| 1 | /* |
| 2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | * File: kern/lock.c |
| 58 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 59 | * Date: 1985 |
| 60 | * |
| 61 | * Locking primitives implementation |
| 62 | */ |
| 63 | |
| 64 | #define ATOMIC_PRIVATE 1 |
| 65 | #define LOCK_PRIVATE 1 |
| 66 | |
| 67 | #include <mach_ldebug.h> |
| 68 | |
| 69 | #include <kern/locks.h> |
| 70 | #include <kern/kalloc.h> |
| 71 | #include <kern/misc_protos.h> |
| 72 | #include <kern/thread.h> |
| 73 | #include <kern/processor.h> |
| 74 | #include <kern/cpu_data.h> |
| 75 | #include <kern/cpu_number.h> |
| 76 | #include <kern/sched_prim.h> |
| 77 | #include <kern/xpr.h> |
| 78 | #include <kern/debug.h> |
| 79 | #include <string.h> |
| 80 | |
| 81 | #include <i386/machine_routines.h> /* machine_timeout_suspended() */ |
| 82 | #include <machine/atomic.h> |
| 83 | #include <machine/machine_cpu.h> |
| 84 | #include <i386/mp.h> |
| 85 | #include <machine/atomic.h> |
| 86 | #include <sys/kdebug.h> |
| 87 | #include <i386/locks_i386_inlines.h> |
| 88 | |
| 89 | /* |
| 90 | * We need only enough declarations from the BSD-side to be able to |
| 91 | * test if our probe is active, and to call __dtrace_probe(). Setting |
| 92 | * NEED_DTRACE_DEFS gets a local copy of those definitions pulled in. |
| 93 | */ |
| 94 | #if CONFIG_DTRACE |
| 95 | #define NEED_DTRACE_DEFS |
| 96 | #include <../bsd/sys/lockstat.h> |
| 97 | |
| 98 | #define DTRACE_RW_SHARED 0x0 //reader |
| 99 | #define DTRACE_RW_EXCL 0x1 //writer |
| 100 | #define DTRACE_NO_FLAG 0x0 //not applicable |
| 101 | |
| 102 | #endif |
| 103 | |
| 104 | #define LCK_RW_LCK_EXCLUSIVE_CODE 0x100 |
| 105 | #define LCK_RW_LCK_EXCLUSIVE1_CODE 0x101 |
| 106 | #define LCK_RW_LCK_SHARED_CODE 0x102 |
| 107 | #define LCK_RW_LCK_SH_TO_EX_CODE 0x103 |
| 108 | #define LCK_RW_LCK_SH_TO_EX1_CODE 0x104 |
| 109 | #define LCK_RW_LCK_EX_TO_SH_CODE 0x105 |
| 110 | |
| 111 | #define LCK_RW_LCK_EX_WRITER_SPIN_CODE 0x106 |
| 112 | #define LCK_RW_LCK_EX_WRITER_WAIT_CODE 0x107 |
| 113 | #define LCK_RW_LCK_EX_READER_SPIN_CODE 0x108 |
| 114 | #define LCK_RW_LCK_EX_READER_WAIT_CODE 0x109 |
| 115 | #define LCK_RW_LCK_SHARED_SPIN_CODE 0x110 |
| 116 | #define LCK_RW_LCK_SHARED_WAIT_CODE 0x111 |
| 117 | #define LCK_RW_LCK_SH_TO_EX_SPIN_CODE 0x112 |
| 118 | #define LCK_RW_LCK_SH_TO_EX_WAIT_CODE 0x113 |
| 119 | |
| 120 | |
| 121 | #define ANY_LOCK_DEBUG (USLOCK_DEBUG || LOCK_DEBUG || MUTEX_DEBUG) |
| 122 | |
| 123 | unsigned int LcksOpts=0; |
| 124 | |
| 125 | #if DEVELOPMENT || DEBUG |
| 126 | unsigned int LckDisablePreemptCheck = 0; |
| 127 | #endif |
| 128 | |
| 129 | /* Forwards */ |
| 130 | |
| 131 | #if USLOCK_DEBUG |
| 132 | /* |
| 133 | * Perform simple lock checks. |
| 134 | */ |
| 135 | int uslock_check = 1; |
| 136 | int max_lock_loops = 100000000; |
| 137 | decl_simple_lock_data(extern , printf_lock) |
| 138 | decl_simple_lock_data(extern , panic_lock) |
| 139 | #endif /* USLOCK_DEBUG */ |
| 140 | |
| 141 | extern unsigned int not_in_kdp; |
| 142 | |
| 143 | /* |
| 144 | * We often want to know the addresses of the callers |
| 145 | * of the various lock routines. However, this information |
| 146 | * is only used for debugging and statistics. |
| 147 | */ |
| 148 | typedef void *pc_t; |
| 149 | #define INVALID_PC ((void *) VM_MAX_KERNEL_ADDRESS) |
| 150 | #define INVALID_THREAD ((void *) VM_MAX_KERNEL_ADDRESS) |
| 151 | #if ANY_LOCK_DEBUG |
| 152 | #define OBTAIN_PC(pc) ((pc) = GET_RETURN_PC()) |
| 153 | #define DECL_PC(pc) pc_t pc; |
| 154 | #else /* ANY_LOCK_DEBUG */ |
| 155 | #define DECL_PC(pc) |
| 156 | #ifdef lint |
| 157 | /* |
| 158 | * Eliminate lint complaints about unused local pc variables. |
| 159 | */ |
| 160 | #define OBTAIN_PC(pc) ++pc |
| 161 | #else /* lint */ |
| 162 | #define OBTAIN_PC(pc) |
| 163 | #endif /* lint */ |
| 164 | #endif /* USLOCK_DEBUG */ |
| 165 | |
| 166 | /* |
| 167 | * atomic exchange API is a low level abstraction of the operations |
| 168 | * to atomically read, modify, and write a pointer. This abstraction works |
| 169 | * for both Intel and ARMv8.1 compare and exchange atomic instructions as |
| 170 | * well as the ARM exclusive instructions. |
| 171 | * |
| 172 | * atomic_exchange_begin() - begin exchange and retrieve current value |
| 173 | * atomic_exchange_complete() - conclude an exchange |
| 174 | * atomic_exchange_abort() - cancel an exchange started with atomic_exchange_begin() |
| 175 | */ |
| 176 | static uint32_t |
| 177 | atomic_exchange_begin32(uint32_t *target, uint32_t *previous, enum memory_order ord) |
| 178 | { |
| 179 | uint32_t val; |
| 180 | |
| 181 | (void)ord; // Memory order not used |
| 182 | val = __c11_atomic_load((_Atomic uint32_t *)target, memory_order_relaxed); |
| 183 | *previous = val; |
| 184 | return val; |
| 185 | } |
| 186 | |
| 187 | static boolean_t |
| 188 | atomic_exchange_complete32(uint32_t *target, uint32_t previous, uint32_t newval, enum memory_order ord) |
| 189 | { |
| 190 | return __c11_atomic_compare_exchange_strong((_Atomic uint32_t *)target, &previous, newval, ord, memory_order_relaxed); |
| 191 | } |
| 192 | |
| 193 | static void |
| 194 | atomic_exchange_abort(void) { } |
| 195 | |
| 196 | static boolean_t |
| 197 | atomic_test_and_set32(uint32_t *target, uint32_t test_mask, uint32_t set_mask, enum memory_order ord, boolean_t wait) |
| 198 | { |
| 199 | uint32_t value, prev; |
| 200 | |
| 201 | for ( ; ; ) { |
| 202 | value = atomic_exchange_begin32(target, &prev, ord); |
| 203 | if (value & test_mask) { |
| 204 | if (wait) |
| 205 | cpu_pause(); |
| 206 | else |
| 207 | atomic_exchange_abort(); |
| 208 | return FALSE; |
| 209 | } |
| 210 | value |= set_mask; |
| 211 | if (atomic_exchange_complete32(target, prev, value, ord)) |
| 212 | return TRUE; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Portable lock package implementation of usimple_locks. |
| 218 | */ |
| 219 | |
| 220 | #if USLOCK_DEBUG |
| 221 | #define USLDBG(stmt) stmt |
| 222 | void usld_lock_init(usimple_lock_t, unsigned short); |
| 223 | void usld_lock_pre(usimple_lock_t, pc_t); |
| 224 | void usld_lock_post(usimple_lock_t, pc_t); |
| 225 | void usld_unlock(usimple_lock_t, pc_t); |
| 226 | void usld_lock_try_pre(usimple_lock_t, pc_t); |
| 227 | void usld_lock_try_post(usimple_lock_t, pc_t); |
| 228 | int usld_lock_common_checks(usimple_lock_t, char *); |
| 229 | #else /* USLOCK_DEBUG */ |
| 230 | #define USLDBG(stmt) |
| 231 | #endif /* USLOCK_DEBUG */ |
| 232 | |
| 233 | /* |
| 234 | * Forward definitions |
| 235 | */ |
| 236 | |
| 237 | static void lck_rw_lock_shared_gen(lck_rw_t *lck); |
| 238 | static void lck_rw_lock_exclusive_gen(lck_rw_t *lck); |
| 239 | static boolean_t lck_rw_lock_shared_to_exclusive_success(lck_rw_t *lck); |
| 240 | static boolean_t lck_rw_lock_shared_to_exclusive_failure(lck_rw_t *lck, uint32_t prior_lock_state); |
| 241 | static void lck_rw_lock_exclusive_to_shared_gen(lck_rw_t *lck, uint32_t prior_lock_state); |
| 242 | static lck_rw_type_t lck_rw_done_gen(lck_rw_t *lck, uint32_t prior_lock_state); |
| 243 | void lck_rw_clear_promotions_x86(thread_t thread); |
| 244 | static boolean_t lck_rw_held_read_or_upgrade(lck_rw_t *lock); |
| 245 | static boolean_t lck_rw_grab_want(lck_rw_t *lock); |
| 246 | static boolean_t lck_rw_grab_shared(lck_rw_t *lock); |
| 247 | static void lck_mtx_unlock_wakeup_tail(lck_mtx_t *mutex, int prior_lock_state, boolean_t indirect); |
| 248 | static void lck_mtx_interlock_lock(lck_mtx_t *mutex, uint32_t *new_state); |
| 249 | static void lck_mtx_interlock_lock_clear_flags(lck_mtx_t *mutex, uint32_t and_flags, uint32_t *new_state); |
| 250 | static int lck_mtx_interlock_try_lock(lck_mtx_t *mutex, uint32_t *new_state); |
| 251 | static int lck_mtx_interlock_try_lock_set_flags(lck_mtx_t *mutex, uint32_t or_flags, uint32_t *new_state); |
| 252 | static boolean_t lck_mtx_lock_wait_interlock_to_clear(lck_mtx_t *lock, uint32_t *new_state); |
| 253 | static boolean_t lck_mtx_try_lock_wait_interlock_to_clear(lck_mtx_t *lock, uint32_t *new_state); |
| 254 | |
| 255 | |
| 256 | /* |
| 257 | * Routine: lck_spin_alloc_init |
| 258 | */ |
| 259 | lck_spin_t * |
| 260 | lck_spin_alloc_init( |
| 261 | lck_grp_t *grp, |
| 262 | lck_attr_t *attr) |
| 263 | { |
| 264 | lck_spin_t *lck; |
| 265 | |
| 266 | if ((lck = (lck_spin_t *)kalloc(sizeof(lck_spin_t))) != 0) |
| 267 | lck_spin_init(lck, grp, attr); |
| 268 | |
| 269 | return(lck); |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Routine: lck_spin_free |
| 274 | */ |
| 275 | void |
| 276 | lck_spin_free( |
| 277 | lck_spin_t *lck, |
| 278 | lck_grp_t *grp) |
| 279 | { |
| 280 | lck_spin_destroy(lck, grp); |
| 281 | kfree(lck, sizeof(lck_spin_t)); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Routine: lck_spin_init |
| 286 | */ |
| 287 | void |
| 288 | lck_spin_init( |
| 289 | lck_spin_t *lck, |
| 290 | lck_grp_t *grp, |
| 291 | __unused lck_attr_t *attr) |
| 292 | { |
| 293 | usimple_lock_init((usimple_lock_t) lck, 0); |
| 294 | lck_grp_reference(grp); |
| 295 | lck_grp_lckcnt_incr(grp, LCK_TYPE_SPIN); |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Routine: lck_spin_destroy |
| 300 | */ |
| 301 | void |
| 302 | lck_spin_destroy( |
| 303 | lck_spin_t *lck, |
| 304 | lck_grp_t *grp) |
| 305 | { |
| 306 | if (lck->interlock == LCK_SPIN_TAG_DESTROYED) |
| 307 | return; |
| 308 | lck->interlock = LCK_SPIN_TAG_DESTROYED; |
| 309 | lck_grp_lckcnt_decr(grp, LCK_TYPE_SPIN); |
| 310 | lck_grp_deallocate(grp); |
| 311 | return; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Routine: lck_spin_lock |
| 316 | */ |
| 317 | void |
| 318 | lck_spin_lock( |
| 319 | lck_spin_t *lck) |
| 320 | { |
| 321 | usimple_lock((usimple_lock_t) lck); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Routine: lck_spin_unlock |
| 326 | */ |
| 327 | void |
| 328 | lck_spin_unlock( |
| 329 | lck_spin_t *lck) |
| 330 | { |
| 331 | usimple_unlock((usimple_lock_t) lck); |
| 332 | } |
| 333 | |
| 334 | |
| 335 | /* |
| 336 | * Routine: lck_spin_try_lock |
| 337 | */ |
| 338 | boolean_t |
| 339 | lck_spin_try_lock( |
| 340 | lck_spin_t *lck) |
| 341 | { |
| 342 | boolean_t lrval = (boolean_t)usimple_lock_try((usimple_lock_t) lck); |
| 343 | #if DEVELOPMENT || DEBUG |
| 344 | if (lrval) { |
| 345 | pltrace(FALSE); |
| 346 | } |
| 347 | #endif |
| 348 | return(lrval); |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Routine: lck_spin_assert |
| 353 | */ |
| 354 | void |
| 355 | lck_spin_assert(lck_spin_t *lock, unsigned int type) |
| 356 | { |
| 357 | thread_t thread, holder; |
| 358 | uintptr_t state; |
| 359 | |
| 360 | if (__improbable(type != LCK_ASSERT_OWNED && type != LCK_ASSERT_NOTOWNED)) { |
| 361 | panic("lck_spin_assert(): invalid arg (%u)" , type); |
| 362 | } |
| 363 | |
| 364 | state = lock->interlock; |
| 365 | holder = (thread_t)state; |
| 366 | thread = current_thread(); |
| 367 | if (type == LCK_ASSERT_OWNED) { |
| 368 | if (__improbable(holder == THREAD_NULL)) { |
| 369 | panic("Lock not owned %p = %lx" , lock, state); |
| 370 | } |
| 371 | if (__improbable(holder != thread)) { |
| 372 | panic("Lock not owned by current thread %p = %lx" , lock, state); |
| 373 | } |
| 374 | } else if (type == LCK_ASSERT_NOTOWNED) { |
| 375 | if (__improbable(holder != THREAD_NULL)) { |
| 376 | if (holder == thread) { |
| 377 | panic("Lock owned by current thread %p = %lx" , lock, state); |
| 378 | } else { |
| 379 | panic("Lock %p owned by thread %p" , lock, holder); |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Routine: kdp_lck_spin_is_acquired |
| 387 | * NOT SAFE: To be used only by kernel debugger to avoid deadlock. |
| 388 | * Returns: TRUE if lock is acquired. |
| 389 | */ |
| 390 | boolean_t |
| 391 | kdp_lck_spin_is_acquired(lck_spin_t *lck) { |
| 392 | if (not_in_kdp) { |
| 393 | panic("panic: spinlock acquired check done outside of kernel debugger" ); |
| 394 | } |
| 395 | return (lck->interlock != 0)? TRUE : FALSE; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Initialize a usimple_lock. |
| 400 | * |
| 401 | * No change in preemption state. |
| 402 | */ |
| 403 | void |
| 404 | usimple_lock_init( |
| 405 | usimple_lock_t l, |
| 406 | __unused unsigned short tag) |
| 407 | { |
| 408 | #ifndef MACHINE_SIMPLE_LOCK |
| 409 | USLDBG(usld_lock_init(l, tag)); |
| 410 | hw_lock_init(&l->interlock); |
| 411 | #else |
| 412 | simple_lock_init((simple_lock_t)l,tag); |
| 413 | #endif |
| 414 | } |
| 415 | |
| 416 | volatile uint32_t spinlock_owner_cpu = ~0; |
| 417 | volatile usimple_lock_t spinlock_timed_out; |
| 418 | |
| 419 | uint32_t spinlock_timeout_NMI(uintptr_t thread_addr) { |
| 420 | uint32_t i; |
| 421 | |
| 422 | for (i = 0; i < real_ncpus; i++) { |
| 423 | if ((cpu_data_ptr[i] != NULL) && ((uintptr_t)cpu_data_ptr[i]->cpu_active_thread == thread_addr)) { |
| 424 | spinlock_owner_cpu = i; |
| 425 | if ((uint32_t) cpu_number() != i) { |
| 426 | /* Cause NMI and panic on the owner's cpu */ |
| 427 | NMIPI_panic(cpu_to_cpumask(i), SPINLOCK_TIMEOUT); |
| 428 | } |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | return spinlock_owner_cpu; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Acquire a usimple_lock. |
| 438 | * |
| 439 | * Returns with preemption disabled. Note |
| 440 | * that the hw_lock routines are responsible for |
| 441 | * maintaining preemption state. |
| 442 | */ |
| 443 | void |
| 444 | usimple_lock( |
| 445 | usimple_lock_t l) |
| 446 | { |
| 447 | #ifndef MACHINE_SIMPLE_LOCK |
| 448 | DECL_PC(pc); |
| 449 | |
| 450 | OBTAIN_PC(pc); |
| 451 | USLDBG(usld_lock_pre(l, pc)); |
| 452 | |
| 453 | if(__improbable(hw_lock_to(&l->interlock, LockTimeOutTSC) == 0)) { |
| 454 | boolean_t uslock_acquired = FALSE; |
| 455 | while (machine_timeout_suspended()) { |
| 456 | enable_preemption(); |
| 457 | if ((uslock_acquired = hw_lock_to(&l->interlock, LockTimeOutTSC))) |
| 458 | break; |
| 459 | } |
| 460 | |
| 461 | if (uslock_acquired == FALSE) { |
| 462 | uint32_t lock_cpu; |
| 463 | uintptr_t lowner = (uintptr_t)l->interlock.lock_data; |
| 464 | spinlock_timed_out = l; |
| 465 | lock_cpu = spinlock_timeout_NMI(lowner); |
| 466 | panic("Spinlock acquisition timed out: lock=%p, lock owner thread=0x%lx, current_thread: %p, lock owner active on CPU 0x%x, current owner: 0x%lx, time: %llu" , |
| 467 | l, lowner, current_thread(), lock_cpu, (uintptr_t)l->interlock.lock_data, mach_absolute_time()); |
| 468 | } |
| 469 | } |
| 470 | #if DEVELOPMENT || DEBUG |
| 471 | pltrace(FALSE); |
| 472 | #endif |
| 473 | |
| 474 | USLDBG(usld_lock_post(l, pc)); |
| 475 | #else |
| 476 | simple_lock((simple_lock_t)l); |
| 477 | #endif |
| 478 | #if CONFIG_DTRACE |
| 479 | LOCKSTAT_RECORD(LS_LCK_SPIN_LOCK_ACQUIRE, l, 0); |
| 480 | #endif |
| 481 | } |
| 482 | |
| 483 | |
| 484 | /* |
| 485 | * Release a usimple_lock. |
| 486 | * |
| 487 | * Returns with preemption enabled. Note |
| 488 | * that the hw_lock routines are responsible for |
| 489 | * maintaining preemption state. |
| 490 | */ |
| 491 | void |
| 492 | usimple_unlock( |
| 493 | usimple_lock_t l) |
| 494 | { |
| 495 | #ifndef MACHINE_SIMPLE_LOCK |
| 496 | DECL_PC(pc); |
| 497 | |
| 498 | OBTAIN_PC(pc); |
| 499 | USLDBG(usld_unlock(l, pc)); |
| 500 | #if DEVELOPMENT || DEBUG |
| 501 | pltrace(TRUE); |
| 502 | #endif |
| 503 | hw_lock_unlock(&l->interlock); |
| 504 | #else |
| 505 | simple_unlock_rwmb((simple_lock_t)l); |
| 506 | #endif |
| 507 | } |
| 508 | |
| 509 | |
| 510 | /* |
| 511 | * Conditionally acquire a usimple_lock. |
| 512 | * |
| 513 | * On success, returns with preemption disabled. |
| 514 | * On failure, returns with preemption in the same state |
| 515 | * as when first invoked. Note that the hw_lock routines |
| 516 | * are responsible for maintaining preemption state. |
| 517 | * |
| 518 | * XXX No stats are gathered on a miss; I preserved this |
| 519 | * behavior from the original assembly-language code, but |
| 520 | * doesn't it make sense to log misses? XXX |
| 521 | */ |
| 522 | unsigned int |
| 523 | usimple_lock_try( |
| 524 | usimple_lock_t l) |
| 525 | { |
| 526 | #ifndef MACHINE_SIMPLE_LOCK |
| 527 | unsigned int success; |
| 528 | DECL_PC(pc); |
| 529 | |
| 530 | OBTAIN_PC(pc); |
| 531 | USLDBG(usld_lock_try_pre(l, pc)); |
| 532 | if ((success = hw_lock_try(&l->interlock))) { |
| 533 | #if DEVELOPMENT || DEBUG |
| 534 | pltrace(FALSE); |
| 535 | #endif |
| 536 | USLDBG(usld_lock_try_post(l, pc)); |
| 537 | } |
| 538 | return success; |
| 539 | #else |
| 540 | return(simple_lock_try((simple_lock_t)l)); |
| 541 | #endif |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Acquire a usimple_lock while polling for pending TLB flushes |
| 546 | * and spinning on a lock. |
| 547 | * |
| 548 | */ |
| 549 | void |
| 550 | usimple_lock_try_lock_loop(usimple_lock_t l) |
| 551 | { |
| 552 | boolean_t istate = ml_get_interrupts_enabled(); |
| 553 | while (!simple_lock_try((l))) { |
| 554 | if (!istate) |
| 555 | handle_pending_TLB_flushes(); |
| 556 | cpu_pause(); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | #if USLOCK_DEBUG |
| 561 | /* |
| 562 | * States of a usimple_lock. The default when initializing |
| 563 | * a usimple_lock is setting it up for debug checking. |
| 564 | */ |
| 565 | #define USLOCK_CHECKED 0x0001 /* lock is being checked */ |
| 566 | #define USLOCK_TAKEN 0x0002 /* lock has been taken */ |
| 567 | #define USLOCK_INIT 0xBAA0 /* lock has been initialized */ |
| 568 | #define USLOCK_INITIALIZED (USLOCK_INIT|USLOCK_CHECKED) |
| 569 | #define USLOCK_CHECKING(l) (uslock_check && \ |
| 570 | ((l)->debug.state & USLOCK_CHECKED)) |
| 571 | |
| 572 | /* |
| 573 | * Trace activities of a particularly interesting lock. |
| 574 | */ |
| 575 | void usl_trace(usimple_lock_t, int, pc_t, const char *); |
| 576 | |
| 577 | |
| 578 | /* |
| 579 | * Initialize the debugging information contained |
| 580 | * in a usimple_lock. |
| 581 | */ |
| 582 | void |
| 583 | usld_lock_init( |
| 584 | usimple_lock_t l, |
| 585 | __unused unsigned short tag) |
| 586 | { |
| 587 | if (l == USIMPLE_LOCK_NULL) |
| 588 | panic("lock initialization: null lock pointer" ); |
| 589 | l->lock_type = USLOCK_TAG; |
| 590 | l->debug.state = uslock_check ? USLOCK_INITIALIZED : 0; |
| 591 | l->debug.lock_cpu = l->debug.unlock_cpu = 0; |
| 592 | l->debug.lock_pc = l->debug.unlock_pc = INVALID_PC; |
| 593 | l->debug.lock_thread = l->debug.unlock_thread = INVALID_THREAD; |
| 594 | l->debug.duration[0] = l->debug.duration[1] = 0; |
| 595 | l->debug.unlock_cpu = l->debug.unlock_cpu = 0; |
| 596 | l->debug.unlock_pc = l->debug.unlock_pc = INVALID_PC; |
| 597 | l->debug.unlock_thread = l->debug.unlock_thread = INVALID_THREAD; |
| 598 | } |
| 599 | |
| 600 | |
| 601 | /* |
| 602 | * These checks apply to all usimple_locks, not just |
| 603 | * those with USLOCK_CHECKED turned on. |
| 604 | */ |
| 605 | int |
| 606 | usld_lock_common_checks( |
| 607 | usimple_lock_t l, |
| 608 | char *caller) |
| 609 | { |
| 610 | if (l == USIMPLE_LOCK_NULL) |
| 611 | panic("%s: null lock pointer" , caller); |
| 612 | if (l->lock_type != USLOCK_TAG) |
| 613 | panic("%s: %p is not a usimple lock, 0x%x" , caller, l, l->lock_type); |
| 614 | if (!(l->debug.state & USLOCK_INIT)) |
| 615 | panic("%s: %p is not an initialized lock, 0x%x" , caller, l, l->debug.state); |
| 616 | return USLOCK_CHECKING(l); |
| 617 | } |
| 618 | |
| 619 | |
| 620 | /* |
| 621 | * Debug checks on a usimple_lock just before attempting |
| 622 | * to acquire it. |
| 623 | */ |
| 624 | /* ARGSUSED */ |
| 625 | void |
| 626 | usld_lock_pre( |
| 627 | usimple_lock_t l, |
| 628 | pc_t pc) |
| 629 | { |
| 630 | char caller[] = "usimple_lock" ; |
| 631 | |
| 632 | |
| 633 | if (!usld_lock_common_checks(l, caller)) |
| 634 | return; |
| 635 | |
| 636 | /* |
| 637 | * Note that we have a weird case where we are getting a lock when we are] |
| 638 | * in the process of putting the system to sleep. We are running with no |
| 639 | * current threads, therefore we can't tell if we are trying to retake a lock |
| 640 | * we have or someone on the other processor has it. Therefore we just |
| 641 | * ignore this test if the locking thread is 0. |
| 642 | */ |
| 643 | |
| 644 | if ((l->debug.state & USLOCK_TAKEN) && l->debug.lock_thread && |
| 645 | l->debug.lock_thread == (void *) current_thread()) { |
| 646 | printf("%s: lock %p already locked (at %p) by" , |
| 647 | caller, l, l->debug.lock_pc); |
| 648 | printf(" current thread %p (new attempt at pc %p)\n" , |
| 649 | l->debug.lock_thread, pc); |
| 650 | panic("%s" , caller); |
| 651 | } |
| 652 | mp_disable_preemption(); |
| 653 | usl_trace(l, cpu_number(), pc, caller); |
| 654 | mp_enable_preemption(); |
| 655 | } |
| 656 | |
| 657 | |
| 658 | /* |
| 659 | * Debug checks on a usimple_lock just after acquiring it. |
| 660 | * |
| 661 | * Pre-emption has been disabled at this point, |
| 662 | * so we are safe in using cpu_number. |
| 663 | */ |
| 664 | void |
| 665 | usld_lock_post( |
| 666 | usimple_lock_t l, |
| 667 | pc_t pc) |
| 668 | { |
| 669 | int mycpu; |
| 670 | char caller[] = "successful usimple_lock" ; |
| 671 | |
| 672 | |
| 673 | if (!usld_lock_common_checks(l, caller)) |
| 674 | return; |
| 675 | |
| 676 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) |
| 677 | panic("%s: lock %p became uninitialized" , |
| 678 | caller, l); |
| 679 | if ((l->debug.state & USLOCK_TAKEN)) |
| 680 | panic("%s: lock 0x%p became TAKEN by someone else" , |
| 681 | caller, l); |
| 682 | |
| 683 | mycpu = cpu_number(); |
| 684 | l->debug.lock_thread = (void *)current_thread(); |
| 685 | l->debug.state |= USLOCK_TAKEN; |
| 686 | l->debug.lock_pc = pc; |
| 687 | l->debug.lock_cpu = mycpu; |
| 688 | |
| 689 | usl_trace(l, mycpu, pc, caller); |
| 690 | } |
| 691 | |
| 692 | |
| 693 | /* |
| 694 | * Debug checks on a usimple_lock just before |
| 695 | * releasing it. Note that the caller has not |
| 696 | * yet released the hardware lock. |
| 697 | * |
| 698 | * Preemption is still disabled, so there's |
| 699 | * no problem using cpu_number. |
| 700 | */ |
| 701 | void |
| 702 | usld_unlock( |
| 703 | usimple_lock_t l, |
| 704 | pc_t pc) |
| 705 | { |
| 706 | int mycpu; |
| 707 | char caller[] = "usimple_unlock" ; |
| 708 | |
| 709 | |
| 710 | if (!usld_lock_common_checks(l, caller)) |
| 711 | return; |
| 712 | |
| 713 | mycpu = cpu_number(); |
| 714 | |
| 715 | if (!(l->debug.state & USLOCK_TAKEN)) |
| 716 | panic("%s: lock 0x%p hasn't been taken" , |
| 717 | caller, l); |
| 718 | if (l->debug.lock_thread != (void *) current_thread()) |
| 719 | panic("%s: unlocking lock 0x%p, owned by thread %p" , |
| 720 | caller, l, l->debug.lock_thread); |
| 721 | if (l->debug.lock_cpu != mycpu) { |
| 722 | printf("%s: unlocking lock 0x%p on cpu 0x%x" , |
| 723 | caller, l, mycpu); |
| 724 | printf(" (acquired on cpu 0x%x)\n" , l->debug.lock_cpu); |
| 725 | panic("%s" , caller); |
| 726 | } |
| 727 | usl_trace(l, mycpu, pc, caller); |
| 728 | |
| 729 | l->debug.unlock_thread = l->debug.lock_thread; |
| 730 | l->debug.lock_thread = INVALID_PC; |
| 731 | l->debug.state &= ~USLOCK_TAKEN; |
| 732 | l->debug.unlock_pc = pc; |
| 733 | l->debug.unlock_cpu = mycpu; |
| 734 | } |
| 735 | |
| 736 | |
| 737 | /* |
| 738 | * Debug checks on a usimple_lock just before |
| 739 | * attempting to acquire it. |
| 740 | * |
| 741 | * Preemption isn't guaranteed to be disabled. |
| 742 | */ |
| 743 | void |
| 744 | usld_lock_try_pre( |
| 745 | usimple_lock_t l, |
| 746 | pc_t pc) |
| 747 | { |
| 748 | char caller[] = "usimple_lock_try" ; |
| 749 | |
| 750 | if (!usld_lock_common_checks(l, caller)) |
| 751 | return; |
| 752 | mp_disable_preemption(); |
| 753 | usl_trace(l, cpu_number(), pc, caller); |
| 754 | mp_enable_preemption(); |
| 755 | } |
| 756 | |
| 757 | |
| 758 | /* |
| 759 | * Debug checks on a usimple_lock just after |
| 760 | * successfully attempting to acquire it. |
| 761 | * |
| 762 | * Preemption has been disabled by the |
| 763 | * lock acquisition attempt, so it's safe |
| 764 | * to use cpu_number. |
| 765 | */ |
| 766 | void |
| 767 | usld_lock_try_post( |
| 768 | usimple_lock_t l, |
| 769 | pc_t pc) |
| 770 | { |
| 771 | int mycpu; |
| 772 | char caller[] = "successful usimple_lock_try" ; |
| 773 | |
| 774 | if (!usld_lock_common_checks(l, caller)) |
| 775 | return; |
| 776 | |
| 777 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) |
| 778 | panic("%s: lock 0x%p became uninitialized" , |
| 779 | caller, l); |
| 780 | if ((l->debug.state & USLOCK_TAKEN)) |
| 781 | panic("%s: lock 0x%p became TAKEN by someone else" , |
| 782 | caller, l); |
| 783 | |
| 784 | mycpu = cpu_number(); |
| 785 | l->debug.lock_thread = (void *) current_thread(); |
| 786 | l->debug.state |= USLOCK_TAKEN; |
| 787 | l->debug.lock_pc = pc; |
| 788 | l->debug.lock_cpu = mycpu; |
| 789 | |
| 790 | usl_trace(l, mycpu, pc, caller); |
| 791 | } |
| 792 | |
| 793 | |
| 794 | /* |
| 795 | * For very special cases, set traced_lock to point to a |
| 796 | * specific lock of interest. The result is a series of |
| 797 | * XPRs showing lock operations on that lock. The lock_seq |
| 798 | * value is used to show the order of those operations. |
| 799 | */ |
| 800 | usimple_lock_t traced_lock; |
| 801 | unsigned int lock_seq; |
| 802 | |
| 803 | void |
| 804 | usl_trace( |
| 805 | usimple_lock_t l, |
| 806 | int mycpu, |
| 807 | pc_t pc, |
| 808 | const char * op_name) |
| 809 | { |
| 810 | if (traced_lock == l) { |
| 811 | XPR(XPR_SLOCK, |
| 812 | "seq %d, cpu %d, %s @ %x\n" , |
| 813 | (uintptr_t) lock_seq, (uintptr_t) mycpu, |
| 814 | (uintptr_t) op_name, (uintptr_t) pc, 0); |
| 815 | lock_seq++; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | |
| 820 | #endif /* USLOCK_DEBUG */ |
| 821 | |
| 822 | /* |
| 823 | * Routine: lck_rw_alloc_init |
| 824 | */ |
| 825 | lck_rw_t * |
| 826 | lck_rw_alloc_init( |
| 827 | lck_grp_t *grp, |
| 828 | lck_attr_t *attr) { |
| 829 | lck_rw_t *lck; |
| 830 | |
| 831 | if ((lck = (lck_rw_t *)kalloc(sizeof(lck_rw_t))) != 0) { |
| 832 | bzero(lck, sizeof(lck_rw_t)); |
| 833 | lck_rw_init(lck, grp, attr); |
| 834 | } |
| 835 | |
| 836 | return(lck); |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * Routine: lck_rw_free |
| 841 | */ |
| 842 | void |
| 843 | lck_rw_free( |
| 844 | lck_rw_t *lck, |
| 845 | lck_grp_t *grp) { |
| 846 | lck_rw_destroy(lck, grp); |
| 847 | kfree(lck, sizeof(lck_rw_t)); |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * Routine: lck_rw_init |
| 852 | */ |
| 853 | void |
| 854 | lck_rw_init( |
| 855 | lck_rw_t *lck, |
| 856 | lck_grp_t *grp, |
| 857 | lck_attr_t *attr) |
| 858 | { |
| 859 | lck_attr_t *lck_attr = (attr != LCK_ATTR_NULL) ? |
| 860 | attr : &LockDefaultLckAttr; |
| 861 | |
| 862 | hw_lock_byte_init(&lck->lck_rw_interlock); |
| 863 | lck->lck_rw_want_write = FALSE; |
| 864 | lck->lck_rw_want_upgrade = FALSE; |
| 865 | lck->lck_rw_shared_count = 0; |
| 866 | lck->lck_rw_can_sleep = TRUE; |
| 867 | lck->lck_r_waiting = lck->lck_w_waiting = 0; |
| 868 | lck->lck_rw_tag = 0; |
| 869 | lck->lck_rw_priv_excl = ((lck_attr->lck_attr_val & |
| 870 | LCK_ATTR_RW_SHARED_PRIORITY) == 0); |
| 871 | |
| 872 | lck_grp_reference(grp); |
| 873 | lck_grp_lckcnt_incr(grp, LCK_TYPE_RW); |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * Routine: lck_rw_destroy |
| 878 | */ |
| 879 | void |
| 880 | lck_rw_destroy( |
| 881 | lck_rw_t *lck, |
| 882 | lck_grp_t *grp) |
| 883 | { |
| 884 | if (lck->lck_rw_tag == LCK_RW_TAG_DESTROYED) |
| 885 | return; |
| 886 | #if MACH_LDEBUG |
| 887 | lck_rw_assert(lck, LCK_RW_ASSERT_NOTHELD); |
| 888 | #endif |
| 889 | lck->lck_rw_tag = LCK_RW_TAG_DESTROYED; |
| 890 | lck_grp_lckcnt_decr(grp, LCK_TYPE_RW); |
| 891 | lck_grp_deallocate(grp); |
| 892 | return; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Sleep locks. These use the same data structure and algorithm |
| 897 | * as the spin locks, but the process sleeps while it is waiting |
| 898 | * for the lock. These work on uniprocessor systems. |
| 899 | */ |
| 900 | |
| 901 | #define DECREMENTER_TIMEOUT 1000000 |
| 902 | |
| 903 | /* |
| 904 | * We disable interrupts while holding the RW interlock to prevent an |
| 905 | * interrupt from exacerbating hold time. |
| 906 | * Hence, local helper functions lck_interlock_lock()/lck_interlock_unlock(). |
| 907 | */ |
| 908 | static inline boolean_t |
| 909 | lck_interlock_lock(lck_rw_t *lck) |
| 910 | { |
| 911 | boolean_t istate; |
| 912 | |
| 913 | istate = ml_set_interrupts_enabled(FALSE); |
| 914 | hw_lock_byte_lock(&lck->lck_rw_interlock); |
| 915 | return istate; |
| 916 | } |
| 917 | |
| 918 | static inline void |
| 919 | lck_interlock_unlock(lck_rw_t *lck, boolean_t istate) |
| 920 | { |
| 921 | hw_lock_byte_unlock(&lck->lck_rw_interlock); |
| 922 | ml_set_interrupts_enabled(istate); |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * This inline is used when busy-waiting for an rw lock. |
| 927 | * If interrupts were disabled when the lock primitive was called, |
| 928 | * we poll the IPI handler for pending tlb flushes. |
| 929 | * XXX This is a hack to avoid deadlocking on the pmap_system_lock. |
| 930 | */ |
| 931 | static inline void |
| 932 | lck_rw_lock_pause(boolean_t interrupts_enabled) |
| 933 | { |
| 934 | if (!interrupts_enabled) |
| 935 | handle_pending_TLB_flushes(); |
| 936 | cpu_pause(); |
| 937 | } |
| 938 | |
| 939 | static inline boolean_t |
| 940 | lck_rw_held_read_or_upgrade(lck_rw_t *lock) |
| 941 | { |
| 942 | if (ordered_load(&lock->data) & (LCK_RW_SHARED_MASK | LCK_RW_INTERLOCK | LCK_RW_WANT_UPGRADE)) |
| 943 | return TRUE; |
| 944 | return FALSE; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * compute the deadline to spin against when |
| 949 | * waiting for a change of state on a lck_rw_t |
| 950 | */ |
| 951 | static inline uint64_t |
| 952 | lck_rw_deadline_for_spin(lck_rw_t *lck) |
| 953 | { |
| 954 | if (lck->lck_rw_can_sleep) { |
| 955 | if (lck->lck_r_waiting || lck->lck_w_waiting || lck->lck_rw_shared_count > machine_info.max_cpus) { |
| 956 | /* |
| 957 | * there are already threads waiting on this lock... this |
| 958 | * implies that they have spun beyond their deadlines waiting for |
| 959 | * the desired state to show up so we will not bother spinning at this time... |
| 960 | * or |
| 961 | * the current number of threads sharing this lock exceeds our capacity to run them |
| 962 | * concurrently and since all states we're going to spin for require the rw_shared_count |
| 963 | * to be at 0, we'll not bother spinning since the latency for this to happen is |
| 964 | * unpredictable... |
| 965 | */ |
| 966 | return (mach_absolute_time()); |
| 967 | } |
| 968 | return (mach_absolute_time() + MutexSpin); |
| 969 | } else |
| 970 | return (mach_absolute_time() + (100000LL * 1000000000LL)); |
| 971 | } |
| 972 | |
| 973 | |
| 974 | /* |
| 975 | * Spin while interlock is held. |
| 976 | */ |
| 977 | |
| 978 | static inline void |
| 979 | lck_rw_interlock_spin(lck_rw_t *lock) |
| 980 | { |
| 981 | while (ordered_load(&lock->data) & LCK_RW_INTERLOCK) { |
| 982 | cpu_pause(); |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | static boolean_t |
| 987 | lck_rw_grab_want(lck_rw_t *lock) |
| 988 | { |
| 989 | uint32_t data, prev; |
| 990 | |
| 991 | for ( ; ; ) { |
| 992 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_relaxed); |
| 993 | if ((data & LCK_RW_INTERLOCK) == 0) |
| 994 | break; |
| 995 | atomic_exchange_abort(); |
| 996 | lck_rw_interlock_spin(lock); |
| 997 | } |
| 998 | if (data & LCK_RW_WANT_WRITE) { |
| 999 | atomic_exchange_abort(); |
| 1000 | return FALSE; |
| 1001 | } |
| 1002 | data |= LCK_RW_WANT_WRITE; |
| 1003 | return atomic_exchange_complete32(&lock->data, prev, data, memory_order_relaxed); |
| 1004 | } |
| 1005 | |
| 1006 | static boolean_t |
| 1007 | lck_rw_grab_shared(lck_rw_t *lock) |
| 1008 | { |
| 1009 | uint32_t data, prev; |
| 1010 | |
| 1011 | for ( ; ; ) { |
| 1012 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_acquire_smp); |
| 1013 | if ((data & LCK_RW_INTERLOCK) == 0) |
| 1014 | break; |
| 1015 | atomic_exchange_abort(); |
| 1016 | lck_rw_interlock_spin(lock); |
| 1017 | } |
| 1018 | if (data & (LCK_RW_WANT_WRITE | LCK_RW_WANT_UPGRADE)) { |
| 1019 | if (((data & LCK_RW_SHARED_MASK) == 0) || (data & LCK_RW_PRIV_EXCL)) { |
| 1020 | atomic_exchange_abort(); |
| 1021 | return FALSE; |
| 1022 | } |
| 1023 | } |
| 1024 | data += LCK_RW_SHARED_READER; |
| 1025 | return atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp); |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * Routine: lck_rw_lock_exclusive |
| 1030 | */ |
| 1031 | static void |
| 1032 | lck_rw_lock_exclusive_gen( |
| 1033 | lck_rw_t *lck) |
| 1034 | { |
| 1035 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(lck); |
| 1036 | uint64_t deadline = 0; |
| 1037 | int slept = 0; |
| 1038 | int gotlock = 0; |
| 1039 | int lockheld = 0; |
| 1040 | wait_result_t res = 0; |
| 1041 | boolean_t istate = -1; |
| 1042 | |
| 1043 | #if CONFIG_DTRACE |
| 1044 | boolean_t dtrace_ls_initialized = FALSE; |
| 1045 | boolean_t dtrace_rwl_excl_spin, dtrace_rwl_excl_block, dtrace_ls_enabled= FALSE; |
| 1046 | uint64_t wait_interval = 0; |
| 1047 | int readers_at_sleep = 0; |
| 1048 | #endif |
| 1049 | |
| 1050 | /* |
| 1051 | * Try to acquire the lck_rw_want_write bit. |
| 1052 | */ |
| 1053 | while ( !lck_rw_grab_want(lck)) { |
| 1054 | |
| 1055 | #if CONFIG_DTRACE |
| 1056 | if (dtrace_ls_initialized == FALSE) { |
| 1057 | dtrace_ls_initialized = TRUE; |
| 1058 | dtrace_rwl_excl_spin = (lockstat_probemap[LS_LCK_RW_LOCK_EXCL_SPIN] != 0); |
| 1059 | dtrace_rwl_excl_block = (lockstat_probemap[LS_LCK_RW_LOCK_EXCL_BLOCK] != 0); |
| 1060 | dtrace_ls_enabled = dtrace_rwl_excl_spin || dtrace_rwl_excl_block; |
| 1061 | if (dtrace_ls_enabled) { |
| 1062 | /* |
| 1063 | * Either sleeping or spinning is happening, |
| 1064 | * start a timing of our delay interval now. |
| 1065 | */ |
| 1066 | readers_at_sleep = lck->lck_rw_shared_count; |
| 1067 | wait_interval = mach_absolute_time(); |
| 1068 | } |
| 1069 | } |
| 1070 | #endif |
| 1071 | if (istate == -1) |
| 1072 | istate = ml_get_interrupts_enabled(); |
| 1073 | |
| 1074 | deadline = lck_rw_deadline_for_spin(lck); |
| 1075 | |
| 1076 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_WRITER_SPIN_CODE) | DBG_FUNC_START, trace_lck, 0, 0, 0, 0); |
| 1077 | |
| 1078 | while (((gotlock = lck_rw_grab_want(lck)) == 0) && mach_absolute_time() < deadline) |
| 1079 | lck_rw_lock_pause(istate); |
| 1080 | |
| 1081 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_WRITER_SPIN_CODE) | DBG_FUNC_END, trace_lck, 0, 0, gotlock, 0); |
| 1082 | |
| 1083 | if (gotlock) |
| 1084 | break; |
| 1085 | /* |
| 1086 | * if we get here, the deadline has expired w/o us |
| 1087 | * being able to grab the lock exclusively |
| 1088 | * check to see if we're allowed to do a thread_block |
| 1089 | */ |
| 1090 | if (lck->lck_rw_can_sleep) { |
| 1091 | |
| 1092 | istate = lck_interlock_lock(lck); |
| 1093 | |
| 1094 | if (lck->lck_rw_want_write) { |
| 1095 | |
| 1096 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_WRITER_WAIT_CODE) | DBG_FUNC_START, trace_lck, 0, 0, 0, 0); |
| 1097 | |
| 1098 | lck->lck_w_waiting = TRUE; |
| 1099 | |
| 1100 | thread_set_pending_block_hint(current_thread(), kThreadWaitKernelRWLockWrite); |
| 1101 | res = assert_wait(RW_LOCK_WRITER_EVENT(lck), |
| 1102 | THREAD_UNINT | THREAD_WAIT_NOREPORT_USER); |
| 1103 | lck_interlock_unlock(lck, istate); |
| 1104 | |
| 1105 | if (res == THREAD_WAITING) { |
| 1106 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1107 | slept++; |
| 1108 | } |
| 1109 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_WRITER_WAIT_CODE) | DBG_FUNC_END, trace_lck, res, slept, 0, 0); |
| 1110 | } else { |
| 1111 | lck->lck_rw_want_write = TRUE; |
| 1112 | lck_interlock_unlock(lck, istate); |
| 1113 | break; |
| 1114 | } |
| 1115 | } |
| 1116 | } |
| 1117 | /* |
| 1118 | * Wait for readers (and upgrades) to finish... |
| 1119 | * the test for these conditions must be done simultaneously with |
| 1120 | * a check of the interlock not being held since |
| 1121 | * the rw_shared_count will drop to 0 first and then want_upgrade |
| 1122 | * will be set to 1 in the shared_to_exclusive scenario... those |
| 1123 | * adjustments are done behind the interlock and represent an |
| 1124 | * atomic change in state and must be considered as such |
| 1125 | * however, once we see the read count at 0, the want_upgrade not set |
| 1126 | * and the interlock not held, we are safe to proceed |
| 1127 | */ |
| 1128 | while (lck_rw_held_read_or_upgrade(lck)) { |
| 1129 | |
| 1130 | #if CONFIG_DTRACE |
| 1131 | /* |
| 1132 | * Either sleeping or spinning is happening, start |
| 1133 | * a timing of our delay interval now. If we set it |
| 1134 | * to -1 we don't have accurate data so we cannot later |
| 1135 | * decide to record a dtrace spin or sleep event. |
| 1136 | */ |
| 1137 | if (dtrace_ls_initialized == FALSE) { |
| 1138 | dtrace_ls_initialized = TRUE; |
| 1139 | dtrace_rwl_excl_spin = (lockstat_probemap[LS_LCK_RW_LOCK_EXCL_SPIN] != 0); |
| 1140 | dtrace_rwl_excl_block = (lockstat_probemap[LS_LCK_RW_LOCK_EXCL_BLOCK] != 0); |
| 1141 | dtrace_ls_enabled = dtrace_rwl_excl_spin || dtrace_rwl_excl_block; |
| 1142 | if (dtrace_ls_enabled) { |
| 1143 | /* |
| 1144 | * Either sleeping or spinning is happening, |
| 1145 | * start a timing of our delay interval now. |
| 1146 | */ |
| 1147 | readers_at_sleep = lck->lck_rw_shared_count; |
| 1148 | wait_interval = mach_absolute_time(); |
| 1149 | } |
| 1150 | } |
| 1151 | #endif |
| 1152 | if (istate == -1) |
| 1153 | istate = ml_get_interrupts_enabled(); |
| 1154 | |
| 1155 | deadline = lck_rw_deadline_for_spin(lck); |
| 1156 | |
| 1157 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_READER_SPIN_CODE) | DBG_FUNC_START, trace_lck, 0, 0, 0, 0); |
| 1158 | |
| 1159 | while ((lockheld = lck_rw_held_read_or_upgrade(lck)) && mach_absolute_time() < deadline) |
| 1160 | lck_rw_lock_pause(istate); |
| 1161 | |
| 1162 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_READER_SPIN_CODE) | DBG_FUNC_END, trace_lck, 0, 0, lockheld, 0); |
| 1163 | |
| 1164 | if ( !lockheld) |
| 1165 | break; |
| 1166 | /* |
| 1167 | * if we get here, the deadline has expired w/o us |
| 1168 | * being able to grab the lock exclusively |
| 1169 | * check to see if we're allowed to do a thread_block |
| 1170 | */ |
| 1171 | if (lck->lck_rw_can_sleep) { |
| 1172 | |
| 1173 | istate = lck_interlock_lock(lck); |
| 1174 | |
| 1175 | if (lck->lck_rw_shared_count != 0 || lck->lck_rw_want_upgrade) { |
| 1176 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_READER_WAIT_CODE) | DBG_FUNC_START, trace_lck, 0, 0, 0, 0); |
| 1177 | |
| 1178 | lck->lck_w_waiting = TRUE; |
| 1179 | |
| 1180 | thread_set_pending_block_hint(current_thread(), kThreadWaitKernelRWLockWrite); |
| 1181 | res = assert_wait(RW_LOCK_WRITER_EVENT(lck), |
| 1182 | THREAD_UNINT | THREAD_WAIT_NOREPORT_USER); |
| 1183 | lck_interlock_unlock(lck, istate); |
| 1184 | |
| 1185 | if (res == THREAD_WAITING) { |
| 1186 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1187 | slept++; |
| 1188 | } |
| 1189 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_READER_WAIT_CODE) | DBG_FUNC_END, trace_lck, res, slept, 0, 0); |
| 1190 | } else { |
| 1191 | lck_interlock_unlock(lck, istate); |
| 1192 | /* |
| 1193 | * must own the lock now, since we checked for |
| 1194 | * readers or upgrade owner behind the interlock |
| 1195 | * no need for a call to 'lck_rw_held_read_or_upgrade' |
| 1196 | */ |
| 1197 | break; |
| 1198 | } |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | #if CONFIG_DTRACE |
| 1203 | /* |
| 1204 | * Decide what latencies we suffered that are Dtrace events. |
| 1205 | * If we have set wait_interval, then we either spun or slept. |
| 1206 | * At least we get out from under the interlock before we record |
| 1207 | * which is the best we can do here to minimize the impact |
| 1208 | * of the tracing. |
| 1209 | * If we have set wait_interval to -1, then dtrace was not enabled when we |
| 1210 | * started sleeping/spinning so we don't record this event. |
| 1211 | */ |
| 1212 | if (dtrace_ls_enabled == TRUE) { |
| 1213 | if (slept == 0) { |
| 1214 | LOCKSTAT_RECORD2(LS_LCK_RW_LOCK_EXCL_SPIN, lck, |
| 1215 | mach_absolute_time() - wait_interval, 1); |
| 1216 | } else { |
| 1217 | /* |
| 1218 | * For the blocking case, we also record if when we blocked |
| 1219 | * it was held for read or write, and how many readers. |
| 1220 | * Notice that above we recorded this before we dropped |
| 1221 | * the interlock so the count is accurate. |
| 1222 | */ |
| 1223 | LOCKSTAT_RECORD4(LS_LCK_RW_LOCK_EXCL_BLOCK, lck, |
| 1224 | mach_absolute_time() - wait_interval, 1, |
| 1225 | (readers_at_sleep == 0 ? 1 : 0), readers_at_sleep); |
| 1226 | } |
| 1227 | } |
| 1228 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_EXCL_ACQUIRE, lck, 1); |
| 1229 | #endif |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * Routine: lck_rw_done |
| 1234 | */ |
| 1235 | |
| 1236 | lck_rw_type_t lck_rw_done(lck_rw_t *lock) |
| 1237 | { |
| 1238 | uint32_t data, prev; |
| 1239 | |
| 1240 | for ( ; ; ) { |
| 1241 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_release_smp); |
| 1242 | if (data & LCK_RW_INTERLOCK) { /* wait for interlock to clear */ |
| 1243 | atomic_exchange_abort(); |
| 1244 | lck_rw_interlock_spin(lock); |
| 1245 | continue; |
| 1246 | } |
| 1247 | if (data & LCK_RW_SHARED_MASK) { |
| 1248 | data -= LCK_RW_SHARED_READER; |
| 1249 | if ((data & LCK_RW_SHARED_MASK) == 0) /* if reader count has now gone to 0, check for waiters */ |
| 1250 | goto check_waiters; |
| 1251 | } else { /* if reader count == 0, must be exclusive lock */ |
| 1252 | if (data & LCK_RW_WANT_UPGRADE) { |
| 1253 | data &= ~(LCK_RW_WANT_UPGRADE); |
| 1254 | } else { |
| 1255 | if (data & LCK_RW_WANT_WRITE) |
| 1256 | data &= ~(LCK_RW_WANT_EXCL); |
| 1257 | else /* lock is not 'owned', panic */ |
| 1258 | panic("Releasing non-exclusive RW lock without a reader refcount!" ); |
| 1259 | } |
| 1260 | check_waiters: |
| 1261 | if (prev & LCK_RW_W_WAITING) { |
| 1262 | data &= ~(LCK_RW_W_WAITING); |
| 1263 | if ((prev & LCK_RW_PRIV_EXCL) == 0) |
| 1264 | data &= ~(LCK_RW_R_WAITING); |
| 1265 | } else |
| 1266 | data &= ~(LCK_RW_R_WAITING); |
| 1267 | } |
| 1268 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_release_smp)) |
| 1269 | break; |
| 1270 | cpu_pause(); |
| 1271 | } |
| 1272 | return lck_rw_done_gen(lock, prev); |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * Routine: lck_rw_done_gen |
| 1277 | * |
| 1278 | * called from lck_rw_done() |
| 1279 | * prior_lock_state is the value in the 1st |
| 1280 | * word of the lock at the time of a successful |
| 1281 | * atomic compare and exchange with the new value... |
| 1282 | * it represents the state of the lock before we |
| 1283 | * decremented the rw_shared_count or cleared either |
| 1284 | * rw_want_upgrade or rw_want_write and |
| 1285 | * the lck_x_waiting bits... since the wrapper |
| 1286 | * routine has already changed the state atomically, |
| 1287 | * we just need to decide if we should |
| 1288 | * wake up anyone and what value to return... we do |
| 1289 | * this by examining the state of the lock before |
| 1290 | * we changed it |
| 1291 | */ |
| 1292 | static lck_rw_type_t |
| 1293 | lck_rw_done_gen( |
| 1294 | lck_rw_t *lck, |
| 1295 | uint32_t prior_lock_state) |
| 1296 | { |
| 1297 | lck_rw_t *fake_lck; |
| 1298 | lck_rw_type_t lock_type; |
| 1299 | thread_t thread; |
| 1300 | uint32_t rwlock_count; |
| 1301 | |
| 1302 | /* |
| 1303 | * prior_lock state is a snapshot of the 1st word of the |
| 1304 | * lock in question... we'll fake up a pointer to it |
| 1305 | * and carefully not access anything beyond whats defined |
| 1306 | * in the first word of a lck_rw_t |
| 1307 | */ |
| 1308 | fake_lck = (lck_rw_t *)&prior_lock_state; |
| 1309 | |
| 1310 | if (fake_lck->lck_rw_shared_count <= 1) { |
| 1311 | if (fake_lck->lck_w_waiting) |
| 1312 | thread_wakeup(RW_LOCK_WRITER_EVENT(lck)); |
| 1313 | |
| 1314 | if (!(fake_lck->lck_rw_priv_excl && fake_lck->lck_w_waiting) && fake_lck->lck_r_waiting) |
| 1315 | thread_wakeup(RW_LOCK_READER_EVENT(lck)); |
| 1316 | } |
| 1317 | if (fake_lck->lck_rw_shared_count) |
| 1318 | lock_type = LCK_RW_TYPE_SHARED; |
| 1319 | else |
| 1320 | lock_type = LCK_RW_TYPE_EXCLUSIVE; |
| 1321 | |
| 1322 | /* Check if dropping the lock means that we need to unpromote */ |
| 1323 | thread = current_thread(); |
| 1324 | rwlock_count = thread->rwlock_count--; |
| 1325 | #if MACH_LDEBUG |
| 1326 | if (rwlock_count == 0) { |
| 1327 | panic("rw lock count underflow for thread %p" , thread); |
| 1328 | } |
| 1329 | #endif |
| 1330 | if ((rwlock_count == 1 /* field now 0 */) && (thread->sched_flags & TH_SFLAG_RW_PROMOTED)) { |
| 1331 | /* sched_flags checked without lock, but will be rechecked while clearing */ |
| 1332 | lck_rw_clear_promotion(thread, unslide_for_kdebug(lck)); |
| 1333 | } |
| 1334 | |
| 1335 | #if CONFIG_DTRACE |
| 1336 | LOCKSTAT_RECORD(LS_LCK_RW_DONE_RELEASE, lck, lock_type == LCK_RW_TYPE_SHARED ? 0 : 1); |
| 1337 | #endif |
| 1338 | |
| 1339 | return(lock_type); |
| 1340 | } |
| 1341 | |
| 1342 | |
| 1343 | /* |
| 1344 | * Routine: lck_rw_unlock |
| 1345 | */ |
| 1346 | void |
| 1347 | lck_rw_unlock( |
| 1348 | lck_rw_t *lck, |
| 1349 | lck_rw_type_t lck_rw_type) |
| 1350 | { |
| 1351 | if (lck_rw_type == LCK_RW_TYPE_SHARED) |
| 1352 | lck_rw_unlock_shared(lck); |
| 1353 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) |
| 1354 | lck_rw_unlock_exclusive(lck); |
| 1355 | else |
| 1356 | panic("lck_rw_unlock(): Invalid RW lock type: %d\n" , lck_rw_type); |
| 1357 | } |
| 1358 | |
| 1359 | |
| 1360 | /* |
| 1361 | * Routine: lck_rw_unlock_shared |
| 1362 | */ |
| 1363 | void |
| 1364 | lck_rw_unlock_shared( |
| 1365 | lck_rw_t *lck) |
| 1366 | { |
| 1367 | lck_rw_type_t ret; |
| 1368 | |
| 1369 | assertf(lck->lck_rw_shared_count > 0, "lck %p has shared_count=0x%x" , lck, lck->lck_rw_shared_count); |
| 1370 | ret = lck_rw_done(lck); |
| 1371 | |
| 1372 | if (ret != LCK_RW_TYPE_SHARED) |
| 1373 | panic("lck_rw_unlock_shared(): lock %p held in mode: %d\n" , lck, ret); |
| 1374 | } |
| 1375 | |
| 1376 | |
| 1377 | /* |
| 1378 | * Routine: lck_rw_unlock_exclusive |
| 1379 | */ |
| 1380 | void |
| 1381 | lck_rw_unlock_exclusive( |
| 1382 | lck_rw_t *lck) |
| 1383 | { |
| 1384 | lck_rw_type_t ret; |
| 1385 | |
| 1386 | ret = lck_rw_done(lck); |
| 1387 | |
| 1388 | if (ret != LCK_RW_TYPE_EXCLUSIVE) |
| 1389 | panic("lck_rw_unlock_exclusive(): lock held in mode: %d\n" , ret); |
| 1390 | } |
| 1391 | |
| 1392 | |
| 1393 | /* |
| 1394 | * Routine: lck_rw_lock |
| 1395 | */ |
| 1396 | void |
| 1397 | lck_rw_lock( |
| 1398 | lck_rw_t *lck, |
| 1399 | lck_rw_type_t lck_rw_type) |
| 1400 | { |
| 1401 | if (lck_rw_type == LCK_RW_TYPE_SHARED) |
| 1402 | lck_rw_lock_shared(lck); |
| 1403 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) |
| 1404 | lck_rw_lock_exclusive(lck); |
| 1405 | else |
| 1406 | panic("lck_rw_lock(): Invalid RW lock type: %x\n" , lck_rw_type); |
| 1407 | } |
| 1408 | |
| 1409 | /* |
| 1410 | * Routine: lck_rw_lock_shared |
| 1411 | */ |
| 1412 | void |
| 1413 | lck_rw_lock_shared(lck_rw_t *lock) |
| 1414 | { |
| 1415 | uint32_t data, prev; |
| 1416 | |
| 1417 | current_thread()->rwlock_count++; |
| 1418 | for ( ; ; ) { |
| 1419 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_acquire_smp); |
| 1420 | if (data & (LCK_RW_WANT_EXCL | LCK_RW_WANT_UPGRADE | LCK_RW_INTERLOCK)) { |
| 1421 | atomic_exchange_abort(); |
| 1422 | lck_rw_lock_shared_gen(lock); |
| 1423 | break; |
| 1424 | } |
| 1425 | data += LCK_RW_SHARED_READER; |
| 1426 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp)) |
| 1427 | break; |
| 1428 | cpu_pause(); |
| 1429 | } |
| 1430 | #if CONFIG_DTRACE |
| 1431 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_SHARED_ACQUIRE, lock, DTRACE_RW_SHARED); |
| 1432 | #endif /* CONFIG_DTRACE */ |
| 1433 | return; |
| 1434 | } |
| 1435 | |
| 1436 | /* |
| 1437 | * Routine: lck_rw_lock_shared_gen |
| 1438 | * Function: |
| 1439 | * assembly fast path code has determined that this lock |
| 1440 | * is held exclusively... this is where we spin/block |
| 1441 | * until we can acquire the lock in the shared mode |
| 1442 | */ |
| 1443 | static void |
| 1444 | lck_rw_lock_shared_gen( |
| 1445 | lck_rw_t *lck) |
| 1446 | { |
| 1447 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(lck); |
| 1448 | uint64_t deadline = 0; |
| 1449 | int gotlock = 0; |
| 1450 | int slept = 0; |
| 1451 | wait_result_t res = 0; |
| 1452 | boolean_t istate = -1; |
| 1453 | |
| 1454 | #if CONFIG_DTRACE |
| 1455 | uint64_t wait_interval = 0; |
| 1456 | int readers_at_sleep = 0; |
| 1457 | boolean_t dtrace_ls_initialized = FALSE; |
| 1458 | boolean_t dtrace_rwl_shared_spin, dtrace_rwl_shared_block, dtrace_ls_enabled = FALSE; |
| 1459 | #endif |
| 1460 | |
| 1461 | while ( !lck_rw_grab_shared(lck)) { |
| 1462 | |
| 1463 | #if CONFIG_DTRACE |
| 1464 | if (dtrace_ls_initialized == FALSE) { |
| 1465 | dtrace_ls_initialized = TRUE; |
| 1466 | dtrace_rwl_shared_spin = (lockstat_probemap[LS_LCK_RW_LOCK_SHARED_SPIN] != 0); |
| 1467 | dtrace_rwl_shared_block = (lockstat_probemap[LS_LCK_RW_LOCK_SHARED_BLOCK] != 0); |
| 1468 | dtrace_ls_enabled = dtrace_rwl_shared_spin || dtrace_rwl_shared_block; |
| 1469 | if (dtrace_ls_enabled) { |
| 1470 | /* |
| 1471 | * Either sleeping or spinning is happening, |
| 1472 | * start a timing of our delay interval now. |
| 1473 | */ |
| 1474 | readers_at_sleep = lck->lck_rw_shared_count; |
| 1475 | wait_interval = mach_absolute_time(); |
| 1476 | } |
| 1477 | } |
| 1478 | #endif |
| 1479 | if (istate == -1) |
| 1480 | istate = ml_get_interrupts_enabled(); |
| 1481 | |
| 1482 | deadline = lck_rw_deadline_for_spin(lck); |
| 1483 | |
| 1484 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_SPIN_CODE) | DBG_FUNC_START, |
| 1485 | trace_lck, lck->lck_rw_want_write, lck->lck_rw_want_upgrade, 0, 0); |
| 1486 | |
| 1487 | while (((gotlock = lck_rw_grab_shared(lck)) == 0) && mach_absolute_time() < deadline) |
| 1488 | lck_rw_lock_pause(istate); |
| 1489 | |
| 1490 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_SPIN_CODE) | DBG_FUNC_END, |
| 1491 | trace_lck, lck->lck_rw_want_write, lck->lck_rw_want_upgrade, gotlock, 0); |
| 1492 | |
| 1493 | if (gotlock) |
| 1494 | break; |
| 1495 | /* |
| 1496 | * if we get here, the deadline has expired w/o us |
| 1497 | * being able to grab the lock for read |
| 1498 | * check to see if we're allowed to do a thread_block |
| 1499 | */ |
| 1500 | if (lck->lck_rw_can_sleep) { |
| 1501 | |
| 1502 | istate = lck_interlock_lock(lck); |
| 1503 | |
| 1504 | if ((lck->lck_rw_want_write || lck->lck_rw_want_upgrade) && |
| 1505 | ((lck->lck_rw_shared_count == 0) || lck->lck_rw_priv_excl)) { |
| 1506 | |
| 1507 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_WAIT_CODE) | DBG_FUNC_START, |
| 1508 | trace_lck, lck->lck_rw_want_write, lck->lck_rw_want_upgrade, 0, 0); |
| 1509 | |
| 1510 | lck->lck_r_waiting = TRUE; |
| 1511 | |
| 1512 | thread_set_pending_block_hint(current_thread(), kThreadWaitKernelRWLockRead); |
| 1513 | res = assert_wait(RW_LOCK_READER_EVENT(lck), |
| 1514 | THREAD_UNINT | THREAD_WAIT_NOREPORT_USER); |
| 1515 | lck_interlock_unlock(lck, istate); |
| 1516 | |
| 1517 | if (res == THREAD_WAITING) { |
| 1518 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1519 | slept++; |
| 1520 | } |
| 1521 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_WAIT_CODE) | DBG_FUNC_END, |
| 1522 | trace_lck, res, slept, 0, 0); |
| 1523 | } else { |
| 1524 | lck->lck_rw_shared_count++; |
| 1525 | lck_interlock_unlock(lck, istate); |
| 1526 | break; |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | #if CONFIG_DTRACE |
| 1532 | if (dtrace_ls_enabled == TRUE) { |
| 1533 | if (slept == 0) { |
| 1534 | LOCKSTAT_RECORD2(LS_LCK_RW_LOCK_SHARED_SPIN, lck, mach_absolute_time() - wait_interval, 0); |
| 1535 | } else { |
| 1536 | LOCKSTAT_RECORD4(LS_LCK_RW_LOCK_SHARED_BLOCK, lck, |
| 1537 | mach_absolute_time() - wait_interval, 0, |
| 1538 | (readers_at_sleep == 0 ? 1 : 0), readers_at_sleep); |
| 1539 | } |
| 1540 | } |
| 1541 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_SHARED_ACQUIRE, lck, 0); |
| 1542 | #endif |
| 1543 | } |
| 1544 | |
| 1545 | |
| 1546 | /* |
| 1547 | * Routine: lck_rw_lock_exclusive |
| 1548 | */ |
| 1549 | |
| 1550 | void |
| 1551 | lck_rw_lock_exclusive(lck_rw_t *lock) |
| 1552 | { |
| 1553 | current_thread()->rwlock_count++; |
| 1554 | if (atomic_test_and_set32(&lock->data, |
| 1555 | (LCK_RW_SHARED_MASK | LCK_RW_WANT_EXCL | LCK_RW_WANT_UPGRADE | LCK_RW_INTERLOCK), |
| 1556 | LCK_RW_WANT_EXCL, memory_order_acquire_smp, FALSE)) { |
| 1557 | #if CONFIG_DTRACE |
| 1558 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_EXCL_ACQUIRE, lock, DTRACE_RW_EXCL); |
| 1559 | #endif /* CONFIG_DTRACE */ |
| 1560 | } else |
| 1561 | lck_rw_lock_exclusive_gen(lock); |
| 1562 | } |
| 1563 | |
| 1564 | |
| 1565 | /* |
| 1566 | * Routine: lck_rw_lock_shared_to_exclusive |
| 1567 | */ |
| 1568 | |
| 1569 | boolean_t |
| 1570 | lck_rw_lock_shared_to_exclusive(lck_rw_t *lock) |
| 1571 | { |
| 1572 | uint32_t data, prev; |
| 1573 | |
| 1574 | for ( ; ; ) { |
| 1575 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_acquire_smp); |
| 1576 | if (data & LCK_RW_INTERLOCK) { |
| 1577 | atomic_exchange_abort(); |
| 1578 | lck_rw_interlock_spin(lock); |
| 1579 | continue; |
| 1580 | } |
| 1581 | if (data & LCK_RW_WANT_UPGRADE) { |
| 1582 | data -= LCK_RW_SHARED_READER; |
| 1583 | if ((data & LCK_RW_SHARED_MASK) == 0) /* we were the last reader */ |
| 1584 | data &= ~(LCK_RW_W_WAITING); /* so clear the wait indicator */ |
| 1585 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp)) |
| 1586 | return lck_rw_lock_shared_to_exclusive_failure(lock, prev); |
| 1587 | } else { |
| 1588 | data |= LCK_RW_WANT_UPGRADE; /* ask for WANT_UPGRADE */ |
| 1589 | data -= LCK_RW_SHARED_READER; /* and shed our read count */ |
| 1590 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp)) |
| 1591 | break; |
| 1592 | } |
| 1593 | cpu_pause(); |
| 1594 | } |
| 1595 | /* we now own the WANT_UPGRADE */ |
| 1596 | if (data & LCK_RW_SHARED_MASK) /* check to see if all of the readers are drained */ |
| 1597 | lck_rw_lock_shared_to_exclusive_success(lock); /* if not, we need to go wait */ |
| 1598 | #if CONFIG_DTRACE |
| 1599 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_SHARED_TO_EXCL_UPGRADE, lock, 0); |
| 1600 | #endif |
| 1601 | return TRUE; |
| 1602 | } |
| 1603 | |
| 1604 | |
| 1605 | /* |
| 1606 | * Routine: lck_rw_lock_shared_to_exclusive_failure |
| 1607 | * Function: |
| 1608 | * assembly fast path code has already dropped our read |
| 1609 | * count and determined that someone else owns 'lck_rw_want_upgrade' |
| 1610 | * if 'lck_rw_shared_count' == 0, its also already dropped 'lck_w_waiting' |
| 1611 | * all we need to do here is determine if a wakeup is needed |
| 1612 | */ |
| 1613 | static boolean_t |
| 1614 | lck_rw_lock_shared_to_exclusive_failure( |
| 1615 | lck_rw_t *lck, |
| 1616 | uint32_t prior_lock_state) |
| 1617 | { |
| 1618 | lck_rw_t *fake_lck; |
| 1619 | thread_t thread = current_thread(); |
| 1620 | uint32_t rwlock_count; |
| 1621 | |
| 1622 | /* Check if dropping the lock means that we need to unpromote */ |
| 1623 | rwlock_count = thread->rwlock_count--; |
| 1624 | #if MACH_LDEBUG |
| 1625 | if (rwlock_count == 0) { |
| 1626 | panic("rw lock count underflow for thread %p" , thread); |
| 1627 | } |
| 1628 | #endif |
| 1629 | fake_lck = (lck_rw_t *)&prior_lock_state; |
| 1630 | |
| 1631 | if (fake_lck->lck_w_waiting && fake_lck->lck_rw_shared_count == 1) { |
| 1632 | /* |
| 1633 | * Someone else has requested upgrade. |
| 1634 | * Since we've released the read lock, wake |
| 1635 | * him up if he's blocked waiting |
| 1636 | */ |
| 1637 | thread_wakeup(RW_LOCK_WRITER_EVENT(lck)); |
| 1638 | } |
| 1639 | |
| 1640 | if ((rwlock_count == 1 /* field now 0 */) && (thread->sched_flags & TH_SFLAG_RW_PROMOTED)) { |
| 1641 | /* sched_flags checked without lock, but will be rechecked while clearing */ |
| 1642 | lck_rw_clear_promotion(thread, unslide_for_kdebug(lck)); |
| 1643 | } |
| 1644 | |
| 1645 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_CODE) | DBG_FUNC_NONE, |
| 1646 | VM_KERNEL_UNSLIDE_OR_PERM(lck), lck->lck_rw_shared_count, lck->lck_rw_want_upgrade, 0, 0); |
| 1647 | |
| 1648 | return (FALSE); |
| 1649 | } |
| 1650 | |
| 1651 | |
| 1652 | /* |
| 1653 | * Routine: lck_rw_lock_shared_to_exclusive_failure |
| 1654 | * Function: |
| 1655 | * assembly fast path code has already dropped our read |
| 1656 | * count and successfully acquired 'lck_rw_want_upgrade' |
| 1657 | * we just need to wait for the rest of the readers to drain |
| 1658 | * and then we can return as the exclusive holder of this lock |
| 1659 | */ |
| 1660 | static boolean_t |
| 1661 | lck_rw_lock_shared_to_exclusive_success( |
| 1662 | lck_rw_t *lck) |
| 1663 | { |
| 1664 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(lck); |
| 1665 | uint64_t deadline = 0; |
| 1666 | int slept = 0; |
| 1667 | int still_shared = 0; |
| 1668 | wait_result_t res; |
| 1669 | boolean_t istate = -1; |
| 1670 | |
| 1671 | #if CONFIG_DTRACE |
| 1672 | uint64_t wait_interval = 0; |
| 1673 | int readers_at_sleep = 0; |
| 1674 | boolean_t dtrace_ls_initialized = FALSE; |
| 1675 | boolean_t dtrace_rwl_shared_to_excl_spin, dtrace_rwl_shared_to_excl_block, dtrace_ls_enabled = FALSE; |
| 1676 | #endif |
| 1677 | |
| 1678 | while (lck->lck_rw_shared_count != 0) { |
| 1679 | |
| 1680 | #if CONFIG_DTRACE |
| 1681 | if (dtrace_ls_initialized == FALSE) { |
| 1682 | dtrace_ls_initialized = TRUE; |
| 1683 | dtrace_rwl_shared_to_excl_spin = (lockstat_probemap[LS_LCK_RW_LOCK_SHARED_TO_EXCL_SPIN] != 0); |
| 1684 | dtrace_rwl_shared_to_excl_block = (lockstat_probemap[LS_LCK_RW_LOCK_SHARED_TO_EXCL_BLOCK] != 0); |
| 1685 | dtrace_ls_enabled = dtrace_rwl_shared_to_excl_spin || dtrace_rwl_shared_to_excl_block; |
| 1686 | if (dtrace_ls_enabled) { |
| 1687 | /* |
| 1688 | * Either sleeping or spinning is happening, |
| 1689 | * start a timing of our delay interval now. |
| 1690 | */ |
| 1691 | readers_at_sleep = lck->lck_rw_shared_count; |
| 1692 | wait_interval = mach_absolute_time(); |
| 1693 | } |
| 1694 | } |
| 1695 | #endif |
| 1696 | if (istate == -1) |
| 1697 | istate = ml_get_interrupts_enabled(); |
| 1698 | |
| 1699 | deadline = lck_rw_deadline_for_spin(lck); |
| 1700 | |
| 1701 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_SPIN_CODE) | DBG_FUNC_START, |
| 1702 | trace_lck, lck->lck_rw_shared_count, 0, 0, 0); |
| 1703 | |
| 1704 | while ((still_shared = lck->lck_rw_shared_count) && mach_absolute_time() < deadline) |
| 1705 | lck_rw_lock_pause(istate); |
| 1706 | |
| 1707 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_SPIN_CODE) | DBG_FUNC_END, |
| 1708 | trace_lck, lck->lck_rw_shared_count, 0, 0, 0); |
| 1709 | |
| 1710 | if ( !still_shared) |
| 1711 | break; |
| 1712 | /* |
| 1713 | * if we get here, the deadline has expired w/o |
| 1714 | * the rw_shared_count having drained to 0 |
| 1715 | * check to see if we're allowed to do a thread_block |
| 1716 | */ |
| 1717 | if (lck->lck_rw_can_sleep) { |
| 1718 | |
| 1719 | istate = lck_interlock_lock(lck); |
| 1720 | |
| 1721 | if (lck->lck_rw_shared_count != 0) { |
| 1722 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_WAIT_CODE) | DBG_FUNC_START, |
| 1723 | trace_lck, lck->lck_rw_shared_count, 0, 0, 0); |
| 1724 | |
| 1725 | lck->lck_w_waiting = TRUE; |
| 1726 | |
| 1727 | thread_set_pending_block_hint(current_thread(), kThreadWaitKernelRWLockUpgrade); |
| 1728 | res = assert_wait(RW_LOCK_WRITER_EVENT(lck), |
| 1729 | THREAD_UNINT | THREAD_WAIT_NOREPORT_USER); |
| 1730 | lck_interlock_unlock(lck, istate); |
| 1731 | |
| 1732 | if (res == THREAD_WAITING) { |
| 1733 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1734 | slept++; |
| 1735 | } |
| 1736 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_WAIT_CODE) | DBG_FUNC_END, |
| 1737 | trace_lck, res, slept, 0, 0); |
| 1738 | } else { |
| 1739 | lck_interlock_unlock(lck, istate); |
| 1740 | break; |
| 1741 | } |
| 1742 | } |
| 1743 | } |
| 1744 | #if CONFIG_DTRACE |
| 1745 | /* |
| 1746 | * We infer whether we took the sleep/spin path above by checking readers_at_sleep. |
| 1747 | */ |
| 1748 | if (dtrace_ls_enabled == TRUE) { |
| 1749 | if (slept == 0) { |
| 1750 | LOCKSTAT_RECORD2(LS_LCK_RW_LOCK_SHARED_TO_EXCL_SPIN, lck, mach_absolute_time() - wait_interval, 0); |
| 1751 | } else { |
| 1752 | LOCKSTAT_RECORD4(LS_LCK_RW_LOCK_SHARED_TO_EXCL_BLOCK, lck, |
| 1753 | mach_absolute_time() - wait_interval, 1, |
| 1754 | (readers_at_sleep == 0 ? 1 : 0), readers_at_sleep); |
| 1755 | } |
| 1756 | } |
| 1757 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_SHARED_TO_EXCL_UPGRADE, lck, 1); |
| 1758 | #endif |
| 1759 | return (TRUE); |
| 1760 | } |
| 1761 | |
| 1762 | /* |
| 1763 | * Routine: lck_rw_lock_exclusive_to_shared |
| 1764 | */ |
| 1765 | |
| 1766 | void lck_rw_lock_exclusive_to_shared(lck_rw_t *lock) |
| 1767 | { |
| 1768 | uint32_t data, prev; |
| 1769 | |
| 1770 | for ( ; ; ) { |
| 1771 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_release_smp); |
| 1772 | if (data & LCK_RW_INTERLOCK) { |
| 1773 | atomic_exchange_abort(); |
| 1774 | lck_rw_interlock_spin(lock); /* wait for interlock to clear */ |
| 1775 | continue; |
| 1776 | } |
| 1777 | data += LCK_RW_SHARED_READER; |
| 1778 | if (data & LCK_RW_WANT_UPGRADE) |
| 1779 | data &= ~(LCK_RW_WANT_UPGRADE); |
| 1780 | else |
| 1781 | data &= ~(LCK_RW_WANT_EXCL); |
| 1782 | if (!((prev & LCK_RW_W_WAITING) && (prev & LCK_RW_PRIV_EXCL))) |
| 1783 | data &= ~(LCK_RW_W_WAITING); |
| 1784 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_release_smp)) |
| 1785 | break; |
| 1786 | cpu_pause(); |
| 1787 | } |
| 1788 | return lck_rw_lock_exclusive_to_shared_gen(lock, prev); |
| 1789 | } |
| 1790 | |
| 1791 | |
| 1792 | /* |
| 1793 | * Routine: lck_rw_lock_exclusive_to_shared_gen |
| 1794 | * Function: |
| 1795 | * assembly fast path has already dropped |
| 1796 | * our exclusive state and bumped lck_rw_shared_count |
| 1797 | * all we need to do here is determine if anyone |
| 1798 | * needs to be awakened. |
| 1799 | */ |
| 1800 | static void |
| 1801 | lck_rw_lock_exclusive_to_shared_gen( |
| 1802 | lck_rw_t *lck, |
| 1803 | uint32_t prior_lock_state) |
| 1804 | { |
| 1805 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(lck); |
| 1806 | lck_rw_t *fake_lck; |
| 1807 | |
| 1808 | fake_lck = (lck_rw_t *)&prior_lock_state; |
| 1809 | |
| 1810 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_TO_SH_CODE) | DBG_FUNC_START, |
| 1811 | trace_lck, fake_lck->lck_rw_want_write, fake_lck->lck_rw_want_upgrade, 0, 0); |
| 1812 | |
| 1813 | /* |
| 1814 | * don't wake up anyone waiting to take the lock exclusively |
| 1815 | * since we hold a read count... when the read count drops to 0, |
| 1816 | * the writers will be woken. |
| 1817 | * |
| 1818 | * wake up any waiting readers if we don't have any writers waiting, |
| 1819 | * or the lock is NOT marked as rw_priv_excl (writers have privilege) |
| 1820 | */ |
| 1821 | if (!(fake_lck->lck_rw_priv_excl && fake_lck->lck_w_waiting) && fake_lck->lck_r_waiting) |
| 1822 | thread_wakeup(RW_LOCK_READER_EVENT(lck)); |
| 1823 | |
| 1824 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_TO_SH_CODE) | DBG_FUNC_END, |
| 1825 | trace_lck, lck->lck_rw_want_write, lck->lck_rw_want_upgrade, lck->lck_rw_shared_count, 0); |
| 1826 | |
| 1827 | #if CONFIG_DTRACE |
| 1828 | LOCKSTAT_RECORD(LS_LCK_RW_LOCK_EXCL_TO_SHARED_DOWNGRADE, lck, 0); |
| 1829 | #endif |
| 1830 | } |
| 1831 | |
| 1832 | |
| 1833 | /* |
| 1834 | * Routine: lck_rw_try_lock |
| 1835 | */ |
| 1836 | boolean_t |
| 1837 | lck_rw_try_lock( |
| 1838 | lck_rw_t *lck, |
| 1839 | lck_rw_type_t lck_rw_type) |
| 1840 | { |
| 1841 | if (lck_rw_type == LCK_RW_TYPE_SHARED) |
| 1842 | return(lck_rw_try_lock_shared(lck)); |
| 1843 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) |
| 1844 | return(lck_rw_try_lock_exclusive(lck)); |
| 1845 | else |
| 1846 | panic("lck_rw_try_lock(): Invalid rw lock type: %x\n" , lck_rw_type); |
| 1847 | return(FALSE); |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * Routine: lck_rw_try_lock_shared |
| 1852 | */ |
| 1853 | |
| 1854 | boolean_t lck_rw_try_lock_shared(lck_rw_t *lock) |
| 1855 | { |
| 1856 | uint32_t data, prev; |
| 1857 | |
| 1858 | for ( ; ; ) { |
| 1859 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_acquire_smp); |
| 1860 | if (data & LCK_RW_INTERLOCK) { |
| 1861 | atomic_exchange_abort(); |
| 1862 | lck_rw_interlock_spin(lock); |
| 1863 | continue; |
| 1864 | } |
| 1865 | if (data & (LCK_RW_WANT_EXCL | LCK_RW_WANT_UPGRADE)) { |
| 1866 | atomic_exchange_abort(); |
| 1867 | return FALSE; /* lock is busy */ |
| 1868 | } |
| 1869 | data += LCK_RW_SHARED_READER; /* Increment reader refcount */ |
| 1870 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp)) |
| 1871 | break; |
| 1872 | cpu_pause(); |
| 1873 | } |
| 1874 | current_thread()->rwlock_count++; |
| 1875 | /* There is a 3 instr window where preemption may not notice rwlock_count after cmpxchg */ |
| 1876 | #if CONFIG_DTRACE |
| 1877 | LOCKSTAT_RECORD(LS_LCK_RW_TRY_LOCK_SHARED_ACQUIRE, lock, DTRACE_RW_SHARED); |
| 1878 | #endif /* CONFIG_DTRACE */ |
| 1879 | return TRUE; |
| 1880 | } |
| 1881 | |
| 1882 | |
| 1883 | /* |
| 1884 | * Routine: lck_rw_try_lock_exclusive |
| 1885 | */ |
| 1886 | |
| 1887 | boolean_t lck_rw_try_lock_exclusive(lck_rw_t *lock) |
| 1888 | { |
| 1889 | uint32_t data, prev; |
| 1890 | |
| 1891 | for ( ; ; ) { |
| 1892 | data = atomic_exchange_begin32(&lock->data, &prev, memory_order_acquire_smp); |
| 1893 | if (data & LCK_RW_INTERLOCK) { |
| 1894 | atomic_exchange_abort(); |
| 1895 | lck_rw_interlock_spin(lock); |
| 1896 | continue; |
| 1897 | } |
| 1898 | if (data & (LCK_RW_SHARED_MASK | LCK_RW_WANT_EXCL | LCK_RW_WANT_UPGRADE)) { |
| 1899 | atomic_exchange_abort(); |
| 1900 | return FALSE; /* can't get it */ |
| 1901 | } |
| 1902 | data |= LCK_RW_WANT_EXCL; |
| 1903 | if (atomic_exchange_complete32(&lock->data, prev, data, memory_order_acquire_smp)) |
| 1904 | break; |
| 1905 | cpu_pause(); |
| 1906 | } |
| 1907 | |
| 1908 | current_thread()->rwlock_count++; |
| 1909 | #if CONFIG_DTRACE |
| 1910 | LOCKSTAT_RECORD(LS_LCK_RW_TRY_LOCK_EXCL_ACQUIRE, lock, DTRACE_RW_EXCL); |
| 1911 | #endif /* CONFIG_DTRACE */ |
| 1912 | return TRUE; |
| 1913 | } |
| 1914 | |
| 1915 | |
| 1916 | void |
| 1917 | lck_rw_assert( |
| 1918 | lck_rw_t *lck, |
| 1919 | unsigned int type) |
| 1920 | { |
| 1921 | switch (type) { |
| 1922 | case LCK_RW_ASSERT_SHARED: |
| 1923 | if (lck->lck_rw_shared_count != 0) { |
| 1924 | return; |
| 1925 | } |
| 1926 | break; |
| 1927 | case LCK_RW_ASSERT_EXCLUSIVE: |
| 1928 | if ((lck->lck_rw_want_write || |
| 1929 | lck->lck_rw_want_upgrade) && |
| 1930 | lck->lck_rw_shared_count == 0) { |
| 1931 | return; |
| 1932 | } |
| 1933 | break; |
| 1934 | case LCK_RW_ASSERT_HELD: |
| 1935 | if (lck->lck_rw_want_write || |
| 1936 | lck->lck_rw_want_upgrade || |
| 1937 | lck->lck_rw_shared_count != 0) { |
| 1938 | return; |
| 1939 | } |
| 1940 | break; |
| 1941 | case LCK_RW_ASSERT_NOTHELD: |
| 1942 | if (!(lck->lck_rw_want_write || |
| 1943 | lck->lck_rw_want_upgrade || |
| 1944 | lck->lck_rw_shared_count != 0)) { |
| 1945 | return; |
| 1946 | } |
| 1947 | break; |
| 1948 | default: |
| 1949 | break; |
| 1950 | } |
| 1951 | |
| 1952 | panic("rw lock (%p)%s held (mode=%u), first word %08x\n" , lck, (type == LCK_RW_ASSERT_NOTHELD ? "" : " not" ), type, *(uint32_t *)lck); |
| 1953 | } |
| 1954 | |
| 1955 | /* On return to userspace, this routine is called if the rwlock_count is somehow imbalanced */ |
| 1956 | void |
| 1957 | lck_rw_clear_promotions_x86(thread_t thread) |
| 1958 | { |
| 1959 | #if MACH_LDEBUG |
| 1960 | /* It's fatal to leave a RW lock locked and return to userspace */ |
| 1961 | panic("%u rw lock(s) held on return to userspace for thread %p" , thread->rwlock_count, thread); |
| 1962 | #else |
| 1963 | /* Paper over the issue */ |
| 1964 | thread->rwlock_count = 0; |
| 1965 | lck_rw_clear_promotion(thread, 0); |
| 1966 | #endif |
| 1967 | } |
| 1968 | |
| 1969 | boolean_t |
| 1970 | lck_rw_lock_yield_shared(lck_rw_t *lck, boolean_t force_yield) |
| 1971 | { |
| 1972 | lck_rw_assert(lck, LCK_RW_ASSERT_SHARED); |
| 1973 | |
| 1974 | if (lck->lck_rw_want_write || lck->lck_rw_want_upgrade || force_yield) { |
| 1975 | lck_rw_unlock_shared(lck); |
| 1976 | mutex_pause(2); |
| 1977 | lck_rw_lock_shared(lck); |
| 1978 | return TRUE; |
| 1979 | } |
| 1980 | |
| 1981 | return FALSE; |
| 1982 | } |
| 1983 | |
| 1984 | /* |
| 1985 | * Routine: kdp_lck_rw_lock_is_acquired_exclusive |
| 1986 | * NOT SAFE: To be used only by kernel debugger to avoid deadlock. |
| 1987 | */ |
| 1988 | boolean_t |
| 1989 | kdp_lck_rw_lock_is_acquired_exclusive(lck_rw_t *lck) { |
| 1990 | if (not_in_kdp) { |
| 1991 | panic("panic: rw lock exclusive check done outside of kernel debugger" ); |
| 1992 | } |
| 1993 | return ((lck->lck_rw_want_upgrade || lck->lck_rw_want_write) && (lck->lck_rw_shared_count == 0)) ? TRUE : FALSE; |
| 1994 | } |
| 1995 | |
| 1996 | /* |
| 1997 | * Slow path routines for lck_mtx locking and unlocking functions. |
| 1998 | * |
| 1999 | * These functions were previously implemented in x86 assembly, |
| 2000 | * and some optimizations are in place in this c code to obtain a compiled code |
| 2001 | * as performant and compact as the assembly version. |
| 2002 | * |
| 2003 | * To avoid to inline these functions on the fast path, all functions directly called by |
| 2004 | * the fast paths have the __attribute__((noinline)) specified. Also they are all implemented |
| 2005 | * in such a way the fast path can tail call into them. In this way the return address |
| 2006 | * does not need to be pushed on the caller stack and stack optimization can happen on the caller. |
| 2007 | * |
| 2008 | * Slow path code is structured in such a way there are no calls to functions that will return |
| 2009 | * on the context of the caller function, i.e. all functions called are or tail call functions |
| 2010 | * or inline functions. The number of arguments of the tail call functions are less then six, |
| 2011 | * so that they can be passed over registers and do not need to be pushed on stack. |
| 2012 | * This allows the compiler to not create a stack frame for the functions. |
| 2013 | * |
| 2014 | * __improbable and __probable are used to compile the slow path code in such a way |
| 2015 | * the fast path case will be on a sequence of instructions with as less jumps as possible, |
| 2016 | * to make this case the most optimized even if falling through the slow path. |
| 2017 | */ |
| 2018 | |
| 2019 | /* |
| 2020 | * Intel lock invariants: |
| 2021 | * |
| 2022 | * lck_mtx_waiters: contains the count of threads currently in the mutex waitqueue |
| 2023 | * lck_mtx_pri: contains the max priority of all waiters during a contention period |
| 2024 | * not cleared on last unlock, but stomped over on next first contention |
| 2025 | * lck_mtx_promoted: set when the current lock owner has been promoted |
| 2026 | * cleared when lock owner unlocks, set on acquire or wait. |
| 2027 | * |
| 2028 | * The lock owner is promoted to the max priority of all its waiters only if it |
| 2029 | * was a lower priority when it acquired or was an owner when a waiter waited. |
| 2030 | * Max priority is capped at MAXPRI_PROMOTE. |
| 2031 | * |
| 2032 | * The last waiter will not be promoted as it is woken up, but the last |
| 2033 | * lock owner may not have been the last thread to have been woken up depending on the |
| 2034 | * luck of the draw. Therefore a last-owner may still have the promoted-on-wakeup |
| 2035 | * flag set. |
| 2036 | * |
| 2037 | * TODO: Figure out an algorithm for stopping a lock holder which is already at the right |
| 2038 | * priority from dropping priority in the future without having to take thread lock |
| 2039 | * on acquire. |
| 2040 | */ |
| 2041 | |
| 2042 | #ifdef MUTEX_ZONE |
| 2043 | extern zone_t lck_mtx_zone; |
| 2044 | #endif |
| 2045 | |
| 2046 | /* |
| 2047 | * N.B.: On x86, statistics are currently recorded for all indirect mutexes. |
| 2048 | * Also, only the acquire attempt count (GRP_MTX_STAT_UTIL) is maintained |
| 2049 | * as a 64-bit quantity (the new x86 specific statistics are also maintained |
| 2050 | * as 32-bit quantities). |
| 2051 | * |
| 2052 | * |
| 2053 | * Enable this preprocessor define to record the first miss alone |
| 2054 | * By default, we count every miss, hence multiple misses may be |
| 2055 | * recorded for a single lock acquire attempt via lck_mtx_lock |
| 2056 | */ |
| 2057 | #undef LOG_FIRST_MISS_ALONE |
| 2058 | |
| 2059 | /* |
| 2060 | * This preprocessor define controls whether the R-M-W update of the |
| 2061 | * per-group statistics elements are atomic (LOCK-prefixed) |
| 2062 | * Enabled by default. |
| 2063 | */ |
| 2064 | #define ATOMIC_STAT_UPDATES 1 |
| 2065 | |
| 2066 | |
| 2067 | /* |
| 2068 | * Routine: lck_mtx_alloc_init |
| 2069 | */ |
| 2070 | lck_mtx_t * |
| 2071 | lck_mtx_alloc_init( |
| 2072 | lck_grp_t *grp, |
| 2073 | lck_attr_t *attr) |
| 2074 | { |
| 2075 | lck_mtx_t *lck; |
| 2076 | #ifdef MUTEX_ZONE |
| 2077 | if ((lck = (lck_mtx_t *)zalloc(lck_mtx_zone)) != 0) |
| 2078 | lck_mtx_init(lck, grp, attr); |
| 2079 | #else |
| 2080 | if ((lck = (lck_mtx_t *)kalloc(sizeof(lck_mtx_t))) != 0) |
| 2081 | lck_mtx_init(lck, grp, attr); |
| 2082 | #endif |
| 2083 | return(lck); |
| 2084 | } |
| 2085 | |
| 2086 | /* |
| 2087 | * Routine: lck_mtx_free |
| 2088 | */ |
| 2089 | void |
| 2090 | lck_mtx_free( |
| 2091 | lck_mtx_t *lck, |
| 2092 | lck_grp_t *grp) |
| 2093 | { |
| 2094 | lck_mtx_destroy(lck, grp); |
| 2095 | #ifdef MUTEX_ZONE |
| 2096 | zfree(lck_mtx_zone, lck); |
| 2097 | #else |
| 2098 | kfree(lck, sizeof(lck_mtx_t)); |
| 2099 | #endif |
| 2100 | } |
| 2101 | |
| 2102 | /* |
| 2103 | * Routine: lck_mtx_ext_init |
| 2104 | */ |
| 2105 | static void |
| 2106 | lck_mtx_ext_init( |
| 2107 | lck_mtx_ext_t *lck, |
| 2108 | lck_grp_t *grp, |
| 2109 | lck_attr_t *attr) |
| 2110 | { |
| 2111 | bzero((void *)lck, sizeof(lck_mtx_ext_t)); |
| 2112 | |
| 2113 | if ((attr->lck_attr_val) & LCK_ATTR_DEBUG) { |
| 2114 | lck->lck_mtx_deb.type = MUTEX_TAG; |
| 2115 | lck->lck_mtx_attr |= LCK_MTX_ATTR_DEBUG; |
| 2116 | } |
| 2117 | |
| 2118 | lck->lck_mtx_grp = grp; |
| 2119 | |
| 2120 | if (grp->lck_grp_attr & LCK_GRP_ATTR_STAT) |
| 2121 | lck->lck_mtx_attr |= LCK_MTX_ATTR_STAT; |
| 2122 | |
| 2123 | lck->lck_mtx.lck_mtx_is_ext = 1; |
| 2124 | lck->lck_mtx.lck_mtx_pad32 = 0xFFFFFFFF; |
| 2125 | } |
| 2126 | |
| 2127 | /* |
| 2128 | * Routine: lck_mtx_init |
| 2129 | */ |
| 2130 | void |
| 2131 | lck_mtx_init( |
| 2132 | lck_mtx_t *lck, |
| 2133 | lck_grp_t *grp, |
| 2134 | lck_attr_t *attr) |
| 2135 | { |
| 2136 | lck_mtx_ext_t *lck_ext; |
| 2137 | lck_attr_t *lck_attr; |
| 2138 | |
| 2139 | if (attr != LCK_ATTR_NULL) |
| 2140 | lck_attr = attr; |
| 2141 | else |
| 2142 | lck_attr = &LockDefaultLckAttr; |
| 2143 | |
| 2144 | if ((lck_attr->lck_attr_val) & LCK_ATTR_DEBUG) { |
| 2145 | if ((lck_ext = (lck_mtx_ext_t *)kalloc(sizeof(lck_mtx_ext_t))) != 0) { |
| 2146 | lck_mtx_ext_init(lck_ext, grp, lck_attr); |
| 2147 | lck->lck_mtx_tag = LCK_MTX_TAG_INDIRECT; |
| 2148 | lck->lck_mtx_ptr = lck_ext; |
| 2149 | } |
| 2150 | } else { |
| 2151 | lck->lck_mtx_owner = 0; |
| 2152 | lck->lck_mtx_state = 0; |
| 2153 | } |
| 2154 | lck->lck_mtx_pad32 = 0xFFFFFFFF; |
| 2155 | lck_grp_reference(grp); |
| 2156 | lck_grp_lckcnt_incr(grp, LCK_TYPE_MTX); |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | * Routine: lck_mtx_init_ext |
| 2161 | */ |
| 2162 | void |
| 2163 | lck_mtx_init_ext( |
| 2164 | lck_mtx_t *lck, |
| 2165 | lck_mtx_ext_t *lck_ext, |
| 2166 | lck_grp_t *grp, |
| 2167 | lck_attr_t *attr) |
| 2168 | { |
| 2169 | lck_attr_t *lck_attr; |
| 2170 | |
| 2171 | if (attr != LCK_ATTR_NULL) |
| 2172 | lck_attr = attr; |
| 2173 | else |
| 2174 | lck_attr = &LockDefaultLckAttr; |
| 2175 | |
| 2176 | if ((lck_attr->lck_attr_val) & LCK_ATTR_DEBUG) { |
| 2177 | lck_mtx_ext_init(lck_ext, grp, lck_attr); |
| 2178 | lck->lck_mtx_tag = LCK_MTX_TAG_INDIRECT; |
| 2179 | lck->lck_mtx_ptr = lck_ext; |
| 2180 | } else { |
| 2181 | lck->lck_mtx_owner = 0; |
| 2182 | lck->lck_mtx_state = 0; |
| 2183 | } |
| 2184 | lck->lck_mtx_pad32 = 0xFFFFFFFF; |
| 2185 | |
| 2186 | lck_grp_reference(grp); |
| 2187 | lck_grp_lckcnt_incr(grp, LCK_TYPE_MTX); |
| 2188 | } |
| 2189 | |
| 2190 | static void |
| 2191 | lck_mtx_lock_mark_destroyed( |
| 2192 | lck_mtx_t *mutex, |
| 2193 | boolean_t indirect) |
| 2194 | { |
| 2195 | uint32_t state; |
| 2196 | |
| 2197 | if (indirect) { |
| 2198 | /* convert to destroyed state */ |
| 2199 | ordered_store_mtx_state_release(mutex, LCK_MTX_TAG_DESTROYED); |
| 2200 | return; |
| 2201 | } |
| 2202 | |
| 2203 | state = ordered_load_mtx_state(mutex); |
| 2204 | lck_mtx_interlock_lock(mutex, &state); |
| 2205 | |
| 2206 | ordered_store_mtx_state_release(mutex, LCK_MTX_TAG_DESTROYED); |
| 2207 | |
| 2208 | enable_preemption(); |
| 2209 | } |
| 2210 | |
| 2211 | /* |
| 2212 | * Routine: lck_mtx_destroy |
| 2213 | */ |
| 2214 | void |
| 2215 | lck_mtx_destroy( |
| 2216 | lck_mtx_t *lck, |
| 2217 | lck_grp_t *grp) |
| 2218 | { |
| 2219 | boolean_t indirect; |
| 2220 | |
| 2221 | if (lck->lck_mtx_tag == LCK_MTX_TAG_DESTROYED) |
| 2222 | return; |
| 2223 | #if MACH_LDEBUG |
| 2224 | lck_mtx_assert(lck, LCK_MTX_ASSERT_NOTOWNED); |
| 2225 | #endif |
| 2226 | indirect = (lck->lck_mtx_tag == LCK_MTX_TAG_INDIRECT); |
| 2227 | |
| 2228 | lck_mtx_lock_mark_destroyed(lck, indirect); |
| 2229 | |
| 2230 | if (indirect) |
| 2231 | kfree(lck->lck_mtx_ptr, sizeof(lck_mtx_ext_t)); |
| 2232 | lck_grp_lckcnt_decr(grp, LCK_TYPE_MTX); |
| 2233 | lck_grp_deallocate(grp); |
| 2234 | return; |
| 2235 | } |
| 2236 | |
| 2237 | |
| 2238 | #if DEVELOPMENT | DEBUG |
| 2239 | __attribute__((noinline)) |
| 2240 | void |
| 2241 | lck_mtx_owner_check_panic( |
| 2242 | lck_mtx_t *lock) |
| 2243 | { |
| 2244 | thread_t owner = (thread_t)lock->lck_mtx_owner; |
| 2245 | panic("Mutex unlock attempted from non-owner thread. Owner=%p lock=%p" , owner, lock); |
| 2246 | } |
| 2247 | #endif |
| 2248 | |
| 2249 | __attribute__((always_inline)) |
| 2250 | static boolean_t |
| 2251 | get_indirect_mutex( |
| 2252 | lck_mtx_t **lock, |
| 2253 | uint32_t *state) |
| 2254 | { |
| 2255 | *lock = &((*lock)->lck_mtx_ptr->lck_mtx); |
| 2256 | *state = ordered_load_mtx_state(*lock); |
| 2257 | return TRUE; |
| 2258 | } |
| 2259 | |
| 2260 | /* |
| 2261 | * Routine: lck_mtx_unlock_slow |
| 2262 | * |
| 2263 | * Unlocks a mutex held by current thread. |
| 2264 | * |
| 2265 | * It will wake up waiters if necessary and |
| 2266 | * drop promotions. |
| 2267 | * |
| 2268 | * Interlock can be held. |
| 2269 | */ |
| 2270 | __attribute__((noinline)) |
| 2271 | void |
| 2272 | lck_mtx_unlock_slow( |
| 2273 | lck_mtx_t *lock) |
| 2274 | { |
| 2275 | thread_t thread; |
| 2276 | uint32_t state, prev; |
| 2277 | boolean_t indirect = FALSE; |
| 2278 | |
| 2279 | state = ordered_load_mtx_state(lock); |
| 2280 | |
| 2281 | /* Is this an indirect mutex? */ |
| 2282 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 2283 | indirect = get_indirect_mutex(&lock, &state); |
| 2284 | } |
| 2285 | |
| 2286 | thread = current_thread(); |
| 2287 | |
| 2288 | #if DEVELOPMENT | DEBUG |
| 2289 | thread_t owner = (thread_t)lock->lck_mtx_owner; |
| 2290 | if(__improbable(owner != thread)) |
| 2291 | return lck_mtx_owner_check_panic(lock); |
| 2292 | #endif |
| 2293 | |
| 2294 | /* check if it is held as a spinlock */ |
| 2295 | if (__improbable((state & LCK_MTX_MLOCKED_MSK) == 0)) |
| 2296 | goto unlock; |
| 2297 | |
| 2298 | lck_mtx_interlock_lock_clear_flags(lock, LCK_MTX_MLOCKED_MSK, &state); |
| 2299 | |
| 2300 | unlock: |
| 2301 | /* preemption disabled, interlock held and mutex not held */ |
| 2302 | |
| 2303 | /* clear owner */ |
| 2304 | ordered_store_mtx_owner(lock, 0); |
| 2305 | /* keep original state in prev for later evaluation */ |
| 2306 | prev = state; |
| 2307 | /* release interlock, promotion and clear spin flag */ |
| 2308 | state &= (~(LCK_MTX_ILOCKED_MSK | LCK_MTX_SPIN_MSK | LCK_MTX_PROMOTED_MSK)); |
| 2309 | if ((state & LCK_MTX_WAITERS_MSK)) |
| 2310 | state -= LCK_MTX_WAITER; /* decrement waiter count */ |
| 2311 | ordered_store_mtx_state_release(lock, state); /* since I own the interlock, I don't need an atomic update */ |
| 2312 | |
| 2313 | #if MACH_LDEBUG |
| 2314 | /* perform lock statistics after drop to prevent delay */ |
| 2315 | if (thread) |
| 2316 | thread->mutex_count--; /* lock statistic */ |
| 2317 | #endif /* MACH_LDEBUG */ |
| 2318 | |
| 2319 | /* check if there are waiters to wake up or priority to drop */ |
| 2320 | if ((prev & (LCK_MTX_PROMOTED_MSK | LCK_MTX_WAITERS_MSK))) |
| 2321 | return lck_mtx_unlock_wakeup_tail(lock, prev, indirect); |
| 2322 | |
| 2323 | /* re-enable preemption */ |
| 2324 | lck_mtx_unlock_finish_inline(lock, FALSE); |
| 2325 | |
| 2326 | return; |
| 2327 | } |
| 2328 | |
| 2329 | #define LCK_MTX_LCK_WAIT_CODE 0x20 |
| 2330 | #define LCK_MTX_LCK_WAKEUP_CODE 0x21 |
| 2331 | #define LCK_MTX_LCK_SPIN_CODE 0x22 |
| 2332 | #define LCK_MTX_LCK_ACQUIRE_CODE 0x23 |
| 2333 | #define LCK_MTX_LCK_DEMOTE_CODE 0x24 |
| 2334 | |
| 2335 | /* |
| 2336 | * Routine: lck_mtx_unlock_wakeup_tail |
| 2337 | * |
| 2338 | * Invoked on unlock when there is |
| 2339 | * contention, i.e. the assembly routine sees |
| 2340 | * that mutex->lck_mtx_waiters != 0 or |
| 2341 | * that mutex->lck_mtx_promoted != 0 |
| 2342 | * |
| 2343 | * neither the mutex or interlock is held |
| 2344 | * |
| 2345 | * Note that this routine might not be called if there are pending |
| 2346 | * waiters which have previously been woken up, and they didn't |
| 2347 | * end up boosting the old owner. |
| 2348 | * |
| 2349 | * assembly routine previously did the following to mutex: |
| 2350 | * (after saving the state in prior_lock_state) |
| 2351 | * cleared lck_mtx_promoted |
| 2352 | * decremented lck_mtx_waiters if nonzero |
| 2353 | * |
| 2354 | * This function needs to be called as a tail call |
| 2355 | * to optimize the compiled code. |
| 2356 | */ |
| 2357 | __attribute__((noinline)) |
| 2358 | static void |
| 2359 | lck_mtx_unlock_wakeup_tail ( |
| 2360 | lck_mtx_t *mutex, |
| 2361 | int prior_lock_state, |
| 2362 | boolean_t indirect) |
| 2363 | { |
| 2364 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(mutex); |
| 2365 | lck_mtx_t fake_lck; |
| 2366 | |
| 2367 | /* |
| 2368 | * prior_lock state is a snapshot of the 2nd word of the |
| 2369 | * lock in question... we'll fake up a lock with the bits |
| 2370 | * copied into place and carefully not access anything |
| 2371 | * beyond whats defined in the second word of a lck_mtx_t |
| 2372 | */ |
| 2373 | fake_lck.lck_mtx_state = prior_lock_state; |
| 2374 | |
| 2375 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAKEUP_CODE) | DBG_FUNC_START, |
| 2376 | trace_lck, fake_lck.lck_mtx_promoted, fake_lck.lck_mtx_waiters, fake_lck.lck_mtx_pri, 0); |
| 2377 | |
| 2378 | if (__probable(fake_lck.lck_mtx_waiters)) { |
| 2379 | kern_return_t did_wake; |
| 2380 | |
| 2381 | if (fake_lck.lck_mtx_waiters > 1) |
| 2382 | did_wake = thread_wakeup_one_with_pri(LCK_MTX_EVENT(mutex), fake_lck.lck_mtx_pri); |
| 2383 | else |
| 2384 | did_wake = thread_wakeup_one(LCK_MTX_EVENT(mutex)); |
| 2385 | /* |
| 2386 | * The waiters count always precisely matches the number of threads on the waitqueue. |
| 2387 | * i.e. we should never see ret == KERN_NOT_WAITING. |
| 2388 | */ |
| 2389 | assert(did_wake == KERN_SUCCESS); |
| 2390 | } |
| 2391 | |
| 2392 | /* When lck_mtx_promoted was set, then I as the owner definitely have a promotion */ |
| 2393 | if (__improbable(fake_lck.lck_mtx_promoted)) { |
| 2394 | thread_t thread = current_thread(); |
| 2395 | |
| 2396 | spl_t s = splsched(); |
| 2397 | thread_lock(thread); |
| 2398 | |
| 2399 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_DEMOTE_CODE) | DBG_FUNC_NONE, |
| 2400 | thread_tid(thread), thread->promotions, thread->sched_flags & TH_SFLAG_PROMOTED, 0, 0); |
| 2401 | assert(thread->was_promoted_on_wakeup == 0); |
| 2402 | assert(thread->promotions > 0); |
| 2403 | |
| 2404 | assert_promotions_invariant(thread); |
| 2405 | |
| 2406 | if (--thread->promotions == 0) |
| 2407 | sched_thread_unpromote(thread, trace_lck); |
| 2408 | |
| 2409 | assert_promotions_invariant(thread); |
| 2410 | |
| 2411 | thread_unlock(thread); |
| 2412 | splx(s); |
| 2413 | } |
| 2414 | |
| 2415 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAKEUP_CODE) | DBG_FUNC_END, |
| 2416 | trace_lck, 0, mutex->lck_mtx_waiters, 0, 0); |
| 2417 | |
| 2418 | lck_mtx_unlock_finish_inline(mutex, indirect); |
| 2419 | } |
| 2420 | |
| 2421 | /* |
| 2422 | * Routine: lck_mtx_lock_acquire_x86 |
| 2423 | * |
| 2424 | * Invoked on acquiring the mutex when there is |
| 2425 | * contention (i.e. the assembly routine sees that |
| 2426 | * that mutex->lck_mtx_waiters != 0 or |
| 2427 | * thread->was_promoted_on_wakeup != 0)... |
| 2428 | * |
| 2429 | * mutex is owned... interlock is held... preemption is disabled |
| 2430 | */ |
| 2431 | __attribute__((always_inline)) |
| 2432 | static void |
| 2433 | lck_mtx_lock_acquire_inline( |
| 2434 | lck_mtx_t *mutex) |
| 2435 | { |
| 2436 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(mutex); |
| 2437 | integer_t priority; |
| 2438 | |
| 2439 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_ACQUIRE_CODE) | DBG_FUNC_START, |
| 2440 | trace_lck, thread->was_promoted_on_wakeup, mutex->lck_mtx_waiters, mutex->lck_mtx_pri, 0); |
| 2441 | |
| 2442 | if (mutex->lck_mtx_waiters) |
| 2443 | priority = mutex->lck_mtx_pri; |
| 2444 | else |
| 2445 | priority = 0; /* not worth resetting lck_mtx_pri here, it will be reset by next waiter */ |
| 2446 | |
| 2447 | /* the priority must have been set correctly by wait */ |
| 2448 | assert(priority <= MAXPRI_PROMOTE); |
| 2449 | assert(priority == 0 || priority >= BASEPRI_DEFAULT); |
| 2450 | |
| 2451 | /* if the mutex wasn't owned, then the owner wasn't promoted */ |
| 2452 | assert(mutex->lck_mtx_promoted == 0); |
| 2453 | |
| 2454 | thread_t thread = (thread_t)mutex->lck_mtx_owner; /* faster than current_thread() */ |
| 2455 | |
| 2456 | if (thread->sched_pri < priority || thread->was_promoted_on_wakeup) { |
| 2457 | spl_t s = splsched(); |
| 2458 | thread_lock(thread); |
| 2459 | |
| 2460 | if (thread->was_promoted_on_wakeup) |
| 2461 | assert(thread->promotions > 0); |
| 2462 | |
| 2463 | /* Intel only promotes if priority goes up */ |
| 2464 | if (thread->sched_pri < priority && thread->promotion_priority < priority) { |
| 2465 | /* Remember that I need to drop this promotion on unlock */ |
| 2466 | mutex->lck_mtx_promoted = 1; |
| 2467 | |
| 2468 | if (thread->promotions++ == 0) { |
| 2469 | /* This is the first promotion for the owner */ |
| 2470 | sched_thread_promote_to_pri(thread, priority, trace_lck); |
| 2471 | } else { |
| 2472 | /* |
| 2473 | * Holder was previously promoted due to a different mutex, |
| 2474 | * raise to match this one. |
| 2475 | * Or, this thread was promoted on wakeup but someone else |
| 2476 | * later contended on mutex at higher priority before we got here |
| 2477 | */ |
| 2478 | sched_thread_update_promotion_to_pri(thread, priority, trace_lck); |
| 2479 | } |
| 2480 | } |
| 2481 | |
| 2482 | if (thread->was_promoted_on_wakeup) { |
| 2483 | thread->was_promoted_on_wakeup = 0; |
| 2484 | if (--thread->promotions == 0) |
| 2485 | sched_thread_unpromote(thread, trace_lck); |
| 2486 | } |
| 2487 | |
| 2488 | thread_unlock(thread); |
| 2489 | splx(s); |
| 2490 | } |
| 2491 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_ACQUIRE_CODE) | DBG_FUNC_END, |
| 2492 | trace_lck, 0, mutex->lck_mtx_waiters, 0, 0); |
| 2493 | } |
| 2494 | |
| 2495 | void |
| 2496 | lck_mtx_lock_acquire_x86( |
| 2497 | lck_mtx_t *mutex) |
| 2498 | { |
| 2499 | return lck_mtx_lock_acquire_inline(mutex); |
| 2500 | } |
| 2501 | |
| 2502 | /* |
| 2503 | * Tail call helpers for lock functions that perform |
| 2504 | * lck_mtx_lock_acquire followed by the caller's finish routine, to optimize |
| 2505 | * the caller's compiled code. |
| 2506 | */ |
| 2507 | |
| 2508 | __attribute__((noinline)) |
| 2509 | static void |
| 2510 | lck_mtx_lock_acquire_tail( |
| 2511 | lck_mtx_t *mutex, |
| 2512 | boolean_t indirect) |
| 2513 | { |
| 2514 | lck_mtx_lock_acquire_inline(mutex); |
| 2515 | lck_mtx_lock_finish_inline(mutex, ordered_load_mtx_state(mutex), indirect); |
| 2516 | } |
| 2517 | |
| 2518 | __attribute__((noinline)) |
| 2519 | static boolean_t |
| 2520 | lck_mtx_try_lock_acquire_tail( |
| 2521 | lck_mtx_t *mutex) |
| 2522 | { |
| 2523 | lck_mtx_lock_acquire_inline(mutex); |
| 2524 | lck_mtx_try_lock_finish_inline(mutex, ordered_load_mtx_state(mutex)); |
| 2525 | |
| 2526 | return TRUE; |
| 2527 | } |
| 2528 | |
| 2529 | __attribute__((noinline)) |
| 2530 | static void |
| 2531 | lck_mtx_convert_spin_acquire_tail( |
| 2532 | lck_mtx_t *mutex) |
| 2533 | { |
| 2534 | lck_mtx_lock_acquire_inline(mutex); |
| 2535 | lck_mtx_convert_spin_finish_inline(mutex, ordered_load_mtx_state(mutex)); |
| 2536 | } |
| 2537 | |
| 2538 | boolean_t |
| 2539 | lck_mtx_ilk_unlock( |
| 2540 | lck_mtx_t *mutex) |
| 2541 | { |
| 2542 | lck_mtx_ilk_unlock_inline(mutex, ordered_load_mtx_state(mutex)); |
| 2543 | return TRUE; |
| 2544 | } |
| 2545 | |
| 2546 | static inline void |
| 2547 | lck_mtx_interlock_lock_set_and_clear_flags( |
| 2548 | lck_mtx_t *mutex, |
| 2549 | uint32_t xor_flags, |
| 2550 | uint32_t and_flags, |
| 2551 | uint32_t *new_state) |
| 2552 | { |
| 2553 | uint32_t state, prev; |
| 2554 | state = *new_state; |
| 2555 | |
| 2556 | for ( ; ; ) { |
| 2557 | /* have to wait for interlock to clear */ |
| 2558 | while (__improbable(state & (LCK_MTX_ILOCKED_MSK | xor_flags))) { |
| 2559 | cpu_pause(); |
| 2560 | state = ordered_load_mtx_state(mutex); |
| 2561 | } |
| 2562 | prev = state; /* prev contains snapshot for exchange */ |
| 2563 | state |= LCK_MTX_ILOCKED_MSK | xor_flags; /* pick up interlock */ |
| 2564 | state &= ~and_flags; /* clear flags */ |
| 2565 | |
| 2566 | disable_preemption(); |
| 2567 | if (atomic_compare_exchange32(&mutex->lck_mtx_state, prev, state, memory_order_acquire_smp, FALSE)) |
| 2568 | break; |
| 2569 | enable_preemption(); |
| 2570 | cpu_pause(); |
| 2571 | state = ordered_load_mtx_state(mutex); |
| 2572 | } |
| 2573 | *new_state = state; |
| 2574 | return; |
| 2575 | } |
| 2576 | |
| 2577 | static inline void |
| 2578 | lck_mtx_interlock_lock_clear_flags( |
| 2579 | lck_mtx_t *mutex, |
| 2580 | uint32_t and_flags, |
| 2581 | uint32_t *new_state) |
| 2582 | { |
| 2583 | return lck_mtx_interlock_lock_set_and_clear_flags(mutex, 0, and_flags, new_state); |
| 2584 | } |
| 2585 | |
| 2586 | static inline void |
| 2587 | lck_mtx_interlock_lock( |
| 2588 | lck_mtx_t *mutex, |
| 2589 | uint32_t *new_state) |
| 2590 | { |
| 2591 | return lck_mtx_interlock_lock_set_and_clear_flags(mutex, 0, 0, new_state); |
| 2592 | } |
| 2593 | |
| 2594 | static inline int |
| 2595 | lck_mtx_interlock_try_lock_set_flags( |
| 2596 | lck_mtx_t *mutex, |
| 2597 | uint32_t or_flags, |
| 2598 | uint32_t *new_state) |
| 2599 | { |
| 2600 | uint32_t state, prev; |
| 2601 | state = *new_state; |
| 2602 | |
| 2603 | /* have to wait for interlock to clear */ |
| 2604 | if (state & (LCK_MTX_ILOCKED_MSK | or_flags)) { |
| 2605 | return 0; |
| 2606 | } |
| 2607 | prev = state; /* prev contains snapshot for exchange */ |
| 2608 | state |= LCK_MTX_ILOCKED_MSK | or_flags; /* pick up interlock */ |
| 2609 | disable_preemption(); |
| 2610 | if (atomic_compare_exchange32(&mutex->lck_mtx_state, prev, state, memory_order_acquire_smp, FALSE)) { |
| 2611 | *new_state = state; |
| 2612 | return 1; |
| 2613 | } |
| 2614 | |
| 2615 | enable_preemption(); |
| 2616 | return 0; |
| 2617 | } |
| 2618 | |
| 2619 | static inline int |
| 2620 | lck_mtx_interlock_try_lock( |
| 2621 | lck_mtx_t *mutex, |
| 2622 | uint32_t *new_state) |
| 2623 | { |
| 2624 | return lck_mtx_interlock_try_lock_set_flags(mutex, 0, new_state); |
| 2625 | } |
| 2626 | |
| 2627 | static inline int |
| 2628 | lck_mtx_interlock_try_lock_disable_interrupts( |
| 2629 | lck_mtx_t *mutex, |
| 2630 | boolean_t *istate) |
| 2631 | { |
| 2632 | uint32_t state; |
| 2633 | |
| 2634 | *istate = ml_set_interrupts_enabled(FALSE); |
| 2635 | state = ordered_load_mtx_state(mutex); |
| 2636 | |
| 2637 | if (lck_mtx_interlock_try_lock(mutex, &state)) { |
| 2638 | return 1; |
| 2639 | } else { |
| 2640 | ml_set_interrupts_enabled(*istate); |
| 2641 | return 0; |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | static inline void |
| 2646 | lck_mtx_interlock_unlock_enable_interrupts( |
| 2647 | lck_mtx_t *mutex, |
| 2648 | boolean_t istate) |
| 2649 | { |
| 2650 | lck_mtx_ilk_unlock(mutex); |
| 2651 | ml_set_interrupts_enabled(istate); |
| 2652 | } |
| 2653 | |
| 2654 | static void __inline__ |
| 2655 | lck_mtx_inc_stats( |
| 2656 | uint64_t* stat) |
| 2657 | { |
| 2658 | #if ATOMIC_STAT_UPDATES |
| 2659 | os_atomic_inc(stat, relaxed); |
| 2660 | #else |
| 2661 | *stat = (*stat)++; |
| 2662 | #endif |
| 2663 | } |
| 2664 | |
| 2665 | static void __inline__ |
| 2666 | lck_mtx_update_miss( |
| 2667 | struct _lck_mtx_ext_ *lock, |
| 2668 | int *first_miss) |
| 2669 | { |
| 2670 | #if LOG_FIRST_MISS_ALONE |
| 2671 | if ((*first_miss & 1) == 0) { |
| 2672 | #else |
| 2673 | #pragma unused(first_miss) |
| 2674 | #endif |
| 2675 | uint64_t* stat = &lock->lck_mtx_grp->lck_grp_miss; |
| 2676 | lck_mtx_inc_stats(stat); |
| 2677 | |
| 2678 | #if LOG_FIRST_MISS_ALONE |
| 2679 | *first_miss |= 1; |
| 2680 | } |
| 2681 | #endif |
| 2682 | } |
| 2683 | |
| 2684 | static void __inline__ |
| 2685 | lck_mtx_update_direct_wait( |
| 2686 | struct _lck_mtx_ext_ *lock) |
| 2687 | { |
| 2688 | uint64_t* stat = &lock->lck_mtx_grp->lck_grp_direct_wait; |
| 2689 | lck_mtx_inc_stats(stat); |
| 2690 | } |
| 2691 | |
| 2692 | static void __inline__ |
| 2693 | lck_mtx_update_wait( |
| 2694 | struct _lck_mtx_ext_ *lock, |
| 2695 | int *first_miss) |
| 2696 | { |
| 2697 | #if LOG_FIRST_MISS_ALONE |
| 2698 | if ((*first_miss & 2) == 0) { |
| 2699 | #else |
| 2700 | #pragma unused(first_miss) |
| 2701 | #endif |
| 2702 | uint64_t* stat = &lock->lck_mtx_grp->lck_grp_wait; |
| 2703 | lck_mtx_inc_stats(stat); |
| 2704 | |
| 2705 | #if LOG_FIRST_MISS_ALONE |
| 2706 | *first_miss |= 2; |
| 2707 | } |
| 2708 | #endif |
| 2709 | } |
| 2710 | |
| 2711 | static void __inline__ |
| 2712 | lck_mtx_update_util( |
| 2713 | struct _lck_mtx_ext_ *lock) |
| 2714 | { |
| 2715 | uint64_t* stat = &lock->lck_mtx_grp->lck_grp_util; |
| 2716 | lck_mtx_inc_stats(stat); |
| 2717 | } |
| 2718 | |
| 2719 | __attribute__((noinline)) |
| 2720 | static void |
| 2721 | lck_mtx_lock_contended( |
| 2722 | lck_mtx_t *lock, |
| 2723 | boolean_t indirect, |
| 2724 | boolean_t *first_miss) |
| 2725 | { |
| 2726 | lck_mtx_spinwait_ret_type_t ret; |
| 2727 | uint32_t state; |
| 2728 | thread_t thread; |
| 2729 | |
| 2730 | try_again: |
| 2731 | |
| 2732 | if (indirect) { |
| 2733 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, first_miss); |
| 2734 | } |
| 2735 | |
| 2736 | ret = lck_mtx_lock_spinwait_x86(lock); |
| 2737 | state = ordered_load_mtx_state(lock); |
| 2738 | switch (ret) { |
| 2739 | case LCK_MTX_SPINWAIT_NO_SPIN: |
| 2740 | /* |
| 2741 | * owner not on core, lck_mtx_lock_spinwait_x86 didn't even |
| 2742 | * try to spin. |
| 2743 | */ |
| 2744 | if (indirect) { |
| 2745 | lck_mtx_update_direct_wait((struct _lck_mtx_ext_*)lock); |
| 2746 | } |
| 2747 | |
| 2748 | /* just fall through case LCK_MTX_SPINWAIT_SPUN */ |
| 2749 | case LCK_MTX_SPINWAIT_SPUN: |
| 2750 | /* |
| 2751 | * mutex not acquired but lck_mtx_lock_spinwait_x86 tried to spin |
| 2752 | * interlock not held |
| 2753 | */ |
| 2754 | lck_mtx_interlock_lock(lock, &state); |
| 2755 | assert(state & LCK_MTX_ILOCKED_MSK); |
| 2756 | |
| 2757 | if (state & LCK_MTX_MLOCKED_MSK) { |
| 2758 | if (indirect) { |
| 2759 | lck_mtx_update_wait((struct _lck_mtx_ext_*)lock, first_miss); |
| 2760 | } |
| 2761 | lck_mtx_lock_wait_x86(lock); |
| 2762 | /* |
| 2763 | * interlock is not held here. |
| 2764 | */ |
| 2765 | goto try_again; |
| 2766 | } else { |
| 2767 | |
| 2768 | /* grab the mutex */ |
| 2769 | state |= LCK_MTX_MLOCKED_MSK; |
| 2770 | ordered_store_mtx_state_release(lock, state); |
| 2771 | thread = current_thread(); |
| 2772 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 2773 | #if MACH_LDEBUG |
| 2774 | if (thread) { |
| 2775 | thread->mutex_count++; |
| 2776 | } |
| 2777 | #endif /* MACH_LDEBUG */ |
| 2778 | } |
| 2779 | |
| 2780 | break; |
| 2781 | case LCK_MTX_SPINWAIT_ACQUIRED: |
| 2782 | /* |
| 2783 | * mutex has been acquired by lck_mtx_lock_spinwait_x86 |
| 2784 | * interlock is held and preemption disabled |
| 2785 | * owner is set and mutex marked as locked |
| 2786 | * statistics updated too |
| 2787 | */ |
| 2788 | break; |
| 2789 | default: |
| 2790 | panic("lck_mtx_lock_spinwait_x86 returned %d for mutex %p\n" , ret, lock); |
| 2791 | } |
| 2792 | |
| 2793 | /* |
| 2794 | * interlock is already acquired here |
| 2795 | */ |
| 2796 | |
| 2797 | /* mutex has been acquired */ |
| 2798 | thread = (thread_t)lock->lck_mtx_owner; |
| 2799 | if (state & LCK_MTX_WAITERS_MSK || thread->was_promoted_on_wakeup) { |
| 2800 | return lck_mtx_lock_acquire_tail(lock, indirect); |
| 2801 | } |
| 2802 | |
| 2803 | /* release the interlock */ |
| 2804 | lck_mtx_lock_finish_inline(lock, ordered_load_mtx_state(lock), indirect); |
| 2805 | } |
| 2806 | |
| 2807 | /* |
| 2808 | * Helper noinline functions for calling |
| 2809 | * panic to optimize compiled code. |
| 2810 | */ |
| 2811 | |
| 2812 | __attribute__((noinline)) |
| 2813 | static void |
| 2814 | lck_mtx_destroyed( |
| 2815 | lck_mtx_t *lock) |
| 2816 | { |
| 2817 | panic("trying to interlock destroyed mutex (%p)" , lock); |
| 2818 | } |
| 2819 | |
| 2820 | __attribute__((noinline)) |
| 2821 | static boolean_t |
| 2822 | lck_mtx_try_destroyed( |
| 2823 | lck_mtx_t *lock) |
| 2824 | { |
| 2825 | panic("trying to interlock destroyed mutex (%p)" , lock); |
| 2826 | return FALSE; |
| 2827 | } |
| 2828 | |
| 2829 | __attribute__((always_inline)) |
| 2830 | static boolean_t |
| 2831 | lck_mtx_lock_wait_interlock_to_clear( |
| 2832 | lck_mtx_t *lock, |
| 2833 | uint32_t* new_state) |
| 2834 | { |
| 2835 | uint32_t state; |
| 2836 | |
| 2837 | for ( ; ; ) { |
| 2838 | cpu_pause(); |
| 2839 | state = ordered_load_mtx_state(lock); |
| 2840 | if (!(state & (LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK))) { |
| 2841 | *new_state = state; |
| 2842 | return TRUE; |
| 2843 | } |
| 2844 | if (state & LCK_MTX_MLOCKED_MSK) { |
| 2845 | /* if it is held as mutex, just fail */ |
| 2846 | return FALSE; |
| 2847 | } |
| 2848 | } |
| 2849 | } |
| 2850 | |
| 2851 | __attribute__((always_inline)) |
| 2852 | static boolean_t |
| 2853 | lck_mtx_try_lock_wait_interlock_to_clear( |
| 2854 | lck_mtx_t *lock, |
| 2855 | uint32_t* new_state) |
| 2856 | { |
| 2857 | uint32_t state; |
| 2858 | |
| 2859 | for ( ; ; ) { |
| 2860 | cpu_pause(); |
| 2861 | state = ordered_load_mtx_state(lock); |
| 2862 | if (state & (LCK_MTX_MLOCKED_MSK | LCK_MTX_SPIN_MSK)) { |
| 2863 | /* if it is held as mutex or spin, just fail */ |
| 2864 | return FALSE; |
| 2865 | } |
| 2866 | if (!(state & LCK_MTX_ILOCKED_MSK)) { |
| 2867 | *new_state = state; |
| 2868 | return TRUE; |
| 2869 | } |
| 2870 | } |
| 2871 | } |
| 2872 | |
| 2873 | /* |
| 2874 | * Routine: lck_mtx_lock_slow |
| 2875 | * |
| 2876 | * Locks a mutex for current thread. |
| 2877 | * If the lock is contended this function might |
| 2878 | * sleep. |
| 2879 | * |
| 2880 | * Called with interlock not held. |
| 2881 | */ |
| 2882 | __attribute__((noinline)) |
| 2883 | void |
| 2884 | lck_mtx_lock_slow( |
| 2885 | lck_mtx_t *lock) |
| 2886 | { |
| 2887 | boolean_t indirect = FALSE; |
| 2888 | uint32_t state; |
| 2889 | int first_miss = 0; |
| 2890 | |
| 2891 | state = ordered_load_mtx_state(lock); |
| 2892 | |
| 2893 | /* is the interlock or mutex held */ |
| 2894 | if (__improbable(state & ((LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK)))) { |
| 2895 | /* |
| 2896 | * Note: both LCK_MTX_TAG_DESTROYED and LCK_MTX_TAG_INDIRECT |
| 2897 | * have LCK_MTX_ILOCKED_MSK and LCK_MTX_MLOCKED_MSK |
| 2898 | * set in state (state == lck_mtx_tag) |
| 2899 | */ |
| 2900 | |
| 2901 | |
| 2902 | /* is the mutex already held and not indirect */ |
| 2903 | if (__improbable(!(state & LCK_MTX_ILOCKED_MSK))){ |
| 2904 | /* no, must have been the mutex */ |
| 2905 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 2906 | } |
| 2907 | |
| 2908 | /* check to see if it is marked destroyed */ |
| 2909 | if (__improbable(state == LCK_MTX_TAG_DESTROYED)) { |
| 2910 | return lck_mtx_destroyed(lock); |
| 2911 | } |
| 2912 | |
| 2913 | /* Is this an indirect mutex? */ |
| 2914 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 2915 | indirect = get_indirect_mutex(&lock, &state); |
| 2916 | |
| 2917 | first_miss = 0; |
| 2918 | lck_mtx_update_util((struct _lck_mtx_ext_*)lock); |
| 2919 | |
| 2920 | if (state & LCK_MTX_SPIN_MSK) { |
| 2921 | /* M_SPIN_MSK was set, so M_ILOCKED_MSK must also be present */ |
| 2922 | assert(state & LCK_MTX_ILOCKED_MSK); |
| 2923 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | if (!lck_mtx_lock_wait_interlock_to_clear(lock, &state)) { |
| 2928 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 2929 | } |
| 2930 | } |
| 2931 | |
| 2932 | /* no - can't be INDIRECT, DESTROYED or locked */ |
| 2933 | while (__improbable(!lck_mtx_interlock_try_lock_set_flags(lock, LCK_MTX_MLOCKED_MSK, &state))) { |
| 2934 | if (!lck_mtx_lock_wait_interlock_to_clear(lock, &state)) { |
| 2935 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 2936 | } |
| 2937 | } |
| 2938 | |
| 2939 | /* lock and interlock acquired */ |
| 2940 | |
| 2941 | thread_t thread = current_thread(); |
| 2942 | /* record owner of mutex */ |
| 2943 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 2944 | |
| 2945 | #if MACH_LDEBUG |
| 2946 | if (thread) { |
| 2947 | thread->mutex_count++; /* lock statistic */ |
| 2948 | } |
| 2949 | #endif |
| 2950 | /* |
| 2951 | * Check if there are waiters to |
| 2952 | * inherit their priority. |
| 2953 | */ |
| 2954 | if (__improbable(state & LCK_MTX_WAITERS_MSK)) { |
| 2955 | return lck_mtx_lock_acquire_tail(lock, indirect); |
| 2956 | } |
| 2957 | |
| 2958 | /* release the interlock */ |
| 2959 | lck_mtx_lock_finish_inline(lock, ordered_load_mtx_state(lock), indirect); |
| 2960 | |
| 2961 | return; |
| 2962 | } |
| 2963 | |
| 2964 | __attribute__((noinline)) |
| 2965 | boolean_t |
| 2966 | lck_mtx_try_lock_slow( |
| 2967 | lck_mtx_t *lock) |
| 2968 | { |
| 2969 | boolean_t indirect = FALSE; |
| 2970 | uint32_t state; |
| 2971 | int first_miss = 0; |
| 2972 | |
| 2973 | state = ordered_load_mtx_state(lock); |
| 2974 | |
| 2975 | /* is the interlock or mutex held */ |
| 2976 | if (__improbable(state & ((LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK)))) { |
| 2977 | /* |
| 2978 | * Note: both LCK_MTX_TAG_DESTROYED and LCK_MTX_TAG_INDIRECT |
| 2979 | * have LCK_MTX_ILOCKED_MSK and LCK_MTX_MLOCKED_MSK |
| 2980 | * set in state (state == lck_mtx_tag) |
| 2981 | */ |
| 2982 | |
| 2983 | /* is the mutex already held and not indirect */ |
| 2984 | if (__improbable(!(state & LCK_MTX_ILOCKED_MSK))){ |
| 2985 | return FALSE; |
| 2986 | } |
| 2987 | |
| 2988 | /* check to see if it is marked destroyed */ |
| 2989 | if (__improbable(state == LCK_MTX_TAG_DESTROYED)) { |
| 2990 | return lck_mtx_try_destroyed(lock); |
| 2991 | } |
| 2992 | |
| 2993 | /* Is this an indirect mutex? */ |
| 2994 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 2995 | indirect = get_indirect_mutex(&lock, &state); |
| 2996 | |
| 2997 | first_miss = 0; |
| 2998 | lck_mtx_update_util((struct _lck_mtx_ext_*)lock); |
| 2999 | } |
| 3000 | |
| 3001 | if (!lck_mtx_try_lock_wait_interlock_to_clear(lock, &state)) { |
| 3002 | if (indirect) |
| 3003 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 3004 | return FALSE; |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | /* no - can't be INDIRECT, DESTROYED or locked */ |
| 3009 | while (__improbable(!lck_mtx_interlock_try_lock_set_flags(lock, LCK_MTX_MLOCKED_MSK, &state))) { |
| 3010 | if (!lck_mtx_try_lock_wait_interlock_to_clear(lock, &state)) { |
| 3011 | if (indirect) |
| 3012 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 3013 | return FALSE; |
| 3014 | } |
| 3015 | } |
| 3016 | |
| 3017 | /* lock and interlock acquired */ |
| 3018 | |
| 3019 | thread_t thread = current_thread(); |
| 3020 | /* record owner of mutex */ |
| 3021 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 3022 | |
| 3023 | #if MACH_LDEBUG |
| 3024 | if (thread) { |
| 3025 | thread->mutex_count++; /* lock statistic */ |
| 3026 | } |
| 3027 | #endif |
| 3028 | /* |
| 3029 | * Check if there are waiters to |
| 3030 | * inherit their priority. |
| 3031 | */ |
| 3032 | if (__improbable(state & LCK_MTX_WAITERS_MSK)) { |
| 3033 | return lck_mtx_try_lock_acquire_tail(lock); |
| 3034 | } |
| 3035 | |
| 3036 | /* release the interlock */ |
| 3037 | lck_mtx_try_lock_finish_inline(lock, ordered_load_mtx_state(lock)); |
| 3038 | |
| 3039 | return TRUE; |
| 3040 | |
| 3041 | } |
| 3042 | |
| 3043 | __attribute__((noinline)) |
| 3044 | void |
| 3045 | lck_mtx_lock_spin_slow( |
| 3046 | lck_mtx_t *lock) |
| 3047 | { |
| 3048 | boolean_t indirect = FALSE; |
| 3049 | uint32_t state; |
| 3050 | int first_miss = 0; |
| 3051 | |
| 3052 | state = ordered_load_mtx_state(lock); |
| 3053 | |
| 3054 | /* is the interlock or mutex held */ |
| 3055 | if (__improbable(state & ((LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK)))) { |
| 3056 | /* |
| 3057 | * Note: both LCK_MTX_TAG_DESTROYED and LCK_MTX_TAG_INDIRECT |
| 3058 | * have LCK_MTX_ILOCKED_MSK and LCK_MTX_MLOCKED_MSK |
| 3059 | * set in state (state == lck_mtx_tag) |
| 3060 | */ |
| 3061 | |
| 3062 | |
| 3063 | /* is the mutex already held and not indirect */ |
| 3064 | if (__improbable(!(state & LCK_MTX_ILOCKED_MSK))){ |
| 3065 | /* no, must have been the mutex */ |
| 3066 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 3067 | } |
| 3068 | |
| 3069 | /* check to see if it is marked destroyed */ |
| 3070 | if (__improbable(state == LCK_MTX_TAG_DESTROYED)) { |
| 3071 | return lck_mtx_destroyed(lock); |
| 3072 | } |
| 3073 | |
| 3074 | /* Is this an indirect mutex? */ |
| 3075 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 3076 | indirect = get_indirect_mutex(&lock, &state); |
| 3077 | |
| 3078 | first_miss = 0; |
| 3079 | lck_mtx_update_util((struct _lck_mtx_ext_*)lock); |
| 3080 | |
| 3081 | if (state & LCK_MTX_SPIN_MSK) { |
| 3082 | /* M_SPIN_MSK was set, so M_ILOCKED_MSK must also be present */ |
| 3083 | assert(state & LCK_MTX_ILOCKED_MSK); |
| 3084 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 3085 | } |
| 3086 | } |
| 3087 | |
| 3088 | if (!lck_mtx_lock_wait_interlock_to_clear(lock, &state)) { |
| 3089 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 3090 | } |
| 3091 | } |
| 3092 | |
| 3093 | /* no - can't be INDIRECT, DESTROYED or locked */ |
| 3094 | while (__improbable(!lck_mtx_interlock_try_lock_set_flags(lock, LCK_MTX_SPIN_MSK, &state) )) { |
| 3095 | if (!lck_mtx_lock_wait_interlock_to_clear(lock, &state)) { |
| 3096 | return lck_mtx_lock_contended(lock, indirect, &first_miss); |
| 3097 | } |
| 3098 | } |
| 3099 | |
| 3100 | /* lock as spinlock and interlock acquired */ |
| 3101 | |
| 3102 | thread_t thread = current_thread(); |
| 3103 | /* record owner of mutex */ |
| 3104 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 3105 | |
| 3106 | #if MACH_LDEBUG |
| 3107 | if (thread) { |
| 3108 | thread->mutex_count++; /* lock statistic */ |
| 3109 | } |
| 3110 | #endif |
| 3111 | |
| 3112 | #if CONFIG_DTRACE |
| 3113 | LOCKSTAT_RECORD(LS_LCK_MTX_LOCK_SPIN_ACQUIRE, lock, 0); |
| 3114 | #endif |
| 3115 | /* return with the interlock held and preemption disabled */ |
| 3116 | return; |
| 3117 | } |
| 3118 | |
| 3119 | __attribute__((noinline)) |
| 3120 | boolean_t |
| 3121 | lck_mtx_try_lock_spin_slow( |
| 3122 | lck_mtx_t *lock) |
| 3123 | { |
| 3124 | boolean_t indirect = FALSE; |
| 3125 | uint32_t state; |
| 3126 | int first_miss = 0; |
| 3127 | |
| 3128 | state = ordered_load_mtx_state(lock); |
| 3129 | |
| 3130 | /* is the interlock or mutex held */ |
| 3131 | if (__improbable(state & ((LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK)))) { |
| 3132 | /* |
| 3133 | * Note: both LCK_MTX_TAG_DESTROYED and LCK_MTX_TAG_INDIRECT |
| 3134 | * have LCK_MTX_ILOCKED_MSK and LCK_MTX_MLOCKED_MSK |
| 3135 | * set in state (state == lck_mtx_tag) |
| 3136 | */ |
| 3137 | |
| 3138 | /* is the mutex already held and not indirect */ |
| 3139 | if (__improbable(!(state & LCK_MTX_ILOCKED_MSK))){ |
| 3140 | return FALSE; |
| 3141 | } |
| 3142 | |
| 3143 | /* check to see if it is marked destroyed */ |
| 3144 | if (__improbable(state == LCK_MTX_TAG_DESTROYED)) { |
| 3145 | return lck_mtx_try_destroyed(lock); |
| 3146 | } |
| 3147 | |
| 3148 | /* Is this an indirect mutex? */ |
| 3149 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 3150 | indirect = get_indirect_mutex(&lock, &state); |
| 3151 | |
| 3152 | first_miss = 0; |
| 3153 | lck_mtx_update_util((struct _lck_mtx_ext_*)lock); |
| 3154 | } |
| 3155 | |
| 3156 | if (!lck_mtx_try_lock_wait_interlock_to_clear(lock, &state)) { |
| 3157 | if (indirect) |
| 3158 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 3159 | return FALSE; |
| 3160 | } |
| 3161 | } |
| 3162 | |
| 3163 | /* no - can't be INDIRECT, DESTROYED or locked */ |
| 3164 | while (__improbable(!lck_mtx_interlock_try_lock_set_flags(lock, LCK_MTX_SPIN_MSK, &state))) { |
| 3165 | if (!lck_mtx_try_lock_wait_interlock_to_clear(lock, &state)) { |
| 3166 | if (indirect) |
| 3167 | lck_mtx_update_miss((struct _lck_mtx_ext_*)lock, &first_miss); |
| 3168 | return FALSE; |
| 3169 | } |
| 3170 | } |
| 3171 | |
| 3172 | /* lock and interlock acquired */ |
| 3173 | |
| 3174 | thread_t thread = current_thread(); |
| 3175 | /* record owner of mutex */ |
| 3176 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 3177 | |
| 3178 | #if MACH_LDEBUG |
| 3179 | if (thread) { |
| 3180 | thread->mutex_count++; /* lock statistic */ |
| 3181 | } |
| 3182 | #endif |
| 3183 | |
| 3184 | #if CONFIG_DTRACE |
| 3185 | LOCKSTAT_RECORD(LS_LCK_MTX_TRY_SPIN_LOCK_ACQUIRE, lock, 0); |
| 3186 | #endif |
| 3187 | return TRUE; |
| 3188 | |
| 3189 | } |
| 3190 | |
| 3191 | __attribute__((noinline)) |
| 3192 | void |
| 3193 | lck_mtx_convert_spin( |
| 3194 | lck_mtx_t *lock) |
| 3195 | { |
| 3196 | uint32_t state; |
| 3197 | |
| 3198 | state = ordered_load_mtx_state(lock); |
| 3199 | |
| 3200 | /* Is this an indirect mutex? */ |
| 3201 | if (__improbable(state == LCK_MTX_TAG_INDIRECT)) { |
| 3202 | /* If so, take indirection */ |
| 3203 | get_indirect_mutex(&lock, &state); |
| 3204 | } |
| 3205 | |
| 3206 | assertf((thread_t)lock->lck_mtx_owner == current_thread(), "lock %p not owned by thread %p (current owner %p)" , lock, current_thread(), (thread_t)lock->lck_mtx_owner ); |
| 3207 | |
| 3208 | if (__improbable(state & LCK_MTX_MLOCKED_MSK)) { |
| 3209 | /* already owned as a mutex, just return */ |
| 3210 | return; |
| 3211 | } |
| 3212 | |
| 3213 | assert(get_preemption_level() > 0); |
| 3214 | assert(state & LCK_MTX_ILOCKED_MSK); |
| 3215 | assert(state & LCK_MTX_SPIN_MSK); |
| 3216 | |
| 3217 | /* |
| 3218 | * Check if there are waiters to |
| 3219 | * inherit their priority. |
| 3220 | */ |
| 3221 | if (__improbable(state & LCK_MTX_WAITERS_MSK)) { |
| 3222 | return lck_mtx_convert_spin_acquire_tail(lock); |
| 3223 | } |
| 3224 | |
| 3225 | lck_mtx_convert_spin_finish_inline(lock, ordered_load_mtx_state(lock)); |
| 3226 | |
| 3227 | return; |
| 3228 | } |
| 3229 | |
| 3230 | static inline boolean_t |
| 3231 | lck_mtx_lock_grab_mutex( |
| 3232 | lck_mtx_t *lock) |
| 3233 | { |
| 3234 | uint32_t state; |
| 3235 | |
| 3236 | state = ordered_load_mtx_state(lock); |
| 3237 | |
| 3238 | if (!lck_mtx_interlock_try_lock_set_flags(lock, LCK_MTX_MLOCKED_MSK, &state)) { |
| 3239 | return FALSE; |
| 3240 | } |
| 3241 | |
| 3242 | /* lock and interlock acquired */ |
| 3243 | |
| 3244 | thread_t thread = current_thread(); |
| 3245 | /* record owner of mutex */ |
| 3246 | ordered_store_mtx_owner(lock, (uintptr_t)thread); |
| 3247 | |
| 3248 | #if MACH_LDEBUG |
| 3249 | if (thread) { |
| 3250 | thread->mutex_count++; /* lock statistic */ |
| 3251 | } |
| 3252 | #endif |
| 3253 | return TRUE; |
| 3254 | } |
| 3255 | |
| 3256 | __attribute__((noinline)) |
| 3257 | void |
| 3258 | lck_mtx_assert( |
| 3259 | lck_mtx_t *lock, |
| 3260 | unsigned int type) |
| 3261 | { |
| 3262 | thread_t thread, owner; |
| 3263 | uint32_t state; |
| 3264 | |
| 3265 | thread = current_thread(); |
| 3266 | state = ordered_load_mtx_state(lock); |
| 3267 | |
| 3268 | if (state == LCK_MTX_TAG_INDIRECT) { |
| 3269 | get_indirect_mutex(&lock, &state); |
| 3270 | } |
| 3271 | |
| 3272 | owner = (thread_t)lock->lck_mtx_owner; |
| 3273 | |
| 3274 | if (type == LCK_MTX_ASSERT_OWNED) { |
| 3275 | if (owner != thread || !(state & (LCK_MTX_ILOCKED_MSK | LCK_MTX_MLOCKED_MSK))) |
| 3276 | panic("mutex (%p) not owned\n" , lock); |
| 3277 | } else { |
| 3278 | assert (type == LCK_MTX_ASSERT_NOTOWNED); |
| 3279 | if (owner == thread) |
| 3280 | panic("mutex (%p) owned\n" , lock); |
| 3281 | } |
| 3282 | } |
| 3283 | |
| 3284 | /* |
| 3285 | * Routine: lck_mtx_lock_spinwait_x86 |
| 3286 | * |
| 3287 | * Invoked trying to acquire a mutex when there is contention but |
| 3288 | * the holder is running on another processor. We spin for up to a maximum |
| 3289 | * time waiting for the lock to be released. |
| 3290 | * |
| 3291 | * Called with the interlock unlocked. |
| 3292 | * returns LCK_MTX_SPINWAIT_ACQUIRED if mutex acquired |
| 3293 | * returns LCK_MTX_SPINWAIT_SPUN if we spun |
| 3294 | * returns LCK_MTX_SPINWAIT_NO_SPIN if we didn't spin due to the holder not running |
| 3295 | */ |
| 3296 | __attribute__((noinline)) |
| 3297 | lck_mtx_spinwait_ret_type_t |
| 3298 | lck_mtx_lock_spinwait_x86( |
| 3299 | lck_mtx_t *mutex) |
| 3300 | { |
| 3301 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(mutex); |
| 3302 | thread_t holder; |
| 3303 | uint64_t overall_deadline; |
| 3304 | uint64_t check_owner_deadline; |
| 3305 | uint64_t cur_time; |
| 3306 | lck_mtx_spinwait_ret_type_t retval = LCK_MTX_SPINWAIT_SPUN; |
| 3307 | int loopcount = 0; |
| 3308 | |
| 3309 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_SPIN_CODE) | DBG_FUNC_START, |
| 3310 | trace_lck, VM_KERNEL_UNSLIDE_OR_PERM(mutex->lck_mtx_owner), mutex->lck_mtx_waiters, 0, 0); |
| 3311 | |
| 3312 | cur_time = mach_absolute_time(); |
| 3313 | overall_deadline = cur_time + MutexSpin; |
| 3314 | check_owner_deadline = cur_time; |
| 3315 | |
| 3316 | /* |
| 3317 | * Spin while: |
| 3318 | * - mutex is locked, and |
| 3319 | * - its locked as a spin lock, and |
| 3320 | * - owner is running on another processor, and |
| 3321 | * - owner (processor) is not idling, and |
| 3322 | * - we haven't spun for long enough. |
| 3323 | */ |
| 3324 | do { |
| 3325 | if (__probable(lck_mtx_lock_grab_mutex(mutex))) { |
| 3326 | retval = LCK_MTX_SPINWAIT_ACQUIRED; |
| 3327 | break; |
| 3328 | } |
| 3329 | cur_time = mach_absolute_time(); |
| 3330 | |
| 3331 | if (cur_time >= overall_deadline) |
| 3332 | break; |
| 3333 | |
| 3334 | if (cur_time >= check_owner_deadline && mutex->lck_mtx_owner) { |
| 3335 | boolean_t istate; |
| 3336 | |
| 3337 | /* |
| 3338 | * We will repeatedly peek at the state of the lock while spinning, |
| 3339 | * and we will acquire the interlock to do so. |
| 3340 | * The thread that will unlock the mutex will also need to acquire |
| 3341 | * the interlock, and we want to avoid to slow it down. |
| 3342 | * To avoid to get an interrupt while holding the interlock |
| 3343 | * and increase the time we are holding it, we |
| 3344 | * will try to acquire the interlock with interrupts disabled. |
| 3345 | * This is safe because it is a "try_lock", if we can't acquire |
| 3346 | * the interlock we re-enable the interrupts and fail, so it is |
| 3347 | * ok to call it even if the interlock was already held. |
| 3348 | */ |
| 3349 | if (lck_mtx_interlock_try_lock_disable_interrupts(mutex, &istate)) { |
| 3350 | |
| 3351 | if ((holder = (thread_t) mutex->lck_mtx_owner) != NULL) { |
| 3352 | |
| 3353 | if ( !(holder->machine.specFlags & OnProc) || |
| 3354 | (holder->state & TH_IDLE)) { |
| 3355 | |
| 3356 | lck_mtx_interlock_unlock_enable_interrupts(mutex, istate); |
| 3357 | |
| 3358 | if (loopcount == 0) |
| 3359 | retval = LCK_MTX_SPINWAIT_NO_SPIN; |
| 3360 | break; |
| 3361 | } |
| 3362 | } |
| 3363 | lck_mtx_interlock_unlock_enable_interrupts(mutex, istate); |
| 3364 | |
| 3365 | check_owner_deadline = cur_time + (MutexSpin / 4); |
| 3366 | } |
| 3367 | } |
| 3368 | cpu_pause(); |
| 3369 | |
| 3370 | loopcount++; |
| 3371 | |
| 3372 | } while (TRUE); |
| 3373 | |
| 3374 | #if CONFIG_DTRACE |
| 3375 | /* |
| 3376 | * We've already kept a count via overall_deadline of how long we spun. |
| 3377 | * If dtrace is active, then we compute backwards to decide how |
| 3378 | * long we spun. |
| 3379 | * |
| 3380 | * Note that we record a different probe id depending on whether |
| 3381 | * this is a direct or indirect mutex. This allows us to |
| 3382 | * penalize only lock groups that have debug/stats enabled |
| 3383 | * with dtrace processing if desired. |
| 3384 | */ |
| 3385 | if (__probable(mutex->lck_mtx_is_ext == 0)) { |
| 3386 | LOCKSTAT_RECORD(LS_LCK_MTX_LOCK_SPIN, mutex, |
| 3387 | mach_absolute_time() - (overall_deadline - MutexSpin)); |
| 3388 | } else { |
| 3389 | LOCKSTAT_RECORD(LS_LCK_MTX_EXT_LOCK_SPIN, mutex, |
| 3390 | mach_absolute_time() - (overall_deadline - MutexSpin)); |
| 3391 | } |
| 3392 | /* The lockstat acquire event is recorded by the assembly code beneath us. */ |
| 3393 | #endif |
| 3394 | |
| 3395 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_SPIN_CODE) | DBG_FUNC_END, |
| 3396 | trace_lck, VM_KERNEL_UNSLIDE_OR_PERM(mutex->lck_mtx_owner), mutex->lck_mtx_waiters, retval, 0); |
| 3397 | |
| 3398 | return retval; |
| 3399 | } |
| 3400 | |
| 3401 | |
| 3402 | |
| 3403 | /* |
| 3404 | * Routine: lck_mtx_lock_wait_x86 |
| 3405 | * |
| 3406 | * Invoked in order to wait on contention. |
| 3407 | * |
| 3408 | * Called with the interlock locked and |
| 3409 | * preemption disabled... |
| 3410 | * returns it unlocked and with preemption enabled |
| 3411 | * |
| 3412 | * lck_mtx_waiters is 1:1 with a wakeup needing to occur. |
| 3413 | * A runnable waiter can exist between wait and acquire |
| 3414 | * without a waiters count being set. |
| 3415 | * This allows us to never make a spurious wakeup call. |
| 3416 | * |
| 3417 | * Priority: |
| 3418 | * This avoids taking the thread lock if the owning thread is the same priority. |
| 3419 | * This optimizes the case of same-priority threads contending on a lock. |
| 3420 | * However, that allows the owning thread to drop in priority while holding the lock, |
| 3421 | * because there is no state that the priority change can notice that |
| 3422 | * says that the targeted thread holds a contended mutex. |
| 3423 | * |
| 3424 | * One possible solution: priority changes could look for some atomic tag |
| 3425 | * on the thread saying 'holding contended lock', and then set up a promotion. |
| 3426 | * Needs a story for dropping that promotion - the last contended unlock |
| 3427 | * has to notice that this has happened. |
| 3428 | */ |
| 3429 | __attribute__((noinline)) |
| 3430 | void |
| 3431 | lck_mtx_lock_wait_x86 ( |
| 3432 | lck_mtx_t *mutex) |
| 3433 | { |
| 3434 | #if CONFIG_DTRACE |
| 3435 | uint64_t sleep_start = 0; |
| 3436 | |
| 3437 | if (lockstat_probemap[LS_LCK_MTX_LOCK_BLOCK] || lockstat_probemap[LS_LCK_MTX_EXT_LOCK_BLOCK]) { |
| 3438 | sleep_start = mach_absolute_time(); |
| 3439 | } |
| 3440 | #endif |
| 3441 | thread_t self = current_thread(); |
| 3442 | assert(self->waiting_for_mutex == NULL); |
| 3443 | |
| 3444 | self->waiting_for_mutex = mutex; |
| 3445 | |
| 3446 | __kdebug_only uintptr_t trace_lck = unslide_for_kdebug(mutex); |
| 3447 | |
| 3448 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAIT_CODE) | DBG_FUNC_START, |
| 3449 | trace_lck, VM_KERNEL_UNSLIDE_OR_PERM(mutex->lck_mtx_owner), |
| 3450 | mutex->lck_mtx_waiters, mutex->lck_mtx_pri, 0); |
| 3451 | |
| 3452 | integer_t waiter_pri = self->sched_pri; |
| 3453 | waiter_pri = MAX(waiter_pri, self->base_pri); |
| 3454 | waiter_pri = MAX(waiter_pri, BASEPRI_DEFAULT); |
| 3455 | waiter_pri = MIN(waiter_pri, MAXPRI_PROMOTE); |
| 3456 | |
| 3457 | assert(mutex->lck_mtx_pri <= MAXPRI_PROMOTE); |
| 3458 | |
| 3459 | /* Re-initialize lck_mtx_pri if this is the first contention */ |
| 3460 | if (mutex->lck_mtx_waiters == 0 || mutex->lck_mtx_pri <= waiter_pri) |
| 3461 | mutex->lck_mtx_pri = waiter_pri; |
| 3462 | |
| 3463 | thread_t holder = (thread_t)mutex->lck_mtx_owner; |
| 3464 | |
| 3465 | assert(holder != NULL); |
| 3466 | |
| 3467 | /* |
| 3468 | * Intel only causes a promotion when priority needs to change, |
| 3469 | * reducing thread lock holds but leaving us vulnerable to the holder |
| 3470 | * dropping priority. |
| 3471 | */ |
| 3472 | if (holder->sched_pri < mutex->lck_mtx_pri) { |
| 3473 | int promote_pri = mutex->lck_mtx_pri; |
| 3474 | |
| 3475 | spl_t s = splsched(); |
| 3476 | thread_lock(holder); |
| 3477 | |
| 3478 | /* Check again in case sched_pri changed */ |
| 3479 | if (holder->sched_pri < promote_pri && holder->promotion_priority < promote_pri) { |
| 3480 | if (mutex->lck_mtx_promoted == 0) { |
| 3481 | /* This is the first promotion for this mutex */ |
| 3482 | mutex->lck_mtx_promoted = 1; |
| 3483 | |
| 3484 | if (holder->promotions++ == 0) { |
| 3485 | /* This is the first promotion for holder */ |
| 3486 | sched_thread_promote_to_pri(holder, promote_pri, trace_lck); |
| 3487 | } else { |
| 3488 | /* |
| 3489 | * Holder was previously promoted due to a different mutex, |
| 3490 | * check if it needs to raise to match this one |
| 3491 | */ |
| 3492 | sched_thread_update_promotion_to_pri(holder, promote_pri, |
| 3493 | trace_lck); |
| 3494 | } |
| 3495 | } else { |
| 3496 | /* |
| 3497 | * Holder was previously promoted due to this mutex, |
| 3498 | * check if the pri needs to go up |
| 3499 | */ |
| 3500 | sched_thread_update_promotion_to_pri(holder, promote_pri, trace_lck); |
| 3501 | } |
| 3502 | } |
| 3503 | |
| 3504 | thread_unlock(holder); |
| 3505 | splx(s); |
| 3506 | } |
| 3507 | |
| 3508 | mutex->lck_mtx_waiters++; |
| 3509 | |
| 3510 | thread_set_pending_block_hint(self, kThreadWaitKernelMutex); |
| 3511 | assert_wait(LCK_MTX_EVENT(mutex), THREAD_UNINT | THREAD_WAIT_NOREPORT_USER); |
| 3512 | |
| 3513 | lck_mtx_ilk_unlock(mutex); |
| 3514 | |
| 3515 | thread_block(THREAD_CONTINUE_NULL); |
| 3516 | |
| 3517 | self->waiting_for_mutex = NULL; |
| 3518 | |
| 3519 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAIT_CODE) | DBG_FUNC_END, |
| 3520 | trace_lck, VM_KERNEL_UNSLIDE_OR_PERM(mutex->lck_mtx_owner), |
| 3521 | mutex->lck_mtx_waiters, mutex->lck_mtx_pri, 0); |
| 3522 | |
| 3523 | #if CONFIG_DTRACE |
| 3524 | /* |
| 3525 | * Record the Dtrace lockstat probe for blocking, block time |
| 3526 | * measured from when we were entered. |
| 3527 | */ |
| 3528 | if (sleep_start) { |
| 3529 | if (mutex->lck_mtx_is_ext == 0) { |
| 3530 | LOCKSTAT_RECORD(LS_LCK_MTX_LOCK_BLOCK, mutex, |
| 3531 | mach_absolute_time() - sleep_start); |
| 3532 | } else { |
| 3533 | LOCKSTAT_RECORD(LS_LCK_MTX_EXT_LOCK_BLOCK, mutex, |
| 3534 | mach_absolute_time() - sleep_start); |
| 3535 | } |
| 3536 | } |
| 3537 | #endif |
| 3538 | } |
| 3539 | |
| 3540 | /* |
| 3541 | * Routine: kdp_lck_mtx_lock_spin_is_acquired |
| 3542 | * NOT SAFE: To be used only by kernel debugger to avoid deadlock. |
| 3543 | * Returns: TRUE if lock is acquired. |
| 3544 | */ |
| 3545 | boolean_t |
| 3546 | kdp_lck_mtx_lock_spin_is_acquired(lck_mtx_t *lck) |
| 3547 | { |
| 3548 | if (not_in_kdp) { |
| 3549 | panic("panic: kdp_lck_mtx_lock_spin_is_acquired called outside of kernel debugger" ); |
| 3550 | } |
| 3551 | |
| 3552 | if (lck->lck_mtx_ilocked || lck->lck_mtx_mlocked) { |
| 3553 | return TRUE; |
| 3554 | } |
| 3555 | |
| 3556 | return FALSE; |
| 3557 | } |
| 3558 | |
| 3559 | void |
| 3560 | kdp_lck_mtx_find_owner(__unused struct waitq * waitq, event64_t event, thread_waitinfo_t * waitinfo) |
| 3561 | { |
| 3562 | lck_mtx_t * mutex = LCK_EVENT_TO_MUTEX(event); |
| 3563 | waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(mutex); |
| 3564 | thread_t holder = (thread_t)mutex->lck_mtx_owner; |
| 3565 | waitinfo->owner = thread_tid(holder); |
| 3566 | } |
| 3567 | |
| 3568 | void |
| 3569 | kdp_rwlck_find_owner(__unused struct waitq * waitq, event64_t event, thread_waitinfo_t * waitinfo) |
| 3570 | { |
| 3571 | lck_rw_t *rwlck = NULL; |
| 3572 | switch(waitinfo->wait_type) { |
| 3573 | case kThreadWaitKernelRWLockRead: |
| 3574 | rwlck = READ_EVENT_TO_RWLOCK(event); |
| 3575 | break; |
| 3576 | case kThreadWaitKernelRWLockWrite: |
| 3577 | case kThreadWaitKernelRWLockUpgrade: |
| 3578 | rwlck = WRITE_EVENT_TO_RWLOCK(event); |
| 3579 | break; |
| 3580 | default: |
| 3581 | panic("%s was called with an invalid blocking type" , __FUNCTION__); |
| 3582 | break; |
| 3583 | } |
| 3584 | waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(rwlck); |
| 3585 | waitinfo->owner = 0; |
| 3586 | } |
| 3587 | |