| 1 | /* Extended regular expression matching and search library. |
| 2 | Copyright (C) 2002-2018 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, |
| 21 | Idx n); |
| 22 | static void match_ctx_clean (re_match_context_t *mctx); |
| 23 | static void match_ctx_free (re_match_context_t *cache); |
| 24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, |
| 25 | Idx str_idx, Idx from, Idx to); |
| 26 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx); |
| 27 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, |
| 28 | Idx str_idx); |
| 29 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, |
| 30 | Idx node, Idx str_idx); |
| 31 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
| 32 | re_dfastate_t **limited_sts, Idx last_node, |
| 33 | Idx last_str_idx); |
| 34 | static reg_errcode_t re_search_internal (const regex_t *preg, |
| 35 | const char *string, Idx length, |
| 36 | Idx start, Idx last_start, Idx stop, |
| 37 | size_t nmatch, regmatch_t pmatch[], |
| 38 | int eflags); |
| 39 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, |
| 40 | const char *string1, Idx length1, |
| 41 | const char *string2, Idx length2, |
| 42 | Idx start, regoff_t range, |
| 43 | struct re_registers *regs, |
| 44 | Idx stop, bool ret_len); |
| 45 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, |
| 46 | const char *string, Idx length, Idx start, |
| 47 | regoff_t range, Idx stop, |
| 48 | struct re_registers *regs, |
| 49 | bool ret_len); |
| 50 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, |
| 51 | Idx nregs, int regs_allocated); |
| 52 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); |
| 53 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, |
| 54 | Idx *p_match_first); |
| 55 | static Idx check_halt_state_context (const re_match_context_t *mctx, |
| 56 | const re_dfastate_t *state, Idx idx); |
| 57 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
| 58 | regmatch_t *prev_idx_match, Idx cur_node, |
| 59 | Idx cur_idx, Idx nmatch); |
| 60 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, |
| 61 | Idx str_idx, Idx dest_node, Idx nregs, |
| 62 | regmatch_t *regs, |
| 63 | re_node_set *eps_via_nodes); |
| 64 | static reg_errcode_t set_regs (const regex_t *preg, |
| 65 | const re_match_context_t *mctx, |
| 66 | size_t nmatch, regmatch_t *pmatch, |
| 67 | bool fl_backtrack); |
| 68 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs); |
| 69 | |
| 70 | #ifdef RE_ENABLE_I18N |
| 71 | static int sift_states_iter_mb (const re_match_context_t *mctx, |
| 72 | re_sift_context_t *sctx, |
| 73 | Idx node_idx, Idx str_idx, Idx max_str_idx); |
| 74 | #endif /* RE_ENABLE_I18N */ |
| 75 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, |
| 76 | re_sift_context_t *sctx); |
| 77 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, |
| 78 | re_sift_context_t *sctx, Idx str_idx, |
| 79 | re_node_set *cur_dest); |
| 80 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, |
| 81 | re_sift_context_t *sctx, |
| 82 | Idx str_idx, |
| 83 | re_node_set *dest_nodes); |
| 84 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, |
| 85 | re_node_set *dest_nodes, |
| 86 | const re_node_set *candidates); |
| 87 | static bool check_dst_limits (const re_match_context_t *mctx, |
| 88 | const re_node_set *limits, |
| 89 | Idx dst_node, Idx dst_idx, Idx src_node, |
| 90 | Idx src_idx); |
| 91 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, |
| 92 | int boundaries, Idx subexp_idx, |
| 93 | Idx from_node, Idx bkref_idx); |
| 94 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, |
| 95 | Idx limit, Idx subexp_idx, |
| 96 | Idx node, Idx str_idx, |
| 97 | Idx bkref_idx); |
| 98 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, |
| 99 | re_node_set *dest_nodes, |
| 100 | const re_node_set *candidates, |
| 101 | re_node_set *limits, |
| 102 | struct re_backref_cache_entry *bkref_ents, |
| 103 | Idx str_idx); |
| 104 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, |
| 105 | re_sift_context_t *sctx, |
| 106 | Idx str_idx, const re_node_set *candidates); |
| 107 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, |
| 108 | re_dfastate_t **dst, |
| 109 | re_dfastate_t **src, Idx num); |
| 110 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, |
| 111 | re_match_context_t *mctx); |
| 112 | static re_dfastate_t *transit_state (reg_errcode_t *err, |
| 113 | re_match_context_t *mctx, |
| 114 | re_dfastate_t *state); |
| 115 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, |
| 116 | re_match_context_t *mctx, |
| 117 | re_dfastate_t *next_state); |
| 118 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, |
| 119 | re_node_set *cur_nodes, |
| 120 | Idx str_idx); |
| 121 | #if 0 |
| 122 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, |
| 123 | re_match_context_t *mctx, |
| 124 | re_dfastate_t *pstate); |
| 125 | #endif |
| 126 | #ifdef RE_ENABLE_I18N |
| 127 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, |
| 128 | re_dfastate_t *pstate); |
| 129 | #endif /* RE_ENABLE_I18N */ |
| 130 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, |
| 131 | const re_node_set *nodes); |
| 132 | static reg_errcode_t get_subexp (re_match_context_t *mctx, |
| 133 | Idx bkref_node, Idx bkref_str_idx); |
| 134 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, |
| 135 | const re_sub_match_top_t *sub_top, |
| 136 | re_sub_match_last_t *sub_last, |
| 137 | Idx bkref_node, Idx bkref_str); |
| 138 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
| 139 | Idx subexp_idx, int type); |
| 140 | static reg_errcode_t check_arrival (re_match_context_t *mctx, |
| 141 | state_array_t *path, Idx top_node, |
| 142 | Idx top_str, Idx last_node, Idx last_str, |
| 143 | int type); |
| 144 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, |
| 145 | Idx str_idx, |
| 146 | re_node_set *cur_nodes, |
| 147 | re_node_set *next_nodes); |
| 148 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, |
| 149 | re_node_set *cur_nodes, |
| 150 | Idx ex_subexp, int type); |
| 151 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, |
| 152 | re_node_set *dst_nodes, |
| 153 | Idx target, Idx ex_subexp, |
| 154 | int type); |
| 155 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, |
| 156 | re_node_set *cur_nodes, Idx cur_str, |
| 157 | Idx subexp_num, int type); |
| 158 | static bool build_trtable (const re_dfa_t *dfa, re_dfastate_t *state); |
| 159 | #ifdef RE_ENABLE_I18N |
| 160 | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
| 161 | const re_string_t *input, Idx idx); |
| 162 | # ifdef _LIBC |
| 163 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, |
| 164 | size_t name_len); |
| 165 | # endif /* _LIBC */ |
| 166 | #endif /* RE_ENABLE_I18N */ |
| 167 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, |
| 168 | const re_dfastate_t *state, |
| 169 | re_node_set *states_node, |
| 170 | bitset_t *states_ch); |
| 171 | static bool check_node_accept (const re_match_context_t *mctx, |
| 172 | const re_token_t *node, Idx idx); |
| 173 | static reg_errcode_t extend_buffers (re_match_context_t *mctx, int min_len); |
| 174 | |
| 175 | /* Entry point for POSIX code. */ |
| 176 | |
| 177 | /* regexec searches for a given pattern, specified by PREG, in the |
| 178 | string STRING. |
| 179 | |
| 180 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
| 181 | 'regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
| 182 | least NMATCH elements, and we set them to the offsets of the |
| 183 | corresponding matched substrings. |
| 184 | |
| 185 | EFLAGS specifies "execution flags" which affect matching: if |
| 186 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
| 187 | string; if REG_NOTEOL is set, then $ does not match at the end. |
| 188 | |
| 189 | We return 0 if we find a match and REG_NOMATCH if not. */ |
| 190 | |
| 191 | int |
| 192 | regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string, |
| 193 | size_t nmatch, regmatch_t pmatch[], int eflags) |
| 194 | { |
| 195 | reg_errcode_t err; |
| 196 | Idx start, length; |
| 197 | re_dfa_t *dfa = preg->buffer; |
| 198 | |
| 199 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) |
| 200 | return REG_BADPAT; |
| 201 | |
| 202 | if (eflags & REG_STARTEND) |
| 203 | { |
| 204 | start = pmatch[0].rm_so; |
| 205 | length = pmatch[0].rm_eo; |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | start = 0; |
| 210 | length = strlen (string); |
| 211 | } |
| 212 | |
| 213 | lock_lock (dfa->lock); |
| 214 | if (preg->no_sub) |
| 215 | err = re_search_internal (preg, string, length, start, length, |
| 216 | length, 0, NULL, eflags); |
| 217 | else |
| 218 | err = re_search_internal (preg, string, length, start, length, |
| 219 | length, nmatch, pmatch, eflags); |
| 220 | lock_unlock (dfa->lock); |
| 221 | return err != REG_NOERROR; |
| 222 | } |
| 223 | |
| 224 | #ifdef _LIBC |
| 225 | libc_hidden_def (__regexec) |
| 226 | |
| 227 | # include <shlib-compat.h> |
| 228 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); |
| 229 | |
| 230 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) |
| 231 | __typeof__ (__regexec) __compat_regexec; |
| 232 | |
| 233 | int |
| 234 | attribute_compat_text_section |
| 235 | __compat_regexec (const regex_t *_Restrict_ preg, |
| 236 | const char *_Restrict_ string, size_t nmatch, |
| 237 | regmatch_t pmatch[], int eflags) |
| 238 | { |
| 239 | return regexec (preg, string, nmatch, pmatch, |
| 240 | eflags & (REG_NOTBOL | REG_NOTEOL)); |
| 241 | } |
| 242 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); |
| 243 | # endif |
| 244 | #endif |
| 245 | |
| 246 | /* Entry points for GNU code. */ |
| 247 | |
| 248 | /* re_match, re_search, re_match_2, re_search_2 |
| 249 | |
| 250 | The former two functions operate on STRING with length LENGTH, |
| 251 | while the later two operate on concatenation of STRING1 and STRING2 |
| 252 | with lengths LENGTH1 and LENGTH2, respectively. |
| 253 | |
| 254 | re_match() matches the compiled pattern in BUFP against the string, |
| 255 | starting at index START. |
| 256 | |
| 257 | re_search() first tries matching at index START, then it tries to match |
| 258 | starting from index START + 1, and so on. The last start position tried |
| 259 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same |
| 260 | way as re_match().) |
| 261 | |
| 262 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding |
| 263 | the first STOP characters of the concatenation of the strings should be |
| 264 | concerned. |
| 265 | |
| 266 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match |
| 267 | and all groups is stored in REGS. (For the "_2" variants, the offsets are |
| 268 | computed relative to the concatenation, not relative to the individual |
| 269 | strings.) |
| 270 | |
| 271 | On success, re_match* functions return the length of the match, re_search* |
| 272 | return the position of the start of the match. Return value -1 means no |
| 273 | match was found and -2 indicates an internal error. */ |
| 274 | |
| 275 | regoff_t |
| 276 | re_match (struct re_pattern_buffer *bufp, const char *string, Idx length, |
| 277 | Idx start, struct re_registers *regs) |
| 278 | { |
| 279 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); |
| 280 | } |
| 281 | #ifdef _LIBC |
| 282 | weak_alias (__re_match, re_match) |
| 283 | #endif |
| 284 | |
| 285 | regoff_t |
| 286 | re_search (struct re_pattern_buffer *bufp, const char *string, Idx length, |
| 287 | Idx start, regoff_t range, struct re_registers *regs) |
| 288 | { |
| 289 | return re_search_stub (bufp, string, length, start, range, length, regs, |
| 290 | false); |
| 291 | } |
| 292 | #ifdef _LIBC |
| 293 | weak_alias (__re_search, re_search) |
| 294 | #endif |
| 295 | |
| 296 | regoff_t |
| 297 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
| 298 | const char *string2, Idx length2, Idx start, |
| 299 | struct re_registers *regs, Idx stop) |
| 300 | { |
| 301 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
| 302 | start, 0, regs, stop, true); |
| 303 | } |
| 304 | #ifdef _LIBC |
| 305 | weak_alias (__re_match_2, re_match_2) |
| 306 | #endif |
| 307 | |
| 308 | regoff_t |
| 309 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
| 310 | const char *string2, Idx length2, Idx start, regoff_t range, |
| 311 | struct re_registers *regs, Idx stop) |
| 312 | { |
| 313 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
| 314 | start, range, regs, stop, false); |
| 315 | } |
| 316 | #ifdef _LIBC |
| 317 | weak_alias (__re_search_2, re_search_2) |
| 318 | #endif |
| 319 | |
| 320 | static regoff_t |
| 321 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, |
| 322 | Idx length1, const char *string2, Idx length2, Idx start, |
| 323 | regoff_t range, struct re_registers *regs, |
| 324 | Idx stop, bool ret_len) |
| 325 | { |
| 326 | const char *str; |
| 327 | regoff_t rval; |
| 328 | Idx len; |
| 329 | char *s = NULL; |
| 330 | |
| 331 | if (BE ((length1 < 0 || length2 < 0 || stop < 0 |
| 332 | || INT_ADD_WRAPV (length1, length2, &len)), |
| 333 | 0)) |
| 334 | return -2; |
| 335 | |
| 336 | /* Concatenate the strings. */ |
| 337 | if (length2 > 0) |
| 338 | if (length1 > 0) |
| 339 | { |
| 340 | s = re_malloc (char, len); |
| 341 | |
| 342 | if (BE (s == NULL, 0)) |
| 343 | return -2; |
| 344 | #ifdef _LIBC |
| 345 | memcpy (__mempcpy (s, string1, length1), string2, length2); |
| 346 | #else |
| 347 | memcpy (s, string1, length1); |
| 348 | memcpy (s + length1, string2, length2); |
| 349 | #endif |
| 350 | str = s; |
| 351 | } |
| 352 | else |
| 353 | str = string2; |
| 354 | else |
| 355 | str = string1; |
| 356 | |
| 357 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, |
| 358 | ret_len); |
| 359 | re_free (s); |
| 360 | return rval; |
| 361 | } |
| 362 | |
| 363 | /* The parameters have the same meaning as those of re_search. |
| 364 | Additional parameters: |
| 365 | If RET_LEN is true the length of the match is returned (re_match style); |
| 366 | otherwise the position of the match is returned. */ |
| 367 | |
| 368 | static regoff_t |
| 369 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, Idx length, |
| 370 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, |
| 371 | bool ret_len) |
| 372 | { |
| 373 | reg_errcode_t result; |
| 374 | regmatch_t *pmatch; |
| 375 | Idx nregs; |
| 376 | regoff_t rval; |
| 377 | int eflags = 0; |
| 378 | re_dfa_t *dfa = bufp->buffer; |
| 379 | Idx last_start = start + range; |
| 380 | |
| 381 | /* Check for out-of-range. */ |
| 382 | if (BE (start < 0 || start > length, 0)) |
| 383 | return -1; |
| 384 | if (BE (length < last_start || (0 <= range && last_start < start), 0)) |
| 385 | last_start = length; |
| 386 | else if (BE (last_start < 0 || (range < 0 && start <= last_start), 0)) |
| 387 | last_start = 0; |
| 388 | |
| 389 | lock_lock (dfa->lock); |
| 390 | |
| 391 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; |
| 392 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; |
| 393 | |
| 394 | /* Compile fastmap if we haven't yet. */ |
| 395 | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) |
| 396 | re_compile_fastmap (bufp); |
| 397 | |
| 398 | if (BE (bufp->no_sub, 0)) |
| 399 | regs = NULL; |
| 400 | |
| 401 | /* We need at least 1 register. */ |
| 402 | if (regs == NULL) |
| 403 | nregs = 1; |
| 404 | else if (BE (bufp->regs_allocated == REGS_FIXED |
| 405 | && regs->num_regs <= bufp->re_nsub, 0)) |
| 406 | { |
| 407 | nregs = regs->num_regs; |
| 408 | if (BE (nregs < 1, 0)) |
| 409 | { |
| 410 | /* Nothing can be copied to regs. */ |
| 411 | regs = NULL; |
| 412 | nregs = 1; |
| 413 | } |
| 414 | } |
| 415 | else |
| 416 | nregs = bufp->re_nsub + 1; |
| 417 | pmatch = re_malloc (regmatch_t, nregs); |
| 418 | if (BE (pmatch == NULL, 0)) |
| 419 | { |
| 420 | rval = -2; |
| 421 | goto out; |
| 422 | } |
| 423 | |
| 424 | result = re_search_internal (bufp, string, length, start, last_start, stop, |
| 425 | nregs, pmatch, eflags); |
| 426 | |
| 427 | rval = 0; |
| 428 | |
| 429 | /* I hope we needn't fill their regs with -1's when no match was found. */ |
| 430 | if (result != REG_NOERROR) |
| 431 | rval = result == REG_NOMATCH ? -1 : -2; |
| 432 | else if (regs != NULL) |
| 433 | { |
| 434 | /* If caller wants register contents data back, copy them. */ |
| 435 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, |
| 436 | bufp->regs_allocated); |
| 437 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) |
| 438 | rval = -2; |
| 439 | } |
| 440 | |
| 441 | if (BE (rval == 0, 1)) |
| 442 | { |
| 443 | if (ret_len) |
| 444 | { |
| 445 | assert (pmatch[0].rm_so == start); |
| 446 | rval = pmatch[0].rm_eo - start; |
| 447 | } |
| 448 | else |
| 449 | rval = pmatch[0].rm_so; |
| 450 | } |
| 451 | re_free (pmatch); |
| 452 | out: |
| 453 | lock_unlock (dfa->lock); |
| 454 | return rval; |
| 455 | } |
| 456 | |
| 457 | static unsigned |
| 458 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, |
| 459 | int regs_allocated) |
| 460 | { |
| 461 | int rval = REGS_REALLOCATE; |
| 462 | Idx i; |
| 463 | Idx need_regs = nregs + 1; |
| 464 | /* We need one extra element beyond 'num_regs' for the '-1' marker GNU code |
| 465 | uses. */ |
| 466 | |
| 467 | /* Have the register data arrays been allocated? */ |
| 468 | if (regs_allocated == REGS_UNALLOCATED) |
| 469 | { /* No. So allocate them with malloc. */ |
| 470 | regs->start = re_malloc (regoff_t, need_regs); |
| 471 | if (BE (regs->start == NULL, 0)) |
| 472 | return REGS_UNALLOCATED; |
| 473 | regs->end = re_malloc (regoff_t, need_regs); |
| 474 | if (BE (regs->end == NULL, 0)) |
| 475 | { |
| 476 | re_free (regs->start); |
| 477 | return REGS_UNALLOCATED; |
| 478 | } |
| 479 | regs->num_regs = need_regs; |
| 480 | } |
| 481 | else if (regs_allocated == REGS_REALLOCATE) |
| 482 | { /* Yes. If we need more elements than were already |
| 483 | allocated, reallocate them. If we need fewer, just |
| 484 | leave it alone. */ |
| 485 | if (BE (need_regs > regs->num_regs, 0)) |
| 486 | { |
| 487 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); |
| 488 | regoff_t *new_end; |
| 489 | if (BE (new_start == NULL, 0)) |
| 490 | return REGS_UNALLOCATED; |
| 491 | new_end = re_realloc (regs->end, regoff_t, need_regs); |
| 492 | if (BE (new_end == NULL, 0)) |
| 493 | { |
| 494 | re_free (new_start); |
| 495 | return REGS_UNALLOCATED; |
| 496 | } |
| 497 | regs->start = new_start; |
| 498 | regs->end = new_end; |
| 499 | regs->num_regs = need_regs; |
| 500 | } |
| 501 | } |
| 502 | else |
| 503 | { |
| 504 | assert (regs_allocated == REGS_FIXED); |
| 505 | /* This function may not be called with REGS_FIXED and nregs too big. */ |
| 506 | assert (regs->num_regs >= nregs); |
| 507 | rval = REGS_FIXED; |
| 508 | } |
| 509 | |
| 510 | /* Copy the regs. */ |
| 511 | for (i = 0; i < nregs; ++i) |
| 512 | { |
| 513 | regs->start[i] = pmatch[i].rm_so; |
| 514 | regs->end[i] = pmatch[i].rm_eo; |
| 515 | } |
| 516 | for ( ; i < regs->num_regs; ++i) |
| 517 | regs->start[i] = regs->end[i] = -1; |
| 518 | |
| 519 | return rval; |
| 520 | } |
| 521 | |
| 522 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
| 523 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
| 524 | this memory for recording register information. STARTS and ENDS |
| 525 | must be allocated using the malloc library routine, and must each |
| 526 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
| 527 | |
| 528 | If NUM_REGS == 0, then subsequent matches should allocate their own |
| 529 | register data. |
| 530 | |
| 531 | Unless this function is called, the first search or match using |
| 532 | PATTERN_BUFFER will allocate its own register data, without |
| 533 | freeing the old data. */ |
| 534 | |
| 535 | void |
| 536 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, |
| 537 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) |
| 538 | { |
| 539 | if (num_regs) |
| 540 | { |
| 541 | bufp->regs_allocated = REGS_REALLOCATE; |
| 542 | regs->num_regs = num_regs; |
| 543 | regs->start = starts; |
| 544 | regs->end = ends; |
| 545 | } |
| 546 | else |
| 547 | { |
| 548 | bufp->regs_allocated = REGS_UNALLOCATED; |
| 549 | regs->num_regs = 0; |
| 550 | regs->start = regs->end = NULL; |
| 551 | } |
| 552 | } |
| 553 | #ifdef _LIBC |
| 554 | weak_alias (__re_set_registers, re_set_registers) |
| 555 | #endif |
| 556 | |
| 557 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
| 558 | them unless specifically requested. */ |
| 559 | |
| 560 | #if defined _REGEX_RE_COMP || defined _LIBC |
| 561 | int |
| 562 | # ifdef _LIBC |
| 563 | weak_function |
| 564 | # endif |
| 565 | re_exec (const char *s) |
| 566 | { |
| 567 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); |
| 568 | } |
| 569 | #endif /* _REGEX_RE_COMP */ |
| 570 | |
| 571 | /* Internal entry point. */ |
| 572 | |
| 573 | /* Searches for a compiled pattern PREG in the string STRING, whose |
| 574 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same |
| 575 | meaning as with regexec. LAST_START is START + RANGE, where |
| 576 | START and RANGE have the same meaning as with re_search. |
| 577 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, |
| 578 | otherwise return the error code. |
| 579 | Note: We assume front end functions already check ranges. |
| 580 | (0 <= LAST_START && LAST_START <= LENGTH) */ |
| 581 | |
| 582 | static reg_errcode_t |
| 583 | __attribute_warn_unused_result__ |
| 584 | re_search_internal (const regex_t *preg, const char *string, Idx length, |
| 585 | Idx start, Idx last_start, Idx stop, size_t nmatch, |
| 586 | regmatch_t pmatch[], int eflags) |
| 587 | { |
| 588 | reg_errcode_t err; |
| 589 | const re_dfa_t *dfa = preg->buffer; |
| 590 | Idx left_lim, right_lim; |
| 591 | int incr; |
| 592 | bool fl_longest_match; |
| 593 | int match_kind; |
| 594 | Idx match_first; |
| 595 | Idx match_last = -1; |
| 596 | Idx ; |
| 597 | bool sb; |
| 598 | int ch; |
| 599 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) |
| 600 | re_match_context_t mctx = { .dfa = dfa }; |
| 601 | #else |
| 602 | re_match_context_t mctx; |
| 603 | #endif |
| 604 | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate |
| 605 | && start != last_start && !preg->can_be_null) |
| 606 | ? preg->fastmap : NULL); |
| 607 | RE_TRANSLATE_TYPE t = preg->translate; |
| 608 | |
| 609 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) |
| 610 | memset (&mctx, '\0', sizeof (re_match_context_t)); |
| 611 | mctx.dfa = dfa; |
| 612 | #endif |
| 613 | |
| 614 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; |
| 615 | nmatch -= extra_nmatch; |
| 616 | |
| 617 | /* Check if the DFA haven't been compiled. */ |
| 618 | if (BE (preg->used == 0 || dfa->init_state == NULL |
| 619 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
| 620 | || dfa->init_state_begbuf == NULL, 0)) |
| 621 | return REG_NOMATCH; |
| 622 | |
| 623 | #ifdef DEBUG |
| 624 | /* We assume front-end functions already check them. */ |
| 625 | assert (0 <= last_start && last_start <= length); |
| 626 | #endif |
| 627 | |
| 628 | /* If initial states with non-begbuf contexts have no elements, |
| 629 | the regex must be anchored. If preg->newline_anchor is set, |
| 630 | we'll never use init_state_nl, so do not check it. */ |
| 631 | if (dfa->init_state->nodes.nelem == 0 |
| 632 | && dfa->init_state_word->nodes.nelem == 0 |
| 633 | && (dfa->init_state_nl->nodes.nelem == 0 |
| 634 | || !preg->newline_anchor)) |
| 635 | { |
| 636 | if (start != 0 && last_start != 0) |
| 637 | return REG_NOMATCH; |
| 638 | start = last_start = 0; |
| 639 | } |
| 640 | |
| 641 | /* We must check the longest matching, if nmatch > 0. */ |
| 642 | fl_longest_match = (nmatch != 0 || dfa->nbackref); |
| 643 | |
| 644 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, |
| 645 | preg->translate, (preg->syntax & RE_ICASE) != 0, |
| 646 | dfa); |
| 647 | if (BE (err != REG_NOERROR, 0)) |
| 648 | goto free_return; |
| 649 | mctx.input.stop = stop; |
| 650 | mctx.input.raw_stop = stop; |
| 651 | mctx.input.newline_anchor = preg->newline_anchor; |
| 652 | |
| 653 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); |
| 654 | if (BE (err != REG_NOERROR, 0)) |
| 655 | goto free_return; |
| 656 | |
| 657 | /* We will log all the DFA states through which the dfa pass, |
| 658 | if nmatch > 1, or this dfa has "multibyte node", which is a |
| 659 | back-reference or a node which can accept multibyte character or |
| 660 | multi character collating element. */ |
| 661 | if (nmatch > 1 || dfa->has_mb_node) |
| 662 | { |
| 663 | /* Avoid overflow. */ |
| 664 | if (BE ((MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
| 665 | <= mctx.input.bufs_len), 0)) |
| 666 | { |
| 667 | err = REG_ESPACE; |
| 668 | goto free_return; |
| 669 | } |
| 670 | |
| 671 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); |
| 672 | if (BE (mctx.state_log == NULL, 0)) |
| 673 | { |
| 674 | err = REG_ESPACE; |
| 675 | goto free_return; |
| 676 | } |
| 677 | } |
| 678 | else |
| 679 | mctx.state_log = NULL; |
| 680 | |
| 681 | match_first = start; |
| 682 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
| 683 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; |
| 684 | |
| 685 | /* Check incrementally whether the input string matches. */ |
| 686 | incr = (last_start < start) ? -1 : 1; |
| 687 | left_lim = (last_start < start) ? last_start : start; |
| 688 | right_lim = (last_start < start) ? start : last_start; |
| 689 | sb = dfa->mb_cur_max == 1; |
| 690 | match_kind = |
| 691 | (fastmap |
| 692 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) |
| 693 | | (start <= last_start ? 2 : 0) |
| 694 | | (t != NULL ? 1 : 0)) |
| 695 | : 8); |
| 696 | |
| 697 | for (;; match_first += incr) |
| 698 | { |
| 699 | err = REG_NOMATCH; |
| 700 | if (match_first < left_lim || right_lim < match_first) |
| 701 | goto free_return; |
| 702 | |
| 703 | /* Advance as rapidly as possible through the string, until we |
| 704 | find a plausible place to start matching. This may be done |
| 705 | with varying efficiency, so there are various possibilities: |
| 706 | only the most common of them are specialized, in order to |
| 707 | save on code size. We use a switch statement for speed. */ |
| 708 | switch (match_kind) |
| 709 | { |
| 710 | case 8: |
| 711 | /* No fastmap. */ |
| 712 | break; |
| 713 | |
| 714 | case 7: |
| 715 | /* Fastmap with single-byte translation, match forward. */ |
| 716 | while (BE (match_first < right_lim, 1) |
| 717 | && !fastmap[t[(unsigned char) string[match_first]]]) |
| 718 | ++match_first; |
| 719 | goto forward_match_found_start_or_reached_end; |
| 720 | |
| 721 | case 6: |
| 722 | /* Fastmap without translation, match forward. */ |
| 723 | while (BE (match_first < right_lim, 1) |
| 724 | && !fastmap[(unsigned char) string[match_first]]) |
| 725 | ++match_first; |
| 726 | |
| 727 | forward_match_found_start_or_reached_end: |
| 728 | if (BE (match_first == right_lim, 0)) |
| 729 | { |
| 730 | ch = match_first >= length |
| 731 | ? 0 : (unsigned char) string[match_first]; |
| 732 | if (!fastmap[t ? t[ch] : ch]) |
| 733 | goto free_return; |
| 734 | } |
| 735 | break; |
| 736 | |
| 737 | case 4: |
| 738 | case 5: |
| 739 | /* Fastmap without multi-byte translation, match backwards. */ |
| 740 | while (match_first >= left_lim) |
| 741 | { |
| 742 | ch = match_first >= length |
| 743 | ? 0 : (unsigned char) string[match_first]; |
| 744 | if (fastmap[t ? t[ch] : ch]) |
| 745 | break; |
| 746 | --match_first; |
| 747 | } |
| 748 | if (match_first < left_lim) |
| 749 | goto free_return; |
| 750 | break; |
| 751 | |
| 752 | default: |
| 753 | /* In this case, we can't determine easily the current byte, |
| 754 | since it might be a component byte of a multibyte |
| 755 | character. Then we use the constructed buffer instead. */ |
| 756 | for (;;) |
| 757 | { |
| 758 | /* If MATCH_FIRST is out of the valid range, reconstruct the |
| 759 | buffers. */ |
| 760 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; |
| 761 | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) |
| 762 | { |
| 763 | err = re_string_reconstruct (&mctx.input, match_first, |
| 764 | eflags); |
| 765 | if (BE (err != REG_NOERROR, 0)) |
| 766 | goto free_return; |
| 767 | |
| 768 | offset = match_first - mctx.input.raw_mbs_idx; |
| 769 | } |
| 770 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. |
| 771 | Note that MATCH_FIRST must not be smaller than 0. */ |
| 772 | ch = (match_first >= length |
| 773 | ? 0 : re_string_byte_at (&mctx.input, offset)); |
| 774 | if (fastmap[ch]) |
| 775 | break; |
| 776 | match_first += incr; |
| 777 | if (match_first < left_lim || match_first > right_lim) |
| 778 | { |
| 779 | err = REG_NOMATCH; |
| 780 | goto free_return; |
| 781 | } |
| 782 | } |
| 783 | break; |
| 784 | } |
| 785 | |
| 786 | /* Reconstruct the buffers so that the matcher can assume that |
| 787 | the matching starts from the beginning of the buffer. */ |
| 788 | err = re_string_reconstruct (&mctx.input, match_first, eflags); |
| 789 | if (BE (err != REG_NOERROR, 0)) |
| 790 | goto free_return; |
| 791 | |
| 792 | #ifdef RE_ENABLE_I18N |
| 793 | /* Don't consider this char as a possible match start if it part, |
| 794 | yet isn't the head, of a multibyte character. */ |
| 795 | if (!sb && !re_string_first_byte (&mctx.input, 0)) |
| 796 | continue; |
| 797 | #endif |
| 798 | |
| 799 | /* It seems to be appropriate one, then use the matcher. */ |
| 800 | /* We assume that the matching starts from 0. */ |
| 801 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; |
| 802 | match_last = check_matching (&mctx, fl_longest_match, |
| 803 | start <= last_start ? &match_first : NULL); |
| 804 | if (match_last != -1) |
| 805 | { |
| 806 | if (BE (match_last == -2, 0)) |
| 807 | { |
| 808 | err = REG_ESPACE; |
| 809 | goto free_return; |
| 810 | } |
| 811 | else |
| 812 | { |
| 813 | mctx.match_last = match_last; |
| 814 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) |
| 815 | { |
| 816 | re_dfastate_t *pstate = mctx.state_log[match_last]; |
| 817 | mctx.last_node = check_halt_state_context (&mctx, pstate, |
| 818 | match_last); |
| 819 | } |
| 820 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) |
| 821 | || dfa->nbackref) |
| 822 | { |
| 823 | err = prune_impossible_nodes (&mctx); |
| 824 | if (err == REG_NOERROR) |
| 825 | break; |
| 826 | if (BE (err != REG_NOMATCH, 0)) |
| 827 | goto free_return; |
| 828 | match_last = -1; |
| 829 | } |
| 830 | else |
| 831 | break; /* We found a match. */ |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | match_ctx_clean (&mctx); |
| 836 | } |
| 837 | |
| 838 | #ifdef DEBUG |
| 839 | assert (match_last != -1); |
| 840 | assert (err == REG_NOERROR); |
| 841 | #endif |
| 842 | |
| 843 | /* Set pmatch[] if we need. */ |
| 844 | if (nmatch > 0) |
| 845 | { |
| 846 | Idx reg_idx; |
| 847 | |
| 848 | /* Initialize registers. */ |
| 849 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) |
| 850 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; |
| 851 | |
| 852 | /* Set the points where matching start/end. */ |
| 853 | pmatch[0].rm_so = 0; |
| 854 | pmatch[0].rm_eo = mctx.match_last; |
| 855 | /* FIXME: This function should fail if mctx.match_last exceeds |
| 856 | the maximum possible regoff_t value. We need a new error |
| 857 | code REG_OVERFLOW. */ |
| 858 | |
| 859 | if (!preg->no_sub && nmatch > 1) |
| 860 | { |
| 861 | err = set_regs (preg, &mctx, nmatch, pmatch, |
| 862 | dfa->has_plural_match && dfa->nbackref > 0); |
| 863 | if (BE (err != REG_NOERROR, 0)) |
| 864 | goto free_return; |
| 865 | } |
| 866 | |
| 867 | /* At last, add the offset to each register, since we slid |
| 868 | the buffers so that we could assume that the matching starts |
| 869 | from 0. */ |
| 870 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
| 871 | if (pmatch[reg_idx].rm_so != -1) |
| 872 | { |
| 873 | #ifdef RE_ENABLE_I18N |
| 874 | if (BE (mctx.input.offsets_needed != 0, 0)) |
| 875 | { |
| 876 | pmatch[reg_idx].rm_so = |
| 877 | (pmatch[reg_idx].rm_so == mctx.input.valid_len |
| 878 | ? mctx.input.valid_raw_len |
| 879 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); |
| 880 | pmatch[reg_idx].rm_eo = |
| 881 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len |
| 882 | ? mctx.input.valid_raw_len |
| 883 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); |
| 884 | } |
| 885 | #else |
| 886 | assert (mctx.input.offsets_needed == 0); |
| 887 | #endif |
| 888 | pmatch[reg_idx].rm_so += match_first; |
| 889 | pmatch[reg_idx].rm_eo += match_first; |
| 890 | } |
| 891 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) |
| 892 | { |
| 893 | pmatch[nmatch + reg_idx].rm_so = -1; |
| 894 | pmatch[nmatch + reg_idx].rm_eo = -1; |
| 895 | } |
| 896 | |
| 897 | if (dfa->subexp_map) |
| 898 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) |
| 899 | if (dfa->subexp_map[reg_idx] != reg_idx) |
| 900 | { |
| 901 | pmatch[reg_idx + 1].rm_so |
| 902 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; |
| 903 | pmatch[reg_idx + 1].rm_eo |
| 904 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | free_return: |
| 909 | re_free (mctx.state_log); |
| 910 | if (dfa->nbackref) |
| 911 | match_ctx_free (&mctx); |
| 912 | re_string_destruct (&mctx.input); |
| 913 | return err; |
| 914 | } |
| 915 | |
| 916 | static reg_errcode_t |
| 917 | __attribute_warn_unused_result__ |
| 918 | prune_impossible_nodes (re_match_context_t *mctx) |
| 919 | { |
| 920 | const re_dfa_t *const dfa = mctx->dfa; |
| 921 | Idx halt_node, match_last; |
| 922 | reg_errcode_t ret; |
| 923 | re_dfastate_t **sifted_states; |
| 924 | re_dfastate_t **lim_states = NULL; |
| 925 | re_sift_context_t sctx; |
| 926 | #ifdef DEBUG |
| 927 | assert (mctx->state_log != NULL); |
| 928 | #endif |
| 929 | match_last = mctx->match_last; |
| 930 | halt_node = mctx->last_node; |
| 931 | |
| 932 | /* Avoid overflow. */ |
| 933 | if (BE (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) <= match_last, 0)) |
| 934 | return REG_ESPACE; |
| 935 | |
| 936 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); |
| 937 | if (BE (sifted_states == NULL, 0)) |
| 938 | { |
| 939 | ret = REG_ESPACE; |
| 940 | goto free_return; |
| 941 | } |
| 942 | if (dfa->nbackref) |
| 943 | { |
| 944 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); |
| 945 | if (BE (lim_states == NULL, 0)) |
| 946 | { |
| 947 | ret = REG_ESPACE; |
| 948 | goto free_return; |
| 949 | } |
| 950 | while (1) |
| 951 | { |
| 952 | memset (lim_states, '\0', |
| 953 | sizeof (re_dfastate_t *) * (match_last + 1)); |
| 954 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, |
| 955 | match_last); |
| 956 | ret = sift_states_backward (mctx, &sctx); |
| 957 | re_node_set_free (&sctx.limits); |
| 958 | if (BE (ret != REG_NOERROR, 0)) |
| 959 | goto free_return; |
| 960 | if (sifted_states[0] != NULL || lim_states[0] != NULL) |
| 961 | break; |
| 962 | do |
| 963 | { |
| 964 | --match_last; |
| 965 | if (match_last < 0) |
| 966 | { |
| 967 | ret = REG_NOMATCH; |
| 968 | goto free_return; |
| 969 | } |
| 970 | } while (mctx->state_log[match_last] == NULL |
| 971 | || !mctx->state_log[match_last]->halt); |
| 972 | halt_node = check_halt_state_context (mctx, |
| 973 | mctx->state_log[match_last], |
| 974 | match_last); |
| 975 | } |
| 976 | ret = merge_state_array (dfa, sifted_states, lim_states, |
| 977 | match_last + 1); |
| 978 | re_free (lim_states); |
| 979 | lim_states = NULL; |
| 980 | if (BE (ret != REG_NOERROR, 0)) |
| 981 | goto free_return; |
| 982 | } |
| 983 | else |
| 984 | { |
| 985 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); |
| 986 | ret = sift_states_backward (mctx, &sctx); |
| 987 | re_node_set_free (&sctx.limits); |
| 988 | if (BE (ret != REG_NOERROR, 0)) |
| 989 | goto free_return; |
| 990 | if (sifted_states[0] == NULL) |
| 991 | { |
| 992 | ret = REG_NOMATCH; |
| 993 | goto free_return; |
| 994 | } |
| 995 | } |
| 996 | re_free (mctx->state_log); |
| 997 | mctx->state_log = sifted_states; |
| 998 | sifted_states = NULL; |
| 999 | mctx->last_node = halt_node; |
| 1000 | mctx->match_last = match_last; |
| 1001 | ret = REG_NOERROR; |
| 1002 | free_return: |
| 1003 | re_free (sifted_states); |
| 1004 | re_free (lim_states); |
| 1005 | return ret; |
| 1006 | } |
| 1007 | |
| 1008 | /* Acquire an initial state and return it. |
| 1009 | We must select appropriate initial state depending on the context, |
| 1010 | since initial states may have constraints like "\<", "^", etc.. */ |
| 1011 | |
| 1012 | static inline re_dfastate_t * |
| 1013 | __attribute__ ((always_inline)) |
| 1014 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, |
| 1015 | Idx idx) |
| 1016 | { |
| 1017 | const re_dfa_t *const dfa = mctx->dfa; |
| 1018 | if (dfa->init_state->has_constraint) |
| 1019 | { |
| 1020 | unsigned int context; |
| 1021 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); |
| 1022 | if (IS_WORD_CONTEXT (context)) |
| 1023 | return dfa->init_state_word; |
| 1024 | else if (IS_ORDINARY_CONTEXT (context)) |
| 1025 | return dfa->init_state; |
| 1026 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) |
| 1027 | return dfa->init_state_begbuf; |
| 1028 | else if (IS_NEWLINE_CONTEXT (context)) |
| 1029 | return dfa->init_state_nl; |
| 1030 | else if (IS_BEGBUF_CONTEXT (context)) |
| 1031 | { |
| 1032 | /* It is relatively rare case, then calculate on demand. */ |
| 1033 | return re_acquire_state_context (err, dfa, |
| 1034 | dfa->init_state->entrance_nodes, |
| 1035 | context); |
| 1036 | } |
| 1037 | else |
| 1038 | /* Must not happen? */ |
| 1039 | return dfa->init_state; |
| 1040 | } |
| 1041 | else |
| 1042 | return dfa->init_state; |
| 1043 | } |
| 1044 | |
| 1045 | /* Check whether the regular expression match input string INPUT or not, |
| 1046 | and return the index where the matching end. Return -1 if |
| 1047 | there is no match, and return -2 in case of an error. |
| 1048 | FL_LONGEST_MATCH means we want the POSIX longest matching. |
| 1049 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the |
| 1050 | next place where we may want to try matching. |
| 1051 | Note that the matcher assumes that the matching starts from the current |
| 1052 | index of the buffer. */ |
| 1053 | |
| 1054 | static Idx |
| 1055 | __attribute_warn_unused_result__ |
| 1056 | check_matching (re_match_context_t *mctx, bool fl_longest_match, |
| 1057 | Idx *p_match_first) |
| 1058 | { |
| 1059 | const re_dfa_t *const dfa = mctx->dfa; |
| 1060 | reg_errcode_t err; |
| 1061 | Idx match = 0; |
| 1062 | Idx match_last = -1; |
| 1063 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
| 1064 | re_dfastate_t *cur_state; |
| 1065 | bool at_init_state = p_match_first != NULL; |
| 1066 | Idx next_start_idx = cur_str_idx; |
| 1067 | |
| 1068 | err = REG_NOERROR; |
| 1069 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); |
| 1070 | /* An initial state must not be NULL (invalid). */ |
| 1071 | if (BE (cur_state == NULL, 0)) |
| 1072 | { |
| 1073 | assert (err == REG_ESPACE); |
| 1074 | return -2; |
| 1075 | } |
| 1076 | |
| 1077 | if (mctx->state_log != NULL) |
| 1078 | { |
| 1079 | mctx->state_log[cur_str_idx] = cur_state; |
| 1080 | |
| 1081 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them |
| 1082 | later. E.g. Processing back references. */ |
| 1083 | if (BE (dfa->nbackref, 0)) |
| 1084 | { |
| 1085 | at_init_state = false; |
| 1086 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); |
| 1087 | if (BE (err != REG_NOERROR, 0)) |
| 1088 | return err; |
| 1089 | |
| 1090 | if (cur_state->has_backref) |
| 1091 | { |
| 1092 | err = transit_state_bkref (mctx, &cur_state->nodes); |
| 1093 | if (BE (err != REG_NOERROR, 0)) |
| 1094 | return err; |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | /* If the RE accepts NULL string. */ |
| 1100 | if (BE (cur_state->halt, 0)) |
| 1101 | { |
| 1102 | if (!cur_state->has_constraint |
| 1103 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) |
| 1104 | { |
| 1105 | if (!fl_longest_match) |
| 1106 | return cur_str_idx; |
| 1107 | else |
| 1108 | { |
| 1109 | match_last = cur_str_idx; |
| 1110 | match = 1; |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | while (!re_string_eoi (&mctx->input)) |
| 1116 | { |
| 1117 | re_dfastate_t *old_state = cur_state; |
| 1118 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; |
| 1119 | |
| 1120 | if ((BE (next_char_idx >= mctx->input.bufs_len, 0) |
| 1121 | && mctx->input.bufs_len < mctx->input.len) |
| 1122 | || (BE (next_char_idx >= mctx->input.valid_len, 0) |
| 1123 | && mctx->input.valid_len < mctx->input.len)) |
| 1124 | { |
| 1125 | err = extend_buffers (mctx, next_char_idx + 1); |
| 1126 | if (BE (err != REG_NOERROR, 0)) |
| 1127 | { |
| 1128 | assert (err == REG_ESPACE); |
| 1129 | return -2; |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | cur_state = transit_state (&err, mctx, cur_state); |
| 1134 | if (mctx->state_log != NULL) |
| 1135 | cur_state = merge_state_with_log (&err, mctx, cur_state); |
| 1136 | |
| 1137 | if (cur_state == NULL) |
| 1138 | { |
| 1139 | /* Reached the invalid state or an error. Try to recover a valid |
| 1140 | state using the state log, if available and if we have not |
| 1141 | already found a valid (even if not the longest) match. */ |
| 1142 | if (BE (err != REG_NOERROR, 0)) |
| 1143 | return -2; |
| 1144 | |
| 1145 | if (mctx->state_log == NULL |
| 1146 | || (match && !fl_longest_match) |
| 1147 | || (cur_state = find_recover_state (&err, mctx)) == NULL) |
| 1148 | break; |
| 1149 | } |
| 1150 | |
| 1151 | if (BE (at_init_state, 0)) |
| 1152 | { |
| 1153 | if (old_state == cur_state) |
| 1154 | next_start_idx = next_char_idx; |
| 1155 | else |
| 1156 | at_init_state = false; |
| 1157 | } |
| 1158 | |
| 1159 | if (cur_state->halt) |
| 1160 | { |
| 1161 | /* Reached a halt state. |
| 1162 | Check the halt state can satisfy the current context. */ |
| 1163 | if (!cur_state->has_constraint |
| 1164 | || check_halt_state_context (mctx, cur_state, |
| 1165 | re_string_cur_idx (&mctx->input))) |
| 1166 | { |
| 1167 | /* We found an appropriate halt state. */ |
| 1168 | match_last = re_string_cur_idx (&mctx->input); |
| 1169 | match = 1; |
| 1170 | |
| 1171 | /* We found a match, do not modify match_first below. */ |
| 1172 | p_match_first = NULL; |
| 1173 | if (!fl_longest_match) |
| 1174 | break; |
| 1175 | } |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | if (p_match_first) |
| 1180 | *p_match_first += next_start_idx; |
| 1181 | |
| 1182 | return match_last; |
| 1183 | } |
| 1184 | |
| 1185 | /* Check NODE match the current context. */ |
| 1186 | |
| 1187 | static bool |
| 1188 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) |
| 1189 | { |
| 1190 | re_token_type_t type = dfa->nodes[node].type; |
| 1191 | unsigned int constraint = dfa->nodes[node].constraint; |
| 1192 | if (type != END_OF_RE) |
| 1193 | return false; |
| 1194 | if (!constraint) |
| 1195 | return true; |
| 1196 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) |
| 1197 | return false; |
| 1198 | return true; |
| 1199 | } |
| 1200 | |
| 1201 | /* Check the halt state STATE match the current context. |
| 1202 | Return 0 if not match, if the node, STATE has, is a halt node and |
| 1203 | match the context, return the node. */ |
| 1204 | |
| 1205 | static Idx |
| 1206 | check_halt_state_context (const re_match_context_t *mctx, |
| 1207 | const re_dfastate_t *state, Idx idx) |
| 1208 | { |
| 1209 | Idx i; |
| 1210 | unsigned int context; |
| 1211 | #ifdef DEBUG |
| 1212 | assert (state->halt); |
| 1213 | #endif |
| 1214 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); |
| 1215 | for (i = 0; i < state->nodes.nelem; ++i) |
| 1216 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) |
| 1217 | return state->nodes.elems[i]; |
| 1218 | return 0; |
| 1219 | } |
| 1220 | |
| 1221 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA |
| 1222 | corresponding to the DFA). |
| 1223 | Return the destination node, and update EPS_VIA_NODES; |
| 1224 | return -1 in case of errors. */ |
| 1225 | |
| 1226 | static Idx |
| 1227 | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, |
| 1228 | Idx *pidx, Idx node, re_node_set *eps_via_nodes, |
| 1229 | struct re_fail_stack_t *fs) |
| 1230 | { |
| 1231 | const re_dfa_t *const dfa = mctx->dfa; |
| 1232 | Idx i; |
| 1233 | bool ok; |
| 1234 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) |
| 1235 | { |
| 1236 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; |
| 1237 | re_node_set *edests = &dfa->edests[node]; |
| 1238 | Idx dest_node; |
| 1239 | ok = re_node_set_insert (eps_via_nodes, node); |
| 1240 | if (BE (! ok, 0)) |
| 1241 | return -2; |
| 1242 | /* Pick up a valid destination, or return -1 if none |
| 1243 | is found. */ |
| 1244 | for (dest_node = -1, i = 0; i < edests->nelem; ++i) |
| 1245 | { |
| 1246 | Idx candidate = edests->elems[i]; |
| 1247 | if (!re_node_set_contains (cur_nodes, candidate)) |
| 1248 | continue; |
| 1249 | if (dest_node == -1) |
| 1250 | dest_node = candidate; |
| 1251 | |
| 1252 | else |
| 1253 | { |
| 1254 | /* In order to avoid infinite loop like "(a*)*", return the second |
| 1255 | epsilon-transition if the first was already considered. */ |
| 1256 | if (re_node_set_contains (eps_via_nodes, dest_node)) |
| 1257 | return candidate; |
| 1258 | |
| 1259 | /* Otherwise, push the second epsilon-transition on the fail stack. */ |
| 1260 | else if (fs != NULL |
| 1261 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, |
| 1262 | eps_via_nodes)) |
| 1263 | return -2; |
| 1264 | |
| 1265 | /* We know we are going to exit. */ |
| 1266 | break; |
| 1267 | } |
| 1268 | } |
| 1269 | return dest_node; |
| 1270 | } |
| 1271 | else |
| 1272 | { |
| 1273 | Idx naccepted = 0; |
| 1274 | re_token_type_t type = dfa->nodes[node].type; |
| 1275 | |
| 1276 | #ifdef RE_ENABLE_I18N |
| 1277 | if (dfa->nodes[node].accept_mb) |
| 1278 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); |
| 1279 | else |
| 1280 | #endif /* RE_ENABLE_I18N */ |
| 1281 | if (type == OP_BACK_REF) |
| 1282 | { |
| 1283 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; |
| 1284 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; |
| 1285 | if (fs != NULL) |
| 1286 | { |
| 1287 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) |
| 1288 | return -1; |
| 1289 | else if (naccepted) |
| 1290 | { |
| 1291 | char *buf = (char *) re_string_get_buffer (&mctx->input); |
| 1292 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, |
| 1293 | naccepted) != 0) |
| 1294 | return -1; |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | if (naccepted == 0) |
| 1299 | { |
| 1300 | Idx dest_node; |
| 1301 | ok = re_node_set_insert (eps_via_nodes, node); |
| 1302 | if (BE (! ok, 0)) |
| 1303 | return -2; |
| 1304 | dest_node = dfa->edests[node].elems[0]; |
| 1305 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
| 1306 | dest_node)) |
| 1307 | return dest_node; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | if (naccepted != 0 |
| 1312 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) |
| 1313 | { |
| 1314 | Idx dest_node = dfa->nexts[node]; |
| 1315 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; |
| 1316 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL |
| 1317 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
| 1318 | dest_node))) |
| 1319 | return -1; |
| 1320 | re_node_set_empty (eps_via_nodes); |
| 1321 | return dest_node; |
| 1322 | } |
| 1323 | } |
| 1324 | return -1; |
| 1325 | } |
| 1326 | |
| 1327 | static reg_errcode_t |
| 1328 | __attribute_warn_unused_result__ |
| 1329 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, |
| 1330 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) |
| 1331 | { |
| 1332 | reg_errcode_t err; |
| 1333 | Idx num = fs->num++; |
| 1334 | if (fs->num == fs->alloc) |
| 1335 | { |
| 1336 | struct re_fail_stack_ent_t *new_array; |
| 1337 | new_array = re_realloc (fs->stack, struct re_fail_stack_ent_t, |
| 1338 | fs->alloc * 2); |
| 1339 | if (new_array == NULL) |
| 1340 | return REG_ESPACE; |
| 1341 | fs->alloc *= 2; |
| 1342 | fs->stack = new_array; |
| 1343 | } |
| 1344 | fs->stack[num].idx = str_idx; |
| 1345 | fs->stack[num].node = dest_node; |
| 1346 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); |
| 1347 | if (fs->stack[num].regs == NULL) |
| 1348 | return REG_ESPACE; |
| 1349 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); |
| 1350 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); |
| 1351 | return err; |
| 1352 | } |
| 1353 | |
| 1354 | static Idx |
| 1355 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, |
| 1356 | regmatch_t *regs, re_node_set *eps_via_nodes) |
| 1357 | { |
| 1358 | Idx num = --fs->num; |
| 1359 | assert (num >= 0); |
| 1360 | *pidx = fs->stack[num].idx; |
| 1361 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); |
| 1362 | re_node_set_free (eps_via_nodes); |
| 1363 | re_free (fs->stack[num].regs); |
| 1364 | *eps_via_nodes = fs->stack[num].eps_via_nodes; |
| 1365 | return fs->stack[num].node; |
| 1366 | } |
| 1367 | |
| 1368 | /* Set the positions where the subexpressions are starts/ends to registers |
| 1369 | PMATCH. |
| 1370 | Note: We assume that pmatch[0] is already set, and |
| 1371 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ |
| 1372 | |
| 1373 | static reg_errcode_t |
| 1374 | __attribute_warn_unused_result__ |
| 1375 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, |
| 1376 | regmatch_t *pmatch, bool fl_backtrack) |
| 1377 | { |
| 1378 | const re_dfa_t *dfa = preg->buffer; |
| 1379 | Idx idx, cur_node; |
| 1380 | re_node_set eps_via_nodes; |
| 1381 | struct re_fail_stack_t *fs; |
| 1382 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; |
| 1383 | regmatch_t *prev_idx_match; |
| 1384 | bool prev_idx_match_malloced = false; |
| 1385 | |
| 1386 | #ifdef DEBUG |
| 1387 | assert (nmatch > 1); |
| 1388 | assert (mctx->state_log != NULL); |
| 1389 | #endif |
| 1390 | if (fl_backtrack) |
| 1391 | { |
| 1392 | fs = &fs_body; |
| 1393 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); |
| 1394 | if (fs->stack == NULL) |
| 1395 | return REG_ESPACE; |
| 1396 | } |
| 1397 | else |
| 1398 | fs = NULL; |
| 1399 | |
| 1400 | cur_node = dfa->init_node; |
| 1401 | re_node_set_init_empty (&eps_via_nodes); |
| 1402 | |
| 1403 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) |
| 1404 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); |
| 1405 | else |
| 1406 | { |
| 1407 | prev_idx_match = re_malloc (regmatch_t, nmatch); |
| 1408 | if (prev_idx_match == NULL) |
| 1409 | { |
| 1410 | free_fail_stack_return (fs); |
| 1411 | return REG_ESPACE; |
| 1412 | } |
| 1413 | prev_idx_match_malloced = true; |
| 1414 | } |
| 1415 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
| 1416 | |
| 1417 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) |
| 1418 | { |
| 1419 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); |
| 1420 | |
| 1421 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) |
| 1422 | { |
| 1423 | Idx reg_idx; |
| 1424 | if (fs) |
| 1425 | { |
| 1426 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
| 1427 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) |
| 1428 | break; |
| 1429 | if (reg_idx == nmatch) |
| 1430 | { |
| 1431 | re_node_set_free (&eps_via_nodes); |
| 1432 | if (prev_idx_match_malloced) |
| 1433 | re_free (prev_idx_match); |
| 1434 | return free_fail_stack_return (fs); |
| 1435 | } |
| 1436 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
| 1437 | &eps_via_nodes); |
| 1438 | } |
| 1439 | else |
| 1440 | { |
| 1441 | re_node_set_free (&eps_via_nodes); |
| 1442 | if (prev_idx_match_malloced) |
| 1443 | re_free (prev_idx_match); |
| 1444 | return REG_NOERROR; |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | /* Proceed to next node. */ |
| 1449 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, |
| 1450 | &eps_via_nodes, fs); |
| 1451 | |
| 1452 | if (BE (cur_node < 0, 0)) |
| 1453 | { |
| 1454 | if (BE (cur_node == -2, 0)) |
| 1455 | { |
| 1456 | re_node_set_free (&eps_via_nodes); |
| 1457 | if (prev_idx_match_malloced) |
| 1458 | re_free (prev_idx_match); |
| 1459 | free_fail_stack_return (fs); |
| 1460 | return REG_ESPACE; |
| 1461 | } |
| 1462 | if (fs) |
| 1463 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
| 1464 | &eps_via_nodes); |
| 1465 | else |
| 1466 | { |
| 1467 | re_node_set_free (&eps_via_nodes); |
| 1468 | if (prev_idx_match_malloced) |
| 1469 | re_free (prev_idx_match); |
| 1470 | return REG_NOMATCH; |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | re_node_set_free (&eps_via_nodes); |
| 1475 | if (prev_idx_match_malloced) |
| 1476 | re_free (prev_idx_match); |
| 1477 | return free_fail_stack_return (fs); |
| 1478 | } |
| 1479 | |
| 1480 | static reg_errcode_t |
| 1481 | free_fail_stack_return (struct re_fail_stack_t *fs) |
| 1482 | { |
| 1483 | if (fs) |
| 1484 | { |
| 1485 | Idx fs_idx; |
| 1486 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) |
| 1487 | { |
| 1488 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); |
| 1489 | re_free (fs->stack[fs_idx].regs); |
| 1490 | } |
| 1491 | re_free (fs->stack); |
| 1492 | } |
| 1493 | return REG_NOERROR; |
| 1494 | } |
| 1495 | |
| 1496 | static void |
| 1497 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
| 1498 | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) |
| 1499 | { |
| 1500 | int type = dfa->nodes[cur_node].type; |
| 1501 | if (type == OP_OPEN_SUBEXP) |
| 1502 | { |
| 1503 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
| 1504 | |
| 1505 | /* We are at the first node of this sub expression. */ |
| 1506 | if (reg_num < nmatch) |
| 1507 | { |
| 1508 | pmatch[reg_num].rm_so = cur_idx; |
| 1509 | pmatch[reg_num].rm_eo = -1; |
| 1510 | } |
| 1511 | } |
| 1512 | else if (type == OP_CLOSE_SUBEXP) |
| 1513 | { |
| 1514 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
| 1515 | if (reg_num < nmatch) |
| 1516 | { |
| 1517 | /* We are at the last node of this sub expression. */ |
| 1518 | if (pmatch[reg_num].rm_so < cur_idx) |
| 1519 | { |
| 1520 | pmatch[reg_num].rm_eo = cur_idx; |
| 1521 | /* This is a non-empty match or we are not inside an optional |
| 1522 | subexpression. Accept this right away. */ |
| 1523 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
| 1524 | } |
| 1525 | else |
| 1526 | { |
| 1527 | if (dfa->nodes[cur_node].opt_subexp |
| 1528 | && prev_idx_match[reg_num].rm_so != -1) |
| 1529 | /* We transited through an empty match for an optional |
| 1530 | subexpression, like (a?)*, and this is not the subexp's |
| 1531 | first match. Copy back the old content of the registers |
| 1532 | so that matches of an inner subexpression are undone as |
| 1533 | well, like in ((a?))*. */ |
| 1534 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); |
| 1535 | else |
| 1536 | /* We completed a subexpression, but it may be part of |
| 1537 | an optional one, so do not update PREV_IDX_MATCH. */ |
| 1538 | pmatch[reg_num].rm_eo = cur_idx; |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 |
| 1545 | and sift the nodes in each states according to the following rules. |
| 1546 | Updated state_log will be wrote to STATE_LOG. |
| 1547 | |
| 1548 | Rules: We throw away the Node 'a' in the STATE_LOG[STR_IDX] if... |
| 1549 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): |
| 1550 | If 'a' isn't the LAST_NODE and 'a' can't epsilon transit to |
| 1551 | the LAST_NODE, we throw away the node 'a'. |
| 1552 | 2. When 0 <= STR_IDX < MATCH_LAST and 'a' accepts |
| 1553 | string 's' and transit to 'b': |
| 1554 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw |
| 1555 | away the node 'a'. |
| 1556 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is |
| 1557 | thrown away, we throw away the node 'a'. |
| 1558 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': |
| 1559 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the |
| 1560 | node 'a'. |
| 1561 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, |
| 1562 | we throw away the node 'a'. */ |
| 1563 | |
| 1564 | #define STATE_NODE_CONTAINS(state,node) \ |
| 1565 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) |
| 1566 | |
| 1567 | static reg_errcode_t |
| 1568 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) |
| 1569 | { |
| 1570 | reg_errcode_t err; |
| 1571 | int null_cnt = 0; |
| 1572 | Idx str_idx = sctx->last_str_idx; |
| 1573 | re_node_set cur_dest; |
| 1574 | |
| 1575 | #ifdef DEBUG |
| 1576 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); |
| 1577 | #endif |
| 1578 | |
| 1579 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon |
| 1580 | transit to the last_node and the last_node itself. */ |
| 1581 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); |
| 1582 | if (BE (err != REG_NOERROR, 0)) |
| 1583 | return err; |
| 1584 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
| 1585 | if (BE (err != REG_NOERROR, 0)) |
| 1586 | goto free_return; |
| 1587 | |
| 1588 | /* Then check each states in the state_log. */ |
| 1589 | while (str_idx > 0) |
| 1590 | { |
| 1591 | /* Update counters. */ |
| 1592 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; |
| 1593 | if (null_cnt > mctx->max_mb_elem_len) |
| 1594 | { |
| 1595 | memset (sctx->sifted_states, '\0', |
| 1596 | sizeof (re_dfastate_t *) * str_idx); |
| 1597 | re_node_set_free (&cur_dest); |
| 1598 | return REG_NOERROR; |
| 1599 | } |
| 1600 | re_node_set_empty (&cur_dest); |
| 1601 | --str_idx; |
| 1602 | |
| 1603 | if (mctx->state_log[str_idx]) |
| 1604 | { |
| 1605 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); |
| 1606 | if (BE (err != REG_NOERROR, 0)) |
| 1607 | goto free_return; |
| 1608 | } |
| 1609 | |
| 1610 | /* Add all the nodes which satisfy the following conditions: |
| 1611 | - It can epsilon transit to a node in CUR_DEST. |
| 1612 | - It is in CUR_SRC. |
| 1613 | And update state_log. */ |
| 1614 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
| 1615 | if (BE (err != REG_NOERROR, 0)) |
| 1616 | goto free_return; |
| 1617 | } |
| 1618 | err = REG_NOERROR; |
| 1619 | free_return: |
| 1620 | re_node_set_free (&cur_dest); |
| 1621 | return err; |
| 1622 | } |
| 1623 | |
| 1624 | static reg_errcode_t |
| 1625 | __attribute_warn_unused_result__ |
| 1626 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| 1627 | Idx str_idx, re_node_set *cur_dest) |
| 1628 | { |
| 1629 | const re_dfa_t *const dfa = mctx->dfa; |
| 1630 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; |
| 1631 | Idx i; |
| 1632 | |
| 1633 | /* Then build the next sifted state. |
| 1634 | We build the next sifted state on 'cur_dest', and update |
| 1635 | 'sifted_states[str_idx]' with 'cur_dest'. |
| 1636 | Note: |
| 1637 | 'cur_dest' is the sifted state from 'state_log[str_idx + 1]'. |
| 1638 | 'cur_src' points the node_set of the old 'state_log[str_idx]' |
| 1639 | (with the epsilon nodes pre-filtered out). */ |
| 1640 | for (i = 0; i < cur_src->nelem; i++) |
| 1641 | { |
| 1642 | Idx prev_node = cur_src->elems[i]; |
| 1643 | int naccepted = 0; |
| 1644 | bool ok; |
| 1645 | |
| 1646 | #ifdef DEBUG |
| 1647 | re_token_type_t type = dfa->nodes[prev_node].type; |
| 1648 | assert (!IS_EPSILON_NODE (type)); |
| 1649 | #endif |
| 1650 | #ifdef RE_ENABLE_I18N |
| 1651 | /* If the node may accept "multi byte". */ |
| 1652 | if (dfa->nodes[prev_node].accept_mb) |
| 1653 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, |
| 1654 | str_idx, sctx->last_str_idx); |
| 1655 | #endif /* RE_ENABLE_I18N */ |
| 1656 | |
| 1657 | /* We don't check backreferences here. |
| 1658 | See update_cur_sifted_state(). */ |
| 1659 | if (!naccepted |
| 1660 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) |
| 1661 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], |
| 1662 | dfa->nexts[prev_node])) |
| 1663 | naccepted = 1; |
| 1664 | |
| 1665 | if (naccepted == 0) |
| 1666 | continue; |
| 1667 | |
| 1668 | if (sctx->limits.nelem) |
| 1669 | { |
| 1670 | Idx to_idx = str_idx + naccepted; |
| 1671 | if (check_dst_limits (mctx, &sctx->limits, |
| 1672 | dfa->nexts[prev_node], to_idx, |
| 1673 | prev_node, str_idx)) |
| 1674 | continue; |
| 1675 | } |
| 1676 | ok = re_node_set_insert (cur_dest, prev_node); |
| 1677 | if (BE (! ok, 0)) |
| 1678 | return REG_ESPACE; |
| 1679 | } |
| 1680 | |
| 1681 | return REG_NOERROR; |
| 1682 | } |
| 1683 | |
| 1684 | /* Helper functions. */ |
| 1685 | |
| 1686 | static reg_errcode_t |
| 1687 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) |
| 1688 | { |
| 1689 | Idx top = mctx->state_log_top; |
| 1690 | |
| 1691 | if ((next_state_log_idx >= mctx->input.bufs_len |
| 1692 | && mctx->input.bufs_len < mctx->input.len) |
| 1693 | || (next_state_log_idx >= mctx->input.valid_len |
| 1694 | && mctx->input.valid_len < mctx->input.len)) |
| 1695 | { |
| 1696 | reg_errcode_t err; |
| 1697 | err = extend_buffers (mctx, next_state_log_idx + 1); |
| 1698 | if (BE (err != REG_NOERROR, 0)) |
| 1699 | return err; |
| 1700 | } |
| 1701 | |
| 1702 | if (top < next_state_log_idx) |
| 1703 | { |
| 1704 | memset (mctx->state_log + top + 1, '\0', |
| 1705 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); |
| 1706 | mctx->state_log_top = next_state_log_idx; |
| 1707 | } |
| 1708 | return REG_NOERROR; |
| 1709 | } |
| 1710 | |
| 1711 | static reg_errcode_t |
| 1712 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, |
| 1713 | re_dfastate_t **src, Idx num) |
| 1714 | { |
| 1715 | Idx st_idx; |
| 1716 | reg_errcode_t err; |
| 1717 | for (st_idx = 0; st_idx < num; ++st_idx) |
| 1718 | { |
| 1719 | if (dst[st_idx] == NULL) |
| 1720 | dst[st_idx] = src[st_idx]; |
| 1721 | else if (src[st_idx] != NULL) |
| 1722 | { |
| 1723 | re_node_set merged_set; |
| 1724 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, |
| 1725 | &src[st_idx]->nodes); |
| 1726 | if (BE (err != REG_NOERROR, 0)) |
| 1727 | return err; |
| 1728 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); |
| 1729 | re_node_set_free (&merged_set); |
| 1730 | if (BE (err != REG_NOERROR, 0)) |
| 1731 | return err; |
| 1732 | } |
| 1733 | } |
| 1734 | return REG_NOERROR; |
| 1735 | } |
| 1736 | |
| 1737 | static reg_errcode_t |
| 1738 | update_cur_sifted_state (const re_match_context_t *mctx, |
| 1739 | re_sift_context_t *sctx, Idx str_idx, |
| 1740 | re_node_set *dest_nodes) |
| 1741 | { |
| 1742 | const re_dfa_t *const dfa = mctx->dfa; |
| 1743 | reg_errcode_t err = REG_NOERROR; |
| 1744 | const re_node_set *candidates; |
| 1745 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL |
| 1746 | : &mctx->state_log[str_idx]->nodes); |
| 1747 | |
| 1748 | if (dest_nodes->nelem == 0) |
| 1749 | sctx->sifted_states[str_idx] = NULL; |
| 1750 | else |
| 1751 | { |
| 1752 | if (candidates) |
| 1753 | { |
| 1754 | /* At first, add the nodes which can epsilon transit to a node in |
| 1755 | DEST_NODE. */ |
| 1756 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); |
| 1757 | if (BE (err != REG_NOERROR, 0)) |
| 1758 | return err; |
| 1759 | |
| 1760 | /* Then, check the limitations in the current sift_context. */ |
| 1761 | if (sctx->limits.nelem) |
| 1762 | { |
| 1763 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, |
| 1764 | mctx->bkref_ents, str_idx); |
| 1765 | if (BE (err != REG_NOERROR, 0)) |
| 1766 | return err; |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); |
| 1771 | if (BE (err != REG_NOERROR, 0)) |
| 1772 | return err; |
| 1773 | } |
| 1774 | |
| 1775 | if (candidates && mctx->state_log[str_idx]->has_backref) |
| 1776 | { |
| 1777 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); |
| 1778 | if (BE (err != REG_NOERROR, 0)) |
| 1779 | return err; |
| 1780 | } |
| 1781 | return REG_NOERROR; |
| 1782 | } |
| 1783 | |
| 1784 | static reg_errcode_t |
| 1785 | __attribute_warn_unused_result__ |
| 1786 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, |
| 1787 | const re_node_set *candidates) |
| 1788 | { |
| 1789 | reg_errcode_t err = REG_NOERROR; |
| 1790 | Idx i; |
| 1791 | |
| 1792 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); |
| 1793 | if (BE (err != REG_NOERROR, 0)) |
| 1794 | return err; |
| 1795 | |
| 1796 | if (!state->inveclosure.alloc) |
| 1797 | { |
| 1798 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); |
| 1799 | if (BE (err != REG_NOERROR, 0)) |
| 1800 | return REG_ESPACE; |
| 1801 | for (i = 0; i < dest_nodes->nelem; i++) |
| 1802 | { |
| 1803 | err = re_node_set_merge (&state->inveclosure, |
| 1804 | dfa->inveclosures + dest_nodes->elems[i]); |
| 1805 | if (BE (err != REG_NOERROR, 0)) |
| 1806 | return REG_ESPACE; |
| 1807 | } |
| 1808 | } |
| 1809 | return re_node_set_add_intersect (dest_nodes, candidates, |
| 1810 | &state->inveclosure); |
| 1811 | } |
| 1812 | |
| 1813 | static reg_errcode_t |
| 1814 | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, |
| 1815 | const re_node_set *candidates) |
| 1816 | { |
| 1817 | Idx ecl_idx; |
| 1818 | reg_errcode_t err; |
| 1819 | re_node_set *inv_eclosure = dfa->inveclosures + node; |
| 1820 | re_node_set except_nodes; |
| 1821 | re_node_set_init_empty (&except_nodes); |
| 1822 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
| 1823 | { |
| 1824 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
| 1825 | if (cur_node == node) |
| 1826 | continue; |
| 1827 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) |
| 1828 | { |
| 1829 | Idx edst1 = dfa->edests[cur_node].elems[0]; |
| 1830 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) |
| 1831 | ? dfa->edests[cur_node].elems[1] : -1); |
| 1832 | if ((!re_node_set_contains (inv_eclosure, edst1) |
| 1833 | && re_node_set_contains (dest_nodes, edst1)) |
| 1834 | || (edst2 > 0 |
| 1835 | && !re_node_set_contains (inv_eclosure, edst2) |
| 1836 | && re_node_set_contains (dest_nodes, edst2))) |
| 1837 | { |
| 1838 | err = re_node_set_add_intersect (&except_nodes, candidates, |
| 1839 | dfa->inveclosures + cur_node); |
| 1840 | if (BE (err != REG_NOERROR, 0)) |
| 1841 | { |
| 1842 | re_node_set_free (&except_nodes); |
| 1843 | return err; |
| 1844 | } |
| 1845 | } |
| 1846 | } |
| 1847 | } |
| 1848 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
| 1849 | { |
| 1850 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
| 1851 | if (!re_node_set_contains (&except_nodes, cur_node)) |
| 1852 | { |
| 1853 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; |
| 1854 | re_node_set_remove_at (dest_nodes, idx); |
| 1855 | } |
| 1856 | } |
| 1857 | re_node_set_free (&except_nodes); |
| 1858 | return REG_NOERROR; |
| 1859 | } |
| 1860 | |
| 1861 | static bool |
| 1862 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, |
| 1863 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) |
| 1864 | { |
| 1865 | const re_dfa_t *const dfa = mctx->dfa; |
| 1866 | Idx lim_idx, src_pos, dst_pos; |
| 1867 | |
| 1868 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); |
| 1869 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); |
| 1870 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
| 1871 | { |
| 1872 | Idx subexp_idx; |
| 1873 | struct re_backref_cache_entry *ent; |
| 1874 | ent = mctx->bkref_ents + limits->elems[lim_idx]; |
| 1875 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
| 1876 | |
| 1877 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
| 1878 | subexp_idx, dst_node, dst_idx, |
| 1879 | dst_bkref_idx); |
| 1880 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
| 1881 | subexp_idx, src_node, src_idx, |
| 1882 | src_bkref_idx); |
| 1883 | |
| 1884 | /* In case of: |
| 1885 | <src> <dst> ( <subexp> ) |
| 1886 | ( <subexp> ) <src> <dst> |
| 1887 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ |
| 1888 | if (src_pos == dst_pos) |
| 1889 | continue; /* This is unrelated limitation. */ |
| 1890 | else |
| 1891 | return true; |
| 1892 | } |
| 1893 | return false; |
| 1894 | } |
| 1895 | |
| 1896 | static int |
| 1897 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, |
| 1898 | Idx subexp_idx, Idx from_node, Idx bkref_idx) |
| 1899 | { |
| 1900 | const re_dfa_t *const dfa = mctx->dfa; |
| 1901 | const re_node_set *eclosures = dfa->eclosures + from_node; |
| 1902 | Idx node_idx; |
| 1903 | |
| 1904 | /* Else, we are on the boundary: examine the nodes on the epsilon |
| 1905 | closure. */ |
| 1906 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) |
| 1907 | { |
| 1908 | Idx node = eclosures->elems[node_idx]; |
| 1909 | switch (dfa->nodes[node].type) |
| 1910 | { |
| 1911 | case OP_BACK_REF: |
| 1912 | if (bkref_idx != -1) |
| 1913 | { |
| 1914 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; |
| 1915 | do |
| 1916 | { |
| 1917 | Idx dst; |
| 1918 | int cpos; |
| 1919 | |
| 1920 | if (ent->node != node) |
| 1921 | continue; |
| 1922 | |
| 1923 | if (subexp_idx < BITSET_WORD_BITS |
| 1924 | && !(ent->eps_reachable_subexps_map |
| 1925 | & ((bitset_word_t) 1 << subexp_idx))) |
| 1926 | continue; |
| 1927 | |
| 1928 | /* Recurse trying to reach the OP_OPEN_SUBEXP and |
| 1929 | OP_CLOSE_SUBEXP cases below. But, if the |
| 1930 | destination node is the same node as the source |
| 1931 | node, don't recurse because it would cause an |
| 1932 | infinite loop: a regex that exhibits this behavior |
| 1933 | is ()\1*\1* */ |
| 1934 | dst = dfa->edests[node].elems[0]; |
| 1935 | if (dst == from_node) |
| 1936 | { |
| 1937 | if (boundaries & 1) |
| 1938 | return -1; |
| 1939 | else /* if (boundaries & 2) */ |
| 1940 | return 0; |
| 1941 | } |
| 1942 | |
| 1943 | cpos = |
| 1944 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
| 1945 | dst, bkref_idx); |
| 1946 | if (cpos == -1 /* && (boundaries & 1) */) |
| 1947 | return -1; |
| 1948 | if (cpos == 0 && (boundaries & 2)) |
| 1949 | return 0; |
| 1950 | |
| 1951 | if (subexp_idx < BITSET_WORD_BITS) |
| 1952 | ent->eps_reachable_subexps_map |
| 1953 | &= ~((bitset_word_t) 1 << subexp_idx); |
| 1954 | } |
| 1955 | while (ent++->more); |
| 1956 | } |
| 1957 | break; |
| 1958 | |
| 1959 | case OP_OPEN_SUBEXP: |
| 1960 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) |
| 1961 | return -1; |
| 1962 | break; |
| 1963 | |
| 1964 | case OP_CLOSE_SUBEXP: |
| 1965 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) |
| 1966 | return 0; |
| 1967 | break; |
| 1968 | |
| 1969 | default: |
| 1970 | break; |
| 1971 | } |
| 1972 | } |
| 1973 | |
| 1974 | return (boundaries & 2) ? 1 : 0; |
| 1975 | } |
| 1976 | |
| 1977 | static int |
| 1978 | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, |
| 1979 | Idx subexp_idx, Idx from_node, Idx str_idx, |
| 1980 | Idx bkref_idx) |
| 1981 | { |
| 1982 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; |
| 1983 | int boundaries; |
| 1984 | |
| 1985 | /* If we are outside the range of the subexpression, return -1 or 1. */ |
| 1986 | if (str_idx < lim->subexp_from) |
| 1987 | return -1; |
| 1988 | |
| 1989 | if (lim->subexp_to < str_idx) |
| 1990 | return 1; |
| 1991 | |
| 1992 | /* If we are within the subexpression, return 0. */ |
| 1993 | boundaries = (str_idx == lim->subexp_from); |
| 1994 | boundaries |= (str_idx == lim->subexp_to) << 1; |
| 1995 | if (boundaries == 0) |
| 1996 | return 0; |
| 1997 | |
| 1998 | /* Else, examine epsilon closure. */ |
| 1999 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
| 2000 | from_node, bkref_idx); |
| 2001 | } |
| 2002 | |
| 2003 | /* Check the limitations of sub expressions LIMITS, and remove the nodes |
| 2004 | which are against limitations from DEST_NODES. */ |
| 2005 | |
| 2006 | static reg_errcode_t |
| 2007 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, |
| 2008 | const re_node_set *candidates, re_node_set *limits, |
| 2009 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) |
| 2010 | { |
| 2011 | reg_errcode_t err; |
| 2012 | Idx node_idx, lim_idx; |
| 2013 | |
| 2014 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
| 2015 | { |
| 2016 | Idx subexp_idx; |
| 2017 | struct re_backref_cache_entry *ent; |
| 2018 | ent = bkref_ents + limits->elems[lim_idx]; |
| 2019 | |
| 2020 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) |
| 2021 | continue; /* This is unrelated limitation. */ |
| 2022 | |
| 2023 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
| 2024 | if (ent->subexp_to == str_idx) |
| 2025 | { |
| 2026 | Idx ops_node = -1; |
| 2027 | Idx cls_node = -1; |
| 2028 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| 2029 | { |
| 2030 | Idx node = dest_nodes->elems[node_idx]; |
| 2031 | re_token_type_t type = dfa->nodes[node].type; |
| 2032 | if (type == OP_OPEN_SUBEXP |
| 2033 | && subexp_idx == dfa->nodes[node].opr.idx) |
| 2034 | ops_node = node; |
| 2035 | else if (type == OP_CLOSE_SUBEXP |
| 2036 | && subexp_idx == dfa->nodes[node].opr.idx) |
| 2037 | cls_node = node; |
| 2038 | } |
| 2039 | |
| 2040 | /* Check the limitation of the open subexpression. */ |
| 2041 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ |
| 2042 | if (ops_node >= 0) |
| 2043 | { |
| 2044 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, |
| 2045 | candidates); |
| 2046 | if (BE (err != REG_NOERROR, 0)) |
| 2047 | return err; |
| 2048 | } |
| 2049 | |
| 2050 | /* Check the limitation of the close subexpression. */ |
| 2051 | if (cls_node >= 0) |
| 2052 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| 2053 | { |
| 2054 | Idx node = dest_nodes->elems[node_idx]; |
| 2055 | if (!re_node_set_contains (dfa->inveclosures + node, |
| 2056 | cls_node) |
| 2057 | && !re_node_set_contains (dfa->eclosures + node, |
| 2058 | cls_node)) |
| 2059 | { |
| 2060 | /* It is against this limitation. |
| 2061 | Remove it form the current sifted state. */ |
| 2062 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
| 2063 | candidates); |
| 2064 | if (BE (err != REG_NOERROR, 0)) |
| 2065 | return err; |
| 2066 | --node_idx; |
| 2067 | } |
| 2068 | } |
| 2069 | } |
| 2070 | else /* (ent->subexp_to != str_idx) */ |
| 2071 | { |
| 2072 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| 2073 | { |
| 2074 | Idx node = dest_nodes->elems[node_idx]; |
| 2075 | re_token_type_t type = dfa->nodes[node].type; |
| 2076 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) |
| 2077 | { |
| 2078 | if (subexp_idx != dfa->nodes[node].opr.idx) |
| 2079 | continue; |
| 2080 | /* It is against this limitation. |
| 2081 | Remove it form the current sifted state. */ |
| 2082 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
| 2083 | candidates); |
| 2084 | if (BE (err != REG_NOERROR, 0)) |
| 2085 | return err; |
| 2086 | } |
| 2087 | } |
| 2088 | } |
| 2089 | } |
| 2090 | return REG_NOERROR; |
| 2091 | } |
| 2092 | |
| 2093 | static reg_errcode_t |
| 2094 | __attribute_warn_unused_result__ |
| 2095 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| 2096 | Idx str_idx, const re_node_set *candidates) |
| 2097 | { |
| 2098 | const re_dfa_t *const dfa = mctx->dfa; |
| 2099 | reg_errcode_t err; |
| 2100 | Idx node_idx, node; |
| 2101 | re_sift_context_t local_sctx; |
| 2102 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); |
| 2103 | |
| 2104 | if (first_idx == -1) |
| 2105 | return REG_NOERROR; |
| 2106 | |
| 2107 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ |
| 2108 | |
| 2109 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) |
| 2110 | { |
| 2111 | Idx enabled_idx; |
| 2112 | re_token_type_t type; |
| 2113 | struct re_backref_cache_entry *entry; |
| 2114 | node = candidates->elems[node_idx]; |
| 2115 | type = dfa->nodes[node].type; |
| 2116 | /* Avoid infinite loop for the REs like "()\1+". */ |
| 2117 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) |
| 2118 | continue; |
| 2119 | if (type != OP_BACK_REF) |
| 2120 | continue; |
| 2121 | |
| 2122 | entry = mctx->bkref_ents + first_idx; |
| 2123 | enabled_idx = first_idx; |
| 2124 | do |
| 2125 | { |
| 2126 | Idx subexp_len; |
| 2127 | Idx to_idx; |
| 2128 | Idx dst_node; |
| 2129 | bool ok; |
| 2130 | re_dfastate_t *cur_state; |
| 2131 | |
| 2132 | if (entry->node != node) |
| 2133 | continue; |
| 2134 | subexp_len = entry->subexp_to - entry->subexp_from; |
| 2135 | to_idx = str_idx + subexp_len; |
| 2136 | dst_node = (subexp_len ? dfa->nexts[node] |
| 2137 | : dfa->edests[node].elems[0]); |
| 2138 | |
| 2139 | if (to_idx > sctx->last_str_idx |
| 2140 | || sctx->sifted_states[to_idx] == NULL |
| 2141 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) |
| 2142 | || check_dst_limits (mctx, &sctx->limits, node, |
| 2143 | str_idx, dst_node, to_idx)) |
| 2144 | continue; |
| 2145 | |
| 2146 | if (local_sctx.sifted_states == NULL) |
| 2147 | { |
| 2148 | local_sctx = *sctx; |
| 2149 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); |
| 2150 | if (BE (err != REG_NOERROR, 0)) |
| 2151 | goto free_return; |
| 2152 | } |
| 2153 | local_sctx.last_node = node; |
| 2154 | local_sctx.last_str_idx = str_idx; |
| 2155 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); |
| 2156 | if (BE (! ok, 0)) |
| 2157 | { |
| 2158 | err = REG_ESPACE; |
| 2159 | goto free_return; |
| 2160 | } |
| 2161 | cur_state = local_sctx.sifted_states[str_idx]; |
| 2162 | err = sift_states_backward (mctx, &local_sctx); |
| 2163 | if (BE (err != REG_NOERROR, 0)) |
| 2164 | goto free_return; |
| 2165 | if (sctx->limited_states != NULL) |
| 2166 | { |
| 2167 | err = merge_state_array (dfa, sctx->limited_states, |
| 2168 | local_sctx.sifted_states, |
| 2169 | str_idx + 1); |
| 2170 | if (BE (err != REG_NOERROR, 0)) |
| 2171 | goto free_return; |
| 2172 | } |
| 2173 | local_sctx.sifted_states[str_idx] = cur_state; |
| 2174 | re_node_set_remove (&local_sctx.limits, enabled_idx); |
| 2175 | |
| 2176 | /* mctx->bkref_ents may have changed, reload the pointer. */ |
| 2177 | entry = mctx->bkref_ents + enabled_idx; |
| 2178 | } |
| 2179 | while (enabled_idx++, entry++->more); |
| 2180 | } |
| 2181 | err = REG_NOERROR; |
| 2182 | free_return: |
| 2183 | if (local_sctx.sifted_states != NULL) |
| 2184 | { |
| 2185 | re_node_set_free (&local_sctx.limits); |
| 2186 | } |
| 2187 | |
| 2188 | return err; |
| 2189 | } |
| 2190 | |
| 2191 | |
| 2192 | #ifdef RE_ENABLE_I18N |
| 2193 | static int |
| 2194 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| 2195 | Idx node_idx, Idx str_idx, Idx max_str_idx) |
| 2196 | { |
| 2197 | const re_dfa_t *const dfa = mctx->dfa; |
| 2198 | int naccepted; |
| 2199 | /* Check the node can accept "multi byte". */ |
| 2200 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); |
| 2201 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && |
| 2202 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], |
| 2203 | dfa->nexts[node_idx])) |
| 2204 | /* The node can't accept the "multi byte", or the |
| 2205 | destination was already thrown away, then the node |
| 2206 | could't accept the current input "multi byte". */ |
| 2207 | naccepted = 0; |
| 2208 | /* Otherwise, it is sure that the node could accept |
| 2209 | 'naccepted' bytes input. */ |
| 2210 | return naccepted; |
| 2211 | } |
| 2212 | #endif /* RE_ENABLE_I18N */ |
| 2213 | |
| 2214 | |
| 2215 | /* Functions for state transition. */ |
| 2216 | |
| 2217 | /* Return the next state to which the current state STATE will transit by |
| 2218 | accepting the current input byte, and update STATE_LOG if necessary. |
| 2219 | If STATE can accept a multibyte char/collating element/back reference |
| 2220 | update the destination of STATE_LOG. */ |
| 2221 | |
| 2222 | static re_dfastate_t * |
| 2223 | __attribute_warn_unused_result__ |
| 2224 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, |
| 2225 | re_dfastate_t *state) |
| 2226 | { |
| 2227 | re_dfastate_t **trtable; |
| 2228 | unsigned char ch; |
| 2229 | |
| 2230 | #ifdef RE_ENABLE_I18N |
| 2231 | /* If the current state can accept multibyte. */ |
| 2232 | if (BE (state->accept_mb, 0)) |
| 2233 | { |
| 2234 | *err = transit_state_mb (mctx, state); |
| 2235 | if (BE (*err != REG_NOERROR, 0)) |
| 2236 | return NULL; |
| 2237 | } |
| 2238 | #endif /* RE_ENABLE_I18N */ |
| 2239 | |
| 2240 | /* Then decide the next state with the single byte. */ |
| 2241 | #if 0 |
| 2242 | if (0) |
| 2243 | /* don't use transition table */ |
| 2244 | return transit_state_sb (err, mctx, state); |
| 2245 | #endif |
| 2246 | |
| 2247 | /* Use transition table */ |
| 2248 | ch = re_string_fetch_byte (&mctx->input); |
| 2249 | for (;;) |
| 2250 | { |
| 2251 | trtable = state->trtable; |
| 2252 | if (BE (trtable != NULL, 1)) |
| 2253 | return trtable[ch]; |
| 2254 | |
| 2255 | trtable = state->word_trtable; |
| 2256 | if (BE (trtable != NULL, 1)) |
| 2257 | { |
| 2258 | unsigned int context; |
| 2259 | context |
| 2260 | = re_string_context_at (&mctx->input, |
| 2261 | re_string_cur_idx (&mctx->input) - 1, |
| 2262 | mctx->eflags); |
| 2263 | if (IS_WORD_CONTEXT (context)) |
| 2264 | return trtable[ch + SBC_MAX]; |
| 2265 | else |
| 2266 | return trtable[ch]; |
| 2267 | } |
| 2268 | |
| 2269 | if (!build_trtable (mctx->dfa, state)) |
| 2270 | { |
| 2271 | *err = REG_ESPACE; |
| 2272 | return NULL; |
| 2273 | } |
| 2274 | |
| 2275 | /* Retry, we now have a transition table. */ |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | /* Update the state_log if we need */ |
| 2280 | static re_dfastate_t * |
| 2281 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, |
| 2282 | re_dfastate_t *next_state) |
| 2283 | { |
| 2284 | const re_dfa_t *const dfa = mctx->dfa; |
| 2285 | Idx cur_idx = re_string_cur_idx (&mctx->input); |
| 2286 | |
| 2287 | if (cur_idx > mctx->state_log_top) |
| 2288 | { |
| 2289 | mctx->state_log[cur_idx] = next_state; |
| 2290 | mctx->state_log_top = cur_idx; |
| 2291 | } |
| 2292 | else if (mctx->state_log[cur_idx] == 0) |
| 2293 | { |
| 2294 | mctx->state_log[cur_idx] = next_state; |
| 2295 | } |
| 2296 | else |
| 2297 | { |
| 2298 | re_dfastate_t *pstate; |
| 2299 | unsigned int context; |
| 2300 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; |
| 2301 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is |
| 2302 | the destination of a multibyte char/collating element/ |
| 2303 | back reference. Then the next state is the union set of |
| 2304 | these destinations and the results of the transition table. */ |
| 2305 | pstate = mctx->state_log[cur_idx]; |
| 2306 | log_nodes = pstate->entrance_nodes; |
| 2307 | if (next_state != NULL) |
| 2308 | { |
| 2309 | table_nodes = next_state->entrance_nodes; |
| 2310 | *err = re_node_set_init_union (&next_nodes, table_nodes, |
| 2311 | log_nodes); |
| 2312 | if (BE (*err != REG_NOERROR, 0)) |
| 2313 | return NULL; |
| 2314 | } |
| 2315 | else |
| 2316 | next_nodes = *log_nodes; |
| 2317 | /* Note: We already add the nodes of the initial state, |
| 2318 | then we don't need to add them here. */ |
| 2319 | |
| 2320 | context = re_string_context_at (&mctx->input, |
| 2321 | re_string_cur_idx (&mctx->input) - 1, |
| 2322 | mctx->eflags); |
| 2323 | next_state = mctx->state_log[cur_idx] |
| 2324 | = re_acquire_state_context (err, dfa, &next_nodes, context); |
| 2325 | /* We don't need to check errors here, since the return value of |
| 2326 | this function is next_state and ERR is already set. */ |
| 2327 | |
| 2328 | if (table_nodes != NULL) |
| 2329 | re_node_set_free (&next_nodes); |
| 2330 | } |
| 2331 | |
| 2332 | if (BE (dfa->nbackref, 0) && next_state != NULL) |
| 2333 | { |
| 2334 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them |
| 2335 | later. We must check them here, since the back references in the |
| 2336 | next state might use them. */ |
| 2337 | *err = check_subexp_matching_top (mctx, &next_state->nodes, |
| 2338 | cur_idx); |
| 2339 | if (BE (*err != REG_NOERROR, 0)) |
| 2340 | return NULL; |
| 2341 | |
| 2342 | /* If the next state has back references. */ |
| 2343 | if (next_state->has_backref) |
| 2344 | { |
| 2345 | *err = transit_state_bkref (mctx, &next_state->nodes); |
| 2346 | if (BE (*err != REG_NOERROR, 0)) |
| 2347 | return NULL; |
| 2348 | next_state = mctx->state_log[cur_idx]; |
| 2349 | } |
| 2350 | } |
| 2351 | |
| 2352 | return next_state; |
| 2353 | } |
| 2354 | |
| 2355 | /* Skip bytes in the input that correspond to part of a |
| 2356 | multi-byte match, then look in the log for a state |
| 2357 | from which to restart matching. */ |
| 2358 | static re_dfastate_t * |
| 2359 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) |
| 2360 | { |
| 2361 | re_dfastate_t *cur_state; |
| 2362 | do |
| 2363 | { |
| 2364 | Idx max = mctx->state_log_top; |
| 2365 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
| 2366 | |
| 2367 | do |
| 2368 | { |
| 2369 | if (++cur_str_idx > max) |
| 2370 | return NULL; |
| 2371 | re_string_skip_bytes (&mctx->input, 1); |
| 2372 | } |
| 2373 | while (mctx->state_log[cur_str_idx] == NULL); |
| 2374 | |
| 2375 | cur_state = merge_state_with_log (err, mctx, NULL); |
| 2376 | } |
| 2377 | while (*err == REG_NOERROR && cur_state == NULL); |
| 2378 | return cur_state; |
| 2379 | } |
| 2380 | |
| 2381 | /* Helper functions for transit_state. */ |
| 2382 | |
| 2383 | /* From the node set CUR_NODES, pick up the nodes whose types are |
| 2384 | OP_OPEN_SUBEXP and which have corresponding back references in the regular |
| 2385 | expression. And register them to use them later for evaluating the |
| 2386 | corresponding back references. */ |
| 2387 | |
| 2388 | static reg_errcode_t |
| 2389 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, |
| 2390 | Idx str_idx) |
| 2391 | { |
| 2392 | const re_dfa_t *const dfa = mctx->dfa; |
| 2393 | Idx node_idx; |
| 2394 | reg_errcode_t err; |
| 2395 | |
| 2396 | /* TODO: This isn't efficient. |
| 2397 | Because there might be more than one nodes whose types are |
| 2398 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
| 2399 | nodes. |
| 2400 | E.g. RE: (a){2} */ |
| 2401 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) |
| 2402 | { |
| 2403 | Idx node = cur_nodes->elems[node_idx]; |
| 2404 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP |
| 2405 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS |
| 2406 | && (dfa->used_bkref_map |
| 2407 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) |
| 2408 | { |
| 2409 | err = match_ctx_add_subtop (mctx, node, str_idx); |
| 2410 | if (BE (err != REG_NOERROR, 0)) |
| 2411 | return err; |
| 2412 | } |
| 2413 | } |
| 2414 | return REG_NOERROR; |
| 2415 | } |
| 2416 | |
| 2417 | #if 0 |
| 2418 | /* Return the next state to which the current state STATE will transit by |
| 2419 | accepting the current input byte. */ |
| 2420 | |
| 2421 | static re_dfastate_t * |
| 2422 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, |
| 2423 | re_dfastate_t *state) |
| 2424 | { |
| 2425 | const re_dfa_t *const dfa = mctx->dfa; |
| 2426 | re_node_set next_nodes; |
| 2427 | re_dfastate_t *next_state; |
| 2428 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); |
| 2429 | unsigned int context; |
| 2430 | |
| 2431 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); |
| 2432 | if (BE (*err != REG_NOERROR, 0)) |
| 2433 | return NULL; |
| 2434 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) |
| 2435 | { |
| 2436 | Idx cur_node = state->nodes.elems[node_cnt]; |
| 2437 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) |
| 2438 | { |
| 2439 | *err = re_node_set_merge (&next_nodes, |
| 2440 | dfa->eclosures + dfa->nexts[cur_node]); |
| 2441 | if (BE (*err != REG_NOERROR, 0)) |
| 2442 | { |
| 2443 | re_node_set_free (&next_nodes); |
| 2444 | return NULL; |
| 2445 | } |
| 2446 | } |
| 2447 | } |
| 2448 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); |
| 2449 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); |
| 2450 | /* We don't need to check errors here, since the return value of |
| 2451 | this function is next_state and ERR is already set. */ |
| 2452 | |
| 2453 | re_node_set_free (&next_nodes); |
| 2454 | re_string_skip_bytes (&mctx->input, 1); |
| 2455 | return next_state; |
| 2456 | } |
| 2457 | #endif |
| 2458 | |
| 2459 | #ifdef RE_ENABLE_I18N |
| 2460 | static reg_errcode_t |
| 2461 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) |
| 2462 | { |
| 2463 | const re_dfa_t *const dfa = mctx->dfa; |
| 2464 | reg_errcode_t err; |
| 2465 | Idx i; |
| 2466 | |
| 2467 | for (i = 0; i < pstate->nodes.nelem; ++i) |
| 2468 | { |
| 2469 | re_node_set dest_nodes, *new_nodes; |
| 2470 | Idx cur_node_idx = pstate->nodes.elems[i]; |
| 2471 | int naccepted; |
| 2472 | Idx dest_idx; |
| 2473 | unsigned int context; |
| 2474 | re_dfastate_t *dest_state; |
| 2475 | |
| 2476 | if (!dfa->nodes[cur_node_idx].accept_mb) |
| 2477 | continue; |
| 2478 | |
| 2479 | if (dfa->nodes[cur_node_idx].constraint) |
| 2480 | { |
| 2481 | context = re_string_context_at (&mctx->input, |
| 2482 | re_string_cur_idx (&mctx->input), |
| 2483 | mctx->eflags); |
| 2484 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, |
| 2485 | context)) |
| 2486 | continue; |
| 2487 | } |
| 2488 | |
| 2489 | /* How many bytes the node can accept? */ |
| 2490 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, |
| 2491 | re_string_cur_idx (&mctx->input)); |
| 2492 | if (naccepted == 0) |
| 2493 | continue; |
| 2494 | |
| 2495 | /* The node can accepts 'naccepted' bytes. */ |
| 2496 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; |
| 2497 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted |
| 2498 | : mctx->max_mb_elem_len); |
| 2499 | err = clean_state_log_if_needed (mctx, dest_idx); |
| 2500 | if (BE (err != REG_NOERROR, 0)) |
| 2501 | return err; |
| 2502 | #ifdef DEBUG |
| 2503 | assert (dfa->nexts[cur_node_idx] != -1); |
| 2504 | #endif |
| 2505 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; |
| 2506 | |
| 2507 | dest_state = mctx->state_log[dest_idx]; |
| 2508 | if (dest_state == NULL) |
| 2509 | dest_nodes = *new_nodes; |
| 2510 | else |
| 2511 | { |
| 2512 | err = re_node_set_init_union (&dest_nodes, |
| 2513 | dest_state->entrance_nodes, new_nodes); |
| 2514 | if (BE (err != REG_NOERROR, 0)) |
| 2515 | return err; |
| 2516 | } |
| 2517 | context = re_string_context_at (&mctx->input, dest_idx - 1, |
| 2518 | mctx->eflags); |
| 2519 | mctx->state_log[dest_idx] |
| 2520 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
| 2521 | if (dest_state != NULL) |
| 2522 | re_node_set_free (&dest_nodes); |
| 2523 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) |
| 2524 | return err; |
| 2525 | } |
| 2526 | return REG_NOERROR; |
| 2527 | } |
| 2528 | #endif /* RE_ENABLE_I18N */ |
| 2529 | |
| 2530 | static reg_errcode_t |
| 2531 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) |
| 2532 | { |
| 2533 | const re_dfa_t *const dfa = mctx->dfa; |
| 2534 | reg_errcode_t err; |
| 2535 | Idx i; |
| 2536 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
| 2537 | |
| 2538 | for (i = 0; i < nodes->nelem; ++i) |
| 2539 | { |
| 2540 | Idx dest_str_idx, prev_nelem, bkc_idx; |
| 2541 | Idx node_idx = nodes->elems[i]; |
| 2542 | unsigned int context; |
| 2543 | const re_token_t *node = dfa->nodes + node_idx; |
| 2544 | re_node_set *new_dest_nodes; |
| 2545 | |
| 2546 | /* Check whether 'node' is a backreference or not. */ |
| 2547 | if (node->type != OP_BACK_REF) |
| 2548 | continue; |
| 2549 | |
| 2550 | if (node->constraint) |
| 2551 | { |
| 2552 | context = re_string_context_at (&mctx->input, cur_str_idx, |
| 2553 | mctx->eflags); |
| 2554 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
| 2555 | continue; |
| 2556 | } |
| 2557 | |
| 2558 | /* 'node' is a backreference. |
| 2559 | Check the substring which the substring matched. */ |
| 2560 | bkc_idx = mctx->nbkref_ents; |
| 2561 | err = get_subexp (mctx, node_idx, cur_str_idx); |
| 2562 | if (BE (err != REG_NOERROR, 0)) |
| 2563 | goto free_return; |
| 2564 | |
| 2565 | /* And add the epsilon closures (which is 'new_dest_nodes') of |
| 2566 | the backreference to appropriate state_log. */ |
| 2567 | #ifdef DEBUG |
| 2568 | assert (dfa->nexts[node_idx] != -1); |
| 2569 | #endif |
| 2570 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) |
| 2571 | { |
| 2572 | Idx subexp_len; |
| 2573 | re_dfastate_t *dest_state; |
| 2574 | struct re_backref_cache_entry *bkref_ent; |
| 2575 | bkref_ent = mctx->bkref_ents + bkc_idx; |
| 2576 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) |
| 2577 | continue; |
| 2578 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; |
| 2579 | new_dest_nodes = (subexp_len == 0 |
| 2580 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] |
| 2581 | : dfa->eclosures + dfa->nexts[node_idx]); |
| 2582 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to |
| 2583 | - bkref_ent->subexp_from); |
| 2584 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, |
| 2585 | mctx->eflags); |
| 2586 | dest_state = mctx->state_log[dest_str_idx]; |
| 2587 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 |
| 2588 | : mctx->state_log[cur_str_idx]->nodes.nelem); |
| 2589 | /* Add 'new_dest_node' to state_log. */ |
| 2590 | if (dest_state == NULL) |
| 2591 | { |
| 2592 | mctx->state_log[dest_str_idx] |
| 2593 | = re_acquire_state_context (&err, dfa, new_dest_nodes, |
| 2594 | context); |
| 2595 | if (BE (mctx->state_log[dest_str_idx] == NULL |
| 2596 | && err != REG_NOERROR, 0)) |
| 2597 | goto free_return; |
| 2598 | } |
| 2599 | else |
| 2600 | { |
| 2601 | re_node_set dest_nodes; |
| 2602 | err = re_node_set_init_union (&dest_nodes, |
| 2603 | dest_state->entrance_nodes, |
| 2604 | new_dest_nodes); |
| 2605 | if (BE (err != REG_NOERROR, 0)) |
| 2606 | { |
| 2607 | re_node_set_free (&dest_nodes); |
| 2608 | goto free_return; |
| 2609 | } |
| 2610 | mctx->state_log[dest_str_idx] |
| 2611 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
| 2612 | re_node_set_free (&dest_nodes); |
| 2613 | if (BE (mctx->state_log[dest_str_idx] == NULL |
| 2614 | && err != REG_NOERROR, 0)) |
| 2615 | goto free_return; |
| 2616 | } |
| 2617 | /* We need to check recursively if the backreference can epsilon |
| 2618 | transit. */ |
| 2619 | if (subexp_len == 0 |
| 2620 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) |
| 2621 | { |
| 2622 | err = check_subexp_matching_top (mctx, new_dest_nodes, |
| 2623 | cur_str_idx); |
| 2624 | if (BE (err != REG_NOERROR, 0)) |
| 2625 | goto free_return; |
| 2626 | err = transit_state_bkref (mctx, new_dest_nodes); |
| 2627 | if (BE (err != REG_NOERROR, 0)) |
| 2628 | goto free_return; |
| 2629 | } |
| 2630 | } |
| 2631 | } |
| 2632 | err = REG_NOERROR; |
| 2633 | free_return: |
| 2634 | return err; |
| 2635 | } |
| 2636 | |
| 2637 | /* Enumerate all the candidates which the backreference BKREF_NODE can match |
| 2638 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). |
| 2639 | Note that we might collect inappropriate candidates here. |
| 2640 | However, the cost of checking them strictly here is too high, then we |
| 2641 | delay these checking for prune_impossible_nodes(). */ |
| 2642 | |
| 2643 | static reg_errcode_t |
| 2644 | __attribute_warn_unused_result__ |
| 2645 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) |
| 2646 | { |
| 2647 | const re_dfa_t *const dfa = mctx->dfa; |
| 2648 | Idx subexp_num, sub_top_idx; |
| 2649 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); |
| 2650 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ |
| 2651 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); |
| 2652 | if (cache_idx != -1) |
| 2653 | { |
| 2654 | const struct re_backref_cache_entry *entry |
| 2655 | = mctx->bkref_ents + cache_idx; |
| 2656 | do |
| 2657 | if (entry->node == bkref_node) |
| 2658 | return REG_NOERROR; /* We already checked it. */ |
| 2659 | while (entry++->more); |
| 2660 | } |
| 2661 | |
| 2662 | subexp_num = dfa->nodes[bkref_node].opr.idx; |
| 2663 | |
| 2664 | /* For each sub expression */ |
| 2665 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) |
| 2666 | { |
| 2667 | reg_errcode_t err; |
| 2668 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; |
| 2669 | re_sub_match_last_t *sub_last; |
| 2670 | Idx sub_last_idx, sl_str, bkref_str_off; |
| 2671 | |
| 2672 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) |
| 2673 | continue; /* It isn't related. */ |
| 2674 | |
| 2675 | sl_str = sub_top->str_idx; |
| 2676 | bkref_str_off = bkref_str_idx; |
| 2677 | /* At first, check the last node of sub expressions we already |
| 2678 | evaluated. */ |
| 2679 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) |
| 2680 | { |
| 2681 | regoff_t sl_str_diff; |
| 2682 | sub_last = sub_top->lasts[sub_last_idx]; |
| 2683 | sl_str_diff = sub_last->str_idx - sl_str; |
| 2684 | /* The matched string by the sub expression match with the substring |
| 2685 | at the back reference? */ |
| 2686 | if (sl_str_diff > 0) |
| 2687 | { |
| 2688 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) |
| 2689 | { |
| 2690 | /* Not enough chars for a successful match. */ |
| 2691 | if (bkref_str_off + sl_str_diff > mctx->input.len) |
| 2692 | break; |
| 2693 | |
| 2694 | err = clean_state_log_if_needed (mctx, |
| 2695 | bkref_str_off |
| 2696 | + sl_str_diff); |
| 2697 | if (BE (err != REG_NOERROR, 0)) |
| 2698 | return err; |
| 2699 | buf = (const char *) re_string_get_buffer (&mctx->input); |
| 2700 | } |
| 2701 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) |
| 2702 | /* We don't need to search this sub expression any more. */ |
| 2703 | break; |
| 2704 | } |
| 2705 | bkref_str_off += sl_str_diff; |
| 2706 | sl_str += sl_str_diff; |
| 2707 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
| 2708 | bkref_str_idx); |
| 2709 | |
| 2710 | /* Reload buf, since the preceding call might have reallocated |
| 2711 | the buffer. */ |
| 2712 | buf = (const char *) re_string_get_buffer (&mctx->input); |
| 2713 | |
| 2714 | if (err == REG_NOMATCH) |
| 2715 | continue; |
| 2716 | if (BE (err != REG_NOERROR, 0)) |
| 2717 | return err; |
| 2718 | } |
| 2719 | |
| 2720 | if (sub_last_idx < sub_top->nlasts) |
| 2721 | continue; |
| 2722 | if (sub_last_idx > 0) |
| 2723 | ++sl_str; |
| 2724 | /* Then, search for the other last nodes of the sub expression. */ |
| 2725 | for (; sl_str <= bkref_str_idx; ++sl_str) |
| 2726 | { |
| 2727 | Idx cls_node; |
| 2728 | regoff_t sl_str_off; |
| 2729 | const re_node_set *nodes; |
| 2730 | sl_str_off = sl_str - sub_top->str_idx; |
| 2731 | /* The matched string by the sub expression match with the substring |
| 2732 | at the back reference? */ |
| 2733 | if (sl_str_off > 0) |
| 2734 | { |
| 2735 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) |
| 2736 | { |
| 2737 | /* If we are at the end of the input, we cannot match. */ |
| 2738 | if (bkref_str_off >= mctx->input.len) |
| 2739 | break; |
| 2740 | |
| 2741 | err = extend_buffers (mctx, bkref_str_off + 1); |
| 2742 | if (BE (err != REG_NOERROR, 0)) |
| 2743 | return err; |
| 2744 | |
| 2745 | buf = (const char *) re_string_get_buffer (&mctx->input); |
| 2746 | } |
| 2747 | if (buf [bkref_str_off++] != buf[sl_str - 1]) |
| 2748 | break; /* We don't need to search this sub expression |
| 2749 | any more. */ |
| 2750 | } |
| 2751 | if (mctx->state_log[sl_str] == NULL) |
| 2752 | continue; |
| 2753 | /* Does this state have a ')' of the sub expression? */ |
| 2754 | nodes = &mctx->state_log[sl_str]->nodes; |
| 2755 | cls_node = find_subexp_node (dfa, nodes, subexp_num, |
| 2756 | OP_CLOSE_SUBEXP); |
| 2757 | if (cls_node == -1) |
| 2758 | continue; /* No. */ |
| 2759 | if (sub_top->path == NULL) |
| 2760 | { |
| 2761 | sub_top->path = calloc (sizeof (state_array_t), |
| 2762 | sl_str - sub_top->str_idx + 1); |
| 2763 | if (sub_top->path == NULL) |
| 2764 | return REG_ESPACE; |
| 2765 | } |
| 2766 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node |
| 2767 | in the current context? */ |
| 2768 | err = check_arrival (mctx, sub_top->path, sub_top->node, |
| 2769 | sub_top->str_idx, cls_node, sl_str, |
| 2770 | OP_CLOSE_SUBEXP); |
| 2771 | if (err == REG_NOMATCH) |
| 2772 | continue; |
| 2773 | if (BE (err != REG_NOERROR, 0)) |
| 2774 | return err; |
| 2775 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); |
| 2776 | if (BE (sub_last == NULL, 0)) |
| 2777 | return REG_ESPACE; |
| 2778 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
| 2779 | bkref_str_idx); |
| 2780 | if (err == REG_NOMATCH) |
| 2781 | continue; |
| 2782 | } |
| 2783 | } |
| 2784 | return REG_NOERROR; |
| 2785 | } |
| 2786 | |
| 2787 | /* Helper functions for get_subexp(). */ |
| 2788 | |
| 2789 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. |
| 2790 | If it can arrive, register the sub expression expressed with SUB_TOP |
| 2791 | and SUB_LAST. */ |
| 2792 | |
| 2793 | static reg_errcode_t |
| 2794 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, |
| 2795 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) |
| 2796 | { |
| 2797 | reg_errcode_t err; |
| 2798 | Idx to_idx; |
| 2799 | /* Can the subexpression arrive the back reference? */ |
| 2800 | err = check_arrival (mctx, &sub_last->path, sub_last->node, |
| 2801 | sub_last->str_idx, bkref_node, bkref_str, |
| 2802 | OP_OPEN_SUBEXP); |
| 2803 | if (err != REG_NOERROR) |
| 2804 | return err; |
| 2805 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, |
| 2806 | sub_last->str_idx); |
| 2807 | if (BE (err != REG_NOERROR, 0)) |
| 2808 | return err; |
| 2809 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; |
| 2810 | return clean_state_log_if_needed (mctx, to_idx); |
| 2811 | } |
| 2812 | |
| 2813 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. |
| 2814 | Search '(' if FL_OPEN, or search ')' otherwise. |
| 2815 | TODO: This function isn't efficient... |
| 2816 | Because there might be more than one nodes whose types are |
| 2817 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
| 2818 | nodes. |
| 2819 | E.g. RE: (a){2} */ |
| 2820 | |
| 2821 | static Idx |
| 2822 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
| 2823 | Idx subexp_idx, int type) |
| 2824 | { |
| 2825 | Idx cls_idx; |
| 2826 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) |
| 2827 | { |
| 2828 | Idx cls_node = nodes->elems[cls_idx]; |
| 2829 | const re_token_t *node = dfa->nodes + cls_node; |
| 2830 | if (node->type == type |
| 2831 | && node->opr.idx == subexp_idx) |
| 2832 | return cls_node; |
| 2833 | } |
| 2834 | return -1; |
| 2835 | } |
| 2836 | |
| 2837 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node |
| 2838 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be |
| 2839 | heavily reused. |
| 2840 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ |
| 2841 | |
| 2842 | static reg_errcode_t |
| 2843 | __attribute_warn_unused_result__ |
| 2844 | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, |
| 2845 | Idx top_str, Idx last_node, Idx last_str, int type) |
| 2846 | { |
| 2847 | const re_dfa_t *const dfa = mctx->dfa; |
| 2848 | reg_errcode_t err = REG_NOERROR; |
| 2849 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; |
| 2850 | re_dfastate_t *cur_state = NULL; |
| 2851 | re_node_set *cur_nodes, next_nodes; |
| 2852 | re_dfastate_t **backup_state_log; |
| 2853 | unsigned int context; |
| 2854 | |
| 2855 | subexp_num = dfa->nodes[top_node].opr.idx; |
| 2856 | /* Extend the buffer if we need. */ |
| 2857 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) |
| 2858 | { |
| 2859 | re_dfastate_t **new_array; |
| 2860 | Idx old_alloc = path->alloc; |
| 2861 | Idx incr_alloc = last_str + mctx->max_mb_elem_len + 1; |
| 2862 | Idx new_alloc; |
| 2863 | if (BE (IDX_MAX - old_alloc < incr_alloc, 0)) |
| 2864 | return REG_ESPACE; |
| 2865 | new_alloc = old_alloc + incr_alloc; |
| 2866 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc, 0)) |
| 2867 | return REG_ESPACE; |
| 2868 | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); |
| 2869 | if (BE (new_array == NULL, 0)) |
| 2870 | return REG_ESPACE; |
| 2871 | path->array = new_array; |
| 2872 | path->alloc = new_alloc; |
| 2873 | memset (new_array + old_alloc, '\0', |
| 2874 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); |
| 2875 | } |
| 2876 | |
| 2877 | str_idx = path->next_idx ? path->next_idx : top_str; |
| 2878 | |
| 2879 | /* Temporary modify MCTX. */ |
| 2880 | backup_state_log = mctx->state_log; |
| 2881 | backup_cur_idx = mctx->input.cur_idx; |
| 2882 | mctx->state_log = path->array; |
| 2883 | mctx->input.cur_idx = str_idx; |
| 2884 | |
| 2885 | /* Setup initial node set. */ |
| 2886 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
| 2887 | if (str_idx == top_str) |
| 2888 | { |
| 2889 | err = re_node_set_init_1 (&next_nodes, top_node); |
| 2890 | if (BE (err != REG_NOERROR, 0)) |
| 2891 | return err; |
| 2892 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
| 2893 | if (BE (err != REG_NOERROR, 0)) |
| 2894 | { |
| 2895 | re_node_set_free (&next_nodes); |
| 2896 | return err; |
| 2897 | } |
| 2898 | } |
| 2899 | else |
| 2900 | { |
| 2901 | cur_state = mctx->state_log[str_idx]; |
| 2902 | if (cur_state && cur_state->has_backref) |
| 2903 | { |
| 2904 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); |
| 2905 | if (BE (err != REG_NOERROR, 0)) |
| 2906 | return err; |
| 2907 | } |
| 2908 | else |
| 2909 | re_node_set_init_empty (&next_nodes); |
| 2910 | } |
| 2911 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) |
| 2912 | { |
| 2913 | if (next_nodes.nelem) |
| 2914 | { |
| 2915 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
| 2916 | subexp_num, type); |
| 2917 | if (BE (err != REG_NOERROR, 0)) |
| 2918 | { |
| 2919 | re_node_set_free (&next_nodes); |
| 2920 | return err; |
| 2921 | } |
| 2922 | } |
| 2923 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
| 2924 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
| 2925 | { |
| 2926 | re_node_set_free (&next_nodes); |
| 2927 | return err; |
| 2928 | } |
| 2929 | mctx->state_log[str_idx] = cur_state; |
| 2930 | } |
| 2931 | |
| 2932 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) |
| 2933 | { |
| 2934 | re_node_set_empty (&next_nodes); |
| 2935 | if (mctx->state_log[str_idx + 1]) |
| 2936 | { |
| 2937 | err = re_node_set_merge (&next_nodes, |
| 2938 | &mctx->state_log[str_idx + 1]->nodes); |
| 2939 | if (BE (err != REG_NOERROR, 0)) |
| 2940 | { |
| 2941 | re_node_set_free (&next_nodes); |
| 2942 | return err; |
| 2943 | } |
| 2944 | } |
| 2945 | if (cur_state) |
| 2946 | { |
| 2947 | err = check_arrival_add_next_nodes (mctx, str_idx, |
| 2948 | &cur_state->non_eps_nodes, |
| 2949 | &next_nodes); |
| 2950 | if (BE (err != REG_NOERROR, 0)) |
| 2951 | { |
| 2952 | re_node_set_free (&next_nodes); |
| 2953 | return err; |
| 2954 | } |
| 2955 | } |
| 2956 | ++str_idx; |
| 2957 | if (next_nodes.nelem) |
| 2958 | { |
| 2959 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
| 2960 | if (BE (err != REG_NOERROR, 0)) |
| 2961 | { |
| 2962 | re_node_set_free (&next_nodes); |
| 2963 | return err; |
| 2964 | } |
| 2965 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
| 2966 | subexp_num, type); |
| 2967 | if (BE (err != REG_NOERROR, 0)) |
| 2968 | { |
| 2969 | re_node_set_free (&next_nodes); |
| 2970 | return err; |
| 2971 | } |
| 2972 | } |
| 2973 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
| 2974 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
| 2975 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
| 2976 | { |
| 2977 | re_node_set_free (&next_nodes); |
| 2978 | return err; |
| 2979 | } |
| 2980 | mctx->state_log[str_idx] = cur_state; |
| 2981 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; |
| 2982 | } |
| 2983 | re_node_set_free (&next_nodes); |
| 2984 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL |
| 2985 | : &mctx->state_log[last_str]->nodes); |
| 2986 | path->next_idx = str_idx; |
| 2987 | |
| 2988 | /* Fix MCTX. */ |
| 2989 | mctx->state_log = backup_state_log; |
| 2990 | mctx->input.cur_idx = backup_cur_idx; |
| 2991 | |
| 2992 | /* Then check the current node set has the node LAST_NODE. */ |
| 2993 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) |
| 2994 | return REG_NOERROR; |
| 2995 | |
| 2996 | return REG_NOMATCH; |
| 2997 | } |
| 2998 | |
| 2999 | /* Helper functions for check_arrival. */ |
| 3000 | |
| 3001 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them |
| 3002 | to NEXT_NODES. |
| 3003 | TODO: This function is similar to the functions transit_state*(), |
| 3004 | however this function has many additional works. |
| 3005 | Can't we unify them? */ |
| 3006 | |
| 3007 | static reg_errcode_t |
| 3008 | __attribute_warn_unused_result__ |
| 3009 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, |
| 3010 | re_node_set *cur_nodes, re_node_set *next_nodes) |
| 3011 | { |
| 3012 | const re_dfa_t *const dfa = mctx->dfa; |
| 3013 | bool ok; |
| 3014 | Idx cur_idx; |
| 3015 | #ifdef RE_ENABLE_I18N |
| 3016 | reg_errcode_t err = REG_NOERROR; |
| 3017 | #endif |
| 3018 | re_node_set union_set; |
| 3019 | re_node_set_init_empty (&union_set); |
| 3020 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) |
| 3021 | { |
| 3022 | int naccepted = 0; |
| 3023 | Idx cur_node = cur_nodes->elems[cur_idx]; |
| 3024 | #ifdef DEBUG |
| 3025 | re_token_type_t type = dfa->nodes[cur_node].type; |
| 3026 | assert (!IS_EPSILON_NODE (type)); |
| 3027 | #endif |
| 3028 | #ifdef RE_ENABLE_I18N |
| 3029 | /* If the node may accept "multi byte". */ |
| 3030 | if (dfa->nodes[cur_node].accept_mb) |
| 3031 | { |
| 3032 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, |
| 3033 | str_idx); |
| 3034 | if (naccepted > 1) |
| 3035 | { |
| 3036 | re_dfastate_t *dest_state; |
| 3037 | Idx next_node = dfa->nexts[cur_node]; |
| 3038 | Idx next_idx = str_idx + naccepted; |
| 3039 | dest_state = mctx->state_log[next_idx]; |
| 3040 | re_node_set_empty (&union_set); |
| 3041 | if (dest_state) |
| 3042 | { |
| 3043 | err = re_node_set_merge (&union_set, &dest_state->nodes); |
| 3044 | if (BE (err != REG_NOERROR, 0)) |
| 3045 | { |
| 3046 | re_node_set_free (&union_set); |
| 3047 | return err; |
| 3048 | } |
| 3049 | } |
| 3050 | ok = re_node_set_insert (&union_set, next_node); |
| 3051 | if (BE (! ok, 0)) |
| 3052 | { |
| 3053 | re_node_set_free (&union_set); |
| 3054 | return REG_ESPACE; |
| 3055 | } |
| 3056 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, |
| 3057 | &union_set); |
| 3058 | if (BE (mctx->state_log[next_idx] == NULL |
| 3059 | && err != REG_NOERROR, 0)) |
| 3060 | { |
| 3061 | re_node_set_free (&union_set); |
| 3062 | return err; |
| 3063 | } |
| 3064 | } |
| 3065 | } |
| 3066 | #endif /* RE_ENABLE_I18N */ |
| 3067 | if (naccepted |
| 3068 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) |
| 3069 | { |
| 3070 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); |
| 3071 | if (BE (! ok, 0)) |
| 3072 | { |
| 3073 | re_node_set_free (&union_set); |
| 3074 | return REG_ESPACE; |
| 3075 | } |
| 3076 | } |
| 3077 | } |
| 3078 | re_node_set_free (&union_set); |
| 3079 | return REG_NOERROR; |
| 3080 | } |
| 3081 | |
| 3082 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to |
| 3083 | CUR_NODES, however exclude the nodes which are: |
| 3084 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. |
| 3085 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. |
| 3086 | */ |
| 3087 | |
| 3088 | static reg_errcode_t |
| 3089 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, |
| 3090 | Idx ex_subexp, int type) |
| 3091 | { |
| 3092 | reg_errcode_t err; |
| 3093 | Idx idx, outside_node; |
| 3094 | re_node_set new_nodes; |
| 3095 | #ifdef DEBUG |
| 3096 | assert (cur_nodes->nelem); |
| 3097 | #endif |
| 3098 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); |
| 3099 | if (BE (err != REG_NOERROR, 0)) |
| 3100 | return err; |
| 3101 | /* Create a new node set NEW_NODES with the nodes which are epsilon |
| 3102 | closures of the node in CUR_NODES. */ |
| 3103 | |
| 3104 | for (idx = 0; idx < cur_nodes->nelem; ++idx) |
| 3105 | { |
| 3106 | Idx cur_node = cur_nodes->elems[idx]; |
| 3107 | const re_node_set *eclosure = dfa->eclosures + cur_node; |
| 3108 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); |
| 3109 | if (outside_node == -1) |
| 3110 | { |
| 3111 | /* There are no problematic nodes, just merge them. */ |
| 3112 | err = re_node_set_merge (&new_nodes, eclosure); |
| 3113 | if (BE (err != REG_NOERROR, 0)) |
| 3114 | { |
| 3115 | re_node_set_free (&new_nodes); |
| 3116 | return err; |
| 3117 | } |
| 3118 | } |
| 3119 | else |
| 3120 | { |
| 3121 | /* There are problematic nodes, re-calculate incrementally. */ |
| 3122 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, |
| 3123 | ex_subexp, type); |
| 3124 | if (BE (err != REG_NOERROR, 0)) |
| 3125 | { |
| 3126 | re_node_set_free (&new_nodes); |
| 3127 | return err; |
| 3128 | } |
| 3129 | } |
| 3130 | } |
| 3131 | re_node_set_free (cur_nodes); |
| 3132 | *cur_nodes = new_nodes; |
| 3133 | return REG_NOERROR; |
| 3134 | } |
| 3135 | |
| 3136 | /* Helper function for check_arrival_expand_ecl. |
| 3137 | Check incrementally the epsilon closure of TARGET, and if it isn't |
| 3138 | problematic append it to DST_NODES. */ |
| 3139 | |
| 3140 | static reg_errcode_t |
| 3141 | __attribute_warn_unused_result__ |
| 3142 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, |
| 3143 | Idx target, Idx ex_subexp, int type) |
| 3144 | { |
| 3145 | Idx cur_node; |
| 3146 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) |
| 3147 | { |
| 3148 | bool ok; |
| 3149 | |
| 3150 | if (dfa->nodes[cur_node].type == type |
| 3151 | && dfa->nodes[cur_node].opr.idx == ex_subexp) |
| 3152 | { |
| 3153 | if (type == OP_CLOSE_SUBEXP) |
| 3154 | { |
| 3155 | ok = re_node_set_insert (dst_nodes, cur_node); |
| 3156 | if (BE (! ok, 0)) |
| 3157 | return REG_ESPACE; |
| 3158 | } |
| 3159 | break; |
| 3160 | } |
| 3161 | ok = re_node_set_insert (dst_nodes, cur_node); |
| 3162 | if (BE (! ok, 0)) |
| 3163 | return REG_ESPACE; |
| 3164 | if (dfa->edests[cur_node].nelem == 0) |
| 3165 | break; |
| 3166 | if (dfa->edests[cur_node].nelem == 2) |
| 3167 | { |
| 3168 | reg_errcode_t err; |
| 3169 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, |
| 3170 | dfa->edests[cur_node].elems[1], |
| 3171 | ex_subexp, type); |
| 3172 | if (BE (err != REG_NOERROR, 0)) |
| 3173 | return err; |
| 3174 | } |
| 3175 | cur_node = dfa->edests[cur_node].elems[0]; |
| 3176 | } |
| 3177 | return REG_NOERROR; |
| 3178 | } |
| 3179 | |
| 3180 | |
| 3181 | /* For all the back references in the current state, calculate the |
| 3182 | destination of the back references by the appropriate entry |
| 3183 | in MCTX->BKREF_ENTS. */ |
| 3184 | |
| 3185 | static reg_errcode_t |
| 3186 | __attribute_warn_unused_result__ |
| 3187 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, |
| 3188 | Idx cur_str, Idx subexp_num, int type) |
| 3189 | { |
| 3190 | const re_dfa_t *const dfa = mctx->dfa; |
| 3191 | reg_errcode_t err; |
| 3192 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); |
| 3193 | struct re_backref_cache_entry *ent; |
| 3194 | |
| 3195 | if (cache_idx_start == -1) |
| 3196 | return REG_NOERROR; |
| 3197 | |
| 3198 | restart: |
| 3199 | ent = mctx->bkref_ents + cache_idx_start; |
| 3200 | do |
| 3201 | { |
| 3202 | Idx to_idx, next_node; |
| 3203 | |
| 3204 | /* Is this entry ENT is appropriate? */ |
| 3205 | if (!re_node_set_contains (cur_nodes, ent->node)) |
| 3206 | continue; /* No. */ |
| 3207 | |
| 3208 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; |
| 3209 | /* Calculate the destination of the back reference, and append it |
| 3210 | to MCTX->STATE_LOG. */ |
| 3211 | if (to_idx == cur_str) |
| 3212 | { |
| 3213 | /* The backreference did epsilon transit, we must re-check all the |
| 3214 | node in the current state. */ |
| 3215 | re_node_set new_dests; |
| 3216 | reg_errcode_t err2, err3; |
| 3217 | next_node = dfa->edests[ent->node].elems[0]; |
| 3218 | if (re_node_set_contains (cur_nodes, next_node)) |
| 3219 | continue; |
| 3220 | err = re_node_set_init_1 (&new_dests, next_node); |
| 3221 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); |
| 3222 | err3 = re_node_set_merge (cur_nodes, &new_dests); |
| 3223 | re_node_set_free (&new_dests); |
| 3224 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR |
| 3225 | || err3 != REG_NOERROR, 0)) |
| 3226 | { |
| 3227 | err = (err != REG_NOERROR ? err |
| 3228 | : (err2 != REG_NOERROR ? err2 : err3)); |
| 3229 | return err; |
| 3230 | } |
| 3231 | /* TODO: It is still inefficient... */ |
| 3232 | goto restart; |
| 3233 | } |
| 3234 | else |
| 3235 | { |
| 3236 | re_node_set union_set; |
| 3237 | next_node = dfa->nexts[ent->node]; |
| 3238 | if (mctx->state_log[to_idx]) |
| 3239 | { |
| 3240 | bool ok; |
| 3241 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, |
| 3242 | next_node)) |
| 3243 | continue; |
| 3244 | err = re_node_set_init_copy (&union_set, |
| 3245 | &mctx->state_log[to_idx]->nodes); |
| 3246 | ok = re_node_set_insert (&union_set, next_node); |
| 3247 | if (BE (err != REG_NOERROR || ! ok, 0)) |
| 3248 | { |
| 3249 | re_node_set_free (&union_set); |
| 3250 | err = err != REG_NOERROR ? err : REG_ESPACE; |
| 3251 | return err; |
| 3252 | } |
| 3253 | } |
| 3254 | else |
| 3255 | { |
| 3256 | err = re_node_set_init_1 (&union_set, next_node); |
| 3257 | if (BE (err != REG_NOERROR, 0)) |
| 3258 | return err; |
| 3259 | } |
| 3260 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); |
| 3261 | re_node_set_free (&union_set); |
| 3262 | if (BE (mctx->state_log[to_idx] == NULL |
| 3263 | && err != REG_NOERROR, 0)) |
| 3264 | return err; |
| 3265 | } |
| 3266 | } |
| 3267 | while (ent++->more); |
| 3268 | return REG_NOERROR; |
| 3269 | } |
| 3270 | |
| 3271 | /* Build transition table for the state. |
| 3272 | Return true if successful. */ |
| 3273 | |
| 3274 | static bool |
| 3275 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) |
| 3276 | { |
| 3277 | reg_errcode_t err; |
| 3278 | Idx i, j; |
| 3279 | int ch; |
| 3280 | bool need_word_trtable = false; |
| 3281 | bitset_word_t elem, mask; |
| 3282 | bool dests_node_malloced = false; |
| 3283 | bool dest_states_malloced = false; |
| 3284 | Idx ndests; /* Number of the destination states from 'state'. */ |
| 3285 | re_dfastate_t **trtable; |
| 3286 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; |
| 3287 | re_node_set follows, *dests_node; |
| 3288 | bitset_t *dests_ch; |
| 3289 | bitset_t acceptable; |
| 3290 | |
| 3291 | struct dests_alloc |
| 3292 | { |
| 3293 | re_node_set dests_node[SBC_MAX]; |
| 3294 | bitset_t dests_ch[SBC_MAX]; |
| 3295 | } *dests_alloc; |
| 3296 | |
| 3297 | /* We build DFA states which corresponds to the destination nodes |
| 3298 | from 'state'. 'dests_node[i]' represents the nodes which i-th |
| 3299 | destination state contains, and 'dests_ch[i]' represents the |
| 3300 | characters which i-th destination state accepts. */ |
| 3301 | if (__libc_use_alloca (sizeof (struct dests_alloc))) |
| 3302 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); |
| 3303 | else |
| 3304 | { |
| 3305 | dests_alloc = re_malloc (struct dests_alloc, 1); |
| 3306 | if (BE (dests_alloc == NULL, 0)) |
| 3307 | return false; |
| 3308 | dests_node_malloced = true; |
| 3309 | } |
| 3310 | dests_node = dests_alloc->dests_node; |
| 3311 | dests_ch = dests_alloc->dests_ch; |
| 3312 | |
| 3313 | /* Initialize transition table. */ |
| 3314 | state->word_trtable = state->trtable = NULL; |
| 3315 | |
| 3316 | /* At first, group all nodes belonging to 'state' into several |
| 3317 | destinations. */ |
| 3318 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); |
| 3319 | if (BE (ndests <= 0, 0)) |
| 3320 | { |
| 3321 | if (dests_node_malloced) |
| 3322 | re_free (dests_alloc); |
| 3323 | /* Return false in case of an error, true otherwise. */ |
| 3324 | if (ndests == 0) |
| 3325 | { |
| 3326 | state->trtable = (re_dfastate_t **) |
| 3327 | calloc (sizeof (re_dfastate_t *), SBC_MAX); |
| 3328 | if (BE (state->trtable == NULL, 0)) |
| 3329 | return false; |
| 3330 | return true; |
| 3331 | } |
| 3332 | return false; |
| 3333 | } |
| 3334 | |
| 3335 | err = re_node_set_alloc (&follows, ndests + 1); |
| 3336 | if (BE (err != REG_NOERROR, 0)) |
| 3337 | goto out_free; |
| 3338 | |
| 3339 | /* Avoid arithmetic overflow in size calculation. */ |
| 3340 | if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) |
| 3341 | / (3 * sizeof (re_dfastate_t *))) |
| 3342 | < ndests), |
| 3343 | 0)) |
| 3344 | goto out_free; |
| 3345 | |
| 3346 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX |
| 3347 | + ndests * 3 * sizeof (re_dfastate_t *))) |
| 3348 | dest_states = (re_dfastate_t **) |
| 3349 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); |
| 3350 | else |
| 3351 | { |
| 3352 | dest_states = re_malloc (re_dfastate_t *, ndests * 3); |
| 3353 | if (BE (dest_states == NULL, 0)) |
| 3354 | { |
| 3355 | out_free: |
| 3356 | if (dest_states_malloced) |
| 3357 | re_free (dest_states); |
| 3358 | re_node_set_free (&follows); |
| 3359 | for (i = 0; i < ndests; ++i) |
| 3360 | re_node_set_free (dests_node + i); |
| 3361 | if (dests_node_malloced) |
| 3362 | re_free (dests_alloc); |
| 3363 | return false; |
| 3364 | } |
| 3365 | dest_states_malloced = true; |
| 3366 | } |
| 3367 | dest_states_word = dest_states + ndests; |
| 3368 | dest_states_nl = dest_states_word + ndests; |
| 3369 | bitset_empty (acceptable); |
| 3370 | |
| 3371 | /* Then build the states for all destinations. */ |
| 3372 | for (i = 0; i < ndests; ++i) |
| 3373 | { |
| 3374 | Idx next_node; |
| 3375 | re_node_set_empty (&follows); |
| 3376 | /* Merge the follows of this destination states. */ |
| 3377 | for (j = 0; j < dests_node[i].nelem; ++j) |
| 3378 | { |
| 3379 | next_node = dfa->nexts[dests_node[i].elems[j]]; |
| 3380 | if (next_node != -1) |
| 3381 | { |
| 3382 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); |
| 3383 | if (BE (err != REG_NOERROR, 0)) |
| 3384 | goto out_free; |
| 3385 | } |
| 3386 | } |
| 3387 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); |
| 3388 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) |
| 3389 | goto out_free; |
| 3390 | /* If the new state has context constraint, |
| 3391 | build appropriate states for these contexts. */ |
| 3392 | if (dest_states[i]->has_constraint) |
| 3393 | { |
| 3394 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, |
| 3395 | CONTEXT_WORD); |
| 3396 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) |
| 3397 | goto out_free; |
| 3398 | |
| 3399 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) |
| 3400 | need_word_trtable = true; |
| 3401 | |
| 3402 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, |
| 3403 | CONTEXT_NEWLINE); |
| 3404 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) |
| 3405 | goto out_free; |
| 3406 | } |
| 3407 | else |
| 3408 | { |
| 3409 | dest_states_word[i] = dest_states[i]; |
| 3410 | dest_states_nl[i] = dest_states[i]; |
| 3411 | } |
| 3412 | bitset_merge (acceptable, dests_ch[i]); |
| 3413 | } |
| 3414 | |
| 3415 | if (!BE (need_word_trtable, 0)) |
| 3416 | { |
| 3417 | /* We don't care about whether the following character is a word |
| 3418 | character, or we are in a single-byte character set so we can |
| 3419 | discern by looking at the character code: allocate a |
| 3420 | 256-entry transition table. */ |
| 3421 | trtable = state->trtable = |
| 3422 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); |
| 3423 | if (BE (trtable == NULL, 0)) |
| 3424 | goto out_free; |
| 3425 | |
| 3426 | /* For all characters ch...: */ |
| 3427 | for (i = 0; i < BITSET_WORDS; ++i) |
| 3428 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
| 3429 | elem; |
| 3430 | mask <<= 1, elem >>= 1, ++ch) |
| 3431 | if (BE (elem & 1, 0)) |
| 3432 | { |
| 3433 | /* There must be exactly one destination which accepts |
| 3434 | character ch. See group_nodes_into_DFAstates. */ |
| 3435 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
| 3436 | ; |
| 3437 | |
| 3438 | /* j-th destination accepts the word character ch. */ |
| 3439 | if (dfa->word_char[i] & mask) |
| 3440 | trtable[ch] = dest_states_word[j]; |
| 3441 | else |
| 3442 | trtable[ch] = dest_states[j]; |
| 3443 | } |
| 3444 | } |
| 3445 | else |
| 3446 | { |
| 3447 | /* We care about whether the following character is a word |
| 3448 | character, and we are in a multi-byte character set: discern |
| 3449 | by looking at the character code: build two 256-entry |
| 3450 | transition tables, one starting at trtable[0] and one |
| 3451 | starting at trtable[SBC_MAX]. */ |
| 3452 | trtable = state->word_trtable = |
| 3453 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); |
| 3454 | if (BE (trtable == NULL, 0)) |
| 3455 | goto out_free; |
| 3456 | |
| 3457 | /* For all characters ch...: */ |
| 3458 | for (i = 0; i < BITSET_WORDS; ++i) |
| 3459 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
| 3460 | elem; |
| 3461 | mask <<= 1, elem >>= 1, ++ch) |
| 3462 | if (BE (elem & 1, 0)) |
| 3463 | { |
| 3464 | /* There must be exactly one destination which accepts |
| 3465 | character ch. See group_nodes_into_DFAstates. */ |
| 3466 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
| 3467 | ; |
| 3468 | |
| 3469 | /* j-th destination accepts the word character ch. */ |
| 3470 | trtable[ch] = dest_states[j]; |
| 3471 | trtable[ch + SBC_MAX] = dest_states_word[j]; |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | /* new line */ |
| 3476 | if (bitset_contain (acceptable, NEWLINE_CHAR)) |
| 3477 | { |
| 3478 | /* The current state accepts newline character. */ |
| 3479 | for (j = 0; j < ndests; ++j) |
| 3480 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) |
| 3481 | { |
| 3482 | /* k-th destination accepts newline character. */ |
| 3483 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; |
| 3484 | if (need_word_trtable) |
| 3485 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; |
| 3486 | /* There must be only one destination which accepts |
| 3487 | newline. See group_nodes_into_DFAstates. */ |
| 3488 | break; |
| 3489 | } |
| 3490 | } |
| 3491 | |
| 3492 | if (dest_states_malloced) |
| 3493 | re_free (dest_states); |
| 3494 | |
| 3495 | re_node_set_free (&follows); |
| 3496 | for (i = 0; i < ndests; ++i) |
| 3497 | re_node_set_free (dests_node + i); |
| 3498 | |
| 3499 | if (dests_node_malloced) |
| 3500 | re_free (dests_alloc); |
| 3501 | |
| 3502 | return true; |
| 3503 | } |
| 3504 | |
| 3505 | /* Group all nodes belonging to STATE into several destinations. |
| 3506 | Then for all destinations, set the nodes belonging to the destination |
| 3507 | to DESTS_NODE[i] and set the characters accepted by the destination |
| 3508 | to DEST_CH[i]. This function return the number of destinations. */ |
| 3509 | |
| 3510 | static Idx |
| 3511 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, |
| 3512 | re_node_set *dests_node, bitset_t *dests_ch) |
| 3513 | { |
| 3514 | reg_errcode_t err; |
| 3515 | bool ok; |
| 3516 | Idx i, j, k; |
| 3517 | Idx ndests; /* Number of the destinations from 'state'. */ |
| 3518 | bitset_t accepts; /* Characters a node can accept. */ |
| 3519 | const re_node_set *cur_nodes = &state->nodes; |
| 3520 | bitset_empty (accepts); |
| 3521 | ndests = 0; |
| 3522 | |
| 3523 | /* For all the nodes belonging to 'state', */ |
| 3524 | for (i = 0; i < cur_nodes->nelem; ++i) |
| 3525 | { |
| 3526 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; |
| 3527 | re_token_type_t type = node->type; |
| 3528 | unsigned int constraint = node->constraint; |
| 3529 | |
| 3530 | /* Enumerate all single byte character this node can accept. */ |
| 3531 | if (type == CHARACTER) |
| 3532 | bitset_set (accepts, node->opr.c); |
| 3533 | else if (type == SIMPLE_BRACKET) |
| 3534 | { |
| 3535 | bitset_merge (accepts, node->opr.sbcset); |
| 3536 | } |
| 3537 | else if (type == OP_PERIOD) |
| 3538 | { |
| 3539 | #ifdef RE_ENABLE_I18N |
| 3540 | if (dfa->mb_cur_max > 1) |
| 3541 | bitset_merge (accepts, dfa->sb_char); |
| 3542 | else |
| 3543 | #endif |
| 3544 | bitset_set_all (accepts); |
| 3545 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
| 3546 | bitset_clear (accepts, '\n'); |
| 3547 | if (dfa->syntax & RE_DOT_NOT_NULL) |
| 3548 | bitset_clear (accepts, '\0'); |
| 3549 | } |
| 3550 | #ifdef RE_ENABLE_I18N |
| 3551 | else if (type == OP_UTF8_PERIOD) |
| 3552 | { |
| 3553 | if (ASCII_CHARS % BITSET_WORD_BITS == 0) |
| 3554 | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); |
| 3555 | else |
| 3556 | bitset_merge (accepts, utf8_sb_map); |
| 3557 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
| 3558 | bitset_clear (accepts, '\n'); |
| 3559 | if (dfa->syntax & RE_DOT_NOT_NULL) |
| 3560 | bitset_clear (accepts, '\0'); |
| 3561 | } |
| 3562 | #endif |
| 3563 | else |
| 3564 | continue; |
| 3565 | |
| 3566 | /* Check the 'accepts' and sift the characters which are not |
| 3567 | match it the context. */ |
| 3568 | if (constraint) |
| 3569 | { |
| 3570 | if (constraint & NEXT_NEWLINE_CONSTRAINT) |
| 3571 | { |
| 3572 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); |
| 3573 | bitset_empty (accepts); |
| 3574 | if (accepts_newline) |
| 3575 | bitset_set (accepts, NEWLINE_CHAR); |
| 3576 | else |
| 3577 | continue; |
| 3578 | } |
| 3579 | if (constraint & NEXT_ENDBUF_CONSTRAINT) |
| 3580 | { |
| 3581 | bitset_empty (accepts); |
| 3582 | continue; |
| 3583 | } |
| 3584 | |
| 3585 | if (constraint & NEXT_WORD_CONSTRAINT) |
| 3586 | { |
| 3587 | bitset_word_t any_set = 0; |
| 3588 | if (type == CHARACTER && !node->word_char) |
| 3589 | { |
| 3590 | bitset_empty (accepts); |
| 3591 | continue; |
| 3592 | } |
| 3593 | #ifdef RE_ENABLE_I18N |
| 3594 | if (dfa->mb_cur_max > 1) |
| 3595 | for (j = 0; j < BITSET_WORDS; ++j) |
| 3596 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); |
| 3597 | else |
| 3598 | #endif |
| 3599 | for (j = 0; j < BITSET_WORDS; ++j) |
| 3600 | any_set |= (accepts[j] &= dfa->word_char[j]); |
| 3601 | if (!any_set) |
| 3602 | continue; |
| 3603 | } |
| 3604 | if (constraint & NEXT_NOTWORD_CONSTRAINT) |
| 3605 | { |
| 3606 | bitset_word_t any_set = 0; |
| 3607 | if (type == CHARACTER && node->word_char) |
| 3608 | { |
| 3609 | bitset_empty (accepts); |
| 3610 | continue; |
| 3611 | } |
| 3612 | #ifdef RE_ENABLE_I18N |
| 3613 | if (dfa->mb_cur_max > 1) |
| 3614 | for (j = 0; j < BITSET_WORDS; ++j) |
| 3615 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); |
| 3616 | else |
| 3617 | #endif |
| 3618 | for (j = 0; j < BITSET_WORDS; ++j) |
| 3619 | any_set |= (accepts[j] &= ~dfa->word_char[j]); |
| 3620 | if (!any_set) |
| 3621 | continue; |
| 3622 | } |
| 3623 | } |
| 3624 | |
| 3625 | /* Then divide 'accepts' into DFA states, or create a new |
| 3626 | state. Above, we make sure that accepts is not empty. */ |
| 3627 | for (j = 0; j < ndests; ++j) |
| 3628 | { |
| 3629 | bitset_t intersec; /* Intersection sets, see below. */ |
| 3630 | bitset_t remains; |
| 3631 | /* Flags, see below. */ |
| 3632 | bitset_word_t has_intersec, not_subset, not_consumed; |
| 3633 | |
| 3634 | /* Optimization, skip if this state doesn't accept the character. */ |
| 3635 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) |
| 3636 | continue; |
| 3637 | |
| 3638 | /* Enumerate the intersection set of this state and 'accepts'. */ |
| 3639 | has_intersec = 0; |
| 3640 | for (k = 0; k < BITSET_WORDS; ++k) |
| 3641 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; |
| 3642 | /* And skip if the intersection set is empty. */ |
| 3643 | if (!has_intersec) |
| 3644 | continue; |
| 3645 | |
| 3646 | /* Then check if this state is a subset of 'accepts'. */ |
| 3647 | not_subset = not_consumed = 0; |
| 3648 | for (k = 0; k < BITSET_WORDS; ++k) |
| 3649 | { |
| 3650 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; |
| 3651 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; |
| 3652 | } |
| 3653 | |
| 3654 | /* If this state isn't a subset of 'accepts', create a |
| 3655 | new group state, which has the 'remains'. */ |
| 3656 | if (not_subset) |
| 3657 | { |
| 3658 | bitset_copy (dests_ch[ndests], remains); |
| 3659 | bitset_copy (dests_ch[j], intersec); |
| 3660 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); |
| 3661 | if (BE (err != REG_NOERROR, 0)) |
| 3662 | goto error_return; |
| 3663 | ++ndests; |
| 3664 | } |
| 3665 | |
| 3666 | /* Put the position in the current group. */ |
| 3667 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); |
| 3668 | if (BE (! ok, 0)) |
| 3669 | goto error_return; |
| 3670 | |
| 3671 | /* If all characters are consumed, go to next node. */ |
| 3672 | if (!not_consumed) |
| 3673 | break; |
| 3674 | } |
| 3675 | /* Some characters remain, create a new group. */ |
| 3676 | if (j == ndests) |
| 3677 | { |
| 3678 | bitset_copy (dests_ch[ndests], accepts); |
| 3679 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); |
| 3680 | if (BE (err != REG_NOERROR, 0)) |
| 3681 | goto error_return; |
| 3682 | ++ndests; |
| 3683 | bitset_empty (accepts); |
| 3684 | } |
| 3685 | } |
| 3686 | return ndests; |
| 3687 | error_return: |
| 3688 | for (j = 0; j < ndests; ++j) |
| 3689 | re_node_set_free (dests_node + j); |
| 3690 | return -1; |
| 3691 | } |
| 3692 | |
| 3693 | #ifdef RE_ENABLE_I18N |
| 3694 | /* Check how many bytes the node 'dfa->nodes[node_idx]' accepts. |
| 3695 | Return the number of the bytes the node accepts. |
| 3696 | STR_IDX is the current index of the input string. |
| 3697 | |
| 3698 | This function handles the nodes which can accept one character, or |
| 3699 | one collating element like '.', '[a-z]', opposite to the other nodes |
| 3700 | can only accept one byte. */ |
| 3701 | |
| 3702 | # ifdef _LIBC |
| 3703 | # include <locale/weight.h> |
| 3704 | # endif |
| 3705 | |
| 3706 | static int |
| 3707 | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
| 3708 | const re_string_t *input, Idx str_idx) |
| 3709 | { |
| 3710 | const re_token_t *node = dfa->nodes + node_idx; |
| 3711 | int char_len, elem_len; |
| 3712 | Idx i; |
| 3713 | |
| 3714 | if (BE (node->type == OP_UTF8_PERIOD, 0)) |
| 3715 | { |
| 3716 | unsigned char c = re_string_byte_at (input, str_idx), d; |
| 3717 | if (BE (c < 0xc2, 1)) |
| 3718 | return 0; |
| 3719 | |
| 3720 | if (str_idx + 2 > input->len) |
| 3721 | return 0; |
| 3722 | |
| 3723 | d = re_string_byte_at (input, str_idx + 1); |
| 3724 | if (c < 0xe0) |
| 3725 | return (d < 0x80 || d > 0xbf) ? 0 : 2; |
| 3726 | else if (c < 0xf0) |
| 3727 | { |
| 3728 | char_len = 3; |
| 3729 | if (c == 0xe0 && d < 0xa0) |
| 3730 | return 0; |
| 3731 | } |
| 3732 | else if (c < 0xf8) |
| 3733 | { |
| 3734 | char_len = 4; |
| 3735 | if (c == 0xf0 && d < 0x90) |
| 3736 | return 0; |
| 3737 | } |
| 3738 | else if (c < 0xfc) |
| 3739 | { |
| 3740 | char_len = 5; |
| 3741 | if (c == 0xf8 && d < 0x88) |
| 3742 | return 0; |
| 3743 | } |
| 3744 | else if (c < 0xfe) |
| 3745 | { |
| 3746 | char_len = 6; |
| 3747 | if (c == 0xfc && d < 0x84) |
| 3748 | return 0; |
| 3749 | } |
| 3750 | else |
| 3751 | return 0; |
| 3752 | |
| 3753 | if (str_idx + char_len > input->len) |
| 3754 | return 0; |
| 3755 | |
| 3756 | for (i = 1; i < char_len; ++i) |
| 3757 | { |
| 3758 | d = re_string_byte_at (input, str_idx + i); |
| 3759 | if (d < 0x80 || d > 0xbf) |
| 3760 | return 0; |
| 3761 | } |
| 3762 | return char_len; |
| 3763 | } |
| 3764 | |
| 3765 | char_len = re_string_char_size_at (input, str_idx); |
| 3766 | if (node->type == OP_PERIOD) |
| 3767 | { |
| 3768 | if (char_len <= 1) |
| 3769 | return 0; |
| 3770 | /* FIXME: I don't think this if is needed, as both '\n' |
| 3771 | and '\0' are char_len == 1. */ |
| 3772 | /* '.' accepts any one character except the following two cases. */ |
| 3773 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && |
| 3774 | re_string_byte_at (input, str_idx) == '\n') || |
| 3775 | ((dfa->syntax & RE_DOT_NOT_NULL) && |
| 3776 | re_string_byte_at (input, str_idx) == '\0')) |
| 3777 | return 0; |
| 3778 | return char_len; |
| 3779 | } |
| 3780 | |
| 3781 | elem_len = re_string_elem_size_at (input, str_idx); |
| 3782 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) |
| 3783 | return 0; |
| 3784 | |
| 3785 | if (node->type == COMPLEX_BRACKET) |
| 3786 | { |
| 3787 | const re_charset_t *cset = node->opr.mbcset; |
| 3788 | # ifdef _LIBC |
| 3789 | const unsigned char *pin |
| 3790 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); |
| 3791 | Idx j; |
| 3792 | uint32_t nrules; |
| 3793 | # endif /* _LIBC */ |
| 3794 | int match_len = 0; |
| 3795 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) |
| 3796 | ? re_string_wchar_at (input, str_idx) : 0); |
| 3797 | |
| 3798 | /* match with multibyte character? */ |
| 3799 | for (i = 0; i < cset->nmbchars; ++i) |
| 3800 | if (wc == cset->mbchars[i]) |
| 3801 | { |
| 3802 | match_len = char_len; |
| 3803 | goto check_node_accept_bytes_match; |
| 3804 | } |
| 3805 | /* match with character_class? */ |
| 3806 | for (i = 0; i < cset->nchar_classes; ++i) |
| 3807 | { |
| 3808 | wctype_t wt = cset->char_classes[i]; |
| 3809 | if (__iswctype (wc, wt)) |
| 3810 | { |
| 3811 | match_len = char_len; |
| 3812 | goto check_node_accept_bytes_match; |
| 3813 | } |
| 3814 | } |
| 3815 | |
| 3816 | # ifdef _LIBC |
| 3817 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| 3818 | if (nrules != 0) |
| 3819 | { |
| 3820 | unsigned int in_collseq = 0; |
| 3821 | const int32_t *table, *indirect; |
| 3822 | const unsigned char *weights, *; |
| 3823 | const char *collseqwc; |
| 3824 | |
| 3825 | /* match with collating_symbol? */ |
| 3826 | if (cset->ncoll_syms) |
| 3827 | extra = (const unsigned char *) |
| 3828 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| 3829 | for (i = 0; i < cset->ncoll_syms; ++i) |
| 3830 | { |
| 3831 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; |
| 3832 | /* Compare the length of input collating element and |
| 3833 | the length of current collating element. */ |
| 3834 | if (*coll_sym != elem_len) |
| 3835 | continue; |
| 3836 | /* Compare each bytes. */ |
| 3837 | for (j = 0; j < *coll_sym; j++) |
| 3838 | if (pin[j] != coll_sym[1 + j]) |
| 3839 | break; |
| 3840 | if (j == *coll_sym) |
| 3841 | { |
| 3842 | /* Match if every bytes is equal. */ |
| 3843 | match_len = j; |
| 3844 | goto check_node_accept_bytes_match; |
| 3845 | } |
| 3846 | } |
| 3847 | |
| 3848 | if (cset->nranges) |
| 3849 | { |
| 3850 | if (elem_len <= char_len) |
| 3851 | { |
| 3852 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
| 3853 | in_collseq = __collseq_table_lookup (collseqwc, wc); |
| 3854 | } |
| 3855 | else |
| 3856 | in_collseq = find_collation_sequence_value (pin, elem_len); |
| 3857 | } |
| 3858 | /* match with range expression? */ |
| 3859 | /* FIXME: Implement rational ranges here, too. */ |
| 3860 | for (i = 0; i < cset->nranges; ++i) |
| 3861 | if (cset->range_starts[i] <= in_collseq |
| 3862 | && in_collseq <= cset->range_ends[i]) |
| 3863 | { |
| 3864 | match_len = elem_len; |
| 3865 | goto check_node_accept_bytes_match; |
| 3866 | } |
| 3867 | |
| 3868 | /* match with equivalence_class? */ |
| 3869 | if (cset->nequiv_classes) |
| 3870 | { |
| 3871 | const unsigned char *cp = pin; |
| 3872 | table = (const int32_t *) |
| 3873 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| 3874 | weights = (const unsigned char *) |
| 3875 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
| 3876 | extra = (const unsigned char *) |
| 3877 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
| 3878 | indirect = (const int32_t *) |
| 3879 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
| 3880 | int32_t idx = findidx (table, indirect, extra, &cp, elem_len); |
| 3881 | int32_t rule = idx >> 24; |
| 3882 | idx &= 0xffffff; |
| 3883 | if (idx > 0) |
| 3884 | { |
| 3885 | size_t weight_len = weights[idx]; |
| 3886 | for (i = 0; i < cset->nequiv_classes; ++i) |
| 3887 | { |
| 3888 | int32_t equiv_class_idx = cset->equiv_classes[i]; |
| 3889 | int32_t equiv_class_rule = equiv_class_idx >> 24; |
| 3890 | equiv_class_idx &= 0xffffff; |
| 3891 | if (weights[equiv_class_idx] == weight_len |
| 3892 | && equiv_class_rule == rule |
| 3893 | && memcmp (weights + idx + 1, |
| 3894 | weights + equiv_class_idx + 1, |
| 3895 | weight_len) == 0) |
| 3896 | { |
| 3897 | match_len = elem_len; |
| 3898 | goto check_node_accept_bytes_match; |
| 3899 | } |
| 3900 | } |
| 3901 | } |
| 3902 | } |
| 3903 | } |
| 3904 | else |
| 3905 | # endif /* _LIBC */ |
| 3906 | { |
| 3907 | /* match with range expression? */ |
| 3908 | for (i = 0; i < cset->nranges; ++i) |
| 3909 | { |
| 3910 | if (cset->range_starts[i] <= wc && wc <= cset->range_ends[i]) |
| 3911 | { |
| 3912 | match_len = char_len; |
| 3913 | goto check_node_accept_bytes_match; |
| 3914 | } |
| 3915 | } |
| 3916 | } |
| 3917 | check_node_accept_bytes_match: |
| 3918 | if (!cset->non_match) |
| 3919 | return match_len; |
| 3920 | else |
| 3921 | { |
| 3922 | if (match_len > 0) |
| 3923 | return 0; |
| 3924 | else |
| 3925 | return (elem_len > char_len) ? elem_len : char_len; |
| 3926 | } |
| 3927 | } |
| 3928 | return 0; |
| 3929 | } |
| 3930 | |
| 3931 | # ifdef _LIBC |
| 3932 | static unsigned int |
| 3933 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) |
| 3934 | { |
| 3935 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| 3936 | if (nrules == 0) |
| 3937 | { |
| 3938 | if (mbs_len == 1) |
| 3939 | { |
| 3940 | /* No valid character. Match it as a single byte character. */ |
| 3941 | const unsigned char *collseq = (const unsigned char *) |
| 3942 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
| 3943 | return collseq[mbs[0]]; |
| 3944 | } |
| 3945 | return UINT_MAX; |
| 3946 | } |
| 3947 | else |
| 3948 | { |
| 3949 | int32_t idx; |
| 3950 | const unsigned char * = (const unsigned char *) |
| 3951 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| 3952 | int32_t = (const unsigned char *) |
| 3953 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; |
| 3954 | |
| 3955 | for (idx = 0; idx < extrasize;) |
| 3956 | { |
| 3957 | int mbs_cnt; |
| 3958 | bool found = false; |
| 3959 | int32_t elem_mbs_len; |
| 3960 | /* Skip the name of collating element name. */ |
| 3961 | idx = idx + extra[idx] + 1; |
| 3962 | elem_mbs_len = extra[idx++]; |
| 3963 | if (mbs_len == elem_mbs_len) |
| 3964 | { |
| 3965 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) |
| 3966 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) |
| 3967 | break; |
| 3968 | if (mbs_cnt == elem_mbs_len) |
| 3969 | /* Found the entry. */ |
| 3970 | found = true; |
| 3971 | } |
| 3972 | /* Skip the byte sequence of the collating element. */ |
| 3973 | idx += elem_mbs_len; |
| 3974 | /* Adjust for the alignment. */ |
| 3975 | idx = (idx + 3) & ~3; |
| 3976 | /* Skip the collation sequence value. */ |
| 3977 | idx += sizeof (uint32_t); |
| 3978 | /* Skip the wide char sequence of the collating element. */ |
| 3979 | idx = idx + sizeof (uint32_t) * (*(int32_t *) (extra + idx) + 1); |
| 3980 | /* If we found the entry, return the sequence value. */ |
| 3981 | if (found) |
| 3982 | return *(uint32_t *) (extra + idx); |
| 3983 | /* Skip the collation sequence value. */ |
| 3984 | idx += sizeof (uint32_t); |
| 3985 | } |
| 3986 | return UINT_MAX; |
| 3987 | } |
| 3988 | } |
| 3989 | # endif /* _LIBC */ |
| 3990 | #endif /* RE_ENABLE_I18N */ |
| 3991 | |
| 3992 | /* Check whether the node accepts the byte which is IDX-th |
| 3993 | byte of the INPUT. */ |
| 3994 | |
| 3995 | static bool |
| 3996 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, |
| 3997 | Idx idx) |
| 3998 | { |
| 3999 | unsigned char ch; |
| 4000 | ch = re_string_byte_at (&mctx->input, idx); |
| 4001 | switch (node->type) |
| 4002 | { |
| 4003 | case CHARACTER: |
| 4004 | if (node->opr.c != ch) |
| 4005 | return false; |
| 4006 | break; |
| 4007 | |
| 4008 | case SIMPLE_BRACKET: |
| 4009 | if (!bitset_contain (node->opr.sbcset, ch)) |
| 4010 | return false; |
| 4011 | break; |
| 4012 | |
| 4013 | #ifdef RE_ENABLE_I18N |
| 4014 | case OP_UTF8_PERIOD: |
| 4015 | if (ch >= ASCII_CHARS) |
| 4016 | return false; |
| 4017 | FALLTHROUGH; |
| 4018 | #endif |
| 4019 | case OP_PERIOD: |
| 4020 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) |
| 4021 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) |
| 4022 | return false; |
| 4023 | break; |
| 4024 | |
| 4025 | default: |
| 4026 | return false; |
| 4027 | } |
| 4028 | |
| 4029 | if (node->constraint) |
| 4030 | { |
| 4031 | /* The node has constraints. Check whether the current context |
| 4032 | satisfies the constraints. */ |
| 4033 | unsigned int context = re_string_context_at (&mctx->input, idx, |
| 4034 | mctx->eflags); |
| 4035 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
| 4036 | return false; |
| 4037 | } |
| 4038 | |
| 4039 | return true; |
| 4040 | } |
| 4041 | |
| 4042 | /* Extend the buffers, if the buffers have run out. */ |
| 4043 | |
| 4044 | static reg_errcode_t |
| 4045 | __attribute_warn_unused_result__ |
| 4046 | extend_buffers (re_match_context_t *mctx, int min_len) |
| 4047 | { |
| 4048 | reg_errcode_t ret; |
| 4049 | re_string_t *pstr = &mctx->input; |
| 4050 | |
| 4051 | /* Avoid overflow. */ |
| 4052 | if (BE (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) / 2 |
| 4053 | <= pstr->bufs_len, 0)) |
| 4054 | return REG_ESPACE; |
| 4055 | |
| 4056 | /* Double the lengths of the buffers, but allocate at least MIN_LEN. */ |
| 4057 | ret = re_string_realloc_buffers (pstr, |
| 4058 | MAX (min_len, |
| 4059 | MIN (pstr->len, pstr->bufs_len * 2))); |
| 4060 | if (BE (ret != REG_NOERROR, 0)) |
| 4061 | return ret; |
| 4062 | |
| 4063 | if (mctx->state_log != NULL) |
| 4064 | { |
| 4065 | /* And double the length of state_log. */ |
| 4066 | /* XXX We have no indication of the size of this buffer. If this |
| 4067 | allocation fail we have no indication that the state_log array |
| 4068 | does not have the right size. */ |
| 4069 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, |
| 4070 | pstr->bufs_len + 1); |
| 4071 | if (BE (new_array == NULL, 0)) |
| 4072 | return REG_ESPACE; |
| 4073 | mctx->state_log = new_array; |
| 4074 | } |
| 4075 | |
| 4076 | /* Then reconstruct the buffers. */ |
| 4077 | if (pstr->icase) |
| 4078 | { |
| 4079 | #ifdef RE_ENABLE_I18N |
| 4080 | if (pstr->mb_cur_max > 1) |
| 4081 | { |
| 4082 | ret = build_wcs_upper_buffer (pstr); |
| 4083 | if (BE (ret != REG_NOERROR, 0)) |
| 4084 | return ret; |
| 4085 | } |
| 4086 | else |
| 4087 | #endif /* RE_ENABLE_I18N */ |
| 4088 | build_upper_buffer (pstr); |
| 4089 | } |
| 4090 | else |
| 4091 | { |
| 4092 | #ifdef RE_ENABLE_I18N |
| 4093 | if (pstr->mb_cur_max > 1) |
| 4094 | build_wcs_buffer (pstr); |
| 4095 | else |
| 4096 | #endif /* RE_ENABLE_I18N */ |
| 4097 | { |
| 4098 | if (pstr->trans != NULL) |
| 4099 | re_string_translate_buffer (pstr); |
| 4100 | } |
| 4101 | } |
| 4102 | return REG_NOERROR; |
| 4103 | } |
| 4104 | |
| 4105 | |
| 4106 | /* Functions for matching context. */ |
| 4107 | |
| 4108 | /* Initialize MCTX. */ |
| 4109 | |
| 4110 | static reg_errcode_t |
| 4111 | __attribute_warn_unused_result__ |
| 4112 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) |
| 4113 | { |
| 4114 | mctx->eflags = eflags; |
| 4115 | mctx->match_last = -1; |
| 4116 | if (n > 0) |
| 4117 | { |
| 4118 | /* Avoid overflow. */ |
| 4119 | size_t max_object_size = |
| 4120 | MAX (sizeof (struct re_backref_cache_entry), |
| 4121 | sizeof (re_sub_match_top_t *)); |
| 4122 | if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < n, 0)) |
| 4123 | return REG_ESPACE; |
| 4124 | |
| 4125 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); |
| 4126 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); |
| 4127 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) |
| 4128 | return REG_ESPACE; |
| 4129 | } |
| 4130 | /* Already zero-ed by the caller. |
| 4131 | else |
| 4132 | mctx->bkref_ents = NULL; |
| 4133 | mctx->nbkref_ents = 0; |
| 4134 | mctx->nsub_tops = 0; */ |
| 4135 | mctx->abkref_ents = n; |
| 4136 | mctx->max_mb_elem_len = 1; |
| 4137 | mctx->asub_tops = n; |
| 4138 | return REG_NOERROR; |
| 4139 | } |
| 4140 | |
| 4141 | /* Clean the entries which depend on the current input in MCTX. |
| 4142 | This function must be invoked when the matcher changes the start index |
| 4143 | of the input, or changes the input string. */ |
| 4144 | |
| 4145 | static void |
| 4146 | match_ctx_clean (re_match_context_t *mctx) |
| 4147 | { |
| 4148 | Idx st_idx; |
| 4149 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) |
| 4150 | { |
| 4151 | Idx sl_idx; |
| 4152 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; |
| 4153 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) |
| 4154 | { |
| 4155 | re_sub_match_last_t *last = top->lasts[sl_idx]; |
| 4156 | re_free (last->path.array); |
| 4157 | re_free (last); |
| 4158 | } |
| 4159 | re_free (top->lasts); |
| 4160 | if (top->path) |
| 4161 | { |
| 4162 | re_free (top->path->array); |
| 4163 | re_free (top->path); |
| 4164 | } |
| 4165 | re_free (top); |
| 4166 | } |
| 4167 | |
| 4168 | mctx->nsub_tops = 0; |
| 4169 | mctx->nbkref_ents = 0; |
| 4170 | } |
| 4171 | |
| 4172 | /* Free all the memory associated with MCTX. */ |
| 4173 | |
| 4174 | static void |
| 4175 | match_ctx_free (re_match_context_t *mctx) |
| 4176 | { |
| 4177 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ |
| 4178 | match_ctx_clean (mctx); |
| 4179 | re_free (mctx->sub_tops); |
| 4180 | re_free (mctx->bkref_ents); |
| 4181 | } |
| 4182 | |
| 4183 | /* Add a new backreference entry to MCTX. |
| 4184 | Note that we assume that caller never call this function with duplicate |
| 4185 | entry, and call with STR_IDX which isn't smaller than any existing entry. |
| 4186 | */ |
| 4187 | |
| 4188 | static reg_errcode_t |
| 4189 | __attribute_warn_unused_result__ |
| 4190 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, |
| 4191 | Idx to) |
| 4192 | { |
| 4193 | if (mctx->nbkref_ents >= mctx->abkref_ents) |
| 4194 | { |
| 4195 | struct re_backref_cache_entry* new_entry; |
| 4196 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, |
| 4197 | mctx->abkref_ents * 2); |
| 4198 | if (BE (new_entry == NULL, 0)) |
| 4199 | { |
| 4200 | re_free (mctx->bkref_ents); |
| 4201 | return REG_ESPACE; |
| 4202 | } |
| 4203 | mctx->bkref_ents = new_entry; |
| 4204 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', |
| 4205 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); |
| 4206 | mctx->abkref_ents *= 2; |
| 4207 | } |
| 4208 | if (mctx->nbkref_ents > 0 |
| 4209 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) |
| 4210 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; |
| 4211 | |
| 4212 | mctx->bkref_ents[mctx->nbkref_ents].node = node; |
| 4213 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; |
| 4214 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; |
| 4215 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; |
| 4216 | |
| 4217 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. |
| 4218 | If bit N is clear, means that this entry won't epsilon-transition to |
| 4219 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If |
| 4220 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one |
| 4221 | such node. |
| 4222 | |
| 4223 | A backreference does not epsilon-transition unless it is empty, so set |
| 4224 | to all zeros if FROM != TO. */ |
| 4225 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map |
| 4226 | = (from == to ? -1 : 0); |
| 4227 | |
| 4228 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; |
| 4229 | if (mctx->max_mb_elem_len < to - from) |
| 4230 | mctx->max_mb_elem_len = to - from; |
| 4231 | return REG_NOERROR; |
| 4232 | } |
| 4233 | |
| 4234 | /* Return the first entry with the same str_idx, or -1 if none is |
| 4235 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ |
| 4236 | |
| 4237 | static Idx |
| 4238 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) |
| 4239 | { |
| 4240 | Idx left, right, mid, last; |
| 4241 | last = right = mctx->nbkref_ents; |
| 4242 | for (left = 0; left < right;) |
| 4243 | { |
| 4244 | mid = (left + right) / 2; |
| 4245 | if (mctx->bkref_ents[mid].str_idx < str_idx) |
| 4246 | left = mid + 1; |
| 4247 | else |
| 4248 | right = mid; |
| 4249 | } |
| 4250 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) |
| 4251 | return left; |
| 4252 | else |
| 4253 | return -1; |
| 4254 | } |
| 4255 | |
| 4256 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches |
| 4257 | at STR_IDX. */ |
| 4258 | |
| 4259 | static reg_errcode_t |
| 4260 | __attribute_warn_unused_result__ |
| 4261 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) |
| 4262 | { |
| 4263 | #ifdef DEBUG |
| 4264 | assert (mctx->sub_tops != NULL); |
| 4265 | assert (mctx->asub_tops > 0); |
| 4266 | #endif |
| 4267 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) |
| 4268 | { |
| 4269 | Idx new_asub_tops = mctx->asub_tops * 2; |
| 4270 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, |
| 4271 | re_sub_match_top_t *, |
| 4272 | new_asub_tops); |
| 4273 | if (BE (new_array == NULL, 0)) |
| 4274 | return REG_ESPACE; |
| 4275 | mctx->sub_tops = new_array; |
| 4276 | mctx->asub_tops = new_asub_tops; |
| 4277 | } |
| 4278 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); |
| 4279 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) |
| 4280 | return REG_ESPACE; |
| 4281 | mctx->sub_tops[mctx->nsub_tops]->node = node; |
| 4282 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; |
| 4283 | return REG_NOERROR; |
| 4284 | } |
| 4285 | |
| 4286 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches |
| 4287 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ |
| 4288 | |
| 4289 | static re_sub_match_last_t * |
| 4290 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) |
| 4291 | { |
| 4292 | re_sub_match_last_t *new_entry; |
| 4293 | if (BE (subtop->nlasts == subtop->alasts, 0)) |
| 4294 | { |
| 4295 | Idx new_alasts = 2 * subtop->alasts + 1; |
| 4296 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, |
| 4297 | re_sub_match_last_t *, |
| 4298 | new_alasts); |
| 4299 | if (BE (new_array == NULL, 0)) |
| 4300 | return NULL; |
| 4301 | subtop->lasts = new_array; |
| 4302 | subtop->alasts = new_alasts; |
| 4303 | } |
| 4304 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); |
| 4305 | if (BE (new_entry != NULL, 1)) |
| 4306 | { |
| 4307 | subtop->lasts[subtop->nlasts] = new_entry; |
| 4308 | new_entry->node = node; |
| 4309 | new_entry->str_idx = str_idx; |
| 4310 | ++subtop->nlasts; |
| 4311 | } |
| 4312 | return new_entry; |
| 4313 | } |
| 4314 | |
| 4315 | static void |
| 4316 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
| 4317 | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) |
| 4318 | { |
| 4319 | sctx->sifted_states = sifted_sts; |
| 4320 | sctx->limited_states = limited_sts; |
| 4321 | sctx->last_node = last_node; |
| 4322 | sctx->last_str_idx = last_str_idx; |
| 4323 | re_node_set_init_empty (&sctx->limits); |
| 4324 | } |
| 4325 | |