| 1 | /* |
| 2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | |
| 32 | #include <mach_kdp.h> |
| 33 | #include <kdp/kdp_internal.h> |
| 34 | #include <mach_ldebug.h> |
| 35 | #include <gprof.h> |
| 36 | |
| 37 | #include <mach/mach_types.h> |
| 38 | #include <mach/kern_return.h> |
| 39 | |
| 40 | #include <kern/kern_types.h> |
| 41 | #include <kern/startup.h> |
| 42 | #include <kern/timer_queue.h> |
| 43 | #include <kern/processor.h> |
| 44 | #include <kern/cpu_number.h> |
| 45 | #include <kern/cpu_data.h> |
| 46 | #include <kern/assert.h> |
| 47 | #include <kern/machine.h> |
| 48 | #include <kern/pms.h> |
| 49 | #include <kern/misc_protos.h> |
| 50 | #include <kern/timer_call.h> |
| 51 | #include <kern/kalloc.h> |
| 52 | #include <kern/queue.h> |
| 53 | #include <prng/random.h> |
| 54 | |
| 55 | #include <vm/vm_map.h> |
| 56 | #include <vm/vm_kern.h> |
| 57 | |
| 58 | #include <profiling/profile-mk.h> |
| 59 | |
| 60 | #include <i386/bit_routines.h> |
| 61 | #include <i386/proc_reg.h> |
| 62 | #include <i386/cpu_threads.h> |
| 63 | #include <i386/mp_desc.h> |
| 64 | #include <i386/misc_protos.h> |
| 65 | #include <i386/trap.h> |
| 66 | #include <i386/postcode.h> |
| 67 | #include <i386/machine_routines.h> |
| 68 | #include <i386/mp.h> |
| 69 | #include <i386/mp_events.h> |
| 70 | #include <i386/lapic.h> |
| 71 | #include <i386/cpuid.h> |
| 72 | #include <i386/fpu.h> |
| 73 | #include <i386/machine_cpu.h> |
| 74 | #include <i386/pmCPU.h> |
| 75 | #if CONFIG_MCA |
| 76 | #include <i386/machine_check.h> |
| 77 | #endif |
| 78 | #include <i386/acpi.h> |
| 79 | |
| 80 | #include <sys/kdebug.h> |
| 81 | |
| 82 | #include <console/serial_protos.h> |
| 83 | |
| 84 | #if MONOTONIC |
| 85 | #include <kern/monotonic.h> |
| 86 | #endif /* MONOTONIC */ |
| 87 | |
| 88 | #if MP_DEBUG |
| 89 | #define PAUSE delay(1000000) |
| 90 | #define DBG(x...) kprintf(x) |
| 91 | #else |
| 92 | #define DBG(x...) |
| 93 | #define PAUSE |
| 94 | #endif /* MP_DEBUG */ |
| 95 | |
| 96 | /* Debugging/test trace events: */ |
| 97 | #define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0) |
| 98 | #define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1) |
| 99 | #define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2) |
| 100 | #define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3) |
| 101 | #define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4) |
| 102 | #define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5) |
| 103 | #define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6) |
| 104 | #define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7) |
| 105 | |
| 106 | #define ABS(v) (((v) > 0)?(v):-(v)) |
| 107 | |
| 108 | void slave_boot_init(void); |
| 109 | void i386_cpu_IPI(int cpu); |
| 110 | |
| 111 | #if MACH_KDP |
| 112 | static void mp_kdp_wait(boolean_t flush, boolean_t isNMI); |
| 113 | #endif /* MACH_KDP */ |
| 114 | |
| 115 | #if MACH_KDP |
| 116 | static boolean_t cpu_signal_pending(int cpu, mp_event_t event); |
| 117 | #endif /* MACH_KDP */ |
| 118 | static int NMIInterruptHandler(x86_saved_state_t *regs); |
| 119 | |
| 120 | boolean_t smp_initialized = FALSE; |
| 121 | uint32_t TSC_sync_margin = 0xFFF; |
| 122 | volatile boolean_t force_immediate_debugger_NMI = FALSE; |
| 123 | volatile boolean_t pmap_tlb_flush_timeout = FALSE; |
| 124 | #if DEBUG || DEVELOPMENT |
| 125 | boolean_t mp_interrupt_watchdog_enabled = TRUE; |
| 126 | uint32_t mp_interrupt_watchdog_events = 0; |
| 127 | #endif |
| 128 | |
| 129 | decl_simple_lock_data(,debugger_callback_lock); |
| 130 | struct debugger_callback *debugger_callback = NULL; |
| 131 | |
| 132 | decl_lck_mtx_data(static, mp_cpu_boot_lock); |
| 133 | lck_mtx_ext_t mp_cpu_boot_lock_ext; |
| 134 | |
| 135 | /* Variables needed for MP rendezvous. */ |
| 136 | decl_simple_lock_data(,mp_rv_lock); |
| 137 | static void (*mp_rv_setup_func)(void *arg); |
| 138 | static void (*mp_rv_action_func)(void *arg); |
| 139 | static void (*mp_rv_teardown_func)(void *arg); |
| 140 | static void *mp_rv_func_arg; |
| 141 | static volatile int mp_rv_ncpus; |
| 142 | /* Cache-aligned barriers: */ |
| 143 | static volatile long mp_rv_entry __attribute__((aligned(64))); |
| 144 | static volatile long mp_rv_exit __attribute__((aligned(64))); |
| 145 | static volatile long mp_rv_complete __attribute__((aligned(64))); |
| 146 | |
| 147 | volatile uint64_t debugger_entry_time; |
| 148 | volatile uint64_t debugger_exit_time; |
| 149 | #if MACH_KDP |
| 150 | #include <kdp/kdp.h> |
| 151 | extern int kdp_snapshot; |
| 152 | static struct _kdp_xcpu_call_func { |
| 153 | kdp_x86_xcpu_func_t func; |
| 154 | void *arg0, *arg1; |
| 155 | volatile long ret; |
| 156 | volatile uint16_t cpu; |
| 157 | } kdp_xcpu_call_func = { |
| 158 | .cpu = KDP_XCPU_NONE |
| 159 | }; |
| 160 | |
| 161 | #endif |
| 162 | |
| 163 | /* Variables needed for MP broadcast. */ |
| 164 | static void (*mp_bc_action_func)(void *arg); |
| 165 | static void *mp_bc_func_arg; |
| 166 | static int mp_bc_ncpus; |
| 167 | static volatile long mp_bc_count; |
| 168 | decl_lck_mtx_data(static, mp_bc_lock); |
| 169 | lck_mtx_ext_t mp_bc_lock_ext; |
| 170 | static volatile int debugger_cpu = -1; |
| 171 | volatile long NMIPI_acks = 0; |
| 172 | volatile long NMI_count = 0; |
| 173 | static NMI_reason_t NMI_panic_reason = NONE; |
| 174 | static int vector_timed_out; |
| 175 | |
| 176 | extern void NMI_cpus(void); |
| 177 | |
| 178 | static void mp_cpus_call_init(void); |
| 179 | static void mp_cpus_call_action(void); |
| 180 | static void mp_call_PM(void); |
| 181 | |
| 182 | char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init |
| 183 | |
| 184 | /* PAL-related routines */ |
| 185 | boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler, |
| 186 | int ipi_vector, i386_intr_func_t ipi_handler); |
| 187 | void i386_start_cpu(int lapic_id, int cpu_num); |
| 188 | void i386_send_NMI(int cpu); |
| 189 | void NMIPI_enable(boolean_t); |
| 190 | #if GPROF |
| 191 | /* |
| 192 | * Initialize dummy structs for profiling. These aren't used but |
| 193 | * allows hertz_tick() to be built with GPROF defined. |
| 194 | */ |
| 195 | struct profile_vars _profile_vars; |
| 196 | struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars }; |
| 197 | #define GPROF_INIT() \ |
| 198 | { \ |
| 199 | int i; \ |
| 200 | \ |
| 201 | /* Hack to initialize pointers to unused profiling structs */ \ |
| 202 | for (i = 1; i < MAX_CPUS; i++) \ |
| 203 | _profile_vars_cpus[i] = &_profile_vars; \ |
| 204 | } |
| 205 | #else |
| 206 | #define GPROF_INIT() |
| 207 | #endif /* GPROF */ |
| 208 | |
| 209 | static lck_grp_t smp_lck_grp; |
| 210 | static lck_grp_attr_t smp_lck_grp_attr; |
| 211 | |
| 212 | #define NUM_CPU_WARM_CALLS 20 |
| 213 | struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS]; |
| 214 | queue_head_t cpu_warm_call_list; |
| 215 | decl_simple_lock_data(static, cpu_warm_lock); |
| 216 | |
| 217 | typedef struct cpu_warm_data { |
| 218 | timer_call_t cwd_call; |
| 219 | uint64_t cwd_deadline; |
| 220 | int cwd_result; |
| 221 | } *cpu_warm_data_t; |
| 222 | |
| 223 | static void cpu_prewarm_init(void); |
| 224 | static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1); |
| 225 | static void _cpu_warm_setup(void *arg); |
| 226 | static timer_call_t grab_warm_timer_call(void); |
| 227 | static void free_warm_timer_call(timer_call_t call); |
| 228 | |
| 229 | void |
| 230 | smp_init(void) |
| 231 | { |
| 232 | simple_lock_init(&mp_rv_lock, 0); |
| 233 | simple_lock_init(&debugger_callback_lock, 0); |
| 234 | lck_grp_attr_setdefault(&smp_lck_grp_attr); |
| 235 | lck_grp_init(&smp_lck_grp, "i386_smp" , &smp_lck_grp_attr); |
| 236 | lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL); |
| 237 | lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL); |
| 238 | console_init(); |
| 239 | |
| 240 | if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler, |
| 241 | LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler)) |
| 242 | return; |
| 243 | |
| 244 | cpu_thread_init(); |
| 245 | |
| 246 | GPROF_INIT(); |
| 247 | DBGLOG_CPU_INIT(master_cpu); |
| 248 | |
| 249 | mp_cpus_call_init(); |
| 250 | mp_cpus_call_cpu_init(master_cpu); |
| 251 | |
| 252 | #if DEBUG || DEVELOPMENT |
| 253 | if (PE_parse_boot_argn("interrupt_watchdog" , |
| 254 | &mp_interrupt_watchdog_enabled, |
| 255 | sizeof(mp_interrupt_watchdog_enabled))) { |
| 256 | kprintf("Interrupt watchdog %sabled\n" , |
| 257 | mp_interrupt_watchdog_enabled ? "en" : "dis" ); |
| 258 | } |
| 259 | #endif |
| 260 | |
| 261 | if (PE_parse_boot_argn("TSC_sync_margin" , |
| 262 | &TSC_sync_margin, sizeof(TSC_sync_margin))) { |
| 263 | kprintf("TSC sync Margin 0x%x\n" , TSC_sync_margin); |
| 264 | } else if (cpuid_vmm_present()) { |
| 265 | kprintf("TSC sync margin disabled\n" ); |
| 266 | TSC_sync_margin = 0; |
| 267 | } |
| 268 | smp_initialized = TRUE; |
| 269 | |
| 270 | cpu_prewarm_init(); |
| 271 | |
| 272 | return; |
| 273 | } |
| 274 | |
| 275 | typedef struct { |
| 276 | int target_cpu; |
| 277 | int target_lapic; |
| 278 | int starter_cpu; |
| 279 | } processor_start_info_t; |
| 280 | static processor_start_info_t start_info __attribute__((aligned(64))); |
| 281 | |
| 282 | /* |
| 283 | * Cache-alignment is to avoid cross-cpu false-sharing interference. |
| 284 | */ |
| 285 | static volatile long tsc_entry_barrier __attribute__((aligned(64))); |
| 286 | static volatile long tsc_exit_barrier __attribute__((aligned(64))); |
| 287 | static volatile uint64_t tsc_target __attribute__((aligned(64))); |
| 288 | |
| 289 | /* |
| 290 | * Poll a CPU to see when it has marked itself as running. |
| 291 | */ |
| 292 | static void |
| 293 | mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay) |
| 294 | { |
| 295 | while (iters-- > 0) { |
| 296 | if (cpu_datap(slot_num)->cpu_running) |
| 297 | break; |
| 298 | delay(usecdelay); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * Quickly bring a CPU back online which has been halted. |
| 304 | */ |
| 305 | kern_return_t |
| 306 | intel_startCPU_fast(int slot_num) |
| 307 | { |
| 308 | kern_return_t rc; |
| 309 | |
| 310 | /* |
| 311 | * Try to perform a fast restart |
| 312 | */ |
| 313 | rc = pmCPUExitHalt(slot_num); |
| 314 | if (rc != KERN_SUCCESS) |
| 315 | /* |
| 316 | * The CPU was not eligible for a fast restart. |
| 317 | */ |
| 318 | return(rc); |
| 319 | |
| 320 | KERNEL_DEBUG_CONSTANT( |
| 321 | TRACE_MP_CPU_FAST_START | DBG_FUNC_START, |
| 322 | slot_num, 0, 0, 0, 0); |
| 323 | |
| 324 | /* |
| 325 | * Wait until the CPU is back online. |
| 326 | */ |
| 327 | mp_disable_preemption(); |
| 328 | |
| 329 | /* |
| 330 | * We use short pauses (1us) for low latency. 30,000 iterations is |
| 331 | * longer than a full restart would require so it should be more |
| 332 | * than long enough. |
| 333 | */ |
| 334 | |
| 335 | mp_wait_for_cpu_up(slot_num, 30000, 1); |
| 336 | mp_enable_preemption(); |
| 337 | |
| 338 | KERNEL_DEBUG_CONSTANT( |
| 339 | TRACE_MP_CPU_FAST_START | DBG_FUNC_END, |
| 340 | slot_num, cpu_datap(slot_num)->cpu_running, 0, 0, 0); |
| 341 | |
| 342 | /* |
| 343 | * Check to make sure that the CPU is really running. If not, |
| 344 | * go through the slow path. |
| 345 | */ |
| 346 | if (cpu_datap(slot_num)->cpu_running) |
| 347 | return(KERN_SUCCESS); |
| 348 | else |
| 349 | return(KERN_FAILURE); |
| 350 | } |
| 351 | |
| 352 | static void |
| 353 | started_cpu(void) |
| 354 | { |
| 355 | /* Here on the started cpu with cpu_running set TRUE */ |
| 356 | |
| 357 | if (TSC_sync_margin && |
| 358 | start_info.target_cpu == cpu_number()) { |
| 359 | /* |
| 360 | * I've just started-up, synchronize again with the starter cpu |
| 361 | * and then snap my TSC. |
| 362 | */ |
| 363 | tsc_target = 0; |
| 364 | atomic_decl(&tsc_entry_barrier, 1); |
| 365 | while (tsc_entry_barrier != 0) |
| 366 | ; /* spin for starter and target at barrier */ |
| 367 | tsc_target = rdtsc64(); |
| 368 | atomic_decl(&tsc_exit_barrier, 1); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | static void |
| 373 | start_cpu(void *arg) |
| 374 | { |
| 375 | int i = 1000; |
| 376 | processor_start_info_t *psip = (processor_start_info_t *) arg; |
| 377 | |
| 378 | /* Ignore this if the current processor is not the starter */ |
| 379 | if (cpu_number() != psip->starter_cpu) |
| 380 | return; |
| 381 | |
| 382 | DBG("start_cpu(%p) about to start cpu %d, lapic %d\n" , |
| 383 | arg, psip->target_cpu, psip->target_lapic); |
| 384 | |
| 385 | KERNEL_DEBUG_CONSTANT( |
| 386 | TRACE_MP_CPU_START | DBG_FUNC_START, |
| 387 | psip->target_cpu, |
| 388 | psip->target_lapic, 0, 0, 0); |
| 389 | |
| 390 | i386_start_cpu(psip->target_lapic, psip->target_cpu); |
| 391 | |
| 392 | #ifdef POSTCODE_DELAY |
| 393 | /* Wait much longer if postcodes are displayed for a delay period. */ |
| 394 | i *= 10000; |
| 395 | #endif |
| 396 | DBG("start_cpu(%p) about to wait for cpu %d\n" , |
| 397 | arg, psip->target_cpu); |
| 398 | |
| 399 | mp_wait_for_cpu_up(psip->target_cpu, i*100, 100); |
| 400 | |
| 401 | KERNEL_DEBUG_CONSTANT( |
| 402 | TRACE_MP_CPU_START | DBG_FUNC_END, |
| 403 | psip->target_cpu, |
| 404 | cpu_datap(psip->target_cpu)->cpu_running, 0, 0, 0); |
| 405 | |
| 406 | if (TSC_sync_margin && |
| 407 | cpu_datap(psip->target_cpu)->cpu_running) { |
| 408 | /* |
| 409 | * Compare the TSC from the started processor with ours. |
| 410 | * Report and log/panic if it diverges by more than |
| 411 | * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin |
| 412 | * can be overriden by boot-arg (with 0 meaning no checking). |
| 413 | */ |
| 414 | uint64_t tsc_starter; |
| 415 | int64_t tsc_delta; |
| 416 | atomic_decl(&tsc_entry_barrier, 1); |
| 417 | while (tsc_entry_barrier != 0) |
| 418 | ; /* spin for both processors at barrier */ |
| 419 | tsc_starter = rdtsc64(); |
| 420 | atomic_decl(&tsc_exit_barrier, 1); |
| 421 | while (tsc_exit_barrier != 0) |
| 422 | ; /* spin for target to store its TSC */ |
| 423 | tsc_delta = tsc_target - tsc_starter; |
| 424 | kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n" , |
| 425 | psip->target_cpu, tsc_target, tsc_delta, tsc_delta); |
| 426 | if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) { |
| 427 | #if DEBUG |
| 428 | panic( |
| 429 | #else |
| 430 | printf( |
| 431 | #endif |
| 432 | "Unsynchronized TSC for cpu %d: " |
| 433 | "0x%016llx, delta 0x%llx\n" , |
| 434 | psip->target_cpu, tsc_target, tsc_delta); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | kern_return_t |
| 440 | intel_startCPU( |
| 441 | int slot_num) |
| 442 | { |
| 443 | int lapic = cpu_to_lapic[slot_num]; |
| 444 | boolean_t istate; |
| 445 | |
| 446 | assert(lapic != -1); |
| 447 | |
| 448 | DBGLOG_CPU_INIT(slot_num); |
| 449 | |
| 450 | DBG("intel_startCPU(%d) lapic_id=%d\n" , slot_num, lapic); |
| 451 | DBG("IdlePTD(%p): 0x%x\n" , &IdlePTD, (int) (uintptr_t)IdlePTD); |
| 452 | |
| 453 | /* |
| 454 | * Initialize (or re-initialize) the descriptor tables for this cpu. |
| 455 | * Propagate processor mode to slave. |
| 456 | */ |
| 457 | cpu_desc_init(cpu_datap(slot_num)); |
| 458 | |
| 459 | /* Serialize use of the slave boot stack, etc. */ |
| 460 | lck_mtx_lock(&mp_cpu_boot_lock); |
| 461 | |
| 462 | istate = ml_set_interrupts_enabled(FALSE); |
| 463 | if (slot_num == get_cpu_number()) { |
| 464 | ml_set_interrupts_enabled(istate); |
| 465 | lck_mtx_unlock(&mp_cpu_boot_lock); |
| 466 | return KERN_SUCCESS; |
| 467 | } |
| 468 | |
| 469 | start_info.starter_cpu = cpu_number(); |
| 470 | start_info.target_cpu = slot_num; |
| 471 | start_info.target_lapic = lapic; |
| 472 | tsc_entry_barrier = 2; |
| 473 | tsc_exit_barrier = 2; |
| 474 | |
| 475 | /* |
| 476 | * Perform the processor startup sequence with all running |
| 477 | * processors rendezvous'ed. This is required during periods when |
| 478 | * the cache-disable bit is set for MTRR/PAT initialization. |
| 479 | */ |
| 480 | mp_rendezvous_no_intrs(start_cpu, (void *) &start_info); |
| 481 | |
| 482 | start_info.target_cpu = 0; |
| 483 | |
| 484 | ml_set_interrupts_enabled(istate); |
| 485 | lck_mtx_unlock(&mp_cpu_boot_lock); |
| 486 | |
| 487 | if (!cpu_datap(slot_num)->cpu_running) { |
| 488 | kprintf("Failed to start CPU %02d\n" , slot_num); |
| 489 | printf("Failed to start CPU %02d, rebooting...\n" , slot_num); |
| 490 | delay(1000000); |
| 491 | halt_cpu(); |
| 492 | return KERN_SUCCESS; |
| 493 | } else { |
| 494 | kprintf("Started cpu %d (lapic id %08x)\n" , slot_num, lapic); |
| 495 | return KERN_SUCCESS; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | #if MP_DEBUG |
| 500 | cpu_signal_event_log_t *cpu_signal[MAX_CPUS]; |
| 501 | cpu_signal_event_log_t *cpu_handle[MAX_CPUS]; |
| 502 | |
| 503 | MP_EVENT_NAME_DECL(); |
| 504 | |
| 505 | #endif /* MP_DEBUG */ |
| 506 | |
| 507 | /* |
| 508 | * Note: called with NULL state when polling for TLB flush and cross-calls. |
| 509 | */ |
| 510 | int |
| 511 | cpu_signal_handler(x86_saved_state_t *regs) |
| 512 | { |
| 513 | #if !MACH_KDP |
| 514 | #pragma unused (regs) |
| 515 | #endif /* !MACH_KDP */ |
| 516 | int my_cpu; |
| 517 | volatile int *my_word; |
| 518 | |
| 519 | SCHED_STATS_IPI(current_processor()); |
| 520 | |
| 521 | my_cpu = cpu_number(); |
| 522 | my_word = &cpu_data_ptr[my_cpu]->cpu_signals; |
| 523 | /* Store the initial set of signals for diagnostics. New |
| 524 | * signals could arrive while these are being processed |
| 525 | * so it's no more than a hint. |
| 526 | */ |
| 527 | |
| 528 | cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word; |
| 529 | |
| 530 | do { |
| 531 | #if MACH_KDP |
| 532 | if (i_bit(MP_KDP, my_word)) { |
| 533 | DBGLOG(cpu_handle,my_cpu,MP_KDP); |
| 534 | i_bit_clear(MP_KDP, my_word); |
| 535 | /* Ensure that the i386_kernel_state at the base of the |
| 536 | * current thread's stack (if any) is synchronized with the |
| 537 | * context at the moment of the interrupt, to facilitate |
| 538 | * access through the debugger. |
| 539 | */ |
| 540 | sync_iss_to_iks(regs); |
| 541 | if (pmsafe_debug && !kdp_snapshot) |
| 542 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); |
| 543 | mp_kdp_wait(TRUE, FALSE); |
| 544 | if (pmsafe_debug && !kdp_snapshot) |
| 545 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); |
| 546 | } else |
| 547 | #endif /* MACH_KDP */ |
| 548 | if (i_bit(MP_TLB_FLUSH, my_word)) { |
| 549 | DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH); |
| 550 | i_bit_clear(MP_TLB_FLUSH, my_word); |
| 551 | pmap_update_interrupt(); |
| 552 | } else if (i_bit(MP_CALL, my_word)) { |
| 553 | DBGLOG(cpu_handle,my_cpu,MP_CALL); |
| 554 | i_bit_clear(MP_CALL, my_word); |
| 555 | mp_cpus_call_action(); |
| 556 | } else if (i_bit(MP_CALL_PM, my_word)) { |
| 557 | DBGLOG(cpu_handle,my_cpu,MP_CALL_PM); |
| 558 | i_bit_clear(MP_CALL_PM, my_word); |
| 559 | mp_call_PM(); |
| 560 | } |
| 561 | if (regs == NULL) { |
| 562 | /* Called to poll only for cross-calls and TLB flush */ |
| 563 | break; |
| 564 | } else if (i_bit(MP_AST, my_word)) { |
| 565 | DBGLOG(cpu_handle,my_cpu,MP_AST); |
| 566 | i_bit_clear(MP_AST, my_word); |
| 567 | ast_check(cpu_to_processor(my_cpu)); |
| 568 | } |
| 569 | } while (*my_word); |
| 570 | |
| 571 | return 0; |
| 572 | } |
| 573 | |
| 574 | extern void kprintf_break_lock(void); |
| 575 | int |
| 576 | NMIInterruptHandler(x86_saved_state_t *regs) |
| 577 | { |
| 578 | void *stackptr; |
| 579 | char pstr[192]; |
| 580 | uint64_t now = mach_absolute_time(); |
| 581 | |
| 582 | if (panic_active() && !panicDebugging) { |
| 583 | if (pmsafe_debug) |
| 584 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); |
| 585 | for(;;) |
| 586 | cpu_pause(); |
| 587 | } |
| 588 | |
| 589 | atomic_incl(&NMIPI_acks, 1); |
| 590 | atomic_incl(&NMI_count, 1); |
| 591 | sync_iss_to_iks_unconditionally(regs); |
| 592 | __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr)); |
| 593 | |
| 594 | if (cpu_number() == debugger_cpu) |
| 595 | goto NMExit; |
| 596 | |
| 597 | if (NMI_panic_reason == SPINLOCK_TIMEOUT) { |
| 598 | snprintf(&pstr[0], sizeof(pstr), |
| 599 | "Panic(CPU %d, time %llu): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n" , |
| 600 | cpu_number(), now, spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu); |
| 601 | panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs); |
| 602 | } else if (NMI_panic_reason == TLB_FLUSH_TIMEOUT) { |
| 603 | snprintf(&pstr[0], sizeof(pstr), |
| 604 | "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: TLB flush timeout, TLB state:0x%x\n" , |
| 605 | cpu_number(), now, current_cpu_datap()->cpu_tlb_invalid); |
| 606 | panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs); |
| 607 | } else if (NMI_panic_reason == CROSSCALL_TIMEOUT) { |
| 608 | snprintf(&pstr[0], sizeof(pstr), |
| 609 | "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: cross-call timeout\n" , |
| 610 | cpu_number(), now); |
| 611 | panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs); |
| 612 | } else if (NMI_panic_reason == INTERRUPT_WATCHDOG) { |
| 613 | snprintf(&pstr[0], sizeof(pstr), |
| 614 | "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: interrupt watchdog for vector 0x%x\n" , |
| 615 | cpu_number(), now, vector_timed_out); |
| 616 | panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs); |
| 617 | } |
| 618 | |
| 619 | #if MACH_KDP |
| 620 | if (pmsafe_debug && !kdp_snapshot) |
| 621 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); |
| 622 | current_cpu_datap()->cpu_NMI_acknowledged = TRUE; |
| 623 | i_bit_clear(MP_KDP, ¤t_cpu_datap()->cpu_signals); |
| 624 | if (panic_active() || NMI_panic_reason != NONE) { |
| 625 | mp_kdp_wait(FALSE, TRUE); |
| 626 | } else if (!mp_kdp_trap && |
| 627 | !mp_kdp_is_NMI && |
| 628 | virtualized && (debug_boot_arg & DB_NMI)) { |
| 629 | /* |
| 630 | * Under a VMM with the debug boot-arg set, drop into kdp. |
| 631 | * Since an NMI is involved, there's a risk of contending with |
| 632 | * a panic. And side-effects of NMIs may result in entry into, |
| 633 | * and continuing from, the debugger being unreliable. |
| 634 | */ |
| 635 | if (__sync_bool_compare_and_swap(&mp_kdp_is_NMI, FALSE, TRUE)) { |
| 636 | kprintf_break_lock(); |
| 637 | kprintf("Debugger entry requested by NMI\n" ); |
| 638 | kdp_i386_trap(T_DEBUG, saved_state64(regs), 0, 0); |
| 639 | printf("Debugger entry requested by NMI\n" ); |
| 640 | mp_kdp_is_NMI = FALSE; |
| 641 | } else { |
| 642 | mp_kdp_wait(FALSE, FALSE); |
| 643 | } |
| 644 | } else { |
| 645 | mp_kdp_wait(FALSE, FALSE); |
| 646 | } |
| 647 | if (pmsafe_debug && !kdp_snapshot) |
| 648 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); |
| 649 | #endif |
| 650 | NMExit: |
| 651 | return 1; |
| 652 | } |
| 653 | |
| 654 | |
| 655 | /* |
| 656 | * cpu_interrupt is really just to be used by the scheduler to |
| 657 | * get a CPU's attention it may not always issue an IPI. If an |
| 658 | * IPI is always needed then use i386_cpu_IPI. |
| 659 | */ |
| 660 | void |
| 661 | cpu_interrupt(int cpu) |
| 662 | { |
| 663 | boolean_t did_IPI = FALSE; |
| 664 | |
| 665 | if (smp_initialized |
| 666 | && pmCPUExitIdle(cpu_datap(cpu))) { |
| 667 | i386_cpu_IPI(cpu); |
| 668 | did_IPI = TRUE; |
| 669 | } |
| 670 | |
| 671 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0); |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Send a true NMI via the local APIC to the specified CPU. |
| 676 | */ |
| 677 | void |
| 678 | cpu_NMI_interrupt(int cpu) |
| 679 | { |
| 680 | if (smp_initialized) { |
| 681 | i386_send_NMI(cpu); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | void |
| 686 | NMI_cpus(void) |
| 687 | { |
| 688 | unsigned int cpu; |
| 689 | boolean_t intrs_enabled; |
| 690 | uint64_t tsc_timeout; |
| 691 | |
| 692 | intrs_enabled = ml_set_interrupts_enabled(FALSE); |
| 693 | NMIPI_enable(TRUE); |
| 694 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 695 | if (!cpu_is_running(cpu)) |
| 696 | continue; |
| 697 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; |
| 698 | cpu_NMI_interrupt(cpu); |
| 699 | tsc_timeout = !machine_timeout_suspended() ? |
| 700 | rdtsc64() + (1000 * 1000 * 1000 * 10ULL) : |
| 701 | ~0ULL; |
| 702 | while (!cpu_datap(cpu)->cpu_NMI_acknowledged) { |
| 703 | handle_pending_TLB_flushes(); |
| 704 | cpu_pause(); |
| 705 | if (rdtsc64() > tsc_timeout) |
| 706 | panic("NMI_cpus() timeout cpu %d" , cpu); |
| 707 | } |
| 708 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; |
| 709 | } |
| 710 | NMIPI_enable(FALSE); |
| 711 | |
| 712 | ml_set_interrupts_enabled(intrs_enabled); |
| 713 | } |
| 714 | |
| 715 | static void (* volatile mp_PM_func)(void) = NULL; |
| 716 | |
| 717 | static void |
| 718 | mp_call_PM(void) |
| 719 | { |
| 720 | assert(!ml_get_interrupts_enabled()); |
| 721 | |
| 722 | if (mp_PM_func != NULL) |
| 723 | mp_PM_func(); |
| 724 | } |
| 725 | |
| 726 | void |
| 727 | cpu_PM_interrupt(int cpu) |
| 728 | { |
| 729 | assert(!ml_get_interrupts_enabled()); |
| 730 | |
| 731 | if (mp_PM_func != NULL) { |
| 732 | if (cpu == cpu_number()) |
| 733 | mp_PM_func(); |
| 734 | else |
| 735 | i386_signal_cpu(cpu, MP_CALL_PM, ASYNC); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | void |
| 740 | PM_interrupt_register(void (*fn)(void)) |
| 741 | { |
| 742 | mp_PM_func = fn; |
| 743 | } |
| 744 | |
| 745 | void |
| 746 | i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode) |
| 747 | { |
| 748 | volatile int *signals = &cpu_datap(cpu)->cpu_signals; |
| 749 | uint64_t tsc_timeout; |
| 750 | |
| 751 | |
| 752 | if (!cpu_datap(cpu)->cpu_running) |
| 753 | return; |
| 754 | |
| 755 | if (event == MP_TLB_FLUSH) |
| 756 | KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0); |
| 757 | |
| 758 | DBGLOG(cpu_signal, cpu, event); |
| 759 | |
| 760 | i_bit_set(event, signals); |
| 761 | i386_cpu_IPI(cpu); |
| 762 | if (mode == SYNC) { |
| 763 | again: |
| 764 | tsc_timeout = !machine_timeout_suspended() ? |
| 765 | rdtsc64() + (1000*1000*1000) : |
| 766 | ~0ULL; |
| 767 | while (i_bit(event, signals) && rdtsc64() < tsc_timeout) { |
| 768 | cpu_pause(); |
| 769 | } |
| 770 | if (i_bit(event, signals)) { |
| 771 | DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n" , |
| 772 | cpu, event); |
| 773 | goto again; |
| 774 | } |
| 775 | } |
| 776 | if (event == MP_TLB_FLUSH) |
| 777 | KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0); |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * Helper function called when busy-waiting: panic if too long |
| 782 | * a TSC-based time has elapsed since the start of the spin. |
| 783 | */ |
| 784 | static boolean_t |
| 785 | mp_spin_timeout(uint64_t tsc_start) |
| 786 | { |
| 787 | uint64_t tsc_timeout; |
| 788 | |
| 789 | cpu_pause(); |
| 790 | if (machine_timeout_suspended()) |
| 791 | return FALSE; |
| 792 | |
| 793 | /* |
| 794 | * The timeout is 4 * the spinlock timeout period |
| 795 | * unless we have serial console printing (kprintf) enabled |
| 796 | * in which case we allow an even greater margin. |
| 797 | */ |
| 798 | tsc_timeout = disable_serial_output ? LockTimeOutTSC << 2 |
| 799 | : LockTimeOutTSC << 4; |
| 800 | return (rdtsc64() > tsc_start + tsc_timeout); |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * Helper function to take a spinlock while ensuring that incoming IPIs |
| 805 | * are still serviced if interrupts are masked while we spin. |
| 806 | * Returns current interrupt state. |
| 807 | */ |
| 808 | boolean_t |
| 809 | mp_safe_spin_lock(usimple_lock_t lock) |
| 810 | { |
| 811 | if (ml_get_interrupts_enabled()) { |
| 812 | simple_lock(lock); |
| 813 | return TRUE; |
| 814 | } else { |
| 815 | uint64_t tsc_spin_start = rdtsc64(); |
| 816 | while (!simple_lock_try(lock)) { |
| 817 | cpu_signal_handler(NULL); |
| 818 | if (mp_spin_timeout(tsc_spin_start)) { |
| 819 | uint32_t lock_cpu; |
| 820 | uintptr_t lowner = (uintptr_t) |
| 821 | lock->interlock.lock_data; |
| 822 | spinlock_timed_out = lock; |
| 823 | lock_cpu = spinlock_timeout_NMI(lowner); |
| 824 | NMIPI_panic(cpu_to_cpumask(lock_cpu), SPINLOCK_TIMEOUT); |
| 825 | panic("mp_safe_spin_lock() timed out, lock: %p, owner thread: 0x%lx, current_thread: %p, owner on CPU 0x%x, time: %llu" , |
| 826 | lock, lowner, current_thread(), lock_cpu, mach_absolute_time()); |
| 827 | } |
| 828 | } |
| 829 | return FALSE; |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * All-CPU rendezvous: |
| 835 | * - CPUs are signalled, |
| 836 | * - all execute the setup function (if specified), |
| 837 | * - rendezvous (i.e. all cpus reach a barrier), |
| 838 | * - all execute the action function (if specified), |
| 839 | * - rendezvous again, |
| 840 | * - execute the teardown function (if specified), and then |
| 841 | * - resume. |
| 842 | * |
| 843 | * Note that the supplied external functions _must_ be reentrant and aware |
| 844 | * that they are running in parallel and in an unknown lock context. |
| 845 | */ |
| 846 | |
| 847 | static void |
| 848 | mp_rendezvous_action(__unused void *null) |
| 849 | { |
| 850 | boolean_t intrs_enabled; |
| 851 | uint64_t tsc_spin_start; |
| 852 | |
| 853 | /* |
| 854 | * Note that mp_rv_lock was acquired by the thread that initiated the |
| 855 | * rendezvous and must have been acquired before we enter |
| 856 | * mp_rendezvous_action(). |
| 857 | */ |
| 858 | current_cpu_datap()->cpu_rendezvous_in_progress = TRUE; |
| 859 | |
| 860 | /* setup function */ |
| 861 | if (mp_rv_setup_func != NULL) |
| 862 | mp_rv_setup_func(mp_rv_func_arg); |
| 863 | |
| 864 | intrs_enabled = ml_get_interrupts_enabled(); |
| 865 | |
| 866 | /* spin on entry rendezvous */ |
| 867 | atomic_incl(&mp_rv_entry, 1); |
| 868 | tsc_spin_start = rdtsc64(); |
| 869 | |
| 870 | while (mp_rv_entry < mp_rv_ncpus) { |
| 871 | /* poll for pesky tlb flushes if interrupts disabled */ |
| 872 | if (!intrs_enabled) |
| 873 | handle_pending_TLB_flushes(); |
| 874 | if (mp_spin_timeout(tsc_spin_start)) { |
| 875 | panic("mp_rv_action() entry: %ld of %d responses, start: 0x%llx, cur: 0x%llx" , mp_rv_entry, mp_rv_ncpus, tsc_spin_start, rdtsc64()); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* action function */ |
| 880 | if (mp_rv_action_func != NULL) |
| 881 | mp_rv_action_func(mp_rv_func_arg); |
| 882 | |
| 883 | /* spin on exit rendezvous */ |
| 884 | atomic_incl(&mp_rv_exit, 1); |
| 885 | tsc_spin_start = rdtsc64(); |
| 886 | while (mp_rv_exit < mp_rv_ncpus) { |
| 887 | if (!intrs_enabled) |
| 888 | handle_pending_TLB_flushes(); |
| 889 | if (mp_spin_timeout(tsc_spin_start)) |
| 890 | panic("mp_rv_action() exit: %ld of %d responses, start: 0x%llx, cur: 0x%llx" , mp_rv_exit, mp_rv_ncpus, tsc_spin_start, rdtsc64()); |
| 891 | } |
| 892 | |
| 893 | /* teardown function */ |
| 894 | if (mp_rv_teardown_func != NULL) |
| 895 | mp_rv_teardown_func(mp_rv_func_arg); |
| 896 | |
| 897 | current_cpu_datap()->cpu_rendezvous_in_progress = FALSE; |
| 898 | |
| 899 | /* Bump completion count */ |
| 900 | atomic_incl(&mp_rv_complete, 1); |
| 901 | } |
| 902 | |
| 903 | void |
| 904 | mp_rendezvous(void (*setup_func)(void *), |
| 905 | void (*action_func)(void *), |
| 906 | void (*teardown_func)(void *), |
| 907 | void *arg) |
| 908 | { |
| 909 | uint64_t tsc_spin_start; |
| 910 | |
| 911 | if (!smp_initialized) { |
| 912 | if (setup_func != NULL) |
| 913 | setup_func(arg); |
| 914 | if (action_func != NULL) |
| 915 | action_func(arg); |
| 916 | if (teardown_func != NULL) |
| 917 | teardown_func(arg); |
| 918 | return; |
| 919 | } |
| 920 | |
| 921 | /* obtain rendezvous lock */ |
| 922 | mp_rendezvous_lock(); |
| 923 | |
| 924 | /* set static function pointers */ |
| 925 | mp_rv_setup_func = setup_func; |
| 926 | mp_rv_action_func = action_func; |
| 927 | mp_rv_teardown_func = teardown_func; |
| 928 | mp_rv_func_arg = arg; |
| 929 | |
| 930 | mp_rv_entry = 0; |
| 931 | mp_rv_exit = 0; |
| 932 | mp_rv_complete = 0; |
| 933 | |
| 934 | /* |
| 935 | * signal other processors, which will call mp_rendezvous_action() |
| 936 | * with interrupts disabled |
| 937 | */ |
| 938 | mp_rv_ncpus = mp_cpus_call(CPUMASK_OTHERS, NOSYNC, &mp_rendezvous_action, NULL) + 1; |
| 939 | |
| 940 | /* call executor function on this cpu */ |
| 941 | mp_rendezvous_action(NULL); |
| 942 | |
| 943 | /* |
| 944 | * Spin for everyone to complete. |
| 945 | * This is necessary to ensure that all processors have proceeded |
| 946 | * from the exit barrier before we release the rendezvous structure. |
| 947 | */ |
| 948 | tsc_spin_start = rdtsc64(); |
| 949 | while (mp_rv_complete < mp_rv_ncpus) { |
| 950 | if (mp_spin_timeout(tsc_spin_start)) |
| 951 | panic("mp_rendezvous() timeout: %ld of %d responses, start: 0x%llx, cur: 0x%llx" , mp_rv_complete, mp_rv_ncpus, tsc_spin_start, rdtsc64()); |
| 952 | } |
| 953 | |
| 954 | /* Tidy up */ |
| 955 | mp_rv_setup_func = NULL; |
| 956 | mp_rv_action_func = NULL; |
| 957 | mp_rv_teardown_func = NULL; |
| 958 | mp_rv_func_arg = NULL; |
| 959 | |
| 960 | /* release lock */ |
| 961 | mp_rendezvous_unlock(); |
| 962 | } |
| 963 | |
| 964 | void |
| 965 | mp_rendezvous_lock(void) |
| 966 | { |
| 967 | (void) mp_safe_spin_lock(&mp_rv_lock); |
| 968 | } |
| 969 | |
| 970 | void |
| 971 | mp_rendezvous_unlock(void) |
| 972 | { |
| 973 | simple_unlock(&mp_rv_lock); |
| 974 | } |
| 975 | |
| 976 | void |
| 977 | mp_rendezvous_break_lock(void) |
| 978 | { |
| 979 | simple_lock_init(&mp_rv_lock, 0); |
| 980 | } |
| 981 | |
| 982 | static void |
| 983 | setup_disable_intrs(__unused void * param_not_used) |
| 984 | { |
| 985 | /* disable interrupts before the first barrier */ |
| 986 | boolean_t intr = ml_set_interrupts_enabled(FALSE); |
| 987 | |
| 988 | current_cpu_datap()->cpu_iflag = intr; |
| 989 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 990 | } |
| 991 | |
| 992 | static void |
| 993 | teardown_restore_intrs(__unused void * param_not_used) |
| 994 | { |
| 995 | /* restore interrupt flag following MTRR changes */ |
| 996 | ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag); |
| 997 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled. |
| 1002 | * This is exported for use by kexts. |
| 1003 | */ |
| 1004 | void |
| 1005 | mp_rendezvous_no_intrs( |
| 1006 | void (*action_func)(void *), |
| 1007 | void *arg) |
| 1008 | { |
| 1009 | mp_rendezvous(setup_disable_intrs, |
| 1010 | action_func, |
| 1011 | teardown_restore_intrs, |
| 1012 | arg); |
| 1013 | } |
| 1014 | |
| 1015 | |
| 1016 | typedef struct { |
| 1017 | queue_chain_t link; /* queue linkage */ |
| 1018 | void (*func)(void *,void *); /* routine to call */ |
| 1019 | void *arg0; /* routine's 1st arg */ |
| 1020 | void *arg1; /* routine's 2nd arg */ |
| 1021 | cpumask_t *maskp; /* completion response mask */ |
| 1022 | } mp_call_t; |
| 1023 | |
| 1024 | |
| 1025 | typedef struct { |
| 1026 | queue_head_t queue; |
| 1027 | decl_simple_lock_data(, lock); |
| 1028 | } mp_call_queue_t; |
| 1029 | #define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS |
| 1030 | static mp_call_queue_t mp_cpus_call_freelist; |
| 1031 | static mp_call_queue_t mp_cpus_call_head[MAX_CPUS]; |
| 1032 | |
| 1033 | static inline boolean_t |
| 1034 | mp_call_head_lock(mp_call_queue_t *cqp) |
| 1035 | { |
| 1036 | boolean_t intrs_enabled; |
| 1037 | |
| 1038 | intrs_enabled = ml_set_interrupts_enabled(FALSE); |
| 1039 | simple_lock(&cqp->lock); |
| 1040 | |
| 1041 | return intrs_enabled; |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * Deliver an NMIPI to a set of processors to cause them to panic . |
| 1046 | */ |
| 1047 | void |
| 1048 | NMIPI_panic(cpumask_t cpu_mask, NMI_reason_t why) { |
| 1049 | unsigned int cpu; |
| 1050 | cpumask_t cpu_bit; |
| 1051 | uint64_t deadline; |
| 1052 | |
| 1053 | NMIPI_enable(TRUE); |
| 1054 | NMI_panic_reason = why; |
| 1055 | |
| 1056 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { |
| 1057 | if ((cpu_mask & cpu_bit) == 0) |
| 1058 | continue; |
| 1059 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; |
| 1060 | cpu_NMI_interrupt(cpu); |
| 1061 | } |
| 1062 | |
| 1063 | /* Wait (only so long) for NMi'ed cpus to respond */ |
| 1064 | deadline = mach_absolute_time() + LockTimeOut; |
| 1065 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { |
| 1066 | if ((cpu_mask & cpu_bit) == 0) |
| 1067 | continue; |
| 1068 | while (!cpu_datap(cpu)->cpu_NMI_acknowledged && |
| 1069 | mach_absolute_time() < deadline) { |
| 1070 | cpu_pause(); |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | #if MACH_ASSERT |
| 1076 | static inline boolean_t |
| 1077 | mp_call_head_is_locked(mp_call_queue_t *cqp) |
| 1078 | { |
| 1079 | return !ml_get_interrupts_enabled() && |
| 1080 | hw_lock_held((hw_lock_t)&cqp->lock); |
| 1081 | } |
| 1082 | #endif |
| 1083 | |
| 1084 | static inline void |
| 1085 | mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled) |
| 1086 | { |
| 1087 | simple_unlock(&cqp->lock); |
| 1088 | ml_set_interrupts_enabled(intrs_enabled); |
| 1089 | } |
| 1090 | |
| 1091 | static inline mp_call_t * |
| 1092 | mp_call_alloc(void) |
| 1093 | { |
| 1094 | mp_call_t *callp = NULL; |
| 1095 | boolean_t intrs_enabled; |
| 1096 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; |
| 1097 | |
| 1098 | intrs_enabled = mp_call_head_lock(cqp); |
| 1099 | if (!queue_empty(&cqp->queue)) |
| 1100 | queue_remove_first(&cqp->queue, callp, typeof(callp), link); |
| 1101 | mp_call_head_unlock(cqp, intrs_enabled); |
| 1102 | |
| 1103 | return callp; |
| 1104 | } |
| 1105 | |
| 1106 | static inline void |
| 1107 | mp_call_free(mp_call_t *callp) |
| 1108 | { |
| 1109 | boolean_t intrs_enabled; |
| 1110 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; |
| 1111 | |
| 1112 | intrs_enabled = mp_call_head_lock(cqp); |
| 1113 | queue_enter_first(&cqp->queue, callp, typeof(callp), link); |
| 1114 | mp_call_head_unlock(cqp, intrs_enabled); |
| 1115 | } |
| 1116 | |
| 1117 | static inline mp_call_t * |
| 1118 | mp_call_dequeue_locked(mp_call_queue_t *cqp) |
| 1119 | { |
| 1120 | mp_call_t *callp = NULL; |
| 1121 | |
| 1122 | assert(mp_call_head_is_locked(cqp)); |
| 1123 | if (!queue_empty(&cqp->queue)) |
| 1124 | queue_remove_first(&cqp->queue, callp, typeof(callp), link); |
| 1125 | return callp; |
| 1126 | } |
| 1127 | |
| 1128 | static inline void |
| 1129 | mp_call_enqueue_locked( |
| 1130 | mp_call_queue_t *cqp, |
| 1131 | mp_call_t *callp) |
| 1132 | { |
| 1133 | queue_enter(&cqp->queue, callp, typeof(callp), link); |
| 1134 | } |
| 1135 | |
| 1136 | /* Called on the boot processor to initialize global structures */ |
| 1137 | static void |
| 1138 | mp_cpus_call_init(void) |
| 1139 | { |
| 1140 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; |
| 1141 | |
| 1142 | DBG("mp_cpus_call_init()\n" ); |
| 1143 | simple_lock_init(&cqp->lock, 0); |
| 1144 | queue_init(&cqp->queue); |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Called at processor registration to add call buffers to the free list |
| 1149 | * and to initialize the per-cpu call queue. |
| 1150 | */ |
| 1151 | void |
| 1152 | mp_cpus_call_cpu_init(int cpu) |
| 1153 | { |
| 1154 | int i; |
| 1155 | mp_call_queue_t *cqp = &mp_cpus_call_head[cpu]; |
| 1156 | mp_call_t *callp; |
| 1157 | |
| 1158 | simple_lock_init(&cqp->lock, 0); |
| 1159 | queue_init(&cqp->queue); |
| 1160 | for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) { |
| 1161 | callp = (mp_call_t *) kalloc(sizeof(mp_call_t)); |
| 1162 | mp_call_free(callp); |
| 1163 | } |
| 1164 | |
| 1165 | DBG("mp_cpus_call_init(%d) done\n" , cpu); |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * This is called from cpu_signal_handler() to process an MP_CALL signal. |
| 1170 | * And also from i386_deactivate_cpu() when a cpu is being taken offline. |
| 1171 | */ |
| 1172 | static void |
| 1173 | mp_cpus_call_action(void) |
| 1174 | { |
| 1175 | mp_call_queue_t *cqp; |
| 1176 | boolean_t intrs_enabled; |
| 1177 | mp_call_t *callp; |
| 1178 | mp_call_t call; |
| 1179 | |
| 1180 | assert(!ml_get_interrupts_enabled()); |
| 1181 | cqp = &mp_cpus_call_head[cpu_number()]; |
| 1182 | intrs_enabled = mp_call_head_lock(cqp); |
| 1183 | while ((callp = mp_call_dequeue_locked(cqp)) != NULL) { |
| 1184 | /* Copy call request to the stack to free buffer */ |
| 1185 | call = *callp; |
| 1186 | mp_call_free(callp); |
| 1187 | if (call.func != NULL) { |
| 1188 | mp_call_head_unlock(cqp, intrs_enabled); |
| 1189 | KERNEL_DEBUG_CONSTANT( |
| 1190 | TRACE_MP_CPUS_CALL_ACTION, |
| 1191 | VM_KERNEL_UNSLIDE(call.func), VM_KERNEL_UNSLIDE_OR_PERM(call.arg0), |
| 1192 | VM_KERNEL_UNSLIDE_OR_PERM(call.arg1), VM_KERNEL_ADDRPERM(call.maskp), 0); |
| 1193 | call.func(call.arg0, call.arg1); |
| 1194 | (void) mp_call_head_lock(cqp); |
| 1195 | } |
| 1196 | if (call.maskp != NULL) |
| 1197 | i_bit_set(cpu_number(), call.maskp); |
| 1198 | } |
| 1199 | mp_call_head_unlock(cqp, intrs_enabled); |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * mp_cpus_call() runs a given function on cpus specified in a given cpu mask. |
| 1204 | * Possible modes are: |
| 1205 | * SYNC: function is called serially on target cpus in logical cpu order |
| 1206 | * waiting for each call to be acknowledged before proceeding |
| 1207 | * ASYNC: function call is queued to the specified cpus |
| 1208 | * waiting for all calls to complete in parallel before returning |
| 1209 | * NOSYNC: function calls are queued |
| 1210 | * but we return before confirmation of calls completing. |
| 1211 | * The action function may be NULL. |
| 1212 | * The cpu mask may include the local cpu. Offline cpus are ignored. |
| 1213 | * The return value is the number of cpus on which the call was made or queued. |
| 1214 | */ |
| 1215 | cpu_t |
| 1216 | mp_cpus_call( |
| 1217 | cpumask_t cpus, |
| 1218 | mp_sync_t mode, |
| 1219 | void (*action_func)(void *), |
| 1220 | void *arg) |
| 1221 | { |
| 1222 | return mp_cpus_call1( |
| 1223 | cpus, |
| 1224 | mode, |
| 1225 | (void (*)(void *,void *))action_func, |
| 1226 | arg, |
| 1227 | NULL, |
| 1228 | NULL); |
| 1229 | } |
| 1230 | |
| 1231 | static void |
| 1232 | mp_cpus_call_wait(boolean_t intrs_enabled, |
| 1233 | cpumask_t cpus_called, |
| 1234 | cpumask_t *cpus_responded) |
| 1235 | { |
| 1236 | mp_call_queue_t *cqp; |
| 1237 | uint64_t tsc_spin_start; |
| 1238 | |
| 1239 | assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); |
| 1240 | cqp = &mp_cpus_call_head[cpu_number()]; |
| 1241 | |
| 1242 | tsc_spin_start = rdtsc64(); |
| 1243 | while (*cpus_responded != cpus_called) { |
| 1244 | if (!intrs_enabled) { |
| 1245 | /* Sniffing w/o locking */ |
| 1246 | if (!queue_empty(&cqp->queue)) |
| 1247 | mp_cpus_call_action(); |
| 1248 | cpu_signal_handler(NULL); |
| 1249 | } |
| 1250 | if (mp_spin_timeout(tsc_spin_start)) { |
| 1251 | cpumask_t cpus_unresponsive; |
| 1252 | |
| 1253 | cpus_unresponsive = cpus_called & ~(*cpus_responded); |
| 1254 | NMIPI_panic(cpus_unresponsive, CROSSCALL_TIMEOUT); |
| 1255 | panic("mp_cpus_call_wait() timeout, cpus: 0x%llx" , |
| 1256 | cpus_unresponsive); |
| 1257 | } |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | cpu_t |
| 1262 | mp_cpus_call1( |
| 1263 | cpumask_t cpus, |
| 1264 | mp_sync_t mode, |
| 1265 | void (*action_func)(void *, void *), |
| 1266 | void *arg0, |
| 1267 | void *arg1, |
| 1268 | cpumask_t *cpus_calledp) |
| 1269 | { |
| 1270 | cpu_t cpu = 0; |
| 1271 | boolean_t intrs_enabled = FALSE; |
| 1272 | boolean_t call_self = FALSE; |
| 1273 | cpumask_t cpus_called = 0; |
| 1274 | cpumask_t cpus_responded = 0; |
| 1275 | long cpus_call_count = 0; |
| 1276 | uint64_t tsc_spin_start; |
| 1277 | boolean_t topo_lock; |
| 1278 | |
| 1279 | KERNEL_DEBUG_CONSTANT( |
| 1280 | TRACE_MP_CPUS_CALL | DBG_FUNC_START, |
| 1281 | cpus, mode, VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1)); |
| 1282 | |
| 1283 | if (!smp_initialized) { |
| 1284 | if ((cpus & CPUMASK_SELF) == 0) |
| 1285 | goto out; |
| 1286 | if (action_func != NULL) { |
| 1287 | intrs_enabled = ml_set_interrupts_enabled(FALSE); |
| 1288 | action_func(arg0, arg1); |
| 1289 | ml_set_interrupts_enabled(intrs_enabled); |
| 1290 | } |
| 1291 | call_self = TRUE; |
| 1292 | goto out; |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * Queue the call for each non-local requested cpu. |
| 1297 | * This is performed under the topo lock to prevent changes to |
| 1298 | * cpus online state and to prevent concurrent rendezvouses -- |
| 1299 | * although an exception is made if we're calling only the master |
| 1300 | * processor since that always remains active. Note: this exception |
| 1301 | * is expected for longterm timer nosync cross-calls to the master cpu. |
| 1302 | */ |
| 1303 | mp_disable_preemption(); |
| 1304 | intrs_enabled = ml_get_interrupts_enabled(); |
| 1305 | topo_lock = (cpus != cpu_to_cpumask(master_cpu)); |
| 1306 | if (topo_lock) { |
| 1307 | ml_set_interrupts_enabled(FALSE); |
| 1308 | (void) mp_safe_spin_lock(&x86_topo_lock); |
| 1309 | } |
| 1310 | for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) { |
| 1311 | if (((cpu_to_cpumask(cpu) & cpus) == 0) || |
| 1312 | !cpu_is_running(cpu)) |
| 1313 | continue; |
| 1314 | tsc_spin_start = rdtsc64(); |
| 1315 | if (cpu == (cpu_t) cpu_number()) { |
| 1316 | /* |
| 1317 | * We don't IPI ourself and if calling asynchronously, |
| 1318 | * we defer our call until we have signalled all others. |
| 1319 | */ |
| 1320 | call_self = TRUE; |
| 1321 | if (mode == SYNC && action_func != NULL) { |
| 1322 | KERNEL_DEBUG_CONSTANT( |
| 1323 | TRACE_MP_CPUS_CALL_LOCAL, |
| 1324 | VM_KERNEL_UNSLIDE(action_func), |
| 1325 | VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1), 0, 0); |
| 1326 | action_func(arg0, arg1); |
| 1327 | } |
| 1328 | } else { |
| 1329 | /* |
| 1330 | * Here to queue a call to cpu and IPI. |
| 1331 | */ |
| 1332 | mp_call_t *callp = NULL; |
| 1333 | mp_call_queue_t *cqp = &mp_cpus_call_head[cpu]; |
| 1334 | boolean_t intrs_inner; |
| 1335 | |
| 1336 | queue_call: |
| 1337 | if (callp == NULL) |
| 1338 | callp = mp_call_alloc(); |
| 1339 | intrs_inner = mp_call_head_lock(cqp); |
| 1340 | if (callp == NULL) { |
| 1341 | mp_call_head_unlock(cqp, intrs_inner); |
| 1342 | KERNEL_DEBUG_CONSTANT( |
| 1343 | TRACE_MP_CPUS_CALL_NOBUF, |
| 1344 | cpu, 0, 0, 0, 0); |
| 1345 | if (!intrs_inner) { |
| 1346 | /* Sniffing w/o locking */ |
| 1347 | if (!queue_empty(&cqp->queue)) |
| 1348 | mp_cpus_call_action(); |
| 1349 | handle_pending_TLB_flushes(); |
| 1350 | } |
| 1351 | if (mp_spin_timeout(tsc_spin_start)) |
| 1352 | panic("mp_cpus_call1() timeout start: 0x%llx, cur: 0x%llx" , |
| 1353 | tsc_spin_start, rdtsc64()); |
| 1354 | goto queue_call; |
| 1355 | } |
| 1356 | callp->maskp = (mode == NOSYNC) ? NULL : &cpus_responded; |
| 1357 | callp->func = action_func; |
| 1358 | callp->arg0 = arg0; |
| 1359 | callp->arg1 = arg1; |
| 1360 | mp_call_enqueue_locked(cqp, callp); |
| 1361 | cpus_call_count++; |
| 1362 | cpus_called |= cpu_to_cpumask(cpu); |
| 1363 | i386_signal_cpu(cpu, MP_CALL, ASYNC); |
| 1364 | mp_call_head_unlock(cqp, intrs_inner); |
| 1365 | if (mode == SYNC) { |
| 1366 | mp_cpus_call_wait(intrs_inner, cpus_called, &cpus_responded); |
| 1367 | } |
| 1368 | } |
| 1369 | } |
| 1370 | if (topo_lock) { |
| 1371 | simple_unlock(&x86_topo_lock); |
| 1372 | ml_set_interrupts_enabled(intrs_enabled); |
| 1373 | } |
| 1374 | |
| 1375 | /* Call locally if mode not SYNC */ |
| 1376 | if (mode != SYNC && call_self ) { |
| 1377 | KERNEL_DEBUG_CONSTANT( |
| 1378 | TRACE_MP_CPUS_CALL_LOCAL, |
| 1379 | VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1), 0, 0); |
| 1380 | if (action_func != NULL) { |
| 1381 | ml_set_interrupts_enabled(FALSE); |
| 1382 | action_func(arg0, arg1); |
| 1383 | ml_set_interrupts_enabled(intrs_enabled); |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | /* For ASYNC, now wait for all signaled cpus to complete their calls */ |
| 1388 | if (mode == ASYNC) |
| 1389 | mp_cpus_call_wait(intrs_enabled, cpus_called, &cpus_responded); |
| 1390 | |
| 1391 | /* Safe to allow pre-emption now */ |
| 1392 | mp_enable_preemption(); |
| 1393 | |
| 1394 | out: |
| 1395 | if (call_self){ |
| 1396 | cpus_called |= cpu_to_cpumask(cpu); |
| 1397 | cpus_call_count++; |
| 1398 | } |
| 1399 | |
| 1400 | if (cpus_calledp) |
| 1401 | *cpus_calledp = cpus_called; |
| 1402 | |
| 1403 | KERNEL_DEBUG_CONSTANT( |
| 1404 | TRACE_MP_CPUS_CALL | DBG_FUNC_END, |
| 1405 | cpus_call_count, cpus_called, 0, 0, 0); |
| 1406 | |
| 1407 | return (cpu_t) cpus_call_count; |
| 1408 | } |
| 1409 | |
| 1410 | |
| 1411 | static void |
| 1412 | mp_broadcast_action(__unused void *null) |
| 1413 | { |
| 1414 | /* call action function */ |
| 1415 | if (mp_bc_action_func != NULL) |
| 1416 | mp_bc_action_func(mp_bc_func_arg); |
| 1417 | |
| 1418 | /* if we're the last one through, wake up the instigator */ |
| 1419 | if (atomic_decl_and_test(&mp_bc_count, 1)) |
| 1420 | thread_wakeup(((event_t)(uintptr_t) &mp_bc_count)); |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * mp_broadcast() runs a given function on all active cpus. |
| 1425 | * The caller blocks until the functions has run on all cpus. |
| 1426 | * The caller will also block if there is another pending braodcast. |
| 1427 | */ |
| 1428 | void |
| 1429 | mp_broadcast( |
| 1430 | void (*action_func)(void *), |
| 1431 | void *arg) |
| 1432 | { |
| 1433 | if (!smp_initialized) { |
| 1434 | if (action_func != NULL) |
| 1435 | action_func(arg); |
| 1436 | return; |
| 1437 | } |
| 1438 | |
| 1439 | /* obtain broadcast lock */ |
| 1440 | lck_mtx_lock(&mp_bc_lock); |
| 1441 | |
| 1442 | /* set static function pointers */ |
| 1443 | mp_bc_action_func = action_func; |
| 1444 | mp_bc_func_arg = arg; |
| 1445 | |
| 1446 | assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT); |
| 1447 | |
| 1448 | /* |
| 1449 | * signal other processors, which will call mp_broadcast_action() |
| 1450 | */ |
| 1451 | mp_bc_count = real_ncpus; /* assume max possible active */ |
| 1452 | mp_bc_ncpus = mp_cpus_call(CPUMASK_OTHERS, NOSYNC, *mp_broadcast_action, NULL) + 1; |
| 1453 | atomic_decl(&mp_bc_count, real_ncpus - mp_bc_ncpus); /* subtract inactive */ |
| 1454 | |
| 1455 | /* call executor function on this cpu */ |
| 1456 | mp_broadcast_action(NULL); |
| 1457 | |
| 1458 | /* block for other cpus to have run action_func */ |
| 1459 | if (mp_bc_ncpus > 1) |
| 1460 | thread_block(THREAD_CONTINUE_NULL); |
| 1461 | else |
| 1462 | clear_wait(current_thread(), THREAD_AWAKENED); |
| 1463 | |
| 1464 | /* release lock */ |
| 1465 | lck_mtx_unlock(&mp_bc_lock); |
| 1466 | } |
| 1467 | |
| 1468 | void |
| 1469 | mp_cpus_kick(cpumask_t cpus) |
| 1470 | { |
| 1471 | cpu_t cpu; |
| 1472 | boolean_t intrs_enabled = FALSE; |
| 1473 | |
| 1474 | intrs_enabled = ml_set_interrupts_enabled(FALSE); |
| 1475 | mp_safe_spin_lock(&x86_topo_lock); |
| 1476 | |
| 1477 | for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) { |
| 1478 | if ((cpu == (cpu_t) cpu_number()) |
| 1479 | || ((cpu_to_cpumask(cpu) & cpus) == 0) |
| 1480 | || !cpu_is_running(cpu)) |
| 1481 | { |
| 1482 | continue; |
| 1483 | } |
| 1484 | |
| 1485 | lapic_send_ipi(cpu, LAPIC_VECTOR(KICK)); |
| 1486 | } |
| 1487 | |
| 1488 | simple_unlock(&x86_topo_lock); |
| 1489 | ml_set_interrupts_enabled(intrs_enabled); |
| 1490 | } |
| 1491 | |
| 1492 | void |
| 1493 | i386_activate_cpu(void) |
| 1494 | { |
| 1495 | cpu_data_t *cdp = current_cpu_datap(); |
| 1496 | |
| 1497 | assert(!ml_get_interrupts_enabled()); |
| 1498 | |
| 1499 | if (!smp_initialized) { |
| 1500 | cdp->cpu_running = TRUE; |
| 1501 | return; |
| 1502 | } |
| 1503 | |
| 1504 | mp_safe_spin_lock(&x86_topo_lock); |
| 1505 | cdp->cpu_running = TRUE; |
| 1506 | started_cpu(); |
| 1507 | simple_unlock(&x86_topo_lock); |
| 1508 | flush_tlb_raw(); |
| 1509 | } |
| 1510 | |
| 1511 | void |
| 1512 | i386_deactivate_cpu(void) |
| 1513 | { |
| 1514 | cpu_data_t *cdp = current_cpu_datap(); |
| 1515 | |
| 1516 | assert(!ml_get_interrupts_enabled()); |
| 1517 | |
| 1518 | KERNEL_DEBUG_CONSTANT( |
| 1519 | TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_START, |
| 1520 | 0, 0, 0, 0, 0); |
| 1521 | |
| 1522 | mp_safe_spin_lock(&x86_topo_lock); |
| 1523 | cdp->cpu_running = FALSE; |
| 1524 | simple_unlock(&x86_topo_lock); |
| 1525 | |
| 1526 | /* |
| 1527 | * Move all of this cpu's timers to the master/boot cpu, |
| 1528 | * and poke it in case there's a sooner deadline for it to schedule. |
| 1529 | */ |
| 1530 | timer_queue_shutdown(&cdp->rtclock_timer.queue); |
| 1531 | mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, timer_queue_expire_local, NULL); |
| 1532 | |
| 1533 | #if MONOTONIC |
| 1534 | mt_cpu_down(cdp); |
| 1535 | #endif /* MONOTONIC */ |
| 1536 | |
| 1537 | /* |
| 1538 | * Open an interrupt window |
| 1539 | * and ensure any pending IPI or timer is serviced |
| 1540 | */ |
| 1541 | mp_disable_preemption(); |
| 1542 | ml_set_interrupts_enabled(TRUE); |
| 1543 | |
| 1544 | while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime) |
| 1545 | cpu_pause(); |
| 1546 | /* |
| 1547 | * Ensure there's no remaining timer deadline set |
| 1548 | * - AICPM may have left one active. |
| 1549 | */ |
| 1550 | setPop(0); |
| 1551 | |
| 1552 | ml_set_interrupts_enabled(FALSE); |
| 1553 | mp_enable_preemption(); |
| 1554 | |
| 1555 | KERNEL_DEBUG_CONSTANT( |
| 1556 | TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_END, |
| 1557 | 0, 0, 0, 0, 0); |
| 1558 | } |
| 1559 | |
| 1560 | int pmsafe_debug = 1; |
| 1561 | |
| 1562 | #if MACH_KDP |
| 1563 | volatile boolean_t mp_kdp_trap = FALSE; |
| 1564 | volatile boolean_t mp_kdp_is_NMI = FALSE; |
| 1565 | volatile unsigned long mp_kdp_ncpus; |
| 1566 | boolean_t mp_kdp_state; |
| 1567 | |
| 1568 | |
| 1569 | void |
| 1570 | mp_kdp_enter(boolean_t proceed_on_failure) |
| 1571 | { |
| 1572 | unsigned int cpu; |
| 1573 | unsigned int ncpus = 0; |
| 1574 | unsigned int my_cpu; |
| 1575 | uint64_t tsc_timeout; |
| 1576 | |
| 1577 | DBG("mp_kdp_enter()\n" ); |
| 1578 | |
| 1579 | /* |
| 1580 | * Here to enter the debugger. |
| 1581 | * In case of races, only one cpu is allowed to enter kdp after |
| 1582 | * stopping others. |
| 1583 | */ |
| 1584 | mp_kdp_state = ml_set_interrupts_enabled(FALSE); |
| 1585 | my_cpu = cpu_number(); |
| 1586 | |
| 1587 | if (my_cpu == (unsigned) debugger_cpu) { |
| 1588 | kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n" ); |
| 1589 | kdp_reset(); |
| 1590 | return; |
| 1591 | } |
| 1592 | |
| 1593 | uint64_t start_time = cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time(); |
| 1594 | int locked = 0; |
| 1595 | while (!locked || mp_kdp_trap) { |
| 1596 | if (locked) { |
| 1597 | simple_unlock(&x86_topo_lock); |
| 1598 | } |
| 1599 | if (proceed_on_failure) { |
| 1600 | if (mach_absolute_time() - start_time > 500000000ll) { |
| 1601 | paniclog_append_noflush("mp_kdp_enter() can't get x86_topo_lock! Debugging anyway! #YOLO\n" ); |
| 1602 | break; |
| 1603 | } |
| 1604 | locked = simple_lock_try(&x86_topo_lock); |
| 1605 | if (!locked) { |
| 1606 | cpu_pause(); |
| 1607 | } |
| 1608 | } else { |
| 1609 | mp_safe_spin_lock(&x86_topo_lock); |
| 1610 | locked = TRUE; |
| 1611 | } |
| 1612 | |
| 1613 | if (locked && mp_kdp_trap) { |
| 1614 | simple_unlock(&x86_topo_lock); |
| 1615 | DBG("mp_kdp_enter() race lost\n" ); |
| 1616 | #if MACH_KDP |
| 1617 | mp_kdp_wait(TRUE, FALSE); |
| 1618 | #endif |
| 1619 | locked = FALSE; |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | if (pmsafe_debug && !kdp_snapshot) |
| 1624 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); |
| 1625 | |
| 1626 | debugger_cpu = my_cpu; |
| 1627 | ncpus = 1; |
| 1628 | atomic_incl((volatile long *)&mp_kdp_ncpus, 1); |
| 1629 | mp_kdp_trap = TRUE; |
| 1630 | debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time; |
| 1631 | |
| 1632 | /* |
| 1633 | * Deliver a nudge to other cpus, counting how many |
| 1634 | */ |
| 1635 | DBG("mp_kdp_enter() signaling other processors\n" ); |
| 1636 | if (force_immediate_debugger_NMI == FALSE) { |
| 1637 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 1638 | if (cpu == my_cpu || !cpu_is_running(cpu)) |
| 1639 | continue; |
| 1640 | ncpus++; |
| 1641 | i386_signal_cpu(cpu, MP_KDP, ASYNC); |
| 1642 | } |
| 1643 | /* |
| 1644 | * Wait other processors to synchronize |
| 1645 | */ |
| 1646 | DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n" , ncpus); |
| 1647 | |
| 1648 | /* |
| 1649 | * This timeout is rather arbitrary; we don't want to NMI |
| 1650 | * processors that are executing at potentially |
| 1651 | * "unsafe-to-interrupt" points such as the trampolines, |
| 1652 | * but neither do we want to lose state by waiting too long. |
| 1653 | */ |
| 1654 | tsc_timeout = rdtsc64() + (LockTimeOutTSC); |
| 1655 | |
| 1656 | while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) { |
| 1657 | /* |
| 1658 | * A TLB shootdown request may be pending--this would |
| 1659 | * result in the requesting processor waiting in |
| 1660 | * PMAP_UPDATE_TLBS() until this processor deals with it. |
| 1661 | * Process it, so it can now enter mp_kdp_wait() |
| 1662 | */ |
| 1663 | handle_pending_TLB_flushes(); |
| 1664 | cpu_pause(); |
| 1665 | } |
| 1666 | /* If we've timed out, and some processor(s) are still unresponsive, |
| 1667 | * interrupt them with an NMI via the local APIC, iff a panic is |
| 1668 | * in progress. |
| 1669 | */ |
| 1670 | if (panic_active()) { |
| 1671 | NMIPI_enable(TRUE); |
| 1672 | } |
| 1673 | if (mp_kdp_ncpus != ncpus) { |
| 1674 | unsigned int wait_cycles = 0; |
| 1675 | if (proceed_on_failure) |
| 1676 | paniclog_append_noflush("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n" , my_cpu); |
| 1677 | else |
| 1678 | DBG("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n" , my_cpu); |
| 1679 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 1680 | if (cpu == my_cpu || !cpu_is_running(cpu)) |
| 1681 | continue; |
| 1682 | if (cpu_signal_pending(cpu, MP_KDP)) { |
| 1683 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; |
| 1684 | cpu_NMI_interrupt(cpu); |
| 1685 | } |
| 1686 | } |
| 1687 | /* Wait again for the same timeout */ |
| 1688 | tsc_timeout = rdtsc64() + (LockTimeOutTSC); |
| 1689 | while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) { |
| 1690 | handle_pending_TLB_flushes(); |
| 1691 | cpu_pause(); |
| 1692 | ++wait_cycles; |
| 1693 | } |
| 1694 | if (mp_kdp_ncpus != ncpus) { |
| 1695 | paniclog_append_noflush("mp_kdp_enter() NMI pending on cpus:" ); |
| 1696 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 1697 | if (cpu_is_running(cpu) && !cpu_datap(cpu)->cpu_NMI_acknowledged) |
| 1698 | paniclog_append_noflush(" %d" , cpu); |
| 1699 | } |
| 1700 | paniclog_append_noflush("\n" ); |
| 1701 | if (proceed_on_failure) { |
| 1702 | paniclog_append_noflush("mp_kdp_enter() timed-out during %s wait after NMI;" |
| 1703 | "expected %u acks but received %lu after %u loops in %llu ticks\n" , |
| 1704 | (locked ? "locked" : "unlocked" ), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC); |
| 1705 | } else { |
| 1706 | panic("mp_kdp_enter() timed-out during %s wait after NMI;" |
| 1707 | "expected %u acks but received %lu after %u loops in %llu ticks" , |
| 1708 | (locked ? "locked" : "unlocked" ), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC); |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | } |
| 1713 | else |
| 1714 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 1715 | if (cpu == my_cpu || !cpu_is_running(cpu)) |
| 1716 | continue; |
| 1717 | cpu_NMI_interrupt(cpu); |
| 1718 | } |
| 1719 | |
| 1720 | if (locked) { |
| 1721 | simple_unlock(&x86_topo_lock); |
| 1722 | } |
| 1723 | |
| 1724 | DBG("mp_kdp_enter() %d processors done %s\n" , |
| 1725 | (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out" ); |
| 1726 | |
| 1727 | postcode(MP_KDP_ENTER); |
| 1728 | } |
| 1729 | |
| 1730 | boolean_t |
| 1731 | mp_kdp_all_cpus_halted() |
| 1732 | { |
| 1733 | unsigned int ncpus = 0, cpu = 0, my_cpu = 0; |
| 1734 | |
| 1735 | my_cpu = cpu_number(); |
| 1736 | ncpus = 1; /* current CPU */ |
| 1737 | for (cpu = 0; cpu < real_ncpus; cpu++) { |
| 1738 | if (cpu == my_cpu || !cpu_is_running(cpu)) |
| 1739 | continue; |
| 1740 | ncpus++; |
| 1741 | } |
| 1742 | |
| 1743 | return (mp_kdp_ncpus == ncpus); |
| 1744 | } |
| 1745 | |
| 1746 | static boolean_t |
| 1747 | cpu_signal_pending(int cpu, mp_event_t event) |
| 1748 | { |
| 1749 | volatile int *signals = &cpu_datap(cpu)->cpu_signals; |
| 1750 | boolean_t retval = FALSE; |
| 1751 | |
| 1752 | if (i_bit(event, signals)) |
| 1753 | retval = TRUE; |
| 1754 | return retval; |
| 1755 | } |
| 1756 | |
| 1757 | long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func, |
| 1758 | void *arg0, void *arg1) |
| 1759 | { |
| 1760 | if (lcpu > (real_ncpus - 1)) |
| 1761 | return -1; |
| 1762 | |
| 1763 | if (func == NULL) |
| 1764 | return -1; |
| 1765 | |
| 1766 | kdp_xcpu_call_func.func = func; |
| 1767 | kdp_xcpu_call_func.ret = -1; |
| 1768 | kdp_xcpu_call_func.arg0 = arg0; |
| 1769 | kdp_xcpu_call_func.arg1 = arg1; |
| 1770 | kdp_xcpu_call_func.cpu = lcpu; |
| 1771 | DBG("Invoking function %p on CPU %d\n" , func, (int32_t)lcpu); |
| 1772 | while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE) |
| 1773 | cpu_pause(); |
| 1774 | return kdp_xcpu_call_func.ret; |
| 1775 | } |
| 1776 | |
| 1777 | static void |
| 1778 | kdp_x86_xcpu_poll(void) |
| 1779 | { |
| 1780 | if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) { |
| 1781 | kdp_xcpu_call_func.ret = |
| 1782 | kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0, |
| 1783 | kdp_xcpu_call_func.arg1, |
| 1784 | cpu_number()); |
| 1785 | kdp_xcpu_call_func.cpu = KDP_XCPU_NONE; |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | static void |
| 1790 | mp_kdp_wait(boolean_t flush, boolean_t isNMI) |
| 1791 | { |
| 1792 | DBG("mp_kdp_wait()\n" ); |
| 1793 | |
| 1794 | current_cpu_datap()->debugger_ipi_time = mach_absolute_time(); |
| 1795 | #if CONFIG_MCA |
| 1796 | /* If we've trapped due to a machine-check, save MCA registers */ |
| 1797 | mca_check_save(); |
| 1798 | #endif |
| 1799 | |
| 1800 | atomic_incl((volatile long *)&mp_kdp_ncpus, 1); |
| 1801 | while (mp_kdp_trap || (isNMI == TRUE)) { |
| 1802 | /* |
| 1803 | * A TLB shootdown request may be pending--this would result |
| 1804 | * in the requesting processor waiting in PMAP_UPDATE_TLBS() |
| 1805 | * until this processor handles it. |
| 1806 | * Process it, so it can now enter mp_kdp_wait() |
| 1807 | */ |
| 1808 | if (flush) |
| 1809 | handle_pending_TLB_flushes(); |
| 1810 | |
| 1811 | kdp_x86_xcpu_poll(); |
| 1812 | cpu_pause(); |
| 1813 | } |
| 1814 | |
| 1815 | atomic_decl((volatile long *)&mp_kdp_ncpus, 1); |
| 1816 | DBG("mp_kdp_wait() done\n" ); |
| 1817 | } |
| 1818 | |
| 1819 | void |
| 1820 | mp_kdp_exit(void) |
| 1821 | { |
| 1822 | DBG("mp_kdp_exit()\n" ); |
| 1823 | debugger_cpu = -1; |
| 1824 | atomic_decl((volatile long *)&mp_kdp_ncpus, 1); |
| 1825 | |
| 1826 | debugger_exit_time = mach_absolute_time(); |
| 1827 | |
| 1828 | mp_kdp_trap = FALSE; |
| 1829 | mfence(); |
| 1830 | |
| 1831 | /* Wait other processors to stop spinning. XXX needs timeout */ |
| 1832 | DBG("mp_kdp_exit() waiting for processors to resume\n" ); |
| 1833 | while (mp_kdp_ncpus > 0) { |
| 1834 | /* |
| 1835 | * a TLB shootdown request may be pending... this would result in the requesting |
| 1836 | * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it. |
| 1837 | * Process it, so it can now enter mp_kdp_wait() |
| 1838 | */ |
| 1839 | handle_pending_TLB_flushes(); |
| 1840 | |
| 1841 | cpu_pause(); |
| 1842 | } |
| 1843 | |
| 1844 | if (pmsafe_debug && !kdp_snapshot) |
| 1845 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); |
| 1846 | |
| 1847 | debugger_exit_time = mach_absolute_time(); |
| 1848 | |
| 1849 | DBG("mp_kdp_exit() done\n" ); |
| 1850 | (void) ml_set_interrupts_enabled(mp_kdp_state); |
| 1851 | postcode(MP_KDP_EXIT); |
| 1852 | } |
| 1853 | |
| 1854 | #endif /* MACH_KDP */ |
| 1855 | |
| 1856 | boolean_t |
| 1857 | mp_recent_debugger_activity(void) { |
| 1858 | uint64_t abstime = mach_absolute_time(); |
| 1859 | return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) || |
| 1860 | ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance)); |
| 1861 | } |
| 1862 | |
| 1863 | /*ARGSUSED*/ |
| 1864 | void |
| 1865 | init_ast_check( |
| 1866 | __unused processor_t processor) |
| 1867 | { |
| 1868 | } |
| 1869 | |
| 1870 | void |
| 1871 | cause_ast_check( |
| 1872 | processor_t processor) |
| 1873 | { |
| 1874 | int cpu = processor->cpu_id; |
| 1875 | |
| 1876 | if (cpu != cpu_number()) { |
| 1877 | i386_signal_cpu(cpu, MP_AST, ASYNC); |
| 1878 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0); |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | void |
| 1883 | slave_machine_init(void *param) |
| 1884 | { |
| 1885 | /* |
| 1886 | * Here in process context, but with interrupts disabled. |
| 1887 | */ |
| 1888 | DBG("slave_machine_init() CPU%d\n" , get_cpu_number()); |
| 1889 | |
| 1890 | if (param == FULL_SLAVE_INIT) { |
| 1891 | /* |
| 1892 | * Cold start |
| 1893 | */ |
| 1894 | clock_init(); |
| 1895 | } |
| 1896 | cpu_machine_init(); /* Interrupts enabled hereafter */ |
| 1897 | } |
| 1898 | |
| 1899 | #undef cpu_number |
| 1900 | int cpu_number(void) |
| 1901 | { |
| 1902 | return get_cpu_number(); |
| 1903 | } |
| 1904 | |
| 1905 | static void |
| 1906 | cpu_prewarm_init() |
| 1907 | { |
| 1908 | int i; |
| 1909 | |
| 1910 | simple_lock_init(&cpu_warm_lock, 0); |
| 1911 | queue_init(&cpu_warm_call_list); |
| 1912 | for (i = 0; i < NUM_CPU_WARM_CALLS; i++) { |
| 1913 | enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]); |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | static timer_call_t |
| 1918 | grab_warm_timer_call() |
| 1919 | { |
| 1920 | spl_t x; |
| 1921 | timer_call_t call = NULL; |
| 1922 | |
| 1923 | x = splsched(); |
| 1924 | simple_lock(&cpu_warm_lock); |
| 1925 | if (!queue_empty(&cpu_warm_call_list)) { |
| 1926 | call = (timer_call_t) dequeue_head(&cpu_warm_call_list); |
| 1927 | } |
| 1928 | simple_unlock(&cpu_warm_lock); |
| 1929 | splx(x); |
| 1930 | |
| 1931 | return call; |
| 1932 | } |
| 1933 | |
| 1934 | static void |
| 1935 | free_warm_timer_call(timer_call_t call) |
| 1936 | { |
| 1937 | spl_t x; |
| 1938 | |
| 1939 | x = splsched(); |
| 1940 | simple_lock(&cpu_warm_lock); |
| 1941 | enqueue_head(&cpu_warm_call_list, (queue_entry_t)call); |
| 1942 | simple_unlock(&cpu_warm_lock); |
| 1943 | splx(x); |
| 1944 | } |
| 1945 | |
| 1946 | /* |
| 1947 | * Runs in timer call context (interrupts disabled). |
| 1948 | */ |
| 1949 | static void |
| 1950 | cpu_warm_timer_call_func( |
| 1951 | call_entry_param_t p0, |
| 1952 | __unused call_entry_param_t p1) |
| 1953 | { |
| 1954 | free_warm_timer_call((timer_call_t)p0); |
| 1955 | return; |
| 1956 | } |
| 1957 | |
| 1958 | /* |
| 1959 | * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0). |
| 1960 | */ |
| 1961 | static void |
| 1962 | _cpu_warm_setup( |
| 1963 | void *arg) |
| 1964 | { |
| 1965 | cpu_warm_data_t cwdp = (cpu_warm_data_t)arg; |
| 1966 | |
| 1967 | timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); |
| 1968 | cwdp->cwd_result = 0; |
| 1969 | |
| 1970 | return; |
| 1971 | } |
| 1972 | |
| 1973 | /* |
| 1974 | * Not safe to call with interrupts disabled. |
| 1975 | */ |
| 1976 | kern_return_t |
| 1977 | ml_interrupt_prewarm( |
| 1978 | uint64_t deadline) |
| 1979 | { |
| 1980 | struct cpu_warm_data cwd; |
| 1981 | timer_call_t call; |
| 1982 | cpu_t ct; |
| 1983 | |
| 1984 | if (ml_get_interrupts_enabled() == FALSE) { |
| 1985 | panic("%s: Interrupts disabled?\n" , __FUNCTION__); |
| 1986 | } |
| 1987 | |
| 1988 | /* |
| 1989 | * If the platform doesn't need our help, say that we succeeded. |
| 1990 | */ |
| 1991 | if (!ml_get_interrupt_prewake_applicable()) { |
| 1992 | return KERN_SUCCESS; |
| 1993 | } |
| 1994 | |
| 1995 | /* |
| 1996 | * Grab a timer call to use. |
| 1997 | */ |
| 1998 | call = grab_warm_timer_call(); |
| 1999 | if (call == NULL) { |
| 2000 | return KERN_RESOURCE_SHORTAGE; |
| 2001 | } |
| 2002 | |
| 2003 | timer_call_setup(call, cpu_warm_timer_call_func, call); |
| 2004 | cwd.cwd_call = call; |
| 2005 | cwd.cwd_deadline = deadline; |
| 2006 | cwd.cwd_result = 0; |
| 2007 | |
| 2008 | /* |
| 2009 | * For now, non-local interrupts happen on the master processor. |
| 2010 | */ |
| 2011 | ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd); |
| 2012 | if (ct == 0) { |
| 2013 | free_warm_timer_call(call); |
| 2014 | return KERN_FAILURE; |
| 2015 | } else { |
| 2016 | return cwd.cwd_result; |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | #if DEBUG || DEVELOPMENT |
| 2021 | void |
| 2022 | kernel_spin(uint64_t spin_ns) |
| 2023 | { |
| 2024 | boolean_t istate; |
| 2025 | uint64_t spin_abs; |
| 2026 | uint64_t deadline; |
| 2027 | cpu_data_t *cdp; |
| 2028 | |
| 2029 | kprintf("kernel_spin(%llu) spinning uninterruptibly\n" , spin_ns); |
| 2030 | istate = ml_set_interrupts_enabled(FALSE); |
| 2031 | cdp = current_cpu_datap(); |
| 2032 | nanoseconds_to_absolutetime(spin_ns, &spin_abs); |
| 2033 | |
| 2034 | /* Fake interrupt handler entry for testing mp_interrupt_watchdog() */ |
| 2035 | cdp->cpu_int_event_time = mach_absolute_time(); |
| 2036 | cdp->cpu_int_state = (void *) USER_STATE(current_thread()); |
| 2037 | |
| 2038 | deadline = mach_absolute_time() + spin_ns; |
| 2039 | while (mach_absolute_time() < deadline) |
| 2040 | cpu_pause(); |
| 2041 | |
| 2042 | cdp->cpu_int_event_time = 0; |
| 2043 | cdp->cpu_int_state = NULL; |
| 2044 | |
| 2045 | ml_set_interrupts_enabled(istate); |
| 2046 | kprintf("kernel_spin() continuing\n" ); |
| 2047 | } |
| 2048 | |
| 2049 | /* |
| 2050 | * Called from the scheduler's maintenance thread, |
| 2051 | * scan running processors for long-running ISRs and: |
| 2052 | * - panic if longer than LockTimeOut, or |
| 2053 | * - log if more than a quantum. |
| 2054 | */ |
| 2055 | void |
| 2056 | mp_interrupt_watchdog(void) |
| 2057 | { |
| 2058 | cpu_t cpu; |
| 2059 | boolean_t intrs_enabled = FALSE; |
| 2060 | uint16_t cpu_int_num; |
| 2061 | uint64_t cpu_int_event_time; |
| 2062 | uint64_t cpu_rip; |
| 2063 | uint64_t cpu_int_duration; |
| 2064 | uint64_t now; |
| 2065 | x86_saved_state_t *cpu_int_state; |
| 2066 | |
| 2067 | if (__improbable(!mp_interrupt_watchdog_enabled)) |
| 2068 | return; |
| 2069 | |
| 2070 | intrs_enabled = ml_set_interrupts_enabled(FALSE); |
| 2071 | now = mach_absolute_time(); |
| 2072 | /* |
| 2073 | * While timeouts are not suspended, |
| 2074 | * check all other processors for long outstanding interrupt handling. |
| 2075 | */ |
| 2076 | for (cpu = 0; |
| 2077 | cpu < (cpu_t) real_ncpus && !machine_timeout_suspended(); |
| 2078 | cpu++) { |
| 2079 | if ((cpu == (cpu_t) cpu_number()) || |
| 2080 | (!cpu_is_running(cpu))) |
| 2081 | continue; |
| 2082 | cpu_int_event_time = cpu_datap(cpu)->cpu_int_event_time; |
| 2083 | if (cpu_int_event_time == 0) |
| 2084 | continue; |
| 2085 | if (__improbable(now < cpu_int_event_time)) |
| 2086 | continue; /* skip due to inter-processor skew */ |
| 2087 | cpu_int_state = cpu_datap(cpu)->cpu_int_state; |
| 2088 | if (__improbable(cpu_int_state == NULL)) |
| 2089 | /* The interrupt may have been dismissed */ |
| 2090 | continue; |
| 2091 | |
| 2092 | /* Here with a cpu handling an interrupt */ |
| 2093 | |
| 2094 | cpu_int_duration = now - cpu_int_event_time; |
| 2095 | if (__improbable(cpu_int_duration > LockTimeOut)) { |
| 2096 | cpu_int_num = saved_state64(cpu_int_state)->isf.trapno; |
| 2097 | cpu_rip = saved_state64(cpu_int_state)->isf.rip; |
| 2098 | vector_timed_out = cpu_int_num; |
| 2099 | NMIPI_panic(cpu_to_cpumask(cpu), INTERRUPT_WATCHDOG); |
| 2100 | panic("Interrupt watchdog, " |
| 2101 | "cpu: %d interrupt: 0x%x time: %llu..%llu state: %p RIP: 0x%llx" , |
| 2102 | cpu, cpu_int_num, cpu_int_event_time, now, cpu_int_state, cpu_rip); |
| 2103 | /* NOT REACHED */ |
| 2104 | } else if (__improbable(cpu_int_duration > (uint64_t) std_quantum)) { |
| 2105 | mp_interrupt_watchdog_events++; |
| 2106 | cpu_int_num = saved_state64(cpu_int_state)->isf.trapno; |
| 2107 | cpu_rip = saved_state64(cpu_int_state)->isf.rip; |
| 2108 | ml_set_interrupts_enabled(intrs_enabled); |
| 2109 | printf("Interrupt watchdog, " |
| 2110 | "cpu: %d interrupt: 0x%x time: %llu..%llu RIP: 0x%llx\n" , |
| 2111 | cpu, cpu_int_num, cpu_int_event_time, now, cpu_rip); |
| 2112 | return; |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | ml_set_interrupts_enabled(intrs_enabled); |
| 2117 | } |
| 2118 | #endif |
| 2119 | |