1 | /* Initialize x86 cache info. |
2 | Copyright (C) 2020-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | static const struct intel_02_cache_info |
20 | { |
21 | unsigned char idx; |
22 | unsigned char assoc; |
23 | unsigned char linesize; |
24 | unsigned char rel_name; |
25 | unsigned int size; |
26 | } intel_02_known [] = |
27 | { |
28 | #define M(sc) ((sc) - _SC_LEVEL1_ICACHE_SIZE) |
29 | { 0x06, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 8192 }, |
30 | { 0x08, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 16384 }, |
31 | { 0x09, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
32 | { 0x0a, 2, 32, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
33 | { 0x0c, 4, 32, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
34 | { 0x0d, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
35 | { 0x0e, 6, 64, M(_SC_LEVEL1_DCACHE_SIZE), 24576 }, |
36 | { 0x21, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
37 | { 0x22, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
38 | { 0x23, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
39 | { 0x25, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
40 | { 0x29, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
41 | { 0x2c, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
42 | { 0x30, 8, 64, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
43 | { 0x39, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
44 | { 0x3a, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 196608 }, |
45 | { 0x3b, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
46 | { 0x3c, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
47 | { 0x3d, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 393216 }, |
48 | { 0x3e, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
49 | { 0x3f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
50 | { 0x41, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
51 | { 0x42, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
52 | { 0x43, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
53 | { 0x44, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
54 | { 0x45, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
55 | { 0x46, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
56 | { 0x47, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
57 | { 0x48, 12, 64, M(_SC_LEVEL2_CACHE_SIZE), 3145728 }, |
58 | { 0x49, 16, 64, M(_SC_LEVEL2_CACHE_SIZE), 4194304 }, |
59 | { 0x4a, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 6291456 }, |
60 | { 0x4b, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
61 | { 0x4c, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
62 | { 0x4d, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 16777216 }, |
63 | { 0x4e, 24, 64, M(_SC_LEVEL2_CACHE_SIZE), 6291456 }, |
64 | { 0x60, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
65 | { 0x66, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
66 | { 0x67, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
67 | { 0x68, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
68 | { 0x78, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
69 | { 0x79, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
70 | { 0x7a, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
71 | { 0x7b, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
72 | { 0x7c, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
73 | { 0x7d, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
74 | { 0x7f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
75 | { 0x80, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
76 | { 0x82, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
77 | { 0x83, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
78 | { 0x84, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
79 | { 0x85, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
80 | { 0x86, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
81 | { 0x87, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
82 | { 0xd0, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
83 | { 0xd1, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
84 | { 0xd2, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
85 | { 0xd6, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
86 | { 0xd7, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
87 | { 0xd8, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
88 | { 0xdc, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
89 | { 0xdd, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
90 | { 0xde, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
91 | { 0xe2, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
92 | { 0xe3, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
93 | { 0xe4, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
94 | { 0xea, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
95 | { 0xeb, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 18874368 }, |
96 | { 0xec, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 25165824 }, |
97 | }; |
98 | |
99 | #define nintel_02_known (sizeof (intel_02_known) / sizeof (intel_02_known [0])) |
100 | |
101 | static int |
102 | intel_02_known_compare (const void *p1, const void *p2) |
103 | { |
104 | const struct intel_02_cache_info *i1; |
105 | const struct intel_02_cache_info *i2; |
106 | |
107 | i1 = (const struct intel_02_cache_info *) p1; |
108 | i2 = (const struct intel_02_cache_info *) p2; |
109 | |
110 | if (i1->idx == i2->idx) |
111 | return 0; |
112 | |
113 | return i1->idx < i2->idx ? -1 : 1; |
114 | } |
115 | |
116 | |
117 | static long int |
118 | __attribute__ ((noinline)) |
119 | intel_check_word (int name, unsigned int value, bool *has_level_2, |
120 | bool *no_level_2_or_3, |
121 | const struct cpu_features *cpu_features) |
122 | { |
123 | if ((value & 0x80000000) != 0) |
124 | /* The register value is reserved. */ |
125 | return 0; |
126 | |
127 | /* Fold the name. The _SC_ constants are always in the order SIZE, |
128 | ASSOC, LINESIZE. */ |
129 | int folded_rel_name = (M(name) / 3) * 3; |
130 | |
131 | while (value != 0) |
132 | { |
133 | unsigned int byte = value & 0xff; |
134 | |
135 | if (byte == 0x40) |
136 | { |
137 | *no_level_2_or_3 = true; |
138 | |
139 | if (folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
140 | /* No need to look further. */ |
141 | break; |
142 | } |
143 | else if (byte == 0xff) |
144 | { |
145 | /* CPUID leaf 0x4 contains all the information. We need to |
146 | iterate over it. */ |
147 | unsigned int eax; |
148 | unsigned int ebx; |
149 | unsigned int ecx; |
150 | unsigned int edx; |
151 | |
152 | unsigned int round = 0; |
153 | while (1) |
154 | { |
155 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
156 | |
157 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
158 | if (type == null) |
159 | /* That was the end. */ |
160 | break; |
161 | |
162 | unsigned int level = (eax >> 5) & 0x7; |
163 | |
164 | if ((level == 1 && type == data |
165 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
166 | || (level == 1 && type == inst |
167 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
168 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
169 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
170 | || (level == 4 && folded_rel_name == M(_SC_LEVEL4_CACHE_SIZE))) |
171 | { |
172 | unsigned int offset = M(name) - folded_rel_name; |
173 | |
174 | if (offset == 0) |
175 | /* Cache size. */ |
176 | return (((ebx >> 22) + 1) |
177 | * (((ebx >> 12) & 0x3ff) + 1) |
178 | * ((ebx & 0xfff) + 1) |
179 | * (ecx + 1)); |
180 | if (offset == 1) |
181 | return (ebx >> 22) + 1; |
182 | |
183 | assert (offset == 2); |
184 | return (ebx & 0xfff) + 1; |
185 | } |
186 | |
187 | ++round; |
188 | } |
189 | /* There is no other cache information anywhere else. */ |
190 | break; |
191 | } |
192 | else |
193 | { |
194 | if (byte == 0x49 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
195 | { |
196 | /* Intel reused this value. For family 15, model 6 it |
197 | specifies the 3rd level cache. Otherwise the 2nd |
198 | level cache. */ |
199 | unsigned int family = cpu_features->basic.family; |
200 | unsigned int model = cpu_features->basic.model; |
201 | |
202 | if (family == 15 && model == 6) |
203 | { |
204 | /* The level 3 cache is encoded for this model like |
205 | the level 2 cache is for other models. Pretend |
206 | the caller asked for the level 2 cache. */ |
207 | name = (_SC_LEVEL2_CACHE_SIZE |
208 | + (name - _SC_LEVEL3_CACHE_SIZE)); |
209 | folded_rel_name = M(_SC_LEVEL2_CACHE_SIZE); |
210 | } |
211 | } |
212 | |
213 | struct intel_02_cache_info *found; |
214 | struct intel_02_cache_info search; |
215 | |
216 | search.idx = byte; |
217 | found = bsearch (&search, intel_02_known, nintel_02_known, |
218 | sizeof (intel_02_known[0]), intel_02_known_compare); |
219 | if (found != NULL) |
220 | { |
221 | if (found->rel_name == folded_rel_name) |
222 | { |
223 | unsigned int offset = M(name) - folded_rel_name; |
224 | |
225 | if (offset == 0) |
226 | /* Cache size. */ |
227 | return found->size; |
228 | if (offset == 1) |
229 | return found->assoc; |
230 | |
231 | assert (offset == 2); |
232 | return found->linesize; |
233 | } |
234 | |
235 | if (found->rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
236 | *has_level_2 = true; |
237 | } |
238 | } |
239 | |
240 | /* Next byte for the next round. */ |
241 | value >>= 8; |
242 | } |
243 | |
244 | /* Nothing found. */ |
245 | return 0; |
246 | } |
247 | |
248 | |
249 | static long int __attribute__ ((noinline)) |
250 | handle_intel (int name, const struct cpu_features *cpu_features) |
251 | { |
252 | unsigned int maxidx = cpu_features->basic.max_cpuid; |
253 | |
254 | /* Return -1 for older CPUs. */ |
255 | if (maxidx < 2) |
256 | return -1; |
257 | |
258 | /* OK, we can use the CPUID instruction to get all info about the |
259 | caches. */ |
260 | unsigned int cnt = 0; |
261 | unsigned int max = 1; |
262 | long int result = 0; |
263 | bool no_level_2_or_3 = false; |
264 | bool has_level_2 = false; |
265 | |
266 | while (cnt++ < max) |
267 | { |
268 | unsigned int eax; |
269 | unsigned int ebx; |
270 | unsigned int ecx; |
271 | unsigned int edx; |
272 | __cpuid (2, eax, ebx, ecx, edx); |
273 | |
274 | /* The low byte of EAX in the first round contain the number of |
275 | rounds we have to make. At least one, the one we are already |
276 | doing. */ |
277 | if (cnt == 1) |
278 | { |
279 | max = eax & 0xff; |
280 | eax &= 0xffffff00; |
281 | } |
282 | |
283 | /* Process the individual registers' value. */ |
284 | result = intel_check_word (name, eax, &has_level_2, |
285 | &no_level_2_or_3, cpu_features); |
286 | if (result != 0) |
287 | return result; |
288 | |
289 | result = intel_check_word (name, ebx, &has_level_2, |
290 | &no_level_2_or_3, cpu_features); |
291 | if (result != 0) |
292 | return result; |
293 | |
294 | result = intel_check_word (name, ecx, &has_level_2, |
295 | &no_level_2_or_3, cpu_features); |
296 | if (result != 0) |
297 | return result; |
298 | |
299 | result = intel_check_word (name, edx, &has_level_2, |
300 | &no_level_2_or_3, cpu_features); |
301 | if (result != 0) |
302 | return result; |
303 | } |
304 | |
305 | if (name >= _SC_LEVEL2_CACHE_SIZE && name <= _SC_LEVEL3_CACHE_LINESIZE |
306 | && no_level_2_or_3) |
307 | return -1; |
308 | |
309 | return 0; |
310 | } |
311 | |
312 | |
313 | static long int __attribute__ ((noinline)) |
314 | handle_amd (int name) |
315 | { |
316 | unsigned int eax; |
317 | unsigned int ebx; |
318 | unsigned int ecx; |
319 | unsigned int edx; |
320 | unsigned int count = 0x1; |
321 | |
322 | /* No level 4 cache (yet). */ |
323 | if (name > _SC_LEVEL3_CACHE_LINESIZE) |
324 | return 0; |
325 | |
326 | if (name >= _SC_LEVEL3_CACHE_SIZE) |
327 | count = 0x3; |
328 | else if (name >= _SC_LEVEL2_CACHE_SIZE) |
329 | count = 0x2; |
330 | else if (name >= _SC_LEVEL1_DCACHE_SIZE) |
331 | count = 0x0; |
332 | |
333 | __cpuid_count (0x8000001D, count, eax, ebx, ecx, edx); |
334 | |
335 | switch (name) |
336 | { |
337 | case _SC_LEVEL1_ICACHE_ASSOC: |
338 | case _SC_LEVEL1_DCACHE_ASSOC: |
339 | case _SC_LEVEL2_CACHE_ASSOC: |
340 | case _SC_LEVEL3_CACHE_ASSOC: |
341 | return ecx ? ((ebx >> 22) & 0x3ff) + 1 : 0; |
342 | case _SC_LEVEL1_ICACHE_LINESIZE: |
343 | case _SC_LEVEL1_DCACHE_LINESIZE: |
344 | case _SC_LEVEL2_CACHE_LINESIZE: |
345 | case _SC_LEVEL3_CACHE_LINESIZE: |
346 | return ecx ? (ebx & 0xfff) + 1 : 0; |
347 | case _SC_LEVEL1_ICACHE_SIZE: |
348 | case _SC_LEVEL1_DCACHE_SIZE: |
349 | case _SC_LEVEL2_CACHE_SIZE: |
350 | case _SC_LEVEL3_CACHE_SIZE: |
351 | return ecx ? (((ebx >> 22) & 0x3ff) + 1) * ((ebx & 0xfff) + 1) * (ecx + 1): 0; |
352 | default: |
353 | __builtin_unreachable (); |
354 | } |
355 | return -1; |
356 | } |
357 | |
358 | |
359 | static long int __attribute__ ((noinline)) |
360 | handle_zhaoxin (int name) |
361 | { |
362 | unsigned int eax; |
363 | unsigned int ebx; |
364 | unsigned int ecx; |
365 | unsigned int edx; |
366 | |
367 | int folded_rel_name = (M(name) / 3) * 3; |
368 | |
369 | unsigned int round = 0; |
370 | while (1) |
371 | { |
372 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
373 | |
374 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
375 | if (type == null) |
376 | break; |
377 | |
378 | unsigned int level = (eax >> 5) & 0x7; |
379 | |
380 | if ((level == 1 && type == data |
381 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
382 | || (level == 1 && type == inst |
383 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
384 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
385 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))) |
386 | { |
387 | unsigned int offset = M(name) - folded_rel_name; |
388 | |
389 | if (offset == 0) |
390 | /* Cache size. */ |
391 | return (((ebx >> 22) + 1) |
392 | * (((ebx >> 12) & 0x3ff) + 1) |
393 | * ((ebx & 0xfff) + 1) |
394 | * (ecx + 1)); |
395 | if (offset == 1) |
396 | return (ebx >> 22) + 1; |
397 | |
398 | assert (offset == 2); |
399 | return (ebx & 0xfff) + 1; |
400 | } |
401 | |
402 | ++round; |
403 | } |
404 | |
405 | /* Nothing found. */ |
406 | return 0; |
407 | } |
408 | |
409 | static void |
410 | get_common_cache_info (long int *shared_ptr, long int * shared_per_thread_ptr, unsigned int *threads_ptr, |
411 | long int core) |
412 | { |
413 | unsigned int eax; |
414 | unsigned int ebx; |
415 | unsigned int ecx; |
416 | unsigned int edx; |
417 | |
418 | /* Number of logical processors sharing L2 cache. */ |
419 | int threads_l2; |
420 | |
421 | /* Number of logical processors sharing L3 cache. */ |
422 | int threads_l3; |
423 | |
424 | const struct cpu_features *cpu_features = __get_cpu_features (); |
425 | int max_cpuid = cpu_features->basic.max_cpuid; |
426 | unsigned int family = cpu_features->basic.family; |
427 | unsigned int model = cpu_features->basic.model; |
428 | long int shared = *shared_ptr; |
429 | long int shared_per_thread = *shared_per_thread_ptr; |
430 | unsigned int threads = *threads_ptr; |
431 | bool inclusive_cache = true; |
432 | bool support_count_mask = true; |
433 | |
434 | /* Try L3 first. */ |
435 | unsigned int level = 3; |
436 | |
437 | if (cpu_features->basic.kind == arch_kind_zhaoxin && family == 6) |
438 | support_count_mask = false; |
439 | |
440 | if (shared <= 0) |
441 | { |
442 | /* Try L2 otherwise. */ |
443 | level = 2; |
444 | shared = core; |
445 | shared_per_thread = core; |
446 | threads_l2 = 0; |
447 | threads_l3 = -1; |
448 | } |
449 | else |
450 | { |
451 | threads_l2 = 0; |
452 | threads_l3 = 0; |
453 | } |
454 | |
455 | /* A value of 0 for the HTT bit indicates there is only a single |
456 | logical processor. */ |
457 | if (HAS_CPU_FEATURE (HTT)) |
458 | { |
459 | /* Figure out the number of logical threads that share the |
460 | highest cache level. */ |
461 | if (max_cpuid >= 4) |
462 | { |
463 | int i = 0; |
464 | |
465 | /* Query until cache level 2 and 3 are enumerated. */ |
466 | int check = 0x1 | (threads_l3 == 0) << 1; |
467 | do |
468 | { |
469 | __cpuid_count (4, i++, eax, ebx, ecx, edx); |
470 | |
471 | /* There seems to be a bug in at least some Pentium Ds |
472 | which sometimes fail to iterate all cache parameters. |
473 | Do not loop indefinitely here, stop in this case and |
474 | assume there is no such information. */ |
475 | if (cpu_features->basic.kind == arch_kind_intel |
476 | && (eax & 0x1f) == 0 ) |
477 | goto intel_bug_no_cache_info; |
478 | |
479 | switch ((eax >> 5) & 0x7) |
480 | { |
481 | default: |
482 | break; |
483 | case 2: |
484 | if ((check & 0x1)) |
485 | { |
486 | /* Get maximum number of logical processors |
487 | sharing L2 cache. */ |
488 | threads_l2 = (eax >> 14) & 0x3ff; |
489 | check &= ~0x1; |
490 | } |
491 | break; |
492 | case 3: |
493 | if ((check & (0x1 << 1))) |
494 | { |
495 | /* Get maximum number of logical processors |
496 | sharing L3 cache. */ |
497 | threads_l3 = (eax >> 14) & 0x3ff; |
498 | |
499 | /* Check if L2 and L3 caches are inclusive. */ |
500 | inclusive_cache = (edx & 0x2) != 0; |
501 | check &= ~(0x1 << 1); |
502 | } |
503 | break; |
504 | } |
505 | } |
506 | while (check); |
507 | |
508 | /* If max_cpuid >= 11, THREADS_L2/THREADS_L3 are the maximum |
509 | numbers of addressable IDs for logical processors sharing |
510 | the cache, instead of the maximum number of threads |
511 | sharing the cache. */ |
512 | if (max_cpuid >= 11 && support_count_mask) |
513 | { |
514 | /* Find the number of logical processors shipped in |
515 | one core and apply count mask. */ |
516 | i = 0; |
517 | |
518 | /* Count SMT only if there is L3 cache. Always count |
519 | core if there is no L3 cache. */ |
520 | int count = ((threads_l2 > 0 && level == 3) |
521 | | ((threads_l3 > 0 |
522 | || (threads_l2 > 0 && level == 2)) << 1)); |
523 | |
524 | while (count) |
525 | { |
526 | __cpuid_count (11, i++, eax, ebx, ecx, edx); |
527 | |
528 | int shipped = ebx & 0xff; |
529 | int type = ecx & 0xff00; |
530 | if (shipped == 0 || type == 0) |
531 | break; |
532 | else if (type == 0x100) |
533 | { |
534 | /* Count SMT. */ |
535 | if ((count & 0x1)) |
536 | { |
537 | int count_mask; |
538 | |
539 | /* Compute count mask. */ |
540 | asm ("bsr %1, %0" |
541 | : "=r" (count_mask) : "g" (threads_l2)); |
542 | count_mask = ~(-1 << (count_mask + 1)); |
543 | threads_l2 = (shipped - 1) & count_mask; |
544 | count &= ~0x1; |
545 | } |
546 | } |
547 | else if (type == 0x200) |
548 | { |
549 | /* Count core. */ |
550 | if ((count & (0x1 << 1))) |
551 | { |
552 | int count_mask; |
553 | int threads_core |
554 | = (level == 2 ? threads_l2 : threads_l3); |
555 | |
556 | /* Compute count mask. */ |
557 | asm ("bsr %1, %0" |
558 | : "=r" (count_mask) : "g" (threads_core)); |
559 | count_mask = ~(-1 << (count_mask + 1)); |
560 | threads_core = (shipped - 1) & count_mask; |
561 | if (level == 2) |
562 | threads_l2 = threads_core; |
563 | else |
564 | threads_l3 = threads_core; |
565 | count &= ~(0x1 << 1); |
566 | } |
567 | } |
568 | } |
569 | } |
570 | if (threads_l2 > 0) |
571 | threads_l2 += 1; |
572 | if (threads_l3 > 0) |
573 | threads_l3 += 1; |
574 | if (level == 2) |
575 | { |
576 | if (threads_l2) |
577 | { |
578 | threads = threads_l2; |
579 | if (cpu_features->basic.kind == arch_kind_intel |
580 | && threads > 2 |
581 | && family == 6) |
582 | switch (model) |
583 | { |
584 | case 0x37: |
585 | case 0x4a: |
586 | case 0x4d: |
587 | case 0x5a: |
588 | case 0x5d: |
589 | /* Silvermont has L2 cache shared by 2 cores. */ |
590 | threads = 2; |
591 | break; |
592 | default: |
593 | break; |
594 | } |
595 | } |
596 | } |
597 | else if (threads_l3) |
598 | threads = threads_l3; |
599 | } |
600 | else |
601 | { |
602 | intel_bug_no_cache_info: |
603 | /* Assume that all logical threads share the highest cache |
604 | level. */ |
605 | threads = ((cpu_features->features[CPUID_INDEX_1].cpuid.ebx >> 16) |
606 | & 0xff); |
607 | |
608 | /* Get per-thread size of highest level cache. */ |
609 | if (shared_per_thread > 0 && threads > 0) |
610 | shared_per_thread /= threads; |
611 | } |
612 | } |
613 | |
614 | /* Account for non-inclusive L2 and L3 caches. */ |
615 | if (!inclusive_cache) |
616 | { |
617 | long int core_per_thread = threads_l2 > 0 ? (core / threads_l2) : core; |
618 | shared_per_thread += core_per_thread; |
619 | shared += core; |
620 | } |
621 | |
622 | *shared_ptr = shared; |
623 | *shared_per_thread_ptr = shared_per_thread; |
624 | *threads_ptr = threads; |
625 | } |
626 | |
627 | static void |
628 | dl_init_cacheinfo (struct cpu_features *cpu_features) |
629 | { |
630 | /* Find out what brand of processor. */ |
631 | long int data = -1; |
632 | long int shared = -1; |
633 | long int shared_per_thread = -1; |
634 | long int core = -1; |
635 | unsigned int threads = 0; |
636 | unsigned long int level1_icache_size = -1; |
637 | unsigned long int level1_icache_linesize = -1; |
638 | unsigned long int level1_dcache_size = -1; |
639 | unsigned long int level1_dcache_assoc = -1; |
640 | unsigned long int level1_dcache_linesize = -1; |
641 | unsigned long int level2_cache_size = -1; |
642 | unsigned long int level2_cache_assoc = -1; |
643 | unsigned long int level2_cache_linesize = -1; |
644 | unsigned long int level3_cache_size = -1; |
645 | unsigned long int level3_cache_assoc = -1; |
646 | unsigned long int level3_cache_linesize = -1; |
647 | unsigned long int level4_cache_size = -1; |
648 | |
649 | if (cpu_features->basic.kind == arch_kind_intel) |
650 | { |
651 | data = handle_intel (_SC_LEVEL1_DCACHE_SIZE, cpu_features); |
652 | core = handle_intel (_SC_LEVEL2_CACHE_SIZE, cpu_features); |
653 | shared = handle_intel (_SC_LEVEL3_CACHE_SIZE, cpu_features); |
654 | shared_per_thread = shared; |
655 | |
656 | level1_icache_size |
657 | = handle_intel (_SC_LEVEL1_ICACHE_SIZE, cpu_features); |
658 | level1_icache_linesize |
659 | = handle_intel (_SC_LEVEL1_ICACHE_LINESIZE, cpu_features); |
660 | level1_dcache_size = data; |
661 | level1_dcache_assoc |
662 | = handle_intel (_SC_LEVEL1_DCACHE_ASSOC, cpu_features); |
663 | level1_dcache_linesize |
664 | = handle_intel (_SC_LEVEL1_DCACHE_LINESIZE, cpu_features); |
665 | level2_cache_size = core; |
666 | level2_cache_assoc |
667 | = handle_intel (_SC_LEVEL2_CACHE_ASSOC, cpu_features); |
668 | level2_cache_linesize |
669 | = handle_intel (_SC_LEVEL2_CACHE_LINESIZE, cpu_features); |
670 | level3_cache_size = shared; |
671 | level3_cache_assoc |
672 | = handle_intel (_SC_LEVEL3_CACHE_ASSOC, cpu_features); |
673 | level3_cache_linesize |
674 | = handle_intel (_SC_LEVEL3_CACHE_LINESIZE, cpu_features); |
675 | level4_cache_size |
676 | = handle_intel (_SC_LEVEL4_CACHE_SIZE, cpu_features); |
677 | |
678 | get_common_cache_info (&shared, &shared_per_thread, &threads, core); |
679 | } |
680 | else if (cpu_features->basic.kind == arch_kind_zhaoxin) |
681 | { |
682 | data = handle_zhaoxin (_SC_LEVEL1_DCACHE_SIZE); |
683 | core = handle_zhaoxin (_SC_LEVEL2_CACHE_SIZE); |
684 | shared = handle_zhaoxin (_SC_LEVEL3_CACHE_SIZE); |
685 | shared_per_thread = shared; |
686 | |
687 | level1_icache_size = handle_zhaoxin (_SC_LEVEL1_ICACHE_SIZE); |
688 | level1_icache_linesize = handle_zhaoxin (_SC_LEVEL1_ICACHE_LINESIZE); |
689 | level1_dcache_size = data; |
690 | level1_dcache_assoc = handle_zhaoxin (_SC_LEVEL1_DCACHE_ASSOC); |
691 | level1_dcache_linesize = handle_zhaoxin (_SC_LEVEL1_DCACHE_LINESIZE); |
692 | level2_cache_size = core; |
693 | level2_cache_assoc = handle_zhaoxin (_SC_LEVEL2_CACHE_ASSOC); |
694 | level2_cache_linesize = handle_zhaoxin (_SC_LEVEL2_CACHE_LINESIZE); |
695 | level3_cache_size = shared; |
696 | level3_cache_assoc = handle_zhaoxin (_SC_LEVEL3_CACHE_ASSOC); |
697 | level3_cache_linesize = handle_zhaoxin (_SC_LEVEL3_CACHE_LINESIZE); |
698 | |
699 | get_common_cache_info (&shared, &shared_per_thread, &threads, core); |
700 | } |
701 | else if (cpu_features->basic.kind == arch_kind_amd) |
702 | { |
703 | data = handle_amd (_SC_LEVEL1_DCACHE_SIZE); |
704 | core = handle_amd (_SC_LEVEL2_CACHE_SIZE); |
705 | shared = handle_amd (_SC_LEVEL3_CACHE_SIZE); |
706 | shared_per_thread = shared; |
707 | |
708 | level1_icache_size = handle_amd (_SC_LEVEL1_ICACHE_SIZE); |
709 | level1_icache_linesize = handle_amd (_SC_LEVEL1_ICACHE_LINESIZE); |
710 | level1_dcache_size = data; |
711 | level1_dcache_assoc = handle_amd (_SC_LEVEL1_DCACHE_ASSOC); |
712 | level1_dcache_linesize = handle_amd (_SC_LEVEL1_DCACHE_LINESIZE); |
713 | level2_cache_size = core; |
714 | level2_cache_assoc = handle_amd (_SC_LEVEL2_CACHE_ASSOC); |
715 | level2_cache_linesize = handle_amd (_SC_LEVEL2_CACHE_LINESIZE); |
716 | level3_cache_size = shared; |
717 | level3_cache_assoc = handle_amd (_SC_LEVEL3_CACHE_ASSOC); |
718 | level3_cache_linesize = handle_amd (_SC_LEVEL3_CACHE_LINESIZE); |
719 | |
720 | if (shared <= 0) |
721 | /* No shared L3 cache. All we have is the L2 cache. */ |
722 | shared = core; |
723 | |
724 | if (shared_per_thread <= 0) |
725 | shared_per_thread = shared; |
726 | } |
727 | |
728 | cpu_features->level1_icache_size = level1_icache_size; |
729 | cpu_features->level1_icache_linesize = level1_icache_linesize; |
730 | cpu_features->level1_dcache_size = level1_dcache_size; |
731 | cpu_features->level1_dcache_assoc = level1_dcache_assoc; |
732 | cpu_features->level1_dcache_linesize = level1_dcache_linesize; |
733 | cpu_features->level2_cache_size = level2_cache_size; |
734 | cpu_features->level2_cache_assoc = level2_cache_assoc; |
735 | cpu_features->level2_cache_linesize = level2_cache_linesize; |
736 | cpu_features->level3_cache_size = level3_cache_size; |
737 | cpu_features->level3_cache_assoc = level3_cache_assoc; |
738 | cpu_features->level3_cache_linesize = level3_cache_linesize; |
739 | cpu_features->level4_cache_size = level4_cache_size; |
740 | |
741 | unsigned long int cachesize_non_temporal_divisor |
742 | = cpu_features->cachesize_non_temporal_divisor; |
743 | if (cachesize_non_temporal_divisor <= 0) |
744 | cachesize_non_temporal_divisor = 4; |
745 | |
746 | /* The default setting for the non_temporal threshold is [1/8, 1/2] of size |
747 | of the chip's cache (depending on `cachesize_non_temporal_divisor` which |
748 | is microarch specific. The default is 1/4). For most Intel processors |
749 | with an initial release date between 2017 and 2023, a thread's |
750 | typical share of the cache is from 18-64MB. Using a reasonable size |
751 | fraction of L3 is meant to estimate the point where non-temporal stores |
752 | begin out-competing REP MOVSB. As well the point where the fact that |
753 | non-temporal stores are forced back to main memory would already occurred |
754 | to the majority of the lines in the copy. Note, concerns about the entire |
755 | L3 cache being evicted by the copy are mostly alleviated by the fact that |
756 | modern HW detects streaming patterns and provides proper LRU hints so that |
757 | the maximum thrashing capped at 1/associativity. */ |
758 | unsigned long int non_temporal_threshold |
759 | = shared / cachesize_non_temporal_divisor; |
760 | |
761 | /* If the computed non_temporal_threshold <= 3/4 * per-thread L3, we most |
762 | likely have incorrect/incomplete cache info in which case, default to |
763 | 3/4 * per-thread L3 to avoid regressions. */ |
764 | unsigned long int non_temporal_threshold_lowbound |
765 | = shared_per_thread * 3 / 4; |
766 | if (non_temporal_threshold < non_temporal_threshold_lowbound) |
767 | non_temporal_threshold = non_temporal_threshold_lowbound; |
768 | |
769 | /* If no ERMS, we use the per-thread L3 chunking. Normal cacheable stores run |
770 | a higher risk of actually thrashing the cache as they don't have a HW LRU |
771 | hint. As well, their performance in highly parallel situations is |
772 | noticeably worse. */ |
773 | if (!CPU_FEATURE_USABLE_P (cpu_features, ERMS)) |
774 | non_temporal_threshold = non_temporal_threshold_lowbound; |
775 | /* SIZE_MAX >> 4 because memmove-vec-unaligned-erms right-shifts the value of |
776 | 'x86_non_temporal_threshold' by `LOG_4X_MEMCPY_THRESH` (4) and it is best |
777 | if that operation cannot overflow. Minimum of 0x4040 (16448) because the |
778 | L(large_memset_4x) loops need 64-byte to cache align and enough space for |
779 | at least 1 iteration of 4x PAGE_SIZE unrolled loop. Both values are |
780 | reflected in the manual. */ |
781 | unsigned long int maximum_non_temporal_threshold = SIZE_MAX >> 4; |
782 | unsigned long int minimum_non_temporal_threshold = 0x4040; |
783 | |
784 | /* If `non_temporal_threshold` less than `minimum_non_temporal_threshold` |
785 | it most likely means we failed to detect the cache info. We don't want |
786 | to default to `minimum_non_temporal_threshold` as such a small value, |
787 | while correct, has bad performance. We default to 64MB as reasonable |
788 | default bound. 64MB is likely conservative in that most/all systems would |
789 | choose a lower value so it should never forcing non-temporal stores when |
790 | they otherwise wouldn't be used. */ |
791 | if (non_temporal_threshold < minimum_non_temporal_threshold) |
792 | non_temporal_threshold = 64 * 1024 * 1024; |
793 | else if (non_temporal_threshold > maximum_non_temporal_threshold) |
794 | non_temporal_threshold = maximum_non_temporal_threshold; |
795 | |
796 | /* NB: The REP MOVSB threshold must be greater than VEC_SIZE * 8. */ |
797 | unsigned int minimum_rep_movsb_threshold; |
798 | /* NB: The default REP MOVSB threshold is 4096 * (VEC_SIZE / 16) for |
799 | VEC_SIZE == 64 or 32. For VEC_SIZE == 16, the default REP MOVSB |
800 | threshold is 2048 * (VEC_SIZE / 16). */ |
801 | unsigned int rep_movsb_threshold; |
802 | if (CPU_FEATURE_USABLE_P (cpu_features, AVX512F) |
803 | && !CPU_FEATURE_PREFERRED_P (cpu_features, Prefer_No_AVX512)) |
804 | { |
805 | rep_movsb_threshold = 4096 * (64 / 16); |
806 | minimum_rep_movsb_threshold = 64 * 8; |
807 | } |
808 | else if (CPU_FEATURE_PREFERRED_P (cpu_features, |
809 | AVX_Fast_Unaligned_Load)) |
810 | { |
811 | rep_movsb_threshold = 4096 * (32 / 16); |
812 | minimum_rep_movsb_threshold = 32 * 8; |
813 | } |
814 | else |
815 | { |
816 | rep_movsb_threshold = 2048 * (16 / 16); |
817 | minimum_rep_movsb_threshold = 16 * 8; |
818 | } |
819 | /* NB: The default REP MOVSB threshold is 2112 on processors with fast |
820 | short REP MOVSB (FSRM). */ |
821 | if (CPU_FEATURE_USABLE_P (cpu_features, FSRM)) |
822 | rep_movsb_threshold = 2112; |
823 | |
824 | /* The default threshold to use Enhanced REP STOSB. */ |
825 | unsigned long int rep_stosb_threshold = 2048; |
826 | |
827 | long int tunable_size; |
828 | |
829 | tunable_size = TUNABLE_GET (x86_data_cache_size, long int, NULL); |
830 | /* NB: Ignore the default value 0. */ |
831 | if (tunable_size != 0) |
832 | data = tunable_size; |
833 | |
834 | tunable_size = TUNABLE_GET (x86_shared_cache_size, long int, NULL); |
835 | /* NB: Ignore the default value 0. */ |
836 | if (tunable_size != 0) |
837 | shared = tunable_size; |
838 | |
839 | tunable_size = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL); |
840 | if (tunable_size > minimum_non_temporal_threshold |
841 | && tunable_size <= maximum_non_temporal_threshold) |
842 | non_temporal_threshold = tunable_size; |
843 | |
844 | tunable_size = TUNABLE_GET (x86_rep_movsb_threshold, long int, NULL); |
845 | if (tunable_size > minimum_rep_movsb_threshold) |
846 | rep_movsb_threshold = tunable_size; |
847 | |
848 | /* NB: The default value of the x86_rep_stosb_threshold tunable is the |
849 | same as the default value of __x86_rep_stosb_threshold and the |
850 | minimum value is fixed. */ |
851 | rep_stosb_threshold = TUNABLE_GET (x86_rep_stosb_threshold, |
852 | long int, NULL); |
853 | |
854 | TUNABLE_SET_WITH_BOUNDS (x86_data_cache_size, data, 0, SIZE_MAX); |
855 | TUNABLE_SET_WITH_BOUNDS (x86_shared_cache_size, shared, 0, SIZE_MAX); |
856 | TUNABLE_SET_WITH_BOUNDS (x86_non_temporal_threshold, non_temporal_threshold, |
857 | minimum_non_temporal_threshold, |
858 | maximum_non_temporal_threshold); |
859 | TUNABLE_SET_WITH_BOUNDS (x86_rep_movsb_threshold, rep_movsb_threshold, |
860 | minimum_rep_movsb_threshold, SIZE_MAX); |
861 | TUNABLE_SET_WITH_BOUNDS (x86_rep_stosb_threshold, rep_stosb_threshold, 1, |
862 | SIZE_MAX); |
863 | |
864 | unsigned long int rep_movsb_stop_threshold; |
865 | /* ERMS feature is implemented from AMD Zen3 architecture and it is |
866 | performing poorly for data above L2 cache size. Henceforth, adding |
867 | an upper bound threshold parameter to limit the usage of Enhanced |
868 | REP MOVSB operations and setting its value to L2 cache size. */ |
869 | if (cpu_features->basic.kind == arch_kind_amd) |
870 | rep_movsb_stop_threshold = core; |
871 | /* Setting the upper bound of ERMS to the computed value of |
872 | non-temporal threshold for architectures other than AMD. */ |
873 | else |
874 | rep_movsb_stop_threshold = non_temporal_threshold; |
875 | |
876 | cpu_features->data_cache_size = data; |
877 | cpu_features->shared_cache_size = shared; |
878 | cpu_features->non_temporal_threshold = non_temporal_threshold; |
879 | cpu_features->rep_movsb_threshold = rep_movsb_threshold; |
880 | cpu_features->rep_stosb_threshold = rep_stosb_threshold; |
881 | cpu_features->rep_movsb_stop_threshold = rep_movsb_stop_threshold; |
882 | } |
883 | |