1 | /* |
2 | * Copyright (c) 2005-2012 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ |
30 | #include <kern/thread.h> |
31 | #include <mach/thread_status.h> |
32 | |
33 | typedef x86_saved_state_t savearea_t; |
34 | |
35 | #include <stdarg.h> |
36 | #include <string.h> |
37 | #include <sys/malloc.h> |
38 | #include <sys/time.h> |
39 | #include <sys/systm.h> |
40 | #include <sys/proc.h> |
41 | #include <sys/proc_internal.h> |
42 | #include <sys/kauth.h> |
43 | #include <sys/dtrace.h> |
44 | #include <sys/dtrace_impl.h> |
45 | #include <libkern/OSAtomic.h> |
46 | #include <kern/thread_call.h> |
47 | #include <kern/task.h> |
48 | #include <kern/sched_prim.h> |
49 | #include <miscfs/devfs/devfs.h> |
50 | #include <mach/vm_param.h> |
51 | #include <machine/pal_routines.h> |
52 | #include <i386/mp.h> |
53 | |
54 | /* |
55 | * APPLE NOTE: The regmap is used to decode which 64bit uregs[] register |
56 | * is being accessed when passed the 32bit uregs[] constant (based on |
57 | * the reg.d translator file). The dtrace_getreg() is smart enough to handle |
58 | * the register mappings. The register set definitions are the same as |
59 | * those used by the fasttrap_getreg code. |
60 | */ |
61 | #include "fasttrap_regset.h" |
62 | static const uint8_t regmap[19] = { |
63 | REG_GS, /* GS */ |
64 | REG_FS, /* FS */ |
65 | REG_ES, /* ES */ |
66 | REG_DS, /* DS */ |
67 | REG_RDI, /* EDI */ |
68 | REG_RSI, /* ESI */ |
69 | REG_RBP, /* EBP, REG_FP */ |
70 | REG_RSP, /* ESP */ |
71 | REG_RBX, /* EBX */ |
72 | REG_RDX, /* EDX, REG_R1 */ |
73 | REG_RCX, /* ECX */ |
74 | REG_RAX, /* EAX, REG_R0 */ |
75 | REG_TRAPNO, /* TRAPNO */ |
76 | REG_ERR, /* ERR */ |
77 | REG_RIP, /* EIP, REG_PC */ |
78 | REG_CS, /* CS */ |
79 | REG_RFL, /* EFL, REG_PS */ |
80 | REG_RSP, /* UESP, REG_SP */ |
81 | REG_SS /* SS */ |
82 | }; |
83 | |
84 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ |
85 | |
86 | void |
87 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, |
88 | int fltoffs, int fault, uint64_t illval) |
89 | { |
90 | /* |
91 | * For the case of the error probe firing lets |
92 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. |
93 | */ |
94 | state->dts_arg_error_illval = illval; |
95 | dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault ); |
96 | } |
97 | |
98 | /* |
99 | * Atomicity and synchronization |
100 | */ |
101 | void |
102 | dtrace_membar_producer(void) |
103 | { |
104 | __asm__ volatile("sfence" ); |
105 | } |
106 | |
107 | void |
108 | dtrace_membar_consumer(void) |
109 | { |
110 | __asm__ volatile("lfence" ); |
111 | } |
112 | |
113 | /* |
114 | * Interrupt manipulation |
115 | * XXX dtrace_getipl() can be called from probe context. |
116 | */ |
117 | int |
118 | dtrace_getipl(void) |
119 | { |
120 | /* |
121 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE |
122 | * in osfmk/kern/cpu_data.h |
123 | */ |
124 | /* return get_interrupt_level(); */ |
125 | return (ml_at_interrupt_context() ? 1: 0); |
126 | } |
127 | |
128 | /* |
129 | * MP coordination |
130 | */ |
131 | typedef struct xcArg { |
132 | processorid_t cpu; |
133 | dtrace_xcall_t f; |
134 | void *arg; |
135 | } xcArg_t; |
136 | |
137 | static void |
138 | xcRemote( void *foo ) |
139 | { |
140 | xcArg_t *pArg = (xcArg_t *)foo; |
141 | |
142 | if ( pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL ) { |
143 | (pArg->f)(pArg->arg); |
144 | } |
145 | } |
146 | |
147 | |
148 | /* |
149 | * dtrace_xcall() is not called from probe context. |
150 | */ |
151 | void |
152 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) |
153 | { |
154 | xcArg_t xcArg; |
155 | |
156 | xcArg.cpu = cpu; |
157 | xcArg.f = f; |
158 | xcArg.arg = arg; |
159 | |
160 | if (cpu == DTRACE_CPUALL) { |
161 | mp_cpus_call (CPUMASK_ALL, ASYNC, xcRemote, (void*)&xcArg); |
162 | } |
163 | else { |
164 | mp_cpus_call (cpu_to_cpumask((cpu_t)cpu), ASYNC, xcRemote, (void*)&xcArg); |
165 | } |
166 | } |
167 | |
168 | /* |
169 | * Initialization |
170 | */ |
171 | void |
172 | dtrace_isa_init(void) |
173 | { |
174 | return; |
175 | } |
176 | |
177 | /* |
178 | * Runtime and ABI |
179 | */ |
180 | uint64_t |
181 | dtrace_getreg(struct regs *savearea, uint_t reg) |
182 | { |
183 | boolean_t is64Bit = proc_is64bit(current_proc()); |
184 | x86_saved_state_t *regs = (x86_saved_state_t *)savearea; |
185 | |
186 | if (regs == NULL) { |
187 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
188 | return (0); |
189 | } |
190 | |
191 | if (is64Bit) { |
192 | if (reg <= SS) { |
193 | reg = regmap[reg]; |
194 | } else { |
195 | reg -= (SS + 1); |
196 | } |
197 | |
198 | switch (reg) { |
199 | case REG_RDI: |
200 | return (uint64_t)(regs->ss_64.rdi); |
201 | case REG_RSI: |
202 | return (uint64_t)(regs->ss_64.rsi); |
203 | case REG_RDX: |
204 | return (uint64_t)(regs->ss_64.rdx); |
205 | case REG_RCX: |
206 | return (uint64_t)(regs->ss_64.rcx); |
207 | case REG_R8: |
208 | return (uint64_t)(regs->ss_64.r8); |
209 | case REG_R9: |
210 | return (uint64_t)(regs->ss_64.r9); |
211 | case REG_RAX: |
212 | return (uint64_t)(regs->ss_64.rax); |
213 | case REG_RBX: |
214 | return (uint64_t)(regs->ss_64.rbx); |
215 | case REG_RBP: |
216 | return (uint64_t)(regs->ss_64.rbp); |
217 | case REG_R10: |
218 | return (uint64_t)(regs->ss_64.r10); |
219 | case REG_R11: |
220 | return (uint64_t)(regs->ss_64.r11); |
221 | case REG_R12: |
222 | return (uint64_t)(regs->ss_64.r12); |
223 | case REG_R13: |
224 | return (uint64_t)(regs->ss_64.r13); |
225 | case REG_R14: |
226 | return (uint64_t)(regs->ss_64.r14); |
227 | case REG_R15: |
228 | return (uint64_t)(regs->ss_64.r15); |
229 | case REG_FS: |
230 | return (uint64_t)(regs->ss_64.fs); |
231 | case REG_GS: |
232 | return (uint64_t)(regs->ss_64.gs); |
233 | case REG_TRAPNO: |
234 | return (uint64_t)(regs->ss_64.isf.trapno); |
235 | case REG_ERR: |
236 | return (uint64_t)(regs->ss_64.isf.err); |
237 | case REG_RIP: |
238 | return (uint64_t)(regs->ss_64.isf.rip); |
239 | case REG_CS: |
240 | return (uint64_t)(regs->ss_64.isf.cs); |
241 | case REG_SS: |
242 | return (uint64_t)(regs->ss_64.isf.ss); |
243 | case REG_RFL: |
244 | return (uint64_t)(regs->ss_64.isf.rflags); |
245 | case REG_RSP: |
246 | return (uint64_t)(regs->ss_64.isf.rsp); |
247 | case REG_DS: |
248 | case REG_ES: |
249 | default: |
250 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
251 | return (0); |
252 | } |
253 | |
254 | } else { /* is 32bit user */ |
255 | /* beyond register SS */ |
256 | if (reg > x86_SAVED_STATE32_COUNT - 1) { |
257 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
258 | return (0); |
259 | } |
260 | return (uint64_t)((unsigned int *)(&(regs->ss_32.gs)))[reg]; |
261 | } |
262 | } |
263 | |
264 | #define RETURN_OFFSET 4 |
265 | #define RETURN_OFFSET64 8 |
266 | |
267 | static int |
268 | dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, user_addr_t pc, |
269 | user_addr_t sp) |
270 | { |
271 | #if 0 |
272 | volatile uint16_t *flags = |
273 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
274 | |
275 | uintptr_t oldcontext = lwp->lwp_oldcontext; /* XXX signal stack crawl */ |
276 | size_t s1, s2; |
277 | #endif |
278 | int ret = 0; |
279 | boolean_t is64Bit = proc_is64bit(current_proc()); |
280 | |
281 | ASSERT(pcstack == NULL || pcstack_limit > 0); |
282 | |
283 | #if 0 /* XXX signal stack crawl */ |
284 | if (p->p_model == DATAMODEL_NATIVE) { |
285 | s1 = sizeof (struct frame) + 2 * sizeof (long); |
286 | s2 = s1 + sizeof (siginfo_t); |
287 | } else { |
288 | s1 = sizeof (struct frame32) + 3 * sizeof (int); |
289 | s2 = s1 + sizeof (siginfo32_t); |
290 | } |
291 | #endif |
292 | |
293 | while (pc != 0) { |
294 | ret++; |
295 | if (pcstack != NULL) { |
296 | *pcstack++ = (uint64_t)pc; |
297 | pcstack_limit--; |
298 | if (pcstack_limit <= 0) |
299 | break; |
300 | } |
301 | |
302 | if (sp == 0) |
303 | break; |
304 | |
305 | #if 0 /* XXX signal stack crawl */ |
306 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { |
307 | if (p->p_model == DATAMODEL_NATIVE) { |
308 | ucontext_t *ucp = (ucontext_t *)oldcontext; |
309 | greg_t *gregs = ucp->uc_mcontext.gregs; |
310 | |
311 | sp = dtrace_fulword(&gregs[REG_FP]); |
312 | pc = dtrace_fulword(&gregs[REG_PC]); |
313 | |
314 | oldcontext = dtrace_fulword(&ucp->uc_link); |
315 | } else { |
316 | ucontext32_t *ucp = (ucontext32_t *)oldcontext; |
317 | greg32_t *gregs = ucp->uc_mcontext.gregs; |
318 | |
319 | sp = dtrace_fuword32(&gregs[EBP]); |
320 | pc = dtrace_fuword32(&gregs[EIP]); |
321 | |
322 | oldcontext = dtrace_fuword32(&ucp->uc_link); |
323 | } |
324 | } |
325 | else |
326 | #endif |
327 | { |
328 | if (is64Bit) { |
329 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); |
330 | sp = dtrace_fuword64(sp); |
331 | } else { |
332 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); |
333 | sp = dtrace_fuword32(sp); |
334 | } |
335 | } |
336 | |
337 | #if 0 /* XXX */ |
338 | /* |
339 | * This is totally bogus: if we faulted, we're going to clear |
340 | * the fault and break. This is to deal with the apparently |
341 | * broken Java stacks on x86. |
342 | */ |
343 | if (*flags & CPU_DTRACE_FAULT) { |
344 | *flags &= ~CPU_DTRACE_FAULT; |
345 | break; |
346 | } |
347 | #endif |
348 | } |
349 | |
350 | return (ret); |
351 | } |
352 | |
353 | |
354 | /* |
355 | * The return value indicates if we've modified the stack. |
356 | */ |
357 | static int |
358 | dtrace_adjust_stack(uint64_t **pcstack, int *pcstack_limit, user_addr_t *pc, |
359 | user_addr_t sp) |
360 | { |
361 | int64_t missing_tos; |
362 | int rc = 0; |
363 | boolean_t is64Bit = proc_is64bit(current_proc()); |
364 | |
365 | ASSERT(pc != NULL); |
366 | |
367 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { |
368 | /* |
369 | * If we found ourselves in an entry probe, the frame pointer has not |
370 | * yet been pushed (that happens in the |
371 | * function prologue). The best approach is to |
372 | * add the current pc as a missing top of stack, |
373 | * and back the pc up to the caller, which is stored at the |
374 | * current stack pointer address since the call |
375 | * instruction puts it there right before |
376 | * the branch. |
377 | */ |
378 | |
379 | missing_tos = *pc; |
380 | |
381 | if (is64Bit) |
382 | *pc = dtrace_fuword64(sp); |
383 | else |
384 | *pc = dtrace_fuword32(sp); |
385 | } else { |
386 | /* |
387 | * We might have a top of stack override, in which case we just |
388 | * add that frame without question to the top. This |
389 | * happens in return probes where you have a valid |
390 | * frame pointer, but it's for the callers frame |
391 | * and you'd like to add the pc of the return site |
392 | * to the frame. |
393 | */ |
394 | missing_tos = cpu_core[CPU->cpu_id].cpuc_missing_tos; |
395 | } |
396 | |
397 | if (missing_tos != 0) { |
398 | if (pcstack != NULL && pcstack_limit != NULL) { |
399 | /* |
400 | * If the missing top of stack has been filled out, then |
401 | * we add it and adjust the size. |
402 | */ |
403 | *(*pcstack)++ = missing_tos; |
404 | (*pcstack_limit)--; |
405 | } |
406 | /* |
407 | * return 1 because we would have changed the |
408 | * stack whether or not it was passed in. This |
409 | * ensures the stack count is correct |
410 | */ |
411 | rc = 1; |
412 | } |
413 | return rc; |
414 | } |
415 | |
416 | void |
417 | dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) |
418 | { |
419 | thread_t thread = current_thread(); |
420 | x86_saved_state_t *regs; |
421 | user_addr_t pc, sp, fp; |
422 | volatile uint16_t *flags = |
423 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
424 | int n; |
425 | boolean_t is64Bit = proc_is64bit(current_proc()); |
426 | |
427 | if (*flags & CPU_DTRACE_FAULT) |
428 | return; |
429 | |
430 | if (pcstack_limit <= 0) |
431 | return; |
432 | |
433 | /* |
434 | * If there's no user context we still need to zero the stack. |
435 | */ |
436 | if (thread == NULL) |
437 | goto zero; |
438 | |
439 | pal_register_cache_state(thread, VALID); |
440 | regs = (x86_saved_state_t *)find_user_regs(thread); |
441 | if (regs == NULL) |
442 | goto zero; |
443 | |
444 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
445 | pcstack_limit--; |
446 | |
447 | if (pcstack_limit <= 0) |
448 | return; |
449 | |
450 | if (is64Bit) { |
451 | pc = regs->ss_64.isf.rip; |
452 | sp = regs->ss_64.isf.rsp; |
453 | fp = regs->ss_64.rbp; |
454 | } else { |
455 | pc = regs->ss_32.eip; |
456 | sp = regs->ss_32.uesp; |
457 | fp = regs->ss_32.ebp; |
458 | } |
459 | |
460 | /* |
461 | * The return value indicates if we've modified the stack. |
462 | * Since there is nothing else to fix up in either case, |
463 | * we can safely ignore it here. |
464 | */ |
465 | (void)dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp); |
466 | |
467 | if(pcstack_limit <= 0) |
468 | return; |
469 | |
470 | /* |
471 | * Note that unlike ppc, the x86 code does not use |
472 | * CPU_DTRACE_USTACK_FP. This is because x86 always |
473 | * traces from the fp, even in syscall/profile/fbt |
474 | * providers. |
475 | */ |
476 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); |
477 | ASSERT(n >= 0); |
478 | ASSERT(n <= pcstack_limit); |
479 | |
480 | pcstack += n; |
481 | pcstack_limit -= n; |
482 | |
483 | zero: |
484 | while (pcstack_limit-- > 0) |
485 | *pcstack++ = 0; |
486 | } |
487 | |
488 | int |
489 | dtrace_getustackdepth(void) |
490 | { |
491 | thread_t thread = current_thread(); |
492 | x86_saved_state_t *regs; |
493 | user_addr_t pc, sp, fp; |
494 | int n = 0; |
495 | boolean_t is64Bit = proc_is64bit(current_proc()); |
496 | |
497 | if (thread == NULL) |
498 | return 0; |
499 | |
500 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) |
501 | return (-1); |
502 | |
503 | pal_register_cache_state(thread, VALID); |
504 | regs = (x86_saved_state_t *)find_user_regs(thread); |
505 | if (regs == NULL) |
506 | return 0; |
507 | |
508 | if (is64Bit) { |
509 | pc = regs->ss_64.isf.rip; |
510 | sp = regs->ss_64.isf.rsp; |
511 | fp = regs->ss_64.rbp; |
512 | } else { |
513 | pc = regs->ss_32.eip; |
514 | sp = regs->ss_32.uesp; |
515 | fp = regs->ss_32.ebp; |
516 | } |
517 | |
518 | if (dtrace_adjust_stack(NULL, NULL, &pc, sp) == 1) { |
519 | /* |
520 | * we would have adjusted the stack if we had |
521 | * supplied one (that is what rc == 1 means). |
522 | * Also, as a side effect, the pc might have |
523 | * been fixed up, which is good for calling |
524 | * in to dtrace_getustack_common. |
525 | */ |
526 | n++; |
527 | } |
528 | |
529 | /* |
530 | * Note that unlike ppc, the x86 code does not use |
531 | * CPU_DTRACE_USTACK_FP. This is because x86 always |
532 | * traces from the fp, even in syscall/profile/fbt |
533 | * providers. |
534 | */ |
535 | |
536 | n += dtrace_getustack_common(NULL, 0, pc, fp); |
537 | |
538 | return (n); |
539 | } |
540 | |
541 | void |
542 | dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) |
543 | { |
544 | thread_t thread = current_thread(); |
545 | savearea_t *regs; |
546 | user_addr_t pc, sp; |
547 | volatile uint16_t *flags = |
548 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
549 | #if 0 |
550 | uintptr_t oldcontext; |
551 | size_t s1, s2; |
552 | #endif |
553 | boolean_t is64Bit = proc_is64bit(current_proc()); |
554 | |
555 | if (*flags & CPU_DTRACE_FAULT) |
556 | return; |
557 | |
558 | if (pcstack_limit <= 0) |
559 | return; |
560 | |
561 | /* |
562 | * If there's no user context we still need to zero the stack. |
563 | */ |
564 | if (thread == NULL) |
565 | goto zero; |
566 | |
567 | regs = (savearea_t *)find_user_regs(thread); |
568 | if (regs == NULL) |
569 | goto zero; |
570 | |
571 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
572 | pcstack_limit--; |
573 | |
574 | if (pcstack_limit <= 0) |
575 | return; |
576 | |
577 | pc = regs->ss_32.eip; |
578 | sp = regs->ss_32.ebp; |
579 | |
580 | #if 0 /* XXX signal stack crawl */ |
581 | oldcontext = lwp->lwp_oldcontext; |
582 | |
583 | if (p->p_model == DATAMODEL_NATIVE) { |
584 | s1 = sizeof (struct frame) + 2 * sizeof (long); |
585 | s2 = s1 + sizeof (siginfo_t); |
586 | } else { |
587 | s1 = sizeof (struct frame32) + 3 * sizeof (int); |
588 | s2 = s1 + sizeof (siginfo32_t); |
589 | } |
590 | #endif |
591 | |
592 | if(dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp) == 1) { |
593 | /* |
594 | * we made a change. |
595 | */ |
596 | *fpstack++ = 0; |
597 | if (pcstack_limit <= 0) |
598 | return; |
599 | } |
600 | |
601 | while (pc != 0) { |
602 | *pcstack++ = (uint64_t)pc; |
603 | *fpstack++ = sp; |
604 | pcstack_limit--; |
605 | if (pcstack_limit <= 0) |
606 | break; |
607 | |
608 | if (sp == 0) |
609 | break; |
610 | |
611 | #if 0 /* XXX signal stack crawl */ |
612 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { |
613 | if (p->p_model == DATAMODEL_NATIVE) { |
614 | ucontext_t *ucp = (ucontext_t *)oldcontext; |
615 | greg_t *gregs = ucp->uc_mcontext.gregs; |
616 | |
617 | sp = dtrace_fulword(&gregs[REG_FP]); |
618 | pc = dtrace_fulword(&gregs[REG_PC]); |
619 | |
620 | oldcontext = dtrace_fulword(&ucp->uc_link); |
621 | } else { |
622 | ucontext_t *ucp = (ucontext_t *)oldcontext; |
623 | greg_t *gregs = ucp->uc_mcontext.gregs; |
624 | |
625 | sp = dtrace_fuword32(&gregs[EBP]); |
626 | pc = dtrace_fuword32(&gregs[EIP]); |
627 | |
628 | oldcontext = dtrace_fuword32(&ucp->uc_link); |
629 | } |
630 | } |
631 | else |
632 | #endif |
633 | { |
634 | if (is64Bit) { |
635 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); |
636 | sp = dtrace_fuword64(sp); |
637 | } else { |
638 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); |
639 | sp = dtrace_fuword32(sp); |
640 | } |
641 | } |
642 | |
643 | #if 0 /* XXX */ |
644 | /* |
645 | * This is totally bogus: if we faulted, we're going to clear |
646 | * the fault and break. This is to deal with the apparently |
647 | * broken Java stacks on x86. |
648 | */ |
649 | if (*flags & CPU_DTRACE_FAULT) { |
650 | *flags &= ~CPU_DTRACE_FAULT; |
651 | break; |
652 | } |
653 | #endif |
654 | } |
655 | |
656 | zero: |
657 | while (pcstack_limit-- > 0) |
658 | *pcstack++ = 0; |
659 | } |
660 | |
661 | void |
662 | dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, |
663 | uint32_t *intrpc) |
664 | { |
665 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
666 | struct frame *nextfp, *minfp, *stacktop; |
667 | int depth = 0; |
668 | int last = 0; |
669 | uintptr_t pc; |
670 | uintptr_t caller = CPU->cpu_dtrace_caller; |
671 | int on_intr; |
672 | |
673 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) |
674 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); |
675 | else |
676 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); |
677 | |
678 | minfp = fp; |
679 | |
680 | aframes++; |
681 | |
682 | if (intrpc != NULL && depth < pcstack_limit) |
683 | pcstack[depth++] = (pc_t)intrpc; |
684 | |
685 | while (depth < pcstack_limit) { |
686 | nextfp = *(struct frame **)fp; |
687 | pc = *(uintptr_t *)(((uintptr_t)fp) + RETURN_OFFSET64); |
688 | |
689 | if (nextfp <= minfp || nextfp >= stacktop) { |
690 | if (on_intr) { |
691 | /* |
692 | * Hop from interrupt stack to thread stack. |
693 | */ |
694 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); |
695 | |
696 | minfp = (struct frame *)kstack_base; |
697 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); |
698 | |
699 | on_intr = 0; |
700 | continue; |
701 | } |
702 | /* |
703 | * This is the last frame we can process; indicate |
704 | * that we should return after processing this frame. |
705 | */ |
706 | last = 1; |
707 | } |
708 | |
709 | if (aframes > 0) { |
710 | if (--aframes == 0 && caller != 0) { |
711 | /* |
712 | * We've just run out of artificial frames, |
713 | * and we have a valid caller -- fill it in |
714 | * now. |
715 | */ |
716 | ASSERT(depth < pcstack_limit); |
717 | pcstack[depth++] = (pc_t)caller; |
718 | caller = 0; |
719 | } |
720 | } else { |
721 | if (depth < pcstack_limit) |
722 | pcstack[depth++] = (pc_t)pc; |
723 | } |
724 | |
725 | if (last) { |
726 | while (depth < pcstack_limit) |
727 | pcstack[depth++] = 0; |
728 | return; |
729 | } |
730 | |
731 | fp = nextfp; |
732 | minfp = fp; |
733 | } |
734 | } |
735 | |
736 | struct frame { |
737 | struct frame *backchain; |
738 | uintptr_t retaddr; |
739 | }; |
740 | |
741 | uint64_t |
742 | dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
743 | { |
744 | uint64_t val = 0; |
745 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
746 | uintptr_t *stack; |
747 | uintptr_t pc; |
748 | int i; |
749 | |
750 | |
751 | /* |
752 | * A total of 6 arguments are passed via registers; any argument with |
753 | * index of 5 or lower is therefore in a register. |
754 | */ |
755 | int inreg = 5; |
756 | |
757 | for (i = 1; i <= aframes; i++) { |
758 | fp = fp->backchain; |
759 | pc = fp->retaddr; |
760 | |
761 | if (dtrace_invop_callsite_pre != NULL |
762 | && pc > (uintptr_t)dtrace_invop_callsite_pre |
763 | && pc <= (uintptr_t)dtrace_invop_callsite_post) { |
764 | /* |
765 | * In the case of x86_64, we will use the pointer to the |
766 | * save area structure that was pushed when we took the |
767 | * trap. To get this structure, we must increment |
768 | * beyond the frame structure. If the |
769 | * argument that we're seeking is passed on the stack, |
770 | * we'll pull the true stack pointer out of the saved |
771 | * registers and decrement our argument by the number |
772 | * of arguments passed in registers; if the argument |
773 | * we're seeking is passed in regsiters, we can just |
774 | * load it directly. |
775 | */ |
776 | |
777 | /* fp points to frame of dtrace_invop() activation. */ |
778 | fp = fp->backchain; /* to fbt_perfcallback() activation. */ |
779 | fp = fp->backchain; /* to kernel_trap() activation. */ |
780 | fp = fp->backchain; /* to trap_from_kernel() activation. */ |
781 | |
782 | x86_saved_state_t *tagged_regs = (x86_saved_state_t *)&fp[1]; |
783 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); |
784 | |
785 | if (arg <= inreg) { |
786 | stack = (uintptr_t *)(void*)&saved_state->rdi; |
787 | } else { |
788 | fp = (struct frame *)(saved_state->isf.rsp); |
789 | stack = (uintptr_t *)&fp[1]; /* Find marshalled |
790 | arguments */ |
791 | arg -= inreg + 1; |
792 | } |
793 | goto load; |
794 | } |
795 | } |
796 | |
797 | /* |
798 | * We know that we did not come through a trap to get into |
799 | * dtrace_probe() -- We arrive here when the provider has |
800 | * called dtrace_probe() directly. |
801 | * The probe ID is the first argument to dtrace_probe(). |
802 | * We must advance beyond that to get the argX. |
803 | */ |
804 | arg++; /* Advance past probeID */ |
805 | |
806 | if (arg <= inreg) { |
807 | /* |
808 | * This shouldn't happen. If the argument is passed in a |
809 | * register then it should have been, well, passed in a |
810 | * register... |
811 | */ |
812 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
813 | return (0); |
814 | } |
815 | |
816 | arg -= (inreg + 1); |
817 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ |
818 | |
819 | load: |
820 | if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t), |
821 | mstate, vstate)) { |
822 | /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */ |
823 | val = dtrace_load64((uint64_t)(stack + arg)); |
824 | } |
825 | |
826 | return (val); |
827 | } |
828 | |
829 | /* |
830 | * Load/Store Safety |
831 | */ |
832 | void |
833 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) |
834 | { |
835 | /* |
836 | * "base" is the smallest toxic address in the range, "limit" is the first |
837 | * VALID address greater than "base". |
838 | */ |
839 | func(0x0, VM_MIN_KERNEL_AND_KEXT_ADDRESS); |
840 | if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) |
841 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); |
842 | } |
843 | |
844 | |