1 | /* |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * File: kern/gzalloc.c |
30 | * Author: Derek Kumar |
31 | * |
32 | * "Guard mode" zone allocator, used to trap use-after-free errors, |
33 | * overruns, underruns, mismatched allocations/frees, uninitialized |
34 | * zone element use, timing dependent races etc. |
35 | * |
36 | * The allocator is configured by these boot-args: |
37 | * gzalloc_size=<size>: target all zones with elements of <size> bytes |
38 | * gzalloc_min=<size>: target zones with elements >= size |
39 | * gzalloc_max=<size>: target zones with elements <= size |
40 | * gzalloc_min/max can be specified in conjunction to target a range of |
41 | * sizes |
42 | * gzalloc_fc_size=<size>: number of zone elements (effectively page |
43 | * multiple sized) to retain in the free VA cache. This cache is evicted |
44 | * (backing pages and VA released) in a least-recently-freed fashion. |
45 | * Larger free VA caches allow for a longer window of opportunity to trap |
46 | * delayed use-after-free operations, but use more memory. |
47 | * -gzalloc_wp: Write protect, rather than unmap, freed allocations |
48 | * lingering in the free VA cache. Useful to disambiguate between |
49 | * read-after-frees/read overruns and writes. Also permits direct inspection |
50 | * of the freed element in the cache via the kernel debugger. As each |
51 | * element has a "header" (trailer in underflow detection mode), the zone |
52 | * of origin of the element can be easily determined in this mode. |
53 | * -gzalloc_uf_mode: Underflow detection mode, where the guard page |
54 | * adjoining each element is placed *before* the element page rather than |
55 | * after. The element is also located at the top of the page, rather than |
56 | * abutting the bottom as with the standard overflow detection mode. |
57 | * -gzalloc_noconsistency: disable consistency checks that flag mismatched |
58 | * frees, corruptions of the header/trailer signatures etc. |
59 | * -nogzalloc_mode: Disables the guard mode allocator. The DEBUG kernel |
60 | * enables the guard allocator for zones sized 1K (if present) by |
61 | * default, this option can disable that behaviour. |
62 | * gzname=<name> target a zone by name. Can be coupled with size-based |
63 | * targeting. Naming conventions match those of the zlog boot-arg, i.e. |
64 | * "a period in the logname will match a space in the zone name" |
65 | * -gzalloc_no_dfree_check Eliminate double free checks |
66 | * gzalloc_zscale=<value> specify size multiplier for the dedicated gzalloc submap |
67 | */ |
68 | |
69 | #include <zone_debug.h> |
70 | |
71 | #include <mach/mach_types.h> |
72 | #include <mach/vm_param.h> |
73 | #include <mach/kern_return.h> |
74 | #include <mach/machine/vm_types.h> |
75 | #include <mach_debug/zone_info.h> |
76 | #include <mach/vm_map.h> |
77 | |
78 | #include <kern/kern_types.h> |
79 | #include <kern/assert.h> |
80 | #include <kern/sched.h> |
81 | #include <kern/locks.h> |
82 | #include <kern/misc_protos.h> |
83 | #include <kern/zalloc.h> |
84 | #include <kern/kalloc.h> |
85 | |
86 | #include <vm/pmap.h> |
87 | #include <vm/vm_map.h> |
88 | #include <vm/vm_kern.h> |
89 | #include <vm/vm_page.h> |
90 | |
91 | #include <pexpert/pexpert.h> |
92 | |
93 | #include <machine/machparam.h> |
94 | |
95 | #include <libkern/OSDebug.h> |
96 | #include <libkern/OSAtomic.h> |
97 | #include <sys/kdebug.h> |
98 | |
99 | extern boolean_t vm_kernel_ready, kmem_ready; |
100 | boolean_t gzalloc_mode = FALSE; |
101 | uint32_t pdzalloc_count, pdzfree_count; |
102 | |
103 | #define GZALLOC_MIN_DEFAULT (1024) |
104 | #define GZDEADZONE ((zone_t) 0xDEAD201E) |
105 | #define GZALLOC_SIGNATURE (0xABADCAFE) |
106 | #define GZALLOC_RESERVE_SIZE_DEFAULT (2 * 1024 * 1024) |
107 | #define GZFC_DEFAULT_SIZE (1536) |
108 | |
109 | char gzalloc_fill_pattern = 0x67; /* 'g' */ |
110 | |
111 | uint32_t gzalloc_min = ~0U; |
112 | uint32_t gzalloc_max = 0; |
113 | uint32_t gzalloc_size = 0; |
114 | uint64_t gzalloc_allocated, gzalloc_freed, gzalloc_early_alloc, gzalloc_early_free, gzalloc_wasted; |
115 | boolean_t gzalloc_uf_mode = FALSE, gzalloc_consistency_checks = TRUE, gzalloc_dfree_check = TRUE; |
116 | vm_prot_t gzalloc_prot = VM_PROT_NONE; |
117 | uint32_t gzalloc_guard = KMA_GUARD_LAST; |
118 | uint32_t gzfc_size = GZFC_DEFAULT_SIZE; |
119 | uint32_t gzalloc_zonemap_scale = 6; |
120 | |
121 | vm_map_t gzalloc_map; |
122 | vm_offset_t gzalloc_map_min, gzalloc_map_max; |
123 | vm_offset_t gzalloc_reserve; |
124 | vm_size_t gzalloc_reserve_size; |
125 | |
126 | typedef struct { |
127 | zone_t ; |
128 | uint32_t ; |
129 | uint32_t ; |
130 | } gzhdr_t; |
131 | |
132 | #define (sizeof(gzhdr_t)) |
133 | |
134 | extern zone_t vm_page_zone; |
135 | |
136 | static zone_t gztrackzone = NULL; |
137 | static char gznamedzone[MAX_ZONE_NAME] = "" ; |
138 | |
139 | void gzalloc_reconfigure(__unused zone_t z) { |
140 | /* Nothing for now */ |
141 | } |
142 | |
143 | boolean_t gzalloc_enabled(void) { |
144 | return gzalloc_mode; |
145 | } |
146 | |
147 | static inline boolean_t gzalloc_tracked(zone_t z) { |
148 | return (gzalloc_mode && |
149 | (((z->elem_size >= gzalloc_min) && (z->elem_size <= gzalloc_max)) || (z == gztrackzone)) && |
150 | (z->gzalloc_exempt == 0)); |
151 | } |
152 | |
153 | void gzalloc_zone_init(zone_t z) { |
154 | if (gzalloc_mode) { |
155 | bzero(&z->gz, sizeof(z->gz)); |
156 | |
157 | if (track_this_zone(z->zone_name, gznamedzone)) { |
158 | gztrackzone = z; |
159 | } |
160 | |
161 | if (gzfc_size && |
162 | gzalloc_tracked(z)) { |
163 | vm_size_t gzfcsz = round_page(sizeof(*z->gz.gzfc) * gzfc_size); |
164 | |
165 | /* If the VM/kmem system aren't yet configured, carve |
166 | * out the free element cache structure directly from the |
167 | * gzalloc_reserve supplied by the pmap layer. |
168 | */ |
169 | if (!kmem_ready) { |
170 | if (gzalloc_reserve_size < gzfcsz) |
171 | panic("gzalloc reserve exhausted" ); |
172 | |
173 | z->gz.gzfc = (vm_offset_t *)gzalloc_reserve; |
174 | gzalloc_reserve += gzfcsz; |
175 | gzalloc_reserve_size -= gzfcsz; |
176 | } else { |
177 | kern_return_t kr; |
178 | |
179 | if ((kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&z->gz.gzfc, gzfcsz, 0, KMA_KOBJECT, VM_KERN_MEMORY_OSFMK)) != KERN_SUCCESS) { |
180 | panic("zinit/gzalloc: kernel_memory_allocate failed (%d) for 0x%lx bytes" , kr, (unsigned long) gzfcsz); |
181 | } |
182 | } |
183 | bzero((void *)z->gz.gzfc, gzfcsz); |
184 | } |
185 | } |
186 | } |
187 | |
188 | /* Called by zdestroy() to dump the free cache elements so the zone count can drop to zero. */ |
189 | void gzalloc_empty_free_cache(zone_t zone) { |
190 | if (__improbable(gzalloc_tracked(zone))) { |
191 | kern_return_t kr; |
192 | int freed_elements = 0; |
193 | vm_offset_t free_addr = 0; |
194 | vm_offset_t rounded_size = round_page(zone->elem_size + GZHEADER_SIZE); |
195 | vm_offset_t gzfcsz = round_page(sizeof(*zone->gz.gzfc) * gzfc_size); |
196 | vm_offset_t gzfc_copy; |
197 | |
198 | kr = kmem_alloc(kernel_map, &gzfc_copy, gzfcsz, VM_KERN_MEMORY_OSFMK); |
199 | if (kr != KERN_SUCCESS) { |
200 | panic("gzalloc_empty_free_cache: kmem_alloc: 0x%x" , kr); |
201 | } |
202 | |
203 | /* Reset gzalloc_data. */ |
204 | lock_zone(zone); |
205 | memcpy((void *)gzfc_copy, (void *)zone->gz.gzfc, gzfcsz); |
206 | bzero((void *)zone->gz.gzfc, gzfcsz); |
207 | zone->gz.gzfc_index = 0; |
208 | unlock_zone(zone); |
209 | |
210 | /* Free up all the cached elements. */ |
211 | for (uint32_t index = 0; index < gzfc_size; index++) { |
212 | free_addr = ((vm_offset_t *)gzfc_copy)[index]; |
213 | if (free_addr && free_addr >= gzalloc_map_min && free_addr < gzalloc_map_max) { |
214 | kr = vm_map_remove( |
215 | gzalloc_map, |
216 | free_addr, |
217 | free_addr + rounded_size + (1 * PAGE_SIZE), |
218 | VM_MAP_REMOVE_KUNWIRE); |
219 | if (kr != KERN_SUCCESS) { |
220 | panic("gzalloc_empty_free_cache: vm_map_remove: %p, 0x%x" , (void *)free_addr, kr); |
221 | } |
222 | OSAddAtomic64((SInt32)rounded_size, &gzalloc_freed); |
223 | OSAddAtomic64(-((SInt32) (rounded_size - zone->elem_size)), &gzalloc_wasted); |
224 | |
225 | freed_elements++; |
226 | } |
227 | } |
228 | /* |
229 | * TODO: Consider freeing up zone->gz.gzfc as well if it didn't come from the gzalloc_reserve pool. |
230 | * For now we're reusing this buffer across zdestroy's. We would have to allocate it again on a |
231 | * subsequent zinit() as well. |
232 | */ |
233 | |
234 | /* Decrement zone counters. */ |
235 | lock_zone(zone); |
236 | zone->count -= freed_elements; |
237 | zone->cur_size -= (freed_elements * rounded_size); |
238 | unlock_zone(zone); |
239 | |
240 | kmem_free(kernel_map, gzfc_copy, gzfcsz); |
241 | } |
242 | } |
243 | |
244 | void gzalloc_configure(void) { |
245 | char temp_buf[16]; |
246 | |
247 | if (PE_parse_boot_argn("-gzalloc_mode" , temp_buf, sizeof (temp_buf))) { |
248 | gzalloc_mode = TRUE; |
249 | gzalloc_min = GZALLOC_MIN_DEFAULT; |
250 | gzalloc_max = ~0U; |
251 | } |
252 | |
253 | if (PE_parse_boot_argn("gzalloc_min" , &gzalloc_min, sizeof(gzalloc_min))) { |
254 | gzalloc_mode = TRUE; |
255 | gzalloc_max = ~0U; |
256 | } |
257 | |
258 | if (PE_parse_boot_argn("gzalloc_max" , &gzalloc_max, sizeof(gzalloc_max))) { |
259 | gzalloc_mode = TRUE; |
260 | if (gzalloc_min == ~0U) |
261 | gzalloc_min = 0; |
262 | } |
263 | |
264 | if (PE_parse_boot_argn("gzalloc_size" , &gzalloc_size, sizeof(gzalloc_size))) { |
265 | gzalloc_min = gzalloc_max = gzalloc_size; |
266 | gzalloc_mode = TRUE; |
267 | } |
268 | |
269 | (void)PE_parse_boot_argn("gzalloc_fc_size" , &gzfc_size, sizeof(gzfc_size)); |
270 | |
271 | if (PE_parse_boot_argn("-gzalloc_wp" , temp_buf, sizeof (temp_buf))) { |
272 | gzalloc_prot = VM_PROT_READ; |
273 | } |
274 | |
275 | if (PE_parse_boot_argn("-gzalloc_uf_mode" , temp_buf, sizeof (temp_buf))) { |
276 | gzalloc_uf_mode = TRUE; |
277 | gzalloc_guard = KMA_GUARD_FIRST; |
278 | } |
279 | |
280 | if (PE_parse_boot_argn("-gzalloc_no_dfree_check" , temp_buf, sizeof(temp_buf))) { |
281 | gzalloc_dfree_check = FALSE; |
282 | } |
283 | |
284 | (void) PE_parse_boot_argn("gzalloc_zscale" , &gzalloc_zonemap_scale, sizeof(gzalloc_zonemap_scale)); |
285 | |
286 | if (PE_parse_boot_argn("-gzalloc_noconsistency" , temp_buf, sizeof (temp_buf))) { |
287 | gzalloc_consistency_checks = FALSE; |
288 | } |
289 | |
290 | if (PE_parse_boot_argn("gzname" , gznamedzone, sizeof(gznamedzone))) { |
291 | gzalloc_mode = TRUE; |
292 | } |
293 | #if DEBUG |
294 | if (gzalloc_mode == FALSE) { |
295 | gzalloc_min = 1024; |
296 | gzalloc_max = 1024; |
297 | strlcpy(gznamedzone, "pmap" , sizeof(gznamedzone)); |
298 | gzalloc_prot = VM_PROT_READ; |
299 | gzalloc_mode = TRUE; |
300 | } |
301 | #endif |
302 | if (PE_parse_boot_argn("-nogzalloc_mode" , temp_buf, sizeof (temp_buf))) |
303 | gzalloc_mode = FALSE; |
304 | |
305 | if (gzalloc_mode) { |
306 | gzalloc_reserve_size = GZALLOC_RESERVE_SIZE_DEFAULT; |
307 | gzalloc_reserve = (vm_offset_t) pmap_steal_memory(gzalloc_reserve_size); |
308 | } |
309 | } |
310 | |
311 | void gzalloc_init(vm_size_t max_zonemap_size) { |
312 | kern_return_t retval; |
313 | |
314 | if (gzalloc_mode) { |
315 | vm_map_kernel_flags_t vmk_flags; |
316 | |
317 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
318 | vmk_flags.vmkf_permanent = TRUE; |
319 | retval = kmem_suballoc(kernel_map, &gzalloc_map_min, (max_zonemap_size * gzalloc_zonemap_scale), |
320 | FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE, |
321 | &gzalloc_map); |
322 | |
323 | if (retval != KERN_SUCCESS) { |
324 | panic("zone_init: kmem_suballoc(gzalloc_map, 0x%lx, %u) failed" , max_zonemap_size, gzalloc_zonemap_scale); |
325 | } |
326 | gzalloc_map_max = gzalloc_map_min + (max_zonemap_size * gzalloc_zonemap_scale); |
327 | } |
328 | } |
329 | |
330 | vm_offset_t |
331 | gzalloc_alloc(zone_t zone, boolean_t canblock) { |
332 | vm_offset_t addr = 0; |
333 | |
334 | if (__improbable(gzalloc_tracked(zone))) { |
335 | |
336 | if (get_preemption_level() != 0) { |
337 | if (canblock == TRUE) { |
338 | pdzalloc_count++; |
339 | } |
340 | else |
341 | return 0; |
342 | } |
343 | |
344 | vm_offset_t rounded_size = round_page(zone->elem_size + GZHEADER_SIZE); |
345 | vm_offset_t residue = rounded_size - zone->elem_size; |
346 | vm_offset_t gzaddr = 0; |
347 | gzhdr_t *gzh, *gzhcopy = NULL; |
348 | |
349 | if (!kmem_ready || (vm_page_zone == ZONE_NULL)) { |
350 | /* Early allocations are supplied directly from the |
351 | * reserve. |
352 | */ |
353 | if (gzalloc_reserve_size < (rounded_size + PAGE_SIZE)) |
354 | panic("gzalloc reserve exhausted" ); |
355 | gzaddr = gzalloc_reserve; |
356 | /* No guard page for these early allocations, just |
357 | * waste an additional page. |
358 | */ |
359 | gzalloc_reserve += rounded_size + PAGE_SIZE; |
360 | gzalloc_reserve_size -= rounded_size + PAGE_SIZE; |
361 | OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_alloc); |
362 | } |
363 | else { |
364 | kern_return_t kr = kernel_memory_allocate(gzalloc_map, |
365 | &gzaddr, rounded_size + (1*PAGE_SIZE), |
366 | 0, KMA_KOBJECT | KMA_ATOMIC | gzalloc_guard, |
367 | VM_KERN_MEMORY_OSFMK); |
368 | if (kr != KERN_SUCCESS) |
369 | panic("gzalloc: kernel_memory_allocate for size 0x%llx failed with %d" , (uint64_t)rounded_size, kr); |
370 | |
371 | } |
372 | |
373 | if (gzalloc_uf_mode) { |
374 | gzaddr += PAGE_SIZE; |
375 | /* The "header" becomes a "footer" in underflow |
376 | * mode. |
377 | */ |
378 | gzh = (gzhdr_t *) (gzaddr + zone->elem_size); |
379 | addr = gzaddr; |
380 | gzhcopy = (gzhdr_t *) (gzaddr + rounded_size - sizeof(gzhdr_t)); |
381 | } else { |
382 | gzh = (gzhdr_t *) (gzaddr + residue - GZHEADER_SIZE); |
383 | addr = (gzaddr + residue); |
384 | } |
385 | |
386 | /* Fill with a pattern on allocation to trap uninitialized |
387 | * data use. Since the element size may be "rounded up" |
388 | * by higher layers such as the kalloc layer, this may |
389 | * also identify overruns between the originally requested |
390 | * size and the rounded size via visual inspection. |
391 | * TBD: plumb through the originally requested size, |
392 | * prior to rounding by kalloc/IOMalloc etc. |
393 | * We also add a signature and the zone of origin in a header |
394 | * prefixed to the allocation. |
395 | */ |
396 | memset((void *)gzaddr, gzalloc_fill_pattern, rounded_size); |
397 | |
398 | gzh->gzone = (kmem_ready && vm_page_zone) ? zone : GZDEADZONE; |
399 | gzh->gzsize = (uint32_t) zone->elem_size; |
400 | gzh->gzsig = GZALLOC_SIGNATURE; |
401 | |
402 | /* In underflow detection mode, stash away a copy of the |
403 | * metadata at the edge of the allocated range, for |
404 | * retrieval by gzalloc_element_size() |
405 | */ |
406 | if (gzhcopy) { |
407 | *gzhcopy = *gzh; |
408 | } |
409 | |
410 | lock_zone(zone); |
411 | assert(zone->zone_valid); |
412 | zone->count++; |
413 | zone->sum_count++; |
414 | zone->cur_size += rounded_size; |
415 | unlock_zone(zone); |
416 | |
417 | OSAddAtomic64((SInt32) rounded_size, &gzalloc_allocated); |
418 | OSAddAtomic64((SInt32) (rounded_size - zone->elem_size), &gzalloc_wasted); |
419 | } |
420 | return addr; |
421 | } |
422 | |
423 | boolean_t gzalloc_free(zone_t zone, void *addr) { |
424 | boolean_t gzfreed = FALSE; |
425 | kern_return_t kr; |
426 | |
427 | if (__improbable(gzalloc_tracked(zone))) { |
428 | gzhdr_t *gzh; |
429 | vm_offset_t rounded_size = round_page(zone->elem_size + GZHEADER_SIZE); |
430 | vm_offset_t residue = rounded_size - zone->elem_size; |
431 | vm_offset_t saddr; |
432 | vm_offset_t free_addr = 0; |
433 | |
434 | if (gzalloc_uf_mode) { |
435 | gzh = (gzhdr_t *)((vm_offset_t)addr + zone->elem_size); |
436 | saddr = (vm_offset_t) addr - PAGE_SIZE; |
437 | } else { |
438 | gzh = (gzhdr_t *)((vm_offset_t)addr - GZHEADER_SIZE); |
439 | saddr = ((vm_offset_t)addr) - residue; |
440 | } |
441 | |
442 | if ((saddr & PAGE_MASK) != 0) { |
443 | panic("gzalloc_free: invalid address supplied: %p (adjusted: 0x%lx) for zone with element sized 0x%lx\n" , addr, saddr, zone->elem_size); |
444 | } |
445 | |
446 | if (gzfc_size) { |
447 | if (gzalloc_dfree_check) { |
448 | uint32_t gd; |
449 | |
450 | lock_zone(zone); |
451 | assert(zone->zone_valid); |
452 | for (gd = 0; gd < gzfc_size; gd++) { |
453 | if (zone->gz.gzfc[gd] == saddr) { |
454 | panic("gzalloc: double free detected, freed address: 0x%lx, current free cache index: %d, freed index: %d" , saddr, zone->gz.gzfc_index, gd); |
455 | } |
456 | } |
457 | unlock_zone(zone); |
458 | } |
459 | } |
460 | |
461 | if (gzalloc_consistency_checks) { |
462 | if (gzh->gzsig != GZALLOC_SIGNATURE) { |
463 | panic("GZALLOC signature mismatch for element %p, expected 0x%x, found 0x%x" , addr, GZALLOC_SIGNATURE, gzh->gzsig); |
464 | } |
465 | |
466 | if (gzh->gzone != zone && (gzh->gzone != GZDEADZONE)) |
467 | panic("%s: Mismatched zone or under/overflow, current zone: %p, recorded zone: %p, address: %p" , __FUNCTION__, zone, gzh->gzone, (void *)addr); |
468 | /* Partially redundant given the zone check, but may flag header corruption */ |
469 | if (gzh->gzsize != zone->elem_size) { |
470 | panic("Mismatched zfree or under/overflow for zone %p, recorded size: 0x%x, element size: 0x%x, address: %p\n" , zone, gzh->gzsize, (uint32_t) zone->elem_size, (void *)addr); |
471 | } |
472 | |
473 | char *gzc, *checkstart, *checkend; |
474 | if (gzalloc_uf_mode) { |
475 | checkstart = (char *) ((uintptr_t) gzh + sizeof(gzh)); |
476 | checkend = (char *) ((((vm_offset_t)addr) & ~PAGE_MASK) + PAGE_SIZE); |
477 | } else { |
478 | checkstart = (char *) trunc_page_64(addr); |
479 | checkend = (char *)gzh; |
480 | } |
481 | |
482 | for (gzc = checkstart; gzc < checkend; gzc++) { |
483 | if (*gzc != gzalloc_fill_pattern) { |
484 | panic("GZALLOC: detected over/underflow, byte at %p, element %p, contents 0x%x from 0x%lx byte sized zone (%s) doesn't match fill pattern (%c)" , gzc, addr, *gzc, zone->elem_size, zone->zone_name, gzalloc_fill_pattern); |
485 | } |
486 | } |
487 | } |
488 | |
489 | if (!kmem_ready || gzh->gzone == GZDEADZONE) { |
490 | /* For now, just leak frees of early allocations |
491 | * performed before kmem is fully configured. |
492 | * They don't seem to get freed currently; |
493 | * consider ml_static_mfree in the future. |
494 | */ |
495 | OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_free); |
496 | return TRUE; |
497 | } |
498 | |
499 | if (get_preemption_level() != 0) { |
500 | pdzfree_count++; |
501 | } |
502 | |
503 | if (gzfc_size) { |
504 | /* Either write protect or unmap the newly freed |
505 | * allocation |
506 | */ |
507 | kr = vm_map_protect( |
508 | gzalloc_map, |
509 | saddr, |
510 | saddr + rounded_size + (1 * PAGE_SIZE), |
511 | gzalloc_prot, |
512 | FALSE); |
513 | if (kr != KERN_SUCCESS) |
514 | panic("%s: vm_map_protect: %p, 0x%x" , __FUNCTION__, (void *)saddr, kr); |
515 | } else { |
516 | free_addr = saddr; |
517 | } |
518 | |
519 | lock_zone(zone); |
520 | assert(zone->zone_valid); |
521 | |
522 | /* Insert newly freed element into the protected free element |
523 | * cache, and rotate out the LRU element. |
524 | */ |
525 | if (gzfc_size) { |
526 | if (zone->gz.gzfc_index >= gzfc_size) { |
527 | zone->gz.gzfc_index = 0; |
528 | } |
529 | free_addr = zone->gz.gzfc[zone->gz.gzfc_index]; |
530 | zone->gz.gzfc[zone->gz.gzfc_index++] = saddr; |
531 | } |
532 | |
533 | if (free_addr) { |
534 | zone->count--; |
535 | zone->cur_size -= rounded_size; |
536 | } |
537 | |
538 | unlock_zone(zone); |
539 | |
540 | if (free_addr) { |
541 | // TODO: consider using physical reads to check for |
542 | // corruption while on the protected freelist |
543 | // (i.e. physical corruption) |
544 | kr = vm_map_remove( |
545 | gzalloc_map, |
546 | free_addr, |
547 | free_addr + rounded_size + (1 * PAGE_SIZE), |
548 | VM_MAP_REMOVE_KUNWIRE); |
549 | if (kr != KERN_SUCCESS) |
550 | panic("gzfree: vm_map_remove: %p, 0x%x" , (void *)free_addr, kr); |
551 | // TODO: sysctl-ize for quick reference |
552 | OSAddAtomic64((SInt32)rounded_size, &gzalloc_freed); |
553 | OSAddAtomic64(-((SInt32) (rounded_size - zone->elem_size)), &gzalloc_wasted); |
554 | } |
555 | |
556 | gzfreed = TRUE; |
557 | } |
558 | return gzfreed; |
559 | } |
560 | |
561 | boolean_t gzalloc_element_size(void *gzaddr, zone_t *z, vm_size_t *gzsz) { |
562 | uintptr_t a = (uintptr_t)gzaddr; |
563 | if (__improbable(gzalloc_mode && (a >= gzalloc_map_min) && (a < gzalloc_map_max))) { |
564 | gzhdr_t *gzh; |
565 | boolean_t vmef; |
566 | vm_map_entry_t gzvme = NULL; |
567 | vm_map_lock_read(gzalloc_map); |
568 | vmef = vm_map_lookup_entry(gzalloc_map, (vm_map_offset_t)a, &gzvme); |
569 | vm_map_unlock(gzalloc_map); |
570 | if (vmef == FALSE) { |
571 | panic("GZALLOC: unable to locate map entry for %p\n" , (void *)a); |
572 | } |
573 | assertf(gzvme->vme_atomic != 0, "GZALLOC: VM map entry inconsistency, vme: %p, start: %llu end: %llu" , gzvme, gzvme->vme_start, gzvme->vme_end); |
574 | |
575 | /* Locate the gzalloc metadata adjoining the element */ |
576 | if (gzalloc_uf_mode == TRUE) { |
577 | |
578 | /* In underflow detection mode, locate the map entry describing |
579 | * the element, and then locate the copy of the gzalloc |
580 | * header at the trailing edge of the range. |
581 | */ |
582 | gzh = (gzhdr_t *)(gzvme->vme_end - GZHEADER_SIZE); |
583 | } else { |
584 | /* In overflow detection mode, scan forward from |
585 | * the base of the map entry to locate the |
586 | * gzalloc header. |
587 | */ |
588 | uint32_t *p = (uint32_t*) gzvme->vme_start; |
589 | while (p < (uint32_t *) gzvme->vme_end) { |
590 | if (*p == GZALLOC_SIGNATURE) |
591 | break; |
592 | else { |
593 | p++; |
594 | } |
595 | } |
596 | if (p >= (uint32_t *) gzvme->vme_end) { |
597 | panic("GZALLOC signature missing addr %p, zone %p" , gzaddr, z); |
598 | } |
599 | p++; |
600 | uintptr_t q = (uintptr_t) p; |
601 | gzh = (gzhdr_t *) (q - sizeof(gzhdr_t)); |
602 | } |
603 | |
604 | if (gzh->gzsig != GZALLOC_SIGNATURE) { |
605 | panic("GZALLOC signature mismatch for element %p, expected 0x%x, found 0x%x" , (void *)a, GZALLOC_SIGNATURE, gzh->gzsig); |
606 | } |
607 | |
608 | *gzsz = gzh->gzone->elem_size; |
609 | if (__improbable((gzalloc_tracked(gzh->gzone)) == FALSE)) { |
610 | panic("GZALLOC: zone mismatch (%p)\n" , gzh->gzone); |
611 | } |
612 | |
613 | if (z) { |
614 | *z = gzh->gzone; |
615 | } |
616 | return TRUE; |
617 | } else { |
618 | return FALSE; |
619 | } |
620 | } |
621 | |