1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /*********************************************************************/ |
20 | /* MODULE_NAME: uroot.c */ |
21 | /* */ |
22 | /* FUNCTION: usqrt */ |
23 | /* */ |
24 | /* FILES NEEDED: dla.h endian.h mydefs.h */ |
25 | /* uroot.tbl */ |
26 | /* */ |
27 | /* An ultimate sqrt routine. Given an IEEE double machine number x */ |
28 | /* it computes the correctly rounded (to nearest) value of square */ |
29 | /* root of x. */ |
30 | /* Assumption: Machine arithmetic operations are performed in */ |
31 | /* round to nearest mode of IEEE 754 standard. */ |
32 | /* */ |
33 | /*********************************************************************/ |
34 | |
35 | #include "endian.h" |
36 | #include "mydefs.h" |
37 | #include <dla.h> |
38 | #include "MathLib.h" |
39 | #include "root.tbl" |
40 | #include <math-barriers.h> |
41 | #include <math_private.h> |
42 | #include <fenv_private.h> |
43 | #include <libm-alias-finite.h> |
44 | #include <math-use-builtins.h> |
45 | |
46 | /*********************************************************************/ |
47 | /* An ultimate sqrt routine. Given an IEEE double machine number x */ |
48 | /* it computes the correctly rounded (to nearest) value of square */ |
49 | /* root of x. */ |
50 | /*********************************************************************/ |
51 | double |
52 | __ieee754_sqrt (double x) |
53 | { |
54 | #if USE_SQRT_BUILTIN |
55 | return __builtin_sqrt (x); |
56 | #else |
57 | /* Use generic implementation. */ |
58 | static const double |
59 | rt0 = 9.99999999859990725855365213134618E-01, |
60 | rt1 = 4.99999999495955425917856814202739E-01, |
61 | rt2 = 3.75017500867345182581453026130850E-01, |
62 | rt3 = 3.12523626554518656309172508769531E-01; |
63 | static const double big = 134217728.0; |
64 | double y, t, del, res, res1, hy, z, zz, s; |
65 | mynumber a, c = { { 0, 0 } }; |
66 | int4 k; |
67 | |
68 | a.x = x; |
69 | k = a.i[HIGH_HALF]; |
70 | a.i[HIGH_HALF] = (k & 0x001fffff) | 0x3fe00000; |
71 | t = inroot[(k & 0x001fffff) >> 14]; |
72 | s = a.x; |
73 | /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ |
74 | if (k > 0x000fffff && k < 0x7ff00000) |
75 | { |
76 | int rm = __fegetround (); |
77 | fenv_t env; |
78 | libc_feholdexcept_setround (&env, FE_TONEAREST); |
79 | double ret; |
80 | y = 1.0 - t * (t * s); |
81 | t = t * (rt0 + y * (rt1 + y * (rt2 + y * rt3))); |
82 | c.i[HIGH_HALF] = 0x20000000 + ((k & 0x7fe00000) >> 1); |
83 | y = t * s; |
84 | hy = (y + big) - big; |
85 | del = 0.5 * t * ((s - hy * hy) - (y - hy) * (y + hy)); |
86 | res = y + del; |
87 | if (res == (res + 1.002 * ((y - res) + del))) |
88 | ret = res * c.x; |
89 | else |
90 | { |
91 | res1 = res + 1.5 * ((y - res) + del); |
92 | EMULV (res, res1, z, zz); /* (z+zz)=res*res1 */ |
93 | res = ((((z - s) + zz) < 0) ? max (res, res1) : |
94 | min (res, res1)); |
95 | ret = res * c.x; |
96 | } |
97 | math_force_eval (ret); |
98 | libc_fesetenv (&env); |
99 | double dret = x / ret; |
100 | if (dret != ret) |
101 | { |
102 | double force_inexact = 1.0 / 3.0; |
103 | math_force_eval (force_inexact); |
104 | /* The square root is inexact, ret is the round-to-nearest |
105 | value which may need adjusting for other rounding |
106 | modes. */ |
107 | switch (rm) |
108 | { |
109 | #ifdef FE_UPWARD |
110 | case FE_UPWARD: |
111 | if (dret > ret) |
112 | ret = (res + 0x1p-1022) * c.x; |
113 | break; |
114 | #endif |
115 | |
116 | #ifdef FE_DOWNWARD |
117 | case FE_DOWNWARD: |
118 | #endif |
119 | #ifdef FE_TOWARDZERO |
120 | case FE_TOWARDZERO: |
121 | #endif |
122 | #if defined FE_DOWNWARD || defined FE_TOWARDZERO |
123 | if (dret < ret) |
124 | ret = (res - 0x1p-1022) * c.x; |
125 | break; |
126 | #endif |
127 | |
128 | default: |
129 | break; |
130 | } |
131 | } |
132 | /* Otherwise (x / ret == ret), either the square root was exact or |
133 | the division was inexact. */ |
134 | return ret; |
135 | } |
136 | else |
137 | { |
138 | if ((k & 0x7ff00000) == 0x7ff00000) |
139 | return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
140 | if (x == 0) |
141 | return x; /* sqrt(+0)=+0, sqrt(-0)=-0 */ |
142 | if (k < 0) |
143 | return (x - x) / (x - x); /* sqrt(-ve)=sNaN */ |
144 | return 0x1p-256 * __ieee754_sqrt (x * 0x1p512); |
145 | } |
146 | #endif /* ! USE_SQRT_BUILTIN */ |
147 | } |
148 | #ifndef __ieee754_sqrt |
149 | libm_alias_finite (__ieee754_sqrt, __sqrt) |
150 | #endif |
151 | |