1 | /* Private function declarations for libm. |
2 | Copyright (C) 2011-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #define __MSUF_X(x, suffix) x ## suffix |
20 | #define __MSUF_S(...) __MSUF_X (__VA_ARGS__) |
21 | #define __MSUF(x) __MSUF_S (x, _MSUF_) |
22 | |
23 | #define __MSUF_R_X(x, suffix) x ## suffix ## _r |
24 | #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__) |
25 | #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_) |
26 | |
27 | /* IEEE style elementary functions. */ |
28 | extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_); |
29 | extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_); |
30 | extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_); |
31 | extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_); |
32 | extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_); |
33 | extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_); |
34 | extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_); |
35 | extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_); |
36 | extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_); |
37 | extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_); |
38 | extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_); |
39 | extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *); |
40 | extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_); |
41 | extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_); |
42 | extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_); |
43 | extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_); |
44 | extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_); |
45 | extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *); |
46 | extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_); |
47 | extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_); |
48 | extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_); |
49 | extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_); |
50 | extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_); |
51 | extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_); |
52 | extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_); |
53 | extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_); |
54 | extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_); |
55 | extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_); |
56 | |
57 | extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_); |
58 | extern int __MSUF (__ieee754_ilogb) (_Mdouble_); |
59 | |
60 | extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *); |
61 | |
62 | /* fdlibm kernel functions. */ |
63 | extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int); |
64 | extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_); |
65 | extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int); |
66 | |
67 | #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN |
68 | extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_, |
69 | _Mdouble_ *, _Mdouble_ *, int); |
70 | #endif |
71 | |
72 | #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN |
73 | extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int, |
74 | int, int, const int32_t *); |
75 | #endif |
76 | |
77 | /* Internal functions. */ |
78 | |
79 | /* Return X^2 + Y^2 - 1, computed without large cancellation error. |
80 | It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >= |
81 | 0.5. */ |
82 | extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y); |
83 | |
84 | /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N |
85 | - 1, in the form R * (1 + *EPS) where the return value R is an |
86 | approximation to the product and *EPS is set to indicate the |
87 | approximate error in the return value. X is such that all the |
88 | values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / |
89 | X is small enough that factors quadratic in it can be |
90 | neglected. */ |
91 | extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps, |
92 | int n, _Mdouble_ *eps); |
93 | |
94 | /* Compute lgamma of a negative argument X, if it is in a range |
95 | (depending on the floating-point format) for which expansion around |
96 | zeros is used, setting *SIGNGAMP accordingly. */ |
97 | extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp); |
98 | |
99 | /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + |
100 | 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that |
101 | all the values X + 1, ..., X + N - 1 are exactly representable, and |
102 | X_EPS / X is small enough that factors quadratic in it can be |
103 | neglected. */ |
104 | #if !defined __MATH_DECLARING_FLOAT |
105 | extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x, |
106 | _Mdouble_ x_eps, int n); |
107 | #endif |
108 | |
109 | #undef __MSUF_X |
110 | #undef __MSUF_S |
111 | #undef __MSUF |
112 | |
113 | #undef __MSUF_R_X |
114 | #undef __MSUF_R_S |
115 | #undef __MSUF_R |
116 | |