1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /************************************************************************/ |
20 | /* MODULE_NAME: atnat2.c */ |
21 | /* */ |
22 | /* FUNCTIONS: uatan2 */ |
23 | /* atan2Mp */ |
24 | /* signArctan2 */ |
25 | /* normalized */ |
26 | /* */ |
27 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ |
28 | /* mpatan.c mpatan2.c mpsqrt.c */ |
29 | /* uatan.tbl */ |
30 | /* */ |
31 | /* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ |
32 | /* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ |
33 | /* */ |
34 | /* Assumption: Machine arithmetic operations are performed in */ |
35 | /* round to nearest mode of IEEE 754 standard. */ |
36 | /* */ |
37 | /************************************************************************/ |
38 | |
39 | #include <dla.h> |
40 | #include "mpa.h" |
41 | #include "MathLib.h" |
42 | #include "uatan.tbl" |
43 | #include "atnat2.h" |
44 | #include <fenv.h> |
45 | #include <float.h> |
46 | #include <math.h> |
47 | #include <math-barriers.h> |
48 | #include <math_private.h> |
49 | #include <fenv_private.h> |
50 | #include <stap-probe.h> |
51 | #include <libm-alias-finite.h> |
52 | |
53 | #ifndef SECTION |
54 | # define SECTION |
55 | #endif |
56 | |
57 | /************************************************************************/ |
58 | /* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ |
59 | /* it computes the correctly rounded (to nearest) value of atan2(y,x). */ |
60 | /* Assumption: Machine arithmetic operations are performed in */ |
61 | /* round to nearest mode of IEEE 754 standard. */ |
62 | /************************************************************************/ |
63 | static double atan2Mp (double, double, const int[]); |
64 | /* Fix the sign and return after stage 1 or stage 2 */ |
65 | static double |
66 | signArctan2 (double y, double z) |
67 | { |
68 | return copysign (z, y); |
69 | } |
70 | |
71 | static double normalized (double, double, double, double); |
72 | void __mpatan2 (mp_no *, mp_no *, mp_no *, int); |
73 | |
74 | double |
75 | SECTION |
76 | __ieee754_atan2 (double y, double x) |
77 | { |
78 | int i, de, ux, dx, uy, dy; |
79 | static const int pr[MM] = { 6, 8, 10, 20, 32 }; |
80 | double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, |
81 | z, zz, cor, s1, ss1, s2, ss2; |
82 | number num; |
83 | |
84 | static const int ep = 59768832, /* 57*16**5 */ |
85 | em = -59768832; /* -57*16**5 */ |
86 | |
87 | /* x=NaN or y=NaN */ |
88 | num.d = x; |
89 | ux = num.i[HIGH_HALF]; |
90 | dx = num.i[LOW_HALF]; |
91 | if ((ux & 0x7ff00000) == 0x7ff00000) |
92 | { |
93 | if (((ux & 0x000fffff) | dx) != 0x00000000) |
94 | return x + y; |
95 | } |
96 | num.d = y; |
97 | uy = num.i[HIGH_HALF]; |
98 | dy = num.i[LOW_HALF]; |
99 | if ((uy & 0x7ff00000) == 0x7ff00000) |
100 | { |
101 | if (((uy & 0x000fffff) | dy) != 0x00000000) |
102 | return y + y; |
103 | } |
104 | |
105 | /* y=+-0 */ |
106 | if (uy == 0x00000000) |
107 | { |
108 | if (dy == 0x00000000) |
109 | { |
110 | if ((ux & 0x80000000) == 0x00000000) |
111 | return 0; |
112 | else |
113 | return opi.d; |
114 | } |
115 | } |
116 | else if (uy == 0x80000000) |
117 | { |
118 | if (dy == 0x00000000) |
119 | { |
120 | if ((ux & 0x80000000) == 0x00000000) |
121 | return -0.0; |
122 | else |
123 | return mopi.d; |
124 | } |
125 | } |
126 | |
127 | /* x=+-0 */ |
128 | if (x == 0) |
129 | { |
130 | if ((uy & 0x80000000) == 0x00000000) |
131 | return hpi.d; |
132 | else |
133 | return mhpi.d; |
134 | } |
135 | |
136 | /* x=+-INF */ |
137 | if (ux == 0x7ff00000) |
138 | { |
139 | if (dx == 0x00000000) |
140 | { |
141 | if (uy == 0x7ff00000) |
142 | { |
143 | if (dy == 0x00000000) |
144 | return qpi.d; |
145 | } |
146 | else if (uy == 0xfff00000) |
147 | { |
148 | if (dy == 0x00000000) |
149 | return mqpi.d; |
150 | } |
151 | else |
152 | { |
153 | if ((uy & 0x80000000) == 0x00000000) |
154 | return 0; |
155 | else |
156 | return -0.0; |
157 | } |
158 | } |
159 | } |
160 | else if (ux == 0xfff00000) |
161 | { |
162 | if (dx == 0x00000000) |
163 | { |
164 | if (uy == 0x7ff00000) |
165 | { |
166 | if (dy == 0x00000000) |
167 | return tqpi.d; |
168 | } |
169 | else if (uy == 0xfff00000) |
170 | { |
171 | if (dy == 0x00000000) |
172 | return mtqpi.d; |
173 | } |
174 | else |
175 | { |
176 | if ((uy & 0x80000000) == 0x00000000) |
177 | return opi.d; |
178 | else |
179 | return mopi.d; |
180 | } |
181 | } |
182 | } |
183 | |
184 | /* y=+-INF */ |
185 | if (uy == 0x7ff00000) |
186 | { |
187 | if (dy == 0x00000000) |
188 | return hpi.d; |
189 | } |
190 | else if (uy == 0xfff00000) |
191 | { |
192 | if (dy == 0x00000000) |
193 | return mhpi.d; |
194 | } |
195 | |
196 | SET_RESTORE_ROUND (FE_TONEAREST); |
197 | /* either x/y or y/x is very close to zero */ |
198 | ax = (x < 0) ? -x : x; |
199 | ay = (y < 0) ? -y : y; |
200 | de = (uy & 0x7ff00000) - (ux & 0x7ff00000); |
201 | if (de >= ep) |
202 | { |
203 | return ((y > 0) ? hpi.d : mhpi.d); |
204 | } |
205 | else if (de <= em) |
206 | { |
207 | if (x > 0) |
208 | { |
209 | double ret; |
210 | if ((z = ay / ax) < TWOM1022) |
211 | ret = normalized (ax, ay, y, z); |
212 | else |
213 | ret = signArctan2 (y, z); |
214 | if (fabs (ret) < DBL_MIN) |
215 | { |
216 | double vret = ret ? ret : DBL_MIN; |
217 | double force_underflow = vret * vret; |
218 | math_force_eval (force_underflow); |
219 | } |
220 | return ret; |
221 | } |
222 | else |
223 | { |
224 | return ((y > 0) ? opi.d : mopi.d); |
225 | } |
226 | } |
227 | |
228 | /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ |
229 | if (ax < twom500.d || ay < twom500.d) |
230 | { |
231 | ax *= two500.d; |
232 | ay *= two500.d; |
233 | } |
234 | |
235 | /* Likewise for large x and y. */ |
236 | if (ax > two500.d || ay > two500.d) |
237 | { |
238 | ax *= twom500.d; |
239 | ay *= twom500.d; |
240 | } |
241 | |
242 | /* x,y which are neither special nor extreme */ |
243 | if (ay < ax) |
244 | { |
245 | u = ay / ax; |
246 | EMULV (ax, u, v, vv); |
247 | du = ((ay - v) - vv) / ax; |
248 | } |
249 | else |
250 | { |
251 | u = ax / ay; |
252 | EMULV (ay, u, v, vv); |
253 | du = ((ax - v) - vv) / ay; |
254 | } |
255 | |
256 | if (x > 0) |
257 | { |
258 | /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ |
259 | if (ay < ax) |
260 | { |
261 | if (u < inv16.d) |
262 | { |
263 | v = u * u; |
264 | |
265 | zz = du + u * v * (d3.d |
266 | + v * (d5.d |
267 | + v * (d7.d |
268 | + v * (d9.d |
269 | + v * (d11.d |
270 | + v * d13.d))))); |
271 | |
272 | if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u)) |
273 | return signArctan2 (y, z); |
274 | |
275 | MUL2 (u, du, u, du, v, vv, t1, t2); |
276 | s1 = v * (f11.d + v * (f13.d |
277 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
278 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
279 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
280 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
281 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
282 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
283 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
284 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
285 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
286 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
287 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
288 | |
289 | if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1)) |
290 | return signArctan2 (y, z); |
291 | |
292 | return atan2Mp (x, y, pr); |
293 | } |
294 | |
295 | i = (TWO52 + TWO8 * u) - TWO52; |
296 | i -= 16; |
297 | t3 = u - cij[i][0].d; |
298 | EADD (t3, du, v, dv); |
299 | t1 = cij[i][1].d; |
300 | t2 = cij[i][2].d; |
301 | zz = v * t2 + (dv * t2 |
302 | + v * v * (cij[i][3].d |
303 | + v * (cij[i][4].d |
304 | + v * (cij[i][5].d |
305 | + v * cij[i][6].d)))); |
306 | if (i < 112) |
307 | { |
308 | if (i < 48) |
309 | u9 = u91.d; /* u < 1/4 */ |
310 | else |
311 | u9 = u92.d; |
312 | } /* 1/4 <= u < 1/2 */ |
313 | else |
314 | { |
315 | if (i < 176) |
316 | u9 = u93.d; /* 1/2 <= u < 3/4 */ |
317 | else |
318 | u9 = u94.d; |
319 | } /* 3/4 <= u <= 1 */ |
320 | if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1)) |
321 | return signArctan2 (y, z); |
322 | |
323 | t1 = u - hij[i][0].d; |
324 | EADD (t1, du, v, vv); |
325 | s1 = v * (hij[i][11].d |
326 | + v * (hij[i][12].d |
327 | + v * (hij[i][13].d |
328 | + v * (hij[i][14].d |
329 | + v * hij[i][15].d)))); |
330 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
331 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
332 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
333 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
334 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
335 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
336 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
337 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
338 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
339 | |
340 | if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2)) |
341 | return signArctan2 (y, z); |
342 | return atan2Mp (x, y, pr); |
343 | } |
344 | |
345 | /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ |
346 | if (u < inv16.d) |
347 | { |
348 | v = u * u; |
349 | zz = u * v * (d3.d |
350 | + v * (d5.d |
351 | + v * (d7.d |
352 | + v * (d9.d |
353 | + v * (d11.d |
354 | + v * d13.d))))); |
355 | ESUB (hpi.d, u, t2, cor); |
356 | t3 = ((hpi1.d + cor) - du) - zz; |
357 | if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d)) |
358 | return signArctan2 (y, z); |
359 | |
360 | MUL2 (u, du, u, du, v, vv, t1, t2); |
361 | s1 = v * (f11.d |
362 | + v * (f13.d |
363 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
364 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
365 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
366 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
367 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
368 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
369 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
370 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
371 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
372 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
373 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
374 | SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
375 | |
376 | if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d)) |
377 | return signArctan2 (y, z); |
378 | return atan2Mp (x, y, pr); |
379 | } |
380 | |
381 | i = (TWO52 + TWO8 * u) - TWO52; |
382 | i -= 16; |
383 | v = (u - cij[i][0].d) + du; |
384 | |
385 | zz = hpi1.d - v * (cij[i][2].d |
386 | + v * (cij[i][3].d |
387 | + v * (cij[i][4].d |
388 | + v * (cij[i][5].d |
389 | + v * cij[i][6].d)))); |
390 | t1 = hpi.d - cij[i][1].d; |
391 | if (i < 112) |
392 | ua = ua1.d; /* w < 1/2 */ |
393 | else |
394 | ua = ua2.d; /* w >= 1/2 */ |
395 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
396 | return signArctan2 (y, z); |
397 | |
398 | t1 = u - hij[i][0].d; |
399 | EADD (t1, du, v, vv); |
400 | |
401 | s1 = v * (hij[i][11].d |
402 | + v * (hij[i][12].d |
403 | + v * (hij[i][13].d |
404 | + v * (hij[i][14].d |
405 | + v * hij[i][15].d)))); |
406 | |
407 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
408 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
409 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
410 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
411 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
412 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
413 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
414 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
415 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
416 | SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
417 | |
418 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
419 | return signArctan2 (y, z); |
420 | return atan2Mp (x, y, pr); |
421 | } |
422 | |
423 | /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ |
424 | if (ax < ay) |
425 | { |
426 | if (u < inv16.d) |
427 | { |
428 | v = u * u; |
429 | zz = u * v * (d3.d |
430 | + v * (d5.d |
431 | + v * (d7.d |
432 | + v * (d9.d |
433 | + v * (d11.d + v * d13.d))))); |
434 | EADD (hpi.d, u, t2, cor); |
435 | t3 = ((hpi1.d + cor) + du) + zz; |
436 | if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d)) |
437 | return signArctan2 (y, z); |
438 | |
439 | MUL2 (u, du, u, du, v, vv, t1, t2); |
440 | s1 = v * (f11.d |
441 | + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
442 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
443 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
444 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
445 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
446 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
447 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
448 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
449 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
450 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
451 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
452 | ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
453 | |
454 | if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d)) |
455 | return signArctan2 (y, z); |
456 | return atan2Mp (x, y, pr); |
457 | } |
458 | |
459 | i = (TWO52 + TWO8 * u) - TWO52; |
460 | i -= 16; |
461 | v = (u - cij[i][0].d) + du; |
462 | zz = hpi1.d + v * (cij[i][2].d |
463 | + v * (cij[i][3].d |
464 | + v * (cij[i][4].d |
465 | + v * (cij[i][5].d |
466 | + v * cij[i][6].d)))); |
467 | t1 = hpi.d + cij[i][1].d; |
468 | if (i < 112) |
469 | ua = ua1.d; /* w < 1/2 */ |
470 | else |
471 | ua = ua2.d; /* w >= 1/2 */ |
472 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
473 | return signArctan2 (y, z); |
474 | |
475 | t1 = u - hij[i][0].d; |
476 | EADD (t1, du, v, vv); |
477 | s1 = v * (hij[i][11].d |
478 | + v * (hij[i][12].d |
479 | + v * (hij[i][13].d |
480 | + v * (hij[i][14].d |
481 | + v * hij[i][15].d)))); |
482 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
483 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
484 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
485 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
486 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
487 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
488 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
489 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
490 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
491 | ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
492 | |
493 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
494 | return signArctan2 (y, z); |
495 | return atan2Mp (x, y, pr); |
496 | } |
497 | |
498 | /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ |
499 | if (u < inv16.d) |
500 | { |
501 | v = u * u; |
502 | zz = u * v * (d3.d |
503 | + v * (d5.d |
504 | + v * (d7.d |
505 | + v * (d9.d + v * (d11.d + v * d13.d))))); |
506 | ESUB (opi.d, u, t2, cor); |
507 | t3 = ((opi1.d + cor) - du) - zz; |
508 | if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d)) |
509 | return signArctan2 (y, z); |
510 | |
511 | MUL2 (u, du, u, du, v, vv, t1, t2); |
512 | s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
513 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
514 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
515 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
516 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
517 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
518 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
519 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
520 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
521 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
522 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
523 | SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2); |
524 | |
525 | if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d)) |
526 | return signArctan2 (y, z); |
527 | return atan2Mp (x, y, pr); |
528 | } |
529 | |
530 | i = (TWO52 + TWO8 * u) - TWO52; |
531 | i -= 16; |
532 | v = (u - cij[i][0].d) + du; |
533 | zz = opi1.d - v * (cij[i][2].d |
534 | + v * (cij[i][3].d |
535 | + v * (cij[i][4].d |
536 | + v * (cij[i][5].d + v * cij[i][6].d)))); |
537 | t1 = opi.d - cij[i][1].d; |
538 | if (i < 112) |
539 | ua = ua1.d; /* w < 1/2 */ |
540 | else |
541 | ua = ua2.d; /* w >= 1/2 */ |
542 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
543 | return signArctan2 (y, z); |
544 | |
545 | t1 = u - hij[i][0].d; |
546 | |
547 | EADD (t1, du, v, vv); |
548 | |
549 | s1 = v * (hij[i][11].d |
550 | + v * (hij[i][12].d |
551 | + v * (hij[i][13].d |
552 | + v * (hij[i][14].d + v * hij[i][15].d)))); |
553 | |
554 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
555 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
556 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
557 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
558 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
559 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
560 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
561 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
562 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
563 | SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2); |
564 | |
565 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
566 | return signArctan2 (y, z); |
567 | return atan2Mp (x, y, pr); |
568 | } |
569 | |
570 | #ifndef __ieee754_atan2 |
571 | libm_alias_finite (__ieee754_atan2, __atan2) |
572 | #endif |
573 | |
574 | /* Treat the Denormalized case */ |
575 | static double |
576 | SECTION |
577 | normalized (double ax, double ay, double y, double z) |
578 | { |
579 | int p; |
580 | mp_no mpx, mpy, mpz, mperr, mpz2, mpt1; |
581 | p = 6; |
582 | __dbl_mp (ax, &mpx, p); |
583 | __dbl_mp (ay, &mpy, p); |
584 | __dvd (&mpy, &mpx, &mpz, p); |
585 | __dbl_mp (ue.d, &mpt1, p); |
586 | __mul (&mpz, &mpt1, &mperr, p); |
587 | __sub (&mpz, &mperr, &mpz2, p); |
588 | __mp_dbl (&mpz2, &z, p); |
589 | return signArctan2 (y, z); |
590 | } |
591 | |
592 | /* Stage 3: Perform a multi-Precision computation */ |
593 | static double |
594 | SECTION |
595 | atan2Mp (double x, double y, const int pr[]) |
596 | { |
597 | double z1, z2; |
598 | int i, p; |
599 | mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1; |
600 | for (i = 0; i < MM; i++) |
601 | { |
602 | p = pr[i]; |
603 | __dbl_mp (x, &mpx, p); |
604 | __dbl_mp (y, &mpy, p); |
605 | __mpatan2 (&mpy, &mpx, &mpz, p); |
606 | __dbl_mp (ud[i].d, &mpt1, p); |
607 | __mul (&mpz, &mpt1, &mperr, p); |
608 | __add (&mpz, &mperr, &mpz1, p); |
609 | __sub (&mpz, &mperr, &mpz2, p); |
610 | __mp_dbl (&mpz1, &z1, p); |
611 | __mp_dbl (&mpz2, &z2, p); |
612 | if (z1 == z2) |
613 | { |
614 | LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1); |
615 | return z1; |
616 | } |
617 | } |
618 | LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1); |
619 | return z1; /*if impossible to do exact computing */ |
620 | } |
621 | |