| 1 | /* Configuration for double precision math routines. |
| 2 | Copyright (C) 2018-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #ifndef _MATH_CONFIG_H |
| 20 | #define _MATH_CONFIG_H |
| 21 | |
| 22 | #include <math.h> |
| 23 | #include <math_private.h> |
| 24 | #include <nan-high-order-bit.h> |
| 25 | #include <stdint.h> |
| 26 | |
| 27 | #ifndef WANT_ROUNDING |
| 28 | /* Correct special case results in non-nearest rounding modes. */ |
| 29 | # define WANT_ROUNDING 1 |
| 30 | #endif |
| 31 | #ifndef WANT_ERRNO |
| 32 | /* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */ |
| 33 | # define WANT_ERRNO 1 |
| 34 | #endif |
| 35 | #ifndef WANT_ERRNO_UFLOW |
| 36 | /* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */ |
| 37 | # define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO) |
| 38 | #endif |
| 39 | |
| 40 | #ifndef TOINT_INTRINSICS |
| 41 | /* When set, the roundtoint and converttoint functions are provided with |
| 42 | the semantics documented below. */ |
| 43 | # define TOINT_INTRINSICS 0 |
| 44 | #endif |
| 45 | |
| 46 | static inline int |
| 47 | clz_uint64 (uint64_t x) |
| 48 | { |
| 49 | if (sizeof (uint64_t) == sizeof (unsigned long)) |
| 50 | return __builtin_clzl (x); |
| 51 | else |
| 52 | return __builtin_clzll (x); |
| 53 | } |
| 54 | |
| 55 | static inline int |
| 56 | ctz_uint64 (uint64_t x) |
| 57 | { |
| 58 | if (sizeof (uint64_t) == sizeof (unsigned long)) |
| 59 | return __builtin_ctzl (x); |
| 60 | else |
| 61 | return __builtin_ctzll (x); |
| 62 | } |
| 63 | |
| 64 | #if TOINT_INTRINSICS |
| 65 | /* Round x to nearest int in all rounding modes, ties have to be rounded |
| 66 | consistently with converttoint so the results match. If the result |
| 67 | would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ |
| 68 | static inline double_t |
| 69 | roundtoint (double_t x); |
| 70 | |
| 71 | /* Convert x to nearest int in all rounding modes, ties have to be rounded |
| 72 | consistently with roundtoint. If the result is not representible in an |
| 73 | int32_t then the semantics is unspecified. */ |
| 74 | static inline int32_t |
| 75 | converttoint (double_t x); |
| 76 | #endif |
| 77 | |
| 78 | static inline uint64_t |
| 79 | asuint64 (double f) |
| 80 | { |
| 81 | union |
| 82 | { |
| 83 | double f; |
| 84 | uint64_t i; |
| 85 | } u = {f}; |
| 86 | return u.i; |
| 87 | } |
| 88 | |
| 89 | static inline double |
| 90 | asdouble (uint64_t i) |
| 91 | { |
| 92 | union |
| 93 | { |
| 94 | uint64_t i; |
| 95 | double f; |
| 96 | } u = {i}; |
| 97 | return u.f; |
| 98 | } |
| 99 | |
| 100 | static inline int |
| 101 | issignaling_inline (double x) |
| 102 | { |
| 103 | uint64_t ix = asuint64 (x); |
| 104 | if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN) |
| 105 | return (ix & 0x7ff8000000000000) == 0x7ff8000000000000; |
| 106 | return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL; |
| 107 | } |
| 108 | |
| 109 | #define BIT_WIDTH 64 |
| 110 | #define MANTISSA_WIDTH 52 |
| 111 | #define EXPONENT_WIDTH 11 |
| 112 | #define MANTISSA_MASK UINT64_C(0x000fffffffffffff) |
| 113 | #define EXPONENT_MASK UINT64_C(0x7ff0000000000000) |
| 114 | #define EXP_MANT_MASK UINT64_C(0x7fffffffffffffff) |
| 115 | #define QUIET_NAN_MASK UINT64_C(0x0008000000000000) |
| 116 | #define SIGN_MASK UINT64_C(0x8000000000000000) |
| 117 | |
| 118 | static inline bool |
| 119 | is_nan (uint64_t x) |
| 120 | { |
| 121 | return (x & EXP_MANT_MASK) > EXPONENT_MASK; |
| 122 | } |
| 123 | |
| 124 | static inline uint64_t |
| 125 | get_mantissa (uint64_t x) |
| 126 | { |
| 127 | return x & MANTISSA_MASK; |
| 128 | } |
| 129 | |
| 130 | /* Convert integer number X, unbiased exponent EP, and sign S to double: |
| 131 | |
| 132 | result = X * 2^(EP+1 - exponent_bias) |
| 133 | |
| 134 | NB: zero is not supported. */ |
| 135 | static inline double |
| 136 | make_double (uint64_t x, int64_t ep, uint64_t s) |
| 137 | { |
| 138 | int lz = clz_uint64 (x) - EXPONENT_WIDTH; |
| 139 | x <<= lz; |
| 140 | ep -= lz; |
| 141 | |
| 142 | if (__glibc_unlikely (ep < 0 || x == 0)) |
| 143 | { |
| 144 | x >>= -ep; |
| 145 | ep = 0; |
| 146 | } |
| 147 | |
| 148 | return asdouble (s + x + (ep << MANTISSA_WIDTH)); |
| 149 | } |
| 150 | |
| 151 | /* Error handling tail calls for special cases, with a sign argument. |
| 152 | The sign of the return value is set if the argument is non-zero. */ |
| 153 | |
| 154 | /* The result overflows. */ |
| 155 | attribute_hidden double __math_oflow (uint32_t); |
| 156 | /* The result underflows to 0 in nearest rounding mode. */ |
| 157 | attribute_hidden double __math_uflow (uint32_t); |
| 158 | /* The result underflows to 0 in some directed rounding mode only. */ |
| 159 | attribute_hidden double __math_may_uflow (uint32_t); |
| 160 | /* Division by zero. */ |
| 161 | attribute_hidden double __math_divzero (uint32_t); |
| 162 | |
| 163 | /* Error handling using input checking. */ |
| 164 | |
| 165 | /* Invalid input unless it is a quiet NaN. */ |
| 166 | attribute_hidden double __math_invalid (double); |
| 167 | |
| 168 | /* Error handling using output checking, only for errno setting. */ |
| 169 | |
| 170 | /* Check if the result generated a demain error. */ |
| 171 | attribute_hidden double __math_edom (double x); |
| 172 | |
| 173 | /* Check if the result overflowed to infinity. */ |
| 174 | attribute_hidden double __math_check_oflow (double); |
| 175 | /* Check if the result underflowed to 0. */ |
| 176 | attribute_hidden double __math_check_uflow (double); |
| 177 | |
| 178 | /* Check if the result overflowed to infinity. */ |
| 179 | static inline double |
| 180 | check_oflow (double x) |
| 181 | { |
| 182 | return WANT_ERRNO ? __math_check_oflow (x) : x; |
| 183 | } |
| 184 | |
| 185 | /* Check if the result underflowed to 0. */ |
| 186 | static inline double |
| 187 | check_uflow (double x) |
| 188 | { |
| 189 | return WANT_ERRNO ? __math_check_uflow (x) : x; |
| 190 | } |
| 191 | |
| 192 | #define EXP_TABLE_BITS 7 |
| 193 | #define EXP_POLY_ORDER 5 |
| 194 | #define EXP2_POLY_ORDER 5 |
| 195 | extern const struct exp_data |
| 196 | { |
| 197 | double invln2N; |
| 198 | double shift; |
| 199 | double negln2hiN; |
| 200 | double negln2loN; |
| 201 | double poly[4]; /* Last four coefficients. */ |
| 202 | double exp2_shift; |
| 203 | double exp2_poly[EXP2_POLY_ORDER]; |
| 204 | uint64_t tab[2*(1 << EXP_TABLE_BITS)]; |
| 205 | } __exp_data attribute_hidden; |
| 206 | |
| 207 | #define LOG_TABLE_BITS 7 |
| 208 | #define LOG_POLY_ORDER 6 |
| 209 | #define LOG_POLY1_ORDER 12 |
| 210 | extern const struct log_data |
| 211 | { |
| 212 | double ln2hi; |
| 213 | double ln2lo; |
| 214 | double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ |
| 215 | double poly1[LOG_POLY1_ORDER - 1]; |
| 216 | /* See e_log_data.c for details. */ |
| 217 | struct {double invc, logc;} tab[1 << LOG_TABLE_BITS]; |
| 218 | #ifndef __FP_FAST_FMA |
| 219 | struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS]; |
| 220 | #endif |
| 221 | } __log_data attribute_hidden; |
| 222 | |
| 223 | #define LOG2_TABLE_BITS 6 |
| 224 | #define LOG2_POLY_ORDER 7 |
| 225 | #define LOG2_POLY1_ORDER 11 |
| 226 | extern const struct log2_data |
| 227 | { |
| 228 | double invln2hi; |
| 229 | double invln2lo; |
| 230 | double poly[LOG2_POLY_ORDER - 1]; |
| 231 | double poly1[LOG2_POLY1_ORDER - 1]; |
| 232 | /* See e_log2_data.c for details. */ |
| 233 | struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS]; |
| 234 | #ifndef __FP_FAST_FMA |
| 235 | struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS]; |
| 236 | #endif |
| 237 | } __log2_data attribute_hidden; |
| 238 | |
| 239 | #define POW_LOG_TABLE_BITS 7 |
| 240 | #define POW_LOG_POLY_ORDER 8 |
| 241 | extern const struct pow_log_data |
| 242 | { |
| 243 | double ln2hi; |
| 244 | double ln2lo; |
| 245 | double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ |
| 246 | /* Note: the pad field is unused, but allows slightly faster indexing. */ |
| 247 | /* See e_pow_log_data.c for details. */ |
| 248 | struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS]; |
| 249 | } __pow_log_data attribute_hidden; |
| 250 | |
| 251 | #endif |
| 252 | |