1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2018 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, |
21 | Idx n); |
22 | static void match_ctx_clean (re_match_context_t *mctx); |
23 | static void match_ctx_free (re_match_context_t *cache); |
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, |
25 | Idx str_idx, Idx from, Idx to); |
26 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx); |
27 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, |
28 | Idx str_idx); |
29 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, |
30 | Idx node, Idx str_idx); |
31 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
32 | re_dfastate_t **limited_sts, Idx last_node, |
33 | Idx last_str_idx); |
34 | static reg_errcode_t re_search_internal (const regex_t *preg, |
35 | const char *string, Idx length, |
36 | Idx start, Idx last_start, Idx stop, |
37 | size_t nmatch, regmatch_t pmatch[], |
38 | int eflags); |
39 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, |
40 | const char *string1, Idx length1, |
41 | const char *string2, Idx length2, |
42 | Idx start, regoff_t range, |
43 | struct re_registers *regs, |
44 | Idx stop, bool ret_len); |
45 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, |
46 | const char *string, Idx length, Idx start, |
47 | regoff_t range, Idx stop, |
48 | struct re_registers *regs, |
49 | bool ret_len); |
50 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, |
51 | Idx nregs, int regs_allocated); |
52 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); |
53 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, |
54 | Idx *p_match_first); |
55 | static Idx check_halt_state_context (const re_match_context_t *mctx, |
56 | const re_dfastate_t *state, Idx idx); |
57 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
58 | regmatch_t *prev_idx_match, Idx cur_node, |
59 | Idx cur_idx, Idx nmatch); |
60 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, |
61 | Idx str_idx, Idx dest_node, Idx nregs, |
62 | regmatch_t *regs, |
63 | re_node_set *eps_via_nodes); |
64 | static reg_errcode_t set_regs (const regex_t *preg, |
65 | const re_match_context_t *mctx, |
66 | size_t nmatch, regmatch_t *pmatch, |
67 | bool fl_backtrack); |
68 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs); |
69 | |
70 | #ifdef RE_ENABLE_I18N |
71 | static int sift_states_iter_mb (const re_match_context_t *mctx, |
72 | re_sift_context_t *sctx, |
73 | Idx node_idx, Idx str_idx, Idx max_str_idx); |
74 | #endif /* RE_ENABLE_I18N */ |
75 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, |
76 | re_sift_context_t *sctx); |
77 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, |
78 | re_sift_context_t *sctx, Idx str_idx, |
79 | re_node_set *cur_dest); |
80 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, |
81 | re_sift_context_t *sctx, |
82 | Idx str_idx, |
83 | re_node_set *dest_nodes); |
84 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, |
85 | re_node_set *dest_nodes, |
86 | const re_node_set *candidates); |
87 | static bool check_dst_limits (const re_match_context_t *mctx, |
88 | const re_node_set *limits, |
89 | Idx dst_node, Idx dst_idx, Idx src_node, |
90 | Idx src_idx); |
91 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, |
92 | int boundaries, Idx subexp_idx, |
93 | Idx from_node, Idx bkref_idx); |
94 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, |
95 | Idx limit, Idx subexp_idx, |
96 | Idx node, Idx str_idx, |
97 | Idx bkref_idx); |
98 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, |
99 | re_node_set *dest_nodes, |
100 | const re_node_set *candidates, |
101 | re_node_set *limits, |
102 | struct re_backref_cache_entry *bkref_ents, |
103 | Idx str_idx); |
104 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, |
105 | re_sift_context_t *sctx, |
106 | Idx str_idx, const re_node_set *candidates); |
107 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, |
108 | re_dfastate_t **dst, |
109 | re_dfastate_t **src, Idx num); |
110 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, |
111 | re_match_context_t *mctx); |
112 | static re_dfastate_t *transit_state (reg_errcode_t *err, |
113 | re_match_context_t *mctx, |
114 | re_dfastate_t *state); |
115 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, |
116 | re_match_context_t *mctx, |
117 | re_dfastate_t *next_state); |
118 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, |
119 | re_node_set *cur_nodes, |
120 | Idx str_idx); |
121 | #if 0 |
122 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, |
123 | re_match_context_t *mctx, |
124 | re_dfastate_t *pstate); |
125 | #endif |
126 | #ifdef RE_ENABLE_I18N |
127 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, |
128 | re_dfastate_t *pstate); |
129 | #endif /* RE_ENABLE_I18N */ |
130 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, |
131 | const re_node_set *nodes); |
132 | static reg_errcode_t get_subexp (re_match_context_t *mctx, |
133 | Idx bkref_node, Idx bkref_str_idx); |
134 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, |
135 | const re_sub_match_top_t *sub_top, |
136 | re_sub_match_last_t *sub_last, |
137 | Idx bkref_node, Idx bkref_str); |
138 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
139 | Idx subexp_idx, int type); |
140 | static reg_errcode_t check_arrival (re_match_context_t *mctx, |
141 | state_array_t *path, Idx top_node, |
142 | Idx top_str, Idx last_node, Idx last_str, |
143 | int type); |
144 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, |
145 | Idx str_idx, |
146 | re_node_set *cur_nodes, |
147 | re_node_set *next_nodes); |
148 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, |
149 | re_node_set *cur_nodes, |
150 | Idx ex_subexp, int type); |
151 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, |
152 | re_node_set *dst_nodes, |
153 | Idx target, Idx ex_subexp, |
154 | int type); |
155 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, |
156 | re_node_set *cur_nodes, Idx cur_str, |
157 | Idx subexp_num, int type); |
158 | static bool build_trtable (const re_dfa_t *dfa, re_dfastate_t *state); |
159 | #ifdef RE_ENABLE_I18N |
160 | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
161 | const re_string_t *input, Idx idx); |
162 | # ifdef _LIBC |
163 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, |
164 | size_t name_len); |
165 | # endif /* _LIBC */ |
166 | #endif /* RE_ENABLE_I18N */ |
167 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, |
168 | const re_dfastate_t *state, |
169 | re_node_set *states_node, |
170 | bitset_t *states_ch); |
171 | static bool check_node_accept (const re_match_context_t *mctx, |
172 | const re_token_t *node, Idx idx); |
173 | static reg_errcode_t extend_buffers (re_match_context_t *mctx, int min_len); |
174 | |
175 | /* Entry point for POSIX code. */ |
176 | |
177 | /* regexec searches for a given pattern, specified by PREG, in the |
178 | string STRING. |
179 | |
180 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
181 | 'regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
182 | least NMATCH elements, and we set them to the offsets of the |
183 | corresponding matched substrings. |
184 | |
185 | EFLAGS specifies "execution flags" which affect matching: if |
186 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
187 | string; if REG_NOTEOL is set, then $ does not match at the end. |
188 | |
189 | We return 0 if we find a match and REG_NOMATCH if not. */ |
190 | |
191 | int |
192 | regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string, |
193 | size_t nmatch, regmatch_t pmatch[], int eflags) |
194 | { |
195 | reg_errcode_t err; |
196 | Idx start, length; |
197 | re_dfa_t *dfa = preg->buffer; |
198 | |
199 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) |
200 | return REG_BADPAT; |
201 | |
202 | if (eflags & REG_STARTEND) |
203 | { |
204 | start = pmatch[0].rm_so; |
205 | length = pmatch[0].rm_eo; |
206 | } |
207 | else |
208 | { |
209 | start = 0; |
210 | length = strlen (string); |
211 | } |
212 | |
213 | lock_lock (dfa->lock); |
214 | if (preg->no_sub) |
215 | err = re_search_internal (preg, string, length, start, length, |
216 | length, 0, NULL, eflags); |
217 | else |
218 | err = re_search_internal (preg, string, length, start, length, |
219 | length, nmatch, pmatch, eflags); |
220 | lock_unlock (dfa->lock); |
221 | return err != REG_NOERROR; |
222 | } |
223 | |
224 | #ifdef _LIBC |
225 | libc_hidden_def (__regexec) |
226 | |
227 | # include <shlib-compat.h> |
228 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); |
229 | |
230 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) |
231 | __typeof__ (__regexec) __compat_regexec; |
232 | |
233 | int |
234 | attribute_compat_text_section |
235 | __compat_regexec (const regex_t *_Restrict_ preg, |
236 | const char *_Restrict_ string, size_t nmatch, |
237 | regmatch_t pmatch[], int eflags) |
238 | { |
239 | return regexec (preg, string, nmatch, pmatch, |
240 | eflags & (REG_NOTBOL | REG_NOTEOL)); |
241 | } |
242 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); |
243 | # endif |
244 | #endif |
245 | |
246 | /* Entry points for GNU code. */ |
247 | |
248 | /* re_match, re_search, re_match_2, re_search_2 |
249 | |
250 | The former two functions operate on STRING with length LENGTH, |
251 | while the later two operate on concatenation of STRING1 and STRING2 |
252 | with lengths LENGTH1 and LENGTH2, respectively. |
253 | |
254 | re_match() matches the compiled pattern in BUFP against the string, |
255 | starting at index START. |
256 | |
257 | re_search() first tries matching at index START, then it tries to match |
258 | starting from index START + 1, and so on. The last start position tried |
259 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same |
260 | way as re_match().) |
261 | |
262 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding |
263 | the first STOP characters of the concatenation of the strings should be |
264 | concerned. |
265 | |
266 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match |
267 | and all groups is stored in REGS. (For the "_2" variants, the offsets are |
268 | computed relative to the concatenation, not relative to the individual |
269 | strings.) |
270 | |
271 | On success, re_match* functions return the length of the match, re_search* |
272 | return the position of the start of the match. Return value -1 means no |
273 | match was found and -2 indicates an internal error. */ |
274 | |
275 | regoff_t |
276 | re_match (struct re_pattern_buffer *bufp, const char *string, Idx length, |
277 | Idx start, struct re_registers *regs) |
278 | { |
279 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); |
280 | } |
281 | #ifdef _LIBC |
282 | weak_alias (__re_match, re_match) |
283 | #endif |
284 | |
285 | regoff_t |
286 | re_search (struct re_pattern_buffer *bufp, const char *string, Idx length, |
287 | Idx start, regoff_t range, struct re_registers *regs) |
288 | { |
289 | return re_search_stub (bufp, string, length, start, range, length, regs, |
290 | false); |
291 | } |
292 | #ifdef _LIBC |
293 | weak_alias (__re_search, re_search) |
294 | #endif |
295 | |
296 | regoff_t |
297 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
298 | const char *string2, Idx length2, Idx start, |
299 | struct re_registers *regs, Idx stop) |
300 | { |
301 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
302 | start, 0, regs, stop, true); |
303 | } |
304 | #ifdef _LIBC |
305 | weak_alias (__re_match_2, re_match_2) |
306 | #endif |
307 | |
308 | regoff_t |
309 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
310 | const char *string2, Idx length2, Idx start, regoff_t range, |
311 | struct re_registers *regs, Idx stop) |
312 | { |
313 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
314 | start, range, regs, stop, false); |
315 | } |
316 | #ifdef _LIBC |
317 | weak_alias (__re_search_2, re_search_2) |
318 | #endif |
319 | |
320 | static regoff_t |
321 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, |
322 | Idx length1, const char *string2, Idx length2, Idx start, |
323 | regoff_t range, struct re_registers *regs, |
324 | Idx stop, bool ret_len) |
325 | { |
326 | const char *str; |
327 | regoff_t rval; |
328 | Idx len; |
329 | char *s = NULL; |
330 | |
331 | if (BE ((length1 < 0 || length2 < 0 || stop < 0 |
332 | || INT_ADD_WRAPV (length1, length2, &len)), |
333 | 0)) |
334 | return -2; |
335 | |
336 | /* Concatenate the strings. */ |
337 | if (length2 > 0) |
338 | if (length1 > 0) |
339 | { |
340 | s = re_malloc (char, len); |
341 | |
342 | if (BE (s == NULL, 0)) |
343 | return -2; |
344 | #ifdef _LIBC |
345 | memcpy (__mempcpy (s, string1, length1), string2, length2); |
346 | #else |
347 | memcpy (s, string1, length1); |
348 | memcpy (s + length1, string2, length2); |
349 | #endif |
350 | str = s; |
351 | } |
352 | else |
353 | str = string2; |
354 | else |
355 | str = string1; |
356 | |
357 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, |
358 | ret_len); |
359 | re_free (s); |
360 | return rval; |
361 | } |
362 | |
363 | /* The parameters have the same meaning as those of re_search. |
364 | Additional parameters: |
365 | If RET_LEN is true the length of the match is returned (re_match style); |
366 | otherwise the position of the match is returned. */ |
367 | |
368 | static regoff_t |
369 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, Idx length, |
370 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, |
371 | bool ret_len) |
372 | { |
373 | reg_errcode_t result; |
374 | regmatch_t *pmatch; |
375 | Idx nregs; |
376 | regoff_t rval; |
377 | int eflags = 0; |
378 | re_dfa_t *dfa = bufp->buffer; |
379 | Idx last_start = start + range; |
380 | |
381 | /* Check for out-of-range. */ |
382 | if (BE (start < 0 || start > length, 0)) |
383 | return -1; |
384 | if (BE (length < last_start || (0 <= range && last_start < start), 0)) |
385 | last_start = length; |
386 | else if (BE (last_start < 0 || (range < 0 && start <= last_start), 0)) |
387 | last_start = 0; |
388 | |
389 | lock_lock (dfa->lock); |
390 | |
391 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; |
392 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; |
393 | |
394 | /* Compile fastmap if we haven't yet. */ |
395 | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) |
396 | re_compile_fastmap (bufp); |
397 | |
398 | if (BE (bufp->no_sub, 0)) |
399 | regs = NULL; |
400 | |
401 | /* We need at least 1 register. */ |
402 | if (regs == NULL) |
403 | nregs = 1; |
404 | else if (BE (bufp->regs_allocated == REGS_FIXED |
405 | && regs->num_regs <= bufp->re_nsub, 0)) |
406 | { |
407 | nregs = regs->num_regs; |
408 | if (BE (nregs < 1, 0)) |
409 | { |
410 | /* Nothing can be copied to regs. */ |
411 | regs = NULL; |
412 | nregs = 1; |
413 | } |
414 | } |
415 | else |
416 | nregs = bufp->re_nsub + 1; |
417 | pmatch = re_malloc (regmatch_t, nregs); |
418 | if (BE (pmatch == NULL, 0)) |
419 | { |
420 | rval = -2; |
421 | goto out; |
422 | } |
423 | |
424 | result = re_search_internal (bufp, string, length, start, last_start, stop, |
425 | nregs, pmatch, eflags); |
426 | |
427 | rval = 0; |
428 | |
429 | /* I hope we needn't fill their regs with -1's when no match was found. */ |
430 | if (result != REG_NOERROR) |
431 | rval = result == REG_NOMATCH ? -1 : -2; |
432 | else if (regs != NULL) |
433 | { |
434 | /* If caller wants register contents data back, copy them. */ |
435 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, |
436 | bufp->regs_allocated); |
437 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) |
438 | rval = -2; |
439 | } |
440 | |
441 | if (BE (rval == 0, 1)) |
442 | { |
443 | if (ret_len) |
444 | { |
445 | assert (pmatch[0].rm_so == start); |
446 | rval = pmatch[0].rm_eo - start; |
447 | } |
448 | else |
449 | rval = pmatch[0].rm_so; |
450 | } |
451 | re_free (pmatch); |
452 | out: |
453 | lock_unlock (dfa->lock); |
454 | return rval; |
455 | } |
456 | |
457 | static unsigned |
458 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, |
459 | int regs_allocated) |
460 | { |
461 | int rval = REGS_REALLOCATE; |
462 | Idx i; |
463 | Idx need_regs = nregs + 1; |
464 | /* We need one extra element beyond 'num_regs' for the '-1' marker GNU code |
465 | uses. */ |
466 | |
467 | /* Have the register data arrays been allocated? */ |
468 | if (regs_allocated == REGS_UNALLOCATED) |
469 | { /* No. So allocate them with malloc. */ |
470 | regs->start = re_malloc (regoff_t, need_regs); |
471 | if (BE (regs->start == NULL, 0)) |
472 | return REGS_UNALLOCATED; |
473 | regs->end = re_malloc (regoff_t, need_regs); |
474 | if (BE (regs->end == NULL, 0)) |
475 | { |
476 | re_free (regs->start); |
477 | return REGS_UNALLOCATED; |
478 | } |
479 | regs->num_regs = need_regs; |
480 | } |
481 | else if (regs_allocated == REGS_REALLOCATE) |
482 | { /* Yes. If we need more elements than were already |
483 | allocated, reallocate them. If we need fewer, just |
484 | leave it alone. */ |
485 | if (BE (need_regs > regs->num_regs, 0)) |
486 | { |
487 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); |
488 | regoff_t *new_end; |
489 | if (BE (new_start == NULL, 0)) |
490 | return REGS_UNALLOCATED; |
491 | new_end = re_realloc (regs->end, regoff_t, need_regs); |
492 | if (BE (new_end == NULL, 0)) |
493 | { |
494 | re_free (new_start); |
495 | return REGS_UNALLOCATED; |
496 | } |
497 | regs->start = new_start; |
498 | regs->end = new_end; |
499 | regs->num_regs = need_regs; |
500 | } |
501 | } |
502 | else |
503 | { |
504 | assert (regs_allocated == REGS_FIXED); |
505 | /* This function may not be called with REGS_FIXED and nregs too big. */ |
506 | assert (regs->num_regs >= nregs); |
507 | rval = REGS_FIXED; |
508 | } |
509 | |
510 | /* Copy the regs. */ |
511 | for (i = 0; i < nregs; ++i) |
512 | { |
513 | regs->start[i] = pmatch[i].rm_so; |
514 | regs->end[i] = pmatch[i].rm_eo; |
515 | } |
516 | for ( ; i < regs->num_regs; ++i) |
517 | regs->start[i] = regs->end[i] = -1; |
518 | |
519 | return rval; |
520 | } |
521 | |
522 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
523 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
524 | this memory for recording register information. STARTS and ENDS |
525 | must be allocated using the malloc library routine, and must each |
526 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
527 | |
528 | If NUM_REGS == 0, then subsequent matches should allocate their own |
529 | register data. |
530 | |
531 | Unless this function is called, the first search or match using |
532 | PATTERN_BUFFER will allocate its own register data, without |
533 | freeing the old data. */ |
534 | |
535 | void |
536 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, |
537 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) |
538 | { |
539 | if (num_regs) |
540 | { |
541 | bufp->regs_allocated = REGS_REALLOCATE; |
542 | regs->num_regs = num_regs; |
543 | regs->start = starts; |
544 | regs->end = ends; |
545 | } |
546 | else |
547 | { |
548 | bufp->regs_allocated = REGS_UNALLOCATED; |
549 | regs->num_regs = 0; |
550 | regs->start = regs->end = NULL; |
551 | } |
552 | } |
553 | #ifdef _LIBC |
554 | weak_alias (__re_set_registers, re_set_registers) |
555 | #endif |
556 | |
557 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
558 | them unless specifically requested. */ |
559 | |
560 | #if defined _REGEX_RE_COMP || defined _LIBC |
561 | int |
562 | # ifdef _LIBC |
563 | weak_function |
564 | # endif |
565 | re_exec (const char *s) |
566 | { |
567 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); |
568 | } |
569 | #endif /* _REGEX_RE_COMP */ |
570 | |
571 | /* Internal entry point. */ |
572 | |
573 | /* Searches for a compiled pattern PREG in the string STRING, whose |
574 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same |
575 | meaning as with regexec. LAST_START is START + RANGE, where |
576 | START and RANGE have the same meaning as with re_search. |
577 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, |
578 | otherwise return the error code. |
579 | Note: We assume front end functions already check ranges. |
580 | (0 <= LAST_START && LAST_START <= LENGTH) */ |
581 | |
582 | static reg_errcode_t |
583 | __attribute_warn_unused_result__ |
584 | re_search_internal (const regex_t *preg, const char *string, Idx length, |
585 | Idx start, Idx last_start, Idx stop, size_t nmatch, |
586 | regmatch_t pmatch[], int eflags) |
587 | { |
588 | reg_errcode_t err; |
589 | const re_dfa_t *dfa = preg->buffer; |
590 | Idx left_lim, right_lim; |
591 | int incr; |
592 | bool fl_longest_match; |
593 | int match_kind; |
594 | Idx match_first; |
595 | Idx match_last = -1; |
596 | Idx ; |
597 | bool sb; |
598 | int ch; |
599 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) |
600 | re_match_context_t mctx = { .dfa = dfa }; |
601 | #else |
602 | re_match_context_t mctx; |
603 | #endif |
604 | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate |
605 | && start != last_start && !preg->can_be_null) |
606 | ? preg->fastmap : NULL); |
607 | RE_TRANSLATE_TYPE t = preg->translate; |
608 | |
609 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) |
610 | memset (&mctx, '\0', sizeof (re_match_context_t)); |
611 | mctx.dfa = dfa; |
612 | #endif |
613 | |
614 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; |
615 | nmatch -= extra_nmatch; |
616 | |
617 | /* Check if the DFA haven't been compiled. */ |
618 | if (BE (preg->used == 0 || dfa->init_state == NULL |
619 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
620 | || dfa->init_state_begbuf == NULL, 0)) |
621 | return REG_NOMATCH; |
622 | |
623 | #ifdef DEBUG |
624 | /* We assume front-end functions already check them. */ |
625 | assert (0 <= last_start && last_start <= length); |
626 | #endif |
627 | |
628 | /* If initial states with non-begbuf contexts have no elements, |
629 | the regex must be anchored. If preg->newline_anchor is set, |
630 | we'll never use init_state_nl, so do not check it. */ |
631 | if (dfa->init_state->nodes.nelem == 0 |
632 | && dfa->init_state_word->nodes.nelem == 0 |
633 | && (dfa->init_state_nl->nodes.nelem == 0 |
634 | || !preg->newline_anchor)) |
635 | { |
636 | if (start != 0 && last_start != 0) |
637 | return REG_NOMATCH; |
638 | start = last_start = 0; |
639 | } |
640 | |
641 | /* We must check the longest matching, if nmatch > 0. */ |
642 | fl_longest_match = (nmatch != 0 || dfa->nbackref); |
643 | |
644 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, |
645 | preg->translate, (preg->syntax & RE_ICASE) != 0, |
646 | dfa); |
647 | if (BE (err != REG_NOERROR, 0)) |
648 | goto free_return; |
649 | mctx.input.stop = stop; |
650 | mctx.input.raw_stop = stop; |
651 | mctx.input.newline_anchor = preg->newline_anchor; |
652 | |
653 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); |
654 | if (BE (err != REG_NOERROR, 0)) |
655 | goto free_return; |
656 | |
657 | /* We will log all the DFA states through which the dfa pass, |
658 | if nmatch > 1, or this dfa has "multibyte node", which is a |
659 | back-reference or a node which can accept multibyte character or |
660 | multi character collating element. */ |
661 | if (nmatch > 1 || dfa->has_mb_node) |
662 | { |
663 | /* Avoid overflow. */ |
664 | if (BE ((MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
665 | <= mctx.input.bufs_len), 0)) |
666 | { |
667 | err = REG_ESPACE; |
668 | goto free_return; |
669 | } |
670 | |
671 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); |
672 | if (BE (mctx.state_log == NULL, 0)) |
673 | { |
674 | err = REG_ESPACE; |
675 | goto free_return; |
676 | } |
677 | } |
678 | else |
679 | mctx.state_log = NULL; |
680 | |
681 | match_first = start; |
682 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
683 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; |
684 | |
685 | /* Check incrementally whether the input string matches. */ |
686 | incr = (last_start < start) ? -1 : 1; |
687 | left_lim = (last_start < start) ? last_start : start; |
688 | right_lim = (last_start < start) ? start : last_start; |
689 | sb = dfa->mb_cur_max == 1; |
690 | match_kind = |
691 | (fastmap |
692 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) |
693 | | (start <= last_start ? 2 : 0) |
694 | | (t != NULL ? 1 : 0)) |
695 | : 8); |
696 | |
697 | for (;; match_first += incr) |
698 | { |
699 | err = REG_NOMATCH; |
700 | if (match_first < left_lim || right_lim < match_first) |
701 | goto free_return; |
702 | |
703 | /* Advance as rapidly as possible through the string, until we |
704 | find a plausible place to start matching. This may be done |
705 | with varying efficiency, so there are various possibilities: |
706 | only the most common of them are specialized, in order to |
707 | save on code size. We use a switch statement for speed. */ |
708 | switch (match_kind) |
709 | { |
710 | case 8: |
711 | /* No fastmap. */ |
712 | break; |
713 | |
714 | case 7: |
715 | /* Fastmap with single-byte translation, match forward. */ |
716 | while (BE (match_first < right_lim, 1) |
717 | && !fastmap[t[(unsigned char) string[match_first]]]) |
718 | ++match_first; |
719 | goto forward_match_found_start_or_reached_end; |
720 | |
721 | case 6: |
722 | /* Fastmap without translation, match forward. */ |
723 | while (BE (match_first < right_lim, 1) |
724 | && !fastmap[(unsigned char) string[match_first]]) |
725 | ++match_first; |
726 | |
727 | forward_match_found_start_or_reached_end: |
728 | if (BE (match_first == right_lim, 0)) |
729 | { |
730 | ch = match_first >= length |
731 | ? 0 : (unsigned char) string[match_first]; |
732 | if (!fastmap[t ? t[ch] : ch]) |
733 | goto free_return; |
734 | } |
735 | break; |
736 | |
737 | case 4: |
738 | case 5: |
739 | /* Fastmap without multi-byte translation, match backwards. */ |
740 | while (match_first >= left_lim) |
741 | { |
742 | ch = match_first >= length |
743 | ? 0 : (unsigned char) string[match_first]; |
744 | if (fastmap[t ? t[ch] : ch]) |
745 | break; |
746 | --match_first; |
747 | } |
748 | if (match_first < left_lim) |
749 | goto free_return; |
750 | break; |
751 | |
752 | default: |
753 | /* In this case, we can't determine easily the current byte, |
754 | since it might be a component byte of a multibyte |
755 | character. Then we use the constructed buffer instead. */ |
756 | for (;;) |
757 | { |
758 | /* If MATCH_FIRST is out of the valid range, reconstruct the |
759 | buffers. */ |
760 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; |
761 | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) |
762 | { |
763 | err = re_string_reconstruct (&mctx.input, match_first, |
764 | eflags); |
765 | if (BE (err != REG_NOERROR, 0)) |
766 | goto free_return; |
767 | |
768 | offset = match_first - mctx.input.raw_mbs_idx; |
769 | } |
770 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. |
771 | Note that MATCH_FIRST must not be smaller than 0. */ |
772 | ch = (match_first >= length |
773 | ? 0 : re_string_byte_at (&mctx.input, offset)); |
774 | if (fastmap[ch]) |
775 | break; |
776 | match_first += incr; |
777 | if (match_first < left_lim || match_first > right_lim) |
778 | { |
779 | err = REG_NOMATCH; |
780 | goto free_return; |
781 | } |
782 | } |
783 | break; |
784 | } |
785 | |
786 | /* Reconstruct the buffers so that the matcher can assume that |
787 | the matching starts from the beginning of the buffer. */ |
788 | err = re_string_reconstruct (&mctx.input, match_first, eflags); |
789 | if (BE (err != REG_NOERROR, 0)) |
790 | goto free_return; |
791 | |
792 | #ifdef RE_ENABLE_I18N |
793 | /* Don't consider this char as a possible match start if it part, |
794 | yet isn't the head, of a multibyte character. */ |
795 | if (!sb && !re_string_first_byte (&mctx.input, 0)) |
796 | continue; |
797 | #endif |
798 | |
799 | /* It seems to be appropriate one, then use the matcher. */ |
800 | /* We assume that the matching starts from 0. */ |
801 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; |
802 | match_last = check_matching (&mctx, fl_longest_match, |
803 | start <= last_start ? &match_first : NULL); |
804 | if (match_last != -1) |
805 | { |
806 | if (BE (match_last == -2, 0)) |
807 | { |
808 | err = REG_ESPACE; |
809 | goto free_return; |
810 | } |
811 | else |
812 | { |
813 | mctx.match_last = match_last; |
814 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) |
815 | { |
816 | re_dfastate_t *pstate = mctx.state_log[match_last]; |
817 | mctx.last_node = check_halt_state_context (&mctx, pstate, |
818 | match_last); |
819 | } |
820 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) |
821 | || dfa->nbackref) |
822 | { |
823 | err = prune_impossible_nodes (&mctx); |
824 | if (err == REG_NOERROR) |
825 | break; |
826 | if (BE (err != REG_NOMATCH, 0)) |
827 | goto free_return; |
828 | match_last = -1; |
829 | } |
830 | else |
831 | break; /* We found a match. */ |
832 | } |
833 | } |
834 | |
835 | match_ctx_clean (&mctx); |
836 | } |
837 | |
838 | #ifdef DEBUG |
839 | assert (match_last != -1); |
840 | assert (err == REG_NOERROR); |
841 | #endif |
842 | |
843 | /* Set pmatch[] if we need. */ |
844 | if (nmatch > 0) |
845 | { |
846 | Idx reg_idx; |
847 | |
848 | /* Initialize registers. */ |
849 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) |
850 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; |
851 | |
852 | /* Set the points where matching start/end. */ |
853 | pmatch[0].rm_so = 0; |
854 | pmatch[0].rm_eo = mctx.match_last; |
855 | /* FIXME: This function should fail if mctx.match_last exceeds |
856 | the maximum possible regoff_t value. We need a new error |
857 | code REG_OVERFLOW. */ |
858 | |
859 | if (!preg->no_sub && nmatch > 1) |
860 | { |
861 | err = set_regs (preg, &mctx, nmatch, pmatch, |
862 | dfa->has_plural_match && dfa->nbackref > 0); |
863 | if (BE (err != REG_NOERROR, 0)) |
864 | goto free_return; |
865 | } |
866 | |
867 | /* At last, add the offset to each register, since we slid |
868 | the buffers so that we could assume that the matching starts |
869 | from 0. */ |
870 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
871 | if (pmatch[reg_idx].rm_so != -1) |
872 | { |
873 | #ifdef RE_ENABLE_I18N |
874 | if (BE (mctx.input.offsets_needed != 0, 0)) |
875 | { |
876 | pmatch[reg_idx].rm_so = |
877 | (pmatch[reg_idx].rm_so == mctx.input.valid_len |
878 | ? mctx.input.valid_raw_len |
879 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); |
880 | pmatch[reg_idx].rm_eo = |
881 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len |
882 | ? mctx.input.valid_raw_len |
883 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); |
884 | } |
885 | #else |
886 | assert (mctx.input.offsets_needed == 0); |
887 | #endif |
888 | pmatch[reg_idx].rm_so += match_first; |
889 | pmatch[reg_idx].rm_eo += match_first; |
890 | } |
891 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) |
892 | { |
893 | pmatch[nmatch + reg_idx].rm_so = -1; |
894 | pmatch[nmatch + reg_idx].rm_eo = -1; |
895 | } |
896 | |
897 | if (dfa->subexp_map) |
898 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) |
899 | if (dfa->subexp_map[reg_idx] != reg_idx) |
900 | { |
901 | pmatch[reg_idx + 1].rm_so |
902 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; |
903 | pmatch[reg_idx + 1].rm_eo |
904 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; |
905 | } |
906 | } |
907 | |
908 | free_return: |
909 | re_free (mctx.state_log); |
910 | if (dfa->nbackref) |
911 | match_ctx_free (&mctx); |
912 | re_string_destruct (&mctx.input); |
913 | return err; |
914 | } |
915 | |
916 | static reg_errcode_t |
917 | __attribute_warn_unused_result__ |
918 | prune_impossible_nodes (re_match_context_t *mctx) |
919 | { |
920 | const re_dfa_t *const dfa = mctx->dfa; |
921 | Idx halt_node, match_last; |
922 | reg_errcode_t ret; |
923 | re_dfastate_t **sifted_states; |
924 | re_dfastate_t **lim_states = NULL; |
925 | re_sift_context_t sctx; |
926 | #ifdef DEBUG |
927 | assert (mctx->state_log != NULL); |
928 | #endif |
929 | match_last = mctx->match_last; |
930 | halt_node = mctx->last_node; |
931 | |
932 | /* Avoid overflow. */ |
933 | if (BE (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) <= match_last, 0)) |
934 | return REG_ESPACE; |
935 | |
936 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); |
937 | if (BE (sifted_states == NULL, 0)) |
938 | { |
939 | ret = REG_ESPACE; |
940 | goto free_return; |
941 | } |
942 | if (dfa->nbackref) |
943 | { |
944 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); |
945 | if (BE (lim_states == NULL, 0)) |
946 | { |
947 | ret = REG_ESPACE; |
948 | goto free_return; |
949 | } |
950 | while (1) |
951 | { |
952 | memset (lim_states, '\0', |
953 | sizeof (re_dfastate_t *) * (match_last + 1)); |
954 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, |
955 | match_last); |
956 | ret = sift_states_backward (mctx, &sctx); |
957 | re_node_set_free (&sctx.limits); |
958 | if (BE (ret != REG_NOERROR, 0)) |
959 | goto free_return; |
960 | if (sifted_states[0] != NULL || lim_states[0] != NULL) |
961 | break; |
962 | do |
963 | { |
964 | --match_last; |
965 | if (match_last < 0) |
966 | { |
967 | ret = REG_NOMATCH; |
968 | goto free_return; |
969 | } |
970 | } while (mctx->state_log[match_last] == NULL |
971 | || !mctx->state_log[match_last]->halt); |
972 | halt_node = check_halt_state_context (mctx, |
973 | mctx->state_log[match_last], |
974 | match_last); |
975 | } |
976 | ret = merge_state_array (dfa, sifted_states, lim_states, |
977 | match_last + 1); |
978 | re_free (lim_states); |
979 | lim_states = NULL; |
980 | if (BE (ret != REG_NOERROR, 0)) |
981 | goto free_return; |
982 | } |
983 | else |
984 | { |
985 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); |
986 | ret = sift_states_backward (mctx, &sctx); |
987 | re_node_set_free (&sctx.limits); |
988 | if (BE (ret != REG_NOERROR, 0)) |
989 | goto free_return; |
990 | if (sifted_states[0] == NULL) |
991 | { |
992 | ret = REG_NOMATCH; |
993 | goto free_return; |
994 | } |
995 | } |
996 | re_free (mctx->state_log); |
997 | mctx->state_log = sifted_states; |
998 | sifted_states = NULL; |
999 | mctx->last_node = halt_node; |
1000 | mctx->match_last = match_last; |
1001 | ret = REG_NOERROR; |
1002 | free_return: |
1003 | re_free (sifted_states); |
1004 | re_free (lim_states); |
1005 | return ret; |
1006 | } |
1007 | |
1008 | /* Acquire an initial state and return it. |
1009 | We must select appropriate initial state depending on the context, |
1010 | since initial states may have constraints like "\<", "^", etc.. */ |
1011 | |
1012 | static inline re_dfastate_t * |
1013 | __attribute__ ((always_inline)) |
1014 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, |
1015 | Idx idx) |
1016 | { |
1017 | const re_dfa_t *const dfa = mctx->dfa; |
1018 | if (dfa->init_state->has_constraint) |
1019 | { |
1020 | unsigned int context; |
1021 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); |
1022 | if (IS_WORD_CONTEXT (context)) |
1023 | return dfa->init_state_word; |
1024 | else if (IS_ORDINARY_CONTEXT (context)) |
1025 | return dfa->init_state; |
1026 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) |
1027 | return dfa->init_state_begbuf; |
1028 | else if (IS_NEWLINE_CONTEXT (context)) |
1029 | return dfa->init_state_nl; |
1030 | else if (IS_BEGBUF_CONTEXT (context)) |
1031 | { |
1032 | /* It is relatively rare case, then calculate on demand. */ |
1033 | return re_acquire_state_context (err, dfa, |
1034 | dfa->init_state->entrance_nodes, |
1035 | context); |
1036 | } |
1037 | else |
1038 | /* Must not happen? */ |
1039 | return dfa->init_state; |
1040 | } |
1041 | else |
1042 | return dfa->init_state; |
1043 | } |
1044 | |
1045 | /* Check whether the regular expression match input string INPUT or not, |
1046 | and return the index where the matching end. Return -1 if |
1047 | there is no match, and return -2 in case of an error. |
1048 | FL_LONGEST_MATCH means we want the POSIX longest matching. |
1049 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the |
1050 | next place where we may want to try matching. |
1051 | Note that the matcher assumes that the matching starts from the current |
1052 | index of the buffer. */ |
1053 | |
1054 | static Idx |
1055 | __attribute_warn_unused_result__ |
1056 | check_matching (re_match_context_t *mctx, bool fl_longest_match, |
1057 | Idx *p_match_first) |
1058 | { |
1059 | const re_dfa_t *const dfa = mctx->dfa; |
1060 | reg_errcode_t err; |
1061 | Idx match = 0; |
1062 | Idx match_last = -1; |
1063 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
1064 | re_dfastate_t *cur_state; |
1065 | bool at_init_state = p_match_first != NULL; |
1066 | Idx next_start_idx = cur_str_idx; |
1067 | |
1068 | err = REG_NOERROR; |
1069 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); |
1070 | /* An initial state must not be NULL (invalid). */ |
1071 | if (BE (cur_state == NULL, 0)) |
1072 | { |
1073 | assert (err == REG_ESPACE); |
1074 | return -2; |
1075 | } |
1076 | |
1077 | if (mctx->state_log != NULL) |
1078 | { |
1079 | mctx->state_log[cur_str_idx] = cur_state; |
1080 | |
1081 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them |
1082 | later. E.g. Processing back references. */ |
1083 | if (BE (dfa->nbackref, 0)) |
1084 | { |
1085 | at_init_state = false; |
1086 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); |
1087 | if (BE (err != REG_NOERROR, 0)) |
1088 | return err; |
1089 | |
1090 | if (cur_state->has_backref) |
1091 | { |
1092 | err = transit_state_bkref (mctx, &cur_state->nodes); |
1093 | if (BE (err != REG_NOERROR, 0)) |
1094 | return err; |
1095 | } |
1096 | } |
1097 | } |
1098 | |
1099 | /* If the RE accepts NULL string. */ |
1100 | if (BE (cur_state->halt, 0)) |
1101 | { |
1102 | if (!cur_state->has_constraint |
1103 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) |
1104 | { |
1105 | if (!fl_longest_match) |
1106 | return cur_str_idx; |
1107 | else |
1108 | { |
1109 | match_last = cur_str_idx; |
1110 | match = 1; |
1111 | } |
1112 | } |
1113 | } |
1114 | |
1115 | while (!re_string_eoi (&mctx->input)) |
1116 | { |
1117 | re_dfastate_t *old_state = cur_state; |
1118 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; |
1119 | |
1120 | if ((BE (next_char_idx >= mctx->input.bufs_len, 0) |
1121 | && mctx->input.bufs_len < mctx->input.len) |
1122 | || (BE (next_char_idx >= mctx->input.valid_len, 0) |
1123 | && mctx->input.valid_len < mctx->input.len)) |
1124 | { |
1125 | err = extend_buffers (mctx, next_char_idx + 1); |
1126 | if (BE (err != REG_NOERROR, 0)) |
1127 | { |
1128 | assert (err == REG_ESPACE); |
1129 | return -2; |
1130 | } |
1131 | } |
1132 | |
1133 | cur_state = transit_state (&err, mctx, cur_state); |
1134 | if (mctx->state_log != NULL) |
1135 | cur_state = merge_state_with_log (&err, mctx, cur_state); |
1136 | |
1137 | if (cur_state == NULL) |
1138 | { |
1139 | /* Reached the invalid state or an error. Try to recover a valid |
1140 | state using the state log, if available and if we have not |
1141 | already found a valid (even if not the longest) match. */ |
1142 | if (BE (err != REG_NOERROR, 0)) |
1143 | return -2; |
1144 | |
1145 | if (mctx->state_log == NULL |
1146 | || (match && !fl_longest_match) |
1147 | || (cur_state = find_recover_state (&err, mctx)) == NULL) |
1148 | break; |
1149 | } |
1150 | |
1151 | if (BE (at_init_state, 0)) |
1152 | { |
1153 | if (old_state == cur_state) |
1154 | next_start_idx = next_char_idx; |
1155 | else |
1156 | at_init_state = false; |
1157 | } |
1158 | |
1159 | if (cur_state->halt) |
1160 | { |
1161 | /* Reached a halt state. |
1162 | Check the halt state can satisfy the current context. */ |
1163 | if (!cur_state->has_constraint |
1164 | || check_halt_state_context (mctx, cur_state, |
1165 | re_string_cur_idx (&mctx->input))) |
1166 | { |
1167 | /* We found an appropriate halt state. */ |
1168 | match_last = re_string_cur_idx (&mctx->input); |
1169 | match = 1; |
1170 | |
1171 | /* We found a match, do not modify match_first below. */ |
1172 | p_match_first = NULL; |
1173 | if (!fl_longest_match) |
1174 | break; |
1175 | } |
1176 | } |
1177 | } |
1178 | |
1179 | if (p_match_first) |
1180 | *p_match_first += next_start_idx; |
1181 | |
1182 | return match_last; |
1183 | } |
1184 | |
1185 | /* Check NODE match the current context. */ |
1186 | |
1187 | static bool |
1188 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) |
1189 | { |
1190 | re_token_type_t type = dfa->nodes[node].type; |
1191 | unsigned int constraint = dfa->nodes[node].constraint; |
1192 | if (type != END_OF_RE) |
1193 | return false; |
1194 | if (!constraint) |
1195 | return true; |
1196 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) |
1197 | return false; |
1198 | return true; |
1199 | } |
1200 | |
1201 | /* Check the halt state STATE match the current context. |
1202 | Return 0 if not match, if the node, STATE has, is a halt node and |
1203 | match the context, return the node. */ |
1204 | |
1205 | static Idx |
1206 | check_halt_state_context (const re_match_context_t *mctx, |
1207 | const re_dfastate_t *state, Idx idx) |
1208 | { |
1209 | Idx i; |
1210 | unsigned int context; |
1211 | #ifdef DEBUG |
1212 | assert (state->halt); |
1213 | #endif |
1214 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); |
1215 | for (i = 0; i < state->nodes.nelem; ++i) |
1216 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) |
1217 | return state->nodes.elems[i]; |
1218 | return 0; |
1219 | } |
1220 | |
1221 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA |
1222 | corresponding to the DFA). |
1223 | Return the destination node, and update EPS_VIA_NODES; |
1224 | return -1 in case of errors. */ |
1225 | |
1226 | static Idx |
1227 | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, |
1228 | Idx *pidx, Idx node, re_node_set *eps_via_nodes, |
1229 | struct re_fail_stack_t *fs) |
1230 | { |
1231 | const re_dfa_t *const dfa = mctx->dfa; |
1232 | Idx i; |
1233 | bool ok; |
1234 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) |
1235 | { |
1236 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; |
1237 | re_node_set *edests = &dfa->edests[node]; |
1238 | Idx dest_node; |
1239 | ok = re_node_set_insert (eps_via_nodes, node); |
1240 | if (BE (! ok, 0)) |
1241 | return -2; |
1242 | /* Pick up a valid destination, or return -1 if none |
1243 | is found. */ |
1244 | for (dest_node = -1, i = 0; i < edests->nelem; ++i) |
1245 | { |
1246 | Idx candidate = edests->elems[i]; |
1247 | if (!re_node_set_contains (cur_nodes, candidate)) |
1248 | continue; |
1249 | if (dest_node == -1) |
1250 | dest_node = candidate; |
1251 | |
1252 | else |
1253 | { |
1254 | /* In order to avoid infinite loop like "(a*)*", return the second |
1255 | epsilon-transition if the first was already considered. */ |
1256 | if (re_node_set_contains (eps_via_nodes, dest_node)) |
1257 | return candidate; |
1258 | |
1259 | /* Otherwise, push the second epsilon-transition on the fail stack. */ |
1260 | else if (fs != NULL |
1261 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, |
1262 | eps_via_nodes)) |
1263 | return -2; |
1264 | |
1265 | /* We know we are going to exit. */ |
1266 | break; |
1267 | } |
1268 | } |
1269 | return dest_node; |
1270 | } |
1271 | else |
1272 | { |
1273 | Idx naccepted = 0; |
1274 | re_token_type_t type = dfa->nodes[node].type; |
1275 | |
1276 | #ifdef RE_ENABLE_I18N |
1277 | if (dfa->nodes[node].accept_mb) |
1278 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); |
1279 | else |
1280 | #endif /* RE_ENABLE_I18N */ |
1281 | if (type == OP_BACK_REF) |
1282 | { |
1283 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; |
1284 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; |
1285 | if (fs != NULL) |
1286 | { |
1287 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) |
1288 | return -1; |
1289 | else if (naccepted) |
1290 | { |
1291 | char *buf = (char *) re_string_get_buffer (&mctx->input); |
1292 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, |
1293 | naccepted) != 0) |
1294 | return -1; |
1295 | } |
1296 | } |
1297 | |
1298 | if (naccepted == 0) |
1299 | { |
1300 | Idx dest_node; |
1301 | ok = re_node_set_insert (eps_via_nodes, node); |
1302 | if (BE (! ok, 0)) |
1303 | return -2; |
1304 | dest_node = dfa->edests[node].elems[0]; |
1305 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1306 | dest_node)) |
1307 | return dest_node; |
1308 | } |
1309 | } |
1310 | |
1311 | if (naccepted != 0 |
1312 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) |
1313 | { |
1314 | Idx dest_node = dfa->nexts[node]; |
1315 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; |
1316 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL |
1317 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1318 | dest_node))) |
1319 | return -1; |
1320 | re_node_set_empty (eps_via_nodes); |
1321 | return dest_node; |
1322 | } |
1323 | } |
1324 | return -1; |
1325 | } |
1326 | |
1327 | static reg_errcode_t |
1328 | __attribute_warn_unused_result__ |
1329 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, |
1330 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) |
1331 | { |
1332 | reg_errcode_t err; |
1333 | Idx num = fs->num++; |
1334 | if (fs->num == fs->alloc) |
1335 | { |
1336 | struct re_fail_stack_ent_t *new_array; |
1337 | new_array = re_realloc (fs->stack, struct re_fail_stack_ent_t, |
1338 | fs->alloc * 2); |
1339 | if (new_array == NULL) |
1340 | return REG_ESPACE; |
1341 | fs->alloc *= 2; |
1342 | fs->stack = new_array; |
1343 | } |
1344 | fs->stack[num].idx = str_idx; |
1345 | fs->stack[num].node = dest_node; |
1346 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); |
1347 | if (fs->stack[num].regs == NULL) |
1348 | return REG_ESPACE; |
1349 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); |
1350 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); |
1351 | return err; |
1352 | } |
1353 | |
1354 | static Idx |
1355 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, |
1356 | regmatch_t *regs, re_node_set *eps_via_nodes) |
1357 | { |
1358 | Idx num = --fs->num; |
1359 | assert (num >= 0); |
1360 | *pidx = fs->stack[num].idx; |
1361 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); |
1362 | re_node_set_free (eps_via_nodes); |
1363 | re_free (fs->stack[num].regs); |
1364 | *eps_via_nodes = fs->stack[num].eps_via_nodes; |
1365 | return fs->stack[num].node; |
1366 | } |
1367 | |
1368 | /* Set the positions where the subexpressions are starts/ends to registers |
1369 | PMATCH. |
1370 | Note: We assume that pmatch[0] is already set, and |
1371 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ |
1372 | |
1373 | static reg_errcode_t |
1374 | __attribute_warn_unused_result__ |
1375 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, |
1376 | regmatch_t *pmatch, bool fl_backtrack) |
1377 | { |
1378 | const re_dfa_t *dfa = preg->buffer; |
1379 | Idx idx, cur_node; |
1380 | re_node_set eps_via_nodes; |
1381 | struct re_fail_stack_t *fs; |
1382 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; |
1383 | regmatch_t *prev_idx_match; |
1384 | bool prev_idx_match_malloced = false; |
1385 | |
1386 | #ifdef DEBUG |
1387 | assert (nmatch > 1); |
1388 | assert (mctx->state_log != NULL); |
1389 | #endif |
1390 | if (fl_backtrack) |
1391 | { |
1392 | fs = &fs_body; |
1393 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); |
1394 | if (fs->stack == NULL) |
1395 | return REG_ESPACE; |
1396 | } |
1397 | else |
1398 | fs = NULL; |
1399 | |
1400 | cur_node = dfa->init_node; |
1401 | re_node_set_init_empty (&eps_via_nodes); |
1402 | |
1403 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) |
1404 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); |
1405 | else |
1406 | { |
1407 | prev_idx_match = re_malloc (regmatch_t, nmatch); |
1408 | if (prev_idx_match == NULL) |
1409 | { |
1410 | free_fail_stack_return (fs); |
1411 | return REG_ESPACE; |
1412 | } |
1413 | prev_idx_match_malloced = true; |
1414 | } |
1415 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1416 | |
1417 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) |
1418 | { |
1419 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); |
1420 | |
1421 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) |
1422 | { |
1423 | Idx reg_idx; |
1424 | if (fs) |
1425 | { |
1426 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
1427 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) |
1428 | break; |
1429 | if (reg_idx == nmatch) |
1430 | { |
1431 | re_node_set_free (&eps_via_nodes); |
1432 | if (prev_idx_match_malloced) |
1433 | re_free (prev_idx_match); |
1434 | return free_fail_stack_return (fs); |
1435 | } |
1436 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1437 | &eps_via_nodes); |
1438 | } |
1439 | else |
1440 | { |
1441 | re_node_set_free (&eps_via_nodes); |
1442 | if (prev_idx_match_malloced) |
1443 | re_free (prev_idx_match); |
1444 | return REG_NOERROR; |
1445 | } |
1446 | } |
1447 | |
1448 | /* Proceed to next node. */ |
1449 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, |
1450 | &eps_via_nodes, fs); |
1451 | |
1452 | if (BE (cur_node < 0, 0)) |
1453 | { |
1454 | if (BE (cur_node == -2, 0)) |
1455 | { |
1456 | re_node_set_free (&eps_via_nodes); |
1457 | if (prev_idx_match_malloced) |
1458 | re_free (prev_idx_match); |
1459 | free_fail_stack_return (fs); |
1460 | return REG_ESPACE; |
1461 | } |
1462 | if (fs) |
1463 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1464 | &eps_via_nodes); |
1465 | else |
1466 | { |
1467 | re_node_set_free (&eps_via_nodes); |
1468 | if (prev_idx_match_malloced) |
1469 | re_free (prev_idx_match); |
1470 | return REG_NOMATCH; |
1471 | } |
1472 | } |
1473 | } |
1474 | re_node_set_free (&eps_via_nodes); |
1475 | if (prev_idx_match_malloced) |
1476 | re_free (prev_idx_match); |
1477 | return free_fail_stack_return (fs); |
1478 | } |
1479 | |
1480 | static reg_errcode_t |
1481 | free_fail_stack_return (struct re_fail_stack_t *fs) |
1482 | { |
1483 | if (fs) |
1484 | { |
1485 | Idx fs_idx; |
1486 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) |
1487 | { |
1488 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); |
1489 | re_free (fs->stack[fs_idx].regs); |
1490 | } |
1491 | re_free (fs->stack); |
1492 | } |
1493 | return REG_NOERROR; |
1494 | } |
1495 | |
1496 | static void |
1497 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
1498 | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) |
1499 | { |
1500 | int type = dfa->nodes[cur_node].type; |
1501 | if (type == OP_OPEN_SUBEXP) |
1502 | { |
1503 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1504 | |
1505 | /* We are at the first node of this sub expression. */ |
1506 | if (reg_num < nmatch) |
1507 | { |
1508 | pmatch[reg_num].rm_so = cur_idx; |
1509 | pmatch[reg_num].rm_eo = -1; |
1510 | } |
1511 | } |
1512 | else if (type == OP_CLOSE_SUBEXP) |
1513 | { |
1514 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1515 | if (reg_num < nmatch) |
1516 | { |
1517 | /* We are at the last node of this sub expression. */ |
1518 | if (pmatch[reg_num].rm_so < cur_idx) |
1519 | { |
1520 | pmatch[reg_num].rm_eo = cur_idx; |
1521 | /* This is a non-empty match or we are not inside an optional |
1522 | subexpression. Accept this right away. */ |
1523 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1524 | } |
1525 | else |
1526 | { |
1527 | if (dfa->nodes[cur_node].opt_subexp |
1528 | && prev_idx_match[reg_num].rm_so != -1) |
1529 | /* We transited through an empty match for an optional |
1530 | subexpression, like (a?)*, and this is not the subexp's |
1531 | first match. Copy back the old content of the registers |
1532 | so that matches of an inner subexpression are undone as |
1533 | well, like in ((a?))*. */ |
1534 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); |
1535 | else |
1536 | /* We completed a subexpression, but it may be part of |
1537 | an optional one, so do not update PREV_IDX_MATCH. */ |
1538 | pmatch[reg_num].rm_eo = cur_idx; |
1539 | } |
1540 | } |
1541 | } |
1542 | } |
1543 | |
1544 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 |
1545 | and sift the nodes in each states according to the following rules. |
1546 | Updated state_log will be wrote to STATE_LOG. |
1547 | |
1548 | Rules: We throw away the Node 'a' in the STATE_LOG[STR_IDX] if... |
1549 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): |
1550 | If 'a' isn't the LAST_NODE and 'a' can't epsilon transit to |
1551 | the LAST_NODE, we throw away the node 'a'. |
1552 | 2. When 0 <= STR_IDX < MATCH_LAST and 'a' accepts |
1553 | string 's' and transit to 'b': |
1554 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw |
1555 | away the node 'a'. |
1556 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is |
1557 | thrown away, we throw away the node 'a'. |
1558 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': |
1559 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the |
1560 | node 'a'. |
1561 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, |
1562 | we throw away the node 'a'. */ |
1563 | |
1564 | #define STATE_NODE_CONTAINS(state,node) \ |
1565 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) |
1566 | |
1567 | static reg_errcode_t |
1568 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) |
1569 | { |
1570 | reg_errcode_t err; |
1571 | int null_cnt = 0; |
1572 | Idx str_idx = sctx->last_str_idx; |
1573 | re_node_set cur_dest; |
1574 | |
1575 | #ifdef DEBUG |
1576 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); |
1577 | #endif |
1578 | |
1579 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon |
1580 | transit to the last_node and the last_node itself. */ |
1581 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); |
1582 | if (BE (err != REG_NOERROR, 0)) |
1583 | return err; |
1584 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1585 | if (BE (err != REG_NOERROR, 0)) |
1586 | goto free_return; |
1587 | |
1588 | /* Then check each states in the state_log. */ |
1589 | while (str_idx > 0) |
1590 | { |
1591 | /* Update counters. */ |
1592 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; |
1593 | if (null_cnt > mctx->max_mb_elem_len) |
1594 | { |
1595 | memset (sctx->sifted_states, '\0', |
1596 | sizeof (re_dfastate_t *) * str_idx); |
1597 | re_node_set_free (&cur_dest); |
1598 | return REG_NOERROR; |
1599 | } |
1600 | re_node_set_empty (&cur_dest); |
1601 | --str_idx; |
1602 | |
1603 | if (mctx->state_log[str_idx]) |
1604 | { |
1605 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); |
1606 | if (BE (err != REG_NOERROR, 0)) |
1607 | goto free_return; |
1608 | } |
1609 | |
1610 | /* Add all the nodes which satisfy the following conditions: |
1611 | - It can epsilon transit to a node in CUR_DEST. |
1612 | - It is in CUR_SRC. |
1613 | And update state_log. */ |
1614 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1615 | if (BE (err != REG_NOERROR, 0)) |
1616 | goto free_return; |
1617 | } |
1618 | err = REG_NOERROR; |
1619 | free_return: |
1620 | re_node_set_free (&cur_dest); |
1621 | return err; |
1622 | } |
1623 | |
1624 | static reg_errcode_t |
1625 | __attribute_warn_unused_result__ |
1626 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, |
1627 | Idx str_idx, re_node_set *cur_dest) |
1628 | { |
1629 | const re_dfa_t *const dfa = mctx->dfa; |
1630 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; |
1631 | Idx i; |
1632 | |
1633 | /* Then build the next sifted state. |
1634 | We build the next sifted state on 'cur_dest', and update |
1635 | 'sifted_states[str_idx]' with 'cur_dest'. |
1636 | Note: |
1637 | 'cur_dest' is the sifted state from 'state_log[str_idx + 1]'. |
1638 | 'cur_src' points the node_set of the old 'state_log[str_idx]' |
1639 | (with the epsilon nodes pre-filtered out). */ |
1640 | for (i = 0; i < cur_src->nelem; i++) |
1641 | { |
1642 | Idx prev_node = cur_src->elems[i]; |
1643 | int naccepted = 0; |
1644 | bool ok; |
1645 | |
1646 | #ifdef DEBUG |
1647 | re_token_type_t type = dfa->nodes[prev_node].type; |
1648 | assert (!IS_EPSILON_NODE (type)); |
1649 | #endif |
1650 | #ifdef RE_ENABLE_I18N |
1651 | /* If the node may accept "multi byte". */ |
1652 | if (dfa->nodes[prev_node].accept_mb) |
1653 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, |
1654 | str_idx, sctx->last_str_idx); |
1655 | #endif /* RE_ENABLE_I18N */ |
1656 | |
1657 | /* We don't check backreferences here. |
1658 | See update_cur_sifted_state(). */ |
1659 | if (!naccepted |
1660 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) |
1661 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], |
1662 | dfa->nexts[prev_node])) |
1663 | naccepted = 1; |
1664 | |
1665 | if (naccepted == 0) |
1666 | continue; |
1667 | |
1668 | if (sctx->limits.nelem) |
1669 | { |
1670 | Idx to_idx = str_idx + naccepted; |
1671 | if (check_dst_limits (mctx, &sctx->limits, |
1672 | dfa->nexts[prev_node], to_idx, |
1673 | prev_node, str_idx)) |
1674 | continue; |
1675 | } |
1676 | ok = re_node_set_insert (cur_dest, prev_node); |
1677 | if (BE (! ok, 0)) |
1678 | return REG_ESPACE; |
1679 | } |
1680 | |
1681 | return REG_NOERROR; |
1682 | } |
1683 | |
1684 | /* Helper functions. */ |
1685 | |
1686 | static reg_errcode_t |
1687 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) |
1688 | { |
1689 | Idx top = mctx->state_log_top; |
1690 | |
1691 | if ((next_state_log_idx >= mctx->input.bufs_len |
1692 | && mctx->input.bufs_len < mctx->input.len) |
1693 | || (next_state_log_idx >= mctx->input.valid_len |
1694 | && mctx->input.valid_len < mctx->input.len)) |
1695 | { |
1696 | reg_errcode_t err; |
1697 | err = extend_buffers (mctx, next_state_log_idx + 1); |
1698 | if (BE (err != REG_NOERROR, 0)) |
1699 | return err; |
1700 | } |
1701 | |
1702 | if (top < next_state_log_idx) |
1703 | { |
1704 | memset (mctx->state_log + top + 1, '\0', |
1705 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); |
1706 | mctx->state_log_top = next_state_log_idx; |
1707 | } |
1708 | return REG_NOERROR; |
1709 | } |
1710 | |
1711 | static reg_errcode_t |
1712 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, |
1713 | re_dfastate_t **src, Idx num) |
1714 | { |
1715 | Idx st_idx; |
1716 | reg_errcode_t err; |
1717 | for (st_idx = 0; st_idx < num; ++st_idx) |
1718 | { |
1719 | if (dst[st_idx] == NULL) |
1720 | dst[st_idx] = src[st_idx]; |
1721 | else if (src[st_idx] != NULL) |
1722 | { |
1723 | re_node_set merged_set; |
1724 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, |
1725 | &src[st_idx]->nodes); |
1726 | if (BE (err != REG_NOERROR, 0)) |
1727 | return err; |
1728 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); |
1729 | re_node_set_free (&merged_set); |
1730 | if (BE (err != REG_NOERROR, 0)) |
1731 | return err; |
1732 | } |
1733 | } |
1734 | return REG_NOERROR; |
1735 | } |
1736 | |
1737 | static reg_errcode_t |
1738 | update_cur_sifted_state (const re_match_context_t *mctx, |
1739 | re_sift_context_t *sctx, Idx str_idx, |
1740 | re_node_set *dest_nodes) |
1741 | { |
1742 | const re_dfa_t *const dfa = mctx->dfa; |
1743 | reg_errcode_t err = REG_NOERROR; |
1744 | const re_node_set *candidates; |
1745 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL |
1746 | : &mctx->state_log[str_idx]->nodes); |
1747 | |
1748 | if (dest_nodes->nelem == 0) |
1749 | sctx->sifted_states[str_idx] = NULL; |
1750 | else |
1751 | { |
1752 | if (candidates) |
1753 | { |
1754 | /* At first, add the nodes which can epsilon transit to a node in |
1755 | DEST_NODE. */ |
1756 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); |
1757 | if (BE (err != REG_NOERROR, 0)) |
1758 | return err; |
1759 | |
1760 | /* Then, check the limitations in the current sift_context. */ |
1761 | if (sctx->limits.nelem) |
1762 | { |
1763 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, |
1764 | mctx->bkref_ents, str_idx); |
1765 | if (BE (err != REG_NOERROR, 0)) |
1766 | return err; |
1767 | } |
1768 | } |
1769 | |
1770 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); |
1771 | if (BE (err != REG_NOERROR, 0)) |
1772 | return err; |
1773 | } |
1774 | |
1775 | if (candidates && mctx->state_log[str_idx]->has_backref) |
1776 | { |
1777 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); |
1778 | if (BE (err != REG_NOERROR, 0)) |
1779 | return err; |
1780 | } |
1781 | return REG_NOERROR; |
1782 | } |
1783 | |
1784 | static reg_errcode_t |
1785 | __attribute_warn_unused_result__ |
1786 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, |
1787 | const re_node_set *candidates) |
1788 | { |
1789 | reg_errcode_t err = REG_NOERROR; |
1790 | Idx i; |
1791 | |
1792 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); |
1793 | if (BE (err != REG_NOERROR, 0)) |
1794 | return err; |
1795 | |
1796 | if (!state->inveclosure.alloc) |
1797 | { |
1798 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); |
1799 | if (BE (err != REG_NOERROR, 0)) |
1800 | return REG_ESPACE; |
1801 | for (i = 0; i < dest_nodes->nelem; i++) |
1802 | { |
1803 | err = re_node_set_merge (&state->inveclosure, |
1804 | dfa->inveclosures + dest_nodes->elems[i]); |
1805 | if (BE (err != REG_NOERROR, 0)) |
1806 | return REG_ESPACE; |
1807 | } |
1808 | } |
1809 | return re_node_set_add_intersect (dest_nodes, candidates, |
1810 | &state->inveclosure); |
1811 | } |
1812 | |
1813 | static reg_errcode_t |
1814 | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, |
1815 | const re_node_set *candidates) |
1816 | { |
1817 | Idx ecl_idx; |
1818 | reg_errcode_t err; |
1819 | re_node_set *inv_eclosure = dfa->inveclosures + node; |
1820 | re_node_set except_nodes; |
1821 | re_node_set_init_empty (&except_nodes); |
1822 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1823 | { |
1824 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1825 | if (cur_node == node) |
1826 | continue; |
1827 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) |
1828 | { |
1829 | Idx edst1 = dfa->edests[cur_node].elems[0]; |
1830 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) |
1831 | ? dfa->edests[cur_node].elems[1] : -1); |
1832 | if ((!re_node_set_contains (inv_eclosure, edst1) |
1833 | && re_node_set_contains (dest_nodes, edst1)) |
1834 | || (edst2 > 0 |
1835 | && !re_node_set_contains (inv_eclosure, edst2) |
1836 | && re_node_set_contains (dest_nodes, edst2))) |
1837 | { |
1838 | err = re_node_set_add_intersect (&except_nodes, candidates, |
1839 | dfa->inveclosures + cur_node); |
1840 | if (BE (err != REG_NOERROR, 0)) |
1841 | { |
1842 | re_node_set_free (&except_nodes); |
1843 | return err; |
1844 | } |
1845 | } |
1846 | } |
1847 | } |
1848 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1849 | { |
1850 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1851 | if (!re_node_set_contains (&except_nodes, cur_node)) |
1852 | { |
1853 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; |
1854 | re_node_set_remove_at (dest_nodes, idx); |
1855 | } |
1856 | } |
1857 | re_node_set_free (&except_nodes); |
1858 | return REG_NOERROR; |
1859 | } |
1860 | |
1861 | static bool |
1862 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, |
1863 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) |
1864 | { |
1865 | const re_dfa_t *const dfa = mctx->dfa; |
1866 | Idx lim_idx, src_pos, dst_pos; |
1867 | |
1868 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); |
1869 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); |
1870 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
1871 | { |
1872 | Idx subexp_idx; |
1873 | struct re_backref_cache_entry *ent; |
1874 | ent = mctx->bkref_ents + limits->elems[lim_idx]; |
1875 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
1876 | |
1877 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1878 | subexp_idx, dst_node, dst_idx, |
1879 | dst_bkref_idx); |
1880 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1881 | subexp_idx, src_node, src_idx, |
1882 | src_bkref_idx); |
1883 | |
1884 | /* In case of: |
1885 | <src> <dst> ( <subexp> ) |
1886 | ( <subexp> ) <src> <dst> |
1887 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ |
1888 | if (src_pos == dst_pos) |
1889 | continue; /* This is unrelated limitation. */ |
1890 | else |
1891 | return true; |
1892 | } |
1893 | return false; |
1894 | } |
1895 | |
1896 | static int |
1897 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, |
1898 | Idx subexp_idx, Idx from_node, Idx bkref_idx) |
1899 | { |
1900 | const re_dfa_t *const dfa = mctx->dfa; |
1901 | const re_node_set *eclosures = dfa->eclosures + from_node; |
1902 | Idx node_idx; |
1903 | |
1904 | /* Else, we are on the boundary: examine the nodes on the epsilon |
1905 | closure. */ |
1906 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) |
1907 | { |
1908 | Idx node = eclosures->elems[node_idx]; |
1909 | switch (dfa->nodes[node].type) |
1910 | { |
1911 | case OP_BACK_REF: |
1912 | if (bkref_idx != -1) |
1913 | { |
1914 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; |
1915 | do |
1916 | { |
1917 | Idx dst; |
1918 | int cpos; |
1919 | |
1920 | if (ent->node != node) |
1921 | continue; |
1922 | |
1923 | if (subexp_idx < BITSET_WORD_BITS |
1924 | && !(ent->eps_reachable_subexps_map |
1925 | & ((bitset_word_t) 1 << subexp_idx))) |
1926 | continue; |
1927 | |
1928 | /* Recurse trying to reach the OP_OPEN_SUBEXP and |
1929 | OP_CLOSE_SUBEXP cases below. But, if the |
1930 | destination node is the same node as the source |
1931 | node, don't recurse because it would cause an |
1932 | infinite loop: a regex that exhibits this behavior |
1933 | is ()\1*\1* */ |
1934 | dst = dfa->edests[node].elems[0]; |
1935 | if (dst == from_node) |
1936 | { |
1937 | if (boundaries & 1) |
1938 | return -1; |
1939 | else /* if (boundaries & 2) */ |
1940 | return 0; |
1941 | } |
1942 | |
1943 | cpos = |
1944 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
1945 | dst, bkref_idx); |
1946 | if (cpos == -1 /* && (boundaries & 1) */) |
1947 | return -1; |
1948 | if (cpos == 0 && (boundaries & 2)) |
1949 | return 0; |
1950 | |
1951 | if (subexp_idx < BITSET_WORD_BITS) |
1952 | ent->eps_reachable_subexps_map |
1953 | &= ~((bitset_word_t) 1 << subexp_idx); |
1954 | } |
1955 | while (ent++->more); |
1956 | } |
1957 | break; |
1958 | |
1959 | case OP_OPEN_SUBEXP: |
1960 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) |
1961 | return -1; |
1962 | break; |
1963 | |
1964 | case OP_CLOSE_SUBEXP: |
1965 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) |
1966 | return 0; |
1967 | break; |
1968 | |
1969 | default: |
1970 | break; |
1971 | } |
1972 | } |
1973 | |
1974 | return (boundaries & 2) ? 1 : 0; |
1975 | } |
1976 | |
1977 | static int |
1978 | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, |
1979 | Idx subexp_idx, Idx from_node, Idx str_idx, |
1980 | Idx bkref_idx) |
1981 | { |
1982 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; |
1983 | int boundaries; |
1984 | |
1985 | /* If we are outside the range of the subexpression, return -1 or 1. */ |
1986 | if (str_idx < lim->subexp_from) |
1987 | return -1; |
1988 | |
1989 | if (lim->subexp_to < str_idx) |
1990 | return 1; |
1991 | |
1992 | /* If we are within the subexpression, return 0. */ |
1993 | boundaries = (str_idx == lim->subexp_from); |
1994 | boundaries |= (str_idx == lim->subexp_to) << 1; |
1995 | if (boundaries == 0) |
1996 | return 0; |
1997 | |
1998 | /* Else, examine epsilon closure. */ |
1999 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
2000 | from_node, bkref_idx); |
2001 | } |
2002 | |
2003 | /* Check the limitations of sub expressions LIMITS, and remove the nodes |
2004 | which are against limitations from DEST_NODES. */ |
2005 | |
2006 | static reg_errcode_t |
2007 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, |
2008 | const re_node_set *candidates, re_node_set *limits, |
2009 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) |
2010 | { |
2011 | reg_errcode_t err; |
2012 | Idx node_idx, lim_idx; |
2013 | |
2014 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
2015 | { |
2016 | Idx subexp_idx; |
2017 | struct re_backref_cache_entry *ent; |
2018 | ent = bkref_ents + limits->elems[lim_idx]; |
2019 | |
2020 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) |
2021 | continue; /* This is unrelated limitation. */ |
2022 | |
2023 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
2024 | if (ent->subexp_to == str_idx) |
2025 | { |
2026 | Idx ops_node = -1; |
2027 | Idx cls_node = -1; |
2028 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2029 | { |
2030 | Idx node = dest_nodes->elems[node_idx]; |
2031 | re_token_type_t type = dfa->nodes[node].type; |
2032 | if (type == OP_OPEN_SUBEXP |
2033 | && subexp_idx == dfa->nodes[node].opr.idx) |
2034 | ops_node = node; |
2035 | else if (type == OP_CLOSE_SUBEXP |
2036 | && subexp_idx == dfa->nodes[node].opr.idx) |
2037 | cls_node = node; |
2038 | } |
2039 | |
2040 | /* Check the limitation of the open subexpression. */ |
2041 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ |
2042 | if (ops_node >= 0) |
2043 | { |
2044 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, |
2045 | candidates); |
2046 | if (BE (err != REG_NOERROR, 0)) |
2047 | return err; |
2048 | } |
2049 | |
2050 | /* Check the limitation of the close subexpression. */ |
2051 | if (cls_node >= 0) |
2052 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2053 | { |
2054 | Idx node = dest_nodes->elems[node_idx]; |
2055 | if (!re_node_set_contains (dfa->inveclosures + node, |
2056 | cls_node) |
2057 | && !re_node_set_contains (dfa->eclosures + node, |
2058 | cls_node)) |
2059 | { |
2060 | /* It is against this limitation. |
2061 | Remove it form the current sifted state. */ |
2062 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2063 | candidates); |
2064 | if (BE (err != REG_NOERROR, 0)) |
2065 | return err; |
2066 | --node_idx; |
2067 | } |
2068 | } |
2069 | } |
2070 | else /* (ent->subexp_to != str_idx) */ |
2071 | { |
2072 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2073 | { |
2074 | Idx node = dest_nodes->elems[node_idx]; |
2075 | re_token_type_t type = dfa->nodes[node].type; |
2076 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) |
2077 | { |
2078 | if (subexp_idx != dfa->nodes[node].opr.idx) |
2079 | continue; |
2080 | /* It is against this limitation. |
2081 | Remove it form the current sifted state. */ |
2082 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2083 | candidates); |
2084 | if (BE (err != REG_NOERROR, 0)) |
2085 | return err; |
2086 | } |
2087 | } |
2088 | } |
2089 | } |
2090 | return REG_NOERROR; |
2091 | } |
2092 | |
2093 | static reg_errcode_t |
2094 | __attribute_warn_unused_result__ |
2095 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2096 | Idx str_idx, const re_node_set *candidates) |
2097 | { |
2098 | const re_dfa_t *const dfa = mctx->dfa; |
2099 | reg_errcode_t err; |
2100 | Idx node_idx, node; |
2101 | re_sift_context_t local_sctx; |
2102 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); |
2103 | |
2104 | if (first_idx == -1) |
2105 | return REG_NOERROR; |
2106 | |
2107 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ |
2108 | |
2109 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) |
2110 | { |
2111 | Idx enabled_idx; |
2112 | re_token_type_t type; |
2113 | struct re_backref_cache_entry *entry; |
2114 | node = candidates->elems[node_idx]; |
2115 | type = dfa->nodes[node].type; |
2116 | /* Avoid infinite loop for the REs like "()\1+". */ |
2117 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) |
2118 | continue; |
2119 | if (type != OP_BACK_REF) |
2120 | continue; |
2121 | |
2122 | entry = mctx->bkref_ents + first_idx; |
2123 | enabled_idx = first_idx; |
2124 | do |
2125 | { |
2126 | Idx subexp_len; |
2127 | Idx to_idx; |
2128 | Idx dst_node; |
2129 | bool ok; |
2130 | re_dfastate_t *cur_state; |
2131 | |
2132 | if (entry->node != node) |
2133 | continue; |
2134 | subexp_len = entry->subexp_to - entry->subexp_from; |
2135 | to_idx = str_idx + subexp_len; |
2136 | dst_node = (subexp_len ? dfa->nexts[node] |
2137 | : dfa->edests[node].elems[0]); |
2138 | |
2139 | if (to_idx > sctx->last_str_idx |
2140 | || sctx->sifted_states[to_idx] == NULL |
2141 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) |
2142 | || check_dst_limits (mctx, &sctx->limits, node, |
2143 | str_idx, dst_node, to_idx)) |
2144 | continue; |
2145 | |
2146 | if (local_sctx.sifted_states == NULL) |
2147 | { |
2148 | local_sctx = *sctx; |
2149 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); |
2150 | if (BE (err != REG_NOERROR, 0)) |
2151 | goto free_return; |
2152 | } |
2153 | local_sctx.last_node = node; |
2154 | local_sctx.last_str_idx = str_idx; |
2155 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); |
2156 | if (BE (! ok, 0)) |
2157 | { |
2158 | err = REG_ESPACE; |
2159 | goto free_return; |
2160 | } |
2161 | cur_state = local_sctx.sifted_states[str_idx]; |
2162 | err = sift_states_backward (mctx, &local_sctx); |
2163 | if (BE (err != REG_NOERROR, 0)) |
2164 | goto free_return; |
2165 | if (sctx->limited_states != NULL) |
2166 | { |
2167 | err = merge_state_array (dfa, sctx->limited_states, |
2168 | local_sctx.sifted_states, |
2169 | str_idx + 1); |
2170 | if (BE (err != REG_NOERROR, 0)) |
2171 | goto free_return; |
2172 | } |
2173 | local_sctx.sifted_states[str_idx] = cur_state; |
2174 | re_node_set_remove (&local_sctx.limits, enabled_idx); |
2175 | |
2176 | /* mctx->bkref_ents may have changed, reload the pointer. */ |
2177 | entry = mctx->bkref_ents + enabled_idx; |
2178 | } |
2179 | while (enabled_idx++, entry++->more); |
2180 | } |
2181 | err = REG_NOERROR; |
2182 | free_return: |
2183 | if (local_sctx.sifted_states != NULL) |
2184 | { |
2185 | re_node_set_free (&local_sctx.limits); |
2186 | } |
2187 | |
2188 | return err; |
2189 | } |
2190 | |
2191 | |
2192 | #ifdef RE_ENABLE_I18N |
2193 | static int |
2194 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2195 | Idx node_idx, Idx str_idx, Idx max_str_idx) |
2196 | { |
2197 | const re_dfa_t *const dfa = mctx->dfa; |
2198 | int naccepted; |
2199 | /* Check the node can accept "multi byte". */ |
2200 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); |
2201 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && |
2202 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], |
2203 | dfa->nexts[node_idx])) |
2204 | /* The node can't accept the "multi byte", or the |
2205 | destination was already thrown away, then the node |
2206 | could't accept the current input "multi byte". */ |
2207 | naccepted = 0; |
2208 | /* Otherwise, it is sure that the node could accept |
2209 | 'naccepted' bytes input. */ |
2210 | return naccepted; |
2211 | } |
2212 | #endif /* RE_ENABLE_I18N */ |
2213 | |
2214 | |
2215 | /* Functions for state transition. */ |
2216 | |
2217 | /* Return the next state to which the current state STATE will transit by |
2218 | accepting the current input byte, and update STATE_LOG if necessary. |
2219 | If STATE can accept a multibyte char/collating element/back reference |
2220 | update the destination of STATE_LOG. */ |
2221 | |
2222 | static re_dfastate_t * |
2223 | __attribute_warn_unused_result__ |
2224 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, |
2225 | re_dfastate_t *state) |
2226 | { |
2227 | re_dfastate_t **trtable; |
2228 | unsigned char ch; |
2229 | |
2230 | #ifdef RE_ENABLE_I18N |
2231 | /* If the current state can accept multibyte. */ |
2232 | if (BE (state->accept_mb, 0)) |
2233 | { |
2234 | *err = transit_state_mb (mctx, state); |
2235 | if (BE (*err != REG_NOERROR, 0)) |
2236 | return NULL; |
2237 | } |
2238 | #endif /* RE_ENABLE_I18N */ |
2239 | |
2240 | /* Then decide the next state with the single byte. */ |
2241 | #if 0 |
2242 | if (0) |
2243 | /* don't use transition table */ |
2244 | return transit_state_sb (err, mctx, state); |
2245 | #endif |
2246 | |
2247 | /* Use transition table */ |
2248 | ch = re_string_fetch_byte (&mctx->input); |
2249 | for (;;) |
2250 | { |
2251 | trtable = state->trtable; |
2252 | if (BE (trtable != NULL, 1)) |
2253 | return trtable[ch]; |
2254 | |
2255 | trtable = state->word_trtable; |
2256 | if (BE (trtable != NULL, 1)) |
2257 | { |
2258 | unsigned int context; |
2259 | context |
2260 | = re_string_context_at (&mctx->input, |
2261 | re_string_cur_idx (&mctx->input) - 1, |
2262 | mctx->eflags); |
2263 | if (IS_WORD_CONTEXT (context)) |
2264 | return trtable[ch + SBC_MAX]; |
2265 | else |
2266 | return trtable[ch]; |
2267 | } |
2268 | |
2269 | if (!build_trtable (mctx->dfa, state)) |
2270 | { |
2271 | *err = REG_ESPACE; |
2272 | return NULL; |
2273 | } |
2274 | |
2275 | /* Retry, we now have a transition table. */ |
2276 | } |
2277 | } |
2278 | |
2279 | /* Update the state_log if we need */ |
2280 | static re_dfastate_t * |
2281 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, |
2282 | re_dfastate_t *next_state) |
2283 | { |
2284 | const re_dfa_t *const dfa = mctx->dfa; |
2285 | Idx cur_idx = re_string_cur_idx (&mctx->input); |
2286 | |
2287 | if (cur_idx > mctx->state_log_top) |
2288 | { |
2289 | mctx->state_log[cur_idx] = next_state; |
2290 | mctx->state_log_top = cur_idx; |
2291 | } |
2292 | else if (mctx->state_log[cur_idx] == 0) |
2293 | { |
2294 | mctx->state_log[cur_idx] = next_state; |
2295 | } |
2296 | else |
2297 | { |
2298 | re_dfastate_t *pstate; |
2299 | unsigned int context; |
2300 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; |
2301 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is |
2302 | the destination of a multibyte char/collating element/ |
2303 | back reference. Then the next state is the union set of |
2304 | these destinations and the results of the transition table. */ |
2305 | pstate = mctx->state_log[cur_idx]; |
2306 | log_nodes = pstate->entrance_nodes; |
2307 | if (next_state != NULL) |
2308 | { |
2309 | table_nodes = next_state->entrance_nodes; |
2310 | *err = re_node_set_init_union (&next_nodes, table_nodes, |
2311 | log_nodes); |
2312 | if (BE (*err != REG_NOERROR, 0)) |
2313 | return NULL; |
2314 | } |
2315 | else |
2316 | next_nodes = *log_nodes; |
2317 | /* Note: We already add the nodes of the initial state, |
2318 | then we don't need to add them here. */ |
2319 | |
2320 | context = re_string_context_at (&mctx->input, |
2321 | re_string_cur_idx (&mctx->input) - 1, |
2322 | mctx->eflags); |
2323 | next_state = mctx->state_log[cur_idx] |
2324 | = re_acquire_state_context (err, dfa, &next_nodes, context); |
2325 | /* We don't need to check errors here, since the return value of |
2326 | this function is next_state and ERR is already set. */ |
2327 | |
2328 | if (table_nodes != NULL) |
2329 | re_node_set_free (&next_nodes); |
2330 | } |
2331 | |
2332 | if (BE (dfa->nbackref, 0) && next_state != NULL) |
2333 | { |
2334 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them |
2335 | later. We must check them here, since the back references in the |
2336 | next state might use them. */ |
2337 | *err = check_subexp_matching_top (mctx, &next_state->nodes, |
2338 | cur_idx); |
2339 | if (BE (*err != REG_NOERROR, 0)) |
2340 | return NULL; |
2341 | |
2342 | /* If the next state has back references. */ |
2343 | if (next_state->has_backref) |
2344 | { |
2345 | *err = transit_state_bkref (mctx, &next_state->nodes); |
2346 | if (BE (*err != REG_NOERROR, 0)) |
2347 | return NULL; |
2348 | next_state = mctx->state_log[cur_idx]; |
2349 | } |
2350 | } |
2351 | |
2352 | return next_state; |
2353 | } |
2354 | |
2355 | /* Skip bytes in the input that correspond to part of a |
2356 | multi-byte match, then look in the log for a state |
2357 | from which to restart matching. */ |
2358 | static re_dfastate_t * |
2359 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) |
2360 | { |
2361 | re_dfastate_t *cur_state; |
2362 | do |
2363 | { |
2364 | Idx max = mctx->state_log_top; |
2365 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2366 | |
2367 | do |
2368 | { |
2369 | if (++cur_str_idx > max) |
2370 | return NULL; |
2371 | re_string_skip_bytes (&mctx->input, 1); |
2372 | } |
2373 | while (mctx->state_log[cur_str_idx] == NULL); |
2374 | |
2375 | cur_state = merge_state_with_log (err, mctx, NULL); |
2376 | } |
2377 | while (*err == REG_NOERROR && cur_state == NULL); |
2378 | return cur_state; |
2379 | } |
2380 | |
2381 | /* Helper functions for transit_state. */ |
2382 | |
2383 | /* From the node set CUR_NODES, pick up the nodes whose types are |
2384 | OP_OPEN_SUBEXP and which have corresponding back references in the regular |
2385 | expression. And register them to use them later for evaluating the |
2386 | corresponding back references. */ |
2387 | |
2388 | static reg_errcode_t |
2389 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, |
2390 | Idx str_idx) |
2391 | { |
2392 | const re_dfa_t *const dfa = mctx->dfa; |
2393 | Idx node_idx; |
2394 | reg_errcode_t err; |
2395 | |
2396 | /* TODO: This isn't efficient. |
2397 | Because there might be more than one nodes whose types are |
2398 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2399 | nodes. |
2400 | E.g. RE: (a){2} */ |
2401 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) |
2402 | { |
2403 | Idx node = cur_nodes->elems[node_idx]; |
2404 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP |
2405 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS |
2406 | && (dfa->used_bkref_map |
2407 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) |
2408 | { |
2409 | err = match_ctx_add_subtop (mctx, node, str_idx); |
2410 | if (BE (err != REG_NOERROR, 0)) |
2411 | return err; |
2412 | } |
2413 | } |
2414 | return REG_NOERROR; |
2415 | } |
2416 | |
2417 | #if 0 |
2418 | /* Return the next state to which the current state STATE will transit by |
2419 | accepting the current input byte. */ |
2420 | |
2421 | static re_dfastate_t * |
2422 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, |
2423 | re_dfastate_t *state) |
2424 | { |
2425 | const re_dfa_t *const dfa = mctx->dfa; |
2426 | re_node_set next_nodes; |
2427 | re_dfastate_t *next_state; |
2428 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); |
2429 | unsigned int context; |
2430 | |
2431 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); |
2432 | if (BE (*err != REG_NOERROR, 0)) |
2433 | return NULL; |
2434 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) |
2435 | { |
2436 | Idx cur_node = state->nodes.elems[node_cnt]; |
2437 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) |
2438 | { |
2439 | *err = re_node_set_merge (&next_nodes, |
2440 | dfa->eclosures + dfa->nexts[cur_node]); |
2441 | if (BE (*err != REG_NOERROR, 0)) |
2442 | { |
2443 | re_node_set_free (&next_nodes); |
2444 | return NULL; |
2445 | } |
2446 | } |
2447 | } |
2448 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); |
2449 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); |
2450 | /* We don't need to check errors here, since the return value of |
2451 | this function is next_state and ERR is already set. */ |
2452 | |
2453 | re_node_set_free (&next_nodes); |
2454 | re_string_skip_bytes (&mctx->input, 1); |
2455 | return next_state; |
2456 | } |
2457 | #endif |
2458 | |
2459 | #ifdef RE_ENABLE_I18N |
2460 | static reg_errcode_t |
2461 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) |
2462 | { |
2463 | const re_dfa_t *const dfa = mctx->dfa; |
2464 | reg_errcode_t err; |
2465 | Idx i; |
2466 | |
2467 | for (i = 0; i < pstate->nodes.nelem; ++i) |
2468 | { |
2469 | re_node_set dest_nodes, *new_nodes; |
2470 | Idx cur_node_idx = pstate->nodes.elems[i]; |
2471 | int naccepted; |
2472 | Idx dest_idx; |
2473 | unsigned int context; |
2474 | re_dfastate_t *dest_state; |
2475 | |
2476 | if (!dfa->nodes[cur_node_idx].accept_mb) |
2477 | continue; |
2478 | |
2479 | if (dfa->nodes[cur_node_idx].constraint) |
2480 | { |
2481 | context = re_string_context_at (&mctx->input, |
2482 | re_string_cur_idx (&mctx->input), |
2483 | mctx->eflags); |
2484 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, |
2485 | context)) |
2486 | continue; |
2487 | } |
2488 | |
2489 | /* How many bytes the node can accept? */ |
2490 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, |
2491 | re_string_cur_idx (&mctx->input)); |
2492 | if (naccepted == 0) |
2493 | continue; |
2494 | |
2495 | /* The node can accepts 'naccepted' bytes. */ |
2496 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; |
2497 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted |
2498 | : mctx->max_mb_elem_len); |
2499 | err = clean_state_log_if_needed (mctx, dest_idx); |
2500 | if (BE (err != REG_NOERROR, 0)) |
2501 | return err; |
2502 | #ifdef DEBUG |
2503 | assert (dfa->nexts[cur_node_idx] != -1); |
2504 | #endif |
2505 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; |
2506 | |
2507 | dest_state = mctx->state_log[dest_idx]; |
2508 | if (dest_state == NULL) |
2509 | dest_nodes = *new_nodes; |
2510 | else |
2511 | { |
2512 | err = re_node_set_init_union (&dest_nodes, |
2513 | dest_state->entrance_nodes, new_nodes); |
2514 | if (BE (err != REG_NOERROR, 0)) |
2515 | return err; |
2516 | } |
2517 | context = re_string_context_at (&mctx->input, dest_idx - 1, |
2518 | mctx->eflags); |
2519 | mctx->state_log[dest_idx] |
2520 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2521 | if (dest_state != NULL) |
2522 | re_node_set_free (&dest_nodes); |
2523 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) |
2524 | return err; |
2525 | } |
2526 | return REG_NOERROR; |
2527 | } |
2528 | #endif /* RE_ENABLE_I18N */ |
2529 | |
2530 | static reg_errcode_t |
2531 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) |
2532 | { |
2533 | const re_dfa_t *const dfa = mctx->dfa; |
2534 | reg_errcode_t err; |
2535 | Idx i; |
2536 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2537 | |
2538 | for (i = 0; i < nodes->nelem; ++i) |
2539 | { |
2540 | Idx dest_str_idx, prev_nelem, bkc_idx; |
2541 | Idx node_idx = nodes->elems[i]; |
2542 | unsigned int context; |
2543 | const re_token_t *node = dfa->nodes + node_idx; |
2544 | re_node_set *new_dest_nodes; |
2545 | |
2546 | /* Check whether 'node' is a backreference or not. */ |
2547 | if (node->type != OP_BACK_REF) |
2548 | continue; |
2549 | |
2550 | if (node->constraint) |
2551 | { |
2552 | context = re_string_context_at (&mctx->input, cur_str_idx, |
2553 | mctx->eflags); |
2554 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
2555 | continue; |
2556 | } |
2557 | |
2558 | /* 'node' is a backreference. |
2559 | Check the substring which the substring matched. */ |
2560 | bkc_idx = mctx->nbkref_ents; |
2561 | err = get_subexp (mctx, node_idx, cur_str_idx); |
2562 | if (BE (err != REG_NOERROR, 0)) |
2563 | goto free_return; |
2564 | |
2565 | /* And add the epsilon closures (which is 'new_dest_nodes') of |
2566 | the backreference to appropriate state_log. */ |
2567 | #ifdef DEBUG |
2568 | assert (dfa->nexts[node_idx] != -1); |
2569 | #endif |
2570 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) |
2571 | { |
2572 | Idx subexp_len; |
2573 | re_dfastate_t *dest_state; |
2574 | struct re_backref_cache_entry *bkref_ent; |
2575 | bkref_ent = mctx->bkref_ents + bkc_idx; |
2576 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) |
2577 | continue; |
2578 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; |
2579 | new_dest_nodes = (subexp_len == 0 |
2580 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] |
2581 | : dfa->eclosures + dfa->nexts[node_idx]); |
2582 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to |
2583 | - bkref_ent->subexp_from); |
2584 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, |
2585 | mctx->eflags); |
2586 | dest_state = mctx->state_log[dest_str_idx]; |
2587 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 |
2588 | : mctx->state_log[cur_str_idx]->nodes.nelem); |
2589 | /* Add 'new_dest_node' to state_log. */ |
2590 | if (dest_state == NULL) |
2591 | { |
2592 | mctx->state_log[dest_str_idx] |
2593 | = re_acquire_state_context (&err, dfa, new_dest_nodes, |
2594 | context); |
2595 | if (BE (mctx->state_log[dest_str_idx] == NULL |
2596 | && err != REG_NOERROR, 0)) |
2597 | goto free_return; |
2598 | } |
2599 | else |
2600 | { |
2601 | re_node_set dest_nodes; |
2602 | err = re_node_set_init_union (&dest_nodes, |
2603 | dest_state->entrance_nodes, |
2604 | new_dest_nodes); |
2605 | if (BE (err != REG_NOERROR, 0)) |
2606 | { |
2607 | re_node_set_free (&dest_nodes); |
2608 | goto free_return; |
2609 | } |
2610 | mctx->state_log[dest_str_idx] |
2611 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2612 | re_node_set_free (&dest_nodes); |
2613 | if (BE (mctx->state_log[dest_str_idx] == NULL |
2614 | && err != REG_NOERROR, 0)) |
2615 | goto free_return; |
2616 | } |
2617 | /* We need to check recursively if the backreference can epsilon |
2618 | transit. */ |
2619 | if (subexp_len == 0 |
2620 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) |
2621 | { |
2622 | err = check_subexp_matching_top (mctx, new_dest_nodes, |
2623 | cur_str_idx); |
2624 | if (BE (err != REG_NOERROR, 0)) |
2625 | goto free_return; |
2626 | err = transit_state_bkref (mctx, new_dest_nodes); |
2627 | if (BE (err != REG_NOERROR, 0)) |
2628 | goto free_return; |
2629 | } |
2630 | } |
2631 | } |
2632 | err = REG_NOERROR; |
2633 | free_return: |
2634 | return err; |
2635 | } |
2636 | |
2637 | /* Enumerate all the candidates which the backreference BKREF_NODE can match |
2638 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). |
2639 | Note that we might collect inappropriate candidates here. |
2640 | However, the cost of checking them strictly here is too high, then we |
2641 | delay these checking for prune_impossible_nodes(). */ |
2642 | |
2643 | static reg_errcode_t |
2644 | __attribute_warn_unused_result__ |
2645 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) |
2646 | { |
2647 | const re_dfa_t *const dfa = mctx->dfa; |
2648 | Idx subexp_num, sub_top_idx; |
2649 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); |
2650 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ |
2651 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); |
2652 | if (cache_idx != -1) |
2653 | { |
2654 | const struct re_backref_cache_entry *entry |
2655 | = mctx->bkref_ents + cache_idx; |
2656 | do |
2657 | if (entry->node == bkref_node) |
2658 | return REG_NOERROR; /* We already checked it. */ |
2659 | while (entry++->more); |
2660 | } |
2661 | |
2662 | subexp_num = dfa->nodes[bkref_node].opr.idx; |
2663 | |
2664 | /* For each sub expression */ |
2665 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) |
2666 | { |
2667 | reg_errcode_t err; |
2668 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; |
2669 | re_sub_match_last_t *sub_last; |
2670 | Idx sub_last_idx, sl_str, bkref_str_off; |
2671 | |
2672 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) |
2673 | continue; /* It isn't related. */ |
2674 | |
2675 | sl_str = sub_top->str_idx; |
2676 | bkref_str_off = bkref_str_idx; |
2677 | /* At first, check the last node of sub expressions we already |
2678 | evaluated. */ |
2679 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) |
2680 | { |
2681 | regoff_t sl_str_diff; |
2682 | sub_last = sub_top->lasts[sub_last_idx]; |
2683 | sl_str_diff = sub_last->str_idx - sl_str; |
2684 | /* The matched string by the sub expression match with the substring |
2685 | at the back reference? */ |
2686 | if (sl_str_diff > 0) |
2687 | { |
2688 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) |
2689 | { |
2690 | /* Not enough chars for a successful match. */ |
2691 | if (bkref_str_off + sl_str_diff > mctx->input.len) |
2692 | break; |
2693 | |
2694 | err = clean_state_log_if_needed (mctx, |
2695 | bkref_str_off |
2696 | + sl_str_diff); |
2697 | if (BE (err != REG_NOERROR, 0)) |
2698 | return err; |
2699 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2700 | } |
2701 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) |
2702 | /* We don't need to search this sub expression any more. */ |
2703 | break; |
2704 | } |
2705 | bkref_str_off += sl_str_diff; |
2706 | sl_str += sl_str_diff; |
2707 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2708 | bkref_str_idx); |
2709 | |
2710 | /* Reload buf, since the preceding call might have reallocated |
2711 | the buffer. */ |
2712 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2713 | |
2714 | if (err == REG_NOMATCH) |
2715 | continue; |
2716 | if (BE (err != REG_NOERROR, 0)) |
2717 | return err; |
2718 | } |
2719 | |
2720 | if (sub_last_idx < sub_top->nlasts) |
2721 | continue; |
2722 | if (sub_last_idx > 0) |
2723 | ++sl_str; |
2724 | /* Then, search for the other last nodes of the sub expression. */ |
2725 | for (; sl_str <= bkref_str_idx; ++sl_str) |
2726 | { |
2727 | Idx cls_node; |
2728 | regoff_t sl_str_off; |
2729 | const re_node_set *nodes; |
2730 | sl_str_off = sl_str - sub_top->str_idx; |
2731 | /* The matched string by the sub expression match with the substring |
2732 | at the back reference? */ |
2733 | if (sl_str_off > 0) |
2734 | { |
2735 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) |
2736 | { |
2737 | /* If we are at the end of the input, we cannot match. */ |
2738 | if (bkref_str_off >= mctx->input.len) |
2739 | break; |
2740 | |
2741 | err = extend_buffers (mctx, bkref_str_off + 1); |
2742 | if (BE (err != REG_NOERROR, 0)) |
2743 | return err; |
2744 | |
2745 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2746 | } |
2747 | if (buf [bkref_str_off++] != buf[sl_str - 1]) |
2748 | break; /* We don't need to search this sub expression |
2749 | any more. */ |
2750 | } |
2751 | if (mctx->state_log[sl_str] == NULL) |
2752 | continue; |
2753 | /* Does this state have a ')' of the sub expression? */ |
2754 | nodes = &mctx->state_log[sl_str]->nodes; |
2755 | cls_node = find_subexp_node (dfa, nodes, subexp_num, |
2756 | OP_CLOSE_SUBEXP); |
2757 | if (cls_node == -1) |
2758 | continue; /* No. */ |
2759 | if (sub_top->path == NULL) |
2760 | { |
2761 | sub_top->path = calloc (sizeof (state_array_t), |
2762 | sl_str - sub_top->str_idx + 1); |
2763 | if (sub_top->path == NULL) |
2764 | return REG_ESPACE; |
2765 | } |
2766 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node |
2767 | in the current context? */ |
2768 | err = check_arrival (mctx, sub_top->path, sub_top->node, |
2769 | sub_top->str_idx, cls_node, sl_str, |
2770 | OP_CLOSE_SUBEXP); |
2771 | if (err == REG_NOMATCH) |
2772 | continue; |
2773 | if (BE (err != REG_NOERROR, 0)) |
2774 | return err; |
2775 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); |
2776 | if (BE (sub_last == NULL, 0)) |
2777 | return REG_ESPACE; |
2778 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2779 | bkref_str_idx); |
2780 | if (err == REG_NOMATCH) |
2781 | continue; |
2782 | } |
2783 | } |
2784 | return REG_NOERROR; |
2785 | } |
2786 | |
2787 | /* Helper functions for get_subexp(). */ |
2788 | |
2789 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. |
2790 | If it can arrive, register the sub expression expressed with SUB_TOP |
2791 | and SUB_LAST. */ |
2792 | |
2793 | static reg_errcode_t |
2794 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, |
2795 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) |
2796 | { |
2797 | reg_errcode_t err; |
2798 | Idx to_idx; |
2799 | /* Can the subexpression arrive the back reference? */ |
2800 | err = check_arrival (mctx, &sub_last->path, sub_last->node, |
2801 | sub_last->str_idx, bkref_node, bkref_str, |
2802 | OP_OPEN_SUBEXP); |
2803 | if (err != REG_NOERROR) |
2804 | return err; |
2805 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, |
2806 | sub_last->str_idx); |
2807 | if (BE (err != REG_NOERROR, 0)) |
2808 | return err; |
2809 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; |
2810 | return clean_state_log_if_needed (mctx, to_idx); |
2811 | } |
2812 | |
2813 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. |
2814 | Search '(' if FL_OPEN, or search ')' otherwise. |
2815 | TODO: This function isn't efficient... |
2816 | Because there might be more than one nodes whose types are |
2817 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2818 | nodes. |
2819 | E.g. RE: (a){2} */ |
2820 | |
2821 | static Idx |
2822 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
2823 | Idx subexp_idx, int type) |
2824 | { |
2825 | Idx cls_idx; |
2826 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) |
2827 | { |
2828 | Idx cls_node = nodes->elems[cls_idx]; |
2829 | const re_token_t *node = dfa->nodes + cls_node; |
2830 | if (node->type == type |
2831 | && node->opr.idx == subexp_idx) |
2832 | return cls_node; |
2833 | } |
2834 | return -1; |
2835 | } |
2836 | |
2837 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node |
2838 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be |
2839 | heavily reused. |
2840 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ |
2841 | |
2842 | static reg_errcode_t |
2843 | __attribute_warn_unused_result__ |
2844 | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, |
2845 | Idx top_str, Idx last_node, Idx last_str, int type) |
2846 | { |
2847 | const re_dfa_t *const dfa = mctx->dfa; |
2848 | reg_errcode_t err = REG_NOERROR; |
2849 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; |
2850 | re_dfastate_t *cur_state = NULL; |
2851 | re_node_set *cur_nodes, next_nodes; |
2852 | re_dfastate_t **backup_state_log; |
2853 | unsigned int context; |
2854 | |
2855 | subexp_num = dfa->nodes[top_node].opr.idx; |
2856 | /* Extend the buffer if we need. */ |
2857 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) |
2858 | { |
2859 | re_dfastate_t **new_array; |
2860 | Idx old_alloc = path->alloc; |
2861 | Idx incr_alloc = last_str + mctx->max_mb_elem_len + 1; |
2862 | Idx new_alloc; |
2863 | if (BE (IDX_MAX - old_alloc < incr_alloc, 0)) |
2864 | return REG_ESPACE; |
2865 | new_alloc = old_alloc + incr_alloc; |
2866 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc, 0)) |
2867 | return REG_ESPACE; |
2868 | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); |
2869 | if (BE (new_array == NULL, 0)) |
2870 | return REG_ESPACE; |
2871 | path->array = new_array; |
2872 | path->alloc = new_alloc; |
2873 | memset (new_array + old_alloc, '\0', |
2874 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); |
2875 | } |
2876 | |
2877 | str_idx = path->next_idx ? path->next_idx : top_str; |
2878 | |
2879 | /* Temporary modify MCTX. */ |
2880 | backup_state_log = mctx->state_log; |
2881 | backup_cur_idx = mctx->input.cur_idx; |
2882 | mctx->state_log = path->array; |
2883 | mctx->input.cur_idx = str_idx; |
2884 | |
2885 | /* Setup initial node set. */ |
2886 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2887 | if (str_idx == top_str) |
2888 | { |
2889 | err = re_node_set_init_1 (&next_nodes, top_node); |
2890 | if (BE (err != REG_NOERROR, 0)) |
2891 | return err; |
2892 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2893 | if (BE (err != REG_NOERROR, 0)) |
2894 | { |
2895 | re_node_set_free (&next_nodes); |
2896 | return err; |
2897 | } |
2898 | } |
2899 | else |
2900 | { |
2901 | cur_state = mctx->state_log[str_idx]; |
2902 | if (cur_state && cur_state->has_backref) |
2903 | { |
2904 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); |
2905 | if (BE (err != REG_NOERROR, 0)) |
2906 | return err; |
2907 | } |
2908 | else |
2909 | re_node_set_init_empty (&next_nodes); |
2910 | } |
2911 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) |
2912 | { |
2913 | if (next_nodes.nelem) |
2914 | { |
2915 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2916 | subexp_num, type); |
2917 | if (BE (err != REG_NOERROR, 0)) |
2918 | { |
2919 | re_node_set_free (&next_nodes); |
2920 | return err; |
2921 | } |
2922 | } |
2923 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2924 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
2925 | { |
2926 | re_node_set_free (&next_nodes); |
2927 | return err; |
2928 | } |
2929 | mctx->state_log[str_idx] = cur_state; |
2930 | } |
2931 | |
2932 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) |
2933 | { |
2934 | re_node_set_empty (&next_nodes); |
2935 | if (mctx->state_log[str_idx + 1]) |
2936 | { |
2937 | err = re_node_set_merge (&next_nodes, |
2938 | &mctx->state_log[str_idx + 1]->nodes); |
2939 | if (BE (err != REG_NOERROR, 0)) |
2940 | { |
2941 | re_node_set_free (&next_nodes); |
2942 | return err; |
2943 | } |
2944 | } |
2945 | if (cur_state) |
2946 | { |
2947 | err = check_arrival_add_next_nodes (mctx, str_idx, |
2948 | &cur_state->non_eps_nodes, |
2949 | &next_nodes); |
2950 | if (BE (err != REG_NOERROR, 0)) |
2951 | { |
2952 | re_node_set_free (&next_nodes); |
2953 | return err; |
2954 | } |
2955 | } |
2956 | ++str_idx; |
2957 | if (next_nodes.nelem) |
2958 | { |
2959 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2960 | if (BE (err != REG_NOERROR, 0)) |
2961 | { |
2962 | re_node_set_free (&next_nodes); |
2963 | return err; |
2964 | } |
2965 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2966 | subexp_num, type); |
2967 | if (BE (err != REG_NOERROR, 0)) |
2968 | { |
2969 | re_node_set_free (&next_nodes); |
2970 | return err; |
2971 | } |
2972 | } |
2973 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2974 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2975 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
2976 | { |
2977 | re_node_set_free (&next_nodes); |
2978 | return err; |
2979 | } |
2980 | mctx->state_log[str_idx] = cur_state; |
2981 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; |
2982 | } |
2983 | re_node_set_free (&next_nodes); |
2984 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL |
2985 | : &mctx->state_log[last_str]->nodes); |
2986 | path->next_idx = str_idx; |
2987 | |
2988 | /* Fix MCTX. */ |
2989 | mctx->state_log = backup_state_log; |
2990 | mctx->input.cur_idx = backup_cur_idx; |
2991 | |
2992 | /* Then check the current node set has the node LAST_NODE. */ |
2993 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) |
2994 | return REG_NOERROR; |
2995 | |
2996 | return REG_NOMATCH; |
2997 | } |
2998 | |
2999 | /* Helper functions for check_arrival. */ |
3000 | |
3001 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them |
3002 | to NEXT_NODES. |
3003 | TODO: This function is similar to the functions transit_state*(), |
3004 | however this function has many additional works. |
3005 | Can't we unify them? */ |
3006 | |
3007 | static reg_errcode_t |
3008 | __attribute_warn_unused_result__ |
3009 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, |
3010 | re_node_set *cur_nodes, re_node_set *next_nodes) |
3011 | { |
3012 | const re_dfa_t *const dfa = mctx->dfa; |
3013 | bool ok; |
3014 | Idx cur_idx; |
3015 | #ifdef RE_ENABLE_I18N |
3016 | reg_errcode_t err = REG_NOERROR; |
3017 | #endif |
3018 | re_node_set union_set; |
3019 | re_node_set_init_empty (&union_set); |
3020 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) |
3021 | { |
3022 | int naccepted = 0; |
3023 | Idx cur_node = cur_nodes->elems[cur_idx]; |
3024 | #ifdef DEBUG |
3025 | re_token_type_t type = dfa->nodes[cur_node].type; |
3026 | assert (!IS_EPSILON_NODE (type)); |
3027 | #endif |
3028 | #ifdef RE_ENABLE_I18N |
3029 | /* If the node may accept "multi byte". */ |
3030 | if (dfa->nodes[cur_node].accept_mb) |
3031 | { |
3032 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, |
3033 | str_idx); |
3034 | if (naccepted > 1) |
3035 | { |
3036 | re_dfastate_t *dest_state; |
3037 | Idx next_node = dfa->nexts[cur_node]; |
3038 | Idx next_idx = str_idx + naccepted; |
3039 | dest_state = mctx->state_log[next_idx]; |
3040 | re_node_set_empty (&union_set); |
3041 | if (dest_state) |
3042 | { |
3043 | err = re_node_set_merge (&union_set, &dest_state->nodes); |
3044 | if (BE (err != REG_NOERROR, 0)) |
3045 | { |
3046 | re_node_set_free (&union_set); |
3047 | return err; |
3048 | } |
3049 | } |
3050 | ok = re_node_set_insert (&union_set, next_node); |
3051 | if (BE (! ok, 0)) |
3052 | { |
3053 | re_node_set_free (&union_set); |
3054 | return REG_ESPACE; |
3055 | } |
3056 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, |
3057 | &union_set); |
3058 | if (BE (mctx->state_log[next_idx] == NULL |
3059 | && err != REG_NOERROR, 0)) |
3060 | { |
3061 | re_node_set_free (&union_set); |
3062 | return err; |
3063 | } |
3064 | } |
3065 | } |
3066 | #endif /* RE_ENABLE_I18N */ |
3067 | if (naccepted |
3068 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) |
3069 | { |
3070 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); |
3071 | if (BE (! ok, 0)) |
3072 | { |
3073 | re_node_set_free (&union_set); |
3074 | return REG_ESPACE; |
3075 | } |
3076 | } |
3077 | } |
3078 | re_node_set_free (&union_set); |
3079 | return REG_NOERROR; |
3080 | } |
3081 | |
3082 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to |
3083 | CUR_NODES, however exclude the nodes which are: |
3084 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. |
3085 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. |
3086 | */ |
3087 | |
3088 | static reg_errcode_t |
3089 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, |
3090 | Idx ex_subexp, int type) |
3091 | { |
3092 | reg_errcode_t err; |
3093 | Idx idx, outside_node; |
3094 | re_node_set new_nodes; |
3095 | #ifdef DEBUG |
3096 | assert (cur_nodes->nelem); |
3097 | #endif |
3098 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); |
3099 | if (BE (err != REG_NOERROR, 0)) |
3100 | return err; |
3101 | /* Create a new node set NEW_NODES with the nodes which are epsilon |
3102 | closures of the node in CUR_NODES. */ |
3103 | |
3104 | for (idx = 0; idx < cur_nodes->nelem; ++idx) |
3105 | { |
3106 | Idx cur_node = cur_nodes->elems[idx]; |
3107 | const re_node_set *eclosure = dfa->eclosures + cur_node; |
3108 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); |
3109 | if (outside_node == -1) |
3110 | { |
3111 | /* There are no problematic nodes, just merge them. */ |
3112 | err = re_node_set_merge (&new_nodes, eclosure); |
3113 | if (BE (err != REG_NOERROR, 0)) |
3114 | { |
3115 | re_node_set_free (&new_nodes); |
3116 | return err; |
3117 | } |
3118 | } |
3119 | else |
3120 | { |
3121 | /* There are problematic nodes, re-calculate incrementally. */ |
3122 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, |
3123 | ex_subexp, type); |
3124 | if (BE (err != REG_NOERROR, 0)) |
3125 | { |
3126 | re_node_set_free (&new_nodes); |
3127 | return err; |
3128 | } |
3129 | } |
3130 | } |
3131 | re_node_set_free (cur_nodes); |
3132 | *cur_nodes = new_nodes; |
3133 | return REG_NOERROR; |
3134 | } |
3135 | |
3136 | /* Helper function for check_arrival_expand_ecl. |
3137 | Check incrementally the epsilon closure of TARGET, and if it isn't |
3138 | problematic append it to DST_NODES. */ |
3139 | |
3140 | static reg_errcode_t |
3141 | __attribute_warn_unused_result__ |
3142 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, |
3143 | Idx target, Idx ex_subexp, int type) |
3144 | { |
3145 | Idx cur_node; |
3146 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) |
3147 | { |
3148 | bool ok; |
3149 | |
3150 | if (dfa->nodes[cur_node].type == type |
3151 | && dfa->nodes[cur_node].opr.idx == ex_subexp) |
3152 | { |
3153 | if (type == OP_CLOSE_SUBEXP) |
3154 | { |
3155 | ok = re_node_set_insert (dst_nodes, cur_node); |
3156 | if (BE (! ok, 0)) |
3157 | return REG_ESPACE; |
3158 | } |
3159 | break; |
3160 | } |
3161 | ok = re_node_set_insert (dst_nodes, cur_node); |
3162 | if (BE (! ok, 0)) |
3163 | return REG_ESPACE; |
3164 | if (dfa->edests[cur_node].nelem == 0) |
3165 | break; |
3166 | if (dfa->edests[cur_node].nelem == 2) |
3167 | { |
3168 | reg_errcode_t err; |
3169 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, |
3170 | dfa->edests[cur_node].elems[1], |
3171 | ex_subexp, type); |
3172 | if (BE (err != REG_NOERROR, 0)) |
3173 | return err; |
3174 | } |
3175 | cur_node = dfa->edests[cur_node].elems[0]; |
3176 | } |
3177 | return REG_NOERROR; |
3178 | } |
3179 | |
3180 | |
3181 | /* For all the back references in the current state, calculate the |
3182 | destination of the back references by the appropriate entry |
3183 | in MCTX->BKREF_ENTS. */ |
3184 | |
3185 | static reg_errcode_t |
3186 | __attribute_warn_unused_result__ |
3187 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, |
3188 | Idx cur_str, Idx subexp_num, int type) |
3189 | { |
3190 | const re_dfa_t *const dfa = mctx->dfa; |
3191 | reg_errcode_t err; |
3192 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); |
3193 | struct re_backref_cache_entry *ent; |
3194 | |
3195 | if (cache_idx_start == -1) |
3196 | return REG_NOERROR; |
3197 | |
3198 | restart: |
3199 | ent = mctx->bkref_ents + cache_idx_start; |
3200 | do |
3201 | { |
3202 | Idx to_idx, next_node; |
3203 | |
3204 | /* Is this entry ENT is appropriate? */ |
3205 | if (!re_node_set_contains (cur_nodes, ent->node)) |
3206 | continue; /* No. */ |
3207 | |
3208 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; |
3209 | /* Calculate the destination of the back reference, and append it |
3210 | to MCTX->STATE_LOG. */ |
3211 | if (to_idx == cur_str) |
3212 | { |
3213 | /* The backreference did epsilon transit, we must re-check all the |
3214 | node in the current state. */ |
3215 | re_node_set new_dests; |
3216 | reg_errcode_t err2, err3; |
3217 | next_node = dfa->edests[ent->node].elems[0]; |
3218 | if (re_node_set_contains (cur_nodes, next_node)) |
3219 | continue; |
3220 | err = re_node_set_init_1 (&new_dests, next_node); |
3221 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); |
3222 | err3 = re_node_set_merge (cur_nodes, &new_dests); |
3223 | re_node_set_free (&new_dests); |
3224 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR |
3225 | || err3 != REG_NOERROR, 0)) |
3226 | { |
3227 | err = (err != REG_NOERROR ? err |
3228 | : (err2 != REG_NOERROR ? err2 : err3)); |
3229 | return err; |
3230 | } |
3231 | /* TODO: It is still inefficient... */ |
3232 | goto restart; |
3233 | } |
3234 | else |
3235 | { |
3236 | re_node_set union_set; |
3237 | next_node = dfa->nexts[ent->node]; |
3238 | if (mctx->state_log[to_idx]) |
3239 | { |
3240 | bool ok; |
3241 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, |
3242 | next_node)) |
3243 | continue; |
3244 | err = re_node_set_init_copy (&union_set, |
3245 | &mctx->state_log[to_idx]->nodes); |
3246 | ok = re_node_set_insert (&union_set, next_node); |
3247 | if (BE (err != REG_NOERROR || ! ok, 0)) |
3248 | { |
3249 | re_node_set_free (&union_set); |
3250 | err = err != REG_NOERROR ? err : REG_ESPACE; |
3251 | return err; |
3252 | } |
3253 | } |
3254 | else |
3255 | { |
3256 | err = re_node_set_init_1 (&union_set, next_node); |
3257 | if (BE (err != REG_NOERROR, 0)) |
3258 | return err; |
3259 | } |
3260 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); |
3261 | re_node_set_free (&union_set); |
3262 | if (BE (mctx->state_log[to_idx] == NULL |
3263 | && err != REG_NOERROR, 0)) |
3264 | return err; |
3265 | } |
3266 | } |
3267 | while (ent++->more); |
3268 | return REG_NOERROR; |
3269 | } |
3270 | |
3271 | /* Build transition table for the state. |
3272 | Return true if successful. */ |
3273 | |
3274 | static bool |
3275 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) |
3276 | { |
3277 | reg_errcode_t err; |
3278 | Idx i, j; |
3279 | int ch; |
3280 | bool need_word_trtable = false; |
3281 | bitset_word_t elem, mask; |
3282 | bool dests_node_malloced = false; |
3283 | bool dest_states_malloced = false; |
3284 | Idx ndests; /* Number of the destination states from 'state'. */ |
3285 | re_dfastate_t **trtable; |
3286 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; |
3287 | re_node_set follows, *dests_node; |
3288 | bitset_t *dests_ch; |
3289 | bitset_t acceptable; |
3290 | |
3291 | struct dests_alloc |
3292 | { |
3293 | re_node_set dests_node[SBC_MAX]; |
3294 | bitset_t dests_ch[SBC_MAX]; |
3295 | } *dests_alloc; |
3296 | |
3297 | /* We build DFA states which corresponds to the destination nodes |
3298 | from 'state'. 'dests_node[i]' represents the nodes which i-th |
3299 | destination state contains, and 'dests_ch[i]' represents the |
3300 | characters which i-th destination state accepts. */ |
3301 | if (__libc_use_alloca (sizeof (struct dests_alloc))) |
3302 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); |
3303 | else |
3304 | { |
3305 | dests_alloc = re_malloc (struct dests_alloc, 1); |
3306 | if (BE (dests_alloc == NULL, 0)) |
3307 | return false; |
3308 | dests_node_malloced = true; |
3309 | } |
3310 | dests_node = dests_alloc->dests_node; |
3311 | dests_ch = dests_alloc->dests_ch; |
3312 | |
3313 | /* Initialize transition table. */ |
3314 | state->word_trtable = state->trtable = NULL; |
3315 | |
3316 | /* At first, group all nodes belonging to 'state' into several |
3317 | destinations. */ |
3318 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); |
3319 | if (BE (ndests <= 0, 0)) |
3320 | { |
3321 | if (dests_node_malloced) |
3322 | re_free (dests_alloc); |
3323 | /* Return false in case of an error, true otherwise. */ |
3324 | if (ndests == 0) |
3325 | { |
3326 | state->trtable = (re_dfastate_t **) |
3327 | calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3328 | if (BE (state->trtable == NULL, 0)) |
3329 | return false; |
3330 | return true; |
3331 | } |
3332 | return false; |
3333 | } |
3334 | |
3335 | err = re_node_set_alloc (&follows, ndests + 1); |
3336 | if (BE (err != REG_NOERROR, 0)) |
3337 | goto out_free; |
3338 | |
3339 | /* Avoid arithmetic overflow in size calculation. */ |
3340 | if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) |
3341 | / (3 * sizeof (re_dfastate_t *))) |
3342 | < ndests), |
3343 | 0)) |
3344 | goto out_free; |
3345 | |
3346 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX |
3347 | + ndests * 3 * sizeof (re_dfastate_t *))) |
3348 | dest_states = (re_dfastate_t **) |
3349 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); |
3350 | else |
3351 | { |
3352 | dest_states = re_malloc (re_dfastate_t *, ndests * 3); |
3353 | if (BE (dest_states == NULL, 0)) |
3354 | { |
3355 | out_free: |
3356 | if (dest_states_malloced) |
3357 | re_free (dest_states); |
3358 | re_node_set_free (&follows); |
3359 | for (i = 0; i < ndests; ++i) |
3360 | re_node_set_free (dests_node + i); |
3361 | if (dests_node_malloced) |
3362 | re_free (dests_alloc); |
3363 | return false; |
3364 | } |
3365 | dest_states_malloced = true; |
3366 | } |
3367 | dest_states_word = dest_states + ndests; |
3368 | dest_states_nl = dest_states_word + ndests; |
3369 | bitset_empty (acceptable); |
3370 | |
3371 | /* Then build the states for all destinations. */ |
3372 | for (i = 0; i < ndests; ++i) |
3373 | { |
3374 | Idx next_node; |
3375 | re_node_set_empty (&follows); |
3376 | /* Merge the follows of this destination states. */ |
3377 | for (j = 0; j < dests_node[i].nelem; ++j) |
3378 | { |
3379 | next_node = dfa->nexts[dests_node[i].elems[j]]; |
3380 | if (next_node != -1) |
3381 | { |
3382 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); |
3383 | if (BE (err != REG_NOERROR, 0)) |
3384 | goto out_free; |
3385 | } |
3386 | } |
3387 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); |
3388 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) |
3389 | goto out_free; |
3390 | /* If the new state has context constraint, |
3391 | build appropriate states for these contexts. */ |
3392 | if (dest_states[i]->has_constraint) |
3393 | { |
3394 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, |
3395 | CONTEXT_WORD); |
3396 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) |
3397 | goto out_free; |
3398 | |
3399 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) |
3400 | need_word_trtable = true; |
3401 | |
3402 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, |
3403 | CONTEXT_NEWLINE); |
3404 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) |
3405 | goto out_free; |
3406 | } |
3407 | else |
3408 | { |
3409 | dest_states_word[i] = dest_states[i]; |
3410 | dest_states_nl[i] = dest_states[i]; |
3411 | } |
3412 | bitset_merge (acceptable, dests_ch[i]); |
3413 | } |
3414 | |
3415 | if (!BE (need_word_trtable, 0)) |
3416 | { |
3417 | /* We don't care about whether the following character is a word |
3418 | character, or we are in a single-byte character set so we can |
3419 | discern by looking at the character code: allocate a |
3420 | 256-entry transition table. */ |
3421 | trtable = state->trtable = |
3422 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3423 | if (BE (trtable == NULL, 0)) |
3424 | goto out_free; |
3425 | |
3426 | /* For all characters ch...: */ |
3427 | for (i = 0; i < BITSET_WORDS; ++i) |
3428 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3429 | elem; |
3430 | mask <<= 1, elem >>= 1, ++ch) |
3431 | if (BE (elem & 1, 0)) |
3432 | { |
3433 | /* There must be exactly one destination which accepts |
3434 | character ch. See group_nodes_into_DFAstates. */ |
3435 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3436 | ; |
3437 | |
3438 | /* j-th destination accepts the word character ch. */ |
3439 | if (dfa->word_char[i] & mask) |
3440 | trtable[ch] = dest_states_word[j]; |
3441 | else |
3442 | trtable[ch] = dest_states[j]; |
3443 | } |
3444 | } |
3445 | else |
3446 | { |
3447 | /* We care about whether the following character is a word |
3448 | character, and we are in a multi-byte character set: discern |
3449 | by looking at the character code: build two 256-entry |
3450 | transition tables, one starting at trtable[0] and one |
3451 | starting at trtable[SBC_MAX]. */ |
3452 | trtable = state->word_trtable = |
3453 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); |
3454 | if (BE (trtable == NULL, 0)) |
3455 | goto out_free; |
3456 | |
3457 | /* For all characters ch...: */ |
3458 | for (i = 0; i < BITSET_WORDS; ++i) |
3459 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3460 | elem; |
3461 | mask <<= 1, elem >>= 1, ++ch) |
3462 | if (BE (elem & 1, 0)) |
3463 | { |
3464 | /* There must be exactly one destination which accepts |
3465 | character ch. See group_nodes_into_DFAstates. */ |
3466 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3467 | ; |
3468 | |
3469 | /* j-th destination accepts the word character ch. */ |
3470 | trtable[ch] = dest_states[j]; |
3471 | trtable[ch + SBC_MAX] = dest_states_word[j]; |
3472 | } |
3473 | } |
3474 | |
3475 | /* new line */ |
3476 | if (bitset_contain (acceptable, NEWLINE_CHAR)) |
3477 | { |
3478 | /* The current state accepts newline character. */ |
3479 | for (j = 0; j < ndests; ++j) |
3480 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) |
3481 | { |
3482 | /* k-th destination accepts newline character. */ |
3483 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; |
3484 | if (need_word_trtable) |
3485 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; |
3486 | /* There must be only one destination which accepts |
3487 | newline. See group_nodes_into_DFAstates. */ |
3488 | break; |
3489 | } |
3490 | } |
3491 | |
3492 | if (dest_states_malloced) |
3493 | re_free (dest_states); |
3494 | |
3495 | re_node_set_free (&follows); |
3496 | for (i = 0; i < ndests; ++i) |
3497 | re_node_set_free (dests_node + i); |
3498 | |
3499 | if (dests_node_malloced) |
3500 | re_free (dests_alloc); |
3501 | |
3502 | return true; |
3503 | } |
3504 | |
3505 | /* Group all nodes belonging to STATE into several destinations. |
3506 | Then for all destinations, set the nodes belonging to the destination |
3507 | to DESTS_NODE[i] and set the characters accepted by the destination |
3508 | to DEST_CH[i]. This function return the number of destinations. */ |
3509 | |
3510 | static Idx |
3511 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, |
3512 | re_node_set *dests_node, bitset_t *dests_ch) |
3513 | { |
3514 | reg_errcode_t err; |
3515 | bool ok; |
3516 | Idx i, j, k; |
3517 | Idx ndests; /* Number of the destinations from 'state'. */ |
3518 | bitset_t accepts; /* Characters a node can accept. */ |
3519 | const re_node_set *cur_nodes = &state->nodes; |
3520 | bitset_empty (accepts); |
3521 | ndests = 0; |
3522 | |
3523 | /* For all the nodes belonging to 'state', */ |
3524 | for (i = 0; i < cur_nodes->nelem; ++i) |
3525 | { |
3526 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; |
3527 | re_token_type_t type = node->type; |
3528 | unsigned int constraint = node->constraint; |
3529 | |
3530 | /* Enumerate all single byte character this node can accept. */ |
3531 | if (type == CHARACTER) |
3532 | bitset_set (accepts, node->opr.c); |
3533 | else if (type == SIMPLE_BRACKET) |
3534 | { |
3535 | bitset_merge (accepts, node->opr.sbcset); |
3536 | } |
3537 | else if (type == OP_PERIOD) |
3538 | { |
3539 | #ifdef RE_ENABLE_I18N |
3540 | if (dfa->mb_cur_max > 1) |
3541 | bitset_merge (accepts, dfa->sb_char); |
3542 | else |
3543 | #endif |
3544 | bitset_set_all (accepts); |
3545 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3546 | bitset_clear (accepts, '\n'); |
3547 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3548 | bitset_clear (accepts, '\0'); |
3549 | } |
3550 | #ifdef RE_ENABLE_I18N |
3551 | else if (type == OP_UTF8_PERIOD) |
3552 | { |
3553 | if (ASCII_CHARS % BITSET_WORD_BITS == 0) |
3554 | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); |
3555 | else |
3556 | bitset_merge (accepts, utf8_sb_map); |
3557 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3558 | bitset_clear (accepts, '\n'); |
3559 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3560 | bitset_clear (accepts, '\0'); |
3561 | } |
3562 | #endif |
3563 | else |
3564 | continue; |
3565 | |
3566 | /* Check the 'accepts' and sift the characters which are not |
3567 | match it the context. */ |
3568 | if (constraint) |
3569 | { |
3570 | if (constraint & NEXT_NEWLINE_CONSTRAINT) |
3571 | { |
3572 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); |
3573 | bitset_empty (accepts); |
3574 | if (accepts_newline) |
3575 | bitset_set (accepts, NEWLINE_CHAR); |
3576 | else |
3577 | continue; |
3578 | } |
3579 | if (constraint & NEXT_ENDBUF_CONSTRAINT) |
3580 | { |
3581 | bitset_empty (accepts); |
3582 | continue; |
3583 | } |
3584 | |
3585 | if (constraint & NEXT_WORD_CONSTRAINT) |
3586 | { |
3587 | bitset_word_t any_set = 0; |
3588 | if (type == CHARACTER && !node->word_char) |
3589 | { |
3590 | bitset_empty (accepts); |
3591 | continue; |
3592 | } |
3593 | #ifdef RE_ENABLE_I18N |
3594 | if (dfa->mb_cur_max > 1) |
3595 | for (j = 0; j < BITSET_WORDS; ++j) |
3596 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); |
3597 | else |
3598 | #endif |
3599 | for (j = 0; j < BITSET_WORDS; ++j) |
3600 | any_set |= (accepts[j] &= dfa->word_char[j]); |
3601 | if (!any_set) |
3602 | continue; |
3603 | } |
3604 | if (constraint & NEXT_NOTWORD_CONSTRAINT) |
3605 | { |
3606 | bitset_word_t any_set = 0; |
3607 | if (type == CHARACTER && node->word_char) |
3608 | { |
3609 | bitset_empty (accepts); |
3610 | continue; |
3611 | } |
3612 | #ifdef RE_ENABLE_I18N |
3613 | if (dfa->mb_cur_max > 1) |
3614 | for (j = 0; j < BITSET_WORDS; ++j) |
3615 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); |
3616 | else |
3617 | #endif |
3618 | for (j = 0; j < BITSET_WORDS; ++j) |
3619 | any_set |= (accepts[j] &= ~dfa->word_char[j]); |
3620 | if (!any_set) |
3621 | continue; |
3622 | } |
3623 | } |
3624 | |
3625 | /* Then divide 'accepts' into DFA states, or create a new |
3626 | state. Above, we make sure that accepts is not empty. */ |
3627 | for (j = 0; j < ndests; ++j) |
3628 | { |
3629 | bitset_t intersec; /* Intersection sets, see below. */ |
3630 | bitset_t remains; |
3631 | /* Flags, see below. */ |
3632 | bitset_word_t has_intersec, not_subset, not_consumed; |
3633 | |
3634 | /* Optimization, skip if this state doesn't accept the character. */ |
3635 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) |
3636 | continue; |
3637 | |
3638 | /* Enumerate the intersection set of this state and 'accepts'. */ |
3639 | has_intersec = 0; |
3640 | for (k = 0; k < BITSET_WORDS; ++k) |
3641 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; |
3642 | /* And skip if the intersection set is empty. */ |
3643 | if (!has_intersec) |
3644 | continue; |
3645 | |
3646 | /* Then check if this state is a subset of 'accepts'. */ |
3647 | not_subset = not_consumed = 0; |
3648 | for (k = 0; k < BITSET_WORDS; ++k) |
3649 | { |
3650 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; |
3651 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; |
3652 | } |
3653 | |
3654 | /* If this state isn't a subset of 'accepts', create a |
3655 | new group state, which has the 'remains'. */ |
3656 | if (not_subset) |
3657 | { |
3658 | bitset_copy (dests_ch[ndests], remains); |
3659 | bitset_copy (dests_ch[j], intersec); |
3660 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); |
3661 | if (BE (err != REG_NOERROR, 0)) |
3662 | goto error_return; |
3663 | ++ndests; |
3664 | } |
3665 | |
3666 | /* Put the position in the current group. */ |
3667 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); |
3668 | if (BE (! ok, 0)) |
3669 | goto error_return; |
3670 | |
3671 | /* If all characters are consumed, go to next node. */ |
3672 | if (!not_consumed) |
3673 | break; |
3674 | } |
3675 | /* Some characters remain, create a new group. */ |
3676 | if (j == ndests) |
3677 | { |
3678 | bitset_copy (dests_ch[ndests], accepts); |
3679 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); |
3680 | if (BE (err != REG_NOERROR, 0)) |
3681 | goto error_return; |
3682 | ++ndests; |
3683 | bitset_empty (accepts); |
3684 | } |
3685 | } |
3686 | return ndests; |
3687 | error_return: |
3688 | for (j = 0; j < ndests; ++j) |
3689 | re_node_set_free (dests_node + j); |
3690 | return -1; |
3691 | } |
3692 | |
3693 | #ifdef RE_ENABLE_I18N |
3694 | /* Check how many bytes the node 'dfa->nodes[node_idx]' accepts. |
3695 | Return the number of the bytes the node accepts. |
3696 | STR_IDX is the current index of the input string. |
3697 | |
3698 | This function handles the nodes which can accept one character, or |
3699 | one collating element like '.', '[a-z]', opposite to the other nodes |
3700 | can only accept one byte. */ |
3701 | |
3702 | # ifdef _LIBC |
3703 | # include <locale/weight.h> |
3704 | # endif |
3705 | |
3706 | static int |
3707 | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
3708 | const re_string_t *input, Idx str_idx) |
3709 | { |
3710 | const re_token_t *node = dfa->nodes + node_idx; |
3711 | int char_len, elem_len; |
3712 | Idx i; |
3713 | |
3714 | if (BE (node->type == OP_UTF8_PERIOD, 0)) |
3715 | { |
3716 | unsigned char c = re_string_byte_at (input, str_idx), d; |
3717 | if (BE (c < 0xc2, 1)) |
3718 | return 0; |
3719 | |
3720 | if (str_idx + 2 > input->len) |
3721 | return 0; |
3722 | |
3723 | d = re_string_byte_at (input, str_idx + 1); |
3724 | if (c < 0xe0) |
3725 | return (d < 0x80 || d > 0xbf) ? 0 : 2; |
3726 | else if (c < 0xf0) |
3727 | { |
3728 | char_len = 3; |
3729 | if (c == 0xe0 && d < 0xa0) |
3730 | return 0; |
3731 | } |
3732 | else if (c < 0xf8) |
3733 | { |
3734 | char_len = 4; |
3735 | if (c == 0xf0 && d < 0x90) |
3736 | return 0; |
3737 | } |
3738 | else if (c < 0xfc) |
3739 | { |
3740 | char_len = 5; |
3741 | if (c == 0xf8 && d < 0x88) |
3742 | return 0; |
3743 | } |
3744 | else if (c < 0xfe) |
3745 | { |
3746 | char_len = 6; |
3747 | if (c == 0xfc && d < 0x84) |
3748 | return 0; |
3749 | } |
3750 | else |
3751 | return 0; |
3752 | |
3753 | if (str_idx + char_len > input->len) |
3754 | return 0; |
3755 | |
3756 | for (i = 1; i < char_len; ++i) |
3757 | { |
3758 | d = re_string_byte_at (input, str_idx + i); |
3759 | if (d < 0x80 || d > 0xbf) |
3760 | return 0; |
3761 | } |
3762 | return char_len; |
3763 | } |
3764 | |
3765 | char_len = re_string_char_size_at (input, str_idx); |
3766 | if (node->type == OP_PERIOD) |
3767 | { |
3768 | if (char_len <= 1) |
3769 | return 0; |
3770 | /* FIXME: I don't think this if is needed, as both '\n' |
3771 | and '\0' are char_len == 1. */ |
3772 | /* '.' accepts any one character except the following two cases. */ |
3773 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && |
3774 | re_string_byte_at (input, str_idx) == '\n') || |
3775 | ((dfa->syntax & RE_DOT_NOT_NULL) && |
3776 | re_string_byte_at (input, str_idx) == '\0')) |
3777 | return 0; |
3778 | return char_len; |
3779 | } |
3780 | |
3781 | elem_len = re_string_elem_size_at (input, str_idx); |
3782 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) |
3783 | return 0; |
3784 | |
3785 | if (node->type == COMPLEX_BRACKET) |
3786 | { |
3787 | const re_charset_t *cset = node->opr.mbcset; |
3788 | # ifdef _LIBC |
3789 | const unsigned char *pin |
3790 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); |
3791 | Idx j; |
3792 | uint32_t nrules; |
3793 | # endif /* _LIBC */ |
3794 | int match_len = 0; |
3795 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) |
3796 | ? re_string_wchar_at (input, str_idx) : 0); |
3797 | |
3798 | /* match with multibyte character? */ |
3799 | for (i = 0; i < cset->nmbchars; ++i) |
3800 | if (wc == cset->mbchars[i]) |
3801 | { |
3802 | match_len = char_len; |
3803 | goto check_node_accept_bytes_match; |
3804 | } |
3805 | /* match with character_class? */ |
3806 | for (i = 0; i < cset->nchar_classes; ++i) |
3807 | { |
3808 | wctype_t wt = cset->char_classes[i]; |
3809 | if (__iswctype (wc, wt)) |
3810 | { |
3811 | match_len = char_len; |
3812 | goto check_node_accept_bytes_match; |
3813 | } |
3814 | } |
3815 | |
3816 | # ifdef _LIBC |
3817 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3818 | if (nrules != 0) |
3819 | { |
3820 | unsigned int in_collseq = 0; |
3821 | const int32_t *table, *indirect; |
3822 | const unsigned char *weights, *; |
3823 | const char *collseqwc; |
3824 | |
3825 | /* match with collating_symbol? */ |
3826 | if (cset->ncoll_syms) |
3827 | extra = (const unsigned char *) |
3828 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3829 | for (i = 0; i < cset->ncoll_syms; ++i) |
3830 | { |
3831 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; |
3832 | /* Compare the length of input collating element and |
3833 | the length of current collating element. */ |
3834 | if (*coll_sym != elem_len) |
3835 | continue; |
3836 | /* Compare each bytes. */ |
3837 | for (j = 0; j < *coll_sym; j++) |
3838 | if (pin[j] != coll_sym[1 + j]) |
3839 | break; |
3840 | if (j == *coll_sym) |
3841 | { |
3842 | /* Match if every bytes is equal. */ |
3843 | match_len = j; |
3844 | goto check_node_accept_bytes_match; |
3845 | } |
3846 | } |
3847 | |
3848 | if (cset->nranges) |
3849 | { |
3850 | if (elem_len <= char_len) |
3851 | { |
3852 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
3853 | in_collseq = __collseq_table_lookup (collseqwc, wc); |
3854 | } |
3855 | else |
3856 | in_collseq = find_collation_sequence_value (pin, elem_len); |
3857 | } |
3858 | /* match with range expression? */ |
3859 | /* FIXME: Implement rational ranges here, too. */ |
3860 | for (i = 0; i < cset->nranges; ++i) |
3861 | if (cset->range_starts[i] <= in_collseq |
3862 | && in_collseq <= cset->range_ends[i]) |
3863 | { |
3864 | match_len = elem_len; |
3865 | goto check_node_accept_bytes_match; |
3866 | } |
3867 | |
3868 | /* match with equivalence_class? */ |
3869 | if (cset->nequiv_classes) |
3870 | { |
3871 | const unsigned char *cp = pin; |
3872 | table = (const int32_t *) |
3873 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
3874 | weights = (const unsigned char *) |
3875 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
3876 | extra = (const unsigned char *) |
3877 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
3878 | indirect = (const int32_t *) |
3879 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
3880 | int32_t idx = findidx (table, indirect, extra, &cp, elem_len); |
3881 | int32_t rule = idx >> 24; |
3882 | idx &= 0xffffff; |
3883 | if (idx > 0) |
3884 | { |
3885 | size_t weight_len = weights[idx]; |
3886 | for (i = 0; i < cset->nequiv_classes; ++i) |
3887 | { |
3888 | int32_t equiv_class_idx = cset->equiv_classes[i]; |
3889 | int32_t equiv_class_rule = equiv_class_idx >> 24; |
3890 | equiv_class_idx &= 0xffffff; |
3891 | if (weights[equiv_class_idx] == weight_len |
3892 | && equiv_class_rule == rule |
3893 | && memcmp (weights + idx + 1, |
3894 | weights + equiv_class_idx + 1, |
3895 | weight_len) == 0) |
3896 | { |
3897 | match_len = elem_len; |
3898 | goto check_node_accept_bytes_match; |
3899 | } |
3900 | } |
3901 | } |
3902 | } |
3903 | } |
3904 | else |
3905 | # endif /* _LIBC */ |
3906 | { |
3907 | /* match with range expression? */ |
3908 | for (i = 0; i < cset->nranges; ++i) |
3909 | { |
3910 | if (cset->range_starts[i] <= wc && wc <= cset->range_ends[i]) |
3911 | { |
3912 | match_len = char_len; |
3913 | goto check_node_accept_bytes_match; |
3914 | } |
3915 | } |
3916 | } |
3917 | check_node_accept_bytes_match: |
3918 | if (!cset->non_match) |
3919 | return match_len; |
3920 | else |
3921 | { |
3922 | if (match_len > 0) |
3923 | return 0; |
3924 | else |
3925 | return (elem_len > char_len) ? elem_len : char_len; |
3926 | } |
3927 | } |
3928 | return 0; |
3929 | } |
3930 | |
3931 | # ifdef _LIBC |
3932 | static unsigned int |
3933 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) |
3934 | { |
3935 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3936 | if (nrules == 0) |
3937 | { |
3938 | if (mbs_len == 1) |
3939 | { |
3940 | /* No valid character. Match it as a single byte character. */ |
3941 | const unsigned char *collseq = (const unsigned char *) |
3942 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
3943 | return collseq[mbs[0]]; |
3944 | } |
3945 | return UINT_MAX; |
3946 | } |
3947 | else |
3948 | { |
3949 | int32_t idx; |
3950 | const unsigned char * = (const unsigned char *) |
3951 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3952 | int32_t = (const unsigned char *) |
3953 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; |
3954 | |
3955 | for (idx = 0; idx < extrasize;) |
3956 | { |
3957 | int mbs_cnt; |
3958 | bool found = false; |
3959 | int32_t elem_mbs_len; |
3960 | /* Skip the name of collating element name. */ |
3961 | idx = idx + extra[idx] + 1; |
3962 | elem_mbs_len = extra[idx++]; |
3963 | if (mbs_len == elem_mbs_len) |
3964 | { |
3965 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) |
3966 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) |
3967 | break; |
3968 | if (mbs_cnt == elem_mbs_len) |
3969 | /* Found the entry. */ |
3970 | found = true; |
3971 | } |
3972 | /* Skip the byte sequence of the collating element. */ |
3973 | idx += elem_mbs_len; |
3974 | /* Adjust for the alignment. */ |
3975 | idx = (idx + 3) & ~3; |
3976 | /* Skip the collation sequence value. */ |
3977 | idx += sizeof (uint32_t); |
3978 | /* Skip the wide char sequence of the collating element. */ |
3979 | idx = idx + sizeof (uint32_t) * (*(int32_t *) (extra + idx) + 1); |
3980 | /* If we found the entry, return the sequence value. */ |
3981 | if (found) |
3982 | return *(uint32_t *) (extra + idx); |
3983 | /* Skip the collation sequence value. */ |
3984 | idx += sizeof (uint32_t); |
3985 | } |
3986 | return UINT_MAX; |
3987 | } |
3988 | } |
3989 | # endif /* _LIBC */ |
3990 | #endif /* RE_ENABLE_I18N */ |
3991 | |
3992 | /* Check whether the node accepts the byte which is IDX-th |
3993 | byte of the INPUT. */ |
3994 | |
3995 | static bool |
3996 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, |
3997 | Idx idx) |
3998 | { |
3999 | unsigned char ch; |
4000 | ch = re_string_byte_at (&mctx->input, idx); |
4001 | switch (node->type) |
4002 | { |
4003 | case CHARACTER: |
4004 | if (node->opr.c != ch) |
4005 | return false; |
4006 | break; |
4007 | |
4008 | case SIMPLE_BRACKET: |
4009 | if (!bitset_contain (node->opr.sbcset, ch)) |
4010 | return false; |
4011 | break; |
4012 | |
4013 | #ifdef RE_ENABLE_I18N |
4014 | case OP_UTF8_PERIOD: |
4015 | if (ch >= ASCII_CHARS) |
4016 | return false; |
4017 | FALLTHROUGH; |
4018 | #endif |
4019 | case OP_PERIOD: |
4020 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) |
4021 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) |
4022 | return false; |
4023 | break; |
4024 | |
4025 | default: |
4026 | return false; |
4027 | } |
4028 | |
4029 | if (node->constraint) |
4030 | { |
4031 | /* The node has constraints. Check whether the current context |
4032 | satisfies the constraints. */ |
4033 | unsigned int context = re_string_context_at (&mctx->input, idx, |
4034 | mctx->eflags); |
4035 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
4036 | return false; |
4037 | } |
4038 | |
4039 | return true; |
4040 | } |
4041 | |
4042 | /* Extend the buffers, if the buffers have run out. */ |
4043 | |
4044 | static reg_errcode_t |
4045 | __attribute_warn_unused_result__ |
4046 | extend_buffers (re_match_context_t *mctx, int min_len) |
4047 | { |
4048 | reg_errcode_t ret; |
4049 | re_string_t *pstr = &mctx->input; |
4050 | |
4051 | /* Avoid overflow. */ |
4052 | if (BE (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) / 2 |
4053 | <= pstr->bufs_len, 0)) |
4054 | return REG_ESPACE; |
4055 | |
4056 | /* Double the lengths of the buffers, but allocate at least MIN_LEN. */ |
4057 | ret = re_string_realloc_buffers (pstr, |
4058 | MAX (min_len, |
4059 | MIN (pstr->len, pstr->bufs_len * 2))); |
4060 | if (BE (ret != REG_NOERROR, 0)) |
4061 | return ret; |
4062 | |
4063 | if (mctx->state_log != NULL) |
4064 | { |
4065 | /* And double the length of state_log. */ |
4066 | /* XXX We have no indication of the size of this buffer. If this |
4067 | allocation fail we have no indication that the state_log array |
4068 | does not have the right size. */ |
4069 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, |
4070 | pstr->bufs_len + 1); |
4071 | if (BE (new_array == NULL, 0)) |
4072 | return REG_ESPACE; |
4073 | mctx->state_log = new_array; |
4074 | } |
4075 | |
4076 | /* Then reconstruct the buffers. */ |
4077 | if (pstr->icase) |
4078 | { |
4079 | #ifdef RE_ENABLE_I18N |
4080 | if (pstr->mb_cur_max > 1) |
4081 | { |
4082 | ret = build_wcs_upper_buffer (pstr); |
4083 | if (BE (ret != REG_NOERROR, 0)) |
4084 | return ret; |
4085 | } |
4086 | else |
4087 | #endif /* RE_ENABLE_I18N */ |
4088 | build_upper_buffer (pstr); |
4089 | } |
4090 | else |
4091 | { |
4092 | #ifdef RE_ENABLE_I18N |
4093 | if (pstr->mb_cur_max > 1) |
4094 | build_wcs_buffer (pstr); |
4095 | else |
4096 | #endif /* RE_ENABLE_I18N */ |
4097 | { |
4098 | if (pstr->trans != NULL) |
4099 | re_string_translate_buffer (pstr); |
4100 | } |
4101 | } |
4102 | return REG_NOERROR; |
4103 | } |
4104 | |
4105 | |
4106 | /* Functions for matching context. */ |
4107 | |
4108 | /* Initialize MCTX. */ |
4109 | |
4110 | static reg_errcode_t |
4111 | __attribute_warn_unused_result__ |
4112 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) |
4113 | { |
4114 | mctx->eflags = eflags; |
4115 | mctx->match_last = -1; |
4116 | if (n > 0) |
4117 | { |
4118 | /* Avoid overflow. */ |
4119 | size_t max_object_size = |
4120 | MAX (sizeof (struct re_backref_cache_entry), |
4121 | sizeof (re_sub_match_top_t *)); |
4122 | if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < n, 0)) |
4123 | return REG_ESPACE; |
4124 | |
4125 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); |
4126 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); |
4127 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) |
4128 | return REG_ESPACE; |
4129 | } |
4130 | /* Already zero-ed by the caller. |
4131 | else |
4132 | mctx->bkref_ents = NULL; |
4133 | mctx->nbkref_ents = 0; |
4134 | mctx->nsub_tops = 0; */ |
4135 | mctx->abkref_ents = n; |
4136 | mctx->max_mb_elem_len = 1; |
4137 | mctx->asub_tops = n; |
4138 | return REG_NOERROR; |
4139 | } |
4140 | |
4141 | /* Clean the entries which depend on the current input in MCTX. |
4142 | This function must be invoked when the matcher changes the start index |
4143 | of the input, or changes the input string. */ |
4144 | |
4145 | static void |
4146 | match_ctx_clean (re_match_context_t *mctx) |
4147 | { |
4148 | Idx st_idx; |
4149 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) |
4150 | { |
4151 | Idx sl_idx; |
4152 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; |
4153 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) |
4154 | { |
4155 | re_sub_match_last_t *last = top->lasts[sl_idx]; |
4156 | re_free (last->path.array); |
4157 | re_free (last); |
4158 | } |
4159 | re_free (top->lasts); |
4160 | if (top->path) |
4161 | { |
4162 | re_free (top->path->array); |
4163 | re_free (top->path); |
4164 | } |
4165 | re_free (top); |
4166 | } |
4167 | |
4168 | mctx->nsub_tops = 0; |
4169 | mctx->nbkref_ents = 0; |
4170 | } |
4171 | |
4172 | /* Free all the memory associated with MCTX. */ |
4173 | |
4174 | static void |
4175 | match_ctx_free (re_match_context_t *mctx) |
4176 | { |
4177 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ |
4178 | match_ctx_clean (mctx); |
4179 | re_free (mctx->sub_tops); |
4180 | re_free (mctx->bkref_ents); |
4181 | } |
4182 | |
4183 | /* Add a new backreference entry to MCTX. |
4184 | Note that we assume that caller never call this function with duplicate |
4185 | entry, and call with STR_IDX which isn't smaller than any existing entry. |
4186 | */ |
4187 | |
4188 | static reg_errcode_t |
4189 | __attribute_warn_unused_result__ |
4190 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, |
4191 | Idx to) |
4192 | { |
4193 | if (mctx->nbkref_ents >= mctx->abkref_ents) |
4194 | { |
4195 | struct re_backref_cache_entry* new_entry; |
4196 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, |
4197 | mctx->abkref_ents * 2); |
4198 | if (BE (new_entry == NULL, 0)) |
4199 | { |
4200 | re_free (mctx->bkref_ents); |
4201 | return REG_ESPACE; |
4202 | } |
4203 | mctx->bkref_ents = new_entry; |
4204 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', |
4205 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); |
4206 | mctx->abkref_ents *= 2; |
4207 | } |
4208 | if (mctx->nbkref_ents > 0 |
4209 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) |
4210 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; |
4211 | |
4212 | mctx->bkref_ents[mctx->nbkref_ents].node = node; |
4213 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; |
4214 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; |
4215 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; |
4216 | |
4217 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. |
4218 | If bit N is clear, means that this entry won't epsilon-transition to |
4219 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If |
4220 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one |
4221 | such node. |
4222 | |
4223 | A backreference does not epsilon-transition unless it is empty, so set |
4224 | to all zeros if FROM != TO. */ |
4225 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map |
4226 | = (from == to ? -1 : 0); |
4227 | |
4228 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; |
4229 | if (mctx->max_mb_elem_len < to - from) |
4230 | mctx->max_mb_elem_len = to - from; |
4231 | return REG_NOERROR; |
4232 | } |
4233 | |
4234 | /* Return the first entry with the same str_idx, or -1 if none is |
4235 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ |
4236 | |
4237 | static Idx |
4238 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) |
4239 | { |
4240 | Idx left, right, mid, last; |
4241 | last = right = mctx->nbkref_ents; |
4242 | for (left = 0; left < right;) |
4243 | { |
4244 | mid = (left + right) / 2; |
4245 | if (mctx->bkref_ents[mid].str_idx < str_idx) |
4246 | left = mid + 1; |
4247 | else |
4248 | right = mid; |
4249 | } |
4250 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) |
4251 | return left; |
4252 | else |
4253 | return -1; |
4254 | } |
4255 | |
4256 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches |
4257 | at STR_IDX. */ |
4258 | |
4259 | static reg_errcode_t |
4260 | __attribute_warn_unused_result__ |
4261 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) |
4262 | { |
4263 | #ifdef DEBUG |
4264 | assert (mctx->sub_tops != NULL); |
4265 | assert (mctx->asub_tops > 0); |
4266 | #endif |
4267 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) |
4268 | { |
4269 | Idx new_asub_tops = mctx->asub_tops * 2; |
4270 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, |
4271 | re_sub_match_top_t *, |
4272 | new_asub_tops); |
4273 | if (BE (new_array == NULL, 0)) |
4274 | return REG_ESPACE; |
4275 | mctx->sub_tops = new_array; |
4276 | mctx->asub_tops = new_asub_tops; |
4277 | } |
4278 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); |
4279 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) |
4280 | return REG_ESPACE; |
4281 | mctx->sub_tops[mctx->nsub_tops]->node = node; |
4282 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; |
4283 | return REG_NOERROR; |
4284 | } |
4285 | |
4286 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches |
4287 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ |
4288 | |
4289 | static re_sub_match_last_t * |
4290 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) |
4291 | { |
4292 | re_sub_match_last_t *new_entry; |
4293 | if (BE (subtop->nlasts == subtop->alasts, 0)) |
4294 | { |
4295 | Idx new_alasts = 2 * subtop->alasts + 1; |
4296 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, |
4297 | re_sub_match_last_t *, |
4298 | new_alasts); |
4299 | if (BE (new_array == NULL, 0)) |
4300 | return NULL; |
4301 | subtop->lasts = new_array; |
4302 | subtop->alasts = new_alasts; |
4303 | } |
4304 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); |
4305 | if (BE (new_entry != NULL, 1)) |
4306 | { |
4307 | subtop->lasts[subtop->nlasts] = new_entry; |
4308 | new_entry->node = node; |
4309 | new_entry->str_idx = str_idx; |
4310 | ++subtop->nlasts; |
4311 | } |
4312 | return new_entry; |
4313 | } |
4314 | |
4315 | static void |
4316 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
4317 | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) |
4318 | { |
4319 | sctx->sifted_states = sifted_sts; |
4320 | sctx->limited_states = limited_sts; |
4321 | sctx->last_node = last_node; |
4322 | sctx->last_str_idx = last_str_idx; |
4323 | re_node_set_init_empty (&sctx->limits); |
4324 | } |
4325 | |