1 | /* Double-precision log2(x) function. |
2 | Copyright (C) 2018-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <stdint.h> |
21 | #include <math-svid-compat.h> |
22 | #include <libm-alias-finite.h> |
23 | #include <libm-alias-double.h> |
24 | #include "math_config.h" |
25 | |
26 | #define T __log2_data.tab |
27 | #define T2 __log2_data.tab2 |
28 | #define B __log2_data.poly1 |
29 | #define A __log2_data.poly |
30 | #define InvLn2hi __log2_data.invln2hi |
31 | #define InvLn2lo __log2_data.invln2lo |
32 | #define N (1 << LOG2_TABLE_BITS) |
33 | #define OFF 0x3fe6000000000000 |
34 | |
35 | /* Top 16 bits of a double. */ |
36 | static inline uint32_t |
37 | top16 (double x) |
38 | { |
39 | return asuint64 (x) >> 48; |
40 | } |
41 | |
42 | double |
43 | __log2 (double x) |
44 | { |
45 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
46 | double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
47 | uint64_t ix, iz, tmp; |
48 | uint32_t top; |
49 | int k, i; |
50 | |
51 | ix = asuint64 (x); |
52 | top = top16 (x); |
53 | |
54 | #define LO asuint64 (1.0 - 0x1.5b51p-5) |
55 | #define HI asuint64 (1.0 + 0x1.6ab2p-5) |
56 | if (__glibc_unlikely (ix - LO < HI - LO)) |
57 | { |
58 | /* Handle close to 1.0 inputs separately. */ |
59 | /* Fix sign of zero with downward rounding when x==1. */ |
60 | if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0))) |
61 | return 0; |
62 | r = x - 1.0; |
63 | #ifdef __FP_FAST_FMA |
64 | hi = r * InvLn2hi; |
65 | lo = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -hi); |
66 | #else |
67 | double_t rhi, rlo; |
68 | rhi = asdouble (asuint64 (r) & -1ULL << 32); |
69 | rlo = r - rhi; |
70 | hi = rhi * InvLn2hi; |
71 | lo = rlo * InvLn2hi + r * InvLn2lo; |
72 | #endif |
73 | r2 = r * r; /* rounding error: 0x1p-62. */ |
74 | r4 = r2 * r2; |
75 | /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
76 | p = r2 * (B[0] + r * B[1]); |
77 | y = hi + p; |
78 | lo += hi - y + p; |
79 | lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) |
80 | + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); |
81 | y += lo; |
82 | return y; |
83 | } |
84 | if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) |
85 | { |
86 | /* x < 0x1p-1022 or inf or nan. */ |
87 | if (ix * 2 == 0) |
88 | return __math_divzero (1); |
89 | if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ |
90 | return x; |
91 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
92 | return __math_invalid (x); |
93 | /* x is subnormal, normalize it. */ |
94 | ix = asuint64 (x * 0x1p52); |
95 | ix -= 52ULL << 52; |
96 | } |
97 | |
98 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
99 | The range is split into N subintervals. |
100 | The ith subinterval contains z and c is near its center. */ |
101 | tmp = ix - OFF; |
102 | i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
103 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
104 | iz = ix - (tmp & 0xfffULL << 52); |
105 | invc = T[i].invc; |
106 | logc = T[i].logc; |
107 | z = asdouble (iz); |
108 | kd = (double_t) k; |
109 | |
110 | /* log2(x) = log2(z/c) + log2(c) + k. */ |
111 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
112 | #ifdef __FP_FAST_FMA |
113 | /* rounding error: 0x1p-55/N. */ |
114 | r = __builtin_fma (z, invc, -1.0); |
115 | t1 = r * InvLn2hi; |
116 | t2 = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -t1); |
117 | #else |
118 | double_t rhi, rlo; |
119 | /* rounding error: 0x1p-55/N + 0x1p-65. */ |
120 | r = (z - T2[i].chi - T2[i].clo) * invc; |
121 | rhi = asdouble (asuint64 (r) & -1ULL << 32); |
122 | rlo = r - rhi; |
123 | t1 = rhi * InvLn2hi; |
124 | t2 = rlo * InvLn2hi + r * InvLn2lo; |
125 | #endif |
126 | |
127 | /* hi + lo = r/ln2 + log2(c) + k. */ |
128 | t3 = kd + logc; |
129 | hi = t3 + t1; |
130 | lo = t3 - hi + t1 + t2; |
131 | |
132 | /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
133 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
134 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
135 | r4 = r2 * r2; |
136 | /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
137 | ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
138 | p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); |
139 | y = lo + r2 * p + hi; |
140 | return y; |
141 | } |
142 | #ifndef __log2 |
143 | strong_alias (__log2, __ieee754_log2) |
144 | libm_alias_finite (__ieee754_log2, __log2) |
145 | # if LIBM_SVID_COMPAT |
146 | versioned_symbol (libm, __log2, log2, GLIBC_2_29); |
147 | libm_alias_double_other (__log2, log2) |
148 | # else |
149 | libm_alias_double (__log2, log2) |
150 | # endif |
151 | #endif |
152 | |