1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2018 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | static void re_string_construct_common (const char *str, Idx len, |
21 | re_string_t *pstr, |
22 | RE_TRANSLATE_TYPE trans, bool icase, |
23 | const re_dfa_t *dfa); |
24 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
25 | const re_node_set *nodes, |
26 | re_hashval_t hash); |
27 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
28 | const re_node_set *nodes, |
29 | unsigned int context, |
30 | re_hashval_t hash); |
31 | static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, |
32 | Idx new_buf_len); |
33 | #ifdef RE_ENABLE_I18N |
34 | static void build_wcs_buffer (re_string_t *pstr); |
35 | static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr); |
36 | #endif /* RE_ENABLE_I18N */ |
37 | static void build_upper_buffer (re_string_t *pstr); |
38 | static void re_string_translate_buffer (re_string_t *pstr); |
39 | static unsigned int re_string_context_at (const re_string_t *input, Idx idx, |
40 | int eflags) __attribute__ ((pure)); |
41 | |
42 | /* Functions for string operation. */ |
43 | |
44 | /* This function allocate the buffers. It is necessary to call |
45 | re_string_reconstruct before using the object. */ |
46 | |
47 | static reg_errcode_t |
48 | __attribute_warn_unused_result__ |
49 | re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, |
50 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
51 | { |
52 | reg_errcode_t ret; |
53 | Idx init_buf_len; |
54 | |
55 | /* Ensure at least one character fits into the buffers. */ |
56 | if (init_len < dfa->mb_cur_max) |
57 | init_len = dfa->mb_cur_max; |
58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
60 | |
61 | ret = re_string_realloc_buffers (pstr, init_buf_len); |
62 | if (BE (ret != REG_NOERROR, 0)) |
63 | return ret; |
64 | |
65 | pstr->word_char = dfa->word_char; |
66 | pstr->word_ops_used = dfa->word_ops_used; |
67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
69 | pstr->valid_raw_len = pstr->valid_len; |
70 | return REG_NOERROR; |
71 | } |
72 | |
73 | /* This function allocate the buffers, and initialize them. */ |
74 | |
75 | static reg_errcode_t |
76 | __attribute_warn_unused_result__ |
77 | re_string_construct (re_string_t *pstr, const char *str, Idx len, |
78 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
79 | { |
80 | reg_errcode_t ret; |
81 | memset (pstr, '\0', sizeof (re_string_t)); |
82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
83 | |
84 | if (len > 0) |
85 | { |
86 | ret = re_string_realloc_buffers (pstr, len + 1); |
87 | if (BE (ret != REG_NOERROR, 0)) |
88 | return ret; |
89 | } |
90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
91 | |
92 | if (icase) |
93 | { |
94 | #ifdef RE_ENABLE_I18N |
95 | if (dfa->mb_cur_max > 1) |
96 | { |
97 | while (1) |
98 | { |
99 | ret = build_wcs_upper_buffer (pstr); |
100 | if (BE (ret != REG_NOERROR, 0)) |
101 | return ret; |
102 | if (pstr->valid_raw_len >= len) |
103 | break; |
104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
105 | break; |
106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
107 | if (BE (ret != REG_NOERROR, 0)) |
108 | return ret; |
109 | } |
110 | } |
111 | else |
112 | #endif /* RE_ENABLE_I18N */ |
113 | build_upper_buffer (pstr); |
114 | } |
115 | else |
116 | { |
117 | #ifdef RE_ENABLE_I18N |
118 | if (dfa->mb_cur_max > 1) |
119 | build_wcs_buffer (pstr); |
120 | else |
121 | #endif /* RE_ENABLE_I18N */ |
122 | { |
123 | if (trans != NULL) |
124 | re_string_translate_buffer (pstr); |
125 | else |
126 | { |
127 | pstr->valid_len = pstr->bufs_len; |
128 | pstr->valid_raw_len = pstr->bufs_len; |
129 | } |
130 | } |
131 | } |
132 | |
133 | return REG_NOERROR; |
134 | } |
135 | |
136 | /* Helper functions for re_string_allocate, and re_string_construct. */ |
137 | |
138 | static reg_errcode_t |
139 | __attribute_warn_unused_result__ |
140 | re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) |
141 | { |
142 | #ifdef RE_ENABLE_I18N |
143 | if (pstr->mb_cur_max > 1) |
144 | { |
145 | wint_t *new_wcs; |
146 | |
147 | /* Avoid overflow in realloc. */ |
148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx)); |
149 | if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < new_buf_len, 0)) |
150 | return REG_ESPACE; |
151 | |
152 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); |
153 | if (BE (new_wcs == NULL, 0)) |
154 | return REG_ESPACE; |
155 | pstr->wcs = new_wcs; |
156 | if (pstr->offsets != NULL) |
157 | { |
158 | Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len); |
159 | if (BE (new_offsets == NULL, 0)) |
160 | return REG_ESPACE; |
161 | pstr->offsets = new_offsets; |
162 | } |
163 | } |
164 | #endif /* RE_ENABLE_I18N */ |
165 | if (pstr->mbs_allocated) |
166 | { |
167 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, |
168 | new_buf_len); |
169 | if (BE (new_mbs == NULL, 0)) |
170 | return REG_ESPACE; |
171 | pstr->mbs = new_mbs; |
172 | } |
173 | pstr->bufs_len = new_buf_len; |
174 | return REG_NOERROR; |
175 | } |
176 | |
177 | |
178 | static void |
179 | re_string_construct_common (const char *str, Idx len, re_string_t *pstr, |
180 | RE_TRANSLATE_TYPE trans, bool icase, |
181 | const re_dfa_t *dfa) |
182 | { |
183 | pstr->raw_mbs = (const unsigned char *) str; |
184 | pstr->len = len; |
185 | pstr->raw_len = len; |
186 | pstr->trans = trans; |
187 | pstr->icase = icase; |
188 | pstr->mbs_allocated = (trans != NULL || icase); |
189 | pstr->mb_cur_max = dfa->mb_cur_max; |
190 | pstr->is_utf8 = dfa->is_utf8; |
191 | pstr->map_notascii = dfa->map_notascii; |
192 | pstr->stop = pstr->len; |
193 | pstr->raw_stop = pstr->stop; |
194 | } |
195 | |
196 | #ifdef RE_ENABLE_I18N |
197 | |
198 | /* Build wide character buffer PSTR->WCS. |
199 | If the byte sequence of the string are: |
200 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
201 | Then wide character buffer will be: |
202 | <wc1> , WEOF , <wc2> , WEOF , <wc3> |
203 | We use WEOF for padding, they indicate that the position isn't |
204 | a first byte of a multibyte character. |
205 | |
206 | Note that this function assumes PSTR->VALID_LEN elements are already |
207 | built and starts from PSTR->VALID_LEN. */ |
208 | |
209 | static void |
210 | build_wcs_buffer (re_string_t *pstr) |
211 | { |
212 | #ifdef _LIBC |
213 | unsigned char buf[MB_LEN_MAX]; |
214 | assert (MB_LEN_MAX >= pstr->mb_cur_max); |
215 | #else |
216 | unsigned char buf[64]; |
217 | #endif |
218 | mbstate_t prev_st; |
219 | Idx byte_idx, end_idx, remain_len; |
220 | size_t mbclen; |
221 | |
222 | /* Build the buffers from pstr->valid_len to either pstr->len or |
223 | pstr->bufs_len. */ |
224 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
225 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
226 | { |
227 | wchar_t wc; |
228 | const char *p; |
229 | |
230 | remain_len = end_idx - byte_idx; |
231 | prev_st = pstr->cur_state; |
232 | /* Apply the translation if we need. */ |
233 | if (BE (pstr->trans != NULL, 0)) |
234 | { |
235 | int i, ch; |
236 | |
237 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
238 | { |
239 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
240 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
241 | } |
242 | p = (const char *) buf; |
243 | } |
244 | else |
245 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
246 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
247 | if (BE (mbclen == (size_t) -1 || mbclen == 0 |
248 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len), 0)) |
249 | { |
250 | /* We treat these cases as a singlebyte character. */ |
251 | mbclen = 1; |
252 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
253 | if (BE (pstr->trans != NULL, 0)) |
254 | wc = pstr->trans[wc]; |
255 | pstr->cur_state = prev_st; |
256 | } |
257 | else if (BE (mbclen == (size_t) -2, 0)) |
258 | { |
259 | /* The buffer doesn't have enough space, finish to build. */ |
260 | pstr->cur_state = prev_st; |
261 | break; |
262 | } |
263 | |
264 | /* Write wide character and padding. */ |
265 | pstr->wcs[byte_idx++] = wc; |
266 | /* Write paddings. */ |
267 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
268 | pstr->wcs[byte_idx++] = WEOF; |
269 | } |
270 | pstr->valid_len = byte_idx; |
271 | pstr->valid_raw_len = byte_idx; |
272 | } |
273 | |
274 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
275 | but for REG_ICASE. */ |
276 | |
277 | static reg_errcode_t |
278 | __attribute_warn_unused_result__ |
279 | build_wcs_upper_buffer (re_string_t *pstr) |
280 | { |
281 | mbstate_t prev_st; |
282 | Idx src_idx, byte_idx, end_idx, remain_len; |
283 | size_t mbclen; |
284 | #ifdef _LIBC |
285 | char buf[MB_LEN_MAX]; |
286 | assert (MB_LEN_MAX >= pstr->mb_cur_max); |
287 | #else |
288 | char buf[64]; |
289 | #endif |
290 | |
291 | byte_idx = pstr->valid_len; |
292 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
293 | |
294 | /* The following optimization assumes that ASCII characters can be |
295 | mapped to wide characters with a simple cast. */ |
296 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) |
297 | { |
298 | while (byte_idx < end_idx) |
299 | { |
300 | wchar_t wc; |
301 | |
302 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) |
303 | && mbsinit (&pstr->cur_state)) |
304 | { |
305 | /* In case of a singlebyte character. */ |
306 | pstr->mbs[byte_idx] |
307 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); |
308 | /* The next step uses the assumption that wchar_t is encoded |
309 | ASCII-safe: all ASCII values can be converted like this. */ |
310 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; |
311 | ++byte_idx; |
312 | continue; |
313 | } |
314 | |
315 | remain_len = end_idx - byte_idx; |
316 | prev_st = pstr->cur_state; |
317 | mbclen = __mbrtowc (&wc, |
318 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
319 | + byte_idx), remain_len, &pstr->cur_state); |
320 | if (BE (mbclen < (size_t) -2, 1)) |
321 | { |
322 | wchar_t wcu = __towupper (wc); |
323 | if (wcu != wc) |
324 | { |
325 | size_t mbcdlen; |
326 | |
327 | mbcdlen = __wcrtomb (buf, wcu, &prev_st); |
328 | if (BE (mbclen == mbcdlen, 1)) |
329 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
330 | else |
331 | { |
332 | src_idx = byte_idx; |
333 | goto offsets_needed; |
334 | } |
335 | } |
336 | else |
337 | memcpy (pstr->mbs + byte_idx, |
338 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); |
339 | pstr->wcs[byte_idx++] = wcu; |
340 | /* Write paddings. */ |
341 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
342 | pstr->wcs[byte_idx++] = WEOF; |
343 | } |
344 | else if (mbclen == (size_t) -1 || mbclen == 0 |
345 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
346 | { |
347 | /* It is an invalid character, an incomplete character |
348 | at the end of the string, or '\0'. Just use the byte. */ |
349 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
350 | pstr->mbs[byte_idx] = ch; |
351 | /* And also cast it to wide char. */ |
352 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
353 | if (BE (mbclen == (size_t) -1, 0)) |
354 | pstr->cur_state = prev_st; |
355 | } |
356 | else |
357 | { |
358 | /* The buffer doesn't have enough space, finish to build. */ |
359 | pstr->cur_state = prev_st; |
360 | break; |
361 | } |
362 | } |
363 | pstr->valid_len = byte_idx; |
364 | pstr->valid_raw_len = byte_idx; |
365 | return REG_NOERROR; |
366 | } |
367 | else |
368 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
369 | { |
370 | wchar_t wc; |
371 | const char *p; |
372 | offsets_needed: |
373 | remain_len = end_idx - byte_idx; |
374 | prev_st = pstr->cur_state; |
375 | if (BE (pstr->trans != NULL, 0)) |
376 | { |
377 | int i, ch; |
378 | |
379 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
380 | { |
381 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
382 | buf[i] = pstr->trans[ch]; |
383 | } |
384 | p = (const char *) buf; |
385 | } |
386 | else |
387 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
388 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
389 | if (BE (mbclen < (size_t) -2, 1)) |
390 | { |
391 | wchar_t wcu = __towupper (wc); |
392 | if (wcu != wc) |
393 | { |
394 | size_t mbcdlen; |
395 | |
396 | mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st); |
397 | if (BE (mbclen == mbcdlen, 1)) |
398 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
399 | else if (mbcdlen != (size_t) -1) |
400 | { |
401 | size_t i; |
402 | |
403 | if (byte_idx + mbcdlen > pstr->bufs_len) |
404 | { |
405 | pstr->cur_state = prev_st; |
406 | break; |
407 | } |
408 | |
409 | if (pstr->offsets == NULL) |
410 | { |
411 | pstr->offsets = re_malloc (Idx, pstr->bufs_len); |
412 | |
413 | if (pstr->offsets == NULL) |
414 | return REG_ESPACE; |
415 | } |
416 | if (!pstr->offsets_needed) |
417 | { |
418 | for (i = 0; i < (size_t) byte_idx; ++i) |
419 | pstr->offsets[i] = i; |
420 | pstr->offsets_needed = 1; |
421 | } |
422 | |
423 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); |
424 | pstr->wcs[byte_idx] = wcu; |
425 | pstr->offsets[byte_idx] = src_idx; |
426 | for (i = 1; i < mbcdlen; ++i) |
427 | { |
428 | pstr->offsets[byte_idx + i] |
429 | = src_idx + (i < mbclen ? i : mbclen - 1); |
430 | pstr->wcs[byte_idx + i] = WEOF; |
431 | } |
432 | pstr->len += mbcdlen - mbclen; |
433 | if (pstr->raw_stop > src_idx) |
434 | pstr->stop += mbcdlen - mbclen; |
435 | end_idx = (pstr->bufs_len > pstr->len) |
436 | ? pstr->len : pstr->bufs_len; |
437 | byte_idx += mbcdlen; |
438 | src_idx += mbclen; |
439 | continue; |
440 | } |
441 | else |
442 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
443 | } |
444 | else |
445 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
446 | |
447 | if (BE (pstr->offsets_needed != 0, 0)) |
448 | { |
449 | size_t i; |
450 | for (i = 0; i < mbclen; ++i) |
451 | pstr->offsets[byte_idx + i] = src_idx + i; |
452 | } |
453 | src_idx += mbclen; |
454 | |
455 | pstr->wcs[byte_idx++] = wcu; |
456 | /* Write paddings. */ |
457 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
458 | pstr->wcs[byte_idx++] = WEOF; |
459 | } |
460 | else if (mbclen == (size_t) -1 || mbclen == 0 |
461 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
462 | { |
463 | /* It is an invalid character or '\0'. Just use the byte. */ |
464 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
465 | |
466 | if (BE (pstr->trans != NULL, 0)) |
467 | ch = pstr->trans [ch]; |
468 | pstr->mbs[byte_idx] = ch; |
469 | |
470 | if (BE (pstr->offsets_needed != 0, 0)) |
471 | pstr->offsets[byte_idx] = src_idx; |
472 | ++src_idx; |
473 | |
474 | /* And also cast it to wide char. */ |
475 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
476 | if (BE (mbclen == (size_t) -1, 0)) |
477 | pstr->cur_state = prev_st; |
478 | } |
479 | else |
480 | { |
481 | /* The buffer doesn't have enough space, finish to build. */ |
482 | pstr->cur_state = prev_st; |
483 | break; |
484 | } |
485 | } |
486 | pstr->valid_len = byte_idx; |
487 | pstr->valid_raw_len = src_idx; |
488 | return REG_NOERROR; |
489 | } |
490 | |
491 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. |
492 | Return the index. */ |
493 | |
494 | static Idx |
495 | re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) |
496 | { |
497 | mbstate_t prev_st; |
498 | Idx rawbuf_idx; |
499 | size_t mbclen; |
500 | wint_t wc = WEOF; |
501 | |
502 | /* Skip the characters which are not necessary to check. */ |
503 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
504 | rawbuf_idx < new_raw_idx;) |
505 | { |
506 | wchar_t wc2; |
507 | Idx remain_len = pstr->raw_len - rawbuf_idx; |
508 | prev_st = pstr->cur_state; |
509 | mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
510 | remain_len, &pstr->cur_state); |
511 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) |
512 | { |
513 | /* We treat these cases as a single byte character. */ |
514 | if (mbclen == 0 || remain_len == 0) |
515 | wc = L'\0'; |
516 | else |
517 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
518 | mbclen = 1; |
519 | pstr->cur_state = prev_st; |
520 | } |
521 | else |
522 | wc = wc2; |
523 | /* Then proceed the next character. */ |
524 | rawbuf_idx += mbclen; |
525 | } |
526 | *last_wc = wc; |
527 | return rawbuf_idx; |
528 | } |
529 | #endif /* RE_ENABLE_I18N */ |
530 | |
531 | /* Build the buffer PSTR->MBS, and apply the translation if we need. |
532 | This function is used in case of REG_ICASE. */ |
533 | |
534 | static void |
535 | build_upper_buffer (re_string_t *pstr) |
536 | { |
537 | Idx char_idx, end_idx; |
538 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
539 | |
540 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
541 | { |
542 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
543 | if (BE (pstr->trans != NULL, 0)) |
544 | ch = pstr->trans[ch]; |
545 | pstr->mbs[char_idx] = toupper (ch); |
546 | } |
547 | pstr->valid_len = char_idx; |
548 | pstr->valid_raw_len = char_idx; |
549 | } |
550 | |
551 | /* Apply TRANS to the buffer in PSTR. */ |
552 | |
553 | static void |
554 | re_string_translate_buffer (re_string_t *pstr) |
555 | { |
556 | Idx buf_idx, end_idx; |
557 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
558 | |
559 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
560 | { |
561 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
562 | pstr->mbs[buf_idx] = pstr->trans[ch]; |
563 | } |
564 | |
565 | pstr->valid_len = buf_idx; |
566 | pstr->valid_raw_len = buf_idx; |
567 | } |
568 | |
569 | /* This function re-construct the buffers. |
570 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
571 | convert to upper case in case of REG_ICASE, apply translation. */ |
572 | |
573 | static reg_errcode_t |
574 | __attribute_warn_unused_result__ |
575 | re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) |
576 | { |
577 | Idx offset; |
578 | |
579 | if (BE (pstr->raw_mbs_idx <= idx, 0)) |
580 | offset = idx - pstr->raw_mbs_idx; |
581 | else |
582 | { |
583 | /* Reset buffer. */ |
584 | #ifdef RE_ENABLE_I18N |
585 | if (pstr->mb_cur_max > 1) |
586 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
587 | #endif /* RE_ENABLE_I18N */ |
588 | pstr->len = pstr->raw_len; |
589 | pstr->stop = pstr->raw_stop; |
590 | pstr->valid_len = 0; |
591 | pstr->raw_mbs_idx = 0; |
592 | pstr->valid_raw_len = 0; |
593 | pstr->offsets_needed = 0; |
594 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
595 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); |
596 | if (!pstr->mbs_allocated) |
597 | pstr->mbs = (unsigned char *) pstr->raw_mbs; |
598 | offset = idx; |
599 | } |
600 | |
601 | if (BE (offset != 0, 1)) |
602 | { |
603 | /* Should the already checked characters be kept? */ |
604 | if (BE (offset < pstr->valid_raw_len, 1)) |
605 | { |
606 | /* Yes, move them to the front of the buffer. */ |
607 | #ifdef RE_ENABLE_I18N |
608 | if (BE (pstr->offsets_needed, 0)) |
609 | { |
610 | Idx low = 0, high = pstr->valid_len, mid; |
611 | do |
612 | { |
613 | mid = (high + low) / 2; |
614 | if (pstr->offsets[mid] > offset) |
615 | high = mid; |
616 | else if (pstr->offsets[mid] < offset) |
617 | low = mid + 1; |
618 | else |
619 | break; |
620 | } |
621 | while (low < high); |
622 | if (pstr->offsets[mid] < offset) |
623 | ++mid; |
624 | pstr->tip_context = re_string_context_at (pstr, mid - 1, |
625 | eflags); |
626 | /* This can be quite complicated, so handle specially |
627 | only the common and easy case where the character with |
628 | different length representation of lower and upper |
629 | case is present at or after offset. */ |
630 | if (pstr->valid_len > offset |
631 | && mid == offset && pstr->offsets[mid] == offset) |
632 | { |
633 | memmove (pstr->wcs, pstr->wcs + offset, |
634 | (pstr->valid_len - offset) * sizeof (wint_t)); |
635 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); |
636 | pstr->valid_len -= offset; |
637 | pstr->valid_raw_len -= offset; |
638 | for (low = 0; low < pstr->valid_len; low++) |
639 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
640 | } |
641 | else |
642 | { |
643 | /* Otherwise, just find out how long the partial multibyte |
644 | character at offset is and fill it with WEOF/255. */ |
645 | pstr->len = pstr->raw_len - idx + offset; |
646 | pstr->stop = pstr->raw_stop - idx + offset; |
647 | pstr->offsets_needed = 0; |
648 | while (mid > 0 && pstr->offsets[mid - 1] == offset) |
649 | --mid; |
650 | while (mid < pstr->valid_len) |
651 | if (pstr->wcs[mid] != WEOF) |
652 | break; |
653 | else |
654 | ++mid; |
655 | if (mid == pstr->valid_len) |
656 | pstr->valid_len = 0; |
657 | else |
658 | { |
659 | pstr->valid_len = pstr->offsets[mid] - offset; |
660 | if (pstr->valid_len) |
661 | { |
662 | for (low = 0; low < pstr->valid_len; ++low) |
663 | pstr->wcs[low] = WEOF; |
664 | memset (pstr->mbs, 255, pstr->valid_len); |
665 | } |
666 | } |
667 | pstr->valid_raw_len = pstr->valid_len; |
668 | } |
669 | } |
670 | else |
671 | #endif |
672 | { |
673 | pstr->tip_context = re_string_context_at (pstr, offset - 1, |
674 | eflags); |
675 | #ifdef RE_ENABLE_I18N |
676 | if (pstr->mb_cur_max > 1) |
677 | memmove (pstr->wcs, pstr->wcs + offset, |
678 | (pstr->valid_len - offset) * sizeof (wint_t)); |
679 | #endif /* RE_ENABLE_I18N */ |
680 | if (BE (pstr->mbs_allocated, 0)) |
681 | memmove (pstr->mbs, pstr->mbs + offset, |
682 | pstr->valid_len - offset); |
683 | pstr->valid_len -= offset; |
684 | pstr->valid_raw_len -= offset; |
685 | #if defined DEBUG && DEBUG |
686 | assert (pstr->valid_len > 0); |
687 | #endif |
688 | } |
689 | } |
690 | else |
691 | { |
692 | #ifdef RE_ENABLE_I18N |
693 | /* No, skip all characters until IDX. */ |
694 | Idx prev_valid_len = pstr->valid_len; |
695 | |
696 | if (BE (pstr->offsets_needed, 0)) |
697 | { |
698 | pstr->len = pstr->raw_len - idx + offset; |
699 | pstr->stop = pstr->raw_stop - idx + offset; |
700 | pstr->offsets_needed = 0; |
701 | } |
702 | #endif |
703 | pstr->valid_len = 0; |
704 | #ifdef RE_ENABLE_I18N |
705 | if (pstr->mb_cur_max > 1) |
706 | { |
707 | Idx wcs_idx; |
708 | wint_t wc = WEOF; |
709 | |
710 | if (pstr->is_utf8) |
711 | { |
712 | const unsigned char *raw, *p, *end; |
713 | |
714 | /* Special case UTF-8. Multi-byte chars start with any |
715 | byte other than 0x80 - 0xbf. */ |
716 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
717 | end = raw + (offset - pstr->mb_cur_max); |
718 | if (end < pstr->raw_mbs) |
719 | end = pstr->raw_mbs; |
720 | p = raw + offset - 1; |
721 | #ifdef _LIBC |
722 | /* We know the wchar_t encoding is UCS4, so for the simple |
723 | case, ASCII characters, skip the conversion step. */ |
724 | if (isascii (*p) && BE (pstr->trans == NULL, 1)) |
725 | { |
726 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
727 | /* pstr->valid_len = 0; */ |
728 | wc = (wchar_t) *p; |
729 | } |
730 | else |
731 | #endif |
732 | for (; p >= end; --p) |
733 | if ((*p & 0xc0) != 0x80) |
734 | { |
735 | mbstate_t cur_state; |
736 | wchar_t wc2; |
737 | Idx mlen = raw + pstr->len - p; |
738 | unsigned char buf[6]; |
739 | size_t mbclen; |
740 | |
741 | const unsigned char *pp = p; |
742 | if (BE (pstr->trans != NULL, 0)) |
743 | { |
744 | int i = mlen < 6 ? mlen : 6; |
745 | while (--i >= 0) |
746 | buf[i] = pstr->trans[p[i]]; |
747 | pp = buf; |
748 | } |
749 | /* XXX Don't use mbrtowc, we know which conversion |
750 | to use (UTF-8 -> UCS4). */ |
751 | memset (&cur_state, 0, sizeof (cur_state)); |
752 | mbclen = __mbrtowc (&wc2, (const char *) pp, mlen, |
753 | &cur_state); |
754 | if (raw + offset - p <= mbclen |
755 | && mbclen < (size_t) -2) |
756 | { |
757 | memset (&pstr->cur_state, '\0', |
758 | sizeof (mbstate_t)); |
759 | pstr->valid_len = mbclen - (raw + offset - p); |
760 | wc = wc2; |
761 | } |
762 | break; |
763 | } |
764 | } |
765 | |
766 | if (wc == WEOF) |
767 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; |
768 | if (wc == WEOF) |
769 | pstr->tip_context |
770 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); |
771 | else |
772 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) |
773 | && IS_WIDE_WORD_CHAR (wc)) |
774 | ? CONTEXT_WORD |
775 | : ((IS_WIDE_NEWLINE (wc) |
776 | && pstr->newline_anchor) |
777 | ? CONTEXT_NEWLINE : 0)); |
778 | if (BE (pstr->valid_len, 0)) |
779 | { |
780 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
781 | pstr->wcs[wcs_idx] = WEOF; |
782 | if (pstr->mbs_allocated) |
783 | memset (pstr->mbs, 255, pstr->valid_len); |
784 | } |
785 | pstr->valid_raw_len = pstr->valid_len; |
786 | } |
787 | else |
788 | #endif /* RE_ENABLE_I18N */ |
789 | { |
790 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
791 | pstr->valid_raw_len = 0; |
792 | if (pstr->trans) |
793 | c = pstr->trans[c]; |
794 | pstr->tip_context = (bitset_contain (pstr->word_char, c) |
795 | ? CONTEXT_WORD |
796 | : ((IS_NEWLINE (c) && pstr->newline_anchor) |
797 | ? CONTEXT_NEWLINE : 0)); |
798 | } |
799 | } |
800 | if (!BE (pstr->mbs_allocated, 0)) |
801 | pstr->mbs += offset; |
802 | } |
803 | pstr->raw_mbs_idx = idx; |
804 | pstr->len -= offset; |
805 | pstr->stop -= offset; |
806 | |
807 | /* Then build the buffers. */ |
808 | #ifdef RE_ENABLE_I18N |
809 | if (pstr->mb_cur_max > 1) |
810 | { |
811 | if (pstr->icase) |
812 | { |
813 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
814 | if (BE (ret != REG_NOERROR, 0)) |
815 | return ret; |
816 | } |
817 | else |
818 | build_wcs_buffer (pstr); |
819 | } |
820 | else |
821 | #endif /* RE_ENABLE_I18N */ |
822 | if (BE (pstr->mbs_allocated, 0)) |
823 | { |
824 | if (pstr->icase) |
825 | build_upper_buffer (pstr); |
826 | else if (pstr->trans != NULL) |
827 | re_string_translate_buffer (pstr); |
828 | } |
829 | else |
830 | pstr->valid_len = pstr->len; |
831 | |
832 | pstr->cur_idx = 0; |
833 | return REG_NOERROR; |
834 | } |
835 | |
836 | static unsigned char |
837 | __attribute__ ((pure)) |
838 | re_string_peek_byte_case (const re_string_t *pstr, Idx idx) |
839 | { |
840 | int ch; |
841 | Idx off; |
842 | |
843 | /* Handle the common (easiest) cases first. */ |
844 | if (BE (!pstr->mbs_allocated, 1)) |
845 | return re_string_peek_byte (pstr, idx); |
846 | |
847 | #ifdef RE_ENABLE_I18N |
848 | if (pstr->mb_cur_max > 1 |
849 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) |
850 | return re_string_peek_byte (pstr, idx); |
851 | #endif |
852 | |
853 | off = pstr->cur_idx + idx; |
854 | #ifdef RE_ENABLE_I18N |
855 | if (pstr->offsets_needed) |
856 | off = pstr->offsets[off]; |
857 | #endif |
858 | |
859 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
860 | |
861 | #ifdef RE_ENABLE_I18N |
862 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
863 | this function returns CAPITAL LETTER I instead of first byte of |
864 | DOTLESS SMALL LETTER I. The latter would confuse the parser, |
865 | since peek_byte_case doesn't advance cur_idx in any way. */ |
866 | if (pstr->offsets_needed && !isascii (ch)) |
867 | return re_string_peek_byte (pstr, idx); |
868 | #endif |
869 | |
870 | return ch; |
871 | } |
872 | |
873 | static unsigned char |
874 | re_string_fetch_byte_case (re_string_t *pstr) |
875 | { |
876 | if (BE (!pstr->mbs_allocated, 1)) |
877 | return re_string_fetch_byte (pstr); |
878 | |
879 | #ifdef RE_ENABLE_I18N |
880 | if (pstr->offsets_needed) |
881 | { |
882 | Idx off; |
883 | int ch; |
884 | |
885 | /* For tr_TR.UTF-8 [[:islower:]] there is |
886 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
887 | in that case the whole multi-byte character and return |
888 | the original letter. On the other side, with |
889 | [[: DOTLESS SMALL LETTER I return [[:I, as doing |
890 | anything else would complicate things too much. */ |
891 | |
892 | if (!re_string_first_byte (pstr, pstr->cur_idx)) |
893 | return re_string_fetch_byte (pstr); |
894 | |
895 | off = pstr->offsets[pstr->cur_idx]; |
896 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
897 | |
898 | if (! isascii (ch)) |
899 | return re_string_fetch_byte (pstr); |
900 | |
901 | re_string_skip_bytes (pstr, |
902 | re_string_char_size_at (pstr, pstr->cur_idx)); |
903 | return ch; |
904 | } |
905 | #endif |
906 | |
907 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
908 | } |
909 | |
910 | static void |
911 | re_string_destruct (re_string_t *pstr) |
912 | { |
913 | #ifdef RE_ENABLE_I18N |
914 | re_free (pstr->wcs); |
915 | re_free (pstr->offsets); |
916 | #endif /* RE_ENABLE_I18N */ |
917 | if (pstr->mbs_allocated) |
918 | re_free (pstr->mbs); |
919 | } |
920 | |
921 | /* Return the context at IDX in INPUT. */ |
922 | |
923 | static unsigned int |
924 | re_string_context_at (const re_string_t *input, Idx idx, int eflags) |
925 | { |
926 | int c; |
927 | if (BE (idx < 0, 0)) |
928 | /* In this case, we use the value stored in input->tip_context, |
929 | since we can't know the character in input->mbs[-1] here. */ |
930 | return input->tip_context; |
931 | if (BE (idx == input->len, 0)) |
932 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF |
933 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); |
934 | #ifdef RE_ENABLE_I18N |
935 | if (input->mb_cur_max > 1) |
936 | { |
937 | wint_t wc; |
938 | Idx wc_idx = idx; |
939 | while(input->wcs[wc_idx] == WEOF) |
940 | { |
941 | #if defined DEBUG && DEBUG |
942 | /* It must not happen. */ |
943 | assert (wc_idx >= 0); |
944 | #endif |
945 | --wc_idx; |
946 | if (wc_idx < 0) |
947 | return input->tip_context; |
948 | } |
949 | wc = input->wcs[wc_idx]; |
950 | if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) |
951 | return CONTEXT_WORD; |
952 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor |
953 | ? CONTEXT_NEWLINE : 0); |
954 | } |
955 | else |
956 | #endif |
957 | { |
958 | c = re_string_byte_at (input, idx); |
959 | if (bitset_contain (input->word_char, c)) |
960 | return CONTEXT_WORD; |
961 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; |
962 | } |
963 | } |
964 | |
965 | /* Functions for set operation. */ |
966 | |
967 | static reg_errcode_t |
968 | __attribute_warn_unused_result__ |
969 | re_node_set_alloc (re_node_set *set, Idx size) |
970 | { |
971 | set->alloc = size; |
972 | set->nelem = 0; |
973 | set->elems = re_malloc (Idx, size); |
974 | if (BE (set->elems == NULL, 0) && (MALLOC_0_IS_NONNULL || size != 0)) |
975 | return REG_ESPACE; |
976 | return REG_NOERROR; |
977 | } |
978 | |
979 | static reg_errcode_t |
980 | __attribute_warn_unused_result__ |
981 | re_node_set_init_1 (re_node_set *set, Idx elem) |
982 | { |
983 | set->alloc = 1; |
984 | set->nelem = 1; |
985 | set->elems = re_malloc (Idx, 1); |
986 | if (BE (set->elems == NULL, 0)) |
987 | { |
988 | set->alloc = set->nelem = 0; |
989 | return REG_ESPACE; |
990 | } |
991 | set->elems[0] = elem; |
992 | return REG_NOERROR; |
993 | } |
994 | |
995 | static reg_errcode_t |
996 | __attribute_warn_unused_result__ |
997 | re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) |
998 | { |
999 | set->alloc = 2; |
1000 | set->elems = re_malloc (Idx, 2); |
1001 | if (BE (set->elems == NULL, 0)) |
1002 | return REG_ESPACE; |
1003 | if (elem1 == elem2) |
1004 | { |
1005 | set->nelem = 1; |
1006 | set->elems[0] = elem1; |
1007 | } |
1008 | else |
1009 | { |
1010 | set->nelem = 2; |
1011 | if (elem1 < elem2) |
1012 | { |
1013 | set->elems[0] = elem1; |
1014 | set->elems[1] = elem2; |
1015 | } |
1016 | else |
1017 | { |
1018 | set->elems[0] = elem2; |
1019 | set->elems[1] = elem1; |
1020 | } |
1021 | } |
1022 | return REG_NOERROR; |
1023 | } |
1024 | |
1025 | static reg_errcode_t |
1026 | __attribute_warn_unused_result__ |
1027 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
1028 | { |
1029 | dest->nelem = src->nelem; |
1030 | if (src->nelem > 0) |
1031 | { |
1032 | dest->alloc = dest->nelem; |
1033 | dest->elems = re_malloc (Idx, dest->alloc); |
1034 | if (BE (dest->elems == NULL, 0)) |
1035 | { |
1036 | dest->alloc = dest->nelem = 0; |
1037 | return REG_ESPACE; |
1038 | } |
1039 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
1040 | } |
1041 | else |
1042 | re_node_set_init_empty (dest); |
1043 | return REG_NOERROR; |
1044 | } |
1045 | |
1046 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
1047 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
1048 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
1049 | |
1050 | static reg_errcode_t |
1051 | __attribute_warn_unused_result__ |
1052 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
1053 | const re_node_set *src2) |
1054 | { |
1055 | Idx i1, i2, is, id, delta, sbase; |
1056 | if (src1->nelem == 0 || src2->nelem == 0) |
1057 | return REG_NOERROR; |
1058 | |
1059 | /* We need dest->nelem + 2 * elems_in_intersection; this is a |
1060 | conservative estimate. */ |
1061 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
1062 | { |
1063 | Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; |
1064 | Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc); |
1065 | if (BE (new_elems == NULL, 0)) |
1066 | return REG_ESPACE; |
1067 | dest->elems = new_elems; |
1068 | dest->alloc = new_alloc; |
1069 | } |
1070 | |
1071 | /* Find the items in the intersection of SRC1 and SRC2, and copy |
1072 | into the top of DEST those that are not already in DEST itself. */ |
1073 | sbase = dest->nelem + src1->nelem + src2->nelem; |
1074 | i1 = src1->nelem - 1; |
1075 | i2 = src2->nelem - 1; |
1076 | id = dest->nelem - 1; |
1077 | for (;;) |
1078 | { |
1079 | if (src1->elems[i1] == src2->elems[i2]) |
1080 | { |
1081 | /* Try to find the item in DEST. Maybe we could binary search? */ |
1082 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
1083 | --id; |
1084 | |
1085 | if (id < 0 || dest->elems[id] != src1->elems[i1]) |
1086 | dest->elems[--sbase] = src1->elems[i1]; |
1087 | |
1088 | if (--i1 < 0 || --i2 < 0) |
1089 | break; |
1090 | } |
1091 | |
1092 | /* Lower the highest of the two items. */ |
1093 | else if (src1->elems[i1] < src2->elems[i2]) |
1094 | { |
1095 | if (--i2 < 0) |
1096 | break; |
1097 | } |
1098 | else |
1099 | { |
1100 | if (--i1 < 0) |
1101 | break; |
1102 | } |
1103 | } |
1104 | |
1105 | id = dest->nelem - 1; |
1106 | is = dest->nelem + src1->nelem + src2->nelem - 1; |
1107 | delta = is - sbase + 1; |
1108 | |
1109 | /* Now copy. When DELTA becomes zero, the remaining |
1110 | DEST elements are already in place; this is more or |
1111 | less the same loop that is in re_node_set_merge. */ |
1112 | dest->nelem += delta; |
1113 | if (delta > 0 && id >= 0) |
1114 | for (;;) |
1115 | { |
1116 | if (dest->elems[is] > dest->elems[id]) |
1117 | { |
1118 | /* Copy from the top. */ |
1119 | dest->elems[id + delta--] = dest->elems[is--]; |
1120 | if (delta == 0) |
1121 | break; |
1122 | } |
1123 | else |
1124 | { |
1125 | /* Slide from the bottom. */ |
1126 | dest->elems[id + delta] = dest->elems[id]; |
1127 | if (--id < 0) |
1128 | break; |
1129 | } |
1130 | } |
1131 | |
1132 | /* Copy remaining SRC elements. */ |
1133 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx)); |
1134 | |
1135 | return REG_NOERROR; |
1136 | } |
1137 | |
1138 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to |
1139 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1140 | |
1141 | static reg_errcode_t |
1142 | __attribute_warn_unused_result__ |
1143 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
1144 | const re_node_set *src2) |
1145 | { |
1146 | Idx i1, i2, id; |
1147 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) |
1148 | { |
1149 | dest->alloc = src1->nelem + src2->nelem; |
1150 | dest->elems = re_malloc (Idx, dest->alloc); |
1151 | if (BE (dest->elems == NULL, 0)) |
1152 | return REG_ESPACE; |
1153 | } |
1154 | else |
1155 | { |
1156 | if (src1 != NULL && src1->nelem > 0) |
1157 | return re_node_set_init_copy (dest, src1); |
1158 | else if (src2 != NULL && src2->nelem > 0) |
1159 | return re_node_set_init_copy (dest, src2); |
1160 | else |
1161 | re_node_set_init_empty (dest); |
1162 | return REG_NOERROR; |
1163 | } |
1164 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
1165 | { |
1166 | if (src1->elems[i1] > src2->elems[i2]) |
1167 | { |
1168 | dest->elems[id++] = src2->elems[i2++]; |
1169 | continue; |
1170 | } |
1171 | if (src1->elems[i1] == src2->elems[i2]) |
1172 | ++i2; |
1173 | dest->elems[id++] = src1->elems[i1++]; |
1174 | } |
1175 | if (i1 < src1->nelem) |
1176 | { |
1177 | memcpy (dest->elems + id, src1->elems + i1, |
1178 | (src1->nelem - i1) * sizeof (Idx)); |
1179 | id += src1->nelem - i1; |
1180 | } |
1181 | else if (i2 < src2->nelem) |
1182 | { |
1183 | memcpy (dest->elems + id, src2->elems + i2, |
1184 | (src2->nelem - i2) * sizeof (Idx)); |
1185 | id += src2->nelem - i2; |
1186 | } |
1187 | dest->nelem = id; |
1188 | return REG_NOERROR; |
1189 | } |
1190 | |
1191 | /* Calculate the union set of the sets DEST and SRC. And store it to |
1192 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1193 | |
1194 | static reg_errcode_t |
1195 | __attribute_warn_unused_result__ |
1196 | re_node_set_merge (re_node_set *dest, const re_node_set *src) |
1197 | { |
1198 | Idx is, id, sbase, delta; |
1199 | if (src == NULL || src->nelem == 0) |
1200 | return REG_NOERROR; |
1201 | if (dest->alloc < 2 * src->nelem + dest->nelem) |
1202 | { |
1203 | Idx new_alloc = 2 * (src->nelem + dest->alloc); |
1204 | Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc); |
1205 | if (BE (new_buffer == NULL, 0)) |
1206 | return REG_ESPACE; |
1207 | dest->elems = new_buffer; |
1208 | dest->alloc = new_alloc; |
1209 | } |
1210 | |
1211 | if (BE (dest->nelem == 0, 0)) |
1212 | { |
1213 | dest->nelem = src->nelem; |
1214 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
1215 | return REG_NOERROR; |
1216 | } |
1217 | |
1218 | /* Copy into the top of DEST the items of SRC that are not |
1219 | found in DEST. Maybe we could binary search in DEST? */ |
1220 | for (sbase = dest->nelem + 2 * src->nelem, |
1221 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
1222 | { |
1223 | if (dest->elems[id] == src->elems[is]) |
1224 | is--, id--; |
1225 | else if (dest->elems[id] < src->elems[is]) |
1226 | dest->elems[--sbase] = src->elems[is--]; |
1227 | else /* if (dest->elems[id] > src->elems[is]) */ |
1228 | --id; |
1229 | } |
1230 | |
1231 | if (is >= 0) |
1232 | { |
1233 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ |
1234 | sbase -= is + 1; |
1235 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx)); |
1236 | } |
1237 | |
1238 | id = dest->nelem - 1; |
1239 | is = dest->nelem + 2 * src->nelem - 1; |
1240 | delta = is - sbase + 1; |
1241 | if (delta == 0) |
1242 | return REG_NOERROR; |
1243 | |
1244 | /* Now copy. When DELTA becomes zero, the remaining |
1245 | DEST elements are already in place. */ |
1246 | dest->nelem += delta; |
1247 | for (;;) |
1248 | { |
1249 | if (dest->elems[is] > dest->elems[id]) |
1250 | { |
1251 | /* Copy from the top. */ |
1252 | dest->elems[id + delta--] = dest->elems[is--]; |
1253 | if (delta == 0) |
1254 | break; |
1255 | } |
1256 | else |
1257 | { |
1258 | /* Slide from the bottom. */ |
1259 | dest->elems[id + delta] = dest->elems[id]; |
1260 | if (--id < 0) |
1261 | { |
1262 | /* Copy remaining SRC elements. */ |
1263 | memcpy (dest->elems, dest->elems + sbase, |
1264 | delta * sizeof (Idx)); |
1265 | break; |
1266 | } |
1267 | } |
1268 | } |
1269 | |
1270 | return REG_NOERROR; |
1271 | } |
1272 | |
1273 | /* Insert the new element ELEM to the re_node_set* SET. |
1274 | SET should not already have ELEM. |
1275 | Return true if successful. */ |
1276 | |
1277 | static bool |
1278 | __attribute_warn_unused_result__ |
1279 | re_node_set_insert (re_node_set *set, Idx elem) |
1280 | { |
1281 | Idx idx; |
1282 | /* In case the set is empty. */ |
1283 | if (set->alloc == 0) |
1284 | return BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1); |
1285 | |
1286 | if (BE (set->nelem, 0) == 0) |
1287 | { |
1288 | /* We already guaranteed above that set->alloc != 0. */ |
1289 | set->elems[0] = elem; |
1290 | ++set->nelem; |
1291 | return true; |
1292 | } |
1293 | |
1294 | /* Realloc if we need. */ |
1295 | if (set->alloc == set->nelem) |
1296 | { |
1297 | Idx *new_elems; |
1298 | set->alloc = set->alloc * 2; |
1299 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
1300 | if (BE (new_elems == NULL, 0)) |
1301 | return false; |
1302 | set->elems = new_elems; |
1303 | } |
1304 | |
1305 | /* Move the elements which follows the new element. Test the |
1306 | first element separately to skip a check in the inner loop. */ |
1307 | if (elem < set->elems[0]) |
1308 | { |
1309 | idx = 0; |
1310 | for (idx = set->nelem; idx > 0; idx--) |
1311 | set->elems[idx] = set->elems[idx - 1]; |
1312 | } |
1313 | else |
1314 | { |
1315 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
1316 | set->elems[idx] = set->elems[idx - 1]; |
1317 | } |
1318 | |
1319 | /* Insert the new element. */ |
1320 | set->elems[idx] = elem; |
1321 | ++set->nelem; |
1322 | return true; |
1323 | } |
1324 | |
1325 | /* Insert the new element ELEM to the re_node_set* SET. |
1326 | SET should not already have any element greater than or equal to ELEM. |
1327 | Return true if successful. */ |
1328 | |
1329 | static bool |
1330 | __attribute_warn_unused_result__ |
1331 | re_node_set_insert_last (re_node_set *set, Idx elem) |
1332 | { |
1333 | /* Realloc if we need. */ |
1334 | if (set->alloc == set->nelem) |
1335 | { |
1336 | Idx *new_elems; |
1337 | set->alloc = (set->alloc + 1) * 2; |
1338 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
1339 | if (BE (new_elems == NULL, 0)) |
1340 | return false; |
1341 | set->elems = new_elems; |
1342 | } |
1343 | |
1344 | /* Insert the new element. */ |
1345 | set->elems[set->nelem++] = elem; |
1346 | return true; |
1347 | } |
1348 | |
1349 | /* Compare two node sets SET1 and SET2. |
1350 | Return true if SET1 and SET2 are equivalent. */ |
1351 | |
1352 | static bool |
1353 | __attribute__ ((pure)) |
1354 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
1355 | { |
1356 | Idx i; |
1357 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) |
1358 | return false; |
1359 | for (i = set1->nelem ; --i >= 0 ; ) |
1360 | if (set1->elems[i] != set2->elems[i]) |
1361 | return false; |
1362 | return true; |
1363 | } |
1364 | |
1365 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
1366 | |
1367 | static Idx |
1368 | __attribute__ ((pure)) |
1369 | re_node_set_contains (const re_node_set *set, Idx elem) |
1370 | { |
1371 | __re_size_t idx, right, mid; |
1372 | if (set->nelem <= 0) |
1373 | return 0; |
1374 | |
1375 | /* Binary search the element. */ |
1376 | idx = 0; |
1377 | right = set->nelem - 1; |
1378 | while (idx < right) |
1379 | { |
1380 | mid = (idx + right) / 2; |
1381 | if (set->elems[mid] < elem) |
1382 | idx = mid + 1; |
1383 | else |
1384 | right = mid; |
1385 | } |
1386 | return set->elems[idx] == elem ? idx + 1 : 0; |
1387 | } |
1388 | |
1389 | static void |
1390 | re_node_set_remove_at (re_node_set *set, Idx idx) |
1391 | { |
1392 | if (idx < 0 || idx >= set->nelem) |
1393 | return; |
1394 | --set->nelem; |
1395 | for (; idx < set->nelem; idx++) |
1396 | set->elems[idx] = set->elems[idx + 1]; |
1397 | } |
1398 | |
1399 | |
1400 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. |
1401 | Or return -1 if an error occurred. */ |
1402 | |
1403 | static Idx |
1404 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
1405 | { |
1406 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) |
1407 | { |
1408 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
1409 | Idx *new_nexts, *new_indices; |
1410 | re_node_set *new_edests, *new_eclosures; |
1411 | re_token_t *new_nodes; |
1412 | |
1413 | /* Avoid overflows in realloc. */ |
1414 | const size_t max_object_size = MAX (sizeof (re_token_t), |
1415 | MAX (sizeof (re_node_set), |
1416 | sizeof (Idx))); |
1417 | if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < new_nodes_alloc, 0)) |
1418 | return -1; |
1419 | |
1420 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); |
1421 | if (BE (new_nodes == NULL, 0)) |
1422 | return -1; |
1423 | dfa->nodes = new_nodes; |
1424 | new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); |
1425 | new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); |
1426 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); |
1427 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); |
1428 | if (BE (new_nexts == NULL || new_indices == NULL |
1429 | || new_edests == NULL || new_eclosures == NULL, 0)) |
1430 | { |
1431 | re_free (new_nexts); |
1432 | re_free (new_indices); |
1433 | re_free (new_edests); |
1434 | re_free (new_eclosures); |
1435 | return -1; |
1436 | } |
1437 | dfa->nexts = new_nexts; |
1438 | dfa->org_indices = new_indices; |
1439 | dfa->edests = new_edests; |
1440 | dfa->eclosures = new_eclosures; |
1441 | dfa->nodes_alloc = new_nodes_alloc; |
1442 | } |
1443 | dfa->nodes[dfa->nodes_len] = token; |
1444 | dfa->nodes[dfa->nodes_len].constraint = 0; |
1445 | #ifdef RE_ENABLE_I18N |
1446 | dfa->nodes[dfa->nodes_len].accept_mb = |
1447 | ((token.type == OP_PERIOD && dfa->mb_cur_max > 1) |
1448 | || token.type == COMPLEX_BRACKET); |
1449 | #endif |
1450 | dfa->nexts[dfa->nodes_len] = -1; |
1451 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); |
1452 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); |
1453 | return dfa->nodes_len++; |
1454 | } |
1455 | |
1456 | static re_hashval_t |
1457 | calc_state_hash (const re_node_set *nodes, unsigned int context) |
1458 | { |
1459 | re_hashval_t hash = nodes->nelem + context; |
1460 | Idx i; |
1461 | for (i = 0 ; i < nodes->nelem ; i++) |
1462 | hash += nodes->elems[i]; |
1463 | return hash; |
1464 | } |
1465 | |
1466 | /* Search for the state whose node_set is equivalent to NODES. |
1467 | Return the pointer to the state, if we found it in the DFA. |
1468 | Otherwise create the new one and return it. In case of an error |
1469 | return NULL and set the error code in ERR. |
1470 | Note: - We assume NULL as the invalid state, then it is possible that |
1471 | return value is NULL and ERR is REG_NOERROR. |
1472 | - We never return non-NULL value in case of any errors, it is for |
1473 | optimization. */ |
1474 | |
1475 | static re_dfastate_t * |
1476 | __attribute_warn_unused_result__ |
1477 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
1478 | const re_node_set *nodes) |
1479 | { |
1480 | re_hashval_t hash; |
1481 | re_dfastate_t *new_state; |
1482 | struct re_state_table_entry *spot; |
1483 | Idx i; |
1484 | #if defined GCC_LINT || defined lint |
1485 | /* Suppress bogus uninitialized-variable warnings. */ |
1486 | *err = REG_NOERROR; |
1487 | #endif |
1488 | if (BE (nodes->nelem == 0, 0)) |
1489 | { |
1490 | *err = REG_NOERROR; |
1491 | return NULL; |
1492 | } |
1493 | hash = calc_state_hash (nodes, 0); |
1494 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1495 | |
1496 | for (i = 0 ; i < spot->num ; i++) |
1497 | { |
1498 | re_dfastate_t *state = spot->array[i]; |
1499 | if (hash != state->hash) |
1500 | continue; |
1501 | if (re_node_set_compare (&state->nodes, nodes)) |
1502 | return state; |
1503 | } |
1504 | |
1505 | /* There are no appropriate state in the dfa, create the new one. */ |
1506 | new_state = create_ci_newstate (dfa, nodes, hash); |
1507 | if (BE (new_state == NULL, 0)) |
1508 | *err = REG_ESPACE; |
1509 | |
1510 | return new_state; |
1511 | } |
1512 | |
1513 | /* Search for the state whose node_set is equivalent to NODES and |
1514 | whose context is equivalent to CONTEXT. |
1515 | Return the pointer to the state, if we found it in the DFA. |
1516 | Otherwise create the new one and return it. In case of an error |
1517 | return NULL and set the error code in ERR. |
1518 | Note: - We assume NULL as the invalid state, then it is possible that |
1519 | return value is NULL and ERR is REG_NOERROR. |
1520 | - We never return non-NULL value in case of any errors, it is for |
1521 | optimization. */ |
1522 | |
1523 | static re_dfastate_t * |
1524 | __attribute_warn_unused_result__ |
1525 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
1526 | const re_node_set *nodes, unsigned int context) |
1527 | { |
1528 | re_hashval_t hash; |
1529 | re_dfastate_t *new_state; |
1530 | struct re_state_table_entry *spot; |
1531 | Idx i; |
1532 | #if defined GCC_LINT || defined lint |
1533 | /* Suppress bogus uninitialized-variable warnings. */ |
1534 | *err = REG_NOERROR; |
1535 | #endif |
1536 | if (nodes->nelem == 0) |
1537 | { |
1538 | *err = REG_NOERROR; |
1539 | return NULL; |
1540 | } |
1541 | hash = calc_state_hash (nodes, context); |
1542 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1543 | |
1544 | for (i = 0 ; i < spot->num ; i++) |
1545 | { |
1546 | re_dfastate_t *state = spot->array[i]; |
1547 | if (state->hash == hash |
1548 | && state->context == context |
1549 | && re_node_set_compare (state->entrance_nodes, nodes)) |
1550 | return state; |
1551 | } |
1552 | /* There are no appropriate state in 'dfa', create the new one. */ |
1553 | new_state = create_cd_newstate (dfa, nodes, context, hash); |
1554 | if (BE (new_state == NULL, 0)) |
1555 | *err = REG_ESPACE; |
1556 | |
1557 | return new_state; |
1558 | } |
1559 | |
1560 | /* Finish initialization of the new state NEWSTATE, and using its hash value |
1561 | HASH put in the appropriate bucket of DFA's state table. Return value |
1562 | indicates the error code if failed. */ |
1563 | |
1564 | static reg_errcode_t |
1565 | __attribute_warn_unused_result__ |
1566 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
1567 | re_hashval_t hash) |
1568 | { |
1569 | struct re_state_table_entry *spot; |
1570 | reg_errcode_t err; |
1571 | Idx i; |
1572 | |
1573 | newstate->hash = hash; |
1574 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); |
1575 | if (BE (err != REG_NOERROR, 0)) |
1576 | return REG_ESPACE; |
1577 | for (i = 0; i < newstate->nodes.nelem; i++) |
1578 | { |
1579 | Idx elem = newstate->nodes.elems[i]; |
1580 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) |
1581 | if (! re_node_set_insert_last (&newstate->non_eps_nodes, elem)) |
1582 | return REG_ESPACE; |
1583 | } |
1584 | |
1585 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1586 | if (BE (spot->alloc <= spot->num, 0)) |
1587 | { |
1588 | Idx new_alloc = 2 * spot->num + 2; |
1589 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, |
1590 | new_alloc); |
1591 | if (BE (new_array == NULL, 0)) |
1592 | return REG_ESPACE; |
1593 | spot->array = new_array; |
1594 | spot->alloc = new_alloc; |
1595 | } |
1596 | spot->array[spot->num++] = newstate; |
1597 | return REG_NOERROR; |
1598 | } |
1599 | |
1600 | static void |
1601 | free_state (re_dfastate_t *state) |
1602 | { |
1603 | re_node_set_free (&state->non_eps_nodes); |
1604 | re_node_set_free (&state->inveclosure); |
1605 | if (state->entrance_nodes != &state->nodes) |
1606 | { |
1607 | re_node_set_free (state->entrance_nodes); |
1608 | re_free (state->entrance_nodes); |
1609 | } |
1610 | re_node_set_free (&state->nodes); |
1611 | re_free (state->word_trtable); |
1612 | re_free (state->trtable); |
1613 | re_free (state); |
1614 | } |
1615 | |
1616 | /* Create the new state which is independent of contexts. |
1617 | Return the new state if succeeded, otherwise return NULL. */ |
1618 | |
1619 | static re_dfastate_t * |
1620 | __attribute_warn_unused_result__ |
1621 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1622 | re_hashval_t hash) |
1623 | { |
1624 | Idx i; |
1625 | reg_errcode_t err; |
1626 | re_dfastate_t *newstate; |
1627 | |
1628 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
1629 | if (BE (newstate == NULL, 0)) |
1630 | return NULL; |
1631 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
1632 | if (BE (err != REG_NOERROR, 0)) |
1633 | { |
1634 | re_free (newstate); |
1635 | return NULL; |
1636 | } |
1637 | |
1638 | newstate->entrance_nodes = &newstate->nodes; |
1639 | for (i = 0 ; i < nodes->nelem ; i++) |
1640 | { |
1641 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1642 | re_token_type_t type = node->type; |
1643 | if (type == CHARACTER && !node->constraint) |
1644 | continue; |
1645 | #ifdef RE_ENABLE_I18N |
1646 | newstate->accept_mb |= node->accept_mb; |
1647 | #endif /* RE_ENABLE_I18N */ |
1648 | |
1649 | /* If the state has the halt node, the state is a halt state. */ |
1650 | if (type == END_OF_RE) |
1651 | newstate->halt = 1; |
1652 | else if (type == OP_BACK_REF) |
1653 | newstate->has_backref = 1; |
1654 | else if (type == ANCHOR || node->constraint) |
1655 | newstate->has_constraint = 1; |
1656 | } |
1657 | err = register_state (dfa, newstate, hash); |
1658 | if (BE (err != REG_NOERROR, 0)) |
1659 | { |
1660 | free_state (newstate); |
1661 | newstate = NULL; |
1662 | } |
1663 | return newstate; |
1664 | } |
1665 | |
1666 | /* Create the new state which is depend on the context CONTEXT. |
1667 | Return the new state if succeeded, otherwise return NULL. */ |
1668 | |
1669 | static re_dfastate_t * |
1670 | __attribute_warn_unused_result__ |
1671 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1672 | unsigned int context, re_hashval_t hash) |
1673 | { |
1674 | Idx i, nctx_nodes = 0; |
1675 | reg_errcode_t err; |
1676 | re_dfastate_t *newstate; |
1677 | |
1678 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
1679 | if (BE (newstate == NULL, 0)) |
1680 | return NULL; |
1681 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
1682 | if (BE (err != REG_NOERROR, 0)) |
1683 | { |
1684 | re_free (newstate); |
1685 | return NULL; |
1686 | } |
1687 | |
1688 | newstate->context = context; |
1689 | newstate->entrance_nodes = &newstate->nodes; |
1690 | |
1691 | for (i = 0 ; i < nodes->nelem ; i++) |
1692 | { |
1693 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1694 | re_token_type_t type = node->type; |
1695 | unsigned int constraint = node->constraint; |
1696 | |
1697 | if (type == CHARACTER && !constraint) |
1698 | continue; |
1699 | #ifdef RE_ENABLE_I18N |
1700 | newstate->accept_mb |= node->accept_mb; |
1701 | #endif /* RE_ENABLE_I18N */ |
1702 | |
1703 | /* If the state has the halt node, the state is a halt state. */ |
1704 | if (type == END_OF_RE) |
1705 | newstate->halt = 1; |
1706 | else if (type == OP_BACK_REF) |
1707 | newstate->has_backref = 1; |
1708 | |
1709 | if (constraint) |
1710 | { |
1711 | if (newstate->entrance_nodes == &newstate->nodes) |
1712 | { |
1713 | newstate->entrance_nodes = re_malloc (re_node_set, 1); |
1714 | if (BE (newstate->entrance_nodes == NULL, 0)) |
1715 | { |
1716 | free_state (newstate); |
1717 | return NULL; |
1718 | } |
1719 | if (re_node_set_init_copy (newstate->entrance_nodes, nodes) |
1720 | != REG_NOERROR) |
1721 | return NULL; |
1722 | nctx_nodes = 0; |
1723 | newstate->has_constraint = 1; |
1724 | } |
1725 | |
1726 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) |
1727 | { |
1728 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); |
1729 | ++nctx_nodes; |
1730 | } |
1731 | } |
1732 | } |
1733 | err = register_state (dfa, newstate, hash); |
1734 | if (BE (err != REG_NOERROR, 0)) |
1735 | { |
1736 | free_state (newstate); |
1737 | newstate = NULL; |
1738 | } |
1739 | return newstate; |
1740 | } |
1741 | |