| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
| 24 | * Use is subject to license terms. |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * #pragma ident "@(#)fasttrap_isa.c 1.27 08/04/09 SMI" |
| 29 | */ |
| 30 | |
| 31 | #ifdef KERNEL |
| 32 | #ifndef _KERNEL |
| 33 | #define _KERNEL /* Solaris vs. Darwin */ |
| 34 | #endif |
| 35 | #endif |
| 36 | |
| 37 | #include <sys/fasttrap_isa.h> |
| 38 | #include <sys/fasttrap_impl.h> |
| 39 | #include <sys/dtrace.h> |
| 40 | #include <sys/dtrace_impl.h> |
| 41 | extern dtrace_id_t dtrace_probeid_error; |
| 42 | |
| 43 | #include "fasttrap_regset.h" |
| 44 | |
| 45 | #include <sys/dtrace_ptss.h> |
| 46 | #include <kern/debug.h> |
| 47 | |
| 48 | #include <machine/pal_routines.h> |
| 49 | |
| 50 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
| 51 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ |
| 52 | |
| 53 | /* |
| 54 | * Lossless User-Land Tracing on x86 |
| 55 | * --------------------------------- |
| 56 | * |
| 57 | * The execution of most instructions is not dependent on the address; for |
| 58 | * these instructions it is sufficient to copy them into the user process's |
| 59 | * address space and execute them. To effectively single-step an instruction |
| 60 | * in user-land, we copy out the following sequence of instructions to scratch |
| 61 | * space in the user thread's ulwp_t structure. |
| 62 | * |
| 63 | * We then set the program counter (%eip or %rip) to point to this scratch |
| 64 | * space. Once execution resumes, the original instruction is executed and |
| 65 | * then control flow is redirected to what was originally the subsequent |
| 66 | * instruction. If the kernel attemps to deliver a signal while single- |
| 67 | * stepping, the signal is deferred and the program counter is moved into the |
| 68 | * second sequence of instructions. The second sequence ends in a trap into |
| 69 | * the kernel where the deferred signal is then properly handled and delivered. |
| 70 | * |
| 71 | * For instructions whose execute is position dependent, we perform simple |
| 72 | * emulation. These instructions are limited to control transfer |
| 73 | * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle |
| 74 | * of %rip-relative addressing that means that almost any instruction can be |
| 75 | * position dependent. For all the details on how we emulate generic |
| 76 | * instructions included %rip-relative instructions, see the code in |
| 77 | * fasttrap_pid_probe() below where we handle instructions of type |
| 78 | * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing). |
| 79 | */ |
| 80 | |
| 81 | #define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3) |
| 82 | #define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7) |
| 83 | #define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7) |
| 84 | #define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm)) |
| 85 | |
| 86 | #define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3) |
| 87 | #define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7) |
| 88 | #define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7) |
| 89 | |
| 90 | #define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1) |
| 91 | #define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1) |
| 92 | #define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1) |
| 93 | #define FASTTRAP_REX_B(rex) ((rex) & 1) |
| 94 | #define FASTTRAP_REX(w, r, x, b) \ |
| 95 | (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b)) |
| 96 | |
| 97 | /* |
| 98 | * Single-byte op-codes. |
| 99 | */ |
| 100 | #define FASTTRAP_PUSHL_EBP 0x55 |
| 101 | |
| 102 | #define FASTTRAP_JO 0x70 |
| 103 | #define FASTTRAP_JNO 0x71 |
| 104 | #define FASTTRAP_JB 0x72 |
| 105 | #define FASTTRAP_JAE 0x73 |
| 106 | #define FASTTRAP_JE 0x74 |
| 107 | #define FASTTRAP_JNE 0x75 |
| 108 | #define FASTTRAP_JBE 0x76 |
| 109 | #define FASTTRAP_JA 0x77 |
| 110 | #define FASTTRAP_JS 0x78 |
| 111 | #define FASTTRAP_JNS 0x79 |
| 112 | #define FASTTRAP_JP 0x7a |
| 113 | #define FASTTRAP_JNP 0x7b |
| 114 | #define FASTTRAP_JL 0x7c |
| 115 | #define FASTTRAP_JGE 0x7d |
| 116 | #define FASTTRAP_JLE 0x7e |
| 117 | #define FASTTRAP_JG 0x7f |
| 118 | |
| 119 | #define FASTTRAP_NOP 0x90 |
| 120 | |
| 121 | #define FASTTRAP_MOV_EAX 0xb8 |
| 122 | #define FASTTRAP_MOV_ECX 0xb9 |
| 123 | |
| 124 | #define FASTTRAP_RET16 0xc2 |
| 125 | #define FASTTRAP_RET 0xc3 |
| 126 | |
| 127 | #define FASTTRAP_LOOPNZ 0xe0 |
| 128 | #define FASTTRAP_LOOPZ 0xe1 |
| 129 | #define FASTTRAP_LOOP 0xe2 |
| 130 | #define FASTTRAP_JCXZ 0xe3 |
| 131 | |
| 132 | #define FASTTRAP_CALL 0xe8 |
| 133 | #define FASTTRAP_JMP32 0xe9 |
| 134 | #define FASTTRAP_JMP8 0xeb |
| 135 | |
| 136 | #define FASTTRAP_INT3 0xcc |
| 137 | #define FASTTRAP_INT 0xcd |
| 138 | #define T_DTRACE_RET 0x7f |
| 139 | |
| 140 | #define FASTTRAP_2_BYTE_OP 0x0f |
| 141 | #define FASTTRAP_GROUP5_OP 0xff |
| 142 | |
| 143 | /* |
| 144 | * Two-byte op-codes (second byte only). |
| 145 | */ |
| 146 | #define FASTTRAP_0F_JO 0x80 |
| 147 | #define FASTTRAP_0F_JNO 0x81 |
| 148 | #define FASTTRAP_0F_JB 0x82 |
| 149 | #define FASTTRAP_0F_JAE 0x83 |
| 150 | #define FASTTRAP_0F_JE 0x84 |
| 151 | #define FASTTRAP_0F_JNE 0x85 |
| 152 | #define FASTTRAP_0F_JBE 0x86 |
| 153 | #define FASTTRAP_0F_JA 0x87 |
| 154 | #define FASTTRAP_0F_JS 0x88 |
| 155 | #define FASTTRAP_0F_JNS 0x89 |
| 156 | #define FASTTRAP_0F_JP 0x8a |
| 157 | #define FASTTRAP_0F_JNP 0x8b |
| 158 | #define FASTTRAP_0F_JL 0x8c |
| 159 | #define FASTTRAP_0F_JGE 0x8d |
| 160 | #define FASTTRAP_0F_JLE 0x8e |
| 161 | #define FASTTRAP_0F_JG 0x8f |
| 162 | |
| 163 | #define FASTTRAP_EFLAGS_OF 0x800 |
| 164 | #define FASTTRAP_EFLAGS_DF 0x400 |
| 165 | #define FASTTRAP_EFLAGS_SF 0x080 |
| 166 | #define FASTTRAP_EFLAGS_ZF 0x040 |
| 167 | #define FASTTRAP_EFLAGS_AF 0x010 |
| 168 | #define FASTTRAP_EFLAGS_PF 0x004 |
| 169 | #define FASTTRAP_EFLAGS_CF 0x001 |
| 170 | |
| 171 | /* |
| 172 | * Instruction prefixes. |
| 173 | */ |
| 174 | #define FASTTRAP_PREFIX_OPERAND 0x66 |
| 175 | #define FASTTRAP_PREFIX_ADDRESS 0x67 |
| 176 | #define FASTTRAP_PREFIX_CS 0x2E |
| 177 | #define FASTTRAP_PREFIX_DS 0x3E |
| 178 | #define FASTTRAP_PREFIX_ES 0x26 |
| 179 | #define FASTTRAP_PREFIX_FS 0x64 |
| 180 | #define FASTTRAP_PREFIX_GS 0x65 |
| 181 | #define FASTTRAP_PREFIX_SS 0x36 |
| 182 | #define FASTTRAP_PREFIX_LOCK 0xF0 |
| 183 | #define FASTTRAP_PREFIX_REP 0xF3 |
| 184 | #define FASTTRAP_PREFIX_REPNE 0xF2 |
| 185 | |
| 186 | #define FASTTRAP_NOREG 0xff |
| 187 | |
| 188 | /* |
| 189 | * Map between instruction register encodings and the kernel constants which |
| 190 | * correspond to indicies into struct regs. |
| 191 | */ |
| 192 | |
| 193 | /* |
| 194 | * APPLE NOTE: We are cheating here. The regmap is used to decode which register |
| 195 | * a given instruction is trying to reference. OS X does not have extended registers |
| 196 | * for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return: |
| 197 | * |
| 198 | * REG_RAX -> EAX |
| 199 | * REG_RCX -> ECX |
| 200 | * REG_RDX -> EDX |
| 201 | * REG_RBX -> EBX |
| 202 | * REG_RSP -> UESP |
| 203 | * REG_RBP -> EBP |
| 204 | * REG_RSI -> ESI |
| 205 | * REG_RDI -> EDI |
| 206 | * |
| 207 | * The fasttrap_getreg function knows how to make the correct transformation. |
| 208 | */ |
| 209 | static const uint8_t regmap[16] = { |
| 210 | REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, |
| 211 | REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, |
| 212 | }; |
| 213 | |
| 214 | static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t); |
| 215 | |
| 216 | static uint64_t |
| 217 | fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno) |
| 218 | { |
| 219 | uint64_t value; |
| 220 | int shift = function_entry ? 1 : 0; |
| 221 | |
| 222 | x86_saved_state64_t *regs64; |
| 223 | x86_saved_state32_t *regs32; |
| 224 | unsigned int p_model; |
| 225 | |
| 226 | if (is_saved_state64(regs)) { |
| 227 | regs64 = saved_state64(regs); |
| 228 | regs32 = NULL; |
| 229 | p_model = DATAMODEL_LP64; |
| 230 | } else { |
| 231 | regs64 = NULL; |
| 232 | regs32 = saved_state32(regs); |
| 233 | p_model = DATAMODEL_ILP32; |
| 234 | } |
| 235 | |
| 236 | if (p_model == DATAMODEL_LP64) { |
| 237 | user_addr_t stack; |
| 238 | |
| 239 | /* |
| 240 | * In 64-bit mode, the first six arguments are stored in |
| 241 | * registers. |
| 242 | */ |
| 243 | if (argno < 6) |
| 244 | return ((®s64->rdi)[argno]); |
| 245 | |
| 246 | stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift); |
| 247 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 248 | value = dtrace_fuword64(stack); |
| 249 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); |
| 250 | } else { |
| 251 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
| 252 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 253 | value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]); |
| 254 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); |
| 255 | } |
| 256 | |
| 257 | return (value); |
| 258 | } |
| 259 | |
| 260 | /*ARGSUSED*/ |
| 261 | int |
| 262 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc, |
| 263 | fasttrap_probe_type_t type) |
| 264 | { |
| 265 | #pragma unused(type) |
| 266 | uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10]; |
| 267 | size_t len = FASTTRAP_MAX_INSTR_SIZE; |
| 268 | size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK)); |
| 269 | uint_t start = 0; |
| 270 | size_t size; |
| 271 | int rmindex; |
| 272 | uint8_t seg, rex = 0; |
| 273 | unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32; |
| 274 | |
| 275 | /* |
| 276 | * Read the instruction at the given address out of the process's |
| 277 | * address space. We don't have to worry about a debugger |
| 278 | * changing this instruction before we overwrite it with our trap |
| 279 | * instruction since P_PR_LOCK is set. Since instructions can span |
| 280 | * pages, we potentially read the instruction in two parts. If the |
| 281 | * second part fails, we just zero out that part of the instruction. |
| 282 | */ |
| 283 | /* |
| 284 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... |
| 285 | */ |
| 286 | if (uread(p, &instr[0], first, pc) != 0) |
| 287 | return (-1); |
| 288 | if (len > first && |
| 289 | uread(p, &instr[first], len - first, pc + first) != 0) { |
| 290 | bzero(&instr[first], len - first); |
| 291 | len = first; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * If the disassembly fails, then we have a malformed instruction. |
| 296 | */ |
| 297 | if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0) |
| 298 | return (-1); |
| 299 | |
| 300 | /* |
| 301 | * Make sure the disassembler isn't completely broken. |
| 302 | */ |
| 303 | ASSERT(-1 <= rmindex && rmindex < (int)size); |
| 304 | |
| 305 | /* |
| 306 | * If the computed size is greater than the number of bytes read, |
| 307 | * then it was a malformed instruction possibly because it fell on a |
| 308 | * page boundary and the subsequent page was missing or because of |
| 309 | * some malicious user. |
| 310 | */ |
| 311 | if (size > len) |
| 312 | return (-1); |
| 313 | |
| 314 | tp->ftt_size = (uint8_t)size; |
| 315 | tp->ftt_segment = FASTTRAP_SEG_NONE; |
| 316 | |
| 317 | /* |
| 318 | * Find the start of the instruction's opcode by processing any |
| 319 | * legacy prefixes. |
| 320 | */ |
| 321 | for (;;) { |
| 322 | seg = 0; |
| 323 | switch (instr[start]) { |
| 324 | case FASTTRAP_PREFIX_SS: |
| 325 | seg++; |
| 326 | /*FALLTHRU*/ |
| 327 | case FASTTRAP_PREFIX_GS: |
| 328 | seg++; |
| 329 | /*FALLTHRU*/ |
| 330 | case FASTTRAP_PREFIX_FS: |
| 331 | seg++; |
| 332 | /*FALLTHRU*/ |
| 333 | case FASTTRAP_PREFIX_ES: |
| 334 | seg++; |
| 335 | /*FALLTHRU*/ |
| 336 | case FASTTRAP_PREFIX_DS: |
| 337 | seg++; |
| 338 | /*FALLTHRU*/ |
| 339 | case FASTTRAP_PREFIX_CS: |
| 340 | seg++; |
| 341 | /*FALLTHRU*/ |
| 342 | case FASTTRAP_PREFIX_OPERAND: |
| 343 | case FASTTRAP_PREFIX_ADDRESS: |
| 344 | case FASTTRAP_PREFIX_LOCK: |
| 345 | case FASTTRAP_PREFIX_REP: |
| 346 | case FASTTRAP_PREFIX_REPNE: |
| 347 | if (seg != 0) { |
| 348 | /* |
| 349 | * It's illegal for an instruction to specify |
| 350 | * two segment prefixes -- give up on this |
| 351 | * illegal instruction. |
| 352 | */ |
| 353 | if (tp->ftt_segment != FASTTRAP_SEG_NONE) |
| 354 | return (-1); |
| 355 | |
| 356 | tp->ftt_segment = seg; |
| 357 | } |
| 358 | start++; |
| 359 | continue; |
| 360 | } |
| 361 | break; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Identify the REX prefix on 64-bit processes. |
| 366 | */ |
| 367 | if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40) |
| 368 | rex = instr[start++]; |
| 369 | |
| 370 | /* |
| 371 | * Now that we're pretty sure that the instruction is okay, copy the |
| 372 | * valid part to the tracepoint. |
| 373 | */ |
| 374 | bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE); |
| 375 | |
| 376 | tp->ftt_type = FASTTRAP_T_COMMON; |
| 377 | if (instr[start] == FASTTRAP_2_BYTE_OP) { |
| 378 | switch (instr[start + 1]) { |
| 379 | case FASTTRAP_0F_JO: |
| 380 | case FASTTRAP_0F_JNO: |
| 381 | case FASTTRAP_0F_JB: |
| 382 | case FASTTRAP_0F_JAE: |
| 383 | case FASTTRAP_0F_JE: |
| 384 | case FASTTRAP_0F_JNE: |
| 385 | case FASTTRAP_0F_JBE: |
| 386 | case FASTTRAP_0F_JA: |
| 387 | case FASTTRAP_0F_JS: |
| 388 | case FASTTRAP_0F_JNS: |
| 389 | case FASTTRAP_0F_JP: |
| 390 | case FASTTRAP_0F_JNP: |
| 391 | case FASTTRAP_0F_JL: |
| 392 | case FASTTRAP_0F_JGE: |
| 393 | case FASTTRAP_0F_JLE: |
| 394 | case FASTTRAP_0F_JG: |
| 395 | tp->ftt_type = FASTTRAP_T_JCC; |
| 396 | tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO; |
| 397 | tp->ftt_dest = pc + tp->ftt_size + |
| 398 | /* LINTED - alignment */ |
| 399 | *(int32_t *)&instr[start + 2]; |
| 400 | break; |
| 401 | } |
| 402 | } else if (instr[start] == FASTTRAP_GROUP5_OP) { |
| 403 | uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]); |
| 404 | uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]); |
| 405 | uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]); |
| 406 | |
| 407 | if (reg == 2 || reg == 4) { |
| 408 | uint_t i, sz; |
| 409 | |
| 410 | if (reg == 2) |
| 411 | tp->ftt_type = FASTTRAP_T_CALL; |
| 412 | else |
| 413 | tp->ftt_type = FASTTRAP_T_JMP; |
| 414 | |
| 415 | if (mod == 3) |
| 416 | tp->ftt_code = 2; |
| 417 | else |
| 418 | tp->ftt_code = 1; |
| 419 | |
| 420 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); |
| 421 | |
| 422 | /* |
| 423 | * See AMD x86-64 Architecture Programmer's Manual |
| 424 | * Volume 3, Section 1.2.7, Table 1-12, and |
| 425 | * Appendix A.3.1, Table A-15. |
| 426 | */ |
| 427 | if (mod != 3 && rm == 4) { |
| 428 | uint8_t sib = instr[start + 2]; |
| 429 | uint_t index = FASTTRAP_SIB_INDEX(sib); |
| 430 | uint_t base = FASTTRAP_SIB_BASE(sib); |
| 431 | |
| 432 | tp->ftt_scale = FASTTRAP_SIB_SCALE(sib); |
| 433 | |
| 434 | tp->ftt_index = (index == 4) ? |
| 435 | FASTTRAP_NOREG : |
| 436 | regmap[index | (FASTTRAP_REX_X(rex) << 3)]; |
| 437 | tp->ftt_base = (mod == 0 && base == 5) ? |
| 438 | FASTTRAP_NOREG : |
| 439 | regmap[base | (FASTTRAP_REX_B(rex) << 3)]; |
| 440 | |
| 441 | i = 3; |
| 442 | sz = mod == 1 ? 1 : 4; |
| 443 | } else { |
| 444 | /* |
| 445 | * In 64-bit mode, mod == 0 and r/m == 5 |
| 446 | * denotes %rip-relative addressing; in 32-bit |
| 447 | * mode, the base register isn't used. In both |
| 448 | * modes, there is a 32-bit operand. |
| 449 | */ |
| 450 | if (mod == 0 && rm == 5) { |
| 451 | if (p_model == DATAMODEL_LP64) |
| 452 | tp->ftt_base = REG_RIP; |
| 453 | else |
| 454 | tp->ftt_base = FASTTRAP_NOREG; |
| 455 | sz = 4; |
| 456 | } else { |
| 457 | uint8_t base = rm | |
| 458 | (FASTTRAP_REX_B(rex) << 3); |
| 459 | |
| 460 | tp->ftt_base = regmap[base]; |
| 461 | sz = mod == 1 ? 1 : mod == 2 ? 4 : 0; |
| 462 | } |
| 463 | tp->ftt_index = FASTTRAP_NOREG; |
| 464 | i = 2; |
| 465 | } |
| 466 | |
| 467 | if (sz == 1) { |
| 468 | tp->ftt_dest = *(int8_t *)&instr[start + i]; |
| 469 | } else if (sz == 4) { |
| 470 | /* LINTED - alignment */ |
| 471 | tp->ftt_dest = *(int32_t *)&instr[start + i]; |
| 472 | } else { |
| 473 | tp->ftt_dest = 0; |
| 474 | } |
| 475 | } |
| 476 | } else { |
| 477 | switch (instr[start]) { |
| 478 | case FASTTRAP_RET: |
| 479 | tp->ftt_type = FASTTRAP_T_RET; |
| 480 | break; |
| 481 | |
| 482 | case FASTTRAP_RET16: |
| 483 | tp->ftt_type = FASTTRAP_T_RET16; |
| 484 | /* LINTED - alignment */ |
| 485 | tp->ftt_dest = *(uint16_t *)&instr[start + 1]; |
| 486 | break; |
| 487 | |
| 488 | case FASTTRAP_JO: |
| 489 | case FASTTRAP_JNO: |
| 490 | case FASTTRAP_JB: |
| 491 | case FASTTRAP_JAE: |
| 492 | case FASTTRAP_JE: |
| 493 | case FASTTRAP_JNE: |
| 494 | case FASTTRAP_JBE: |
| 495 | case FASTTRAP_JA: |
| 496 | case FASTTRAP_JS: |
| 497 | case FASTTRAP_JNS: |
| 498 | case FASTTRAP_JP: |
| 499 | case FASTTRAP_JNP: |
| 500 | case FASTTRAP_JL: |
| 501 | case FASTTRAP_JGE: |
| 502 | case FASTTRAP_JLE: |
| 503 | case FASTTRAP_JG: |
| 504 | tp->ftt_type = FASTTRAP_T_JCC; |
| 505 | tp->ftt_code = instr[start]; |
| 506 | tp->ftt_dest = pc + tp->ftt_size + |
| 507 | (int8_t)instr[start + 1]; |
| 508 | break; |
| 509 | |
| 510 | case FASTTRAP_LOOPNZ: |
| 511 | case FASTTRAP_LOOPZ: |
| 512 | case FASTTRAP_LOOP: |
| 513 | tp->ftt_type = FASTTRAP_T_LOOP; |
| 514 | tp->ftt_code = instr[start]; |
| 515 | tp->ftt_dest = pc + tp->ftt_size + |
| 516 | (int8_t)instr[start + 1]; |
| 517 | break; |
| 518 | |
| 519 | case FASTTRAP_JCXZ: |
| 520 | tp->ftt_type = FASTTRAP_T_JCXZ; |
| 521 | tp->ftt_dest = pc + tp->ftt_size + |
| 522 | (int8_t)instr[start + 1]; |
| 523 | break; |
| 524 | |
| 525 | case FASTTRAP_CALL: |
| 526 | tp->ftt_type = FASTTRAP_T_CALL; |
| 527 | tp->ftt_dest = pc + tp->ftt_size + |
| 528 | /* LINTED - alignment */ |
| 529 | *(int32_t *)&instr[start + 1]; |
| 530 | tp->ftt_code = 0; |
| 531 | break; |
| 532 | |
| 533 | case FASTTRAP_JMP32: |
| 534 | tp->ftt_type = FASTTRAP_T_JMP; |
| 535 | tp->ftt_dest = pc + tp->ftt_size + |
| 536 | /* LINTED - alignment */ |
| 537 | *(int32_t *)&instr[start + 1]; |
| 538 | break; |
| 539 | case FASTTRAP_JMP8: |
| 540 | tp->ftt_type = FASTTRAP_T_JMP; |
| 541 | tp->ftt_dest = pc + tp->ftt_size + |
| 542 | (int8_t)instr[start + 1]; |
| 543 | break; |
| 544 | |
| 545 | case FASTTRAP_PUSHL_EBP: |
| 546 | if (start == 0) |
| 547 | tp->ftt_type = FASTTRAP_T_PUSHL_EBP; |
| 548 | break; |
| 549 | |
| 550 | case FASTTRAP_NOP: |
| 551 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); |
| 552 | |
| 553 | /* |
| 554 | * On sol64 we have to be careful not to confuse a nop |
| 555 | * (actually xchgl %eax, %eax) with an instruction using |
| 556 | * the same opcode, but that does something different |
| 557 | * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax). |
| 558 | */ |
| 559 | if (FASTTRAP_REX_B(rex) == 0) |
| 560 | tp->ftt_type = FASTTRAP_T_NOP; |
| 561 | break; |
| 562 | |
| 563 | case FASTTRAP_INT3: |
| 564 | /* |
| 565 | * The pid provider shares the int3 trap with debugger |
| 566 | * breakpoints so we can't instrument them. |
| 567 | */ |
| 568 | ASSERT(instr[start] == FASTTRAP_INSTR); |
| 569 | return (-1); |
| 570 | |
| 571 | case FASTTRAP_INT: |
| 572 | /* |
| 573 | * Interrupts seem like they could be traced with |
| 574 | * no negative implications, but it's possible that |
| 575 | * a thread could be redirected by the trap handling |
| 576 | * code which would eventually return to the |
| 577 | * instruction after the interrupt. If the interrupt |
| 578 | * were in our scratch space, the subsequent |
| 579 | * instruction might be overwritten before we return. |
| 580 | * Accordingly we refuse to instrument any interrupt. |
| 581 | */ |
| 582 | return (-1); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) { |
| 587 | /* |
| 588 | * If the process is 64-bit and the instruction type is still |
| 589 | * FASTTRAP_T_COMMON -- meaning we're going to copy it out an |
| 590 | * execute it -- we need to watch for %rip-relative |
| 591 | * addressing mode. See the portion of fasttrap_pid_probe() |
| 592 | * below where we handle tracepoints with type |
| 593 | * FASTTRAP_T_COMMON for how we emulate instructions that |
| 594 | * employ %rip-relative addressing. |
| 595 | */ |
| 596 | if (rmindex != -1) { |
| 597 | uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]); |
| 598 | uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]); |
| 599 | uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]); |
| 600 | |
| 601 | ASSERT(rmindex > (int)start); |
| 602 | |
| 603 | if (mod == 0 && rm == 5) { |
| 604 | /* |
| 605 | * We need to be sure to avoid other |
| 606 | * registers used by this instruction. While |
| 607 | * the reg field may determine the op code |
| 608 | * rather than denoting a register, assuming |
| 609 | * that it denotes a register is always safe. |
| 610 | * We leave the REX field intact and use |
| 611 | * whatever value's there for simplicity. |
| 612 | */ |
| 613 | if (reg != 0) { |
| 614 | tp->ftt_ripmode = FASTTRAP_RIP_1 | |
| 615 | (FASTTRAP_RIP_X * |
| 616 | FASTTRAP_REX_B(rex)); |
| 617 | rm = 0; |
| 618 | } else { |
| 619 | tp->ftt_ripmode = FASTTRAP_RIP_2 | |
| 620 | (FASTTRAP_RIP_X * |
| 621 | FASTTRAP_REX_B(rex)); |
| 622 | rm = 1; |
| 623 | } |
| 624 | |
| 625 | tp->ftt_modrm = tp->ftt_instr[rmindex]; |
| 626 | tp->ftt_instr[rmindex] = |
| 627 | FASTTRAP_MODRM(2, reg, rm); |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | return (0); |
| 633 | } |
| 634 | |
| 635 | int |
| 636 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) |
| 637 | { |
| 638 | fasttrap_instr_t instr = FASTTRAP_INSTR; |
| 639 | |
| 640 | if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) |
| 641 | return (-1); |
| 642 | |
| 643 | tp->ftt_installed = 1; |
| 644 | |
| 645 | return (0); |
| 646 | } |
| 647 | |
| 648 | int |
| 649 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) |
| 650 | { |
| 651 | uint8_t instr; |
| 652 | |
| 653 | /* |
| 654 | * Distinguish between read or write failures and a changed |
| 655 | * instruction. |
| 656 | */ |
| 657 | if (uread(p, &instr, 1, tp->ftt_pc) != 0) |
| 658 | goto end; |
| 659 | if (instr != FASTTRAP_INSTR) |
| 660 | goto end; |
| 661 | if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) |
| 662 | return (-1); |
| 663 | end: |
| 664 | tp->ftt_installed = 0; |
| 665 | |
| 666 | return (0); |
| 667 | } |
| 668 | |
| 669 | static void |
| 670 | fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid, |
| 671 | user_addr_t new_pc) |
| 672 | { |
| 673 | x86_saved_state64_t *regs64; |
| 674 | x86_saved_state32_t *regs32; |
| 675 | unsigned int p_model; |
| 676 | int retire_tp = 1; |
| 677 | |
| 678 | dtrace_icookie_t cookie; |
| 679 | |
| 680 | if (is_saved_state64(regs)) { |
| 681 | regs64 = saved_state64(regs); |
| 682 | regs32 = NULL; |
| 683 | p_model = DATAMODEL_LP64; |
| 684 | } else { |
| 685 | regs64 = NULL; |
| 686 | regs32 = saved_state32(regs); |
| 687 | p_model = DATAMODEL_ILP32; |
| 688 | } |
| 689 | |
| 690 | fasttrap_tracepoint_t *tp; |
| 691 | fasttrap_bucket_t *bucket; |
| 692 | fasttrap_id_t *id; |
| 693 | lck_mtx_t *pid_mtx; |
| 694 | |
| 695 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
| 696 | lck_mtx_lock(pid_mtx); |
| 697 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
| 698 | |
| 699 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
| 700 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
| 701 | tp->ftt_proc->ftpc_acount != 0) |
| 702 | break; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Don't sweat it if we can't find the tracepoint again; unlike |
| 707 | * when we're in fasttrap_pid_probe(), finding the tracepoint here |
| 708 | * is not essential to the correct execution of the process. |
| 709 | */ |
| 710 | if (tp == NULL) { |
| 711 | lck_mtx_unlock(pid_mtx); |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { |
| 716 | fasttrap_probe_t *probe = id->fti_probe; |
| 717 | /* |
| 718 | * If there's a branch that could act as a return site, we |
| 719 | * need to trace it, and check here if the program counter is |
| 720 | * external to the function. |
| 721 | */ |
| 722 | if (tp->ftt_type != FASTTRAP_T_RET && |
| 723 | tp->ftt_type != FASTTRAP_T_RET16 && |
| 724 | new_pc - probe->ftp_faddr < probe->ftp_fsize) |
| 725 | continue; |
| 726 | |
| 727 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
| 728 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
| 729 | if (already_triggered) { |
| 730 | continue; |
| 731 | } |
| 732 | } |
| 733 | /* |
| 734 | * If we have at least one probe associated that |
| 735 | * is not a oneshot probe, don't remove the |
| 736 | * tracepoint |
| 737 | */ |
| 738 | else { |
| 739 | retire_tp = 0; |
| 740 | } |
| 741 | /* |
| 742 | * Provide a hint to the stack trace functions to add the |
| 743 | * following pc to the top of the stack since it's missing |
| 744 | * on a return probe yet highly desirable for consistency. |
| 745 | */ |
| 746 | cookie = dtrace_interrupt_disable(); |
| 747 | cpu_core[CPU->cpu_id].cpuc_missing_tos = pc; |
| 748 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
| 749 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
| 750 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
| 751 | } else if (p_model == DATAMODEL_LP64) { |
| 752 | dtrace_probe(probe->ftp_id, |
| 753 | pc - id->fti_probe->ftp_faddr, |
| 754 | regs64->rax, regs64->rdx, 0, 0); |
| 755 | } else { |
| 756 | dtrace_probe(probe->ftp_id, |
| 757 | pc - id->fti_probe->ftp_faddr, |
| 758 | regs32->eax, regs32->edx, 0, 0); |
| 759 | } |
| 760 | /* remove the hint */ |
| 761 | cpu_core[CPU->cpu_id].cpuc_missing_tos = 0; |
| 762 | dtrace_interrupt_enable(cookie); |
| 763 | } |
| 764 | |
| 765 | lck_mtx_unlock(pid_mtx); |
| 766 | } |
| 767 | |
| 768 | static void |
| 769 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr) |
| 770 | { |
| 771 | proc_lock(p); |
| 772 | |
| 773 | /* Set fault address and mark signal */ |
| 774 | t->uu_code = addr; |
| 775 | t->uu_siglist |= sigmask(SIGSEGV); |
| 776 | |
| 777 | /* |
| 778 | * XXX These two line may be redundant; if not, then we need |
| 779 | * XXX to potentially set the data address in the machine |
| 780 | * XXX specific thread state structure to indicate the address. |
| 781 | */ |
| 782 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ |
| 783 | t->uu_subcode = 0; /* XXX pad */ |
| 784 | |
| 785 | proc_unlock(p); |
| 786 | |
| 787 | /* raise signal */ |
| 788 | signal_setast(t->uu_context.vc_thread); |
| 789 | } |
| 790 | |
| 791 | static void |
| 792 | fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc, |
| 793 | uint64_t *argv) |
| 794 | { |
| 795 | int i, x, cap = MIN(argc, probe->ftp_nargs); |
| 796 | user_addr_t stack = (user_addr_t)regs64->isf.rsp; |
| 797 | |
| 798 | for (i = 0; i < cap; i++) { |
| 799 | x = probe->ftp_argmap[i]; |
| 800 | |
| 801 | if (x < 6) { |
| 802 | /* FIXME! This may be broken, needs testing */ |
| 803 | argv[i] = (®s64->rdi)[x]; |
| 804 | } else { |
| 805 | fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]); |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | for (; i < argc; i++) { |
| 810 | argv[i] = 0; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | static void |
| 815 | fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc, |
| 816 | uint32_t *argv) |
| 817 | { |
| 818 | int i, x, cap = MIN(argc, probe->ftp_nargs); |
| 819 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
| 820 | |
| 821 | for (i = 0; i < cap; i++) { |
| 822 | x = probe->ftp_argmap[i]; |
| 823 | |
| 824 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]); |
| 825 | } |
| 826 | |
| 827 | for (; i < argc; i++) { |
| 828 | argv[i] = 0; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * FIXME! |
| 834 | */ |
| 835 | static int |
| 836 | fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit |
| 837 | { |
| 838 | #pragma unused(tp, rp, addr) |
| 839 | printf("fasttrap_do_seg() called while unimplemented.\n" ); |
| 840 | #if 0 |
| 841 | proc_t *p = curproc; |
| 842 | user_desc_t *desc; |
| 843 | uint16_t sel, ndx, type; |
| 844 | uintptr_t limit; |
| 845 | |
| 846 | switch (tp->ftt_segment) { |
| 847 | case FASTTRAP_SEG_CS: |
| 848 | sel = rp->r_cs; |
| 849 | break; |
| 850 | case FASTTRAP_SEG_DS: |
| 851 | sel = rp->r_ds; |
| 852 | break; |
| 853 | case FASTTRAP_SEG_ES: |
| 854 | sel = rp->r_es; |
| 855 | break; |
| 856 | case FASTTRAP_SEG_FS: |
| 857 | sel = rp->r_fs; |
| 858 | break; |
| 859 | case FASTTRAP_SEG_GS: |
| 860 | sel = rp->r_gs; |
| 861 | break; |
| 862 | case FASTTRAP_SEG_SS: |
| 863 | sel = rp->r_ss; |
| 864 | break; |
| 865 | } |
| 866 | |
| 867 | /* |
| 868 | * Make sure the given segment register specifies a user priority |
| 869 | * selector rather than a kernel selector. |
| 870 | */ |
| 871 | if (!SELISUPL(sel)) |
| 872 | return (-1); |
| 873 | |
| 874 | ndx = SELTOIDX(sel); |
| 875 | |
| 876 | /* |
| 877 | * Check the bounds and grab the descriptor out of the specified |
| 878 | * descriptor table. |
| 879 | */ |
| 880 | if (SELISLDT(sel)) { |
| 881 | if (ndx > p->p_ldtlimit) |
| 882 | return (-1); |
| 883 | |
| 884 | desc = p->p_ldt + ndx; |
| 885 | |
| 886 | } else { |
| 887 | if (ndx >= NGDT) |
| 888 | return (-1); |
| 889 | |
| 890 | desc = cpu_get_gdt() + ndx; |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | * The descriptor must have user privilege level and it must be |
| 895 | * present in memory. |
| 896 | */ |
| 897 | if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1) |
| 898 | return (-1); |
| 899 | |
| 900 | type = desc->usd_type; |
| 901 | |
| 902 | /* |
| 903 | * If the S bit in the type field is not set, this descriptor can |
| 904 | * only be used in system context. |
| 905 | */ |
| 906 | if ((type & 0x10) != 0x10) |
| 907 | return (-1); |
| 908 | |
| 909 | limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1); |
| 910 | |
| 911 | if (tp->ftt_segment == FASTTRAP_SEG_CS) { |
| 912 | /* |
| 913 | * The code/data bit and readable bit must both be set. |
| 914 | */ |
| 915 | if ((type & 0xa) != 0xa) |
| 916 | return (-1); |
| 917 | |
| 918 | if (*addr > limit) |
| 919 | return (-1); |
| 920 | } else { |
| 921 | /* |
| 922 | * The code/data bit must be clear. |
| 923 | */ |
| 924 | if ((type & 0x8) != 0) |
| 925 | return (-1); |
| 926 | |
| 927 | /* |
| 928 | * If the expand-down bit is clear, we just check the limit as |
| 929 | * it would naturally be applied. Otherwise, we need to check |
| 930 | * that the address is the range [limit + 1 .. 0xffff] or |
| 931 | * [limit + 1 ... 0xffffffff] depending on if the default |
| 932 | * operand size bit is set. |
| 933 | */ |
| 934 | if ((type & 0x4) == 0) { |
| 935 | if (*addr > limit) |
| 936 | return (-1); |
| 937 | } else if (desc->usd_def32) { |
| 938 | if (*addr < limit + 1 || 0xffff < *addr) |
| 939 | return (-1); |
| 940 | } else { |
| 941 | if (*addr < limit + 1 || 0xffffffff < *addr) |
| 942 | return (-1); |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | *addr += USEGD_GETBASE(desc); |
| 947 | #endif /* 0 */ |
| 948 | return (0); |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit |
| 953 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes |
| 954 | * call other methods that require a x86_saved_state_t. |
| 955 | * |
| 956 | * NOTE!!!! |
| 957 | * |
| 958 | * Any changes made to this method must be echo'd in fasttrap_pid_probe64! |
| 959 | * |
| 960 | */ |
| 961 | static int |
| 962 | fasttrap_pid_probe32(x86_saved_state_t *regs) |
| 963 | { |
| 964 | ASSERT(is_saved_state32(regs)); |
| 965 | |
| 966 | x86_saved_state32_t *regs32 = saved_state32(regs); |
| 967 | user_addr_t pc = regs32->eip - 1; |
| 968 | proc_t *p = current_proc(); |
| 969 | user_addr_t new_pc = 0; |
| 970 | fasttrap_bucket_t *bucket; |
| 971 | lck_mtx_t *pid_mtx; |
| 972 | fasttrap_tracepoint_t *tp, tp_local; |
| 973 | pid_t pid; |
| 974 | dtrace_icookie_t cookie; |
| 975 | uint_t is_enabled = 0, retire_tp = 1; |
| 976 | |
| 977 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
| 978 | |
| 979 | /* |
| 980 | * It's possible that a user (in a veritable orgy of bad planning) |
| 981 | * could redirect this thread's flow of control before it reached the |
| 982 | * return probe fasttrap. In this case we need to kill the process |
| 983 | * since it's in a unrecoverable state. |
| 984 | */ |
| 985 | if (uthread->t_dtrace_step) { |
| 986 | ASSERT(uthread->t_dtrace_on); |
| 987 | fasttrap_sigtrap(p, uthread, pc); |
| 988 | return (0); |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Clear all user tracing flags. |
| 993 | */ |
| 994 | uthread->t_dtrace_ft = 0; |
| 995 | uthread->t_dtrace_pc = 0; |
| 996 | uthread->t_dtrace_npc = 0; |
| 997 | uthread->t_dtrace_scrpc = 0; |
| 998 | uthread->t_dtrace_astpc = 0; |
| 999 | |
| 1000 | /* |
| 1001 | * Treat a child created by a call to vfork(2) as if it were its |
| 1002 | * parent. We know that there's only one thread of control in such a |
| 1003 | * process: this one. |
| 1004 | */ |
| 1005 | if (p->p_lflag & P_LINVFORK) { |
| 1006 | proc_list_lock(); |
| 1007 | while (p->p_lflag & P_LINVFORK) |
| 1008 | p = p->p_pptr; |
| 1009 | proc_list_unlock(); |
| 1010 | } |
| 1011 | |
| 1012 | pid = p->p_pid; |
| 1013 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
| 1014 | lck_mtx_lock(pid_mtx); |
| 1015 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
| 1016 | |
| 1017 | /* |
| 1018 | * Lookup the tracepoint that the process just hit. |
| 1019 | */ |
| 1020 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
| 1021 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
| 1022 | tp->ftt_proc->ftpc_acount != 0) |
| 1023 | break; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * If we couldn't find a matching tracepoint, either a tracepoint has |
| 1028 | * been inserted without using the pid<pid> ioctl interface (see |
| 1029 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. |
| 1030 | */ |
| 1031 | if (tp == NULL) { |
| 1032 | lck_mtx_unlock(pid_mtx); |
| 1033 | return (-1); |
| 1034 | } |
| 1035 | |
| 1036 | /* |
| 1037 | * Set the program counter to the address of the traced instruction |
| 1038 | * so that it looks right in ustack() output. |
| 1039 | */ |
| 1040 | regs32->eip = pc; |
| 1041 | |
| 1042 | if (tp->ftt_ids != NULL) { |
| 1043 | fasttrap_id_t *id; |
| 1044 | |
| 1045 | uint32_t s0, s1, s2, s3, s4, s5; |
| 1046 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
| 1047 | |
| 1048 | /* |
| 1049 | * In 32-bit mode, all arguments are passed on the |
| 1050 | * stack. If this is a function entry probe, we need |
| 1051 | * to skip the first entry on the stack as it |
| 1052 | * represents the return address rather than a |
| 1053 | * parameter to the function. |
| 1054 | */ |
| 1055 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0); |
| 1056 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1); |
| 1057 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2); |
| 1058 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3); |
| 1059 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4); |
| 1060 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5); |
| 1061 | |
| 1062 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { |
| 1063 | fasttrap_probe_t *probe = id->fti_probe; |
| 1064 | |
| 1065 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
| 1066 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
| 1067 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
| 1068 | } else { |
| 1069 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
| 1070 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
| 1071 | if (already_triggered) { |
| 1072 | continue; |
| 1073 | } |
| 1074 | } |
| 1075 | /* |
| 1076 | * If we have at least one probe associated that |
| 1077 | * is not a oneshot probe, don't remove the |
| 1078 | * tracepoint |
| 1079 | */ |
| 1080 | else { |
| 1081 | retire_tp = 0; |
| 1082 | } |
| 1083 | if (id->fti_ptype == DTFTP_ENTRY) { |
| 1084 | /* |
| 1085 | * We note that this was an entry |
| 1086 | * probe to help ustack() find the |
| 1087 | * first caller. |
| 1088 | */ |
| 1089 | cookie = dtrace_interrupt_disable(); |
| 1090 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); |
| 1091 | dtrace_probe(probe->ftp_id, s1, s2, |
| 1092 | s3, s4, s5); |
| 1093 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); |
| 1094 | dtrace_interrupt_enable(cookie); |
| 1095 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { |
| 1096 | /* |
| 1097 | * Note that in this case, we don't |
| 1098 | * call dtrace_probe() since it's only |
| 1099 | * an artificial probe meant to change |
| 1100 | * the flow of control so that it |
| 1101 | * encounters the true probe. |
| 1102 | */ |
| 1103 | is_enabled = 1; |
| 1104 | } else if (probe->ftp_argmap == NULL) { |
| 1105 | dtrace_probe(probe->ftp_id, s0, s1, |
| 1106 | s2, s3, s4); |
| 1107 | } else { |
| 1108 | uint32_t t[5]; |
| 1109 | |
| 1110 | fasttrap_usdt_args32(probe, regs32, |
| 1111 | sizeof (t) / sizeof (t[0]), t); |
| 1112 | |
| 1113 | dtrace_probe(probe->ftp_id, t[0], t[1], |
| 1114 | t[2], t[3], t[4]); |
| 1115 | } |
| 1116 | } |
| 1117 | } |
| 1118 | if (retire_tp) { |
| 1119 | fasttrap_tracepoint_retire(p, tp); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * We're about to do a bunch of work so we cache a local copy of |
| 1125 | * the tracepoint to emulate the instruction, and then find the |
| 1126 | * tracepoint again later if we need to light up any return probes. |
| 1127 | */ |
| 1128 | tp_local = *tp; |
| 1129 | lck_mtx_unlock(pid_mtx); |
| 1130 | tp = &tp_local; |
| 1131 | |
| 1132 | /* |
| 1133 | * Set the program counter to appear as though the traced instruction |
| 1134 | * had completely executed. This ensures that fasttrap_getreg() will |
| 1135 | * report the expected value for REG_RIP. |
| 1136 | */ |
| 1137 | regs32->eip = pc + tp->ftt_size; |
| 1138 | |
| 1139 | /* |
| 1140 | * If there's an is-enabled probe connected to this tracepoint it |
| 1141 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' |
| 1142 | * instruction that was placed there by DTrace when the binary was |
| 1143 | * linked. As this probe is, in fact, enabled, we need to stuff 1 |
| 1144 | * into %eax or %rax. Accordingly, we can bypass all the instruction |
| 1145 | * emulation logic since we know the inevitable result. It's possible |
| 1146 | * that a user could construct a scenario where the 'is-enabled' |
| 1147 | * probe was on some other instruction, but that would be a rather |
| 1148 | * exotic way to shoot oneself in the foot. |
| 1149 | */ |
| 1150 | if (is_enabled) { |
| 1151 | regs32->eax = 1; |
| 1152 | new_pc = regs32->eip; |
| 1153 | goto done; |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * We emulate certain types of instructions to ensure correctness |
| 1158 | * (in the case of position dependent instructions) or optimize |
| 1159 | * common cases. The rest we have the thread execute back in user- |
| 1160 | * land. |
| 1161 | */ |
| 1162 | switch (tp->ftt_type) { |
| 1163 | case FASTTRAP_T_RET: |
| 1164 | case FASTTRAP_T_RET16: |
| 1165 | { |
| 1166 | user_addr_t dst; |
| 1167 | user_addr_t addr; |
| 1168 | int ret; |
| 1169 | |
| 1170 | /* |
| 1171 | * We have to emulate _every_ facet of the behavior of a ret |
| 1172 | * instruction including what happens if the load from %esp |
| 1173 | * fails; in that case, we send a SIGSEGV. |
| 1174 | */ |
| 1175 | uint32_t dst32; |
| 1176 | ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32); |
| 1177 | dst = dst32; |
| 1178 | addr = regs32->uesp + sizeof (uint32_t); |
| 1179 | |
| 1180 | if (ret == -1) { |
| 1181 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp); |
| 1182 | new_pc = pc; |
| 1183 | break; |
| 1184 | } |
| 1185 | |
| 1186 | if (tp->ftt_type == FASTTRAP_T_RET16) |
| 1187 | addr += tp->ftt_dest; |
| 1188 | |
| 1189 | regs32->uesp = addr; |
| 1190 | new_pc = dst; |
| 1191 | break; |
| 1192 | } |
| 1193 | |
| 1194 | case FASTTRAP_T_JCC: |
| 1195 | { |
| 1196 | uint_t taken; |
| 1197 | |
| 1198 | switch (tp->ftt_code) { |
| 1199 | case FASTTRAP_JO: |
| 1200 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0; |
| 1201 | break; |
| 1202 | case FASTTRAP_JNO: |
| 1203 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0; |
| 1204 | break; |
| 1205 | case FASTTRAP_JB: |
| 1206 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0; |
| 1207 | break; |
| 1208 | case FASTTRAP_JAE: |
| 1209 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0; |
| 1210 | break; |
| 1211 | case FASTTRAP_JE: |
| 1212 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; |
| 1213 | break; |
| 1214 | case FASTTRAP_JNE: |
| 1215 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; |
| 1216 | break; |
| 1217 | case FASTTRAP_JBE: |
| 1218 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 || |
| 1219 | (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; |
| 1220 | break; |
| 1221 | case FASTTRAP_JA: |
| 1222 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 && |
| 1223 | (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; |
| 1224 | break; |
| 1225 | case FASTTRAP_JS: |
| 1226 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0; |
| 1227 | break; |
| 1228 | case FASTTRAP_JNS: |
| 1229 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0; |
| 1230 | break; |
| 1231 | case FASTTRAP_JP: |
| 1232 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0; |
| 1233 | break; |
| 1234 | case FASTTRAP_JNP: |
| 1235 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0; |
| 1236 | break; |
| 1237 | case FASTTRAP_JL: |
| 1238 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != |
| 1239 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
| 1240 | break; |
| 1241 | case FASTTRAP_JGE: |
| 1242 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == |
| 1243 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
| 1244 | break; |
| 1245 | case FASTTRAP_JLE: |
| 1246 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 || |
| 1247 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != |
| 1248 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
| 1249 | break; |
| 1250 | case FASTTRAP_JG: |
| 1251 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && |
| 1252 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == |
| 1253 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); |
| 1254 | break; |
| 1255 | default: |
| 1256 | taken = FALSE; |
| 1257 | } |
| 1258 | |
| 1259 | if (taken) |
| 1260 | new_pc = tp->ftt_dest; |
| 1261 | else |
| 1262 | new_pc = pc + tp->ftt_size; |
| 1263 | break; |
| 1264 | } |
| 1265 | |
| 1266 | case FASTTRAP_T_LOOP: |
| 1267 | { |
| 1268 | uint_t taken; |
| 1269 | greg_t cx = regs32->ecx--; |
| 1270 | |
| 1271 | switch (tp->ftt_code) { |
| 1272 | case FASTTRAP_LOOPNZ: |
| 1273 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && |
| 1274 | cx != 0; |
| 1275 | break; |
| 1276 | case FASTTRAP_LOOPZ: |
| 1277 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 && |
| 1278 | cx != 0; |
| 1279 | break; |
| 1280 | case FASTTRAP_LOOP: |
| 1281 | taken = (cx != 0); |
| 1282 | break; |
| 1283 | default: |
| 1284 | taken = FALSE; |
| 1285 | } |
| 1286 | |
| 1287 | if (taken) |
| 1288 | new_pc = tp->ftt_dest; |
| 1289 | else |
| 1290 | new_pc = pc + tp->ftt_size; |
| 1291 | break; |
| 1292 | } |
| 1293 | |
| 1294 | case FASTTRAP_T_JCXZ: |
| 1295 | { |
| 1296 | greg_t cx = regs32->ecx; |
| 1297 | |
| 1298 | if (cx == 0) |
| 1299 | new_pc = tp->ftt_dest; |
| 1300 | else |
| 1301 | new_pc = pc + tp->ftt_size; |
| 1302 | break; |
| 1303 | } |
| 1304 | |
| 1305 | case FASTTRAP_T_PUSHL_EBP: |
| 1306 | { |
| 1307 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); |
| 1308 | int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp); |
| 1309 | |
| 1310 | if (ret == -1) { |
| 1311 | fasttrap_sigsegv(p, uthread, addr); |
| 1312 | new_pc = pc; |
| 1313 | break; |
| 1314 | } |
| 1315 | |
| 1316 | regs32->uesp = addr; |
| 1317 | new_pc = pc + tp->ftt_size; |
| 1318 | break; |
| 1319 | } |
| 1320 | |
| 1321 | case FASTTRAP_T_NOP: |
| 1322 | new_pc = pc + tp->ftt_size; |
| 1323 | break; |
| 1324 | |
| 1325 | case FASTTRAP_T_JMP: |
| 1326 | case FASTTRAP_T_CALL: |
| 1327 | if (tp->ftt_code == 0) { |
| 1328 | new_pc = tp->ftt_dest; |
| 1329 | } else { |
| 1330 | user_addr_t /* value ,*/ addr = tp->ftt_dest; |
| 1331 | |
| 1332 | if (tp->ftt_base != FASTTRAP_NOREG) |
| 1333 | addr += fasttrap_getreg(regs, tp->ftt_base); |
| 1334 | if (tp->ftt_index != FASTTRAP_NOREG) |
| 1335 | addr += fasttrap_getreg(regs, tp->ftt_index) << |
| 1336 | tp->ftt_scale; |
| 1337 | |
| 1338 | if (tp->ftt_code == 1) { |
| 1339 | /* |
| 1340 | * If there's a segment prefix for this |
| 1341 | * instruction, we'll need to check permissions |
| 1342 | * and bounds on the given selector, and adjust |
| 1343 | * the address accordingly. |
| 1344 | */ |
| 1345 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && |
| 1346 | fasttrap_do_seg(tp, regs, &addr) != 0) { |
| 1347 | fasttrap_sigsegv(p, uthread, addr); |
| 1348 | new_pc = pc; |
| 1349 | break; |
| 1350 | } |
| 1351 | |
| 1352 | uint32_t value32; |
| 1353 | addr = (user_addr_t)(uint32_t)addr; |
| 1354 | if (fasttrap_fuword32(addr, &value32) == -1) { |
| 1355 | fasttrap_sigsegv(p, uthread, addr); |
| 1356 | new_pc = pc; |
| 1357 | break; |
| 1358 | } |
| 1359 | new_pc = value32; |
| 1360 | } else { |
| 1361 | new_pc = addr; |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | /* |
| 1366 | * If this is a call instruction, we need to push the return |
| 1367 | * address onto the stack. If this fails, we send the process |
| 1368 | * a SIGSEGV and reset the pc to emulate what would happen if |
| 1369 | * this instruction weren't traced. |
| 1370 | */ |
| 1371 | if (tp->ftt_type == FASTTRAP_T_CALL) { |
| 1372 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); |
| 1373 | int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size)); |
| 1374 | |
| 1375 | if (ret == -1) { |
| 1376 | fasttrap_sigsegv(p, uthread, addr); |
| 1377 | new_pc = pc; |
| 1378 | break; |
| 1379 | } |
| 1380 | |
| 1381 | regs32->uesp = addr; |
| 1382 | } |
| 1383 | break; |
| 1384 | |
| 1385 | case FASTTRAP_T_COMMON: |
| 1386 | { |
| 1387 | user_addr_t addr, write_addr; |
| 1388 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; |
| 1389 | uint_t i = 0; |
| 1390 | |
| 1391 | /* |
| 1392 | * Generic Instruction Tracing |
| 1393 | * --------------------------- |
| 1394 | * |
| 1395 | * This is the layout of the scratch space in the user-land |
| 1396 | * thread structure for our generated instructions. |
| 1397 | * |
| 1398 | * 32-bit mode bytes |
| 1399 | * ------------------------ ----- |
| 1400 | * a: <original instruction> <= 15 |
| 1401 | * jmp <pc + tp->ftt_size> 5 |
| 1402 | * b: <original instrction> <= 15 |
| 1403 | * int T_DTRACE_RET 2 |
| 1404 | * ----- |
| 1405 | * <= 37 |
| 1406 | * |
| 1407 | * 64-bit mode bytes |
| 1408 | * ------------------------ ----- |
| 1409 | * a: <original instruction> <= 15 |
| 1410 | * jmp 0(%rip) 6 |
| 1411 | * <pc + tp->ftt_size> 8 |
| 1412 | * b: <original instruction> <= 15 |
| 1413 | * int T_DTRACE_RET 2 |
| 1414 | * ----- |
| 1415 | * <= 46 |
| 1416 | * |
| 1417 | * The %pc is set to a, and curthread->t_dtrace_astpc is set |
| 1418 | * to b. If we encounter a signal on the way out of the |
| 1419 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc |
| 1420 | * so that we execute the original instruction and re-enter |
| 1421 | * the kernel rather than redirecting to the next instruction. |
| 1422 | * |
| 1423 | * If there are return probes (so we know that we're going to |
| 1424 | * need to reenter the kernel after executing the original |
| 1425 | * instruction), the scratch space will just contain the |
| 1426 | * original instruction followed by an interrupt -- the same |
| 1427 | * data as at b. |
| 1428 | */ |
| 1429 | |
| 1430 | addr = uthread->t_dtrace_scratch->addr; |
| 1431 | write_addr = uthread->t_dtrace_scratch->write_addr; |
| 1432 | |
| 1433 | if (addr == 0LL || write_addr == 0LL) { |
| 1434 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc |
| 1435 | new_pc = pc; |
| 1436 | break; |
| 1437 | } |
| 1438 | |
| 1439 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); |
| 1440 | |
| 1441 | uthread->t_dtrace_scrpc = addr; |
| 1442 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
| 1443 | i += tp->ftt_size; |
| 1444 | |
| 1445 | /* |
| 1446 | * Set up the jmp to the next instruction; note that |
| 1447 | * the size of the traced instruction cancels out. |
| 1448 | */ |
| 1449 | scratch[i++] = FASTTRAP_JMP32; |
| 1450 | /* LINTED - alignment */ |
| 1451 | *(uint32_t *)&scratch[i] = pc - addr - 5; |
| 1452 | i += sizeof (uint32_t); |
| 1453 | |
| 1454 | uthread->t_dtrace_astpc = addr + i; |
| 1455 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
| 1456 | i += tp->ftt_size; |
| 1457 | scratch[i++] = FASTTRAP_INT; |
| 1458 | scratch[i++] = T_DTRACE_RET; |
| 1459 | |
| 1460 | ASSERT(i <= sizeof (scratch)); |
| 1461 | |
| 1462 | if (fasttrap_copyout(scratch, write_addr, i)) { |
| 1463 | fasttrap_sigtrap(p, uthread, pc); |
| 1464 | new_pc = pc; |
| 1465 | break; |
| 1466 | } |
| 1467 | |
| 1468 | if (tp->ftt_retids != NULL) { |
| 1469 | uthread->t_dtrace_step = 1; |
| 1470 | uthread->t_dtrace_ret = 1; |
| 1471 | new_pc = uthread->t_dtrace_astpc; |
| 1472 | } else { |
| 1473 | new_pc = uthread->t_dtrace_scrpc; |
| 1474 | } |
| 1475 | |
| 1476 | uthread->t_dtrace_pc = pc; |
| 1477 | uthread->t_dtrace_npc = pc + tp->ftt_size; |
| 1478 | uthread->t_dtrace_on = 1; |
| 1479 | break; |
| 1480 | } |
| 1481 | |
| 1482 | default: |
| 1483 | panic("fasttrap: mishandled an instruction" ); |
| 1484 | } |
| 1485 | |
| 1486 | done: |
| 1487 | /* |
| 1488 | * APPLE NOTE: |
| 1489 | * |
| 1490 | * We're setting this earlier than Solaris does, to get a "correct" |
| 1491 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is |
| 1492 | * reported at: d, b, a. The new way gives c, b, a, which is closer |
| 1493 | * to correct, as the return instruction has already exectued. |
| 1494 | */ |
| 1495 | regs32->eip = new_pc; |
| 1496 | |
| 1497 | /* |
| 1498 | * If there were no return probes when we first found the tracepoint, |
| 1499 | * we should feel no obligation to honor any return probes that were |
| 1500 | * subsequently enabled -- they'll just have to wait until the next |
| 1501 | * time around. |
| 1502 | */ |
| 1503 | if (tp->ftt_retids != NULL) { |
| 1504 | /* |
| 1505 | * We need to wait until the results of the instruction are |
| 1506 | * apparent before invoking any return probes. If this |
| 1507 | * instruction was emulated we can just call |
| 1508 | * fasttrap_return_common(); if it needs to be executed, we |
| 1509 | * need to wait until the user thread returns to the kernel. |
| 1510 | */ |
| 1511 | if (tp->ftt_type != FASTTRAP_T_COMMON) { |
| 1512 | fasttrap_return_common(regs, pc, pid, new_pc); |
| 1513 | } else { |
| 1514 | ASSERT(uthread->t_dtrace_ret != 0); |
| 1515 | ASSERT(uthread->t_dtrace_pc == pc); |
| 1516 | ASSERT(uthread->t_dtrace_scrpc != 0); |
| 1517 | ASSERT(new_pc == uthread->t_dtrace_astpc); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | return (0); |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit |
| 1526 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes |
| 1527 | * call other methods that require a x86_saved_state_t. |
| 1528 | * |
| 1529 | * NOTE!!!! |
| 1530 | * |
| 1531 | * Any changes made to this method must be echo'd in fasttrap_pid_probe32! |
| 1532 | * |
| 1533 | */ |
| 1534 | static int |
| 1535 | fasttrap_pid_probe64(x86_saved_state_t *regs) |
| 1536 | { |
| 1537 | ASSERT(is_saved_state64(regs)); |
| 1538 | |
| 1539 | x86_saved_state64_t *regs64 = saved_state64(regs); |
| 1540 | user_addr_t pc = regs64->isf.rip - 1; |
| 1541 | proc_t *p = current_proc(); |
| 1542 | user_addr_t new_pc = 0; |
| 1543 | fasttrap_bucket_t *bucket; |
| 1544 | lck_mtx_t *pid_mtx; |
| 1545 | fasttrap_tracepoint_t *tp, tp_local; |
| 1546 | pid_t pid; |
| 1547 | dtrace_icookie_t cookie; |
| 1548 | uint_t is_enabled = 0; |
| 1549 | int retire_tp = 1; |
| 1550 | |
| 1551 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
| 1552 | |
| 1553 | /* |
| 1554 | * It's possible that a user (in a veritable orgy of bad planning) |
| 1555 | * could redirect this thread's flow of control before it reached the |
| 1556 | * return probe fasttrap. In this case we need to kill the process |
| 1557 | * since it's in a unrecoverable state. |
| 1558 | */ |
| 1559 | if (uthread->t_dtrace_step) { |
| 1560 | ASSERT(uthread->t_dtrace_on); |
| 1561 | fasttrap_sigtrap(p, uthread, pc); |
| 1562 | return (0); |
| 1563 | } |
| 1564 | |
| 1565 | /* |
| 1566 | * Clear all user tracing flags. |
| 1567 | */ |
| 1568 | uthread->t_dtrace_ft = 0; |
| 1569 | uthread->t_dtrace_pc = 0; |
| 1570 | uthread->t_dtrace_npc = 0; |
| 1571 | uthread->t_dtrace_scrpc = 0; |
| 1572 | uthread->t_dtrace_astpc = 0; |
| 1573 | uthread->t_dtrace_regv = 0; |
| 1574 | |
| 1575 | /* |
| 1576 | * Treat a child created by a call to vfork(2) as if it were its |
| 1577 | * parent. We know that there's only one thread of control in such a |
| 1578 | * process: this one. |
| 1579 | */ |
| 1580 | if (p->p_lflag & P_LINVFORK) { |
| 1581 | proc_list_lock(); |
| 1582 | while (p->p_lflag & P_LINVFORK) |
| 1583 | p = p->p_pptr; |
| 1584 | proc_list_unlock(); |
| 1585 | } |
| 1586 | |
| 1587 | pid = p->p_pid; |
| 1588 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; |
| 1589 | lck_mtx_lock(pid_mtx); |
| 1590 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; |
| 1591 | |
| 1592 | /* |
| 1593 | * Lookup the tracepoint that the process just hit. |
| 1594 | */ |
| 1595 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { |
| 1596 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && |
| 1597 | tp->ftt_proc->ftpc_acount != 0) |
| 1598 | break; |
| 1599 | } |
| 1600 | |
| 1601 | /* |
| 1602 | * If we couldn't find a matching tracepoint, either a tracepoint has |
| 1603 | * been inserted without using the pid<pid> ioctl interface (see |
| 1604 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. |
| 1605 | */ |
| 1606 | if (tp == NULL) { |
| 1607 | lck_mtx_unlock(pid_mtx); |
| 1608 | return (-1); |
| 1609 | } |
| 1610 | |
| 1611 | /* |
| 1612 | * Set the program counter to the address of the traced instruction |
| 1613 | * so that it looks right in ustack() output. |
| 1614 | */ |
| 1615 | regs64->isf.rip = pc; |
| 1616 | |
| 1617 | if (tp->ftt_ids != NULL) { |
| 1618 | fasttrap_id_t *id; |
| 1619 | |
| 1620 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { |
| 1621 | fasttrap_probe_t *probe = id->fti_probe; |
| 1622 | |
| 1623 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { |
| 1624 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); |
| 1625 | if (already_triggered) { |
| 1626 | continue; |
| 1627 | } |
| 1628 | } |
| 1629 | /* |
| 1630 | * If we have at least probe associated that |
| 1631 | * is not a oneshot probe, don't remove the |
| 1632 | * tracepoint |
| 1633 | */ |
| 1634 | else { |
| 1635 | retire_tp = 0; |
| 1636 | } |
| 1637 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
| 1638 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, |
| 1639 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); |
| 1640 | } else if (id->fti_ptype == DTFTP_ENTRY) { |
| 1641 | /* |
| 1642 | * We note that this was an entry |
| 1643 | * probe to help ustack() find the |
| 1644 | * first caller. |
| 1645 | */ |
| 1646 | cookie = dtrace_interrupt_disable(); |
| 1647 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); |
| 1648 | dtrace_probe(probe->ftp_id, regs64->rdi, |
| 1649 | regs64->rsi, regs64->rdx, regs64->rcx, |
| 1650 | regs64->r8); |
| 1651 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); |
| 1652 | dtrace_interrupt_enable(cookie); |
| 1653 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { |
| 1654 | /* |
| 1655 | * Note that in this case, we don't |
| 1656 | * call dtrace_probe() since it's only |
| 1657 | * an artificial probe meant to change |
| 1658 | * the flow of control so that it |
| 1659 | * encounters the true probe. |
| 1660 | */ |
| 1661 | is_enabled = 1; |
| 1662 | } else if (probe->ftp_argmap == NULL) { |
| 1663 | dtrace_probe(probe->ftp_id, regs64->rdi, |
| 1664 | regs64->rsi, regs64->rdx, regs64->rcx, |
| 1665 | regs64->r8); |
| 1666 | } else { |
| 1667 | uint64_t t[5]; |
| 1668 | |
| 1669 | fasttrap_usdt_args64(probe, regs64, |
| 1670 | sizeof (t) / sizeof (t[0]), t); |
| 1671 | |
| 1672 | dtrace_probe(probe->ftp_id, t[0], t[1], |
| 1673 | t[2], t[3], t[4]); |
| 1674 | } |
| 1675 | |
| 1676 | } |
| 1677 | if (retire_tp) { |
| 1678 | fasttrap_tracepoint_retire(p, tp); |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | /* |
| 1683 | * We're about to do a bunch of work so we cache a local copy of |
| 1684 | * the tracepoint to emulate the instruction, and then find the |
| 1685 | * tracepoint again later if we need to light up any return probes. |
| 1686 | */ |
| 1687 | tp_local = *tp; |
| 1688 | lck_mtx_unlock(pid_mtx); |
| 1689 | tp = &tp_local; |
| 1690 | |
| 1691 | /* |
| 1692 | * Set the program counter to appear as though the traced instruction |
| 1693 | * had completely executed. This ensures that fasttrap_getreg() will |
| 1694 | * report the expected value for REG_RIP. |
| 1695 | */ |
| 1696 | regs64->isf.rip = pc + tp->ftt_size; |
| 1697 | |
| 1698 | /* |
| 1699 | * If there's an is-enabled probe connected to this tracepoint it |
| 1700 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' |
| 1701 | * instruction that was placed there by DTrace when the binary was |
| 1702 | * linked. As this probe is, in fact, enabled, we need to stuff 1 |
| 1703 | * into %eax or %rax. Accordingly, we can bypass all the instruction |
| 1704 | * emulation logic since we know the inevitable result. It's possible |
| 1705 | * that a user could construct a scenario where the 'is-enabled' |
| 1706 | * probe was on some other instruction, but that would be a rather |
| 1707 | * exotic way to shoot oneself in the foot. |
| 1708 | */ |
| 1709 | if (is_enabled) { |
| 1710 | regs64->rax = 1; |
| 1711 | new_pc = regs64->isf.rip; |
| 1712 | goto done; |
| 1713 | } |
| 1714 | |
| 1715 | /* |
| 1716 | * We emulate certain types of instructions to ensure correctness |
| 1717 | * (in the case of position dependent instructions) or optimize |
| 1718 | * common cases. The rest we have the thread execute back in user- |
| 1719 | * land. |
| 1720 | */ |
| 1721 | switch (tp->ftt_type) { |
| 1722 | case FASTTRAP_T_RET: |
| 1723 | case FASTTRAP_T_RET16: |
| 1724 | { |
| 1725 | user_addr_t dst; |
| 1726 | user_addr_t addr; |
| 1727 | int ret; |
| 1728 | |
| 1729 | /* |
| 1730 | * We have to emulate _every_ facet of the behavior of a ret |
| 1731 | * instruction including what happens if the load from %esp |
| 1732 | * fails; in that case, we send a SIGSEGV. |
| 1733 | */ |
| 1734 | ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst); |
| 1735 | addr = regs64->isf.rsp + sizeof (uint64_t); |
| 1736 | |
| 1737 | if (ret == -1) { |
| 1738 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp); |
| 1739 | new_pc = pc; |
| 1740 | break; |
| 1741 | } |
| 1742 | |
| 1743 | if (tp->ftt_type == FASTTRAP_T_RET16) |
| 1744 | addr += tp->ftt_dest; |
| 1745 | |
| 1746 | regs64->isf.rsp = addr; |
| 1747 | new_pc = dst; |
| 1748 | break; |
| 1749 | } |
| 1750 | |
| 1751 | case FASTTRAP_T_JCC: |
| 1752 | { |
| 1753 | uint_t taken; |
| 1754 | |
| 1755 | switch (tp->ftt_code) { |
| 1756 | case FASTTRAP_JO: |
| 1757 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0; |
| 1758 | break; |
| 1759 | case FASTTRAP_JNO: |
| 1760 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0; |
| 1761 | break; |
| 1762 | case FASTTRAP_JB: |
| 1763 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0; |
| 1764 | break; |
| 1765 | case FASTTRAP_JAE: |
| 1766 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0; |
| 1767 | break; |
| 1768 | case FASTTRAP_JE: |
| 1769 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; |
| 1770 | break; |
| 1771 | case FASTTRAP_JNE: |
| 1772 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; |
| 1773 | break; |
| 1774 | case FASTTRAP_JBE: |
| 1775 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 || |
| 1776 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; |
| 1777 | break; |
| 1778 | case FASTTRAP_JA: |
| 1779 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 && |
| 1780 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; |
| 1781 | break; |
| 1782 | case FASTTRAP_JS: |
| 1783 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0; |
| 1784 | break; |
| 1785 | case FASTTRAP_JNS: |
| 1786 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0; |
| 1787 | break; |
| 1788 | case FASTTRAP_JP: |
| 1789 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0; |
| 1790 | break; |
| 1791 | case FASTTRAP_JNP: |
| 1792 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0; |
| 1793 | break; |
| 1794 | case FASTTRAP_JL: |
| 1795 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != |
| 1796 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
| 1797 | break; |
| 1798 | case FASTTRAP_JGE: |
| 1799 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == |
| 1800 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
| 1801 | break; |
| 1802 | case FASTTRAP_JLE: |
| 1803 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 || |
| 1804 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != |
| 1805 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
| 1806 | break; |
| 1807 | case FASTTRAP_JG: |
| 1808 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && |
| 1809 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == |
| 1810 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); |
| 1811 | break; |
| 1812 | default: |
| 1813 | taken = FALSE; |
| 1814 | } |
| 1815 | |
| 1816 | if (taken) |
| 1817 | new_pc = tp->ftt_dest; |
| 1818 | else |
| 1819 | new_pc = pc + tp->ftt_size; |
| 1820 | break; |
| 1821 | } |
| 1822 | |
| 1823 | case FASTTRAP_T_LOOP: |
| 1824 | { |
| 1825 | uint_t taken; |
| 1826 | uint64_t cx = regs64->rcx--; |
| 1827 | |
| 1828 | switch (tp->ftt_code) { |
| 1829 | case FASTTRAP_LOOPNZ: |
| 1830 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && |
| 1831 | cx != 0; |
| 1832 | break; |
| 1833 | case FASTTRAP_LOOPZ: |
| 1834 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 && |
| 1835 | cx != 0; |
| 1836 | break; |
| 1837 | case FASTTRAP_LOOP: |
| 1838 | taken = (cx != 0); |
| 1839 | break; |
| 1840 | default: |
| 1841 | taken = FALSE; |
| 1842 | } |
| 1843 | |
| 1844 | if (taken) |
| 1845 | new_pc = tp->ftt_dest; |
| 1846 | else |
| 1847 | new_pc = pc + tp->ftt_size; |
| 1848 | break; |
| 1849 | } |
| 1850 | |
| 1851 | case FASTTRAP_T_JCXZ: |
| 1852 | { |
| 1853 | uint64_t cx = regs64->rcx; |
| 1854 | |
| 1855 | if (cx == 0) |
| 1856 | new_pc = tp->ftt_dest; |
| 1857 | else |
| 1858 | new_pc = pc + tp->ftt_size; |
| 1859 | break; |
| 1860 | } |
| 1861 | |
| 1862 | case FASTTRAP_T_PUSHL_EBP: |
| 1863 | { |
| 1864 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); |
| 1865 | int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp); |
| 1866 | |
| 1867 | if (ret == -1) { |
| 1868 | fasttrap_sigsegv(p, uthread, addr); |
| 1869 | new_pc = pc; |
| 1870 | break; |
| 1871 | } |
| 1872 | |
| 1873 | regs64->isf.rsp = addr; |
| 1874 | new_pc = pc + tp->ftt_size; |
| 1875 | break; |
| 1876 | } |
| 1877 | |
| 1878 | case FASTTRAP_T_NOP: |
| 1879 | new_pc = pc + tp->ftt_size; |
| 1880 | break; |
| 1881 | |
| 1882 | case FASTTRAP_T_JMP: |
| 1883 | case FASTTRAP_T_CALL: |
| 1884 | if (tp->ftt_code == 0) { |
| 1885 | new_pc = tp->ftt_dest; |
| 1886 | } else { |
| 1887 | user_addr_t value, addr = tp->ftt_dest; |
| 1888 | |
| 1889 | if (tp->ftt_base != FASTTRAP_NOREG) |
| 1890 | addr += fasttrap_getreg(regs, tp->ftt_base); |
| 1891 | if (tp->ftt_index != FASTTRAP_NOREG) |
| 1892 | addr += fasttrap_getreg(regs, tp->ftt_index) << |
| 1893 | tp->ftt_scale; |
| 1894 | |
| 1895 | if (tp->ftt_code == 1) { |
| 1896 | /* |
| 1897 | * If there's a segment prefix for this |
| 1898 | * instruction, we'll need to check permissions |
| 1899 | * and bounds on the given selector, and adjust |
| 1900 | * the address accordingly. |
| 1901 | */ |
| 1902 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && |
| 1903 | fasttrap_do_seg(tp, regs, &addr) != 0) { |
| 1904 | fasttrap_sigsegv(p, uthread, addr); |
| 1905 | new_pc = pc; |
| 1906 | break; |
| 1907 | } |
| 1908 | |
| 1909 | if (fasttrap_fuword64(addr, &value) == -1) { |
| 1910 | fasttrap_sigsegv(p, uthread, addr); |
| 1911 | new_pc = pc; |
| 1912 | break; |
| 1913 | } |
| 1914 | new_pc = value; |
| 1915 | } else { |
| 1916 | new_pc = addr; |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | /* |
| 1921 | * If this is a call instruction, we need to push the return |
| 1922 | * address onto the stack. If this fails, we send the process |
| 1923 | * a SIGSEGV and reset the pc to emulate what would happen if |
| 1924 | * this instruction weren't traced. |
| 1925 | */ |
| 1926 | if (tp->ftt_type == FASTTRAP_T_CALL) { |
| 1927 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); |
| 1928 | int ret = fasttrap_suword64(addr, pc + tp->ftt_size); |
| 1929 | |
| 1930 | if (ret == -1) { |
| 1931 | fasttrap_sigsegv(p, uthread, addr); |
| 1932 | new_pc = pc; |
| 1933 | break; |
| 1934 | } |
| 1935 | |
| 1936 | regs64->isf.rsp = addr; |
| 1937 | } |
| 1938 | break; |
| 1939 | |
| 1940 | case FASTTRAP_T_COMMON: |
| 1941 | { |
| 1942 | user_addr_t addr, write_addr; |
| 1943 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; |
| 1944 | uint_t i = 0; |
| 1945 | |
| 1946 | /* |
| 1947 | * Generic Instruction Tracing |
| 1948 | * --------------------------- |
| 1949 | * |
| 1950 | * This is the layout of the scratch space in the user-land |
| 1951 | * thread structure for our generated instructions. |
| 1952 | * |
| 1953 | * 32-bit mode bytes |
| 1954 | * ------------------------ ----- |
| 1955 | * a: <original instruction> <= 15 |
| 1956 | * jmp <pc + tp->ftt_size> 5 |
| 1957 | * b: <original instrction> <= 15 |
| 1958 | * int T_DTRACE_RET 2 |
| 1959 | * ----- |
| 1960 | * <= 37 |
| 1961 | * |
| 1962 | * 64-bit mode bytes |
| 1963 | * ------------------------ ----- |
| 1964 | * a: <original instruction> <= 15 |
| 1965 | * jmp 0(%rip) 6 |
| 1966 | * <pc + tp->ftt_size> 8 |
| 1967 | * b: <original instruction> <= 15 |
| 1968 | * int T_DTRACE_RET 2 |
| 1969 | * ----- |
| 1970 | * <= 46 |
| 1971 | * |
| 1972 | * The %pc is set to a, and curthread->t_dtrace_astpc is set |
| 1973 | * to b. If we encounter a signal on the way out of the |
| 1974 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc |
| 1975 | * so that we execute the original instruction and re-enter |
| 1976 | * the kernel rather than redirecting to the next instruction. |
| 1977 | * |
| 1978 | * If there are return probes (so we know that we're going to |
| 1979 | * need to reenter the kernel after executing the original |
| 1980 | * instruction), the scratch space will just contain the |
| 1981 | * original instruction followed by an interrupt -- the same |
| 1982 | * data as at b. |
| 1983 | * |
| 1984 | * %rip-relative Addressing |
| 1985 | * ------------------------ |
| 1986 | * |
| 1987 | * There's a further complication in 64-bit mode due to %rip- |
| 1988 | * relative addressing. While this is clearly a beneficial |
| 1989 | * architectural decision for position independent code, it's |
| 1990 | * hard not to see it as a personal attack against the pid |
| 1991 | * provider since before there was a relatively small set of |
| 1992 | * instructions to emulate; with %rip-relative addressing, |
| 1993 | * almost every instruction can potentially depend on the |
| 1994 | * address at which it's executed. Rather than emulating |
| 1995 | * the broad spectrum of instructions that can now be |
| 1996 | * position dependent, we emulate jumps and others as in |
| 1997 | * 32-bit mode, and take a different tack for instructions |
| 1998 | * using %rip-relative addressing. |
| 1999 | * |
| 2000 | * For every instruction that uses the ModRM byte, the |
| 2001 | * in-kernel disassembler reports its location. We use the |
| 2002 | * ModRM byte to identify that an instruction uses |
| 2003 | * %rip-relative addressing and to see what other registers |
| 2004 | * the instruction uses. To emulate those instructions, |
| 2005 | * we modify the instruction to be %rax-relative rather than |
| 2006 | * %rip-relative (or %rcx-relative if the instruction uses |
| 2007 | * %rax; or %r8- or %r9-relative if the REX.B is present so |
| 2008 | * we don't have to rewrite the REX prefix). We then load |
| 2009 | * the value that %rip would have been into the scratch |
| 2010 | * register and generate an instruction to reset the scratch |
| 2011 | * register back to its original value. The instruction |
| 2012 | * sequence looks like this: |
| 2013 | * |
| 2014 | * 64-mode %rip-relative bytes |
| 2015 | * ------------------------ ----- |
| 2016 | * a: <modified instruction> <= 15 |
| 2017 | * movq $<value>, %<scratch> 6 |
| 2018 | * jmp 0(%rip) 6 |
| 2019 | * <pc + tp->ftt_size> 8 |
| 2020 | * b: <modified instruction> <= 15 |
| 2021 | * int T_DTRACE_RET 2 |
| 2022 | * ----- |
| 2023 | * 52 |
| 2024 | * |
| 2025 | * We set curthread->t_dtrace_regv so that upon receiving |
| 2026 | * a signal we can reset the value of the scratch register. |
| 2027 | */ |
| 2028 | |
| 2029 | addr = uthread->t_dtrace_scratch->addr; |
| 2030 | write_addr = uthread->t_dtrace_scratch->write_addr; |
| 2031 | |
| 2032 | if (addr == 0LL || write_addr == 0LL) { |
| 2033 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc |
| 2034 | new_pc = pc; |
| 2035 | break; |
| 2036 | } |
| 2037 | |
| 2038 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); |
| 2039 | |
| 2040 | uthread->t_dtrace_scrpc = addr; |
| 2041 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
| 2042 | i += tp->ftt_size; |
| 2043 | |
| 2044 | if (tp->ftt_ripmode != 0) { |
| 2045 | uint64_t* reg; |
| 2046 | |
| 2047 | ASSERT(tp->ftt_ripmode & |
| 2048 | (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); |
| 2049 | |
| 2050 | /* |
| 2051 | * If this was a %rip-relative instruction, we change |
| 2052 | * it to be either a %rax- or %rcx-relative |
| 2053 | * instruction (depending on whether those registers |
| 2054 | * are used as another operand; or %r8- or %r9- |
| 2055 | * relative depending on the value of REX.B). We then |
| 2056 | * set that register and generate a movq instruction |
| 2057 | * to reset the value. |
| 2058 | */ |
| 2059 | if (tp->ftt_ripmode & FASTTRAP_RIP_X) |
| 2060 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); |
| 2061 | else |
| 2062 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); |
| 2063 | |
| 2064 | if (tp->ftt_ripmode & FASTTRAP_RIP_1) |
| 2065 | scratch[i++] = FASTTRAP_MOV_EAX; |
| 2066 | else |
| 2067 | scratch[i++] = FASTTRAP_MOV_ECX; |
| 2068 | |
| 2069 | switch (tp->ftt_ripmode) { |
| 2070 | case FASTTRAP_RIP_1: |
| 2071 | reg = ®s64->rax; |
| 2072 | uthread->t_dtrace_reg = REG_RAX; |
| 2073 | break; |
| 2074 | case FASTTRAP_RIP_2: |
| 2075 | reg = ®s64->rcx; |
| 2076 | uthread->t_dtrace_reg = REG_RCX; |
| 2077 | break; |
| 2078 | case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: |
| 2079 | reg = ®s64->r8; |
| 2080 | uthread->t_dtrace_reg = REG_R8; |
| 2081 | break; |
| 2082 | case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: |
| 2083 | reg = ®s64->r9; |
| 2084 | uthread->t_dtrace_reg = REG_R9; |
| 2085 | break; |
| 2086 | default: |
| 2087 | reg = NULL; |
| 2088 | panic("unhandled ripmode in fasttrap_pid_probe64" ); |
| 2089 | } |
| 2090 | |
| 2091 | /* LINTED - alignment */ |
| 2092 | *(uint64_t *)&scratch[i] = *reg; |
| 2093 | uthread->t_dtrace_regv = *reg; |
| 2094 | *reg = pc + tp->ftt_size; |
| 2095 | i += sizeof (uint64_t); |
| 2096 | } |
| 2097 | |
| 2098 | /* |
| 2099 | * Generate the branch instruction to what would have |
| 2100 | * normally been the subsequent instruction. In 32-bit mode, |
| 2101 | * this is just a relative branch; in 64-bit mode this is a |
| 2102 | * %rip-relative branch that loads the 64-bit pc value |
| 2103 | * immediately after the jmp instruction. |
| 2104 | */ |
| 2105 | scratch[i++] = FASTTRAP_GROUP5_OP; |
| 2106 | scratch[i++] = FASTTRAP_MODRM(0, 4, 5); |
| 2107 | /* LINTED - alignment */ |
| 2108 | *(uint32_t *)&scratch[i] = 0; |
| 2109 | i += sizeof (uint32_t); |
| 2110 | /* LINTED - alignment */ |
| 2111 | *(uint64_t *)&scratch[i] = pc + tp->ftt_size; |
| 2112 | i += sizeof (uint64_t); |
| 2113 | |
| 2114 | uthread->t_dtrace_astpc = addr + i; |
| 2115 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); |
| 2116 | i += tp->ftt_size; |
| 2117 | scratch[i++] = FASTTRAP_INT; |
| 2118 | scratch[i++] = T_DTRACE_RET; |
| 2119 | |
| 2120 | ASSERT(i <= sizeof (scratch)); |
| 2121 | |
| 2122 | if (fasttrap_copyout(scratch, write_addr, i)) { |
| 2123 | fasttrap_sigtrap(p, uthread, pc); |
| 2124 | new_pc = pc; |
| 2125 | break; |
| 2126 | } |
| 2127 | |
| 2128 | if (tp->ftt_retids != NULL) { |
| 2129 | uthread->t_dtrace_step = 1; |
| 2130 | uthread->t_dtrace_ret = 1; |
| 2131 | new_pc = uthread->t_dtrace_astpc; |
| 2132 | } else { |
| 2133 | new_pc = uthread->t_dtrace_scrpc; |
| 2134 | } |
| 2135 | |
| 2136 | uthread->t_dtrace_pc = pc; |
| 2137 | uthread->t_dtrace_npc = pc + tp->ftt_size; |
| 2138 | uthread->t_dtrace_on = 1; |
| 2139 | break; |
| 2140 | } |
| 2141 | |
| 2142 | default: |
| 2143 | panic("fasttrap: mishandled an instruction" ); |
| 2144 | } |
| 2145 | |
| 2146 | done: |
| 2147 | /* |
| 2148 | * APPLE NOTE: |
| 2149 | * |
| 2150 | * We're setting this earlier than Solaris does, to get a "correct" |
| 2151 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is |
| 2152 | * reported at: d, b, a. The new way gives c, b, a, which is closer |
| 2153 | * to correct, as the return instruction has already exectued. |
| 2154 | */ |
| 2155 | regs64->isf.rip = new_pc; |
| 2156 | |
| 2157 | |
| 2158 | /* |
| 2159 | * If there were no return probes when we first found the tracepoint, |
| 2160 | * we should feel no obligation to honor any return probes that were |
| 2161 | * subsequently enabled -- they'll just have to wait until the next |
| 2162 | * time around. |
| 2163 | */ |
| 2164 | if (tp->ftt_retids != NULL) { |
| 2165 | /* |
| 2166 | * We need to wait until the results of the instruction are |
| 2167 | * apparent before invoking any return probes. If this |
| 2168 | * instruction was emulated we can just call |
| 2169 | * fasttrap_return_common(); if it needs to be executed, we |
| 2170 | * need to wait until the user thread returns to the kernel. |
| 2171 | */ |
| 2172 | if (tp->ftt_type != FASTTRAP_T_COMMON) { |
| 2173 | fasttrap_return_common(regs, pc, pid, new_pc); |
| 2174 | } else { |
| 2175 | ASSERT(uthread->t_dtrace_ret != 0); |
| 2176 | ASSERT(uthread->t_dtrace_pc == pc); |
| 2177 | ASSERT(uthread->t_dtrace_scrpc != 0); |
| 2178 | ASSERT(new_pc == uthread->t_dtrace_astpc); |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | return (0); |
| 2183 | } |
| 2184 | |
| 2185 | int |
| 2186 | fasttrap_pid_probe(x86_saved_state_t *regs) |
| 2187 | { |
| 2188 | if (is_saved_state64(regs)) |
| 2189 | return fasttrap_pid_probe64(regs); |
| 2190 | |
| 2191 | return fasttrap_pid_probe32(regs); |
| 2192 | } |
| 2193 | |
| 2194 | int |
| 2195 | fasttrap_return_probe(x86_saved_state_t *regs) |
| 2196 | { |
| 2197 | x86_saved_state64_t *regs64; |
| 2198 | x86_saved_state32_t *regs32; |
| 2199 | unsigned int p_model; |
| 2200 | |
| 2201 | if (is_saved_state64(regs)) { |
| 2202 | regs64 = saved_state64(regs); |
| 2203 | regs32 = NULL; |
| 2204 | p_model = DATAMODEL_LP64; |
| 2205 | } else { |
| 2206 | regs64 = NULL; |
| 2207 | regs32 = saved_state32(regs); |
| 2208 | p_model = DATAMODEL_ILP32; |
| 2209 | } |
| 2210 | |
| 2211 | proc_t *p = current_proc(); |
| 2212 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); |
| 2213 | user_addr_t pc = uthread->t_dtrace_pc; |
| 2214 | user_addr_t npc = uthread->t_dtrace_npc; |
| 2215 | |
| 2216 | uthread->t_dtrace_pc = 0; |
| 2217 | uthread->t_dtrace_npc = 0; |
| 2218 | uthread->t_dtrace_scrpc = 0; |
| 2219 | uthread->t_dtrace_astpc = 0; |
| 2220 | |
| 2221 | /* |
| 2222 | * Treat a child created by a call to vfork(2) as if it were its |
| 2223 | * parent. We know that there's only one thread of control in such a |
| 2224 | * process: this one. |
| 2225 | */ |
| 2226 | proc_list_lock(); |
| 2227 | while (p->p_lflag & P_LINVFORK) |
| 2228 | p = p->p_pptr; |
| 2229 | proc_list_unlock(); |
| 2230 | |
| 2231 | /* |
| 2232 | * We set rp->r_pc to the address of the traced instruction so |
| 2233 | * that it appears to dtrace_probe() that we're on the original |
| 2234 | * instruction, and so that the user can't easily detect our |
| 2235 | * complex web of lies. dtrace_return_probe() (our caller) |
| 2236 | * will correctly set %pc after we return. |
| 2237 | */ |
| 2238 | if (p_model == DATAMODEL_LP64) |
| 2239 | regs64->isf.rip = pc; |
| 2240 | else |
| 2241 | regs32->eip = pc; |
| 2242 | |
| 2243 | fasttrap_return_common(regs, pc, p->p_pid, npc); |
| 2244 | |
| 2245 | return (0); |
| 2246 | } |
| 2247 | |
| 2248 | uint64_t |
| 2249 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, |
| 2250 | int aframes) |
| 2251 | { |
| 2252 | pal_register_cache_state(current_thread(), VALID); |
| 2253 | #pragma unused(arg, id, parg, aframes) |
| 2254 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno)); |
| 2255 | } |
| 2256 | |
| 2257 | uint64_t |
| 2258 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, |
| 2259 | int aframes) |
| 2260 | { |
| 2261 | pal_register_cache_state(current_thread(), VALID); |
| 2262 | #pragma unused(arg, id, parg, aframes) |
| 2263 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno)); |
| 2264 | } |
| 2265 | |
| 2266 | /* |
| 2267 | * APPLE NOTE: See comments by regmap array definition. We are cheating |
| 2268 | * when returning 32 bit registers. |
| 2269 | */ |
| 2270 | static user_addr_t |
| 2271 | fasttrap_getreg(x86_saved_state_t *regs, uint_t reg) |
| 2272 | { |
| 2273 | if (is_saved_state64(regs)) { |
| 2274 | x86_saved_state64_t *regs64 = saved_state64(regs); |
| 2275 | |
| 2276 | switch (reg) { |
| 2277 | case REG_RAX: return regs64->rax; |
| 2278 | case REG_RCX: return regs64->rcx; |
| 2279 | case REG_RDX: return regs64->rdx; |
| 2280 | case REG_RBX: return regs64->rbx; |
| 2281 | case REG_RSP: return regs64->isf.rsp; |
| 2282 | case REG_RBP: return regs64->rbp; |
| 2283 | case REG_RSI: return regs64->rsi; |
| 2284 | case REG_RDI: return regs64->rdi; |
| 2285 | case REG_R8: return regs64->r8; |
| 2286 | case REG_R9: return regs64->r9; |
| 2287 | case REG_R10: return regs64->r10; |
| 2288 | case REG_R11: return regs64->r11; |
| 2289 | case REG_R12: return regs64->r12; |
| 2290 | case REG_R13: return regs64->r13; |
| 2291 | case REG_R14: return regs64->r14; |
| 2292 | case REG_R15: return regs64->r15; |
| 2293 | case REG_TRAPNO: return regs64->isf.trapno; |
| 2294 | case REG_ERR: return regs64->isf.err; |
| 2295 | case REG_RIP: return regs64->isf.rip; |
| 2296 | case REG_CS: return regs64->isf.cs; |
| 2297 | case REG_RFL: return regs64->isf.rflags; |
| 2298 | case REG_SS: return regs64->isf.ss; |
| 2299 | case REG_FS: return regs64->fs; |
| 2300 | case REG_GS: return regs64->gs; |
| 2301 | case REG_ES: |
| 2302 | case REG_DS: |
| 2303 | case REG_FSBASE: |
| 2304 | case REG_GSBASE: |
| 2305 | // Important to distinguish these requests (which should be legal) from other values. |
| 2306 | panic("dtrace: unimplemented x86_64 getreg()" ); |
| 2307 | } |
| 2308 | |
| 2309 | panic("dtrace: unhandled x86_64 getreg() constant" ); |
| 2310 | } else { |
| 2311 | x86_saved_state32_t *regs32 = saved_state32(regs); |
| 2312 | |
| 2313 | switch (reg) { |
| 2314 | case REG_RAX: return regs32->eax; |
| 2315 | case REG_RCX: return regs32->ecx; |
| 2316 | case REG_RDX: return regs32->edx; |
| 2317 | case REG_RBX: return regs32->ebx; |
| 2318 | case REG_RSP: return regs32->uesp; |
| 2319 | case REG_RBP: return regs32->ebp; |
| 2320 | case REG_RSI: return regs32->esi; |
| 2321 | case REG_RDI: return regs32->edi; |
| 2322 | } |
| 2323 | |
| 2324 | panic("dtrace: unhandled i386 getreg() constant" ); |
| 2325 | } |
| 2326 | |
| 2327 | return 0; |
| 2328 | } |
| 2329 | |