| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /*********************************************************************/ |
| 20 | /* MODULE_NAME: utan.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: utan */ |
| 23 | /* */ |
| 24 | /* FILES NEEDED:dla.h endian.h mydefs.h utan.h */ |
| 25 | /* branred.c */ |
| 26 | /* utan.tbl */ |
| 27 | /* */ |
| 28 | /*********************************************************************/ |
| 29 | |
| 30 | #include <errno.h> |
| 31 | #include <float.h> |
| 32 | #include "endian.h" |
| 33 | #include <dla.h> |
| 34 | #include "mydefs.h" |
| 35 | #include <math.h> |
| 36 | #include <math_private.h> |
| 37 | #include <fenv_private.h> |
| 38 | #include <math-underflow.h> |
| 39 | #include <libm-alias-double.h> |
| 40 | #include <fenv.h> |
| 41 | |
| 42 | #ifndef SECTION |
| 43 | # define SECTION |
| 44 | #endif |
| 45 | |
| 46 | /* tan with max ULP of ~0.619 based on random sampling. */ |
| 47 | double |
| 48 | SECTION |
| 49 | __tan (double x) |
| 50 | { |
| 51 | #include "utan.h" |
| 52 | #include "utan.tbl" |
| 53 | |
| 54 | int ux, i, n; |
| 55 | double a, da, a2, b, db, c, dc, fi, gi, pz, |
| 56 | s, sy, t, t1, t2, t3, t4, w, x2, xn, y, ya, |
| 57 | yya, z0, z, z2; |
| 58 | mynumber num, v; |
| 59 | |
| 60 | double retval; |
| 61 | |
| 62 | int __branred (double, double *, double *); |
| 63 | |
| 64 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
| 65 | |
| 66 | /* x=+-INF, x=NaN */ |
| 67 | num.d = x; |
| 68 | ux = num.i[HIGH_HALF]; |
| 69 | if ((ux & 0x7ff00000) == 0x7ff00000) |
| 70 | { |
| 71 | if ((ux & 0x7fffffff) == 0x7ff00000) |
| 72 | __set_errno (EDOM); |
| 73 | retval = x - x; |
| 74 | goto ret; |
| 75 | } |
| 76 | |
| 77 | w = (x < 0.0) ? -x : x; |
| 78 | |
| 79 | /* (I) The case abs(x) <= 1.259e-8 */ |
| 80 | if (w <= g1.d) |
| 81 | { |
| 82 | math_check_force_underflow_nonneg (w); |
| 83 | retval = x; |
| 84 | goto ret; |
| 85 | } |
| 86 | |
| 87 | /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ |
| 88 | if (w <= g2.d) |
| 89 | { |
| 90 | x2 = x * x; |
| 91 | |
| 92 | t2 = d9.d + x2 * d11.d; |
| 93 | t2 = d7.d + x2 * t2; |
| 94 | t2 = d5.d + x2 * t2; |
| 95 | t2 = d3.d + x2 * t2; |
| 96 | t2 *= x * x2; |
| 97 | |
| 98 | y = x + t2; |
| 99 | retval = y; |
| 100 | /* Max ULP is 0.504. */ |
| 101 | goto ret; |
| 102 | } |
| 103 | |
| 104 | /* (III) The case 0.0608 < abs(x) <= 0.787 */ |
| 105 | if (w <= g3.d) |
| 106 | { |
| 107 | i = ((int) (mfftnhf.d + 256 * w)); |
| 108 | z = w - xfg[i][0].d; |
| 109 | z2 = z * z; |
| 110 | s = (x < 0.0) ? -1 : 1; |
| 111 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
| 112 | fi = xfg[i][1].d; |
| 113 | gi = xfg[i][2].d; |
| 114 | t2 = pz * (gi + fi) / (gi - pz); |
| 115 | y = fi + t2; |
| 116 | retval = (s * y); |
| 117 | /* Max ULP is 0.60. */ |
| 118 | goto ret; |
| 119 | } |
| 120 | |
| 121 | /* (---) The case 0.787 < abs(x) <= 25 */ |
| 122 | if (w <= g4.d) |
| 123 | { |
| 124 | /* Range reduction by algorithm i */ |
| 125 | t = (x * hpinv.d + toint.d); |
| 126 | xn = t - toint.d; |
| 127 | v.d = t; |
| 128 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
| 129 | n = v.i[LOW_HALF] & 0x00000001; |
| 130 | da = xn * mp3.d; |
| 131 | a = t1 - da; |
| 132 | da = (t1 - a) - da; |
| 133 | if (a < 0.0) |
| 134 | { |
| 135 | ya = -a; |
| 136 | yya = -da; |
| 137 | sy = -1; |
| 138 | } |
| 139 | else |
| 140 | { |
| 141 | ya = a; |
| 142 | yya = da; |
| 143 | sy = 1; |
| 144 | } |
| 145 | |
| 146 | /* (VI) The case 0.787 < abs(x) <= 25, 0 < abs(y) <= 0.0608 */ |
| 147 | if (ya <= gy2.d) |
| 148 | { |
| 149 | a2 = a * a; |
| 150 | t2 = d9.d + a2 * d11.d; |
| 151 | t2 = d7.d + a2 * t2; |
| 152 | t2 = d5.d + a2 * t2; |
| 153 | t2 = d3.d + a2 * t2; |
| 154 | t2 = da + a * a2 * t2; |
| 155 | |
| 156 | if (n) |
| 157 | { |
| 158 | /* -cot */ |
| 159 | EADD (a, t2, b, db); |
| 160 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
| 161 | y = c + dc; |
| 162 | retval = (-y); |
| 163 | /* Max ULP is 0.506. */ |
| 164 | goto ret; |
| 165 | } |
| 166 | else |
| 167 | { |
| 168 | /* tan */ |
| 169 | y = a + t2; |
| 170 | retval = y; |
| 171 | /* Max ULP is 0.506. */ |
| 172 | goto ret; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ |
| 177 | |
| 178 | i = ((int) (mfftnhf.d + 256 * ya)); |
| 179 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
| 180 | z2 = z * z; |
| 181 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
| 182 | fi = xfg[i][1].d; |
| 183 | gi = xfg[i][2].d; |
| 184 | |
| 185 | if (n) |
| 186 | { |
| 187 | /* -cot */ |
| 188 | t2 = pz * (fi + gi) / (fi + pz); |
| 189 | y = gi - t2; |
| 190 | retval = (-sy * y); |
| 191 | /* Max ULP is 0.62. */ |
| 192 | goto ret; |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | /* tan */ |
| 197 | t2 = pz * (gi + fi) / (gi - pz); |
| 198 | y = fi + t2; |
| 199 | retval = (sy * y); |
| 200 | /* Max ULP is 0.62. */ |
| 201 | goto ret; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /* (---) The case 25 < abs(x) <= 1e8 */ |
| 206 | if (w <= g5.d) |
| 207 | { |
| 208 | /* Range reduction by algorithm ii */ |
| 209 | t = (x * hpinv.d + toint.d); |
| 210 | xn = t - toint.d; |
| 211 | v.d = t; |
| 212 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
| 213 | n = v.i[LOW_HALF] & 0x00000001; |
| 214 | da = xn * pp3.d; |
| 215 | t = t1 - da; |
| 216 | da = (t1 - t) - da; |
| 217 | t1 = xn * pp4.d; |
| 218 | a = t - t1; |
| 219 | da = ((t - a) - t1) + da; |
| 220 | EADD (a, da, t1, t2); |
| 221 | a = t1; |
| 222 | da = t2; |
| 223 | if (a < 0.0) |
| 224 | { |
| 225 | ya = -a; |
| 226 | yya = -da; |
| 227 | sy = -1; |
| 228 | } |
| 229 | else |
| 230 | { |
| 231 | ya = a; |
| 232 | yya = da; |
| 233 | sy = 1; |
| 234 | } |
| 235 | |
| 236 | /* (VIII) The case 25 < abs(x) <= 1e8, 0 < abs(y) <= 0.0608 */ |
| 237 | if (ya <= gy2.d) |
| 238 | { |
| 239 | a2 = a * a; |
| 240 | t2 = d9.d + a2 * d11.d; |
| 241 | t2 = d7.d + a2 * t2; |
| 242 | t2 = d5.d + a2 * t2; |
| 243 | t2 = d3.d + a2 * t2; |
| 244 | t2 = da + a * a2 * t2; |
| 245 | |
| 246 | if (n) |
| 247 | { |
| 248 | /* -cot */ |
| 249 | EADD (a, t2, b, db); |
| 250 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
| 251 | y = c + dc; |
| 252 | retval = (-y); |
| 253 | /* Max ULP is 0.506. */ |
| 254 | goto ret; |
| 255 | } |
| 256 | else |
| 257 | { |
| 258 | /* tan */ |
| 259 | y = a + t2; |
| 260 | retval = y; |
| 261 | /* Max ULP is 0.506. */ |
| 262 | goto ret; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ |
| 267 | i = ((int) (mfftnhf.d + 256 * ya)); |
| 268 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
| 269 | z2 = z * z; |
| 270 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
| 271 | fi = xfg[i][1].d; |
| 272 | gi = xfg[i][2].d; |
| 273 | |
| 274 | if (n) |
| 275 | { |
| 276 | /* -cot */ |
| 277 | t2 = pz * (fi + gi) / (fi + pz); |
| 278 | y = gi - t2; |
| 279 | retval = (-sy * y); |
| 280 | /* Max ULP is 0.62. */ |
| 281 | goto ret; |
| 282 | } |
| 283 | else |
| 284 | { |
| 285 | /* tan */ |
| 286 | t2 = pz * (gi + fi) / (gi - pz); |
| 287 | y = fi + t2; |
| 288 | retval = (sy * y); |
| 289 | /* Max ULP is 0.62. */ |
| 290 | goto ret; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* (---) The case 1e8 < abs(x) < 2**1024 */ |
| 295 | /* Range reduction by algorithm iii */ |
| 296 | n = (__branred (x, &a, &da)) & 0x00000001; |
| 297 | EADD (a, da, t1, t2); |
| 298 | a = t1; |
| 299 | da = t2; |
| 300 | if (a < 0.0) |
| 301 | { |
| 302 | ya = -a; |
| 303 | yya = -da; |
| 304 | sy = -1; |
| 305 | } |
| 306 | else |
| 307 | { |
| 308 | ya = a; |
| 309 | yya = da; |
| 310 | sy = 1; |
| 311 | } |
| 312 | |
| 313 | /* (X) The case 1e8 < abs(x) < 2**1024, 0 < abs(y) <= 0.0608 */ |
| 314 | if (ya <= gy2.d) |
| 315 | { |
| 316 | a2 = a * a; |
| 317 | t2 = d9.d + a2 * d11.d; |
| 318 | t2 = d7.d + a2 * t2; |
| 319 | t2 = d5.d + a2 * t2; |
| 320 | t2 = d3.d + a2 * t2; |
| 321 | t2 = da + a * a2 * t2; |
| 322 | if (n) |
| 323 | { |
| 324 | /* -cot */ |
| 325 | EADD (a, t2, b, db); |
| 326 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
| 327 | y = c + dc; |
| 328 | retval = (-y); |
| 329 | /* Max ULP is 0.506. */ |
| 330 | goto ret; |
| 331 | } |
| 332 | else |
| 333 | { |
| 334 | /* tan */ |
| 335 | y = a + t2; |
| 336 | retval = y; |
| 337 | /* Max ULP is 0.507. */ |
| 338 | goto ret; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ |
| 343 | i = ((int) (mfftnhf.d + 256 * ya)); |
| 344 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
| 345 | z2 = z * z; |
| 346 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
| 347 | fi = xfg[i][1].d; |
| 348 | gi = xfg[i][2].d; |
| 349 | |
| 350 | if (n) |
| 351 | { |
| 352 | /* -cot */ |
| 353 | t2 = pz * (fi + gi) / (fi + pz); |
| 354 | y = gi - t2; |
| 355 | retval = (-sy * y); |
| 356 | /* Max ULP is 0.62. */ |
| 357 | goto ret; |
| 358 | } |
| 359 | else |
| 360 | { |
| 361 | /* tan */ |
| 362 | t2 = pz * (gi + fi) / (gi - pz); |
| 363 | y = fi + t2; |
| 364 | retval = (sy * y); |
| 365 | /* Max ULP is 0.62. */ |
| 366 | goto ret; |
| 367 | } |
| 368 | |
| 369 | ret: |
| 370 | return retval; |
| 371 | } |
| 372 | |
| 373 | #ifndef __tan |
| 374 | libm_alias_double (__tan, tan) |
| 375 | #endif |
| 376 | |