1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * Written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | |
20 | /******************************************************************/ |
21 | /* */ |
22 | /* MODULE_NAME:utan.h */ |
23 | /* */ |
24 | /* common data and variables prototype and definition */ |
25 | /******************************************************************/ |
26 | |
27 | #ifndef UTAN_H |
28 | #define UTAN_H |
29 | |
30 | #ifdef BIG_ENDI |
31 | static const mynumber |
32 | /* polynomial I */ |
33 | /**/ d3 = {{0x3FD55555, 0x55555555} }, /* 0.333... */ |
34 | /**/ d5 = {{0x3FC11111, 0x111107C6} }, /* 0.133... */ |
35 | /**/ d7 = {{0x3FABA1BA, 0x1CDB8745} }, /* . */ |
36 | /**/ d9 = {{0x3F9664ED, 0x49CFC666} }, /* . */ |
37 | /**/ d11 = {{0x3F82385A, 0x3CF2E4EA} }, /* . */ |
38 | /* polynomial II */ |
39 | /* polynomial III */ |
40 | /**/ e0 = {{0x3FD55555, 0x55554DBD} }, /* . */ |
41 | /**/ e1 = {{0x3FC11112, 0xE0A6B45F} }, /* . */ |
42 | |
43 | /* constants */ |
44 | /**/ mfftnhf = {{0xc02f0000, 0x00000000} }, /*-15.5 */ |
45 | |
46 | /**/ g1 = {{0x3e4b096c, 0x00000000} }, /* 1.259e-8 */ |
47 | /**/ g2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */ |
48 | /**/ g3 = {{0x3fe92f1a, 0x00000000} }, /* 0.787 */ |
49 | /**/ g4 = {{0x40390000, 0x00000000} }, /* 25.0 */ |
50 | /**/ g5 = {{0x4197d784, 0x00000000} }, /* 1e8 */ |
51 | /**/ gy2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */ |
52 | |
53 | /**/ mp1 = {{0x3FF921FB, 0x58000000} }, |
54 | /**/ mp2 = {{0xBE4DDE97, 0x3C000000} }, |
55 | /**/ mp3 = {{0xBC8CB3B3, 0x99D747F2} }, |
56 | /**/ pp3 = {{0xBC8CB3B3, 0x98000000} }, |
57 | /**/ pp4 = {{0xbacd747f, 0x23e32ed7} }, |
58 | /**/ hpinv = {{0x3FE45F30, 0x6DC9C883} }, |
59 | /**/ toint = {{0x43380000, 0x00000000} }; |
60 | |
61 | #else |
62 | #ifdef LITTLE_ENDI |
63 | |
64 | static const mynumber |
65 | /* polynomial I */ |
66 | /**/ d3 = {{0x55555555, 0x3FD55555} }, /* 0.333... */ |
67 | /**/ d5 = {{0x111107C6, 0x3FC11111} }, /* 0.133... */ |
68 | /**/ d7 = {{0x1CDB8745, 0x3FABA1BA} }, /* . */ |
69 | /**/ d9 = {{0x49CFC666, 0x3F9664ED} }, /* . */ |
70 | /**/ d11 = {{0x3CF2E4EA, 0x3F82385A} }, /* . */ |
71 | /* polynomial II */ |
72 | /* polynomial III */ |
73 | /**/ e0 = {{0x55554DBD, 0x3FD55555} }, /* . */ |
74 | /**/ e1 = {{0xE0A6B45F, 0x3FC11112} }, /* . */ |
75 | |
76 | /* constants */ |
77 | /**/ mfftnhf = {{0x00000000, 0xc02f0000} }, /*-15.5 */ |
78 | |
79 | /**/ g1 = {{0x00000000, 0x3e4b096c} }, /* 1.259e-8 */ |
80 | /**/ g2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */ |
81 | /**/ g3 = {{0x00000000, 0x3fe92f1a} }, /* 0.787 */ |
82 | /**/ g4 = {{0x00000000, 0x40390000} }, /* 25.0 */ |
83 | /**/ g5 = {{0x00000000, 0x4197d784} }, /* 1e8 */ |
84 | /**/ gy2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */ |
85 | |
86 | /**/ mp1 = {{0x58000000, 0x3FF921FB} }, |
87 | /**/ mp2 = {{0x3C000000, 0xBE4DDE97} }, |
88 | /**/ mp3 = {{0x99D747F2, 0xBC8CB3B3} }, |
89 | /**/ pp3 = {{0x98000000, 0xBC8CB3B3} }, |
90 | /**/ pp4 = {{0x23e32ed7, 0xbacd747f} }, |
91 | /**/ hpinv = {{0x6DC9C883, 0x3FE45F30} }, |
92 | /**/ toint = {{0x00000000, 0x43380000} }; |
93 | |
94 | #endif |
95 | #endif |
96 | |
97 | #endif |
98 | |