| 1 | /* x86_64 cache info. |
| 2 | Copyright (C) 2003-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #if IS_IN (libc) |
| 20 | |
| 21 | #include <assert.h> |
| 22 | #include <stdbool.h> |
| 23 | #include <stdlib.h> |
| 24 | #include <unistd.h> |
| 25 | #include <cpuid.h> |
| 26 | #include <init-arch.h> |
| 27 | |
| 28 | static const struct intel_02_cache_info |
| 29 | { |
| 30 | unsigned char idx; |
| 31 | unsigned char assoc; |
| 32 | unsigned char linesize; |
| 33 | unsigned char rel_name; |
| 34 | unsigned int size; |
| 35 | } intel_02_known [] = |
| 36 | { |
| 37 | #define M(sc) ((sc) - _SC_LEVEL1_ICACHE_SIZE) |
| 38 | { 0x06, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 8192 }, |
| 39 | { 0x08, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 16384 }, |
| 40 | { 0x09, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
| 41 | { 0x0a, 2, 32, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
| 42 | { 0x0c, 4, 32, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 43 | { 0x0d, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 44 | { 0x0e, 6, 64, M(_SC_LEVEL1_DCACHE_SIZE), 24576 }, |
| 45 | { 0x21, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 46 | { 0x22, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
| 47 | { 0x23, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 48 | { 0x25, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 49 | { 0x29, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 50 | { 0x2c, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
| 51 | { 0x30, 8, 64, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
| 52 | { 0x39, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 53 | { 0x3a, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 196608 }, |
| 54 | { 0x3b, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 55 | { 0x3c, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 56 | { 0x3d, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 393216 }, |
| 57 | { 0x3e, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 58 | { 0x3f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 59 | { 0x41, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 60 | { 0x42, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 61 | { 0x43, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 62 | { 0x44, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 63 | { 0x45, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 64 | { 0x46, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 65 | { 0x47, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 66 | { 0x48, 12, 64, M(_SC_LEVEL2_CACHE_SIZE), 3145728 }, |
| 67 | { 0x49, 16, 64, M(_SC_LEVEL2_CACHE_SIZE), 4194304 }, |
| 68 | { 0x4a, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 6291456 }, |
| 69 | { 0x4b, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 70 | { 0x4c, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
| 71 | { 0x4d, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 16777216 }, |
| 72 | { 0x4e, 24, 64, M(_SC_LEVEL2_CACHE_SIZE), 6291456 }, |
| 73 | { 0x60, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 74 | { 0x66, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
| 75 | { 0x67, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 76 | { 0x68, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
| 77 | { 0x78, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 78 | { 0x79, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 79 | { 0x7a, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 80 | { 0x7b, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 81 | { 0x7c, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 82 | { 0x7d, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 83 | { 0x7f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 84 | { 0x80, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 85 | { 0x82, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 86 | { 0x83, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 87 | { 0x84, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 88 | { 0x85, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 89 | { 0x86, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 90 | { 0x87, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 91 | { 0xd0, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
| 92 | { 0xd1, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 93 | { 0xd2, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 94 | { 0xd6, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 95 | { 0xd7, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 96 | { 0xd8, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 97 | { 0xdc, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 98 | { 0xdd, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 99 | { 0xde, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 100 | { 0xe2, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 101 | { 0xe3, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 102 | { 0xe4, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 103 | { 0xea, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
| 104 | { 0xeb, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 18874368 }, |
| 105 | { 0xec, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 25165824 }, |
| 106 | }; |
| 107 | |
| 108 | #define nintel_02_known (sizeof (intel_02_known) / sizeof (intel_02_known [0])) |
| 109 | |
| 110 | static int |
| 111 | intel_02_known_compare (const void *p1, const void *p2) |
| 112 | { |
| 113 | const struct intel_02_cache_info *i1; |
| 114 | const struct intel_02_cache_info *i2; |
| 115 | |
| 116 | i1 = (const struct intel_02_cache_info *) p1; |
| 117 | i2 = (const struct intel_02_cache_info *) p2; |
| 118 | |
| 119 | if (i1->idx == i2->idx) |
| 120 | return 0; |
| 121 | |
| 122 | return i1->idx < i2->idx ? -1 : 1; |
| 123 | } |
| 124 | |
| 125 | |
| 126 | static long int |
| 127 | __attribute__ ((noinline)) |
| 128 | intel_check_word (int name, unsigned int value, bool *has_level_2, |
| 129 | bool *no_level_2_or_3, |
| 130 | const struct cpu_features *cpu_features) |
| 131 | { |
| 132 | if ((value & 0x80000000) != 0) |
| 133 | /* The register value is reserved. */ |
| 134 | return 0; |
| 135 | |
| 136 | /* Fold the name. The _SC_ constants are always in the order SIZE, |
| 137 | ASSOC, LINESIZE. */ |
| 138 | int folded_rel_name = (M(name) / 3) * 3; |
| 139 | |
| 140 | while (value != 0) |
| 141 | { |
| 142 | unsigned int byte = value & 0xff; |
| 143 | |
| 144 | if (byte == 0x40) |
| 145 | { |
| 146 | *no_level_2_or_3 = true; |
| 147 | |
| 148 | if (folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 149 | /* No need to look further. */ |
| 150 | break; |
| 151 | } |
| 152 | else if (byte == 0xff) |
| 153 | { |
| 154 | /* CPUID leaf 0x4 contains all the information. We need to |
| 155 | iterate over it. */ |
| 156 | unsigned int eax; |
| 157 | unsigned int ebx; |
| 158 | unsigned int ecx; |
| 159 | unsigned int edx; |
| 160 | |
| 161 | unsigned int round = 0; |
| 162 | while (1) |
| 163 | { |
| 164 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
| 165 | |
| 166 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
| 167 | if (type == null) |
| 168 | /* That was the end. */ |
| 169 | break; |
| 170 | |
| 171 | unsigned int level = (eax >> 5) & 0x7; |
| 172 | |
| 173 | if ((level == 1 && type == data |
| 174 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
| 175 | || (level == 1 && type == inst |
| 176 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
| 177 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 178 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 179 | || (level == 4 && folded_rel_name == M(_SC_LEVEL4_CACHE_SIZE))) |
| 180 | { |
| 181 | unsigned int offset = M(name) - folded_rel_name; |
| 182 | |
| 183 | if (offset == 0) |
| 184 | /* Cache size. */ |
| 185 | return (((ebx >> 22) + 1) |
| 186 | * (((ebx >> 12) & 0x3ff) + 1) |
| 187 | * ((ebx & 0xfff) + 1) |
| 188 | * (ecx + 1)); |
| 189 | if (offset == 1) |
| 190 | return (ebx >> 22) + 1; |
| 191 | |
| 192 | assert (offset == 2); |
| 193 | return (ebx & 0xfff) + 1; |
| 194 | } |
| 195 | |
| 196 | ++round; |
| 197 | } |
| 198 | /* There is no other cache information anywhere else. */ |
| 199 | break; |
| 200 | } |
| 201 | else |
| 202 | { |
| 203 | if (byte == 0x49 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 204 | { |
| 205 | /* Intel reused this value. For family 15, model 6 it |
| 206 | specifies the 3rd level cache. Otherwise the 2nd |
| 207 | level cache. */ |
| 208 | unsigned int family = cpu_features->basic.family; |
| 209 | unsigned int model = cpu_features->basic.model; |
| 210 | |
| 211 | if (family == 15 && model == 6) |
| 212 | { |
| 213 | /* The level 3 cache is encoded for this model like |
| 214 | the level 2 cache is for other models. Pretend |
| 215 | the caller asked for the level 2 cache. */ |
| 216 | name = (_SC_LEVEL2_CACHE_SIZE |
| 217 | + (name - _SC_LEVEL3_CACHE_SIZE)); |
| 218 | folded_rel_name = M(_SC_LEVEL2_CACHE_SIZE); |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | struct intel_02_cache_info *found; |
| 223 | struct intel_02_cache_info search; |
| 224 | |
| 225 | search.idx = byte; |
| 226 | found = bsearch (&search, intel_02_known, nintel_02_known, |
| 227 | sizeof (intel_02_known[0]), intel_02_known_compare); |
| 228 | if (found != NULL) |
| 229 | { |
| 230 | if (found->rel_name == folded_rel_name) |
| 231 | { |
| 232 | unsigned int offset = M(name) - folded_rel_name; |
| 233 | |
| 234 | if (offset == 0) |
| 235 | /* Cache size. */ |
| 236 | return found->size; |
| 237 | if (offset == 1) |
| 238 | return found->assoc; |
| 239 | |
| 240 | assert (offset == 2); |
| 241 | return found->linesize; |
| 242 | } |
| 243 | |
| 244 | if (found->rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 245 | *has_level_2 = true; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | /* Next byte for the next round. */ |
| 250 | value >>= 8; |
| 251 | } |
| 252 | |
| 253 | /* Nothing found. */ |
| 254 | return 0; |
| 255 | } |
| 256 | |
| 257 | |
| 258 | static long int __attribute__ ((noinline)) |
| 259 | handle_intel (int name, const struct cpu_features *cpu_features) |
| 260 | { |
| 261 | unsigned int maxidx = cpu_features->basic.max_cpuid; |
| 262 | |
| 263 | /* Return -1 for older CPUs. */ |
| 264 | if (maxidx < 2) |
| 265 | return -1; |
| 266 | |
| 267 | /* OK, we can use the CPUID instruction to get all info about the |
| 268 | caches. */ |
| 269 | unsigned int cnt = 0; |
| 270 | unsigned int max = 1; |
| 271 | long int result = 0; |
| 272 | bool no_level_2_or_3 = false; |
| 273 | bool has_level_2 = false; |
| 274 | |
| 275 | while (cnt++ < max) |
| 276 | { |
| 277 | unsigned int eax; |
| 278 | unsigned int ebx; |
| 279 | unsigned int ecx; |
| 280 | unsigned int edx; |
| 281 | __cpuid (2, eax, ebx, ecx, edx); |
| 282 | |
| 283 | /* The low byte of EAX in the first round contain the number of |
| 284 | rounds we have to make. At least one, the one we are already |
| 285 | doing. */ |
| 286 | if (cnt == 1) |
| 287 | { |
| 288 | max = eax & 0xff; |
| 289 | eax &= 0xffffff00; |
| 290 | } |
| 291 | |
| 292 | /* Process the individual registers' value. */ |
| 293 | result = intel_check_word (name, eax, &has_level_2, |
| 294 | &no_level_2_or_3, cpu_features); |
| 295 | if (result != 0) |
| 296 | return result; |
| 297 | |
| 298 | result = intel_check_word (name, ebx, &has_level_2, |
| 299 | &no_level_2_or_3, cpu_features); |
| 300 | if (result != 0) |
| 301 | return result; |
| 302 | |
| 303 | result = intel_check_word (name, ecx, &has_level_2, |
| 304 | &no_level_2_or_3, cpu_features); |
| 305 | if (result != 0) |
| 306 | return result; |
| 307 | |
| 308 | result = intel_check_word (name, edx, &has_level_2, |
| 309 | &no_level_2_or_3, cpu_features); |
| 310 | if (result != 0) |
| 311 | return result; |
| 312 | } |
| 313 | |
| 314 | if (name >= _SC_LEVEL2_CACHE_SIZE && name <= _SC_LEVEL3_CACHE_LINESIZE |
| 315 | && no_level_2_or_3) |
| 316 | return -1; |
| 317 | |
| 318 | return 0; |
| 319 | } |
| 320 | |
| 321 | |
| 322 | static long int __attribute__ ((noinline)) |
| 323 | handle_amd (int name) |
| 324 | { |
| 325 | unsigned int eax; |
| 326 | unsigned int ebx; |
| 327 | unsigned int ecx; |
| 328 | unsigned int edx; |
| 329 | __cpuid (0x80000000, eax, ebx, ecx, edx); |
| 330 | |
| 331 | /* No level 4 cache (yet). */ |
| 332 | if (name > _SC_LEVEL3_CACHE_LINESIZE) |
| 333 | return 0; |
| 334 | |
| 335 | unsigned int fn = 0x80000005 + (name >= _SC_LEVEL2_CACHE_SIZE); |
| 336 | if (eax < fn) |
| 337 | return 0; |
| 338 | |
| 339 | __cpuid (fn, eax, ebx, ecx, edx); |
| 340 | |
| 341 | if (name < _SC_LEVEL1_DCACHE_SIZE) |
| 342 | { |
| 343 | name += _SC_LEVEL1_DCACHE_SIZE - _SC_LEVEL1_ICACHE_SIZE; |
| 344 | ecx = edx; |
| 345 | } |
| 346 | |
| 347 | switch (name) |
| 348 | { |
| 349 | case _SC_LEVEL1_DCACHE_SIZE: |
| 350 | return (ecx >> 14) & 0x3fc00; |
| 351 | |
| 352 | case _SC_LEVEL1_DCACHE_ASSOC: |
| 353 | ecx >>= 16; |
| 354 | if ((ecx & 0xff) == 0xff) |
| 355 | /* Fully associative. */ |
| 356 | return (ecx << 2) & 0x3fc00; |
| 357 | return ecx & 0xff; |
| 358 | |
| 359 | case _SC_LEVEL1_DCACHE_LINESIZE: |
| 360 | return ecx & 0xff; |
| 361 | |
| 362 | case _SC_LEVEL2_CACHE_SIZE: |
| 363 | return (ecx & 0xf000) == 0 ? 0 : (ecx >> 6) & 0x3fffc00; |
| 364 | |
| 365 | case _SC_LEVEL2_CACHE_ASSOC: |
| 366 | switch ((ecx >> 12) & 0xf) |
| 367 | { |
| 368 | case 0: |
| 369 | case 1: |
| 370 | case 2: |
| 371 | case 4: |
| 372 | return (ecx >> 12) & 0xf; |
| 373 | case 6: |
| 374 | return 8; |
| 375 | case 8: |
| 376 | return 16; |
| 377 | case 10: |
| 378 | return 32; |
| 379 | case 11: |
| 380 | return 48; |
| 381 | case 12: |
| 382 | return 64; |
| 383 | case 13: |
| 384 | return 96; |
| 385 | case 14: |
| 386 | return 128; |
| 387 | case 15: |
| 388 | return ((ecx >> 6) & 0x3fffc00) / (ecx & 0xff); |
| 389 | default: |
| 390 | return 0; |
| 391 | } |
| 392 | /* NOTREACHED */ |
| 393 | |
| 394 | case _SC_LEVEL2_CACHE_LINESIZE: |
| 395 | return (ecx & 0xf000) == 0 ? 0 : ecx & 0xff; |
| 396 | |
| 397 | case _SC_LEVEL3_CACHE_SIZE: |
| 398 | return (edx & 0xf000) == 0 ? 0 : (edx & 0x3ffc0000) << 1; |
| 399 | |
| 400 | case _SC_LEVEL3_CACHE_ASSOC: |
| 401 | switch ((edx >> 12) & 0xf) |
| 402 | { |
| 403 | case 0: |
| 404 | case 1: |
| 405 | case 2: |
| 406 | case 4: |
| 407 | return (edx >> 12) & 0xf; |
| 408 | case 6: |
| 409 | return 8; |
| 410 | case 8: |
| 411 | return 16; |
| 412 | case 10: |
| 413 | return 32; |
| 414 | case 11: |
| 415 | return 48; |
| 416 | case 12: |
| 417 | return 64; |
| 418 | case 13: |
| 419 | return 96; |
| 420 | case 14: |
| 421 | return 128; |
| 422 | case 15: |
| 423 | return ((edx & 0x3ffc0000) << 1) / (edx & 0xff); |
| 424 | default: |
| 425 | return 0; |
| 426 | } |
| 427 | /* NOTREACHED */ |
| 428 | |
| 429 | case _SC_LEVEL3_CACHE_LINESIZE: |
| 430 | return (edx & 0xf000) == 0 ? 0 : edx & 0xff; |
| 431 | |
| 432 | default: |
| 433 | assert (! "cannot happen" ); |
| 434 | } |
| 435 | return -1; |
| 436 | } |
| 437 | |
| 438 | |
| 439 | static long int __attribute__ ((noinline)) |
| 440 | handle_zhaoxin (int name) |
| 441 | { |
| 442 | unsigned int eax; |
| 443 | unsigned int ebx; |
| 444 | unsigned int ecx; |
| 445 | unsigned int edx; |
| 446 | |
| 447 | int folded_rel_name = (M(name) / 3) * 3; |
| 448 | |
| 449 | unsigned int round = 0; |
| 450 | while (1) |
| 451 | { |
| 452 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
| 453 | |
| 454 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
| 455 | if (type == null) |
| 456 | break; |
| 457 | |
| 458 | unsigned int level = (eax >> 5) & 0x7; |
| 459 | |
| 460 | if ((level == 1 && type == data |
| 461 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
| 462 | || (level == 1 && type == inst |
| 463 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
| 464 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 465 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))) |
| 466 | { |
| 467 | unsigned int offset = M(name) - folded_rel_name; |
| 468 | |
| 469 | if (offset == 0) |
| 470 | /* Cache size. */ |
| 471 | return (((ebx >> 22) + 1) |
| 472 | * (((ebx >> 12) & 0x3ff) + 1) |
| 473 | * ((ebx & 0xfff) + 1) |
| 474 | * (ecx + 1)); |
| 475 | if (offset == 1) |
| 476 | return (ebx >> 22) + 1; |
| 477 | |
| 478 | assert (offset == 2); |
| 479 | return (ebx & 0xfff) + 1; |
| 480 | } |
| 481 | |
| 482 | ++round; |
| 483 | } |
| 484 | |
| 485 | /* Nothing found. */ |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | |
| 490 | /* Get the value of the system variable NAME. */ |
| 491 | long int |
| 492 | attribute_hidden |
| 493 | __cache_sysconf (int name) |
| 494 | { |
| 495 | const struct cpu_features *cpu_features = __get_cpu_features (); |
| 496 | |
| 497 | if (cpu_features->basic.kind == arch_kind_intel) |
| 498 | return handle_intel (name, cpu_features); |
| 499 | |
| 500 | if (cpu_features->basic.kind == arch_kind_amd) |
| 501 | return handle_amd (name); |
| 502 | |
| 503 | if (cpu_features->basic.kind == arch_kind_zhaoxin) |
| 504 | return handle_zhaoxin (name); |
| 505 | |
| 506 | // XXX Fill in more vendors. |
| 507 | |
| 508 | /* CPU not known, we have no information. */ |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | |
| 513 | /* Data cache size for use in memory and string routines, typically |
| 514 | L1 size, rounded to multiple of 256 bytes. */ |
| 515 | long int __x86_data_cache_size_half attribute_hidden = 32 * 1024 / 2; |
| 516 | long int __x86_data_cache_size attribute_hidden = 32 * 1024; |
| 517 | /* Similar to __x86_data_cache_size_half, but not rounded. */ |
| 518 | long int __x86_raw_data_cache_size_half attribute_hidden = 32 * 1024 / 2; |
| 519 | /* Similar to __x86_data_cache_size, but not rounded. */ |
| 520 | long int __x86_raw_data_cache_size attribute_hidden = 32 * 1024; |
| 521 | /* Shared cache size for use in memory and string routines, typically |
| 522 | L2 or L3 size, rounded to multiple of 256 bytes. */ |
| 523 | long int __x86_shared_cache_size_half attribute_hidden = 1024 * 1024 / 2; |
| 524 | long int __x86_shared_cache_size attribute_hidden = 1024 * 1024; |
| 525 | /* Similar to __x86_shared_cache_size_half, but not rounded. */ |
| 526 | long int __x86_raw_shared_cache_size_half attribute_hidden = 1024 * 1024 / 2; |
| 527 | /* Similar to __x86_shared_cache_size, but not rounded. */ |
| 528 | long int __x86_raw_shared_cache_size attribute_hidden = 1024 * 1024; |
| 529 | |
| 530 | /* Threshold to use non temporal store. */ |
| 531 | long int __x86_shared_non_temporal_threshold attribute_hidden; |
| 532 | |
| 533 | /* Threshold to use Enhanced REP MOVSB. */ |
| 534 | long int __x86_rep_movsb_threshold attribute_hidden = 2048; |
| 535 | |
| 536 | /* Threshold to use Enhanced REP STOSB. */ |
| 537 | long int __x86_rep_stosb_threshold attribute_hidden = 2048; |
| 538 | |
| 539 | |
| 540 | static void |
| 541 | get_common_cache_info (long int *shared_ptr, unsigned int *threads_ptr, |
| 542 | long int core) |
| 543 | { |
| 544 | unsigned int eax; |
| 545 | unsigned int ebx; |
| 546 | unsigned int ecx; |
| 547 | unsigned int edx; |
| 548 | |
| 549 | /* Number of logical processors sharing L2 cache. */ |
| 550 | int threads_l2; |
| 551 | |
| 552 | /* Number of logical processors sharing L3 cache. */ |
| 553 | int threads_l3; |
| 554 | |
| 555 | const struct cpu_features *cpu_features = __get_cpu_features (); |
| 556 | int max_cpuid = cpu_features->basic.max_cpuid; |
| 557 | unsigned int family = cpu_features->basic.family; |
| 558 | unsigned int model = cpu_features->basic.model; |
| 559 | long int shared = *shared_ptr; |
| 560 | unsigned int threads = *threads_ptr; |
| 561 | bool inclusive_cache = true; |
| 562 | bool support_count_mask = true; |
| 563 | |
| 564 | /* Try L3 first. */ |
| 565 | unsigned int level = 3; |
| 566 | |
| 567 | if (cpu_features->basic.kind == arch_kind_zhaoxin && family == 6) |
| 568 | support_count_mask = false; |
| 569 | |
| 570 | if (shared <= 0) |
| 571 | { |
| 572 | /* Try L2 otherwise. */ |
| 573 | level = 2; |
| 574 | shared = core; |
| 575 | threads_l2 = 0; |
| 576 | threads_l3 = -1; |
| 577 | } |
| 578 | else |
| 579 | { |
| 580 | threads_l2 = 0; |
| 581 | threads_l3 = 0; |
| 582 | } |
| 583 | |
| 584 | /* A value of 0 for the HTT bit indicates there is only a single |
| 585 | logical processor. */ |
| 586 | if (CPU_FEATURE_USABLE (HTT)) |
| 587 | { |
| 588 | /* Figure out the number of logical threads that share the |
| 589 | highest cache level. */ |
| 590 | if (max_cpuid >= 4) |
| 591 | { |
| 592 | int i = 0; |
| 593 | |
| 594 | /* Query until cache level 2 and 3 are enumerated. */ |
| 595 | int check = 0x1 | (threads_l3 == 0) << 1; |
| 596 | do |
| 597 | { |
| 598 | __cpuid_count (4, i++, eax, ebx, ecx, edx); |
| 599 | |
| 600 | /* There seems to be a bug in at least some Pentium Ds |
| 601 | which sometimes fail to iterate all cache parameters. |
| 602 | Do not loop indefinitely here, stop in this case and |
| 603 | assume there is no such information. */ |
| 604 | if (cpu_features->basic.kind == arch_kind_intel |
| 605 | && (eax & 0x1f) == 0 ) |
| 606 | goto intel_bug_no_cache_info; |
| 607 | |
| 608 | switch ((eax >> 5) & 0x7) |
| 609 | { |
| 610 | default: |
| 611 | break; |
| 612 | case 2: |
| 613 | if ((check & 0x1)) |
| 614 | { |
| 615 | /* Get maximum number of logical processors |
| 616 | sharing L2 cache. */ |
| 617 | threads_l2 = (eax >> 14) & 0x3ff; |
| 618 | check &= ~0x1; |
| 619 | } |
| 620 | break; |
| 621 | case 3: |
| 622 | if ((check & (0x1 << 1))) |
| 623 | { |
| 624 | /* Get maximum number of logical processors |
| 625 | sharing L3 cache. */ |
| 626 | threads_l3 = (eax >> 14) & 0x3ff; |
| 627 | |
| 628 | /* Check if L2 and L3 caches are inclusive. */ |
| 629 | inclusive_cache = (edx & 0x2) != 0; |
| 630 | check &= ~(0x1 << 1); |
| 631 | } |
| 632 | break; |
| 633 | } |
| 634 | } |
| 635 | while (check); |
| 636 | |
| 637 | /* If max_cpuid >= 11, THREADS_L2/THREADS_L3 are the maximum |
| 638 | numbers of addressable IDs for logical processors sharing |
| 639 | the cache, instead of the maximum number of threads |
| 640 | sharing the cache. */ |
| 641 | if (max_cpuid >= 11 && support_count_mask) |
| 642 | { |
| 643 | /* Find the number of logical processors shipped in |
| 644 | one core and apply count mask. */ |
| 645 | i = 0; |
| 646 | |
| 647 | /* Count SMT only if there is L3 cache. Always count |
| 648 | core if there is no L3 cache. */ |
| 649 | int count = ((threads_l2 > 0 && level == 3) |
| 650 | | ((threads_l3 > 0 |
| 651 | || (threads_l2 > 0 && level == 2)) << 1)); |
| 652 | |
| 653 | while (count) |
| 654 | { |
| 655 | __cpuid_count (11, i++, eax, ebx, ecx, edx); |
| 656 | |
| 657 | int shipped = ebx & 0xff; |
| 658 | int type = ecx & 0xff00; |
| 659 | if (shipped == 0 || type == 0) |
| 660 | break; |
| 661 | else if (type == 0x100) |
| 662 | { |
| 663 | /* Count SMT. */ |
| 664 | if ((count & 0x1)) |
| 665 | { |
| 666 | int count_mask; |
| 667 | |
| 668 | /* Compute count mask. */ |
| 669 | asm ("bsr %1, %0" |
| 670 | : "=r" (count_mask) : "g" (threads_l2)); |
| 671 | count_mask = ~(-1 << (count_mask + 1)); |
| 672 | threads_l2 = (shipped - 1) & count_mask; |
| 673 | count &= ~0x1; |
| 674 | } |
| 675 | } |
| 676 | else if (type == 0x200) |
| 677 | { |
| 678 | /* Count core. */ |
| 679 | if ((count & (0x1 << 1))) |
| 680 | { |
| 681 | int count_mask; |
| 682 | int threads_core |
| 683 | = (level == 2 ? threads_l2 : threads_l3); |
| 684 | |
| 685 | /* Compute count mask. */ |
| 686 | asm ("bsr %1, %0" |
| 687 | : "=r" (count_mask) : "g" (threads_core)); |
| 688 | count_mask = ~(-1 << (count_mask + 1)); |
| 689 | threads_core = (shipped - 1) & count_mask; |
| 690 | if (level == 2) |
| 691 | threads_l2 = threads_core; |
| 692 | else |
| 693 | threads_l3 = threads_core; |
| 694 | count &= ~(0x1 << 1); |
| 695 | } |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | if (threads_l2 > 0) |
| 700 | threads_l2 += 1; |
| 701 | if (threads_l3 > 0) |
| 702 | threads_l3 += 1; |
| 703 | if (level == 2) |
| 704 | { |
| 705 | if (threads_l2) |
| 706 | { |
| 707 | threads = threads_l2; |
| 708 | if (cpu_features->basic.kind == arch_kind_intel |
| 709 | && threads > 2 |
| 710 | && family == 6) |
| 711 | switch (model) |
| 712 | { |
| 713 | case 0x37: |
| 714 | case 0x4a: |
| 715 | case 0x4d: |
| 716 | case 0x5a: |
| 717 | case 0x5d: |
| 718 | /* Silvermont has L2 cache shared by 2 cores. */ |
| 719 | threads = 2; |
| 720 | break; |
| 721 | default: |
| 722 | break; |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | else if (threads_l3) |
| 727 | threads = threads_l3; |
| 728 | } |
| 729 | else |
| 730 | { |
| 731 | intel_bug_no_cache_info: |
| 732 | /* Assume that all logical threads share the highest cache |
| 733 | level. */ |
| 734 | threads |
| 735 | = ((cpu_features->features[COMMON_CPUID_INDEX_1].cpuid.ebx |
| 736 | >> 16) & 0xff); |
| 737 | } |
| 738 | |
| 739 | /* Cap usage of highest cache level to the number of supported |
| 740 | threads. */ |
| 741 | if (shared > 0 && threads > 0) |
| 742 | shared /= threads; |
| 743 | } |
| 744 | |
| 745 | /* Account for non-inclusive L2 and L3 caches. */ |
| 746 | if (!inclusive_cache) |
| 747 | { |
| 748 | if (threads_l2 > 0) |
| 749 | core /= threads_l2; |
| 750 | shared += core; |
| 751 | } |
| 752 | |
| 753 | *shared_ptr = shared; |
| 754 | *threads_ptr = threads; |
| 755 | } |
| 756 | |
| 757 | |
| 758 | static void |
| 759 | __attribute__((constructor)) |
| 760 | init_cacheinfo (void) |
| 761 | { |
| 762 | /* Find out what brand of processor. */ |
| 763 | unsigned int ebx; |
| 764 | unsigned int ecx; |
| 765 | unsigned int edx; |
| 766 | int max_cpuid_ex; |
| 767 | long int data = -1; |
| 768 | long int shared = -1; |
| 769 | long int core; |
| 770 | unsigned int threads = 0; |
| 771 | const struct cpu_features *cpu_features = __get_cpu_features (); |
| 772 | |
| 773 | if (cpu_features->basic.kind == arch_kind_intel) |
| 774 | { |
| 775 | data = handle_intel (_SC_LEVEL1_DCACHE_SIZE, cpu_features); |
| 776 | core = handle_intel (_SC_LEVEL2_CACHE_SIZE, cpu_features); |
| 777 | shared = handle_intel (_SC_LEVEL3_CACHE_SIZE, cpu_features); |
| 778 | |
| 779 | get_common_cache_info (&shared, &threads, core); |
| 780 | } |
| 781 | else if (cpu_features->basic.kind == arch_kind_zhaoxin) |
| 782 | { |
| 783 | data = handle_zhaoxin (_SC_LEVEL1_DCACHE_SIZE); |
| 784 | core = handle_zhaoxin (_SC_LEVEL2_CACHE_SIZE); |
| 785 | shared = handle_zhaoxin (_SC_LEVEL3_CACHE_SIZE); |
| 786 | |
| 787 | get_common_cache_info (&shared, &threads, core); |
| 788 | } |
| 789 | else if (cpu_features->basic.kind == arch_kind_amd) |
| 790 | { |
| 791 | data = handle_amd (_SC_LEVEL1_DCACHE_SIZE); |
| 792 | long int core = handle_amd (_SC_LEVEL2_CACHE_SIZE); |
| 793 | shared = handle_amd (_SC_LEVEL3_CACHE_SIZE); |
| 794 | |
| 795 | /* Get maximum extended function. */ |
| 796 | __cpuid (0x80000000, max_cpuid_ex, ebx, ecx, edx); |
| 797 | |
| 798 | if (shared <= 0) |
| 799 | /* No shared L3 cache. All we have is the L2 cache. */ |
| 800 | shared = core; |
| 801 | else |
| 802 | { |
| 803 | /* Figure out the number of logical threads that share L3. */ |
| 804 | if (max_cpuid_ex >= 0x80000008) |
| 805 | { |
| 806 | /* Get width of APIC ID. */ |
| 807 | __cpuid (0x80000008, max_cpuid_ex, ebx, ecx, edx); |
| 808 | threads = 1 << ((ecx >> 12) & 0x0f); |
| 809 | } |
| 810 | |
| 811 | if (threads == 0) |
| 812 | { |
| 813 | /* If APIC ID width is not available, use logical |
| 814 | processor count. */ |
| 815 | __cpuid (0x00000001, max_cpuid_ex, ebx, ecx, edx); |
| 816 | |
| 817 | if ((edx & (1 << 28)) != 0) |
| 818 | threads = (ebx >> 16) & 0xff; |
| 819 | } |
| 820 | |
| 821 | /* Cap usage of highest cache level to the number of |
| 822 | supported threads. */ |
| 823 | if (threads > 0) |
| 824 | shared /= threads; |
| 825 | |
| 826 | /* Account for exclusive L2 and L3 caches. */ |
| 827 | shared += core; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | if (cpu_features->data_cache_size != 0) |
| 832 | data = cpu_features->data_cache_size; |
| 833 | |
| 834 | if (data > 0) |
| 835 | { |
| 836 | __x86_raw_data_cache_size_half = data / 2; |
| 837 | __x86_raw_data_cache_size = data; |
| 838 | /* Round data cache size to multiple of 256 bytes. */ |
| 839 | data = data & ~255L; |
| 840 | __x86_data_cache_size_half = data / 2; |
| 841 | __x86_data_cache_size = data; |
| 842 | } |
| 843 | |
| 844 | if (cpu_features->shared_cache_size != 0) |
| 845 | shared = cpu_features->shared_cache_size; |
| 846 | |
| 847 | if (shared > 0) |
| 848 | { |
| 849 | __x86_raw_shared_cache_size_half = shared / 2; |
| 850 | __x86_raw_shared_cache_size = shared; |
| 851 | /* Round shared cache size to multiple of 256 bytes. */ |
| 852 | shared = shared & ~255L; |
| 853 | __x86_shared_cache_size_half = shared / 2; |
| 854 | __x86_shared_cache_size = shared; |
| 855 | } |
| 856 | |
| 857 | /* The large memcpy micro benchmark in glibc shows that 6 times of |
| 858 | shared cache size is the approximate value above which non-temporal |
| 859 | store becomes faster on a 8-core processor. This is the 3/4 of the |
| 860 | total shared cache size. */ |
| 861 | __x86_shared_non_temporal_threshold |
| 862 | = (cpu_features->non_temporal_threshold != 0 |
| 863 | ? cpu_features->non_temporal_threshold |
| 864 | : __x86_shared_cache_size * threads * 3 / 4); |
| 865 | |
| 866 | /* NB: The REP MOVSB threshold must be greater than VEC_SIZE * 8. */ |
| 867 | unsigned int minimum_rep_movsb_threshold; |
| 868 | /* NB: The default REP MOVSB threshold is 2048 * (VEC_SIZE / 16). */ |
| 869 | unsigned int rep_movsb_threshold; |
| 870 | if (CPU_FEATURE_USABLE_P (cpu_features, AVX512F) |
| 871 | && !CPU_FEATURE_PREFERRED_P (cpu_features, Prefer_No_AVX512)) |
| 872 | { |
| 873 | rep_movsb_threshold = 2048 * (64 / 16); |
| 874 | minimum_rep_movsb_threshold = 64 * 8; |
| 875 | } |
| 876 | else if (CPU_FEATURE_PREFERRED_P (cpu_features, |
| 877 | AVX_Fast_Unaligned_Load)) |
| 878 | { |
| 879 | rep_movsb_threshold = 2048 * (32 / 16); |
| 880 | minimum_rep_movsb_threshold = 32 * 8; |
| 881 | } |
| 882 | else |
| 883 | { |
| 884 | rep_movsb_threshold = 2048 * (16 / 16); |
| 885 | minimum_rep_movsb_threshold = 16 * 8; |
| 886 | } |
| 887 | if (cpu_features->rep_movsb_threshold > minimum_rep_movsb_threshold) |
| 888 | __x86_rep_movsb_threshold = cpu_features->rep_movsb_threshold; |
| 889 | else |
| 890 | __x86_rep_movsb_threshold = rep_movsb_threshold; |
| 891 | |
| 892 | # if HAVE_TUNABLES |
| 893 | __x86_rep_stosb_threshold = cpu_features->rep_stosb_threshold; |
| 894 | # endif |
| 895 | } |
| 896 | |
| 897 | #endif |
| 898 | |