| 1 | /* Malloc implementation for multiple threads without lock contention. |
| 2 | Copyright (C) 2001-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public License as |
| 7 | published by the Free Software Foundation; either version 2.1 of the |
| 8 | License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; see the file COPYING.LIB. If |
| 17 | not, see <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <stdbool.h> |
| 20 | |
| 21 | #define TUNABLE_NAMESPACE malloc |
| 22 | #include <elf/dl-tunables.h> |
| 23 | |
| 24 | /* Compile-time constants. */ |
| 25 | |
| 26 | #define HEAP_MIN_SIZE (32 * 1024) |
| 27 | #ifndef HEAP_MAX_SIZE |
| 28 | # ifdef DEFAULT_MMAP_THRESHOLD_MAX |
| 29 | # define HEAP_MAX_SIZE (2 * DEFAULT_MMAP_THRESHOLD_MAX) |
| 30 | # else |
| 31 | # define HEAP_MAX_SIZE (1024 * 1024) /* must be a power of two */ |
| 32 | # endif |
| 33 | #endif |
| 34 | |
| 35 | /* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps |
| 36 | that are dynamically created for multi-threaded programs. The |
| 37 | maximum size must be a power of two, for fast determination of |
| 38 | which heap belongs to a chunk. It should be much larger than the |
| 39 | mmap threshold, so that requests with a size just below that |
| 40 | threshold can be fulfilled without creating too many heaps. */ |
| 41 | |
| 42 | /* When huge pages are used to create new arenas, the maximum and minimum |
| 43 | size are based on the runtime defined huge page size. */ |
| 44 | |
| 45 | static inline size_t |
| 46 | heap_min_size (void) |
| 47 | { |
| 48 | return mp_.hp_pagesize == 0 ? HEAP_MIN_SIZE : mp_.hp_pagesize; |
| 49 | } |
| 50 | |
| 51 | static inline size_t |
| 52 | heap_max_size (void) |
| 53 | { |
| 54 | return mp_.hp_pagesize == 0 ? HEAP_MAX_SIZE : mp_.hp_pagesize * 4; |
| 55 | } |
| 56 | |
| 57 | /***************************************************************************/ |
| 58 | |
| 59 | #define top(ar_ptr) ((ar_ptr)->top) |
| 60 | |
| 61 | /* A heap is a single contiguous memory region holding (coalesceable) |
| 62 | malloc_chunks. It is allocated with mmap() and always starts at an |
| 63 | address aligned to HEAP_MAX_SIZE. */ |
| 64 | |
| 65 | typedef struct _heap_info |
| 66 | { |
| 67 | mstate ar_ptr; /* Arena for this heap. */ |
| 68 | struct _heap_info *prev; /* Previous heap. */ |
| 69 | size_t size; /* Current size in bytes. */ |
| 70 | size_t mprotect_size; /* Size in bytes that has been mprotected |
| 71 | PROT_READ|PROT_WRITE. */ |
| 72 | size_t pagesize; /* Page size used when allocating the arena. */ |
| 73 | /* Make sure the following data is properly aligned, particularly |
| 74 | that sizeof (heap_info) + 2 * SIZE_SZ is a multiple of |
| 75 | MALLOC_ALIGNMENT. */ |
| 76 | char pad[-3 * SIZE_SZ & MALLOC_ALIGN_MASK]; |
| 77 | } heap_info; |
| 78 | |
| 79 | /* Get a compile-time error if the heap_info padding is not correct |
| 80 | to make alignment work as expected in sYSMALLOc. */ |
| 81 | extern int sanity_check_heap_info_alignment[(sizeof (heap_info) |
| 82 | + 2 * SIZE_SZ) % MALLOC_ALIGNMENT |
| 83 | ? -1 : 1]; |
| 84 | |
| 85 | /* Thread specific data. */ |
| 86 | |
| 87 | static __thread mstate thread_arena attribute_tls_model_ie; |
| 88 | |
| 89 | /* Arena free list. free_list_lock synchronizes access to the |
| 90 | free_list variable below, and the next_free and attached_threads |
| 91 | members of struct malloc_state objects. No other locks must be |
| 92 | acquired after free_list_lock has been acquired. */ |
| 93 | |
| 94 | __libc_lock_define_initialized (static, free_list_lock); |
| 95 | #if IS_IN (libc) |
| 96 | static size_t narenas = 1; |
| 97 | #endif |
| 98 | static mstate free_list; |
| 99 | |
| 100 | /* list_lock prevents concurrent writes to the next member of struct |
| 101 | malloc_state objects. |
| 102 | |
| 103 | Read access to the next member is supposed to synchronize with the |
| 104 | atomic_write_barrier and the write to the next member in |
| 105 | _int_new_arena. This suffers from data races; see the FIXME |
| 106 | comments in _int_new_arena and reused_arena. |
| 107 | |
| 108 | list_lock also prevents concurrent forks. At the time list_lock is |
| 109 | acquired, no arena lock must have been acquired, but it is |
| 110 | permitted to acquire arena locks subsequently, while list_lock is |
| 111 | acquired. */ |
| 112 | __libc_lock_define_initialized (static, list_lock); |
| 113 | |
| 114 | /* Already initialized? */ |
| 115 | static bool __malloc_initialized = false; |
| 116 | |
| 117 | /**************************************************************************/ |
| 118 | |
| 119 | |
| 120 | /* arena_get() acquires an arena and locks the corresponding mutex. |
| 121 | First, try the one last locked successfully by this thread. (This |
| 122 | is the common case and handled with a macro for speed.) Then, loop |
| 123 | once over the circularly linked list of arenas. If no arena is |
| 124 | readily available, create a new one. In this latter case, `size' |
| 125 | is just a hint as to how much memory will be required immediately |
| 126 | in the new arena. */ |
| 127 | |
| 128 | #define arena_get(ptr, size) do { \ |
| 129 | ptr = thread_arena; \ |
| 130 | arena_lock (ptr, size); \ |
| 131 | } while (0) |
| 132 | |
| 133 | #define arena_lock(ptr, size) do { \ |
| 134 | if (ptr) \ |
| 135 | __libc_lock_lock (ptr->mutex); \ |
| 136 | else \ |
| 137 | ptr = arena_get2 ((size), NULL); \ |
| 138 | } while (0) |
| 139 | |
| 140 | /* find the heap and corresponding arena for a given ptr */ |
| 141 | |
| 142 | static inline heap_info * |
| 143 | heap_for_ptr (void *ptr) |
| 144 | { |
| 145 | size_t max_size = heap_max_size (); |
| 146 | return PTR_ALIGN_DOWN (ptr, max_size); |
| 147 | } |
| 148 | |
| 149 | static inline struct malloc_state * |
| 150 | arena_for_chunk (mchunkptr ptr) |
| 151 | { |
| 152 | return chunk_main_arena (ptr) ? &main_arena : heap_for_ptr (ptr)->ar_ptr; |
| 153 | } |
| 154 | |
| 155 | |
| 156 | /**************************************************************************/ |
| 157 | |
| 158 | /* atfork support. */ |
| 159 | |
| 160 | /* The following three functions are called around fork from a |
| 161 | multi-threaded process. We do not use the general fork handler |
| 162 | mechanism to make sure that our handlers are the last ones being |
| 163 | called, so that other fork handlers can use the malloc |
| 164 | subsystem. */ |
| 165 | |
| 166 | void |
| 167 | __malloc_fork_lock_parent (void) |
| 168 | { |
| 169 | if (!__malloc_initialized) |
| 170 | return; |
| 171 | |
| 172 | /* We do not acquire free_list_lock here because we completely |
| 173 | reconstruct free_list in __malloc_fork_unlock_child. */ |
| 174 | |
| 175 | __libc_lock_lock (list_lock); |
| 176 | |
| 177 | for (mstate ar_ptr = &main_arena;; ) |
| 178 | { |
| 179 | __libc_lock_lock (ar_ptr->mutex); |
| 180 | ar_ptr = ar_ptr->next; |
| 181 | if (ar_ptr == &main_arena) |
| 182 | break; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | void |
| 187 | __malloc_fork_unlock_parent (void) |
| 188 | { |
| 189 | if (!__malloc_initialized) |
| 190 | return; |
| 191 | |
| 192 | for (mstate ar_ptr = &main_arena;; ) |
| 193 | { |
| 194 | __libc_lock_unlock (ar_ptr->mutex); |
| 195 | ar_ptr = ar_ptr->next; |
| 196 | if (ar_ptr == &main_arena) |
| 197 | break; |
| 198 | } |
| 199 | __libc_lock_unlock (list_lock); |
| 200 | } |
| 201 | |
| 202 | void |
| 203 | __malloc_fork_unlock_child (void) |
| 204 | { |
| 205 | if (!__malloc_initialized) |
| 206 | return; |
| 207 | |
| 208 | /* Push all arenas to the free list, except thread_arena, which is |
| 209 | attached to the current thread. */ |
| 210 | __libc_lock_init (free_list_lock); |
| 211 | if (thread_arena != NULL) |
| 212 | thread_arena->attached_threads = 1; |
| 213 | free_list = NULL; |
| 214 | for (mstate ar_ptr = &main_arena;; ) |
| 215 | { |
| 216 | __libc_lock_init (ar_ptr->mutex); |
| 217 | if (ar_ptr != thread_arena) |
| 218 | { |
| 219 | /* This arena is no longer attached to any thread. */ |
| 220 | ar_ptr->attached_threads = 0; |
| 221 | ar_ptr->next_free = free_list; |
| 222 | free_list = ar_ptr; |
| 223 | } |
| 224 | ar_ptr = ar_ptr->next; |
| 225 | if (ar_ptr == &main_arena) |
| 226 | break; |
| 227 | } |
| 228 | |
| 229 | __libc_lock_init (list_lock); |
| 230 | } |
| 231 | |
| 232 | #define TUNABLE_CALLBACK_FNDECL(__name, __type) \ |
| 233 | static inline int do_ ## __name (__type value); \ |
| 234 | static void \ |
| 235 | TUNABLE_CALLBACK (__name) (tunable_val_t *valp) \ |
| 236 | { \ |
| 237 | __type value = (__type) (valp)->numval; \ |
| 238 | do_ ## __name (value); \ |
| 239 | } |
| 240 | |
| 241 | TUNABLE_CALLBACK_FNDECL (set_mmap_threshold, size_t) |
| 242 | TUNABLE_CALLBACK_FNDECL (set_mmaps_max, int32_t) |
| 243 | TUNABLE_CALLBACK_FNDECL (set_top_pad, size_t) |
| 244 | TUNABLE_CALLBACK_FNDECL (set_perturb_byte, int32_t) |
| 245 | TUNABLE_CALLBACK_FNDECL (set_trim_threshold, size_t) |
| 246 | TUNABLE_CALLBACK_FNDECL (set_arena_max, size_t) |
| 247 | TUNABLE_CALLBACK_FNDECL (set_arena_test, size_t) |
| 248 | #if USE_TCACHE |
| 249 | TUNABLE_CALLBACK_FNDECL (set_tcache_max, size_t) |
| 250 | TUNABLE_CALLBACK_FNDECL (set_tcache_count, size_t) |
| 251 | TUNABLE_CALLBACK_FNDECL (set_tcache_unsorted_limit, size_t) |
| 252 | #endif |
| 253 | TUNABLE_CALLBACK_FNDECL (set_mxfast, size_t) |
| 254 | TUNABLE_CALLBACK_FNDECL (set_hugetlb, size_t) |
| 255 | |
| 256 | #if USE_TCACHE |
| 257 | static void tcache_key_initialize (void); |
| 258 | #endif |
| 259 | |
| 260 | static void |
| 261 | ptmalloc_init (void) |
| 262 | { |
| 263 | if (__malloc_initialized) |
| 264 | return; |
| 265 | |
| 266 | __malloc_initialized = true; |
| 267 | |
| 268 | #if USE_TCACHE |
| 269 | tcache_key_initialize (); |
| 270 | #endif |
| 271 | |
| 272 | #ifdef USE_MTAG |
| 273 | if ((TUNABLE_GET_FULL (glibc, mem, tagging, int32_t, NULL) & 1) != 0) |
| 274 | { |
| 275 | /* If the tunable says that we should be using tagged memory |
| 276 | and that morecore does not support tagged regions, then |
| 277 | disable it. */ |
| 278 | if (__MTAG_SBRK_UNTAGGED) |
| 279 | __always_fail_morecore = true; |
| 280 | |
| 281 | mtag_enabled = true; |
| 282 | mtag_mmap_flags = __MTAG_MMAP_FLAGS; |
| 283 | } |
| 284 | #endif |
| 285 | |
| 286 | #if defined SHARED && IS_IN (libc) |
| 287 | /* In case this libc copy is in a non-default namespace, never use |
| 288 | brk. Likewise if dlopened from statically linked program. The |
| 289 | generic sbrk implementation also enforces this, but it is not |
| 290 | used on Hurd. */ |
| 291 | if (!__libc_initial) |
| 292 | __always_fail_morecore = true; |
| 293 | #endif |
| 294 | |
| 295 | thread_arena = &main_arena; |
| 296 | |
| 297 | malloc_init_state (&main_arena); |
| 298 | |
| 299 | TUNABLE_GET (top_pad, size_t, TUNABLE_CALLBACK (set_top_pad)); |
| 300 | TUNABLE_GET (perturb, int32_t, TUNABLE_CALLBACK (set_perturb_byte)); |
| 301 | TUNABLE_GET (mmap_threshold, size_t, TUNABLE_CALLBACK (set_mmap_threshold)); |
| 302 | TUNABLE_GET (trim_threshold, size_t, TUNABLE_CALLBACK (set_trim_threshold)); |
| 303 | TUNABLE_GET (mmap_max, int32_t, TUNABLE_CALLBACK (set_mmaps_max)); |
| 304 | TUNABLE_GET (arena_max, size_t, TUNABLE_CALLBACK (set_arena_max)); |
| 305 | TUNABLE_GET (arena_test, size_t, TUNABLE_CALLBACK (set_arena_test)); |
| 306 | # if USE_TCACHE |
| 307 | TUNABLE_GET (tcache_max, size_t, TUNABLE_CALLBACK (set_tcache_max)); |
| 308 | TUNABLE_GET (tcache_count, size_t, TUNABLE_CALLBACK (set_tcache_count)); |
| 309 | TUNABLE_GET (tcache_unsorted_limit, size_t, |
| 310 | TUNABLE_CALLBACK (set_tcache_unsorted_limit)); |
| 311 | # endif |
| 312 | TUNABLE_GET (mxfast, size_t, TUNABLE_CALLBACK (set_mxfast)); |
| 313 | TUNABLE_GET (hugetlb, size_t, TUNABLE_CALLBACK (set_hugetlb)); |
| 314 | if (mp_.hp_pagesize > 0) |
| 315 | /* Force mmap for main arena instead of sbrk, so hugepages are explicitly |
| 316 | used. */ |
| 317 | __always_fail_morecore = true; |
| 318 | } |
| 319 | |
| 320 | /* Managing heaps and arenas (for concurrent threads) */ |
| 321 | |
| 322 | #if MALLOC_DEBUG > 1 |
| 323 | |
| 324 | /* Print the complete contents of a single heap to stderr. */ |
| 325 | |
| 326 | static void |
| 327 | dump_heap (heap_info *heap) |
| 328 | { |
| 329 | char *ptr; |
| 330 | mchunkptr p; |
| 331 | |
| 332 | fprintf (stderr, "Heap %p, size %10lx:\n" , heap, (long) heap->size); |
| 333 | ptr = (heap->ar_ptr != (mstate) (heap + 1)) ? |
| 334 | (char *) (heap + 1) : (char *) (heap + 1) + sizeof (struct malloc_state); |
| 335 | p = (mchunkptr) (((uintptr_t) ptr + MALLOC_ALIGN_MASK) & |
| 336 | ~MALLOC_ALIGN_MASK); |
| 337 | for (;; ) |
| 338 | { |
| 339 | fprintf (stderr, "chunk %p size %10lx" , p, (long) chunksize_nomask(p)); |
| 340 | if (p == top (heap->ar_ptr)) |
| 341 | { |
| 342 | fprintf (stderr, " (top)\n" ); |
| 343 | break; |
| 344 | } |
| 345 | else if (chunksize_nomask(p) == (0 | PREV_INUSE)) |
| 346 | { |
| 347 | fprintf (stderr, " (fence)\n" ); |
| 348 | break; |
| 349 | } |
| 350 | fprintf (stderr, "\n" ); |
| 351 | p = next_chunk (p); |
| 352 | } |
| 353 | } |
| 354 | #endif /* MALLOC_DEBUG > 1 */ |
| 355 | |
| 356 | /* If consecutive mmap (0, HEAP_MAX_SIZE << 1, ...) calls return decreasing |
| 357 | addresses as opposed to increasing, new_heap would badly fragment the |
| 358 | address space. In that case remember the second HEAP_MAX_SIZE part |
| 359 | aligned to HEAP_MAX_SIZE from last mmap (0, HEAP_MAX_SIZE << 1, ...) |
| 360 | call (if it is already aligned) and try to reuse it next time. We need |
| 361 | no locking for it, as kernel ensures the atomicity for us - worst case |
| 362 | we'll call mmap (addr, HEAP_MAX_SIZE, ...) for some value of addr in |
| 363 | multiple threads, but only one will succeed. */ |
| 364 | static char *aligned_heap_area; |
| 365 | |
| 366 | /* Create a new heap. size is automatically rounded up to a multiple |
| 367 | of the page size. */ |
| 368 | |
| 369 | static heap_info * |
| 370 | alloc_new_heap (size_t size, size_t top_pad, size_t pagesize, |
| 371 | int mmap_flags) |
| 372 | { |
| 373 | char *p1, *p2; |
| 374 | unsigned long ul; |
| 375 | heap_info *h; |
| 376 | size_t min_size = heap_min_size (); |
| 377 | size_t max_size = heap_max_size (); |
| 378 | |
| 379 | if (size + top_pad < min_size) |
| 380 | size = min_size; |
| 381 | else if (size + top_pad <= max_size) |
| 382 | size += top_pad; |
| 383 | else if (size > max_size) |
| 384 | return 0; |
| 385 | else |
| 386 | size = max_size; |
| 387 | size = ALIGN_UP (size, pagesize); |
| 388 | |
| 389 | /* A memory region aligned to a multiple of max_size is needed. |
| 390 | No swap space needs to be reserved for the following large |
| 391 | mapping (on Linux, this is the case for all non-writable mappings |
| 392 | anyway). */ |
| 393 | p2 = MAP_FAILED; |
| 394 | if (aligned_heap_area) |
| 395 | { |
| 396 | p2 = (char *) MMAP (aligned_heap_area, max_size, PROT_NONE, mmap_flags); |
| 397 | aligned_heap_area = NULL; |
| 398 | if (p2 != MAP_FAILED && ((unsigned long) p2 & (max_size - 1))) |
| 399 | { |
| 400 | __munmap (p2, max_size); |
| 401 | p2 = MAP_FAILED; |
| 402 | } |
| 403 | } |
| 404 | if (p2 == MAP_FAILED) |
| 405 | { |
| 406 | p1 = (char *) MMAP (0, max_size << 1, PROT_NONE, mmap_flags); |
| 407 | if (p1 != MAP_FAILED) |
| 408 | { |
| 409 | p2 = (char *) (((uintptr_t) p1 + (max_size - 1)) |
| 410 | & ~(max_size - 1)); |
| 411 | ul = p2 - p1; |
| 412 | if (ul) |
| 413 | __munmap (p1, ul); |
| 414 | else |
| 415 | aligned_heap_area = p2 + max_size; |
| 416 | __munmap (p2 + max_size, max_size - ul); |
| 417 | } |
| 418 | else |
| 419 | { |
| 420 | /* Try to take the chance that an allocation of only max_size |
| 421 | is already aligned. */ |
| 422 | p2 = (char *) MMAP (0, max_size, PROT_NONE, mmap_flags); |
| 423 | if (p2 == MAP_FAILED) |
| 424 | return 0; |
| 425 | |
| 426 | if ((unsigned long) p2 & (max_size - 1)) |
| 427 | { |
| 428 | __munmap (p2, max_size); |
| 429 | return 0; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | if (__mprotect (p2, size, mtag_mmap_flags | PROT_READ | PROT_WRITE) != 0) |
| 434 | { |
| 435 | __munmap (p2, max_size); |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | madvise_thp (p2, size); |
| 440 | |
| 441 | h = (heap_info *) p2; |
| 442 | h->size = size; |
| 443 | h->mprotect_size = size; |
| 444 | h->pagesize = pagesize; |
| 445 | LIBC_PROBE (memory_heap_new, 2, h, h->size); |
| 446 | return h; |
| 447 | } |
| 448 | |
| 449 | static heap_info * |
| 450 | new_heap (size_t size, size_t top_pad) |
| 451 | { |
| 452 | if (__glibc_unlikely (mp_.hp_pagesize != 0)) |
| 453 | { |
| 454 | heap_info *h = alloc_new_heap (size, top_pad, mp_.hp_pagesize, |
| 455 | mp_.hp_flags); |
| 456 | if (h != NULL) |
| 457 | return h; |
| 458 | } |
| 459 | return alloc_new_heap (size, top_pad, GLRO (dl_pagesize), 0); |
| 460 | } |
| 461 | |
| 462 | /* Grow a heap. size is automatically rounded up to a |
| 463 | multiple of the page size. */ |
| 464 | |
| 465 | static int |
| 466 | grow_heap (heap_info *h, long diff) |
| 467 | { |
| 468 | size_t pagesize = h->pagesize; |
| 469 | size_t max_size = heap_max_size (); |
| 470 | long new_size; |
| 471 | |
| 472 | diff = ALIGN_UP (diff, pagesize); |
| 473 | new_size = (long) h->size + diff; |
| 474 | if ((unsigned long) new_size > (unsigned long) max_size) |
| 475 | return -1; |
| 476 | |
| 477 | if ((unsigned long) new_size > h->mprotect_size) |
| 478 | { |
| 479 | if (__mprotect ((char *) h + h->mprotect_size, |
| 480 | (unsigned long) new_size - h->mprotect_size, |
| 481 | mtag_mmap_flags | PROT_READ | PROT_WRITE) != 0) |
| 482 | return -2; |
| 483 | |
| 484 | h->mprotect_size = new_size; |
| 485 | } |
| 486 | |
| 487 | h->size = new_size; |
| 488 | LIBC_PROBE (memory_heap_more, 2, h, h->size); |
| 489 | return 0; |
| 490 | } |
| 491 | |
| 492 | /* Shrink a heap. */ |
| 493 | |
| 494 | static int |
| 495 | shrink_heap (heap_info *h, long diff) |
| 496 | { |
| 497 | long new_size; |
| 498 | |
| 499 | new_size = (long) h->size - diff; |
| 500 | if (new_size < (long) sizeof (*h)) |
| 501 | return -1; |
| 502 | |
| 503 | /* Try to re-map the extra heap space freshly to save memory, and make it |
| 504 | inaccessible. See malloc-sysdep.h to know when this is true. */ |
| 505 | if (__glibc_unlikely (check_may_shrink_heap ())) |
| 506 | { |
| 507 | if ((char *) MMAP ((char *) h + new_size, diff, PROT_NONE, |
| 508 | MAP_FIXED) == (char *) MAP_FAILED) |
| 509 | return -2; |
| 510 | |
| 511 | h->mprotect_size = new_size; |
| 512 | } |
| 513 | else |
| 514 | __madvise ((char *) h + new_size, diff, MADV_DONTNEED); |
| 515 | /*fprintf(stderr, "shrink %p %08lx\n", h, new_size);*/ |
| 516 | |
| 517 | h->size = new_size; |
| 518 | LIBC_PROBE (memory_heap_less, 2, h, h->size); |
| 519 | return 0; |
| 520 | } |
| 521 | |
| 522 | /* Delete a heap. */ |
| 523 | |
| 524 | static int |
| 525 | heap_trim (heap_info *heap, size_t pad) |
| 526 | { |
| 527 | mstate ar_ptr = heap->ar_ptr; |
| 528 | mchunkptr top_chunk = top (ar_ptr), p; |
| 529 | heap_info *prev_heap; |
| 530 | long new_size, top_size, top_area, , prev_size, misalign; |
| 531 | size_t max_size = heap_max_size (); |
| 532 | |
| 533 | /* Can this heap go away completely? */ |
| 534 | while (top_chunk == chunk_at_offset (heap, sizeof (*heap))) |
| 535 | { |
| 536 | prev_heap = heap->prev; |
| 537 | prev_size = prev_heap->size - (MINSIZE - 2 * SIZE_SZ); |
| 538 | p = chunk_at_offset (prev_heap, prev_size); |
| 539 | /* fencepost must be properly aligned. */ |
| 540 | misalign = ((long) p) & MALLOC_ALIGN_MASK; |
| 541 | p = chunk_at_offset (prev_heap, prev_size - misalign); |
| 542 | assert (chunksize_nomask (p) == (0 | PREV_INUSE)); /* must be fencepost */ |
| 543 | p = prev_chunk (p); |
| 544 | new_size = chunksize (p) + (MINSIZE - 2 * SIZE_SZ) + misalign; |
| 545 | assert (new_size > 0 && new_size < (long) (2 * MINSIZE)); |
| 546 | if (!prev_inuse (p)) |
| 547 | new_size += prev_size (p); |
| 548 | assert (new_size > 0 && new_size < max_size); |
| 549 | if (new_size + (max_size - prev_heap->size) < pad + MINSIZE |
| 550 | + heap->pagesize) |
| 551 | break; |
| 552 | ar_ptr->system_mem -= heap->size; |
| 553 | LIBC_PROBE (memory_heap_free, 2, heap, heap->size); |
| 554 | if ((char *) heap + max_size == aligned_heap_area) |
| 555 | aligned_heap_area = NULL; |
| 556 | __munmap (heap, max_size); |
| 557 | heap = prev_heap; |
| 558 | if (!prev_inuse (p)) /* consolidate backward */ |
| 559 | { |
| 560 | p = prev_chunk (p); |
| 561 | unlink_chunk (ar_ptr, p); |
| 562 | } |
| 563 | assert (((unsigned long) ((char *) p + new_size) & (heap->pagesize - 1)) |
| 564 | == 0); |
| 565 | assert (((char *) p + new_size) == ((char *) heap + heap->size)); |
| 566 | top (ar_ptr) = top_chunk = p; |
| 567 | set_head (top_chunk, new_size | PREV_INUSE); |
| 568 | /*check_chunk(ar_ptr, top_chunk);*/ |
| 569 | } |
| 570 | |
| 571 | /* Uses similar logic for per-thread arenas as the main arena with systrim |
| 572 | and _int_free by preserving the top pad and rounding down to the nearest |
| 573 | page. */ |
| 574 | top_size = chunksize (top_chunk); |
| 575 | if ((unsigned long)(top_size) < |
| 576 | (unsigned long)(mp_.trim_threshold)) |
| 577 | return 0; |
| 578 | |
| 579 | top_area = top_size - MINSIZE - 1; |
| 580 | if (top_area < 0 || (size_t) top_area <= pad) |
| 581 | return 0; |
| 582 | |
| 583 | /* Release in pagesize units and round down to the nearest page. */ |
| 584 | extra = ALIGN_DOWN(top_area - pad, heap->pagesize); |
| 585 | if (extra == 0) |
| 586 | return 0; |
| 587 | |
| 588 | /* Try to shrink. */ |
| 589 | if (shrink_heap (heap, extra) != 0) |
| 590 | return 0; |
| 591 | |
| 592 | ar_ptr->system_mem -= extra; |
| 593 | |
| 594 | /* Success. Adjust top accordingly. */ |
| 595 | set_head (top_chunk, (top_size - extra) | PREV_INUSE); |
| 596 | /*check_chunk(ar_ptr, top_chunk);*/ |
| 597 | return 1; |
| 598 | } |
| 599 | |
| 600 | /* Create a new arena with initial size "size". */ |
| 601 | |
| 602 | #if IS_IN (libc) |
| 603 | /* If REPLACED_ARENA is not NULL, detach it from this thread. Must be |
| 604 | called while free_list_lock is held. */ |
| 605 | static void |
| 606 | detach_arena (mstate replaced_arena) |
| 607 | { |
| 608 | if (replaced_arena != NULL) |
| 609 | { |
| 610 | assert (replaced_arena->attached_threads > 0); |
| 611 | /* The current implementation only detaches from main_arena in |
| 612 | case of allocation failure. This means that it is likely not |
| 613 | beneficial to put the arena on free_list even if the |
| 614 | reference count reaches zero. */ |
| 615 | --replaced_arena->attached_threads; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | static mstate |
| 620 | _int_new_arena (size_t size) |
| 621 | { |
| 622 | mstate a; |
| 623 | heap_info *h; |
| 624 | char *ptr; |
| 625 | unsigned long misalign; |
| 626 | |
| 627 | h = new_heap (size + (sizeof (*h) + sizeof (*a) + MALLOC_ALIGNMENT), |
| 628 | mp_.top_pad); |
| 629 | if (!h) |
| 630 | { |
| 631 | /* Maybe size is too large to fit in a single heap. So, just try |
| 632 | to create a minimally-sized arena and let _int_malloc() attempt |
| 633 | to deal with the large request via mmap_chunk(). */ |
| 634 | h = new_heap (sizeof (*h) + sizeof (*a) + MALLOC_ALIGNMENT, mp_.top_pad); |
| 635 | if (!h) |
| 636 | return 0; |
| 637 | } |
| 638 | a = h->ar_ptr = (mstate) (h + 1); |
| 639 | malloc_init_state (a); |
| 640 | a->attached_threads = 1; |
| 641 | /*a->next = NULL;*/ |
| 642 | a->system_mem = a->max_system_mem = h->size; |
| 643 | |
| 644 | /* Set up the top chunk, with proper alignment. */ |
| 645 | ptr = (char *) (a + 1); |
| 646 | misalign = (uintptr_t) chunk2mem (ptr) & MALLOC_ALIGN_MASK; |
| 647 | if (misalign > 0) |
| 648 | ptr += MALLOC_ALIGNMENT - misalign; |
| 649 | top (a) = (mchunkptr) ptr; |
| 650 | set_head (top (a), (((char *) h + h->size) - ptr) | PREV_INUSE); |
| 651 | |
| 652 | LIBC_PROBE (memory_arena_new, 2, a, size); |
| 653 | mstate replaced_arena = thread_arena; |
| 654 | thread_arena = a; |
| 655 | __libc_lock_init (a->mutex); |
| 656 | |
| 657 | __libc_lock_lock (list_lock); |
| 658 | |
| 659 | /* Add the new arena to the global list. */ |
| 660 | a->next = main_arena.next; |
| 661 | /* FIXME: The barrier is an attempt to synchronize with read access |
| 662 | in reused_arena, which does not acquire list_lock while |
| 663 | traversing the list. */ |
| 664 | atomic_write_barrier (); |
| 665 | main_arena.next = a; |
| 666 | |
| 667 | __libc_lock_unlock (list_lock); |
| 668 | |
| 669 | __libc_lock_lock (free_list_lock); |
| 670 | detach_arena (replaced_arena); |
| 671 | __libc_lock_unlock (free_list_lock); |
| 672 | |
| 673 | /* Lock this arena. NB: Another thread may have been attached to |
| 674 | this arena because the arena is now accessible from the |
| 675 | main_arena.next list and could have been picked by reused_arena. |
| 676 | This can only happen for the last arena created (before the arena |
| 677 | limit is reached). At this point, some arena has to be attached |
| 678 | to two threads. We could acquire the arena lock before list_lock |
| 679 | to make it less likely that reused_arena picks this new arena, |
| 680 | but this could result in a deadlock with |
| 681 | __malloc_fork_lock_parent. */ |
| 682 | |
| 683 | __libc_lock_lock (a->mutex); |
| 684 | |
| 685 | return a; |
| 686 | } |
| 687 | |
| 688 | |
| 689 | /* Remove an arena from free_list. */ |
| 690 | static mstate |
| 691 | get_free_list (void) |
| 692 | { |
| 693 | mstate replaced_arena = thread_arena; |
| 694 | mstate result = free_list; |
| 695 | if (result != NULL) |
| 696 | { |
| 697 | __libc_lock_lock (free_list_lock); |
| 698 | result = free_list; |
| 699 | if (result != NULL) |
| 700 | { |
| 701 | free_list = result->next_free; |
| 702 | |
| 703 | /* The arena will be attached to this thread. */ |
| 704 | assert (result->attached_threads == 0); |
| 705 | result->attached_threads = 1; |
| 706 | |
| 707 | detach_arena (replaced_arena); |
| 708 | } |
| 709 | __libc_lock_unlock (free_list_lock); |
| 710 | |
| 711 | if (result != NULL) |
| 712 | { |
| 713 | LIBC_PROBE (memory_arena_reuse_free_list, 1, result); |
| 714 | __libc_lock_lock (result->mutex); |
| 715 | thread_arena = result; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | return result; |
| 720 | } |
| 721 | |
| 722 | /* Remove the arena from the free list (if it is present). |
| 723 | free_list_lock must have been acquired by the caller. */ |
| 724 | static void |
| 725 | remove_from_free_list (mstate arena) |
| 726 | { |
| 727 | mstate *previous = &free_list; |
| 728 | for (mstate p = free_list; p != NULL; p = p->next_free) |
| 729 | { |
| 730 | assert (p->attached_threads == 0); |
| 731 | if (p == arena) |
| 732 | { |
| 733 | /* Remove the requested arena from the list. */ |
| 734 | *previous = p->next_free; |
| 735 | break; |
| 736 | } |
| 737 | else |
| 738 | previous = &p->next_free; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /* Lock and return an arena that can be reused for memory allocation. |
| 743 | Avoid AVOID_ARENA as we have already failed to allocate memory in |
| 744 | it and it is currently locked. */ |
| 745 | static mstate |
| 746 | reused_arena (mstate avoid_arena) |
| 747 | { |
| 748 | mstate result; |
| 749 | /* FIXME: Access to next_to_use suffers from data races. */ |
| 750 | static mstate next_to_use; |
| 751 | if (next_to_use == NULL) |
| 752 | next_to_use = &main_arena; |
| 753 | |
| 754 | /* Iterate over all arenas (including those linked from |
| 755 | free_list). */ |
| 756 | result = next_to_use; |
| 757 | do |
| 758 | { |
| 759 | if (!__libc_lock_trylock (result->mutex)) |
| 760 | goto out; |
| 761 | |
| 762 | /* FIXME: This is a data race, see _int_new_arena. */ |
| 763 | result = result->next; |
| 764 | } |
| 765 | while (result != next_to_use); |
| 766 | |
| 767 | /* Avoid AVOID_ARENA as we have already failed to allocate memory |
| 768 | in that arena and it is currently locked. */ |
| 769 | if (result == avoid_arena) |
| 770 | result = result->next; |
| 771 | |
| 772 | /* No arena available without contention. Wait for the next in line. */ |
| 773 | LIBC_PROBE (memory_arena_reuse_wait, 3, &result->mutex, result, avoid_arena); |
| 774 | __libc_lock_lock (result->mutex); |
| 775 | |
| 776 | out: |
| 777 | /* Attach the arena to the current thread. */ |
| 778 | { |
| 779 | /* Update the arena thread attachment counters. */ |
| 780 | mstate replaced_arena = thread_arena; |
| 781 | __libc_lock_lock (free_list_lock); |
| 782 | detach_arena (replaced_arena); |
| 783 | |
| 784 | /* We may have picked up an arena on the free list. We need to |
| 785 | preserve the invariant that no arena on the free list has a |
| 786 | positive attached_threads counter (otherwise, |
| 787 | arena_thread_freeres cannot use the counter to determine if the |
| 788 | arena needs to be put on the free list). We unconditionally |
| 789 | remove the selected arena from the free list. The caller of |
| 790 | reused_arena checked the free list and observed it to be empty, |
| 791 | so the list is very short. */ |
| 792 | remove_from_free_list (result); |
| 793 | |
| 794 | ++result->attached_threads; |
| 795 | |
| 796 | __libc_lock_unlock (free_list_lock); |
| 797 | } |
| 798 | |
| 799 | LIBC_PROBE (memory_arena_reuse, 2, result, avoid_arena); |
| 800 | thread_arena = result; |
| 801 | next_to_use = result->next; |
| 802 | |
| 803 | return result; |
| 804 | } |
| 805 | |
| 806 | static mstate |
| 807 | arena_get2 (size_t size, mstate avoid_arena) |
| 808 | { |
| 809 | mstate a; |
| 810 | |
| 811 | static size_t narenas_limit; |
| 812 | |
| 813 | a = get_free_list (); |
| 814 | if (a == NULL) |
| 815 | { |
| 816 | /* Nothing immediately available, so generate a new arena. */ |
| 817 | if (narenas_limit == 0) |
| 818 | { |
| 819 | if (mp_.arena_max != 0) |
| 820 | narenas_limit = mp_.arena_max; |
| 821 | else if (narenas > mp_.arena_test) |
| 822 | { |
| 823 | int n = __get_nprocs_sched (); |
| 824 | |
| 825 | if (n >= 1) |
| 826 | narenas_limit = NARENAS_FROM_NCORES (n); |
| 827 | else |
| 828 | /* We have no information about the system. Assume two |
| 829 | cores. */ |
| 830 | narenas_limit = NARENAS_FROM_NCORES (2); |
| 831 | } |
| 832 | } |
| 833 | repeat:; |
| 834 | size_t n = narenas; |
| 835 | /* NB: the following depends on the fact that (size_t)0 - 1 is a |
| 836 | very large number and that the underflow is OK. If arena_max |
| 837 | is set the value of arena_test is irrelevant. If arena_test |
| 838 | is set but narenas is not yet larger or equal to arena_test |
| 839 | narenas_limit is 0. There is no possibility for narenas to |
| 840 | be too big for the test to always fail since there is not |
| 841 | enough address space to create that many arenas. */ |
| 842 | if (__glibc_unlikely (n <= narenas_limit - 1)) |
| 843 | { |
| 844 | if (catomic_compare_and_exchange_bool_acq (&narenas, n + 1, n)) |
| 845 | goto repeat; |
| 846 | a = _int_new_arena (size); |
| 847 | if (__glibc_unlikely (a == NULL)) |
| 848 | catomic_decrement (&narenas); |
| 849 | } |
| 850 | else |
| 851 | a = reused_arena (avoid_arena); |
| 852 | } |
| 853 | return a; |
| 854 | } |
| 855 | |
| 856 | /* If we don't have the main arena, then maybe the failure is due to running |
| 857 | out of mmapped areas, so we can try allocating on the main arena. |
| 858 | Otherwise, it is likely that sbrk() has failed and there is still a chance |
| 859 | to mmap(), so try one of the other arenas. */ |
| 860 | static mstate |
| 861 | arena_get_retry (mstate ar_ptr, size_t bytes) |
| 862 | { |
| 863 | LIBC_PROBE (memory_arena_retry, 2, bytes, ar_ptr); |
| 864 | if (ar_ptr != &main_arena) |
| 865 | { |
| 866 | __libc_lock_unlock (ar_ptr->mutex); |
| 867 | ar_ptr = &main_arena; |
| 868 | __libc_lock_lock (ar_ptr->mutex); |
| 869 | } |
| 870 | else |
| 871 | { |
| 872 | __libc_lock_unlock (ar_ptr->mutex); |
| 873 | ar_ptr = arena_get2 (bytes, ar_ptr); |
| 874 | } |
| 875 | |
| 876 | return ar_ptr; |
| 877 | } |
| 878 | #endif |
| 879 | |
| 880 | void |
| 881 | __malloc_arena_thread_freeres (void) |
| 882 | { |
| 883 | /* Shut down the thread cache first. This could deallocate data for |
| 884 | the thread arena, so do this before we put the arena on the free |
| 885 | list. */ |
| 886 | tcache_thread_shutdown (); |
| 887 | |
| 888 | mstate a = thread_arena; |
| 889 | thread_arena = NULL; |
| 890 | |
| 891 | if (a != NULL) |
| 892 | { |
| 893 | __libc_lock_lock (free_list_lock); |
| 894 | /* If this was the last attached thread for this arena, put the |
| 895 | arena on the free list. */ |
| 896 | assert (a->attached_threads > 0); |
| 897 | if (--a->attached_threads == 0) |
| 898 | { |
| 899 | a->next_free = free_list; |
| 900 | free_list = a; |
| 901 | } |
| 902 | __libc_lock_unlock (free_list_lock); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * Local variables: |
| 908 | * c-basic-offset: 2 |
| 909 | * End: |
| 910 | */ |
| 911 | |