1 | /* Implementation of gamma function according to ISO C. |
2 | Copyright (C) 1997-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <math-narrow-eval.h> |
21 | #include <math_private.h> |
22 | #include <fenv_private.h> |
23 | #include <math-underflow.h> |
24 | #include <float.h> |
25 | #include <libm-alias-finite.h> |
26 | |
27 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's |
28 | approximation to gamma function. */ |
29 | |
30 | static const float gamma_coeff[] = |
31 | { |
32 | 0x1.555556p-4f, |
33 | -0xb.60b61p-12f, |
34 | 0x3.403404p-12f, |
35 | }; |
36 | |
37 | #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) |
38 | |
39 | /* Return gamma (X), for positive X less than 42, in the form R * |
40 | 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to |
41 | avoid overflow or underflow in intermediate calculations. */ |
42 | |
43 | static float |
44 | gammaf_positive (float x, int *exp2_adj) |
45 | { |
46 | int local_signgam; |
47 | if (x < 0.5f) |
48 | { |
49 | *exp2_adj = 0; |
50 | return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x; |
51 | } |
52 | else if (x <= 1.5f) |
53 | { |
54 | *exp2_adj = 0; |
55 | return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam)); |
56 | } |
57 | else if (x < 2.5f) |
58 | { |
59 | *exp2_adj = 0; |
60 | float x_adj = x - 1; |
61 | return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam)) |
62 | * x_adj); |
63 | } |
64 | else |
65 | { |
66 | float eps = 0; |
67 | float x_eps = 0; |
68 | float x_adj = x; |
69 | float prod = 1; |
70 | if (x < 4.0f) |
71 | { |
72 | /* Adjust into the range for applying Stirling's |
73 | approximation. */ |
74 | float n = ceilf (4.0f - x); |
75 | x_adj = math_narrow_eval (x + n); |
76 | x_eps = (x - (x_adj - n)); |
77 | prod = __gamma_productf (x_adj - n, x_eps, n, &eps); |
78 | } |
79 | /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). |
80 | Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, |
81 | starting by computing pow (X_ADJ, X_ADJ) with a power of 2 |
82 | factored out. */ |
83 | float exp_adj = -eps; |
84 | float x_adj_int = roundf (x_adj); |
85 | float x_adj_frac = x_adj - x_adj_int; |
86 | int x_adj_log2; |
87 | float x_adj_mant = __frexpf (x_adj, &x_adj_log2); |
88 | if (x_adj_mant < M_SQRT1_2f) |
89 | { |
90 | x_adj_log2--; |
91 | x_adj_mant *= 2.0f; |
92 | } |
93 | *exp2_adj = x_adj_log2 * (int) x_adj_int; |
94 | float ret = (__ieee754_powf (x_adj_mant, x_adj) |
95 | * __ieee754_exp2f (x_adj_log2 * x_adj_frac) |
96 | * __ieee754_expf (-x_adj) |
97 | * sqrtf (2 * M_PIf / x_adj) |
98 | / prod); |
99 | exp_adj += x_eps * __ieee754_logf (x_adj); |
100 | float bsum = gamma_coeff[NCOEFF - 1]; |
101 | float x_adj2 = x_adj * x_adj; |
102 | for (size_t i = 1; i <= NCOEFF - 1; i++) |
103 | bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; |
104 | exp_adj += bsum / x_adj; |
105 | return ret + ret * __expm1f (exp_adj); |
106 | } |
107 | } |
108 | |
109 | float |
110 | __ieee754_gammaf_r (float x, int *signgamp) |
111 | { |
112 | int32_t hx; |
113 | float ret; |
114 | |
115 | GET_FLOAT_WORD (hx, x); |
116 | |
117 | if (__glibc_unlikely ((hx & 0x7fffffff) == 0)) |
118 | { |
119 | /* Return value for x == 0 is Inf with divide by zero exception. */ |
120 | *signgamp = 0; |
121 | return 1.0 / x; |
122 | } |
123 | if (__builtin_expect (hx < 0, 0) |
124 | && (uint32_t) hx < 0xff800000 && rintf (x) == x) |
125 | { |
126 | /* Return value for integer x < 0 is NaN with invalid exception. */ |
127 | *signgamp = 0; |
128 | return (x - x) / (x - x); |
129 | } |
130 | if (__glibc_unlikely (hx == 0xff800000)) |
131 | { |
132 | /* x == -Inf. According to ISO this is NaN. */ |
133 | *signgamp = 0; |
134 | return x - x; |
135 | } |
136 | if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000)) |
137 | { |
138 | /* Positive infinity (return positive infinity) or NaN (return |
139 | NaN). */ |
140 | *signgamp = 0; |
141 | return x + x; |
142 | } |
143 | |
144 | if (x >= 36.0f) |
145 | { |
146 | /* Overflow. */ |
147 | *signgamp = 0; |
148 | ret = math_narrow_eval (FLT_MAX * FLT_MAX); |
149 | return ret; |
150 | } |
151 | else |
152 | { |
153 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
154 | if (x > 0.0f) |
155 | { |
156 | *signgamp = 0; |
157 | int exp2_adj; |
158 | float tret = gammaf_positive (x, &exp2_adj); |
159 | ret = __scalbnf (tret, exp2_adj); |
160 | } |
161 | else if (x >= -FLT_EPSILON / 4.0f) |
162 | { |
163 | *signgamp = 0; |
164 | ret = 1.0f / x; |
165 | } |
166 | else |
167 | { |
168 | float tx = truncf (x); |
169 | *signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1; |
170 | if (x <= -42.0f) |
171 | /* Underflow. */ |
172 | ret = FLT_MIN * FLT_MIN; |
173 | else |
174 | { |
175 | float frac = tx - x; |
176 | if (frac > 0.5f) |
177 | frac = 1.0f - frac; |
178 | float sinpix = (frac <= 0.25f |
179 | ? __sinf (M_PIf * frac) |
180 | : __cosf (M_PIf * (0.5f - frac))); |
181 | int exp2_adj; |
182 | float tret = M_PIf / (-x * sinpix |
183 | * gammaf_positive (-x, &exp2_adj)); |
184 | ret = __scalbnf (tret, -exp2_adj); |
185 | math_check_force_underflow_nonneg (ret); |
186 | } |
187 | } |
188 | ret = math_narrow_eval (ret); |
189 | } |
190 | if (isinf (ret) && x != 0) |
191 | { |
192 | if (*signgamp < 0) |
193 | { |
194 | ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX); |
195 | ret = -ret; |
196 | } |
197 | else |
198 | ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX); |
199 | return ret; |
200 | } |
201 | else if (ret == 0) |
202 | { |
203 | if (*signgamp < 0) |
204 | { |
205 | ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN); |
206 | ret = -ret; |
207 | } |
208 | else |
209 | ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN); |
210 | return ret; |
211 | } |
212 | else |
213 | return ret; |
214 | } |
215 | libm_alias_finite (__ieee754_gammaf_r, __gammaf_r) |
216 | |