1 | /* |
2 | * CDDL HEADER START |
3 | * |
4 | * The contents of this file are subject to the terms of the |
5 | * Common Development and Distribution License (the "License"). |
6 | * You may not use this file except in compliance with the License. |
7 | * |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
9 | * or http://www.opensolaris.org/os/licensing. |
10 | * See the License for the specific language governing permissions |
11 | * and limitations under the License. |
12 | * |
13 | * When distributing Covered Code, include this CDDL HEADER in each |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
15 | * If applicable, add the following below this CDDL HEADER, with the |
16 | * fields enclosed by brackets "[]" replaced with your own identifying |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
18 | * |
19 | * CDDL HEADER END |
20 | */ |
21 | |
22 | /* |
23 | * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
24 | * Use is subject to license terms. |
25 | */ |
26 | |
27 | /* |
28 | * #pragma ident "@(#)fasttrap_isa.c 1.27 08/04/09 SMI" |
29 | */ |
30 | |
31 | #ifdef KERNEL |
32 | #ifndef _KERNEL |
33 | #define _KERNEL /* Solaris vs. Darwin */ |
34 | #endif |
35 | #endif |
36 | |
37 | #include <sys/fasttrap_isa.h> |
38 | #include <sys/fasttrap_impl.h> |
39 | #include <sys/dtrace.h> |
40 | #include <sys/dtrace_impl.h> |
41 | extern dtrace_id_t dtrace_probeid_error; |
42 | |
43 | #include "fasttrap_regset.h" |
44 | |
45 | #include <sys/dtrace_ptss.h> |
46 | #include <kern/debug.h> |
47 | |
48 | #include <machine/pal_routines.h> |
49 | |
50 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
51 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ |
52 | |
53 | /* |
54 | * Lossless User-Land Tracing on x86 |
55 | * --------------------------------- |
56 | * |
57 | * The execution of most instructions is not dependent on the address; for |
58 | * these instructions it is sufficient to copy them into the user process's |
59 | * address space and execute them. To effectively single-step an instruction |
60 | * in user-land, we copy out the following sequence of instructions to scratch |
61 | * space in the user thread's ulwp_t structure. |
62 | * |
63 | * We then set the program counter (%eip or %rip) to point to this scratch |
64 | * space. Once execution resumes, the original instruction is executed and |
65 | * then control flow is redirected to what was originally the subsequent |
66 | * instruction. If the kernel attemps to deliver a signal while single- |
67 | * stepping, the signal is deferred and the program counter is moved into the |
68 | * second sequence of instructions. The second sequence ends in a trap into |
69 | * the kernel where the deferred signal is then properly handled and delivered. |
70 | * |
71 | * For instructions whose execute is position dependent, we perform simple |
72 | * emulation. These instructions are limited to control transfer |
73 | * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle |
74 | * of %rip-relative addressing that means that almost any instruction can be |
75 | * position dependent. For all the details on how we emulate generic |
76 | * instructions included %rip-relative instructions, see the code in |
77 | * fasttrap_pid_probe() below where we handle instructions of type |
78 | * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing). |
79 | */ |
80 | |
81 | #define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3) |
82 | #define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7) |
83 | #define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7) |
84 | #define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm)) |
85 | |
86 | #define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3) |
87 | #define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7) |
88 | #define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7) |
89 | |
90 | #define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1) |
91 | #define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1) |
92 | #define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1) |
93 | #define FASTTRAP_REX_B(rex) ((rex) & 1) |
94 | #define FASTTRAP_REX(w, r, x, b) \ |
95 | (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b)) |
96 | |
97 | /* |
98 | * Single-byte op-codes. |
99 | */ |
100 | #define FASTTRAP_PUSHL_EBP 0x55 |
101 | |
102 | #define FASTTRAP_JO 0x70 |
103 | #define FASTTRAP_JNO 0x71 |
104 | #define FASTTRAP_JB 0x72 |
105 | #define FASTTRAP_JAE 0x73 |
106 | #define FASTTRAP_JE 0x74 |
107 | #define FASTTRAP_JNE 0x75 |
108 | #define FASTTRAP_JBE 0x76 |
109 | #define FASTTRAP_JA 0x77 |
110 | #define FASTTRAP_JS 0x78 |
111 | #define FASTTRAP_JNS 0x79 |
112 | #define FASTTRAP_JP 0x7a |
113 | #define FASTTRAP_JNP 0x7b |
114 | #define FASTTRAP_JL 0x7c |
115 | #define FASTTRAP_JGE 0x7d |
116 | #define FASTTRAP_JLE 0x7e |
117 | #define FASTTRAP_JG 0x7f |
118 | |
119 | #define FASTTRAP_NOP 0x90 |
120 | |
121 | #define FASTTRAP_MOV_EAX 0xb8 |
122 | #define FASTTRAP_MOV_ECX 0xb9 |
123 | |
124 | #define FASTTRAP_RET16 0xc2 |
125 | #define FASTTRAP_RET 0xc3 |
126 | |
127 | #define FASTTRAP_LOOPNZ 0xe0 |
128 | #define FASTTRAP_LOOPZ 0xe1 |
129 | #define FASTTRAP_LOOP 0xe2 |
130 | #define FASTTRAP_JCXZ 0xe3 |
131 | |
132 | #define FASTTRAP_CALL 0xe8 |
133 | #define FASTTRAP_JMP32 0xe9 |
134 | #define FASTTRAP_JMP8 0xeb |
135 | |
136 | #define FASTTRAP_INT3 0xcc |
137 | #define FASTTRAP_INT 0xcd |
138 | #define T_DTRACE_RET 0x7f |
139 | |
140 | #define FASTTRAP_2_BYTE_OP 0x0f |
141 | #define FASTTRAP_GROUP5_OP 0xff |
142 | |
143 | /* |
144 | * Two-byte op-codes (second byte only). |
145 | */ |
146 | #define FASTTRAP_0F_JO 0x80 |
147 | #define FASTTRAP_0F_JNO 0x81 |
148 | #define FASTTRAP_0F_JB 0x82 |
149 | #define FASTTRAP_0F_JAE 0x83 |
150 | #define FASTTRAP_0F_JE 0x84 |
151 | #define FASTTRAP_0F_JNE 0x85 |
152 | #define FASTTRAP_0F_JBE 0x86 |
153 | #define FASTTRAP_0F_JA 0x87 |
154 | #define FASTTRAP_0F_JS 0x88 |
155 | #define FASTTRAP_0F_JNS 0x89 |
156 | #define FASTTRAP_0F_JP 0x8a |
157 | #define FASTTRAP_0F_JNP 0x8b |
158 | #define FASTTRAP_0F_JL 0x8c |
159 | #define FASTTRAP_0F_JGE 0x8d |
160 | #define FASTTRAP_0F_JLE 0x8e |
161 | #define FASTTRAP_0F_JG 0x8f |
162 | |
163 | #define FASTTRAP_EFLAGS_OF 0x800 |
164 | #define FASTTRAP_EFLAGS_DF 0x400 |
165 | #define FASTTRAP_EFLAGS_SF 0x080 |
166 | #define FASTTRAP_EFLAGS_ZF 0x040 |
167 | #define FASTTRAP_EFLAGS_AF 0x010 |
168 | #define FASTTRAP_EFLAGS_PF 0x004 |
169 | #define FASTTRAP_EFLAGS_CF 0x001 |
170 | |
171 | /* |
172 | * Instruction prefixes. |
173 | */ |
174 | #define FASTTRAP_PREFIX_OPERAND 0x66 |
175 | #define FASTTRAP_PREFIX_ADDRESS 0x67 |
176 | #define FASTTRAP_PREFIX_CS 0x2E |
177 | #define FASTTRAP_PREFIX_DS 0x3E |
178 | #define FASTTRAP_PREFIX_ES 0x26 |
179 | #define FASTTRAP_PREFIX_FS 0x64 |
180 | #define FASTTRAP_PREFIX_GS 0x65 |
181 | #define FASTTRAP_PREFIX_SS 0x36 |
182 | #define FASTTRAP_PREFIX_LOCK 0xF0 |
183 | #define FASTTRAP_PREFIX_REP 0xF3 |
184 | #define FASTTRAP_PREFIX_REPNE 0xF2 |
185 | |
186 | #define FASTTRAP_NOREG 0xff |
187 | |
188 | /* |
189 | * Map between instruction register encodings and the kernel constants which |
190 | * correspond to indicies into struct regs. |
191 | */ |
192 | |
193 | /* |
194 | * APPLE NOTE: We are cheating here. The regmap is used to decode which register |
195 | * a given instruction is trying to reference. OS X does not have extended registers |
196 | * for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return: |
197 | * |
198 | * REG_RAX -> EAX |
199 | * REG_RCX -> ECX |
200 | * REG_RDX -> EDX |
201 | * REG_RBX -> EBX |
202 | * REG_RSP -> UESP |
203 | * REG_RBP -> EBP |
204 | * REG_RSI -> ESI |
205 | * REG_RDI -> EDI |
206 | * |
207 | * The fasttrap_getreg function knows how to make the correct transformation. |
208 | */ |
209 | static const uint8_t regmap[16] = { |
210 | REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, |
211 | REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, |
212 | }; |
213 | |
214 | static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t); |
215 | |
216 | static uint64_t |
217 | fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno) |
218 | { |
219 | uint64_t value; |
220 | int shift = function_entry ? 1 : 0; |
221 | |
222 | x86_saved_state64_t *regs64; |
223 | x86_saved_state32_t *regs32; |
224 | unsigned int p_model; |
225 | |
226 | if (is_saved_state64(regs)) { |
227 | regs64 = saved_state64(regs); |
228 | regs32 = NULL; |
229 | p_model = DATAMODEL_LP64; |
230 | } else { |
231 | regs64 = NULL; |
232 | regs32 = saved_state32(regs); |
233 | p_model = DATAMODEL_ILP32; |
234 | } |
235 | |
236 | if (p_model == DATAMODEL_LP64) { |
237 | user_addr_t stack; |
238 | |
239 | /* |
240 | * In 64-bit mode, the first six arguments are stored in |
241 | * registers. |
242 | */ |
243 | if (argno < 6) |
244 | return ((®s64->rdi)[argno]); |
245 | |
246 | stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift); |
247 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
248 | value = dtrace_fuword64(stack); |
249 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); |
250 | } else { |
251 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
252 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
253 | value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]); |
254 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); |
255 | } |
256 | |
257 | return (value); |
258 | } |
259 | |
260 | /*ARGSUSED*/ |
261 | int |
262 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc, |
263 | fasttrap_probe_type_t type) |
264 | { |
265 | #pragma unused(type) |
266 | uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10]; |
267 | size_t len = FASTTRAP_MAX_INSTR_SIZE; |
268 | size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK)); |
269 | uint_t start = 0; |
270 | size_t size; |
271 | int rmindex; |
272 | uint8_t seg, rex = 0; |
273 | unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32; |
274 | |
275 | /* |
276 | * Read the instruction at the given address out of the process's |
277 | * address space. We don't have to worry about a debugger |
278 | * changing this instruction before we overwrite it with our trap |
279 | * instruction since P_PR_LOCK is set. Since instructions can span |
280 | * pages, we potentially read the instruction in two parts. If the |
281 | * second part fails, we just zero out that part of the instruction. |
282 | */ |
283 | /* |
284 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... |
285 | */ |
286 | if (uread(p, &instr[0], first, pc) != 0) |
287 | return (-1); |
288 | if (len > first && |
289 | uread(p, &instr[first], len - first, pc + first) != 0) { |
290 | bzero(&instr[first], len - first); |
291 | len = first; |
292 | } |
293 | |
294 | /* |
295 | * If the disassembly fails, then we have a malformed instruction. |
296 | */ |
297 | if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0) |
298 | return (-1); |
299 | |
300 | /* |
301 | * Make sure the disassembler isn't completely broken. |
302 | */ |
303 | ASSERT(-1 <= rmindex && rmindex < (int)size); |
304 | |
305 | /* |
306 | * If the computed size is greater than the number of bytes read, |
307 | * then it was a malformed instruction possibly because it fell on a |
308 | * page boundary and the subsequent page was missing or because of |
309 | * some malicious user. |
310 | */ |
311 | if (size > len) |
312 | return (-1); |
313 | |
314 | tp->ftt_size = (uint8_t)size; |
315 | tp->ftt_segment = FASTTRAP_SEG_NONE; |
316 | |
317 | /* |
318 | * Find the start of the instruction's opcode by processing any |
319 | * legacy prefixes. |
320 | */ |
321 | for (;;) { |
322 | seg = 0; |
323 | switch (instr[start]) { |
324 | case FASTTRAP_PREFIX_SS: |
325 | seg++; |
326 | /*FALLTHRU*/ |
327 | case FASTTRAP_PREFIX_GS: |
328 | seg++; |
329 | /*FALLTHRU*/ |
330 | case FASTTRAP_PREFIX_FS: |
331 | seg++; |
332 | /*FALLTHRU*/ |
333 | case FASTTRAP_PREFIX_ES: |
334 | seg++; |
335 | /*FALLTHRU*/ |
336 | case FASTTRAP_PREFIX_DS: |
337 | seg++; |
338 | /*FALLTHRU*/ |
339 | case FASTTRAP_PREFIX_CS: |
340 | seg++; |
341 | /*FALLTHRU*/ |
342 | case FASTTRAP_PREFIX_OPERAND: |
343 | case FASTTRAP_PREFIX_ADDRESS: |
344 | case FASTTRAP_PREFIX_LOCK: |
345 | case FASTTRAP_PREFIX_REP: |
346 | case FASTTRAP_PREFIX_REPNE: |
347 | if (seg != 0) { |
348 | /* |
349 | * It's illegal for an instruction to specify |
350 | * two segment prefixes -- give up on this |
351 | * illegal instruction. |
352 | */ |
353 | if (tp->ftt_segment != FASTTRAP_SEG_NONE) |
354 | return (-1); |
355 | |
356 | tp->ftt_segment = seg; |
357 | } |
358 | start++; |
359 | continue; |
360 | } |
361 | break; |
362 | } |
363 | |
364 | /* |
365 | * Identify the REX prefix on 64-bit processes. |
366 | */ |
367 | if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40) |
368 | rex = instr[start++]; |
369 | |
370 | /* |
371 | * Now that we're pretty sure that the instruction is okay, copy the |
372 | * valid part to the tracepoint. |
373 | */ |
374 | bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE); |
375 | |
376 | tp->ftt_type = FASTTRAP_T_COMMON; |
377 | if (instr[start] == FASTTRAP_2_BYTE_OP) { |
378 | switch (instr[start + 1]) { |
379 | case FASTTRAP_0F_JO: |
380 | case FASTTRAP_0F_JNO: |
381 | case FASTTRAP_0F_JB: |
382 | case FASTTRAP_0F_JAE: |
383 | case FASTTRAP_0F_JE: |
384 | case FASTTRAP_0F_JNE: |
385 | case FASTTRAP_0F_JBE: |
386 | case FASTTRAP_0F_JA: |
387 | case FASTTRAP_0F_JS: |
388 | case FASTTRAP_0F_JNS: |
389 | case FASTTRAP_0F_JP: |
390 | case FASTTRAP_0F_JNP: |
391 | case FASTTRAP_0F_JL: |
392 | case FASTTRAP_0F_JGE: |
393 | case FASTTRAP_0F_JLE: |
394 | case FASTTRAP_0F_JG: |
395 | tp->ftt_type = FASTTRAP_T_JCC; |
396 | tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO; |
397 | tp->ftt_dest = pc + tp->ftt_size + |
398 | /* LINTED - alignment */ |
399 | *(int32_t *)&instr[start + 2]; |
400 | break; |
401 | } |
402 | } else if (instr[start] == FASTTRAP_GROUP5_OP) { |
403 | uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]); |
404 | uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]); |
405 | uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]); |
406 | |
407 | if (reg == 2 || reg == 4) { |
408 | uint_t i, sz; |
409 | |
410 | if (reg == 2) |
411 | tp->ftt_type = FASTTRAP_T_CALL; |
412 | else |
413 | tp->ftt_type = FASTTRAP_T_JMP; |
414 | |
415 | if (mod == 3) |
416 | tp->ftt_code = 2; |
417 | else |
418 | tp->ftt_code = 1; |
419 | |
420 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); |
421 | |
422 | /* |
423 | * See AMD x86-64 Architecture Programmer's Manual |
424 | * Volume 3, Section 1.2.7, Table 1-12, and |
425 | * Appendix A.3.1, Table A-15. |
426 | */ |
427 | if (mod != 3 && rm == 4) { |
428 | uint8_t sib = instr[start + 2]; |
429 | uint_t index = FASTTRAP_SIB_INDEX(sib); |
430 | uint_t base = FASTTRAP_SIB_BASE(sib); |
431 | |
432 | tp->ftt_scale = FASTTRAP_SIB_SCALE(sib); |
433 | |
434 | tp->ftt_index = (index == 4) ? |
435 | FASTTRAP_NOREG : |
436 | regmap[index | (FASTTRAP_REX_X(rex) << 3)]; |
437 | tp->ftt_base = (mod == 0 && base == 5) ? |
438 | FASTTRAP_NOREG : |
439 | regmap[base | (FASTTRAP_REX_B(rex) << 3)]; |
440 | |
441 | i = 3; |
442 | sz = mod == 1 ? 1 : 4; |
443 | } else { |
444 | /* |
445 | * In 64-bit mode, mod == 0 and r/m == 5 |
446 | * denotes %rip-relative addressing; in 32-bit |
447 | * mode, the base register isn't used. In both |
448 | * modes, there is a 32-bit operand. |
449 | */ |
450 | if (mod == 0 && rm == 5) { |
451 | if (p_model == DATAMODEL_LP64) |
452 | tp->ftt_base = REG_RIP; |
453 | else |
454 | tp->ftt_base = FASTTRAP_NOREG; |
455 | sz = 4; |
456 | } else { |
457 | uint8_t base = rm | |
458 | (FASTTRAP_REX_B(rex) << 3); |
459 | |
460 | tp->ftt_base = regmap[base]; |
461 | sz = mod == 1 ? 1 : mod == 2 ? 4 : 0; |
462 | } |
463 | tp->ftt_index = FASTTRAP_NOREG; |
464 | i = 2; |
465 | } |
466 | |
467 | if (sz == 1) { |
468 | tp->ftt_dest = *(int8_t *)&instr[start + i]; |
469 | } else if (sz == 4) { |
470 | /* LINTED - alignment */ |
471 | tp->ftt_dest = *(int32_t *)&instr[start + i]; |
472 | } else { |
473 | tp->ftt_dest = 0; |
474 | } |
475 | } |
476 | } else { |
477 | switch (instr[start]) { |
478 | case FASTTRAP_RET: |
479 | tp->ftt_type = FASTTRAP_T_RET; |
480 | break; |
481 | |
482 | case FASTTRAP_RET16: |
483 | tp->ftt_type = FASTTRAP_T_RET16; |
484 | /* LINTED - alignment */ |
485 | tp->ftt_dest = *(uint16_t *)&instr[start + 1]; |
486 | break; |
487 | |
488 | case FASTTRAP_JO: |
489 | case FASTTRAP_JNO: |
490 | case FASTTRAP_JB: |
491 | case FASTTRAP_JAE: |
492 | case FASTTRAP_JE: |
493 | case FASTTRAP_JNE: |
494 | case FASTTRAP_JBE: |
495 | case FASTTRAP_JA: |
496 | case FASTTRAP_JS: |
497 | case FASTTRAP_JNS: |
498 | case FASTTRAP_JP: |
499 | case FASTTRAP_JNP: |
500 | case FASTTRAP_JL: |
501 | case FASTTRAP_JGE: |
502 | case FASTTRAP_JLE: |
503 | case FASTTRAP_JG: |
504 | tp->ftt_type = FASTTRAP_T_JCC; |
505 | tp->ftt_code = instr[start]; |
506 | tp->ftt_dest = pc + tp->ftt_size + |
507 | (int8_t)instr[start + 1]; |
508 | break; |
509 | |
510 | case FASTTRAP_LOOPNZ: |
511 | case FASTTRAP_LOOPZ: |
512 | case FASTTRAP_LOOP: |
513 | tp->ftt_type = FASTTRAP_T_LOOP; |
514 | tp->ftt_code = instr[start]; |
515 | tp->ftt_dest = pc + tp->ftt_size + |
516 | (int8_t)instr[start + 1]; |
517 | break; |
518 | |
519 | case FASTTRAP_JCXZ: |
520 | tp->ftt_type = FASTTRAP_T_JCXZ; |
521 | tp->ftt_dest = pc + tp->ftt_size + |
522 | (int8_t)instr[start + 1]; |
523 | break; |
524 | |
525 | case FASTTRAP_CALL: |
526 | tp->ftt_type = FASTTRAP_T_CALL; |
527 | tp->ftt_dest = pc + tp->ftt_size + |
528 | /* LINTED - alignment */ |
529 | *(int32_t *)&instr[start + 1]; |
530 | tp->ftt_code = 0; |
531 | break; |
532 | |
533 | case FASTTRAP_JMP32: |
534 | tp->ftt_type = FASTTRAP_T_JMP; |
535 | tp->ftt_dest = pc + tp->ftt_size + |
536 | /* LINTED - alignment */ |
537 | *(int32_t *)&instr[start + 1]; |
538 | break; |
539 | case FASTTRAP_JMP8: |
540 | tp->ftt_type = FASTTRAP_T_JMP; |
541 | tp->ftt_dest = pc + tp->ftt_size + |
542 | (int8_t)instr[start + 1]; |
543 | break; |
544 | |
545 | case FASTTRAP_PUSHL_EBP: |
546 | if (start == 0) |
547 | tp->ftt_type = FASTTRAP_T_PUSHL_EBP; |
548 | break; |
549 | |
550 | case FASTTRAP_NOP: |
551 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); |
552 | |
553 | /* |
554 | * On sol64 we have to be careful not to confuse a nop |
555 | * (actually xchgl %eax, %eax) with an instruction using |
556 | * the same opcode, but that does something different |
557 | * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax). |
558 | */ |
559 | if (FASTTRAP_REX_B(rex) == 0) |
560 | tp->ftt_type = FASTTRAP_T_NOP; |
561 | break; |
562 | |
563 | case FASTTRAP_INT3: |
564 | /* |
565 | * The pid provider shares the int3 trap with debugger |
566 | * breakpoints so we can't instrument them. |
567 | */ |
568 | ASSERT(instr[start] == FASTTRAP_INSTR); |
569 | return (-1); |
570 | |
571 | case FASTTRAP_INT: |
572 | /* |
573 | * Interrupts seem like they could be traced with |
574 | * no negative implications, but it's possible that |
575 | * a thread could be redirected by the trap handling |
576 | * code which would eventually return to the |
577 | * instruction after the interrupt. If the interrupt |
578 | * were in our scratch space, the subsequent |
579 | * instruction might be overwritten before we return. |
580 | * Accordingly we refuse to instrument any interrupt. |
581 | */ |
582 | return (-1); |
583 | } |
584 | } |
585 | |
586 | if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) { |
587 | /* |
588 | * If the process is 64-bit and the instruction type is still |
589 | * FASTTRAP_T_COMMON -- meaning we're going to copy it out an |
590 | * execute it -- we need to watch for %rip-relative |
591 | * addressing mode. See the portion of fasttrap_pid_probe() |
592 | * below where we handle tracepoints with type |
593 | * FASTTRAP_T_COMMON for how we emulate instructions that |
594 | * employ %rip-relative addressing. |
595 | */ |
596 | if (rmindex != -1) { |
597 | uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]); |
598 | uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]); |
599 | uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]); |
600 | |
601 | ASSERT(rmindex > (int)start); |
602 | |
603 | if (mod == 0 && rm == 5) { |
604 | /* |
605 | * We need to be sure to avoid other |
606 | * registers used by this instruction. While |
607 | * the reg field may determine the op code |
608 | * rather than denoting a register, assuming |
609 | * that it denotes a register is always safe. |
610 | * We leave the REX field intact and use |
611 | * whatever value's there for simplicity. |
612 | */ |
613 | if (reg != 0) { |
614 | tp->ftt_ripmode = FASTTRAP_RIP_1 | |
615 | (FASTTRAP_RIP_X * |
616 | FASTTRAP_REX_B(rex)); |
617 | rm = 0; |
618 | } else { |
619 | tp->ftt_ripmode = FASTTRAP_RIP_2 | |
620 | (FASTTRAP_RIP_X * |
621 | FASTTRAP_REX_B(rex)); |
622 | rm = 1; |
623 | } |
624 | |
625 | tp->ftt_modrm = tp->ftt_instr[rmindex]; |
626 | tp->ftt_instr[rmindex] = |
627 | FASTTRAP_MODRM(2, reg, rm); |
628 | } |
629 | } |
630 | } |
631 | |
632 | return (0); |
633 | } |
634 | |
635 | int |
636 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) |
637 | { |
638 | fasttrap_instr_t instr = FASTTRAP_INSTR; |
639 | |
640 | if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) |
641 | return (-1); |
642 | |
643 | tp->ftt_installed = 1; |
644 | |
645 | return (0); |
646 | } |
647 | |
648 | int |
649 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) |
650 | { |
651 | uint8_t instr; |
652 | |
653 | /* |
654 | * Distinguish between read or write failures and a changed |
655 | * instruction. |
656 | */ |
657 | if (uread(p, &instr, 1, tp->ftt_pc) != 0) |
658 | goto end; |
659 | if (instr != FASTTRAP_INSTR) |
660 | goto end; |
661 | if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) |
662 | return (-1); |
663 | end: |
664 | tp->ftt_installed = 0; |
665 | |
666 | return (0); |
667 | } |
668 | |
669 | static void |
670 | fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid, |
671 | user_addr_t new_pc) |
672 | { |
673 | x86_saved_state64_t *regs64; |
674 | x86_saved_state32_t *regs32; |
675 | unsigned int p_model; |
676 | int retire_tp = 1; |
677 | |
678 | dtrace_icookie_t cookie; |
679 | |
680 | if (is_saved_state64(regs)) { |
681 | regs64 = saved_state64(regs); |
682 | regs32 = NULL; |
683 | p_model = DATAMODEL_LP64; |
684 | } else { |
685 | regs64 = NULL; |
686 | regs32 = saved_state32(regs); |
687 | p_model = DATAMODEL_ILP32; |
688 | } |
689 | |
690 | fasttrap_tracepoint_t *tp; |
691 | fasttrap_bucket_t *bucket; |
692 | fasttrap_id_t *id; |
693 | lck_mtx_t *pid_mtx; |
694 | |
695 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
696 | lck_mtx_lock(pid_mtx); |
697 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
698 | |
699 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
700 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
701 | tp->ftt_proc->ftpc_acount != 0) |
702 | break; |
703 | } |
704 | |
705 | /* |
706 | * Don't sweat it if we can't find the tracepoint again; unlike |
707 | * when we're in fasttrap_pid_probe(), finding the tracepoint here |
708 | * is not essential to the correct execution of the process. |
709 | */ |
710 | if (tp == NULL) { |
711 | lck_mtx_unlock(pid_mtx); |
712 | return; |
713 | } |
714 | |
715 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { |
716 | fasttrap_probe_t *probe = id->fti_probe; |
717 | /* |
718 | * If there's a branch that could act as a return site, we |
719 | * need to trace it, and check here if the program counter is |
720 | * external to the function. |
721 | */ |
722 | if (tp->ftt_type != FASTTRAP_T_RET && |
723 | tp->ftt_type != FASTTRAP_T_RET16 && |
724 | new_pc - probe->ftp_faddr < probe->ftp_fsize) |
725 | continue; |
726 | |
727 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
728 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
729 | if (already_triggered) { |
730 | continue; |
731 | } |
732 | } |
733 | /* |
734 | * If we have at least one probe associated that |
735 | * is not a oneshot probe, don't remove the |
736 | * tracepoint |
737 | */ |
738 | else { |
739 | retire_tp = 0; |
740 | } |
741 | /* |
742 | * Provide a hint to the stack trace functions to add the |
743 | * following pc to the top of the stack since it's missing |
744 | * on a return probe yet highly desirable for consistency. |
745 | */ |
746 | cookie = dtrace_interrupt_disable(); |
747 | cpu_core[CPU->cpu_id].cpuc_missing_tos = pc; |
748 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
749 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
750 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
751 | } else if (p_model == DATAMODEL_LP64) { |
752 | dtrace_probe(probe->ftp_id, |
753 | pc - id->fti_probe->ftp_faddr, |
754 | regs64->rax, regs64->rdx, 0, 0); |
755 | } else { |
756 | dtrace_probe(probe->ftp_id, |
757 | pc - id->fti_probe->ftp_faddr, |
758 | regs32->eax, regs32->edx, 0, 0); |
759 | } |
760 | /* remove the hint */ |
761 | cpu_core[CPU->cpu_id].cpuc_missing_tos = 0; |
762 | dtrace_interrupt_enable(cookie); |
763 | } |
764 | |
765 | lck_mtx_unlock(pid_mtx); |
766 | } |
767 | |
768 | static void |
769 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr) |
770 | { |
771 | proc_lock(p); |
772 | |
773 | /* Set fault address and mark signal */ |
774 | t->uu_code = addr; |
775 | t->uu_siglist |= sigmask(SIGSEGV); |
776 | |
777 | /* |
778 | * XXX These two line may be redundant; if not, then we need |
779 | * XXX to potentially set the data address in the machine |
780 | * XXX specific thread state structure to indicate the address. |
781 | */ |
782 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ |
783 | t->uu_subcode = 0; /* XXX pad */ |
784 | |
785 | proc_unlock(p); |
786 | |
787 | /* raise signal */ |
788 | signal_setast(t->uu_context.vc_thread); |
789 | } |
790 | |
791 | static void |
792 | fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc, |
793 | uint64_t *argv) |
794 | { |
795 | int i, x, cap = MIN(argc, probe->ftp_nargs); |
796 | user_addr_t stack = (user_addr_t)regs64->isf.rsp; |
797 | |
798 | for (i = 0; i < cap; i++) { |
799 | x = probe->ftp_argmap[i]; |
800 | |
801 | if (x < 6) { |
802 | /* FIXME! This may be broken, needs testing */ |
803 | argv[i] = (®s64->rdi)[x]; |
804 | } else { |
805 | fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]); |
806 | } |
807 | } |
808 | |
809 | for (; i < argc; i++) { |
810 | argv[i] = 0; |
811 | } |
812 | } |
813 | |
814 | static void |
815 | fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc, |
816 | uint32_t *argv) |
817 | { |
818 | int i, x, cap = MIN(argc, probe->ftp_nargs); |
819 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
820 | |
821 | for (i = 0; i < cap; i++) { |
822 | x = probe->ftp_argmap[i]; |
823 | |
824 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]); |
825 | } |
826 | |
827 | for (; i < argc; i++) { |
828 | argv[i] = 0; |
829 | } |
830 | } |
831 | |
832 | /* |
833 | * FIXME! |
834 | */ |
835 | static int |
836 | fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit |
837 | { |
838 | #pragma unused(tp, rp, addr) |
839 | printf("fasttrap_do_seg() called while unimplemented.\n" ); |
840 | #if 0 |
841 | proc_t *p = curproc; |
842 | user_desc_t *desc; |
843 | uint16_t sel, ndx, type; |
844 | uintptr_t limit; |
845 | |
846 | switch (tp->ftt_segment) { |
847 | case FASTTRAP_SEG_CS: |
848 | sel = rp->r_cs; |
849 | break; |
850 | case FASTTRAP_SEG_DS: |
851 | sel = rp->r_ds; |
852 | break; |
853 | case FASTTRAP_SEG_ES: |
854 | sel = rp->r_es; |
855 | break; |
856 | case FASTTRAP_SEG_FS: |
857 | sel = rp->r_fs; |
858 | break; |
859 | case FASTTRAP_SEG_GS: |
860 | sel = rp->r_gs; |
861 | break; |
862 | case FASTTRAP_SEG_SS: |
863 | sel = rp->r_ss; |
864 | break; |
865 | } |
866 | |
867 | /* |
868 | * Make sure the given segment register specifies a user priority |
869 | * selector rather than a kernel selector. |
870 | */ |
871 | if (!SELISUPL(sel)) |
872 | return (-1); |
873 | |
874 | ndx = SELTOIDX(sel); |
875 | |
876 | /* |
877 | * Check the bounds and grab the descriptor out of the specified |
878 | * descriptor table. |
879 | */ |
880 | if (SELISLDT(sel)) { |
881 | if (ndx > p->p_ldtlimit) |
882 | return (-1); |
883 | |
884 | desc = p->p_ldt + ndx; |
885 | |
886 | } else { |
887 | if (ndx >= NGDT) |
888 | return (-1); |
889 | |
890 | desc = cpu_get_gdt() + ndx; |
891 | } |
892 | |
893 | /* |
894 | * The descriptor must have user privilege level and it must be |
895 | * present in memory. |
896 | */ |
897 | if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1) |
898 | return (-1); |
899 | |
900 | type = desc->usd_type; |
901 | |
902 | /* |
903 | * If the S bit in the type field is not set, this descriptor can |
904 | * only be used in system context. |
905 | */ |
906 | if ((type & 0x10) != 0x10) |
907 | return (-1); |
908 | |
909 | limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1); |
910 | |
911 | if (tp->ftt_segment == FASTTRAP_SEG_CS) { |
912 | /* |
913 | * The code/data bit and readable bit must both be set. |
914 | */ |
915 | if ((type & 0xa) != 0xa) |
916 | return (-1); |
917 | |
918 | if (*addr > limit) |
919 | return (-1); |
920 | } else { |
921 | /* |
922 | * The code/data bit must be clear. |
923 | */ |
924 | if ((type & 0x8) != 0) |
925 | return (-1); |
926 | |
927 | /* |
928 | * If the expand-down bit is clear, we just check the limit as |
929 | * it would naturally be applied. Otherwise, we need to check |
930 | * that the address is the range [limit + 1 .. 0xffff] or |
931 | * [limit + 1 ... 0xffffffff] depending on if the default |
932 | * operand size bit is set. |
933 | */ |
934 | if ((type & 0x4) == 0) { |
935 | if (*addr > limit) |
936 | return (-1); |
937 | } else if (desc->usd_def32) { |
938 | if (*addr < limit + 1 || 0xffff < *addr) |
939 | return (-1); |
940 | } else { |
941 | if (*addr < limit + 1 || 0xffffffff < *addr) |
942 | return (-1); |
943 | } |
944 | } |
945 | |
946 | *addr += USEGD_GETBASE(desc); |
947 | #endif /* 0 */ |
948 | return (0); |
949 | } |
950 | |
951 | /* |
952 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit |
953 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes |
954 | * call other methods that require a x86_saved_state_t. |
955 | * |
956 | * NOTE!!!! |
957 | * |
958 | * Any changes made to this method must be echo'd in fasttrap_pid_probe64! |
959 | * |
960 | */ |
961 | static int |
962 | fasttrap_pid_probe32(x86_saved_state_t *regs) |
963 | { |
964 | ASSERT(is_saved_state32(regs)); |
965 | |
966 | x86_saved_state32_t *regs32 = saved_state32(regs); |
967 | user_addr_t pc = regs32->eip - 1; |
968 | proc_t *p = current_proc(); |
969 | user_addr_t new_pc = 0; |
970 | fasttrap_bucket_t *bucket; |
971 | lck_mtx_t *pid_mtx; |
972 | fasttrap_tracepoint_t *tp, tp_local; |
973 | pid_t pid; |
974 | dtrace_icookie_t cookie; |
975 | uint_t is_enabled = 0, retire_tp = 1; |
976 | |
977 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
978 | |
979 | /* |
980 | * It's possible that a user (in a veritable orgy of bad planning) |
981 | * could redirect this thread's flow of control before it reached the |
982 | * return probe fasttrap. In this case we need to kill the process |
983 | * since it's in a unrecoverable state. |
984 | */ |
985 | if (uthread->t_dtrace_step) { |
986 | ASSERT(uthread->t_dtrace_on); |
987 | fasttrap_sigtrap(p, uthread, pc); |
988 | return (0); |
989 | } |
990 | |
991 | /* |
992 | * Clear all user tracing flags. |
993 | */ |
994 | uthread->t_dtrace_ft = 0; |
995 | uthread->t_dtrace_pc = 0; |
996 | uthread->t_dtrace_npc = 0; |
997 | uthread->t_dtrace_scrpc = 0; |
998 | uthread->t_dtrace_astpc = 0; |
999 | |
1000 | /* |
1001 | * Treat a child created by a call to vfork(2) as if it were its |
1002 | * parent. We know that there's only one thread of control in such a |
1003 | * process: this one. |
1004 | */ |
1005 | if (p->p_lflag & P_LINVFORK) { |
1006 | proc_list_lock(); |
1007 | while (p->p_lflag & P_LINVFORK) |
1008 | p = p->p_pptr; |
1009 | proc_list_unlock(); |
1010 | } |
1011 | |
1012 | pid = p->p_pid; |
1013 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
1014 | lck_mtx_lock(pid_mtx); |
1015 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
1016 | |
1017 | /* |
1018 | * Lookup the tracepoint that the process just hit. |
1019 | */ |
1020 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
1021 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
1022 | tp->ftt_proc->ftpc_acount != 0) |
1023 | break; |
1024 | } |
1025 | |
1026 | /* |
1027 | * If we couldn't find a matching tracepoint, either a tracepoint has |
1028 | * been inserted without using the pid<pid> ioctl interface (see |
1029 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. |
1030 | */ |
1031 | if (tp == NULL) { |
1032 | lck_mtx_unlock(pid_mtx); |
1033 | return (-1); |
1034 | } |
1035 | |
1036 | /* |
1037 | * Set the program counter to the address of the traced instruction |
1038 | * so that it looks right in ustack() output. |
1039 | */ |
1040 | regs32->eip = pc; |
1041 | |
1042 | if (tp->ftt_ids != NULL) { |
1043 | fasttrap_id_t *id; |
1044 | |
1045 | uint32_t s0, s1, s2, s3, s4, s5; |
1046 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
1047 | |
1048 | /* |
1049 | * In 32-bit mode, all arguments are passed on the |
1050 | * stack. If this is a function entry probe, we need |
1051 | * to skip the first entry on the stack as it |
1052 | * represents the return address rather than a |
1053 | * parameter to the function. |
1054 | */ |
1055 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0); |
1056 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1); |
1057 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2); |
1058 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3); |
1059 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4); |
1060 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5); |
1061 | |
1062 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { |
1063 | fasttrap_probe_t *probe = id->fti_probe; |
1064 | |
1065 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
1066 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
1067 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
1068 | } else { |
1069 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
1070 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
1071 | if (already_triggered) { |
1072 | continue; |
1073 | } |
1074 | } |
1075 | /* |
1076 | * If we have at least one probe associated that |
1077 | * is not a oneshot probe, don't remove the |
1078 | * tracepoint |
1079 | */ |
1080 | else { |
1081 | retire_tp = 0; |
1082 | } |
1083 | if (id->fti_ptype == DTFTP_ENTRY) { |
1084 | /* |
1085 | * We note that this was an entry |
1086 | * probe to help ustack() find the |
1087 | * first caller. |
1088 | */ |
1089 | cookie = dtrace_interrupt_disable(); |
1090 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); |
1091 | dtrace_probe(probe->ftp_id, s1, s2, |
1092 | s3, s4, s5); |
1093 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); |
1094 | dtrace_interrupt_enable(cookie); |
1095 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { |
1096 | /* |
1097 | * Note that in this case, we don't |
1098 | * call dtrace_probe() since it's only |
1099 | * an artificial probe meant to change |
1100 | * the flow of control so that it |
1101 | * encounters the true probe. |
1102 | */ |
1103 | is_enabled = 1; |
1104 | } else if (probe->ftp_argmap == NULL) { |
1105 | dtrace_probe(probe->ftp_id, s0, s1, |
1106 | s2, s3, s4); |
1107 | } else { |
1108 | uint32_t t[5]; |
1109 | |
1110 | fasttrap_usdt_args32(probe, regs32, |
1111 | sizeof (t) / sizeof (t[0]), t); |
1112 | |
1113 | dtrace_probe(probe->ftp_id, t[0], t[1], |
1114 | t[2], t[3], t[4]); |
1115 | } |
1116 | } |
1117 | } |
1118 | if (retire_tp) { |
1119 | fasttrap_tracepoint_retire(p, tp); |
1120 | } |
1121 | } |
1122 | |
1123 | /* |
1124 | * We're about to do a bunch of work so we cache a local copy of |
1125 | * the tracepoint to emulate the instruction, and then find the |
1126 | * tracepoint again later if we need to light up any return probes. |
1127 | */ |
1128 | tp_local = *tp; |
1129 | lck_mtx_unlock(pid_mtx); |
1130 | tp = &tp_local; |
1131 | |
1132 | /* |
1133 | * Set the program counter to appear as though the traced instruction |
1134 | * had completely executed. This ensures that fasttrap_getreg() will |
1135 | * report the expected value for REG_RIP. |
1136 | */ |
1137 | regs32->eip = pc + tp->ftt_size; |
1138 | |
1139 | /* |
1140 | * If there's an is-enabled probe connected to this tracepoint it |
1141 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' |
1142 | * instruction that was placed there by DTrace when the binary was |
1143 | * linked. As this probe is, in fact, enabled, we need to stuff 1 |
1144 | * into %eax or %rax. Accordingly, we can bypass all the instruction |
1145 | * emulation logic since we know the inevitable result. It's possible |
1146 | * that a user could construct a scenario where the 'is-enabled' |
1147 | * probe was on some other instruction, but that would be a rather |
1148 | * exotic way to shoot oneself in the foot. |
1149 | */ |
1150 | if (is_enabled) { |
1151 | regs32->eax = 1; |
1152 | new_pc = regs32->eip; |
1153 | goto done; |
1154 | } |
1155 | |
1156 | /* |
1157 | * We emulate certain types of instructions to ensure correctness |
1158 | * (in the case of position dependent instructions) or optimize |
1159 | * common cases. The rest we have the thread execute back in user- |
1160 | * land. |
1161 | */ |
1162 | switch (tp->ftt_type) { |
1163 | case FASTTRAP_T_RET: |
1164 | case FASTTRAP_T_RET16: |
1165 | { |
1166 | user_addr_t dst; |
1167 | user_addr_t addr; |
1168 | int ret; |
1169 | |
1170 | /* |
1171 | * We have to emulate _every_ facet of the behavior of a ret |
1172 | * instruction including what happens if the load from %esp |
1173 | * fails; in that case, we send a SIGSEGV. |
1174 | */ |
1175 | uint32_t dst32; |
1176 | ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32); |
1177 | dst = dst32; |
1178 | addr = regs32->uesp + sizeof (uint32_t); |
1179 | |
1180 | if (ret == -1) { |
1181 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp); |
1182 | new_pc = pc; |
1183 | break; |
1184 | } |
1185 | |
1186 | if (tp->ftt_type == FASTTRAP_T_RET16) |
1187 | addr += tp->ftt_dest; |
1188 | |
1189 | regs32->uesp = addr; |
1190 | new_pc = dst; |
1191 | break; |
1192 | } |
1193 | |
1194 | case FASTTRAP_T_JCC: |
1195 | { |
1196 | uint_t taken; |
1197 | |
1198 | switch (tp->ftt_code) { |
1199 | case FASTTRAP_JO: |
1200 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0; |
1201 | break; |
1202 | case FASTTRAP_JNO: |
1203 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0; |
1204 | break; |
1205 | case FASTTRAP_JB: |
1206 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0; |
1207 | break; |
1208 | case FASTTRAP_JAE: |
1209 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0; |
1210 | break; |
1211 | case FASTTRAP_JE: |
1212 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; |
1213 | break; |
1214 | case FASTTRAP_JNE: |
1215 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; |
1216 | break; |
1217 | case FASTTRAP_JBE: |
1218 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 || |
1219 | (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; |
1220 | break; |
1221 | case FASTTRAP_JA: |
1222 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 && |
1223 | (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; |
1224 | break; |
1225 | case FASTTRAP_JS: |
1226 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0; |
1227 | break; |
1228 | case FASTTRAP_JNS: |
1229 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0; |
1230 | break; |
1231 | case FASTTRAP_JP: |
1232 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0; |
1233 | break; |
1234 | case FASTTRAP_JNP: |
1235 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0; |
1236 | break; |
1237 | case FASTTRAP_JL: |
1238 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != |
1239 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
1240 | break; |
1241 | case FASTTRAP_JGE: |
1242 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == |
1243 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
1244 | break; |
1245 | case FASTTRAP_JLE: |
1246 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 || |
1247 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != |
1248 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
1249 | break; |
1250 | case FASTTRAP_JG: |
1251 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && |
1252 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == |
1253 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
1254 | break; |
1255 | default: |
1256 | taken = FALSE; |
1257 | } |
1258 | |
1259 | if (taken) |
1260 | new_pc = tp->ftt_dest; |
1261 | else |
1262 | new_pc = pc + tp->ftt_size; |
1263 | break; |
1264 | } |
1265 | |
1266 | case FASTTRAP_T_LOOP: |
1267 | { |
1268 | uint_t taken; |
1269 | greg_t cx = regs32->ecx--; |
1270 | |
1271 | switch (tp->ftt_code) { |
1272 | case FASTTRAP_LOOPNZ: |
1273 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && |
1274 | cx != 0; |
1275 | break; |
1276 | case FASTTRAP_LOOPZ: |
1277 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 && |
1278 | cx != 0; |
1279 | break; |
1280 | case FASTTRAP_LOOP: |
1281 | taken = (cx != 0); |
1282 | break; |
1283 | default: |
1284 | taken = FALSE; |
1285 | } |
1286 | |
1287 | if (taken) |
1288 | new_pc = tp->ftt_dest; |
1289 | else |
1290 | new_pc = pc + tp->ftt_size; |
1291 | break; |
1292 | } |
1293 | |
1294 | case FASTTRAP_T_JCXZ: |
1295 | { |
1296 | greg_t cx = regs32->ecx; |
1297 | |
1298 | if (cx == 0) |
1299 | new_pc = tp->ftt_dest; |
1300 | else |
1301 | new_pc = pc + tp->ftt_size; |
1302 | break; |
1303 | } |
1304 | |
1305 | case FASTTRAP_T_PUSHL_EBP: |
1306 | { |
1307 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); |
1308 | int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp); |
1309 | |
1310 | if (ret == -1) { |
1311 | fasttrap_sigsegv(p, uthread, addr); |
1312 | new_pc = pc; |
1313 | break; |
1314 | } |
1315 | |
1316 | regs32->uesp = addr; |
1317 | new_pc = pc + tp->ftt_size; |
1318 | break; |
1319 | } |
1320 | |
1321 | case FASTTRAP_T_NOP: |
1322 | new_pc = pc + tp->ftt_size; |
1323 | break; |
1324 | |
1325 | case FASTTRAP_T_JMP: |
1326 | case FASTTRAP_T_CALL: |
1327 | if (tp->ftt_code == 0) { |
1328 | new_pc = tp->ftt_dest; |
1329 | } else { |
1330 | user_addr_t /* value ,*/ addr = tp->ftt_dest; |
1331 | |
1332 | if (tp->ftt_base != FASTTRAP_NOREG) |
1333 | addr += fasttrap_getreg(regs, tp->ftt_base); |
1334 | if (tp->ftt_index != FASTTRAP_NOREG) |
1335 | addr += fasttrap_getreg(regs, tp->ftt_index) << |
1336 | tp->ftt_scale; |
1337 | |
1338 | if (tp->ftt_code == 1) { |
1339 | /* |
1340 | * If there's a segment prefix for this |
1341 | * instruction, we'll need to check permissions |
1342 | * and bounds on the given selector, and adjust |
1343 | * the address accordingly. |
1344 | */ |
1345 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && |
1346 | fasttrap_do_seg(tp, regs, &addr) != 0) { |
1347 | fasttrap_sigsegv(p, uthread, addr); |
1348 | new_pc = pc; |
1349 | break; |
1350 | } |
1351 | |
1352 | uint32_t value32; |
1353 | addr = (user_addr_t)(uint32_t)addr; |
1354 | if (fasttrap_fuword32(addr, &value32) == -1) { |
1355 | fasttrap_sigsegv(p, uthread, addr); |
1356 | new_pc = pc; |
1357 | break; |
1358 | } |
1359 | new_pc = value32; |
1360 | } else { |
1361 | new_pc = addr; |
1362 | } |
1363 | } |
1364 | |
1365 | /* |
1366 | * If this is a call instruction, we need to push the return |
1367 | * address onto the stack. If this fails, we send the process |
1368 | * a SIGSEGV and reset the pc to emulate what would happen if |
1369 | * this instruction weren't traced. |
1370 | */ |
1371 | if (tp->ftt_type == FASTTRAP_T_CALL) { |
1372 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); |
1373 | int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size)); |
1374 | |
1375 | if (ret == -1) { |
1376 | fasttrap_sigsegv(p, uthread, addr); |
1377 | new_pc = pc; |
1378 | break; |
1379 | } |
1380 | |
1381 | regs32->uesp = addr; |
1382 | } |
1383 | break; |
1384 | |
1385 | case FASTTRAP_T_COMMON: |
1386 | { |
1387 | user_addr_t addr, write_addr; |
1388 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; |
1389 | uint_t i = 0; |
1390 | |
1391 | /* |
1392 | * Generic Instruction Tracing |
1393 | * --------------------------- |
1394 | * |
1395 | * This is the layout of the scratch space in the user-land |
1396 | * thread structure for our generated instructions. |
1397 | * |
1398 | * 32-bit mode bytes |
1399 | * ------------------------ ----- |
1400 | * a: <original instruction> <= 15 |
1401 | * jmp <pc + tp->ftt_size> 5 |
1402 | * b: <original instrction> <= 15 |
1403 | * int T_DTRACE_RET 2 |
1404 | * ----- |
1405 | * <= 37 |
1406 | * |
1407 | * 64-bit mode bytes |
1408 | * ------------------------ ----- |
1409 | * a: <original instruction> <= 15 |
1410 | * jmp 0(%rip) 6 |
1411 | * <pc + tp->ftt_size> 8 |
1412 | * b: <original instruction> <= 15 |
1413 | * int T_DTRACE_RET 2 |
1414 | * ----- |
1415 | * <= 46 |
1416 | * |
1417 | * The %pc is set to a, and curthread->t_dtrace_astpc is set |
1418 | * to b. If we encounter a signal on the way out of the |
1419 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc |
1420 | * so that we execute the original instruction and re-enter |
1421 | * the kernel rather than redirecting to the next instruction. |
1422 | * |
1423 | * If there are return probes (so we know that we're going to |
1424 | * need to reenter the kernel after executing the original |
1425 | * instruction), the scratch space will just contain the |
1426 | * original instruction followed by an interrupt -- the same |
1427 | * data as at b. |
1428 | */ |
1429 | |
1430 | addr = uthread->t_dtrace_scratch->addr; |
1431 | write_addr = uthread->t_dtrace_scratch->write_addr; |
1432 | |
1433 | if (addr == 0LL || write_addr == 0LL) { |
1434 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc |
1435 | new_pc = pc; |
1436 | break; |
1437 | } |
1438 | |
1439 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); |
1440 | |
1441 | uthread->t_dtrace_scrpc = addr; |
1442 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
1443 | i += tp->ftt_size; |
1444 | |
1445 | /* |
1446 | * Set up the jmp to the next instruction; note that |
1447 | * the size of the traced instruction cancels out. |
1448 | */ |
1449 | scratch[i++] = FASTTRAP_JMP32; |
1450 | /* LINTED - alignment */ |
1451 | *(uint32_t *)&scratch[i] = pc - addr - 5; |
1452 | i += sizeof (uint32_t); |
1453 | |
1454 | uthread->t_dtrace_astpc = addr + i; |
1455 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
1456 | i += tp->ftt_size; |
1457 | scratch[i++] = FASTTRAP_INT; |
1458 | scratch[i++] = T_DTRACE_RET; |
1459 | |
1460 | ASSERT(i <= sizeof (scratch)); |
1461 | |
1462 | if (fasttrap_copyout(scratch, write_addr, i)) { |
1463 | fasttrap_sigtrap(p, uthread, pc); |
1464 | new_pc = pc; |
1465 | break; |
1466 | } |
1467 | |
1468 | if (tp->ftt_retids != NULL) { |
1469 | uthread->t_dtrace_step = 1; |
1470 | uthread->t_dtrace_ret = 1; |
1471 | new_pc = uthread->t_dtrace_astpc; |
1472 | } else { |
1473 | new_pc = uthread->t_dtrace_scrpc; |
1474 | } |
1475 | |
1476 | uthread->t_dtrace_pc = pc; |
1477 | uthread->t_dtrace_npc = pc + tp->ftt_size; |
1478 | uthread->t_dtrace_on = 1; |
1479 | break; |
1480 | } |
1481 | |
1482 | default: |
1483 | panic("fasttrap: mishandled an instruction" ); |
1484 | } |
1485 | |
1486 | done: |
1487 | /* |
1488 | * APPLE NOTE: |
1489 | * |
1490 | * We're setting this earlier than Solaris does, to get a "correct" |
1491 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is |
1492 | * reported at: d, b, a. The new way gives c, b, a, which is closer |
1493 | * to correct, as the return instruction has already exectued. |
1494 | */ |
1495 | regs32->eip = new_pc; |
1496 | |
1497 | /* |
1498 | * If there were no return probes when we first found the tracepoint, |
1499 | * we should feel no obligation to honor any return probes that were |
1500 | * subsequently enabled -- they'll just have to wait until the next |
1501 | * time around. |
1502 | */ |
1503 | if (tp->ftt_retids != NULL) { |
1504 | /* |
1505 | * We need to wait until the results of the instruction are |
1506 | * apparent before invoking any return probes. If this |
1507 | * instruction was emulated we can just call |
1508 | * fasttrap_return_common(); if it needs to be executed, we |
1509 | * need to wait until the user thread returns to the kernel. |
1510 | */ |
1511 | if (tp->ftt_type != FASTTRAP_T_COMMON) { |
1512 | fasttrap_return_common(regs, pc, pid, new_pc); |
1513 | } else { |
1514 | ASSERT(uthread->t_dtrace_ret != 0); |
1515 | ASSERT(uthread->t_dtrace_pc == pc); |
1516 | ASSERT(uthread->t_dtrace_scrpc != 0); |
1517 | ASSERT(new_pc == uthread->t_dtrace_astpc); |
1518 | } |
1519 | } |
1520 | |
1521 | return (0); |
1522 | } |
1523 | |
1524 | /* |
1525 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit |
1526 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes |
1527 | * call other methods that require a x86_saved_state_t. |
1528 | * |
1529 | * NOTE!!!! |
1530 | * |
1531 | * Any changes made to this method must be echo'd in fasttrap_pid_probe32! |
1532 | * |
1533 | */ |
1534 | static int |
1535 | fasttrap_pid_probe64(x86_saved_state_t *regs) |
1536 | { |
1537 | ASSERT(is_saved_state64(regs)); |
1538 | |
1539 | x86_saved_state64_t *regs64 = saved_state64(regs); |
1540 | user_addr_t pc = regs64->isf.rip - 1; |
1541 | proc_t *p = current_proc(); |
1542 | user_addr_t new_pc = 0; |
1543 | fasttrap_bucket_t *bucket; |
1544 | lck_mtx_t *pid_mtx; |
1545 | fasttrap_tracepoint_t *tp, tp_local; |
1546 | pid_t pid; |
1547 | dtrace_icookie_t cookie; |
1548 | uint_t is_enabled = 0; |
1549 | int retire_tp = 1; |
1550 | |
1551 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
1552 | |
1553 | /* |
1554 | * It's possible that a user (in a veritable orgy of bad planning) |
1555 | * could redirect this thread's flow of control before it reached the |
1556 | * return probe fasttrap. In this case we need to kill the process |
1557 | * since it's in a unrecoverable state. |
1558 | */ |
1559 | if (uthread->t_dtrace_step) { |
1560 | ASSERT(uthread->t_dtrace_on); |
1561 | fasttrap_sigtrap(p, uthread, pc); |
1562 | return (0); |
1563 | } |
1564 | |
1565 | /* |
1566 | * Clear all user tracing flags. |
1567 | */ |
1568 | uthread->t_dtrace_ft = 0; |
1569 | uthread->t_dtrace_pc = 0; |
1570 | uthread->t_dtrace_npc = 0; |
1571 | uthread->t_dtrace_scrpc = 0; |
1572 | uthread->t_dtrace_astpc = 0; |
1573 | uthread->t_dtrace_regv = 0; |
1574 | |
1575 | /* |
1576 | * Treat a child created by a call to vfork(2) as if it were its |
1577 | * parent. We know that there's only one thread of control in such a |
1578 | * process: this one. |
1579 | */ |
1580 | if (p->p_lflag & P_LINVFORK) { |
1581 | proc_list_lock(); |
1582 | while (p->p_lflag & P_LINVFORK) |
1583 | p = p->p_pptr; |
1584 | proc_list_unlock(); |
1585 | } |
1586 | |
1587 | pid = p->p_pid; |
1588 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
1589 | lck_mtx_lock(pid_mtx); |
1590 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
1591 | |
1592 | /* |
1593 | * Lookup the tracepoint that the process just hit. |
1594 | */ |
1595 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
1596 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
1597 | tp->ftt_proc->ftpc_acount != 0) |
1598 | break; |
1599 | } |
1600 | |
1601 | /* |
1602 | * If we couldn't find a matching tracepoint, either a tracepoint has |
1603 | * been inserted without using the pid<pid> ioctl interface (see |
1604 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. |
1605 | */ |
1606 | if (tp == NULL) { |
1607 | lck_mtx_unlock(pid_mtx); |
1608 | return (-1); |
1609 | } |
1610 | |
1611 | /* |
1612 | * Set the program counter to the address of the traced instruction |
1613 | * so that it looks right in ustack() output. |
1614 | */ |
1615 | regs64->isf.rip = pc; |
1616 | |
1617 | if (tp->ftt_ids != NULL) { |
1618 | fasttrap_id_t *id; |
1619 | |
1620 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { |
1621 | fasttrap_probe_t *probe = id->fti_probe; |
1622 | |
1623 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
1624 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
1625 | if (already_triggered) { |
1626 | continue; |
1627 | } |
1628 | } |
1629 | /* |
1630 | * If we have at least probe associated that |
1631 | * is not a oneshot probe, don't remove the |
1632 | * tracepoint |
1633 | */ |
1634 | else { |
1635 | retire_tp = 0; |
1636 | } |
1637 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
1638 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
1639 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
1640 | } else if (id->fti_ptype == DTFTP_ENTRY) { |
1641 | /* |
1642 | * We note that this was an entry |
1643 | * probe to help ustack() find the |
1644 | * first caller. |
1645 | */ |
1646 | cookie = dtrace_interrupt_disable(); |
1647 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); |
1648 | dtrace_probe(probe->ftp_id, regs64->rdi, |
1649 | regs64->rsi, regs64->rdx, regs64->rcx, |
1650 | regs64->r8); |
1651 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); |
1652 | dtrace_interrupt_enable(cookie); |
1653 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { |
1654 | /* |
1655 | * Note that in this case, we don't |
1656 | * call dtrace_probe() since it's only |
1657 | * an artificial probe meant to change |
1658 | * the flow of control so that it |
1659 | * encounters the true probe. |
1660 | */ |
1661 | is_enabled = 1; |
1662 | } else if (probe->ftp_argmap == NULL) { |
1663 | dtrace_probe(probe->ftp_id, regs64->rdi, |
1664 | regs64->rsi, regs64->rdx, regs64->rcx, |
1665 | regs64->r8); |
1666 | } else { |
1667 | uint64_t t[5]; |
1668 | |
1669 | fasttrap_usdt_args64(probe, regs64, |
1670 | sizeof (t) / sizeof (t[0]), t); |
1671 | |
1672 | dtrace_probe(probe->ftp_id, t[0], t[1], |
1673 | t[2], t[3], t[4]); |
1674 | } |
1675 | |
1676 | } |
1677 | if (retire_tp) { |
1678 | fasttrap_tracepoint_retire(p, tp); |
1679 | } |
1680 | } |
1681 | |
1682 | /* |
1683 | * We're about to do a bunch of work so we cache a local copy of |
1684 | * the tracepoint to emulate the instruction, and then find the |
1685 | * tracepoint again later if we need to light up any return probes. |
1686 | */ |
1687 | tp_local = *tp; |
1688 | lck_mtx_unlock(pid_mtx); |
1689 | tp = &tp_local; |
1690 | |
1691 | /* |
1692 | * Set the program counter to appear as though the traced instruction |
1693 | * had completely executed. This ensures that fasttrap_getreg() will |
1694 | * report the expected value for REG_RIP. |
1695 | */ |
1696 | regs64->isf.rip = pc + tp->ftt_size; |
1697 | |
1698 | /* |
1699 | * If there's an is-enabled probe connected to this tracepoint it |
1700 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' |
1701 | * instruction that was placed there by DTrace when the binary was |
1702 | * linked. As this probe is, in fact, enabled, we need to stuff 1 |
1703 | * into %eax or %rax. Accordingly, we can bypass all the instruction |
1704 | * emulation logic since we know the inevitable result. It's possible |
1705 | * that a user could construct a scenario where the 'is-enabled' |
1706 | * probe was on some other instruction, but that would be a rather |
1707 | * exotic way to shoot oneself in the foot. |
1708 | */ |
1709 | if (is_enabled) { |
1710 | regs64->rax = 1; |
1711 | new_pc = regs64->isf.rip; |
1712 | goto done; |
1713 | } |
1714 | |
1715 | /* |
1716 | * We emulate certain types of instructions to ensure correctness |
1717 | * (in the case of position dependent instructions) or optimize |
1718 | * common cases. The rest we have the thread execute back in user- |
1719 | * land. |
1720 | */ |
1721 | switch (tp->ftt_type) { |
1722 | case FASTTRAP_T_RET: |
1723 | case FASTTRAP_T_RET16: |
1724 | { |
1725 | user_addr_t dst; |
1726 | user_addr_t addr; |
1727 | int ret; |
1728 | |
1729 | /* |
1730 | * We have to emulate _every_ facet of the behavior of a ret |
1731 | * instruction including what happens if the load from %esp |
1732 | * fails; in that case, we send a SIGSEGV. |
1733 | */ |
1734 | ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst); |
1735 | addr = regs64->isf.rsp + sizeof (uint64_t); |
1736 | |
1737 | if (ret == -1) { |
1738 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp); |
1739 | new_pc = pc; |
1740 | break; |
1741 | } |
1742 | |
1743 | if (tp->ftt_type == FASTTRAP_T_RET16) |
1744 | addr += tp->ftt_dest; |
1745 | |
1746 | regs64->isf.rsp = addr; |
1747 | new_pc = dst; |
1748 | break; |
1749 | } |
1750 | |
1751 | case FASTTRAP_T_JCC: |
1752 | { |
1753 | uint_t taken; |
1754 | |
1755 | switch (tp->ftt_code) { |
1756 | case FASTTRAP_JO: |
1757 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0; |
1758 | break; |
1759 | case FASTTRAP_JNO: |
1760 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0; |
1761 | break; |
1762 | case FASTTRAP_JB: |
1763 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0; |
1764 | break; |
1765 | case FASTTRAP_JAE: |
1766 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0; |
1767 | break; |
1768 | case FASTTRAP_JE: |
1769 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; |
1770 | break; |
1771 | case FASTTRAP_JNE: |
1772 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; |
1773 | break; |
1774 | case FASTTRAP_JBE: |
1775 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 || |
1776 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; |
1777 | break; |
1778 | case FASTTRAP_JA: |
1779 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 && |
1780 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; |
1781 | break; |
1782 | case FASTTRAP_JS: |
1783 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0; |
1784 | break; |
1785 | case FASTTRAP_JNS: |
1786 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0; |
1787 | break; |
1788 | case FASTTRAP_JP: |
1789 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0; |
1790 | break; |
1791 | case FASTTRAP_JNP: |
1792 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0; |
1793 | break; |
1794 | case FASTTRAP_JL: |
1795 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != |
1796 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
1797 | break; |
1798 | case FASTTRAP_JGE: |
1799 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == |
1800 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
1801 | break; |
1802 | case FASTTRAP_JLE: |
1803 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 || |
1804 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != |
1805 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
1806 | break; |
1807 | case FASTTRAP_JG: |
1808 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && |
1809 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == |
1810 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
1811 | break; |
1812 | default: |
1813 | taken = FALSE; |
1814 | } |
1815 | |
1816 | if (taken) |
1817 | new_pc = tp->ftt_dest; |
1818 | else |
1819 | new_pc = pc + tp->ftt_size; |
1820 | break; |
1821 | } |
1822 | |
1823 | case FASTTRAP_T_LOOP: |
1824 | { |
1825 | uint_t taken; |
1826 | uint64_t cx = regs64->rcx--; |
1827 | |
1828 | switch (tp->ftt_code) { |
1829 | case FASTTRAP_LOOPNZ: |
1830 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && |
1831 | cx != 0; |
1832 | break; |
1833 | case FASTTRAP_LOOPZ: |
1834 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 && |
1835 | cx != 0; |
1836 | break; |
1837 | case FASTTRAP_LOOP: |
1838 | taken = (cx != 0); |
1839 | break; |
1840 | default: |
1841 | taken = FALSE; |
1842 | } |
1843 | |
1844 | if (taken) |
1845 | new_pc = tp->ftt_dest; |
1846 | else |
1847 | new_pc = pc + tp->ftt_size; |
1848 | break; |
1849 | } |
1850 | |
1851 | case FASTTRAP_T_JCXZ: |
1852 | { |
1853 | uint64_t cx = regs64->rcx; |
1854 | |
1855 | if (cx == 0) |
1856 | new_pc = tp->ftt_dest; |
1857 | else |
1858 | new_pc = pc + tp->ftt_size; |
1859 | break; |
1860 | } |
1861 | |
1862 | case FASTTRAP_T_PUSHL_EBP: |
1863 | { |
1864 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); |
1865 | int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp); |
1866 | |
1867 | if (ret == -1) { |
1868 | fasttrap_sigsegv(p, uthread, addr); |
1869 | new_pc = pc; |
1870 | break; |
1871 | } |
1872 | |
1873 | regs64->isf.rsp = addr; |
1874 | new_pc = pc + tp->ftt_size; |
1875 | break; |
1876 | } |
1877 | |
1878 | case FASTTRAP_T_NOP: |
1879 | new_pc = pc + tp->ftt_size; |
1880 | break; |
1881 | |
1882 | case FASTTRAP_T_JMP: |
1883 | case FASTTRAP_T_CALL: |
1884 | if (tp->ftt_code == 0) { |
1885 | new_pc = tp->ftt_dest; |
1886 | } else { |
1887 | user_addr_t value, addr = tp->ftt_dest; |
1888 | |
1889 | if (tp->ftt_base != FASTTRAP_NOREG) |
1890 | addr += fasttrap_getreg(regs, tp->ftt_base); |
1891 | if (tp->ftt_index != FASTTRAP_NOREG) |
1892 | addr += fasttrap_getreg(regs, tp->ftt_index) << |
1893 | tp->ftt_scale; |
1894 | |
1895 | if (tp->ftt_code == 1) { |
1896 | /* |
1897 | * If there's a segment prefix for this |
1898 | * instruction, we'll need to check permissions |
1899 | * and bounds on the given selector, and adjust |
1900 | * the address accordingly. |
1901 | */ |
1902 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && |
1903 | fasttrap_do_seg(tp, regs, &addr) != 0) { |
1904 | fasttrap_sigsegv(p, uthread, addr); |
1905 | new_pc = pc; |
1906 | break; |
1907 | } |
1908 | |
1909 | if (fasttrap_fuword64(addr, &value) == -1) { |
1910 | fasttrap_sigsegv(p, uthread, addr); |
1911 | new_pc = pc; |
1912 | break; |
1913 | } |
1914 | new_pc = value; |
1915 | } else { |
1916 | new_pc = addr; |
1917 | } |
1918 | } |
1919 | |
1920 | /* |
1921 | * If this is a call instruction, we need to push the return |
1922 | * address onto the stack. If this fails, we send the process |
1923 | * a SIGSEGV and reset the pc to emulate what would happen if |
1924 | * this instruction weren't traced. |
1925 | */ |
1926 | if (tp->ftt_type == FASTTRAP_T_CALL) { |
1927 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); |
1928 | int ret = fasttrap_suword64(addr, pc + tp->ftt_size); |
1929 | |
1930 | if (ret == -1) { |
1931 | fasttrap_sigsegv(p, uthread, addr); |
1932 | new_pc = pc; |
1933 | break; |
1934 | } |
1935 | |
1936 | regs64->isf.rsp = addr; |
1937 | } |
1938 | break; |
1939 | |
1940 | case FASTTRAP_T_COMMON: |
1941 | { |
1942 | user_addr_t addr, write_addr; |
1943 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; |
1944 | uint_t i = 0; |
1945 | |
1946 | /* |
1947 | * Generic Instruction Tracing |
1948 | * --------------------------- |
1949 | * |
1950 | * This is the layout of the scratch space in the user-land |
1951 | * thread structure for our generated instructions. |
1952 | * |
1953 | * 32-bit mode bytes |
1954 | * ------------------------ ----- |
1955 | * a: <original instruction> <= 15 |
1956 | * jmp <pc + tp->ftt_size> 5 |
1957 | * b: <original instrction> <= 15 |
1958 | * int T_DTRACE_RET 2 |
1959 | * ----- |
1960 | * <= 37 |
1961 | * |
1962 | * 64-bit mode bytes |
1963 | * ------------------------ ----- |
1964 | * a: <original instruction> <= 15 |
1965 | * jmp 0(%rip) 6 |
1966 | * <pc + tp->ftt_size> 8 |
1967 | * b: <original instruction> <= 15 |
1968 | * int T_DTRACE_RET 2 |
1969 | * ----- |
1970 | * <= 46 |
1971 | * |
1972 | * The %pc is set to a, and curthread->t_dtrace_astpc is set |
1973 | * to b. If we encounter a signal on the way out of the |
1974 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc |
1975 | * so that we execute the original instruction and re-enter |
1976 | * the kernel rather than redirecting to the next instruction. |
1977 | * |
1978 | * If there are return probes (so we know that we're going to |
1979 | * need to reenter the kernel after executing the original |
1980 | * instruction), the scratch space will just contain the |
1981 | * original instruction followed by an interrupt -- the same |
1982 | * data as at b. |
1983 | * |
1984 | * %rip-relative Addressing |
1985 | * ------------------------ |
1986 | * |
1987 | * There's a further complication in 64-bit mode due to %rip- |
1988 | * relative addressing. While this is clearly a beneficial |
1989 | * architectural decision for position independent code, it's |
1990 | * hard not to see it as a personal attack against the pid |
1991 | * provider since before there was a relatively small set of |
1992 | * instructions to emulate; with %rip-relative addressing, |
1993 | * almost every instruction can potentially depend on the |
1994 | * address at which it's executed. Rather than emulating |
1995 | * the broad spectrum of instructions that can now be |
1996 | * position dependent, we emulate jumps and others as in |
1997 | * 32-bit mode, and take a different tack for instructions |
1998 | * using %rip-relative addressing. |
1999 | * |
2000 | * For every instruction that uses the ModRM byte, the |
2001 | * in-kernel disassembler reports its location. We use the |
2002 | * ModRM byte to identify that an instruction uses |
2003 | * %rip-relative addressing and to see what other registers |
2004 | * the instruction uses. To emulate those instructions, |
2005 | * we modify the instruction to be %rax-relative rather than |
2006 | * %rip-relative (or %rcx-relative if the instruction uses |
2007 | * %rax; or %r8- or %r9-relative if the REX.B is present so |
2008 | * we don't have to rewrite the REX prefix). We then load |
2009 | * the value that %rip would have been into the scratch |
2010 | * register and generate an instruction to reset the scratch |
2011 | * register back to its original value. The instruction |
2012 | * sequence looks like this: |
2013 | * |
2014 | * 64-mode %rip-relative bytes |
2015 | * ------------------------ ----- |
2016 | * a: <modified instruction> <= 15 |
2017 | * movq $<value>, %<scratch> 6 |
2018 | * jmp 0(%rip) 6 |
2019 | * <pc + tp->ftt_size> 8 |
2020 | * b: <modified instruction> <= 15 |
2021 | * int T_DTRACE_RET 2 |
2022 | * ----- |
2023 | * 52 |
2024 | * |
2025 | * We set curthread->t_dtrace_regv so that upon receiving |
2026 | * a signal we can reset the value of the scratch register. |
2027 | */ |
2028 | |
2029 | addr = uthread->t_dtrace_scratch->addr; |
2030 | write_addr = uthread->t_dtrace_scratch->write_addr; |
2031 | |
2032 | if (addr == 0LL || write_addr == 0LL) { |
2033 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc |
2034 | new_pc = pc; |
2035 | break; |
2036 | } |
2037 | |
2038 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); |
2039 | |
2040 | uthread->t_dtrace_scrpc = addr; |
2041 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
2042 | i += tp->ftt_size; |
2043 | |
2044 | if (tp->ftt_ripmode != 0) { |
2045 | uint64_t* reg; |
2046 | |
2047 | ASSERT(tp->ftt_ripmode & |
2048 | (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); |
2049 | |
2050 | /* |
2051 | * If this was a %rip-relative instruction, we change |
2052 | * it to be either a %rax- or %rcx-relative |
2053 | * instruction (depending on whether those registers |
2054 | * are used as another operand; or %r8- or %r9- |
2055 | * relative depending on the value of REX.B). We then |
2056 | * set that register and generate a movq instruction |
2057 | * to reset the value. |
2058 | */ |
2059 | if (tp->ftt_ripmode & FASTTRAP_RIP_X) |
2060 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); |
2061 | else |
2062 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); |
2063 | |
2064 | if (tp->ftt_ripmode & FASTTRAP_RIP_1) |
2065 | scratch[i++] = FASTTRAP_MOV_EAX; |
2066 | else |
2067 | scratch[i++] = FASTTRAP_MOV_ECX; |
2068 | |
2069 | switch (tp->ftt_ripmode) { |
2070 | case FASTTRAP_RIP_1: |
2071 | reg = ®s64->rax; |
2072 | uthread->t_dtrace_reg = REG_RAX; |
2073 | break; |
2074 | case FASTTRAP_RIP_2: |
2075 | reg = ®s64->rcx; |
2076 | uthread->t_dtrace_reg = REG_RCX; |
2077 | break; |
2078 | case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: |
2079 | reg = ®s64->r8; |
2080 | uthread->t_dtrace_reg = REG_R8; |
2081 | break; |
2082 | case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: |
2083 | reg = ®s64->r9; |
2084 | uthread->t_dtrace_reg = REG_R9; |
2085 | break; |
2086 | default: |
2087 | reg = NULL; |
2088 | panic("unhandled ripmode in fasttrap_pid_probe64" ); |
2089 | } |
2090 | |
2091 | /* LINTED - alignment */ |
2092 | *(uint64_t *)&scratch[i] = *reg; |
2093 | uthread->t_dtrace_regv = *reg; |
2094 | *reg = pc + tp->ftt_size; |
2095 | i += sizeof (uint64_t); |
2096 | } |
2097 | |
2098 | /* |
2099 | * Generate the branch instruction to what would have |
2100 | * normally been the subsequent instruction. In 32-bit mode, |
2101 | * this is just a relative branch; in 64-bit mode this is a |
2102 | * %rip-relative branch that loads the 64-bit pc value |
2103 | * immediately after the jmp instruction. |
2104 | */ |
2105 | scratch[i++] = FASTTRAP_GROUP5_OP; |
2106 | scratch[i++] = FASTTRAP_MODRM(0, 4, 5); |
2107 | /* LINTED - alignment */ |
2108 | *(uint32_t *)&scratch[i] = 0; |
2109 | i += sizeof (uint32_t); |
2110 | /* LINTED - alignment */ |
2111 | *(uint64_t *)&scratch[i] = pc + tp->ftt_size; |
2112 | i += sizeof (uint64_t); |
2113 | |
2114 | uthread->t_dtrace_astpc = addr + i; |
2115 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
2116 | i += tp->ftt_size; |
2117 | scratch[i++] = FASTTRAP_INT; |
2118 | scratch[i++] = T_DTRACE_RET; |
2119 | |
2120 | ASSERT(i <= sizeof (scratch)); |
2121 | |
2122 | if (fasttrap_copyout(scratch, write_addr, i)) { |
2123 | fasttrap_sigtrap(p, uthread, pc); |
2124 | new_pc = pc; |
2125 | break; |
2126 | } |
2127 | |
2128 | if (tp->ftt_retids != NULL) { |
2129 | uthread->t_dtrace_step = 1; |
2130 | uthread->t_dtrace_ret = 1; |
2131 | new_pc = uthread->t_dtrace_astpc; |
2132 | } else { |
2133 | new_pc = uthread->t_dtrace_scrpc; |
2134 | } |
2135 | |
2136 | uthread->t_dtrace_pc = pc; |
2137 | uthread->t_dtrace_npc = pc + tp->ftt_size; |
2138 | uthread->t_dtrace_on = 1; |
2139 | break; |
2140 | } |
2141 | |
2142 | default: |
2143 | panic("fasttrap: mishandled an instruction" ); |
2144 | } |
2145 | |
2146 | done: |
2147 | /* |
2148 | * APPLE NOTE: |
2149 | * |
2150 | * We're setting this earlier than Solaris does, to get a "correct" |
2151 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is |
2152 | * reported at: d, b, a. The new way gives c, b, a, which is closer |
2153 | * to correct, as the return instruction has already exectued. |
2154 | */ |
2155 | regs64->isf.rip = new_pc; |
2156 | |
2157 | |
2158 | /* |
2159 | * If there were no return probes when we first found the tracepoint, |
2160 | * we should feel no obligation to honor any return probes that were |
2161 | * subsequently enabled -- they'll just have to wait until the next |
2162 | * time around. |
2163 | */ |
2164 | if (tp->ftt_retids != NULL) { |
2165 | /* |
2166 | * We need to wait until the results of the instruction are |
2167 | * apparent before invoking any return probes. If this |
2168 | * instruction was emulated we can just call |
2169 | * fasttrap_return_common(); if it needs to be executed, we |
2170 | * need to wait until the user thread returns to the kernel. |
2171 | */ |
2172 | if (tp->ftt_type != FASTTRAP_T_COMMON) { |
2173 | fasttrap_return_common(regs, pc, pid, new_pc); |
2174 | } else { |
2175 | ASSERT(uthread->t_dtrace_ret != 0); |
2176 | ASSERT(uthread->t_dtrace_pc == pc); |
2177 | ASSERT(uthread->t_dtrace_scrpc != 0); |
2178 | ASSERT(new_pc == uthread->t_dtrace_astpc); |
2179 | } |
2180 | } |
2181 | |
2182 | return (0); |
2183 | } |
2184 | |
2185 | int |
2186 | fasttrap_pid_probe(x86_saved_state_t *regs) |
2187 | { |
2188 | if (is_saved_state64(regs)) |
2189 | return fasttrap_pid_probe64(regs); |
2190 | |
2191 | return fasttrap_pid_probe32(regs); |
2192 | } |
2193 | |
2194 | int |
2195 | fasttrap_return_probe(x86_saved_state_t *regs) |
2196 | { |
2197 | x86_saved_state64_t *regs64; |
2198 | x86_saved_state32_t *regs32; |
2199 | unsigned int p_model; |
2200 | |
2201 | if (is_saved_state64(regs)) { |
2202 | regs64 = saved_state64(regs); |
2203 | regs32 = NULL; |
2204 | p_model = DATAMODEL_LP64; |
2205 | } else { |
2206 | regs64 = NULL; |
2207 | regs32 = saved_state32(regs); |
2208 | p_model = DATAMODEL_ILP32; |
2209 | } |
2210 | |
2211 | proc_t *p = current_proc(); |
2212 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
2213 | user_addr_t pc = uthread->t_dtrace_pc; |
2214 | user_addr_t npc = uthread->t_dtrace_npc; |
2215 | |
2216 | uthread->t_dtrace_pc = 0; |
2217 | uthread->t_dtrace_npc = 0; |
2218 | uthread->t_dtrace_scrpc = 0; |
2219 | uthread->t_dtrace_astpc = 0; |
2220 | |
2221 | /* |
2222 | * Treat a child created by a call to vfork(2) as if it were its |
2223 | * parent. We know that there's only one thread of control in such a |
2224 | * process: this one. |
2225 | */ |
2226 | proc_list_lock(); |
2227 | while (p->p_lflag & P_LINVFORK) |
2228 | p = p->p_pptr; |
2229 | proc_list_unlock(); |
2230 | |
2231 | /* |
2232 | * We set rp->r_pc to the address of the traced instruction so |
2233 | * that it appears to dtrace_probe() that we're on the original |
2234 | * instruction, and so that the user can't easily detect our |
2235 | * complex web of lies. dtrace_return_probe() (our caller) |
2236 | * will correctly set %pc after we return. |
2237 | */ |
2238 | if (p_model == DATAMODEL_LP64) |
2239 | regs64->isf.rip = pc; |
2240 | else |
2241 | regs32->eip = pc; |
2242 | |
2243 | fasttrap_return_common(regs, pc, p->p_pid, npc); |
2244 | |
2245 | return (0); |
2246 | } |
2247 | |
2248 | uint64_t |
2249 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, |
2250 | int aframes) |
2251 | { |
2252 | pal_register_cache_state(current_thread(), VALID); |
2253 | #pragma unused(arg, id, parg, aframes) |
2254 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno)); |
2255 | } |
2256 | |
2257 | uint64_t |
2258 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, |
2259 | int aframes) |
2260 | { |
2261 | pal_register_cache_state(current_thread(), VALID); |
2262 | #pragma unused(arg, id, parg, aframes) |
2263 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno)); |
2264 | } |
2265 | |
2266 | /* |
2267 | * APPLE NOTE: See comments by regmap array definition. We are cheating |
2268 | * when returning 32 bit registers. |
2269 | */ |
2270 | static user_addr_t |
2271 | fasttrap_getreg(x86_saved_state_t *regs, uint_t reg) |
2272 | { |
2273 | if (is_saved_state64(regs)) { |
2274 | x86_saved_state64_t *regs64 = saved_state64(regs); |
2275 | |
2276 | switch (reg) { |
2277 | case REG_RAX: return regs64->rax; |
2278 | case REG_RCX: return regs64->rcx; |
2279 | case REG_RDX: return regs64->rdx; |
2280 | case REG_RBX: return regs64->rbx; |
2281 | case REG_RSP: return regs64->isf.rsp; |
2282 | case REG_RBP: return regs64->rbp; |
2283 | case REG_RSI: return regs64->rsi; |
2284 | case REG_RDI: return regs64->rdi; |
2285 | case REG_R8: return regs64->r8; |
2286 | case REG_R9: return regs64->r9; |
2287 | case REG_R10: return regs64->r10; |
2288 | case REG_R11: return regs64->r11; |
2289 | case REG_R12: return regs64->r12; |
2290 | case REG_R13: return regs64->r13; |
2291 | case REG_R14: return regs64->r14; |
2292 | case REG_R15: return regs64->r15; |
2293 | case REG_TRAPNO: return regs64->isf.trapno; |
2294 | case REG_ERR: return regs64->isf.err; |
2295 | case REG_RIP: return regs64->isf.rip; |
2296 | case REG_CS: return regs64->isf.cs; |
2297 | case REG_RFL: return regs64->isf.rflags; |
2298 | case REG_SS: return regs64->isf.ss; |
2299 | case REG_FS: return regs64->fs; |
2300 | case REG_GS: return regs64->gs; |
2301 | case REG_ES: |
2302 | case REG_DS: |
2303 | case REG_FSBASE: |
2304 | case REG_GSBASE: |
2305 | // Important to distinguish these requests (which should be legal) from other values. |
2306 | panic("dtrace: unimplemented x86_64 getreg()" ); |
2307 | } |
2308 | |
2309 | panic("dtrace: unhandled x86_64 getreg() constant" ); |
2310 | } else { |
2311 | x86_saved_state32_t *regs32 = saved_state32(regs); |
2312 | |
2313 | switch (reg) { |
2314 | case REG_RAX: return regs32->eax; |
2315 | case REG_RCX: return regs32->ecx; |
2316 | case REG_RDX: return regs32->edx; |
2317 | case REG_RBX: return regs32->ebx; |
2318 | case REG_RSP: return regs32->uesp; |
2319 | case REG_RBP: return regs32->ebp; |
2320 | case REG_RSI: return regs32->esi; |
2321 | case REG_RDI: return regs32->edi; |
2322 | } |
2323 | |
2324 | panic("dtrace: unhandled i386 getreg() constant" ); |
2325 | } |
2326 | |
2327 | return 0; |
2328 | } |
2329 | |