1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * Written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | |
20 | #include <math.h> |
21 | |
22 | /***********************************************************************/ |
23 | /*MODULE_NAME: dla.h */ |
24 | /* */ |
25 | /* This file holds C language macros for 'Double Length Floating Point */ |
26 | /* Arithmetic'. The macros are based on the paper: */ |
27 | /* T.J.Dekker, "A floating-point Technique for extending the */ |
28 | /* Available Precision", Number. Math. 18, 224-242 (1971). */ |
29 | /* A Double-Length number is defined by a pair (r,s), of IEEE double */ |
30 | /* precision floating point numbers that satisfy, */ |
31 | /* */ |
32 | /* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */ |
33 | /* */ |
34 | /* The computer arithmetic assumed is IEEE double precision in */ |
35 | /* round to nearest mode. All variables in the macros must be of type */ |
36 | /* IEEE double. */ |
37 | /***********************************************************************/ |
38 | |
39 | /* CN = 1+2**27 = '41a0000002000000' IEEE double format. Use it to split a |
40 | double for better accuracy. */ |
41 | #define CN 134217729.0 |
42 | |
43 | |
44 | /* Exact addition of two single-length floating point numbers, Dekker. */ |
45 | /* The macro produces a double-length number (z,zz) that satisfies */ |
46 | /* z+zz = x+y exactly. */ |
47 | |
48 | #define EADD(x,y,z,zz) \ |
49 | z=(x)+(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x)); |
50 | |
51 | |
52 | /* Exact subtraction of two single-length floating point numbers, Dekker. */ |
53 | /* The macro produces a double-length number (z,zz) that satisfies */ |
54 | /* z+zz = x-y exactly. */ |
55 | |
56 | #define ESUB(x,y,z,zz) \ |
57 | z=(x)-(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z))); |
58 | |
59 | |
60 | #ifdef __FP_FAST_FMA |
61 | # define DLA_FMS(x, y, z) __builtin_fma (x, y, -(z)) |
62 | #endif |
63 | |
64 | /* Exact multiplication of two single-length floating point numbers, */ |
65 | /* Veltkamp. The macro produces a double-length number (z,zz) that */ |
66 | /* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */ |
67 | /* storage variables of type double. */ |
68 | |
69 | #ifdef DLA_FMS |
70 | # define EMULV(x, y, z, zz) \ |
71 | z = x * y; zz = DLA_FMS (x, y, z); |
72 | #else |
73 | # define EMULV(x, y, z, zz) \ |
74 | ({ __typeof__ (x) __p, hx, tx, hy, ty; \ |
75 | __p = CN * (x); hx = ((x) - __p) + __p; tx = (x) - hx; \ |
76 | __p = CN * (y); hy = ((y) - __p) + __p; ty = (y) - hy; \ |
77 | z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty; \ |
78 | }) |
79 | #endif |
80 | |
81 | |
82 | /* Exact multiplication of two single-length floating point numbers, Dekker. */ |
83 | /* The macro produces a nearly double-length number (z,zz) (see Dekker) */ |
84 | /* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */ |
85 | /* storage variables of type double. */ |
86 | |
87 | #ifdef DLA_FMS |
88 | # define MUL12(x, y, z, zz) \ |
89 | EMULV(x, y, z, zz) |
90 | #else |
91 | # define MUL12(x, y, z, zz) \ |
92 | ({ __typeof__ (x) __p, hx, tx, hy, ty, __q; \ |
93 | __p=CN*(x); hx=((x)-__p)+__p; tx=(x)-hx; \ |
94 | __p=CN*(y); hy=((y)-__p)+__p; ty=(y)-hy; \ |
95 | __p=hx*hy; __q=hx*ty+tx*hy; z=__p+__q; zz=((__p-z)+__q)+tx*ty; \ |
96 | }) |
97 | #endif |
98 | |
99 | |
100 | /* Double-length addition, Dekker. The macro produces a double-length */ |
101 | /* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */ |
102 | /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */ |
103 | /* are assumed to be double-length numbers. r,s are temporary */ |
104 | /* storage variables of type double. */ |
105 | |
106 | #define ADD2(x, xx, y, yy, z, zz, r, s) \ |
107 | r = (x) + (y); s = (fabs (x) > fabs (y)) ? \ |
108 | (((((x) - r) + (y)) + (yy)) + (xx)) : \ |
109 | (((((y) - r) + (x)) + (xx)) + (yy)); \ |
110 | z = r + s; zz = (r - z) + s; |
111 | |
112 | |
113 | /* Double-length subtraction, Dekker. The macro produces a double-length */ |
114 | /* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */ |
115 | /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */ |
116 | /* are assumed to be double-length numbers. r,s are temporary */ |
117 | /* storage variables of type double. */ |
118 | |
119 | #define SUB2(x, xx, y, yy, z, zz, r, s) \ |
120 | r = (x) - (y); s = (fabs (x) > fabs (y)) ? \ |
121 | (((((x) - r) - (y)) - (yy)) + (xx)) : \ |
122 | ((((x) - ((y) + r)) + (xx)) - (yy)); \ |
123 | z = r + s; zz = (r - z) + s; |
124 | |
125 | |
126 | /* Double-length multiplication, Dekker. The macro produces a double-length */ |
127 | /* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */ |
128 | /* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */ |
129 | /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */ |
130 | /* temporary storage variables of type double. */ |
131 | |
132 | #define MUL2(x, xx, y, yy, z, zz, c, cc) \ |
133 | MUL12 (x, y, c, cc); \ |
134 | cc = ((x) * (yy) + (xx) * (y)) + cc; z = c + cc; zz = (c - z) + cc; |
135 | |
136 | |
137 | /* Double-length division, Dekker. The macro produces a double-length */ |
138 | /* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */ |
139 | /* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */ |
140 | /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */ |
141 | /* are temporary storage variables of type double. */ |
142 | |
143 | #define DIV2(x, xx, y, yy, z, zz, c, cc, u, uu) \ |
144 | c=(x)/(y); MUL12(c,y,u,uu); \ |
145 | cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc; |
146 | |
147 | |
148 | /* Double-length addition, slower but more accurate than ADD2. */ |
149 | /* The macro produces a double-length */ |
150 | /* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */ |
151 | /* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */ |
152 | /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */ |
153 | /* are temporary storage variables of type double. */ |
154 | |
155 | #define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \ |
156 | r = (x) + (y); \ |
157 | if (fabs (x) > fabs (y)) { rr = ((x) - r) + (y); s = (rr + (yy)) + (xx); } \ |
158 | else { rr = ((y) - r) + (x); s = (rr + (xx)) + (yy); } \ |
159 | if (rr != 0.0) { \ |
160 | z = r + s; zz = (r - z) + s; } \ |
161 | else { \ |
162 | ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\ |
163 | u = r + s; \ |
164 | uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \ |
165 | w = uu + ss; z = u + w; \ |
166 | zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); } |
167 | |
168 | |
169 | /* Double-length subtraction, slower but more accurate than SUB2. */ |
170 | /* The macro produces a double-length */ |
171 | /* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */ |
172 | /* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */ |
173 | /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */ |
174 | /* are temporary storage variables of type double. */ |
175 | |
176 | #define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \ |
177 | r = (x) - (y); \ |
178 | if (fabs (x) > fabs (y)) { rr = ((x) - r) - (y); s = (rr - (yy)) + (xx); } \ |
179 | else { rr = (x) - ((y) + r); s = (rr + (xx)) - (yy); } \ |
180 | if (rr != 0.0) { \ |
181 | z = r + s; zz = (r - z) + s; } \ |
182 | else { \ |
183 | ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \ |
184 | u = r + s; \ |
185 | uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \ |
186 | w = uu + ss; z = u + w; \ |
187 | zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); } |
188 | |