1 | /* e_jnf.c -- float version of e_jn.c. |
2 | */ |
3 | |
4 | /* |
5 | * ==================================================== |
6 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
7 | * |
8 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
9 | * Permission to use, copy, modify, and distribute this |
10 | * software is freely granted, provided that this notice |
11 | * is preserved. |
12 | * ==================================================== |
13 | */ |
14 | |
15 | #include <errno.h> |
16 | #include <float.h> |
17 | #include <math.h> |
18 | #include <math-narrow-eval.h> |
19 | #include <math_private.h> |
20 | #include <fenv_private.h> |
21 | #include <math-underflow.h> |
22 | #include <libm-alias-finite.h> |
23 | |
24 | static const float |
25 | two = 2.0000000000e+00, /* 0x40000000 */ |
26 | one = 1.0000000000e+00; /* 0x3F800000 */ |
27 | |
28 | static const float zero = 0.0000000000e+00; |
29 | |
30 | float |
31 | __ieee754_jnf(int n, float x) |
32 | { |
33 | float ret; |
34 | { |
35 | int32_t i,hx,ix, sgn; |
36 | float a, b, temp, di; |
37 | float z, w; |
38 | |
39 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
40 | * Thus, J(-n,x) = J(n,-x) |
41 | */ |
42 | GET_FLOAT_WORD(hx,x); |
43 | ix = 0x7fffffff&hx; |
44 | /* if J(n,NaN) is NaN */ |
45 | if(__builtin_expect(ix>0x7f800000, 0)) return x+x; |
46 | if(n<0){ |
47 | n = -n; |
48 | x = -x; |
49 | hx ^= 0x80000000; |
50 | } |
51 | if(n==0) return(__ieee754_j0f(x)); |
52 | if(n==1) return(__ieee754_j1f(x)); |
53 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
54 | x = fabsf(x); |
55 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
56 | if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */ |
57 | return sgn == 1 ? -zero : zero; |
58 | else if((float)n<=x) { |
59 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
60 | a = __ieee754_j0f(x); |
61 | b = __ieee754_j1f(x); |
62 | for(i=1;i<n;i++){ |
63 | temp = b; |
64 | b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
65 | a = temp; |
66 | } |
67 | } else { |
68 | if(ix<0x30800000) { /* x < 2**-29 */ |
69 | /* x is tiny, return the first Taylor expansion of J(n,x) |
70 | * J(n,x) = 1/n!*(x/2)^n - ... |
71 | */ |
72 | if(n>33) /* underflow */ |
73 | b = zero; |
74 | else { |
75 | temp = x*(float)0.5; b = temp; |
76 | for (a=one,i=2;i<=n;i++) { |
77 | a *= (float)i; /* a = n! */ |
78 | b *= temp; /* b = (x/2)^n */ |
79 | } |
80 | b = b/a; |
81 | } |
82 | } else { |
83 | /* use backward recurrence */ |
84 | /* x x^2 x^2 |
85 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
86 | * 2n - 2(n+1) - 2(n+2) |
87 | * |
88 | * 1 1 1 |
89 | * (for large x) = ---- ------ ------ ..... |
90 | * 2n 2(n+1) 2(n+2) |
91 | * -- - ------ - ------ - |
92 | * x x x |
93 | * |
94 | * Let w = 2n/x and h=2/x, then the above quotient |
95 | * is equal to the continued fraction: |
96 | * 1 |
97 | * = ----------------------- |
98 | * 1 |
99 | * w - ----------------- |
100 | * 1 |
101 | * w+h - --------- |
102 | * w+2h - ... |
103 | * |
104 | * To determine how many terms needed, let |
105 | * Q(0) = w, Q(1) = w(w+h) - 1, |
106 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
107 | * When Q(k) > 1e4 good for single |
108 | * When Q(k) > 1e9 good for double |
109 | * When Q(k) > 1e17 good for quadruple |
110 | */ |
111 | /* determine k */ |
112 | float t,v; |
113 | float q0,q1,h,tmp; int32_t k,m; |
114 | w = (n+n)/(float)x; h = (float)2.0/(float)x; |
115 | q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1; |
116 | while(q1<(float)1.0e9) { |
117 | k += 1; z += h; |
118 | tmp = z*q1 - q0; |
119 | q0 = q1; |
120 | q1 = tmp; |
121 | } |
122 | m = n+n; |
123 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
124 | a = t; |
125 | b = one; |
126 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
127 | * Hence, if n*(log(2n/x)) > ... |
128 | * single 8.8722839355e+01 |
129 | * double 7.09782712893383973096e+02 |
130 | * long double 1.1356523406294143949491931077970765006170e+04 |
131 | * then recurrent value may overflow and the result is |
132 | * likely underflow to zero |
133 | */ |
134 | tmp = n; |
135 | v = two/x; |
136 | tmp = tmp*__ieee754_logf(fabsf(v*tmp)); |
137 | if(tmp<8.8721679688e+01f) { |
138 | for(i=n-1,di=(float)(i+i);i>0;i--){ |
139 | temp = b; |
140 | b *= di; |
141 | b = b/x - a; |
142 | a = temp; |
143 | di -= two; |
144 | } |
145 | } else { |
146 | for(i=n-1,di=(float)(i+i);i>0;i--){ |
147 | temp = b; |
148 | b *= di; |
149 | b = b/x - a; |
150 | a = temp; |
151 | di -= two; |
152 | /* scale b to avoid spurious overflow */ |
153 | if(b>(float)1e10) { |
154 | a /= b; |
155 | t /= b; |
156 | b = one; |
157 | } |
158 | } |
159 | } |
160 | /* j0() and j1() suffer enormous loss of precision at and |
161 | * near zero; however, we know that their zero points never |
162 | * coincide, so just choose the one further away from zero. |
163 | */ |
164 | z = __ieee754_j0f (x); |
165 | w = __ieee754_j1f (x); |
166 | if (fabsf (z) >= fabsf (w)) |
167 | b = (t * z / b); |
168 | else |
169 | b = (t * w / a); |
170 | } |
171 | } |
172 | if(sgn==1) ret = -b; else ret = b; |
173 | ret = math_narrow_eval (ret); |
174 | } |
175 | if (ret == 0) |
176 | { |
177 | ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN); |
178 | __set_errno (ERANGE); |
179 | } |
180 | else |
181 | math_check_force_underflow (ret); |
182 | return ret; |
183 | } |
184 | libm_alias_finite (__ieee754_jnf, __jnf) |
185 | |
186 | float |
187 | __ieee754_ynf(int n, float x) |
188 | { |
189 | float ret; |
190 | { |
191 | int32_t i,hx,ix; |
192 | uint32_t ib; |
193 | int32_t sign; |
194 | float a, b, temp; |
195 | |
196 | GET_FLOAT_WORD(hx,x); |
197 | ix = 0x7fffffff&hx; |
198 | /* if Y(n,NaN) is NaN */ |
199 | if(__builtin_expect(ix>0x7f800000, 0)) return x+x; |
200 | sign = 1; |
201 | if(n<0){ |
202 | n = -n; |
203 | sign = 1 - ((n&1)<<1); |
204 | } |
205 | if(n==0) return(__ieee754_y0f(x)); |
206 | if(__builtin_expect(ix==0, 0)) |
207 | return -sign/zero; |
208 | if(__builtin_expect(hx<0, 0)) return zero/(zero*x); |
209 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
210 | if(n==1) { |
211 | ret = sign*__ieee754_y1f(x); |
212 | goto out; |
213 | } |
214 | if(__builtin_expect(ix==0x7f800000, 0)) return zero; |
215 | |
216 | a = __ieee754_y0f(x); |
217 | b = __ieee754_y1f(x); |
218 | /* quit if b is -inf */ |
219 | GET_FLOAT_WORD(ib,b); |
220 | for(i=1;i<n&&ib!=0xff800000;i++){ |
221 | temp = b; |
222 | b = ((double)(i+i)/x)*b - a; |
223 | GET_FLOAT_WORD(ib,b); |
224 | a = temp; |
225 | } |
226 | /* If B is +-Inf, set up errno accordingly. */ |
227 | if (! isfinite (b)) |
228 | __set_errno (ERANGE); |
229 | if(sign>0) ret = b; else ret = -b; |
230 | } |
231 | out: |
232 | if (isinf (ret)) |
233 | ret = copysignf (FLT_MAX, ret) * FLT_MAX; |
234 | return ret; |
235 | } |
236 | libm_alias_finite (__ieee754_ynf, __ynf) |
237 | |