1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /*********************************************************************/ |
20 | /* MODULE_NAME: utan.c */ |
21 | /* */ |
22 | /* FUNCTIONS: utan */ |
23 | /* tanMp */ |
24 | /* */ |
25 | /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */ |
26 | /* branred.c sincos32.c mptan.c */ |
27 | /* utan.tbl */ |
28 | /* */ |
29 | /* An ultimate tan routine. Given an IEEE double machine number x */ |
30 | /* it computes the correctly rounded (to nearest) value of tan(x). */ |
31 | /* Assumption: Machine arithmetic operations are performed in */ |
32 | /* round to nearest mode of IEEE 754 standard. */ |
33 | /* */ |
34 | /*********************************************************************/ |
35 | |
36 | #include <errno.h> |
37 | #include <float.h> |
38 | #include "endian.h" |
39 | #include <dla.h> |
40 | #include "mpa.h" |
41 | #include "MathLib.h" |
42 | #include <math.h> |
43 | #include <math_private.h> |
44 | #include <fenv_private.h> |
45 | #include <math-underflow.h> |
46 | #include <libm-alias-double.h> |
47 | #include <fenv.h> |
48 | #include <stap-probe.h> |
49 | |
50 | #ifndef SECTION |
51 | # define SECTION |
52 | #endif |
53 | |
54 | static double tanMp (double); |
55 | void __mptan (double, mp_no *, int); |
56 | |
57 | double |
58 | SECTION |
59 | __tan (double x) |
60 | { |
61 | #include "utan.h" |
62 | #include "utan.tbl" |
63 | |
64 | int ux, i, n; |
65 | double a, da, a2, b, db, c, dc, c1, cc1, c2, cc2, c3, cc3, fi, ffi, gi, pz, |
66 | s, sy, t, t1, t2, t3, t4, w, x2, xn, xx2, y, ya, |
67 | yya, z0, z, zz, z2, zz2; |
68 | int p; |
69 | number num, v; |
70 | mp_no mpa, mpt1, mpt2; |
71 | |
72 | double retval; |
73 | |
74 | int __branred (double, double *, double *); |
75 | int __mpranred (double, mp_no *, int); |
76 | |
77 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
78 | |
79 | /* x=+-INF, x=NaN */ |
80 | num.d = x; |
81 | ux = num.i[HIGH_HALF]; |
82 | if ((ux & 0x7ff00000) == 0x7ff00000) |
83 | { |
84 | if ((ux & 0x7fffffff) == 0x7ff00000) |
85 | __set_errno (EDOM); |
86 | retval = x - x; |
87 | goto ret; |
88 | } |
89 | |
90 | w = (x < 0.0) ? -x : x; |
91 | |
92 | /* (I) The case abs(x) <= 1.259e-8 */ |
93 | if (w <= g1.d) |
94 | { |
95 | math_check_force_underflow_nonneg (w); |
96 | retval = x; |
97 | goto ret; |
98 | } |
99 | |
100 | /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ |
101 | if (w <= g2.d) |
102 | { |
103 | /* First stage */ |
104 | x2 = x * x; |
105 | |
106 | t2 = d9.d + x2 * d11.d; |
107 | t2 = d7.d + x2 * t2; |
108 | t2 = d5.d + x2 * t2; |
109 | t2 = d3.d + x2 * t2; |
110 | t2 *= x * x2; |
111 | |
112 | if ((y = x + (t2 - u1.d * t2)) == x + (t2 + u1.d * t2)) |
113 | { |
114 | retval = y; |
115 | goto ret; |
116 | } |
117 | |
118 | /* Second stage */ |
119 | c1 = a25.d + x2 * a27.d; |
120 | c1 = a23.d + x2 * c1; |
121 | c1 = a21.d + x2 * c1; |
122 | c1 = a19.d + x2 * c1; |
123 | c1 = a17.d + x2 * c1; |
124 | c1 = a15.d + x2 * c1; |
125 | c1 *= x2; |
126 | |
127 | EMULV (x, x, x2, xx2); |
128 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
129 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
130 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
131 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
132 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
133 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
134 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
135 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
136 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
137 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
138 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
139 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
140 | MUL2 (x, 0.0, c1, cc1, c2, cc2, t1, t2); |
141 | ADD2 (x, 0.0, c2, cc2, c1, cc1, t1, t2); |
142 | if ((y = c1 + (cc1 - u2.d * c1)) == c1 + (cc1 + u2.d * c1)) |
143 | { |
144 | retval = y; |
145 | goto ret; |
146 | } |
147 | retval = tanMp (x); |
148 | goto ret; |
149 | } |
150 | |
151 | /* (III) The case 0.0608 < abs(x) <= 0.787 */ |
152 | if (w <= g3.d) |
153 | { |
154 | /* First stage */ |
155 | i = ((int) (mfftnhf.d + TWO8 * w)); |
156 | z = w - xfg[i][0].d; |
157 | z2 = z * z; |
158 | s = (x < 0.0) ? -1 : 1; |
159 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
160 | fi = xfg[i][1].d; |
161 | gi = xfg[i][2].d; |
162 | t2 = pz * (gi + fi) / (gi - pz); |
163 | if ((y = fi + (t2 - fi * u3.d)) == fi + (t2 + fi * u3.d)) |
164 | { |
165 | retval = (s * y); |
166 | goto ret; |
167 | } |
168 | t3 = (t2 < 0.0) ? -t2 : t2; |
169 | t4 = fi * ua3.d + t3 * ub3.d; |
170 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
171 | { |
172 | retval = (s * y); |
173 | goto ret; |
174 | } |
175 | |
176 | /* Second stage */ |
177 | ffi = xfg[i][3].d; |
178 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
179 | EMULV (z, z, z2, zz2); |
180 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
181 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
182 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
183 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
184 | MUL2 (z, 0.0, c1, cc1, c2, cc2, t1, t2); |
185 | ADD2 (z, 0.0, c2, cc2, c1, cc1, t1, t2); |
186 | |
187 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
188 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2); |
189 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
190 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4); |
191 | |
192 | if ((y = c3 + (cc3 - u4.d * c3)) == c3 + (cc3 + u4.d * c3)) |
193 | { |
194 | retval = (s * y); |
195 | goto ret; |
196 | } |
197 | retval = tanMp (x); |
198 | goto ret; |
199 | } |
200 | |
201 | /* (---) The case 0.787 < abs(x) <= 25 */ |
202 | if (w <= g4.d) |
203 | { |
204 | /* Range reduction by algorithm i */ |
205 | t = (x * hpinv.d + toint.d); |
206 | xn = t - toint.d; |
207 | v.d = t; |
208 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
209 | n = v.i[LOW_HALF] & 0x00000001; |
210 | da = xn * mp3.d; |
211 | a = t1 - da; |
212 | da = (t1 - a) - da; |
213 | if (a < 0.0) |
214 | { |
215 | ya = -a; |
216 | yya = -da; |
217 | sy = -1; |
218 | } |
219 | else |
220 | { |
221 | ya = a; |
222 | yya = da; |
223 | sy = 1; |
224 | } |
225 | |
226 | /* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */ |
227 | if (ya <= gy1.d) |
228 | { |
229 | retval = tanMp (x); |
230 | goto ret; |
231 | } |
232 | |
233 | /* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */ |
234 | if (ya <= gy2.d) |
235 | { |
236 | a2 = a * a; |
237 | t2 = d9.d + a2 * d11.d; |
238 | t2 = d7.d + a2 * t2; |
239 | t2 = d5.d + a2 * t2; |
240 | t2 = d3.d + a2 * t2; |
241 | t2 = da + a * a2 * t2; |
242 | |
243 | if (n) |
244 | { |
245 | /* First stage -cot */ |
246 | EADD (a, t2, b, db); |
247 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
248 | if ((y = c + (dc - u6.d * c)) == c + (dc + u6.d * c)) |
249 | { |
250 | retval = (-y); |
251 | goto ret; |
252 | } |
253 | } |
254 | else |
255 | { |
256 | /* First stage tan */ |
257 | if ((y = a + (t2 - u5.d * a)) == a + (t2 + u5.d * a)) |
258 | { |
259 | retval = y; |
260 | goto ret; |
261 | } |
262 | } |
263 | /* Second stage */ |
264 | /* Range reduction by algorithm ii */ |
265 | t = (x * hpinv.d + toint.d); |
266 | xn = t - toint.d; |
267 | v.d = t; |
268 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
269 | n = v.i[LOW_HALF] & 0x00000001; |
270 | da = xn * pp3.d; |
271 | t = t1 - da; |
272 | da = (t1 - t) - da; |
273 | t1 = xn * pp4.d; |
274 | a = t - t1; |
275 | da = ((t - a) - t1) + da; |
276 | |
277 | /* Second stage */ |
278 | EADD (a, da, t1, t2); |
279 | a = t1; |
280 | da = t2; |
281 | MUL2 (a, da, a, da, x2, xx2, t1, t2); |
282 | |
283 | c1 = a25.d + x2 * a27.d; |
284 | c1 = a23.d + x2 * c1; |
285 | c1 = a21.d + x2 * c1; |
286 | c1 = a19.d + x2 * c1; |
287 | c1 = a17.d + x2 * c1; |
288 | c1 = a15.d + x2 * c1; |
289 | c1 *= x2; |
290 | |
291 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
292 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
293 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
294 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
295 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
296 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
297 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
298 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
299 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
300 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
301 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
302 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
303 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2); |
304 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
305 | |
306 | if (n) |
307 | { |
308 | /* Second stage -cot */ |
309 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4); |
310 | if ((y = c2 + (cc2 - u8.d * c2)) == c2 + (cc2 + u8.d * c2)) |
311 | { |
312 | retval = (-y); |
313 | goto ret; |
314 | } |
315 | } |
316 | else |
317 | { |
318 | /* Second stage tan */ |
319 | if ((y = c1 + (cc1 - u7.d * c1)) == c1 + (cc1 + u7.d * c1)) |
320 | { |
321 | retval = y; |
322 | goto ret; |
323 | } |
324 | } |
325 | retval = tanMp (x); |
326 | goto ret; |
327 | } |
328 | |
329 | /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ |
330 | |
331 | /* First stage */ |
332 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
333 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
334 | z2 = z * z; |
335 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
336 | fi = xfg[i][1].d; |
337 | gi = xfg[i][2].d; |
338 | |
339 | if (n) |
340 | { |
341 | /* -cot */ |
342 | t2 = pz * (fi + gi) / (fi + pz); |
343 | if ((y = gi - (t2 - gi * u10.d)) == gi - (t2 + gi * u10.d)) |
344 | { |
345 | retval = (-sy * y); |
346 | goto ret; |
347 | } |
348 | t3 = (t2 < 0.0) ? -t2 : t2; |
349 | t4 = gi * ua10.d + t3 * ub10.d; |
350 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
351 | { |
352 | retval = (-sy * y); |
353 | goto ret; |
354 | } |
355 | } |
356 | else |
357 | { |
358 | /* tan */ |
359 | t2 = pz * (gi + fi) / (gi - pz); |
360 | if ((y = fi + (t2 - fi * u9.d)) == fi + (t2 + fi * u9.d)) |
361 | { |
362 | retval = (sy * y); |
363 | goto ret; |
364 | } |
365 | t3 = (t2 < 0.0) ? -t2 : t2; |
366 | t4 = fi * ua9.d + t3 * ub9.d; |
367 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
368 | { |
369 | retval = (sy * y); |
370 | goto ret; |
371 | } |
372 | } |
373 | |
374 | /* Second stage */ |
375 | ffi = xfg[i][3].d; |
376 | EADD (z0, yya, z, zz) |
377 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2); |
378 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
379 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
380 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
381 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
382 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
383 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2); |
384 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
385 | |
386 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
387 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2); |
388 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
389 | |
390 | if (n) |
391 | { |
392 | /* -cot */ |
393 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4); |
394 | if ((y = c3 + (cc3 - u12.d * c3)) == c3 + (cc3 + u12.d * c3)) |
395 | { |
396 | retval = (-sy * y); |
397 | goto ret; |
398 | } |
399 | } |
400 | else |
401 | { |
402 | /* tan */ |
403 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4); |
404 | if ((y = c3 + (cc3 - u11.d * c3)) == c3 + (cc3 + u11.d * c3)) |
405 | { |
406 | retval = (sy * y); |
407 | goto ret; |
408 | } |
409 | } |
410 | |
411 | retval = tanMp (x); |
412 | goto ret; |
413 | } |
414 | |
415 | /* (---) The case 25 < abs(x) <= 1e8 */ |
416 | if (w <= g5.d) |
417 | { |
418 | /* Range reduction by algorithm ii */ |
419 | t = (x * hpinv.d + toint.d); |
420 | xn = t - toint.d; |
421 | v.d = t; |
422 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
423 | n = v.i[LOW_HALF] & 0x00000001; |
424 | da = xn * pp3.d; |
425 | t = t1 - da; |
426 | da = (t1 - t) - da; |
427 | t1 = xn * pp4.d; |
428 | a = t - t1; |
429 | da = ((t - a) - t1) + da; |
430 | EADD (a, da, t1, t2); |
431 | a = t1; |
432 | da = t2; |
433 | if (a < 0.0) |
434 | { |
435 | ya = -a; |
436 | yya = -da; |
437 | sy = -1; |
438 | } |
439 | else |
440 | { |
441 | ya = a; |
442 | yya = da; |
443 | sy = 1; |
444 | } |
445 | |
446 | /* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */ |
447 | if (ya <= gy1.d) |
448 | { |
449 | retval = tanMp (x); |
450 | goto ret; |
451 | } |
452 | |
453 | /* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */ |
454 | if (ya <= gy2.d) |
455 | { |
456 | a2 = a * a; |
457 | t2 = d9.d + a2 * d11.d; |
458 | t2 = d7.d + a2 * t2; |
459 | t2 = d5.d + a2 * t2; |
460 | t2 = d3.d + a2 * t2; |
461 | t2 = da + a * a2 * t2; |
462 | |
463 | if (n) |
464 | { |
465 | /* First stage -cot */ |
466 | EADD (a, t2, b, db); |
467 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
468 | if ((y = c + (dc - u14.d * c)) == c + (dc + u14.d * c)) |
469 | { |
470 | retval = (-y); |
471 | goto ret; |
472 | } |
473 | } |
474 | else |
475 | { |
476 | /* First stage tan */ |
477 | if ((y = a + (t2 - u13.d * a)) == a + (t2 + u13.d * a)) |
478 | { |
479 | retval = y; |
480 | goto ret; |
481 | } |
482 | } |
483 | |
484 | /* Second stage */ |
485 | MUL2 (a, da, a, da, x2, xx2, t1, t2); |
486 | c1 = a25.d + x2 * a27.d; |
487 | c1 = a23.d + x2 * c1; |
488 | c1 = a21.d + x2 * c1; |
489 | c1 = a19.d + x2 * c1; |
490 | c1 = a17.d + x2 * c1; |
491 | c1 = a15.d + x2 * c1; |
492 | c1 *= x2; |
493 | |
494 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
495 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
496 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
497 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
498 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
499 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
500 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
501 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
502 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
503 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
504 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
505 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
506 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2); |
507 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
508 | |
509 | if (n) |
510 | { |
511 | /* Second stage -cot */ |
512 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4); |
513 | if ((y = c2 + (cc2 - u16.d * c2)) == c2 + (cc2 + u16.d * c2)) |
514 | { |
515 | retval = (-y); |
516 | goto ret; |
517 | } |
518 | } |
519 | else |
520 | { |
521 | /* Second stage tan */ |
522 | if ((y = c1 + (cc1 - u15.d * c1)) == c1 + (cc1 + u15.d * c1)) |
523 | { |
524 | retval = (y); |
525 | goto ret; |
526 | } |
527 | } |
528 | retval = tanMp (x); |
529 | goto ret; |
530 | } |
531 | |
532 | /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ |
533 | /* First stage */ |
534 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
535 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
536 | z2 = z * z; |
537 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
538 | fi = xfg[i][1].d; |
539 | gi = xfg[i][2].d; |
540 | |
541 | if (n) |
542 | { |
543 | /* -cot */ |
544 | t2 = pz * (fi + gi) / (fi + pz); |
545 | if ((y = gi - (t2 - gi * u18.d)) == gi - (t2 + gi * u18.d)) |
546 | { |
547 | retval = (-sy * y); |
548 | goto ret; |
549 | } |
550 | t3 = (t2 < 0.0) ? -t2 : t2; |
551 | t4 = gi * ua18.d + t3 * ub18.d; |
552 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
553 | { |
554 | retval = (-sy * y); |
555 | goto ret; |
556 | } |
557 | } |
558 | else |
559 | { |
560 | /* tan */ |
561 | t2 = pz * (gi + fi) / (gi - pz); |
562 | if ((y = fi + (t2 - fi * u17.d)) == fi + (t2 + fi * u17.d)) |
563 | { |
564 | retval = (sy * y); |
565 | goto ret; |
566 | } |
567 | t3 = (t2 < 0.0) ? -t2 : t2; |
568 | t4 = fi * ua17.d + t3 * ub17.d; |
569 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
570 | { |
571 | retval = (sy * y); |
572 | goto ret; |
573 | } |
574 | } |
575 | |
576 | /* Second stage */ |
577 | ffi = xfg[i][3].d; |
578 | EADD (z0, yya, z, zz); |
579 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2); |
580 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
581 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
582 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
583 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
584 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
585 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2); |
586 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
587 | |
588 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
589 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2); |
590 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
591 | |
592 | if (n) |
593 | { |
594 | /* -cot */ |
595 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4); |
596 | if ((y = c3 + (cc3 - u20.d * c3)) == c3 + (cc3 + u20.d * c3)) |
597 | { |
598 | retval = (-sy * y); |
599 | goto ret; |
600 | } |
601 | } |
602 | else |
603 | { |
604 | /* tan */ |
605 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4); |
606 | if ((y = c3 + (cc3 - u19.d * c3)) == c3 + (cc3 + u19.d * c3)) |
607 | { |
608 | retval = (sy * y); |
609 | goto ret; |
610 | } |
611 | } |
612 | retval = tanMp (x); |
613 | goto ret; |
614 | } |
615 | |
616 | /* (---) The case 1e8 < abs(x) < 2**1024 */ |
617 | /* Range reduction by algorithm iii */ |
618 | n = (__branred (x, &a, &da)) & 0x00000001; |
619 | EADD (a, da, t1, t2); |
620 | a = t1; |
621 | da = t2; |
622 | if (a < 0.0) |
623 | { |
624 | ya = -a; |
625 | yya = -da; |
626 | sy = -1; |
627 | } |
628 | else |
629 | { |
630 | ya = a; |
631 | yya = da; |
632 | sy = 1; |
633 | } |
634 | |
635 | /* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */ |
636 | if (ya <= gy1.d) |
637 | { |
638 | retval = tanMp (x); |
639 | goto ret; |
640 | } |
641 | |
642 | /* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */ |
643 | if (ya <= gy2.d) |
644 | { |
645 | a2 = a * a; |
646 | t2 = d9.d + a2 * d11.d; |
647 | t2 = d7.d + a2 * t2; |
648 | t2 = d5.d + a2 * t2; |
649 | t2 = d3.d + a2 * t2; |
650 | t2 = da + a * a2 * t2; |
651 | if (n) |
652 | { |
653 | /* First stage -cot */ |
654 | EADD (a, t2, b, db); |
655 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
656 | if ((y = c + (dc - u22.d * c)) == c + (dc + u22.d * c)) |
657 | { |
658 | retval = (-y); |
659 | goto ret; |
660 | } |
661 | } |
662 | else |
663 | { |
664 | /* First stage tan */ |
665 | if ((y = a + (t2 - u21.d * a)) == a + (t2 + u21.d * a)) |
666 | { |
667 | retval = y; |
668 | goto ret; |
669 | } |
670 | } |
671 | |
672 | /* Second stage */ |
673 | /* Reduction by algorithm iv */ |
674 | p = 10; |
675 | n = (__mpranred (x, &mpa, p)) & 0x00000001; |
676 | __mp_dbl (&mpa, &a, p); |
677 | __dbl_mp (a, &mpt1, p); |
678 | __sub (&mpa, &mpt1, &mpt2, p); |
679 | __mp_dbl (&mpt2, &da, p); |
680 | |
681 | MUL2 (a, da, a, da, x2, xx2, t1, t2); |
682 | |
683 | c1 = a25.d + x2 * a27.d; |
684 | c1 = a23.d + x2 * c1; |
685 | c1 = a21.d + x2 * c1; |
686 | c1 = a19.d + x2 * c1; |
687 | c1 = a17.d + x2 * c1; |
688 | c1 = a15.d + x2 * c1; |
689 | c1 *= x2; |
690 | |
691 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
692 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
693 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
694 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
695 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
696 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
697 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
698 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
699 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
700 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
701 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
702 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2); |
703 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2); |
704 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
705 | |
706 | if (n) |
707 | { |
708 | /* Second stage -cot */ |
709 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4); |
710 | if ((y = c2 + (cc2 - u24.d * c2)) == c2 + (cc2 + u24.d * c2)) |
711 | { |
712 | retval = (-y); |
713 | goto ret; |
714 | } |
715 | } |
716 | else |
717 | { |
718 | /* Second stage tan */ |
719 | if ((y = c1 + (cc1 - u23.d * c1)) == c1 + (cc1 + u23.d * c1)) |
720 | { |
721 | retval = y; |
722 | goto ret; |
723 | } |
724 | } |
725 | retval = tanMp (x); |
726 | goto ret; |
727 | } |
728 | |
729 | /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ |
730 | /* First stage */ |
731 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
732 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
733 | z2 = z * z; |
734 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
735 | fi = xfg[i][1].d; |
736 | gi = xfg[i][2].d; |
737 | |
738 | if (n) |
739 | { |
740 | /* -cot */ |
741 | t2 = pz * (fi + gi) / (fi + pz); |
742 | if ((y = gi - (t2 - gi * u26.d)) == gi - (t2 + gi * u26.d)) |
743 | { |
744 | retval = (-sy * y); |
745 | goto ret; |
746 | } |
747 | t3 = (t2 < 0.0) ? -t2 : t2; |
748 | t4 = gi * ua26.d + t3 * ub26.d; |
749 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
750 | { |
751 | retval = (-sy * y); |
752 | goto ret; |
753 | } |
754 | } |
755 | else |
756 | { |
757 | /* tan */ |
758 | t2 = pz * (gi + fi) / (gi - pz); |
759 | if ((y = fi + (t2 - fi * u25.d)) == fi + (t2 + fi * u25.d)) |
760 | { |
761 | retval = (sy * y); |
762 | goto ret; |
763 | } |
764 | t3 = (t2 < 0.0) ? -t2 : t2; |
765 | t4 = fi * ua25.d + t3 * ub25.d; |
766 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
767 | { |
768 | retval = (sy * y); |
769 | goto ret; |
770 | } |
771 | } |
772 | |
773 | /* Second stage */ |
774 | ffi = xfg[i][3].d; |
775 | EADD (z0, yya, z, zz); |
776 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2); |
777 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
778 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
779 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
780 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
781 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2); |
782 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2); |
783 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
784 | |
785 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
786 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2); |
787 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
788 | |
789 | if (n) |
790 | { |
791 | /* -cot */ |
792 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4); |
793 | if ((y = c3 + (cc3 - u28.d * c3)) == c3 + (cc3 + u28.d * c3)) |
794 | { |
795 | retval = (-sy * y); |
796 | goto ret; |
797 | } |
798 | } |
799 | else |
800 | { |
801 | /* tan */ |
802 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4); |
803 | if ((y = c3 + (cc3 - u27.d * c3)) == c3 + (cc3 + u27.d * c3)) |
804 | { |
805 | retval = (sy * y); |
806 | goto ret; |
807 | } |
808 | } |
809 | retval = tanMp (x); |
810 | goto ret; |
811 | |
812 | ret: |
813 | return retval; |
814 | } |
815 | |
816 | /* multiple precision stage */ |
817 | /* Convert x to multi precision number,compute tan(x) by mptan() routine */ |
818 | /* and converts result back to double */ |
819 | static double |
820 | SECTION |
821 | tanMp (double x) |
822 | { |
823 | int p; |
824 | double y; |
825 | mp_no mpy; |
826 | p = 32; |
827 | __mptan (x, &mpy, p); |
828 | __mp_dbl (&mpy, &y, p); |
829 | LIBC_PROBE (slowtan, 2, &x, &y); |
830 | return y; |
831 | } |
832 | |
833 | #ifndef __tan |
834 | libm_alias_double (__tan, tan) |
835 | #endif |
836 | |