| 1711 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
| 1712 | { |
| 1713 | uint64_t thread_uniqueid; |
| 1714 | |
| 1715 | if ((thread == NULL) || !ml_validate_nofault((vm_offset_t)thread, sizeof(struct thread))) { |
| 1716 | error = KERN_FAILURE; |
| 1717 | goto error_exit; |
| 1718 | } |
| 1719 | |
| 1720 | if (active_kthreads_only_p && thread->kernel_stack == 0) |
| 1721 | continue; |
| 1722 | |
| 1723 | thread_uniqueid = thread_tid(thread); |
| 1724 | |
| 1725 | boolean_t thread_on_core; |
| 1726 | enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, ctx->trace_flags); |
| 1727 | |
| 1728 | switch (thread_classification) { |
| 1729 | case tc_full_snapshot: |
| 1730 | /* add thread marker */ |
| 1731 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
| 1732 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); |
| 1733 | kcd_exit_on_error( |
| 1734 | kcdata_record_thread_snapshot(stackshot_kcdata_p, thread, task, ctx->trace_flags, have_pmap, thread_on_core)); |
| 1735 | |
| 1736 | /* mark end of thread snapshot data */ |
| 1737 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
| 1738 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); |
| 1739 | |
| 1740 | some_thread_ran = TRUE; |
| 1741 | break; |
| 1742 | |
| 1743 | case tc_delta_snapshot: |
| 1744 | num_delta_thread_snapshots++; |
| 1745 | break; |
| 1746 | } |
| 1747 | |
| 1748 | /* We want to report owner information regardless of whether a thread |
| 1749 | * has changed since the last delta, whether it's a normal stackshot, |
| 1750 | * or whether it's nonrunnable */ |
| 1751 | if (save_owner_info && stackshot_thread_has_valid_waitinfo(thread)) |
| 1752 | num_waitinfo_threads++; |
| 1753 | } |
| 1754 | |
| 1755 | struct thread_delta_snapshot_v3 * delta_snapshots = NULL; |
| 1756 | int current_delta_snapshot_index = 0; |
| 1757 | |
| 1758 | if (num_delta_thread_snapshots > 0) { |
| 1759 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT, |
| 1760 | sizeof(struct thread_delta_snapshot_v3), |
| 1761 | num_delta_thread_snapshots, &out_addr)); |
| 1762 | delta_snapshots = (struct thread_delta_snapshot_v3 *)out_addr; |
| 1763 | } |
| 1764 | |
| 1765 | uint64_t * nonrunnable_tids = NULL; |
| 1766 | |
| 1767 | if (num_nonrunnable_threads > 0) { |
| 1768 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_NONRUNNABLE_TIDS, |
| 1769 | sizeof(uint64_t), num_nonrunnable_threads, &out_addr)); |
| 1770 | nonrunnable_tids = (uint64_t *)out_addr; |
| 1771 | } |
| 1772 | |
| 1773 | thread_waitinfo_t *thread_waitinfo = NULL; |
| 1774 | int current_waitinfo_index = 0; |
| 1775 | |
| 1776 | if (num_waitinfo_threads > 0) { |
| 1777 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_WAITINFO, |
| 1778 | sizeof(thread_waitinfo_t), num_waitinfo_threads, &out_addr)); |
| 1779 | thread_waitinfo = (thread_waitinfo_t *)out_addr; |
| 1780 | } |
| 1781 | |
| 1782 | if (num_delta_thread_snapshots > 0 || num_nonrunnable_threads > 0 || num_waitinfo_threads > 0) { |
| 1783 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
| 1784 | { |
| 1785 | if (active_kthreads_only_p && thread->kernel_stack == 0) |
| 1786 | continue; |
| 1787 | |
| 1788 | /* If we want owner info, we should capture it regardless of its classification */ |
| 1789 | if (save_owner_info && stackshot_thread_has_valid_waitinfo(thread)) { |
| 1790 | stackshot_thread_wait_owner_info( |
| 1791 | thread, |
| 1792 | &thread_waitinfo[current_waitinfo_index++]); |
| 1793 | } |
| 1794 | |
| 1795 | boolean_t thread_on_core; |
| 1796 | enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, ctx->trace_flags); |
| 1797 | |
| 1798 | switch (thread_classification) { |
| 1799 | case tc_full_snapshot: |
| 1800 | /* full thread snapshot captured above */ |
| 1801 | continue; |
| 1802 | |
| 1803 | case tc_delta_snapshot: |
| 1804 | kcd_exit_on_error(kcdata_record_thread_delta_snapshot(&delta_snapshots[current_delta_snapshot_index++], |
| 1805 | thread, thread_on_core)); |
| 1806 | break; |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | #if DEBUG || DEVELOPMENT |
| 1811 | if (current_delta_snapshot_index != num_delta_thread_snapshots) { |
| 1812 | panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d" , task, |
| 1813 | num_delta_thread_snapshots, current_delta_snapshot_index); |
| 1814 | } |
| 1815 | if (current_waitinfo_index != num_waitinfo_threads) { |
| 1816 | panic("thread wait info count mismatch while capturing snapshots for task %p. expected %d, found %d" , task, |
| 1817 | num_waitinfo_threads, current_waitinfo_index); |
| 1818 | } |
| 1819 | #endif |
| 1820 | } |
| 1821 | |
| 1822 | #if IMPORTANCE_INHERITANCE |
| 1823 | if (save_donating_pids_p) { |
| 1824 | kcd_exit_on_error( |
| 1825 | ((((mach_vm_address_t)kcd_end_address(stackshot_kcdata_p) + (TASK_IMP_WALK_LIMIT * sizeof(int32_t))) < |
| 1826 | (mach_vm_address_t)kcd_max_address(stackshot_kcdata_p)) |
| 1827 | ? KERN_SUCCESS |
| 1828 | : KERN_RESOURCE_SHORTAGE)); |
| 1829 | saved_count = task_importance_list_pids(task, TASK_IMP_LIST_DONATING_PIDS, |
| 1830 | (void *)kcd_end_address(stackshot_kcdata_p), TASK_IMP_WALK_LIMIT); |
| 1831 | if (saved_count > 0) |
| 1832 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_DONATING_PIDS, |
| 1833 | sizeof(int32_t), saved_count, &out_addr)); |
| 1834 | } |
| 1835 | #endif |
| 1836 | |
| 1837 | if (!collect_delta_stackshot || (num_delta_thread_snapshots != task->thread_count) || !task_delta_stackshot) { |
| 1838 | /* |
| 1839 | * Collect shared cache info and UUID info in these scenarios |
| 1840 | * 1) a full stackshot |
| 1841 | * 2) a delta stackshot where the task started after the previous full stackshot OR |
| 1842 | * any thread from the task has run since the previous full stackshot |
| 1843 | */ |
| 1844 | |
| 1845 | kcd_exit_on_error(kcdata_record_shared_cache_info(stackshot_kcdata_p, task, task_snap_ss_flags)); |
| 1846 | kcd_exit_on_error(kcdata_record_uuid_info(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, task_snap_ss_flags)); |
| 1847 | } |
| 1848 | /* mark end of task snapshot data */ |
| 1849 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, STACKSHOT_KCCONTAINER_TASK, |
| 1850 | task_uniqueid)); |
| 1851 | } |
| 1852 | |
| 1853 | error_exit: |
| 1854 | return error; |
| 1855 | } |
| 1856 | |
| 1857 | |
| 1858 | static kern_return_t |
| 1859 | kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t * pBytesTraced) |
| 1860 | { |
| 1861 | kern_return_t error = KERN_SUCCESS; |
| 1862 | mach_vm_address_t out_addr = 0; |
| 1863 | uint64_t abs_time = 0, abs_time_end = 0; |
| 1864 | uint64_t *abs_time_addr = NULL; |
| 1865 | uint64_t system_state_flags = 0; |
| 1866 | task_t task = TASK_NULL; |
| 1867 | mach_timebase_info_data_t timebase = {0, 0}; |
| 1868 | uint32_t length_to_copy = 0, tmp32 = 0; |
| 1869 | abs_time = mach_absolute_time(); |
| 1870 | |
| 1871 | /* process the flags */ |
| 1872 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
| 1873 | boolean_t use_fault_path = ((trace_flags & (STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_ENABLE_BT_FAULTING)) != 0); |
| 1874 | stack_enable_faulting = (trace_flags & (STACKSHOT_ENABLE_BT_FAULTING)); |
| 1875 | |
| 1876 | #if CONFIG_EMBEDDED |
| 1877 | /* KEXTs can't be described by just a base address on embedded */ |
| 1878 | trace_flags &= ~(STACKSHOT_SAVE_KEXT_LOADINFO); |
| 1879 | #endif |
| 1880 | |
| 1881 | struct stackshot_context ctx = {}; |
| 1882 | ctx.trace_flags = trace_flags; |
| 1883 | ctx.pid = pid; |
| 1884 | |
| 1885 | if (use_fault_path) { |
| 1886 | fault_stats.sfs_pages_faulted_in = 0; |
| 1887 | fault_stats.sfs_time_spent_faulting = 0; |
| 1888 | fault_stats.sfs_stopped_faulting = (uint8_t) FALSE; |
| 1889 | } |
| 1890 | |
| 1891 | if (sizeof(void *) == 8) |
| 1892 | system_state_flags |= kKernel64_p; |
| 1893 | |
| 1894 | if (stackshot_kcdata_p == NULL || pBytesTraced == NULL) { |
| 1895 | error = KERN_INVALID_ARGUMENT; |
| 1896 | goto error_exit; |
| 1897 | } |
| 1898 | |
| 1899 | /* setup mach_absolute_time and timebase info -- copy out in some cases and needed to convert since_timestamp to seconds for proc start time */ |
| 1900 | clock_timebase_info(&timebase); |
| 1901 | |
| 1902 | /* begin saving data into the buffer */ |
| 1903 | *pBytesTraced = 0; |
| 1904 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, trace_flags, "stackshot_in_flags" )); |
| 1905 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, (uint32_t)pid, "stackshot_in_pid" )); |
| 1906 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, system_state_flags, "system_state_flags" )); |
| 1907 | |
| 1908 | #if CONFIG_JETSAM |
| 1909 | tmp32 = memorystatus_get_pressure_status_kdp(); |
| 1910 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_LEVEL, sizeof(uint32_t), &out_addr)); |
| 1911 | stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32)); |
| 1912 | #endif |
| 1913 | |
| 1914 | if (!collect_delta_stackshot) { |
| 1915 | tmp32 = THREAD_POLICY_INTERNAL_STRUCT_VERSION; |
| 1916 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_POLICY_VERSION, sizeof(uint32_t), &out_addr)); |
| 1917 | stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32)); |
| 1918 | |
| 1919 | tmp32 = PAGE_SIZE; |
| 1920 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_KERN_PAGE_SIZE, sizeof(uint32_t), &out_addr)); |
| 1921 | stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32)); |
| 1922 | |
| 1923 | /* save boot-args and osversion string */ |
| 1924 | length_to_copy = MIN((uint32_t)(strlen(version) + 1), OSVERSIZE); |
| 1925 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_OSVERSION, length_to_copy, &out_addr)); |
| 1926 | stackshot_strlcpy((char*)out_addr, &version[0], length_to_copy); |
| 1927 | |
| 1928 | length_to_copy = MIN((uint32_t)(strlen(PE_boot_args()) + 1), OSVERSIZE); |
| 1929 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_BOOTARGS, length_to_copy, &out_addr)); |
| 1930 | stackshot_strlcpy((char*)out_addr, PE_boot_args(), length_to_copy); |
| 1931 | |
| 1932 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_TIMEBASE, sizeof(timebase), &out_addr)); |
| 1933 | stackshot_memcpy((void *)out_addr, &timebase, sizeof(timebase)); |
| 1934 | } else { |
| 1935 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP, sizeof(uint64_t), &out_addr)); |
| 1936 | stackshot_memcpy((void*)out_addr, &stack_snapshot_delta_since_timestamp, sizeof(stack_snapshot_delta_since_timestamp)); |
| 1937 | } |
| 1938 | |
| 1939 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_MACH_ABSOLUTE_TIME, sizeof(uint64_t), &out_addr)); |
| 1940 | abs_time_addr = (uint64_t *)out_addr; |
| 1941 | stackshot_memcpy((void *)abs_time_addr, &abs_time, sizeof(uint64_t)); |
| 1942 | |
| 1943 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_USECS_SINCE_EPOCH, sizeof(uint64_t), &out_addr)); |
| 1944 | stackshot_memcpy((void *)out_addr, &stackshot_microsecs, sizeof(uint64_t)); |
| 1945 | |
| 1946 | /* record system level shared cache load info (if available) */ |
| 1947 | if (!collect_delta_stackshot && init_task_shared_region && |
| 1948 | ml_validate_nofault((vm_offset_t)init_task_shared_region, sizeof(struct vm_shared_region))) { |
| 1949 | struct dyld_uuid_info_64_v2 *sys_shared_cache_info = NULL; |
| 1950 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, |
| 1951 | sizeof(struct dyld_uuid_info_64_v2), &out_addr)); |
| 1952 | sys_shared_cache_info = (struct dyld_uuid_info_64_v2 *)out_addr; |
| 1953 | |
| 1954 | stackshot_memcpy(sys_shared_cache_info->imageUUID, &init_task_shared_region->sr_uuid, sizeof(init_task_shared_region->sr_uuid)); |
| 1955 | sys_shared_cache_info->imageLoadAddress = init_task_shared_region->sr_slide_info.slide; |
| 1956 | sys_shared_cache_info->imageSlidBaseAddress = init_task_shared_region->sr_slide_info.slide + init_task_shared_region->sr_base_address; |
| 1957 | |
| 1958 | if (trace_flags & STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT) { |
| 1959 | /* |
| 1960 | * Include a map of the system shared cache layout if it has been populated |
| 1961 | * (which is only when the system is using a custom shared cache). |
| 1962 | */ |
| 1963 | if (init_task_shared_region->sr_images && ml_validate_nofault((vm_offset_t)init_task_shared_region->sr_images, |
| 1964 | (init_task_shared_region->sr_images_count * sizeof(struct dyld_uuid_info_64)))) { |
| 1965 | assert(init_task_shared_region->sr_images_count != 0); |
| 1966 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT, |
| 1967 | sizeof(struct dyld_uuid_info_64), |
| 1968 | init_task_shared_region->sr_images_count, &out_addr)); |
| 1969 | stackshot_memcpy((void*)out_addr, init_task_shared_region->sr_images, |
| 1970 | (init_task_shared_region->sr_images_count * sizeof(struct dyld_uuid_info_64))); |
| 1971 | } |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | /* Add requested information first */ |
| 1976 | if (trace_flags & STACKSHOT_GET_GLOBAL_MEM_STATS) { |
| 1977 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_GLOBAL_MEM_STATS, sizeof(struct mem_and_io_snapshot), &out_addr)); |
| 1978 | kdp_mem_and_io_snapshot((struct mem_and_io_snapshot *)out_addr); |
| 1979 | } |
| 1980 | |
| 1981 | #if CONFIG_COALITIONS |
| 1982 | int num_coalitions = 0; |
| 1983 | struct jetsam_coalition_snapshot *coalitions = NULL; |
| 1984 | /* Iterate over coalitions */ |
| 1985 | if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) { |
| 1986 | if (coalition_iterate_stackshot(stackshot_coalition_jetsam_count, &num_coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) { |
| 1987 | trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS); |
| 1988 | } |
| 1989 | } |
| 1990 | if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) { |
| 1991 | if (num_coalitions > 0) { |
| 1992 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_COALITION_SNAPSHOT, sizeof(struct jetsam_coalition_snapshot), num_coalitions, &out_addr)); |
| 1993 | coalitions = (struct jetsam_coalition_snapshot*)out_addr; |
| 1994 | } |
| 1995 | |
| 1996 | if (coalition_iterate_stackshot(stackshot_coalition_jetsam_snapshot, coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) { |
| 1997 | error = KERN_FAILURE; |
| 1998 | goto error_exit; |
| 1999 | } |
| 2000 | |
| 2001 | } |
| 2002 | #else |
| 2003 | trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS); |
| 2004 | #endif /* CONFIG_COALITIONS */ |
| 2005 | |
| 2006 | trace_flags &= ~(STACKSHOT_THREAD_GROUP); |
| 2007 | |
| 2008 | |
| 2009 | /* Iterate over tasks */ |
| 2010 | queue_iterate(&tasks, task, task_t, tasks) |
| 2011 | { |
| 2012 | error = kdp_stackshot_record_task(&ctx, task); |
| 2013 | if (error) |
| 2014 | goto error_exit; |
| 2015 | } |
| 2016 | /* |
| 2017 | * Iterate over the tasks in the terminated tasks list. We only inspect |
| 2018 | * tasks that have a valid bsd_info pointer where P_LPEXIT is NOT set. |
| 2019 | * We're only interested in tasks that have remaining threads (which |
| 2020 | * could be involved in a deadlock, etc), and the last thread that tears |
| 2021 | * itself down during exit sets P_LPEXIT during proc_exit(). |
| 2022 | */ |
| 2023 | queue_iterate(&terminated_tasks, task, task_t, tasks) |
| 2024 | { |
| 2025 | if (task->bsd_info && !proc_in_teardown(task->bsd_info)) { |
| 2026 | error = kdp_stackshot_record_task(&ctx, task); |
| 2027 | if (error) |
| 2028 | goto error_exit; |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | if (use_fault_path) { |
| 2033 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS, |
| 2034 | sizeof(struct stackshot_fault_stats), &out_addr)); |
| 2035 | stackshot_memcpy((void*)out_addr, &fault_stats, sizeof(struct stackshot_fault_stats)); |
| 2036 | } |
| 2037 | |
| 2038 | /* update timestamp of the stackshot */ |
| 2039 | abs_time_end = mach_absolute_time(); |
| 2040 | #if DEVELOPMENT || DEBUG |
| 2041 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_DURATION, |
| 2042 | sizeof(struct stackshot_duration), &out_addr)); |
| 2043 | struct stackshot_duration * stackshot_duration = (struct stackshot_duration *)out_addr; |
| 2044 | stackshot_duration->stackshot_duration = (abs_time_end - abs_time); |
| 2045 | stackshot_duration->stackshot_duration_outer = 0; |
| 2046 | stackshot_duration_outer = (unaligned_u64 *)&stackshot_duration->stackshot_duration_outer; |
| 2047 | #endif |
| 2048 | stackshot_memcpy((void *)abs_time_addr, &abs_time_end, sizeof(uint64_t)); |
| 2049 | |
| 2050 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, trace_flags, "stackshot_out_flags" )); |
| 2051 | |
| 2052 | kcd_exit_on_error(kcdata_write_buffer_end(stackshot_kcdata_p)); |
| 2053 | |
| 2054 | /* === END of populating stackshot data === */ |
| 2055 | |
| 2056 | *pBytesTraced = (uint32_t) kcdata_memory_get_used_bytes(stackshot_kcdata_p); |
| 2057 | error_exit: |
| 2058 | |
| 2059 | #if INTERRUPT_MASKED_DEBUG |
| 2060 | if (!panic_stackshot) { |
| 2061 | /* |
| 2062 | * Try to catch instances where stackshot takes too long BEFORE returning from |
| 2063 | * the debugger |
| 2064 | */ |
| 2065 | ml_check_interrupts_disabled_duration(current_thread()); |
| 2066 | } |
| 2067 | #endif |
| 2068 | |
| 2069 | stack_enable_faulting = FALSE; |
| 2070 | |
| 2071 | return error; |
| 2072 | } |
| 2073 | |
| 2074 | static uint64_t |
| 2075 | proc_was_throttled_from_task(task_t task) |
| 2076 | { |
| 2077 | uint64_t was_throttled = 0; |
| 2078 | |
| 2079 | if (task->bsd_info) |
| 2080 | was_throttled = proc_was_throttled(task->bsd_info); |
| 2081 | |
| 2082 | return was_throttled; |
| 2083 | } |
| 2084 | |
| 2085 | static uint64_t |
| 2086 | proc_did_throttle_from_task(task_t task) |
| 2087 | { |
| 2088 | uint64_t did_throttle = 0; |
| 2089 | |
| 2090 | if (task->bsd_info) |
| 2091 | did_throttle = proc_did_throttle(task->bsd_info); |
| 2092 | |
| 2093 | return did_throttle; |
| 2094 | } |
| 2095 | |
| 2096 | static void |
| 2097 | kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap) |
| 2098 | { |
| 2099 | unsigned int pages_reclaimed; |
| 2100 | unsigned int pages_wanted; |
| 2101 | kern_return_t kErr; |
| 2102 | |
| 2103 | processor_t processor; |
| 2104 | vm_statistics64_t stat; |
| 2105 | vm_statistics64_data_t host_vm_stat; |
| 2106 | |
| 2107 | processor = processor_list; |
| 2108 | stat = &PROCESSOR_DATA(processor, vm_stat); |
| 2109 | host_vm_stat = *stat; |
| 2110 | |
| 2111 | if (processor_count > 1) { |
| 2112 | /* |
| 2113 | * processor_list may be in the process of changing as we are |
| 2114 | * attempting a stackshot. Ordinarily it will be lock protected, |
| 2115 | * but it is not safe to lock in the context of the debugger. |
| 2116 | * Fortunately we never remove elements from the processor list, |
| 2117 | * and only add to to the end of the list, so we SHOULD be able |
| 2118 | * to walk it. If we ever want to truly tear down processors, |
| 2119 | * this will have to change. |
| 2120 | */ |
| 2121 | while ((processor = processor->processor_list) != NULL) { |
| 2122 | stat = &PROCESSOR_DATA(processor, vm_stat); |
| 2123 | host_vm_stat.compressions += stat->compressions; |
| 2124 | host_vm_stat.decompressions += stat->decompressions; |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | memio_snap->snapshot_magic = STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC; |
| 2129 | memio_snap->free_pages = vm_page_free_count; |
| 2130 | memio_snap->active_pages = vm_page_active_count; |
| 2131 | memio_snap->inactive_pages = vm_page_inactive_count; |
| 2132 | memio_snap->purgeable_pages = vm_page_purgeable_count; |
| 2133 | memio_snap->wired_pages = vm_page_wire_count; |
| 2134 | memio_snap->speculative_pages = vm_page_speculative_count; |
| 2135 | memio_snap->throttled_pages = vm_page_throttled_count; |
| 2136 | memio_snap->busy_buffer_count = count_busy_buffers(); |
| 2137 | memio_snap->filebacked_pages = vm_page_pageable_external_count; |
| 2138 | memio_snap->compressions = (uint32_t)host_vm_stat.compressions; |
| 2139 | memio_snap->decompressions = (uint32_t)host_vm_stat.decompressions; |
| 2140 | memio_snap->compressor_size = VM_PAGE_COMPRESSOR_COUNT; |
| 2141 | kErr = mach_vm_pressure_monitor(FALSE, VM_PRESSURE_TIME_WINDOW, &pages_reclaimed, &pages_wanted); |
| 2142 | |
| 2143 | if ( ! kErr ) { |
| 2144 | memio_snap->pages_wanted = (uint32_t)pages_wanted; |
| 2145 | memio_snap->pages_reclaimed = (uint32_t)pages_reclaimed; |
| 2146 | memio_snap->pages_wanted_reclaimed_valid = 1; |
| 2147 | } else { |
| 2148 | memio_snap->pages_wanted = 0; |
| 2149 | memio_snap->pages_reclaimed = 0; |
| 2150 | memio_snap->pages_wanted_reclaimed_valid = 0; |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | void |
| 2155 | stackshot_memcpy(void *dst, const void *src, size_t len) |
| 2156 | { |
| 2157 | #if CONFIG_EMBEDDED |
| 2158 | if (panic_stackshot) { |
| 2159 | uint8_t *dest_bytes = (uint8_t *)dst; |
| 2160 | const uint8_t *src_bytes = (const uint8_t *)src; |
| 2161 | for (size_t i = 0; i < len; i++) { |
| 2162 | dest_bytes[i] = src_bytes[i]; |
| 2163 | } |
| 2164 | } else |
| 2165 | #endif |
| 2166 | memcpy(dst, src, len); |
| 2167 | } |
| 2168 | |
| 2169 | size_t |
| 2170 | stackshot_strlcpy(char *dst, const char *src, size_t maxlen) |
| 2171 | { |
| 2172 | const size_t srclen = strlen(src); |
| 2173 | |
| 2174 | if (srclen < maxlen) { |
| 2175 | stackshot_memcpy(dst, src, srclen+1); |
| 2176 | } else if (maxlen != 0) { |
| 2177 | stackshot_memcpy(dst, src, maxlen-1); |
| 2178 | dst[maxlen-1] = '\0'; |
| 2179 | } |
| 2180 | |
| 2181 | return srclen; |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | /* |
| 2186 | * Returns the physical address of the specified map:target address, |
| 2187 | * using the kdp fault path if requested and the page is not resident. |
| 2188 | */ |
| 2189 | vm_offset_t |
| 2190 | kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results) |
| 2191 | { |
| 2192 | vm_offset_t cur_phys_addr; |
| 2193 | unsigned cur_wimg_bits; |
| 2194 | uint64_t fault_start_time = 0; |
| 2195 | |
| 2196 | if (map == VM_MAP_NULL) { |
| 2197 | return 0; |
| 2198 | } |
| 2199 | |
| 2200 | cur_phys_addr = kdp_vtophys(map->pmap, target_addr); |
| 2201 | if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) { |
| 2202 | if (!try_fault || fault_stats.sfs_stopped_faulting) { |
| 2203 | if (kdp_fault_results) |
| 2204 | *kdp_fault_results |= KDP_FAULT_RESULT_PAGED_OUT; |
| 2205 | |
| 2206 | return 0; |
| 2207 | } |
| 2208 | |
| 2209 | /* |
| 2210 | * The pmap doesn't have a valid page so we start at the top level |
| 2211 | * vm map and try a lightweight fault. Update fault path usage stats. |
| 2212 | */ |
| 2213 | fault_start_time = mach_absolute_time(); |
| 2214 | cur_phys_addr = kdp_lightweight_fault(map, (target_addr & ~PAGE_MASK)); |
| 2215 | fault_stats.sfs_time_spent_faulting += (mach_absolute_time() - fault_start_time); |
| 2216 | |
| 2217 | if ((fault_stats.sfs_time_spent_faulting >= fault_stats.sfs_system_max_fault_time) && !panic_stackshot) { |
| 2218 | fault_stats.sfs_stopped_faulting = (uint8_t) TRUE; |
| 2219 | } |
| 2220 | |
| 2221 | cur_phys_addr += (target_addr & PAGE_MASK); |
| 2222 | |
| 2223 | if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) { |
| 2224 | if (kdp_fault_results) |
| 2225 | *kdp_fault_results |= (KDP_FAULT_RESULT_TRIED_FAULT | KDP_FAULT_RESULT_PAGED_OUT); |
| 2226 | |
| 2227 | return 0; |
| 2228 | } |
| 2229 | |
| 2230 | if (kdp_fault_results) |
| 2231 | *kdp_fault_results |= KDP_FAULT_RESULT_FAULTED_IN; |
| 2232 | |
| 2233 | fault_stats.sfs_pages_faulted_in++; |
| 2234 | } else { |
| 2235 | /* |
| 2236 | * This check is done in kdp_lightweight_fault for the fault path. |
| 2237 | */ |
| 2238 | cur_wimg_bits = pmap_cache_attributes((ppnum_t) atop(cur_phys_addr)); |
| 2239 | |
| 2240 | if ((cur_wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { |
| 2241 | return 0; |
| 2242 | } |
| 2243 | } |
| 2244 | |
| 2245 | return cur_phys_addr; |
| 2246 | } |
| 2247 | |
| 2248 | boolean_t |
| 2249 | kdp_copyin_word( |
| 2250 | task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results) |
| 2251 | { |
| 2252 | if (task_has_64Bit_data(task)) { |
| 2253 | return kdp_copyin(task->map, addr, result, sizeof(uint64_t), try_fault, kdp_fault_results); |
| 2254 | } else { |
| 2255 | uint32_t buf; |
| 2256 | boolean_t r = kdp_copyin(task->map, addr, &buf, sizeof(uint32_t), try_fault, kdp_fault_results); |
| 2257 | *result = buf; |
| 2258 | return r; |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | boolean_t |
| 2263 | kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_results) |
| 2264 | { |
| 2265 | size_t rem = size; |
| 2266 | char *kvaddr = dest; |
| 2267 | |
| 2268 | #if CONFIG_EMBEDDED |
| 2269 | /* Identify if destination buffer is in panic storage area */ |
| 2270 | if (panic_stackshot && ((vm_offset_t)dest >= gPanicBase) && ((vm_offset_t)dest < (gPanicBase + gPanicSize))) { |
| 2271 | if (((vm_offset_t)dest + size) > (gPanicBase + gPanicSize)) { |
| 2272 | return FALSE; |
| 2273 | } |
| 2274 | } |
| 2275 | #endif |
| 2276 | |
| 2277 | while (rem) { |
| 2278 | uint64_t phys_src = kdp_find_phys(map, uaddr, try_fault, kdp_fault_results); |
| 2279 | uint64_t phys_dest = kvtophys((vm_offset_t)kvaddr); |
| 2280 | uint64_t src_rem = PAGE_SIZE - (phys_src & PAGE_MASK); |
| 2281 | uint64_t dst_rem = PAGE_SIZE - (phys_dest & PAGE_MASK); |
| 2282 | size_t cur_size = (uint32_t) MIN(src_rem, dst_rem); |
| 2283 | cur_size = MIN(cur_size, rem); |
| 2284 | |
| 2285 | if (phys_src && phys_dest) { |
| 2286 | #if CONFIG_EMBEDDED |
| 2287 | /* |
| 2288 | * On embedded the panic buffer is mapped as device memory and doesn't allow |
| 2289 | * unaligned accesses. To prevent these, we copy over bytes individually here. |
| 2290 | */ |
| 2291 | if (panic_stackshot) |
| 2292 | stackshot_memcpy(kvaddr, (const void *)phystokv(phys_src), cur_size); |
| 2293 | else |
| 2294 | #endif /* CONFIG_EMBEDDED */ |
| 2295 | bcopy_phys(phys_src, phys_dest, cur_size); |
| 2296 | } else { |
| 2297 | break; |
| 2298 | } |
| 2299 | |
| 2300 | uaddr += cur_size; |
| 2301 | kvaddr += cur_size; |
| 2302 | rem -= cur_size; |
| 2303 | } |
| 2304 | |
| 2305 | return (rem == 0); |
| 2306 | } |
| 2307 | |
| 2308 | kern_return_t |
| 2309 | do_stackshot(void *context) |
| 2310 | { |
| 2311 | #pragma unused(context) |
| 2312 | kdp_snapshot++; |
| 2313 | |
| 2314 | stack_snapshot_ret = kdp_stackshot_kcdata_format(stack_snapshot_pid, |
| 2315 | stack_snapshot_flags, |
| 2316 | &stack_snapshot_bytes_traced); |
| 2317 | |
| 2318 | kdp_snapshot--; |
| 2319 | return stack_snapshot_ret; |
| 2320 | } |
| 2321 | |
| 2322 | /* |
| 2323 | * A fantastical routine that tries to be fast about returning |
| 2324 | * translations. Caches the last page we found a translation |
| 2325 | * for, so that we can be quick about multiple queries to the |
| 2326 | * same page. It turns out this is exactly the workflow |
| 2327 | * machine_trace_thread and its relatives tend to throw at us. |
| 2328 | * |
| 2329 | * Please zero the nasty global this uses after a bulk lookup; |
| 2330 | * this isn't safe across a switch of the map or changes |
| 2331 | * to a pmap. |
| 2332 | * |
| 2333 | * This also means that if zero is a valid KVA, we are |
| 2334 | * screwed. Sucks to be us. Fortunately, this should never |
| 2335 | * happen. |
| 2336 | */ |
| 2337 | vm_offset_t |
| 2338 | machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags) |
| 2339 | { |
| 2340 | vm_offset_t cur_target_page; |
| 2341 | vm_offset_t cur_phys_addr; |
| 2342 | vm_offset_t kern_virt_target_addr; |
| 2343 | uint32_t kdp_fault_results = 0; |
| 2344 | |
| 2345 | cur_target_page = atop(cur_target_addr); |
| 2346 | |
| 2347 | if ((cur_target_page != prev_target_page) || validate_next_addr) { |
| 2348 | |
| 2349 | /* |
| 2350 | * Alright; it wasn't our previous page. So |
| 2351 | * we must validate that there is a page |
| 2352 | * table entry for this address under the |
| 2353 | * current pmap, and that it has default |
| 2354 | * cache attributes (otherwise it may not be |
| 2355 | * safe to access it). |
| 2356 | */ |
| 2357 | cur_phys_addr = kdp_find_phys(map, cur_target_addr, stack_enable_faulting, &kdp_fault_results); |
| 2358 | if (thread_trace_flags) { |
| 2359 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
| 2360 | *thread_trace_flags |= kThreadTruncatedBT; |
| 2361 | } |
| 2362 | |
| 2363 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
| 2364 | *thread_trace_flags |= kThreadTriedFaultBT; |
| 2365 | } |
| 2366 | |
| 2367 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
| 2368 | *thread_trace_flags |= kThreadFaultedBT; |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | if (cur_phys_addr == 0) { |
| 2373 | return 0; |
| 2374 | } |
| 2375 | #if __x86_64__ |
| 2376 | kern_virt_target_addr = (vm_offset_t) PHYSMAP_PTOV(cur_phys_addr); |
| 2377 | #elif __arm__ || __arm64__ |
| 2378 | kern_virt_target_addr = phystokv(cur_phys_addr); |
| 2379 | #else |
| 2380 | #error Oh come on... we should really unify the physical -> kernel virtual interface |
| 2381 | #endif |
| 2382 | prev_target_page = cur_target_page; |
| 2383 | prev_target_kva = (kern_virt_target_addr & ~PAGE_MASK); |
| 2384 | validate_next_addr = FALSE; |
| 2385 | } else { |
| 2386 | /* We found a translation, so stash this page */ |
| 2387 | kern_virt_target_addr = prev_target_kva + (cur_target_addr & PAGE_MASK); |
| 2388 | } |
| 2389 | |
| 2390 | #if KASAN |
| 2391 | kasan_notify_address(kern_virt_target_addr, sizeof(uint64_t)); |
| 2392 | #endif |
| 2393 | return kern_virt_target_addr; |
| 2394 | } |
| 2395 | |
| 2396 | void |
| 2397 | machine_trace_thread_clear_validation_cache(void) |
| 2398 | { |
| 2399 | validate_next_addr = TRUE; |
| 2400 | } |
| 2401 | |
| 2402 | boolean_t |
| 2403 | stackshot_thread_is_idle_worker_unsafe(thread_t thread) |
| 2404 | { |
| 2405 | /* When the pthread kext puts a worker thread to sleep, it will |
| 2406 | * set kThreadWaitParkedWorkQueue in the block_hint of the thread |
| 2407 | * struct. See parkit() in kern/kern_support.c in libpthread. |
| 2408 | */ |
| 2409 | return (thread->state & TH_WAIT) && |
| 2410 | (thread->block_hint == kThreadWaitParkedWorkQueue); |
| 2411 | } |
| 2412 | |
| 2413 | #if CONFIG_COALITIONS |
| 2414 | static void |
| 2415 | stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal) |
| 2416 | { |
| 2417 | #pragma unused(i, coal) |
| 2418 | unsigned int *coalition_count = (unsigned int*)arg; |
| 2419 | (*coalition_count)++; |
| 2420 | } |
| 2421 | |
| 2422 | static void |
| 2423 | stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal) |
| 2424 | { |
| 2425 | if (coalition_type(coal) != COALITION_TYPE_JETSAM) |
| 2426 | return; |
| 2427 | |
| 2428 | struct jetsam_coalition_snapshot *coalitions = (struct jetsam_coalition_snapshot*)arg; |
| 2429 | struct jetsam_coalition_snapshot *jcs = &coalitions[i]; |
| 2430 | task_t leader = TASK_NULL; |
| 2431 | jcs->jcs_id = coalition_id(coal); |
| 2432 | jcs->jcs_flags = 0; |
| 2433 | |
| 2434 | if (coalition_term_requested(coal)) |
| 2435 | jcs->jcs_flags |= kCoalitionTermRequested; |
| 2436 | if (coalition_is_terminated(coal)) |
| 2437 | jcs->jcs_flags |= kCoalitionTerminated; |
| 2438 | if (coalition_is_reaped(coal)) |
| 2439 | jcs->jcs_flags |= kCoalitionReaped; |
| 2440 | if (coalition_is_privileged(coal)) |
| 2441 | jcs->jcs_flags |= kCoalitionPrivileged; |
| 2442 | |
| 2443 | |
| 2444 | leader = kdp_coalition_get_leader(coal); |
| 2445 | if (leader) |
| 2446 | jcs->jcs_leader_task_uniqueid = get_task_uniqueid(leader); |
| 2447 | else |
| 2448 | jcs->jcs_leader_task_uniqueid = 0; |
| 2449 | } |
| 2450 | #endif /* CONFIG_COALITIONS */ |
| 2451 | |
| 2452 | |
| 2453 | /* Determine if a thread has waitinfo that stackshot can provide */ |
| 2454 | static int |
| 2455 | stackshot_thread_has_valid_waitinfo(thread_t thread) |
| 2456 | { |
| 2457 | if (!(thread->state & TH_WAIT)) |
| 2458 | return 0; |
| 2459 | |
| 2460 | switch (thread->block_hint) { |
| 2461 | // If set to None or is a parked work queue, ignore it |
| 2462 | case kThreadWaitParkedWorkQueue: |
| 2463 | case kThreadWaitNone: |
| 2464 | return 0; |
| 2465 | // There is a short window where the pthread kext removes a thread |
| 2466 | // from its ksyn wait queue before waking the thread up |
| 2467 | case kThreadWaitPThreadMutex: |
| 2468 | case kThreadWaitPThreadRWLockRead: |
| 2469 | case kThreadWaitPThreadRWLockWrite: |
| 2470 | case kThreadWaitPThreadCondVar: |
| 2471 | return (kdp_pthread_get_thread_kwq(thread) != NULL); |
| 2472 | // All other cases are valid block hints if in a wait state |
| 2473 | default: |
| 2474 | return 1; |
| 2475 | } |
| 2476 | } |
| 2477 | |
| 2478 | static void |
| 2479 | stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_t *waitinfo) |
| 2480 | { |
| 2481 | waitinfo->waiter = thread_tid(thread); |
| 2482 | waitinfo->wait_type = thread->block_hint; |
| 2483 | switch (waitinfo->wait_type) { |
| 2484 | case kThreadWaitKernelMutex: |
| 2485 | kdp_lck_mtx_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2486 | break; |
| 2487 | case kThreadWaitPortReceive: |
| 2488 | kdp_mqueue_recv_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2489 | break; |
| 2490 | case kThreadWaitPortSend: |
| 2491 | kdp_mqueue_send_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2492 | break; |
| 2493 | case kThreadWaitSemaphore: |
| 2494 | kdp_sema_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2495 | break; |
| 2496 | case kThreadWaitUserLock: |
| 2497 | kdp_ulock_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2498 | break; |
| 2499 | case kThreadWaitKernelRWLockRead: |
| 2500 | case kThreadWaitKernelRWLockWrite: |
| 2501 | case kThreadWaitKernelRWLockUpgrade: |
| 2502 | kdp_rwlck_find_owner(thread->waitq, thread->wait_event, waitinfo); |
| 2503 | break; |
| 2504 | case kThreadWaitPThreadMutex: |
| 2505 | case kThreadWaitPThreadRWLockRead: |
| 2506 | case kThreadWaitPThreadRWLockWrite: |
| 2507 | case kThreadWaitPThreadCondVar: |
| 2508 | kdp_pthread_find_owner(thread, waitinfo); |
| 2509 | break; |
| 2510 | case kThreadWaitWorkloopSyncWait: |
| 2511 | kdp_workloop_sync_wait_find_owner(thread, thread->wait_event, waitinfo); |
| 2512 | break; |
| 2513 | case kThreadWaitOnProcess: |
| 2514 | kdp_wait4_find_process(thread, thread->wait_event, waitinfo); |
| 2515 | break; |
| 2516 | default: |
| 2517 | waitinfo->owner = 0; |
| 2518 | waitinfo->context = 0; |
| 2519 | break; |
| 2520 | } |
| 2521 | } |
| 2522 | |
| 2523 | |