1/* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2023 Free Software Foundation, Inc.
3 Copyright The GNU Toolchain Authors.
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If
18 not, see <https://www.gnu.org/licenses/>. */
19
20/*
21 This is a version (aka ptmalloc2) of malloc/free/realloc written by
22 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
23
24 There have been substantial changes made after the integration into
25 glibc in all parts of the code. Do not look for much commonality
26 with the ptmalloc2 version.
27
28* Version ptmalloc2-20011215
29 based on:
30 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
31
32* Quickstart
33
34 In order to compile this implementation, a Makefile is provided with
35 the ptmalloc2 distribution, which has pre-defined targets for some
36 popular systems (e.g. "make posix" for Posix threads). All that is
37 typically required with regard to compiler flags is the selection of
38 the thread package via defining one out of USE_PTHREADS, USE_THR or
39 USE_SPROC. Check the thread-m.h file for what effects this has.
40 Many/most systems will additionally require USE_TSD_DATA_HACK to be
41 defined, so this is the default for "make posix".
42
43* Why use this malloc?
44
45 This is not the fastest, most space-conserving, most portable, or
46 most tunable malloc ever written. However it is among the fastest
47 while also being among the most space-conserving, portable and tunable.
48 Consistent balance across these factors results in a good general-purpose
49 allocator for malloc-intensive programs.
50
51 The main properties of the algorithms are:
52 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
53 with ties normally decided via FIFO (i.e. least recently used).
54 * For small (<= 64 bytes by default) requests, it is a caching
55 allocator, that maintains pools of quickly recycled chunks.
56 * In between, and for combinations of large and small requests, it does
57 the best it can trying to meet both goals at once.
58 * For very large requests (>= 128KB by default), it relies on system
59 memory mapping facilities, if supported.
60
61 For a longer but slightly out of date high-level description, see
62 http://gee.cs.oswego.edu/dl/html/malloc.html
63
64 You may already by default be using a C library containing a malloc
65 that is based on some version of this malloc (for example in
66 linux). You might still want to use the one in this file in order to
67 customize settings or to avoid overheads associated with library
68 versions.
69
70* Contents, described in more detail in "description of public routines" below.
71
72 Standard (ANSI/SVID/...) functions:
73 malloc(size_t n);
74 calloc(size_t n_elements, size_t element_size);
75 free(void* p);
76 realloc(void* p, size_t n);
77 memalign(size_t alignment, size_t n);
78 valloc(size_t n);
79 mallinfo()
80 mallopt(int parameter_number, int parameter_value)
81
82 Additional functions:
83 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
84 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
85 pvalloc(size_t n);
86 malloc_trim(size_t pad);
87 malloc_usable_size(void* p);
88 malloc_stats();
89
90* Vital statistics:
91
92 Supported pointer representation: 4 or 8 bytes
93 Supported size_t representation: 4 or 8 bytes
94 Note that size_t is allowed to be 4 bytes even if pointers are 8.
95 You can adjust this by defining INTERNAL_SIZE_T
96
97 Alignment: 2 * sizeof(size_t) (default)
98 (i.e., 8 byte alignment with 4byte size_t). This suffices for
99 nearly all current machines and C compilers. However, you can
100 define MALLOC_ALIGNMENT to be wider than this if necessary.
101
102 Minimum overhead per allocated chunk: 4 or 8 bytes
103 Each malloced chunk has a hidden word of overhead holding size
104 and status information.
105
106 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
107 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
108
109 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
110 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
111 needed; 4 (8) for a trailing size field and 8 (16) bytes for
112 free list pointers. Thus, the minimum allocatable size is
113 16/24/32 bytes.
114
115 Even a request for zero bytes (i.e., malloc(0)) returns a
116 pointer to something of the minimum allocatable size.
117
118 The maximum overhead wastage (i.e., number of extra bytes
119 allocated than were requested in malloc) is less than or equal
120 to the minimum size, except for requests >= mmap_threshold that
121 are serviced via mmap(), where the worst case wastage is 2 *
122 sizeof(size_t) bytes plus the remainder from a system page (the
123 minimal mmap unit); typically 4096 or 8192 bytes.
124
125 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
126 8-byte size_t: 2^64 minus about two pages
127
128 It is assumed that (possibly signed) size_t values suffice to
129 represent chunk sizes. `Possibly signed' is due to the fact
130 that `size_t' may be defined on a system as either a signed or
131 an unsigned type. The ISO C standard says that it must be
132 unsigned, but a few systems are known not to adhere to this.
133 Additionally, even when size_t is unsigned, sbrk (which is by
134 default used to obtain memory from system) accepts signed
135 arguments, and may not be able to handle size_t-wide arguments
136 with negative sign bit. Generally, values that would
137 appear as negative after accounting for overhead and alignment
138 are supported only via mmap(), which does not have this
139 limitation.
140
141 Requests for sizes outside the allowed range will perform an optional
142 failure action and then return null. (Requests may also
143 also fail because a system is out of memory.)
144
145 Thread-safety: thread-safe
146
147 Compliance: I believe it is compliant with the 1997 Single Unix Specification
148 Also SVID/XPG, ANSI C, and probably others as well.
149
150* Synopsis of compile-time options:
151
152 People have reported using previous versions of this malloc on all
153 versions of Unix, sometimes by tweaking some of the defines
154 below. It has been tested most extensively on Solaris and Linux.
155 People also report using it in stand-alone embedded systems.
156
157 The implementation is in straight, hand-tuned ANSI C. It is not
158 at all modular. (Sorry!) It uses a lot of macros. To be at all
159 usable, this code should be compiled using an optimizing compiler
160 (for example gcc -O3) that can simplify expressions and control
161 paths. (FAQ: some macros import variables as arguments rather than
162 declare locals because people reported that some debuggers
163 otherwise get confused.)
164
165 OPTION DEFAULT VALUE
166
167 Compilation Environment options:
168
169 HAVE_MREMAP 0
170
171 Changing default word sizes:
172
173 INTERNAL_SIZE_T size_t
174
175 Configuration and functionality options:
176
177 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
178 USE_MALLOC_LOCK NOT defined
179 MALLOC_DEBUG NOT defined
180 REALLOC_ZERO_BYTES_FREES 1
181 TRIM_FASTBINS 0
182
183 Options for customizing MORECORE:
184
185 MORECORE sbrk
186 MORECORE_FAILURE -1
187 MORECORE_CONTIGUOUS 1
188 MORECORE_CANNOT_TRIM NOT defined
189 MORECORE_CLEARS 1
190 MMAP_AS_MORECORE_SIZE (1024 * 1024)
191
192 Tuning options that are also dynamically changeable via mallopt:
193
194 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
195 DEFAULT_TRIM_THRESHOLD 128 * 1024
196 DEFAULT_TOP_PAD 0
197 DEFAULT_MMAP_THRESHOLD 128 * 1024
198 DEFAULT_MMAP_MAX 65536
199
200 There are several other #defined constants and macros that you
201 probably don't want to touch unless you are extending or adapting malloc. */
202
203/*
204 void* is the pointer type that malloc should say it returns
205*/
206
207#ifndef void
208#define void void
209#endif /*void*/
210
211#include <stddef.h> /* for size_t */
212#include <stdlib.h> /* for getenv(), abort() */
213#include <unistd.h> /* for __libc_enable_secure */
214
215#include <atomic.h>
216#include <_itoa.h>
217#include <bits/wordsize.h>
218#include <sys/sysinfo.h>
219
220#include <ldsodefs.h>
221
222#include <unistd.h>
223#include <stdio.h> /* needed for malloc_stats */
224#include <errno.h>
225#include <assert.h>
226
227#include <shlib-compat.h>
228
229/* For uintptr_t. */
230#include <stdint.h>
231
232/* For va_arg, va_start, va_end. */
233#include <stdarg.h>
234
235/* For MIN, MAX, powerof2. */
236#include <sys/param.h>
237
238/* For ALIGN_UP et. al. */
239#include <libc-pointer-arith.h>
240
241/* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242#include <libc-diag.h>
243
244/* For memory tagging. */
245#include <libc-mtag.h>
246
247#include <malloc/malloc-internal.h>
248
249/* For SINGLE_THREAD_P. */
250#include <sysdep-cancel.h>
251
252#include <libc-internal.h>
253
254/* For tcache double-free check. */
255#include <random-bits.h>
256#include <sys/random.h>
257#include <not-cancel.h>
258
259/*
260 Debugging:
261
262 Because freed chunks may be overwritten with bookkeeping fields, this
263 malloc will often die when freed memory is overwritten by user
264 programs. This can be very effective (albeit in an annoying way)
265 in helping track down dangling pointers.
266
267 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
268 enabled that will catch more memory errors. You probably won't be
269 able to make much sense of the actual assertion errors, but they
270 should help you locate incorrectly overwritten memory. The checking
271 is fairly extensive, and will slow down execution
272 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
273 will attempt to check every non-mmapped allocated and free chunk in
274 the course of computing the summmaries. (By nature, mmapped regions
275 cannot be checked very much automatically.)
276
277 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
278 this code. The assertions in the check routines spell out in more
279 detail the assumptions and invariants underlying the algorithms.
280
281 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
282 checking that all accesses to malloced memory stay within their
283 bounds. However, there are several add-ons and adaptations of this
284 or other mallocs available that do this.
285*/
286
287#ifndef MALLOC_DEBUG
288#define MALLOC_DEBUG 0
289#endif
290
291#if USE_TCACHE
292/* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
293# define TCACHE_MAX_BINS 64
294# define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
295
296/* Only used to pre-fill the tunables. */
297# define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
298
299/* When "x" is from chunksize(). */
300# define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
301/* When "x" is a user-provided size. */
302# define usize2tidx(x) csize2tidx (request2size (x))
303
304/* With rounding and alignment, the bins are...
305 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
306 idx 1 bytes 25..40 or 13..20
307 idx 2 bytes 41..56 or 21..28
308 etc. */
309
310/* This is another arbitrary limit, which tunables can change. Each
311 tcache bin will hold at most this number of chunks. */
312# define TCACHE_FILL_COUNT 7
313
314/* Maximum chunks in tcache bins for tunables. This value must fit the range
315 of tcache->counts[] entries, else they may overflow. */
316# define MAX_TCACHE_COUNT UINT16_MAX
317#endif
318
319/* Safe-Linking:
320 Use randomness from ASLR (mmap_base) to protect single-linked lists
321 of Fast-Bins and TCache. That is, mask the "next" pointers of the
322 lists' chunks, and also perform allocation alignment checks on them.
323 This mechanism reduces the risk of pointer hijacking, as was done with
324 Safe-Unlinking in the double-linked lists of Small-Bins.
325 It assumes a minimum page size of 4096 bytes (12 bits). Systems with
326 larger pages provide less entropy, although the pointer mangling
327 still works. */
328#define PROTECT_PTR(pos, ptr) \
329 ((__typeof (ptr)) ((((size_t) pos) >> 12) ^ ((size_t) ptr)))
330#define REVEAL_PTR(ptr) PROTECT_PTR (&ptr, ptr)
331
332/*
333 The REALLOC_ZERO_BYTES_FREES macro controls the behavior of realloc (p, 0)
334 when p is nonnull. If the macro is nonzero, the realloc call returns NULL;
335 otherwise, the call returns what malloc (0) would. In either case,
336 p is freed. Glibc uses a nonzero REALLOC_ZERO_BYTES_FREES, which
337 implements common historical practice.
338
339 ISO C17 says the realloc call has implementation-defined behavior,
340 and it might not even free p.
341*/
342
343#ifndef REALLOC_ZERO_BYTES_FREES
344#define REALLOC_ZERO_BYTES_FREES 1
345#endif
346
347/*
348 TRIM_FASTBINS controls whether free() of a very small chunk can
349 immediately lead to trimming. Setting to true (1) can reduce memory
350 footprint, but will almost always slow down programs that use a lot
351 of small chunks.
352
353 Define this only if you are willing to give up some speed to more
354 aggressively reduce system-level memory footprint when releasing
355 memory in programs that use many small chunks. You can get
356 essentially the same effect by setting MXFAST to 0, but this can
357 lead to even greater slowdowns in programs using many small chunks.
358 TRIM_FASTBINS is an in-between compile-time option, that disables
359 only those chunks bordering topmost memory from being placed in
360 fastbins.
361*/
362
363#ifndef TRIM_FASTBINS
364#define TRIM_FASTBINS 0
365#endif
366
367/* Definition for getting more memory from the OS. */
368#include "morecore.c"
369
370#define MORECORE (*__glibc_morecore)
371#define MORECORE_FAILURE 0
372
373/* Memory tagging. */
374
375/* Some systems support the concept of tagging (sometimes known as
376 coloring) memory locations on a fine grained basis. Each memory
377 location is given a color (normally allocated randomly) and
378 pointers are also colored. When the pointer is dereferenced, the
379 pointer's color is checked against the memory's color and if they
380 differ the access is faulted (sometimes lazily).
381
382 We use this in glibc by maintaining a single color for the malloc
383 data structures that are interleaved with the user data and then
384 assigning separate colors for each block allocation handed out. In
385 this way simple buffer overruns will be rapidly detected. When
386 memory is freed, the memory is recolored back to the glibc default
387 so that simple use-after-free errors can also be detected.
388
389 If memory is reallocated the buffer is recolored even if the
390 address remains the same. This has a performance impact, but
391 guarantees that the old pointer cannot mistakenly be reused (code
392 that compares old against new will see a mismatch and will then
393 need to behave as though realloc moved the data to a new location).
394
395 Internal API for memory tagging support.
396
397 The aim is to keep the code for memory tagging support as close to
398 the normal APIs in glibc as possible, so that if tagging is not
399 enabled in the library, or is disabled at runtime then standard
400 operations can continue to be used. Support macros are used to do
401 this:
402
403 void *tag_new_zero_region (void *ptr, size_t size)
404
405 Allocates a new tag, colors the memory with that tag, zeros the
406 memory and returns a pointer that is correctly colored for that
407 location. The non-tagging version will simply call memset with 0.
408
409 void *tag_region (void *ptr, size_t size)
410
411 Color the region of memory pointed to by PTR and size SIZE with
412 the color of PTR. Returns the original pointer.
413
414 void *tag_new_usable (void *ptr)
415
416 Allocate a new random color and use it to color the user region of
417 a chunk; this may include data from the subsequent chunk's header
418 if tagging is sufficiently fine grained. Returns PTR suitably
419 recolored for accessing the memory there.
420
421 void *tag_at (void *ptr)
422
423 Read the current color of the memory at the address pointed to by
424 PTR (ignoring it's current color) and return PTR recolored to that
425 color. PTR must be valid address in all other respects. When
426 tagging is not enabled, it simply returns the original pointer.
427*/
428
429#ifdef USE_MTAG
430static bool mtag_enabled = false;
431static int mtag_mmap_flags = 0;
432#else
433# define mtag_enabled false
434# define mtag_mmap_flags 0
435#endif
436
437static __always_inline void *
438tag_region (void *ptr, size_t size)
439{
440 if (__glibc_unlikely (mtag_enabled))
441 return __libc_mtag_tag_region (ptr, size);
442 return ptr;
443}
444
445static __always_inline void *
446tag_new_zero_region (void *ptr, size_t size)
447{
448 if (__glibc_unlikely (mtag_enabled))
449 return __libc_mtag_tag_zero_region (__libc_mtag_new_tag (ptr), size);
450 return memset (ptr, 0, size);
451}
452
453/* Defined later. */
454static void *
455tag_new_usable (void *ptr);
456
457static __always_inline void *
458tag_at (void *ptr)
459{
460 if (__glibc_unlikely (mtag_enabled))
461 return __libc_mtag_address_get_tag (ptr);
462 return ptr;
463}
464
465#include <string.h>
466
467/*
468 MORECORE-related declarations. By default, rely on sbrk
469*/
470
471
472/*
473 MORECORE is the name of the routine to call to obtain more memory
474 from the system. See below for general guidance on writing
475 alternative MORECORE functions, as well as a version for WIN32 and a
476 sample version for pre-OSX macos.
477*/
478
479#ifndef MORECORE
480#define MORECORE sbrk
481#endif
482
483/*
484 MORECORE_FAILURE is the value returned upon failure of MORECORE
485 as well as mmap. Since it cannot be an otherwise valid memory address,
486 and must reflect values of standard sys calls, you probably ought not
487 try to redefine it.
488*/
489
490#ifndef MORECORE_FAILURE
491#define MORECORE_FAILURE (-1)
492#endif
493
494/*
495 If MORECORE_CONTIGUOUS is true, take advantage of fact that
496 consecutive calls to MORECORE with positive arguments always return
497 contiguous increasing addresses. This is true of unix sbrk. Even
498 if not defined, when regions happen to be contiguous, malloc will
499 permit allocations spanning regions obtained from different
500 calls. But defining this when applicable enables some stronger
501 consistency checks and space efficiencies.
502*/
503
504#ifndef MORECORE_CONTIGUOUS
505#define MORECORE_CONTIGUOUS 1
506#endif
507
508/*
509 Define MORECORE_CANNOT_TRIM if your version of MORECORE
510 cannot release space back to the system when given negative
511 arguments. This is generally necessary only if you are using
512 a hand-crafted MORECORE function that cannot handle negative arguments.
513*/
514
515/* #define MORECORE_CANNOT_TRIM */
516
517/* MORECORE_CLEARS (default 1)
518 The degree to which the routine mapped to MORECORE zeroes out
519 memory: never (0), only for newly allocated space (1) or always
520 (2). The distinction between (1) and (2) is necessary because on
521 some systems, if the application first decrements and then
522 increments the break value, the contents of the reallocated space
523 are unspecified.
524 */
525
526#ifndef MORECORE_CLEARS
527# define MORECORE_CLEARS 1
528#endif
529
530
531/*
532 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
533 sbrk fails, and mmap is used as a backup. The value must be a
534 multiple of page size. This backup strategy generally applies only
535 when systems have "holes" in address space, so sbrk cannot perform
536 contiguous expansion, but there is still space available on system.
537 On systems for which this is known to be useful (i.e. most linux
538 kernels), this occurs only when programs allocate huge amounts of
539 memory. Between this, and the fact that mmap regions tend to be
540 limited, the size should be large, to avoid too many mmap calls and
541 thus avoid running out of kernel resources. */
542
543#ifndef MMAP_AS_MORECORE_SIZE
544#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
545#endif
546
547/*
548 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
549 large blocks.
550*/
551
552#ifndef HAVE_MREMAP
553#define HAVE_MREMAP 0
554#endif
555
556/*
557 This version of malloc supports the standard SVID/XPG mallinfo
558 routine that returns a struct containing usage properties and
559 statistics. It should work on any SVID/XPG compliant system that has
560 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
561 install such a thing yourself, cut out the preliminary declarations
562 as described above and below and save them in a malloc.h file. But
563 there's no compelling reason to bother to do this.)
564
565 The main declaration needed is the mallinfo struct that is returned
566 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
567 bunch of fields that are not even meaningful in this version of
568 malloc. These fields are are instead filled by mallinfo() with
569 other numbers that might be of interest.
570*/
571
572
573/* ---------- description of public routines ------------ */
574
575#if IS_IN (libc)
576/*
577 malloc(size_t n)
578 Returns a pointer to a newly allocated chunk of at least n bytes, or null
579 if no space is available. Additionally, on failure, errno is
580 set to ENOMEM on ANSI C systems.
581
582 If n is zero, malloc returns a minimum-sized chunk. (The minimum
583 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
584 systems.) On most systems, size_t is an unsigned type, so calls
585 with negative arguments are interpreted as requests for huge amounts
586 of space, which will often fail. The maximum supported value of n
587 differs across systems, but is in all cases less than the maximum
588 representable value of a size_t.
589*/
590void* __libc_malloc(size_t);
591libc_hidden_proto (__libc_malloc)
592
593/*
594 free(void* p)
595 Releases the chunk of memory pointed to by p, that had been previously
596 allocated using malloc or a related routine such as realloc.
597 It has no effect if p is null. It can have arbitrary (i.e., bad!)
598 effects if p has already been freed.
599
600 Unless disabled (using mallopt), freeing very large spaces will
601 when possible, automatically trigger operations that give
602 back unused memory to the system, thus reducing program footprint.
603*/
604void __libc_free(void*);
605libc_hidden_proto (__libc_free)
606
607/*
608 calloc(size_t n_elements, size_t element_size);
609 Returns a pointer to n_elements * element_size bytes, with all locations
610 set to zero.
611*/
612void* __libc_calloc(size_t, size_t);
613
614/*
615 realloc(void* p, size_t n)
616 Returns a pointer to a chunk of size n that contains the same data
617 as does chunk p up to the minimum of (n, p's size) bytes, or null
618 if no space is available.
619
620 The returned pointer may or may not be the same as p. The algorithm
621 prefers extending p when possible, otherwise it employs the
622 equivalent of a malloc-copy-free sequence.
623
624 If p is null, realloc is equivalent to malloc.
625
626 If space is not available, realloc returns null, errno is set (if on
627 ANSI) and p is NOT freed.
628
629 if n is for fewer bytes than already held by p, the newly unused
630 space is lopped off and freed if possible. Unless the #define
631 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
632 zero (re)allocates a minimum-sized chunk.
633
634 Large chunks that were internally obtained via mmap will always be
635 grown using malloc-copy-free sequences unless the system supports
636 MREMAP (currently only linux).
637
638 The old unix realloc convention of allowing the last-free'd chunk
639 to be used as an argument to realloc is not supported.
640*/
641void* __libc_realloc(void*, size_t);
642libc_hidden_proto (__libc_realloc)
643
644/*
645 memalign(size_t alignment, size_t n);
646 Returns a pointer to a newly allocated chunk of n bytes, aligned
647 in accord with the alignment argument.
648
649 The alignment argument should be a power of two. If the argument is
650 not a power of two, the nearest greater power is used.
651 8-byte alignment is guaranteed by normal malloc calls, so don't
652 bother calling memalign with an argument of 8 or less.
653
654 Overreliance on memalign is a sure way to fragment space.
655*/
656void* __libc_memalign(size_t, size_t);
657libc_hidden_proto (__libc_memalign)
658
659/*
660 valloc(size_t n);
661 Equivalent to memalign(pagesize, n), where pagesize is the page
662 size of the system. If the pagesize is unknown, 4096 is used.
663*/
664void* __libc_valloc(size_t);
665
666
667
668/*
669 mallinfo()
670 Returns (by copy) a struct containing various summary statistics:
671
672 arena: current total non-mmapped bytes allocated from system
673 ordblks: the number of free chunks
674 smblks: the number of fastbin blocks (i.e., small chunks that
675 have been freed but not use resused or consolidated)
676 hblks: current number of mmapped regions
677 hblkhd: total bytes held in mmapped regions
678 usmblks: always 0
679 fsmblks: total bytes held in fastbin blocks
680 uordblks: current total allocated space (normal or mmapped)
681 fordblks: total free space
682 keepcost: the maximum number of bytes that could ideally be released
683 back to system via malloc_trim. ("ideally" means that
684 it ignores page restrictions etc.)
685
686 Because these fields are ints, but internal bookkeeping may
687 be kept as longs, the reported values may wrap around zero and
688 thus be inaccurate.
689*/
690struct mallinfo2 __libc_mallinfo2(void);
691libc_hidden_proto (__libc_mallinfo2)
692
693struct mallinfo __libc_mallinfo(void);
694
695
696/*
697 pvalloc(size_t n);
698 Equivalent to valloc(minimum-page-that-holds(n)), that is,
699 round up n to nearest pagesize.
700 */
701void* __libc_pvalloc(size_t);
702
703/*
704 malloc_trim(size_t pad);
705
706 If possible, gives memory back to the system (via negative
707 arguments to sbrk) if there is unused memory at the `high' end of
708 the malloc pool. You can call this after freeing large blocks of
709 memory to potentially reduce the system-level memory requirements
710 of a program. However, it cannot guarantee to reduce memory. Under
711 some allocation patterns, some large free blocks of memory will be
712 locked between two used chunks, so they cannot be given back to
713 the system.
714
715 The `pad' argument to malloc_trim represents the amount of free
716 trailing space to leave untrimmed. If this argument is zero,
717 only the minimum amount of memory to maintain internal data
718 structures will be left (one page or less). Non-zero arguments
719 can be supplied to maintain enough trailing space to service
720 future expected allocations without having to re-obtain memory
721 from the system.
722
723 Malloc_trim returns 1 if it actually released any memory, else 0.
724 On systems that do not support "negative sbrks", it will always
725 return 0.
726*/
727int __malloc_trim(size_t);
728
729/*
730 malloc_usable_size(void* p);
731
732 Returns the number of bytes you can actually use in
733 an allocated chunk, which may be more than you requested (although
734 often not) due to alignment and minimum size constraints.
735 You can use this many bytes without worrying about
736 overwriting other allocated objects. This is not a particularly great
737 programming practice. malloc_usable_size can be more useful in
738 debugging and assertions, for example:
739
740 p = malloc(n);
741 assert(malloc_usable_size(p) >= 256);
742
743*/
744size_t __malloc_usable_size(void*);
745
746/*
747 malloc_stats();
748 Prints on stderr the amount of space obtained from the system (both
749 via sbrk and mmap), the maximum amount (which may be more than
750 current if malloc_trim and/or munmap got called), and the current
751 number of bytes allocated via malloc (or realloc, etc) but not yet
752 freed. Note that this is the number of bytes allocated, not the
753 number requested. It will be larger than the number requested
754 because of alignment and bookkeeping overhead. Because it includes
755 alignment wastage as being in use, this figure may be greater than
756 zero even when no user-level chunks are allocated.
757
758 The reported current and maximum system memory can be inaccurate if
759 a program makes other calls to system memory allocation functions
760 (normally sbrk) outside of malloc.
761
762 malloc_stats prints only the most commonly interesting statistics.
763 More information can be obtained by calling mallinfo.
764
765*/
766void __malloc_stats(void);
767
768/*
769 posix_memalign(void **memptr, size_t alignment, size_t size);
770
771 POSIX wrapper like memalign(), checking for validity of size.
772*/
773int __posix_memalign(void **, size_t, size_t);
774#endif /* IS_IN (libc) */
775
776/*
777 mallopt(int parameter_number, int parameter_value)
778 Sets tunable parameters The format is to provide a
779 (parameter-number, parameter-value) pair. mallopt then sets the
780 corresponding parameter to the argument value if it can (i.e., so
781 long as the value is meaningful), and returns 1 if successful else
782 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
783 normally defined in malloc.h. Only one of these (M_MXFAST) is used
784 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
785 so setting them has no effect. But this malloc also supports four
786 other options in mallopt. See below for details. Briefly, supported
787 parameters are as follows (listed defaults are for "typical"
788 configurations).
789
790 Symbol param # default allowed param values
791 M_MXFAST 1 64 0-80 (0 disables fastbins)
792 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
793 M_TOP_PAD -2 0 any
794 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
795 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
796*/
797int __libc_mallopt(int, int);
798#if IS_IN (libc)
799libc_hidden_proto (__libc_mallopt)
800#endif
801
802/* mallopt tuning options */
803
804/*
805 M_MXFAST is the maximum request size used for "fastbins", special bins
806 that hold returned chunks without consolidating their spaces. This
807 enables future requests for chunks of the same size to be handled
808 very quickly, but can increase fragmentation, and thus increase the
809 overall memory footprint of a program.
810
811 This malloc manages fastbins very conservatively yet still
812 efficiently, so fragmentation is rarely a problem for values less
813 than or equal to the default. The maximum supported value of MXFAST
814 is 80. You wouldn't want it any higher than this anyway. Fastbins
815 are designed especially for use with many small structs, objects or
816 strings -- the default handles structs/objects/arrays with sizes up
817 to 8 4byte fields, or small strings representing words, tokens,
818 etc. Using fastbins for larger objects normally worsens
819 fragmentation without improving speed.
820
821 M_MXFAST is set in REQUEST size units. It is internally used in
822 chunksize units, which adds padding and alignment. You can reduce
823 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
824 algorithm to be a closer approximation of fifo-best-fit in all cases,
825 not just for larger requests, but will generally cause it to be
826 slower.
827*/
828
829
830/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
831#ifndef M_MXFAST
832#define M_MXFAST 1
833#endif
834
835#ifndef DEFAULT_MXFAST
836#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
837#endif
838
839
840/*
841 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
842 to keep before releasing via malloc_trim in free().
843
844 Automatic trimming is mainly useful in long-lived programs.
845 Because trimming via sbrk can be slow on some systems, and can
846 sometimes be wasteful (in cases where programs immediately
847 afterward allocate more large chunks) the value should be high
848 enough so that your overall system performance would improve by
849 releasing this much memory.
850
851 The trim threshold and the mmap control parameters (see below)
852 can be traded off with one another. Trimming and mmapping are
853 two different ways of releasing unused memory back to the
854 system. Between these two, it is often possible to keep
855 system-level demands of a long-lived program down to a bare
856 minimum. For example, in one test suite of sessions measuring
857 the XF86 X server on Linux, using a trim threshold of 128K and a
858 mmap threshold of 192K led to near-minimal long term resource
859 consumption.
860
861 If you are using this malloc in a long-lived program, it should
862 pay to experiment with these values. As a rough guide, you
863 might set to a value close to the average size of a process
864 (program) running on your system. Releasing this much memory
865 would allow such a process to run in memory. Generally, it's
866 worth it to tune for trimming rather tham memory mapping when a
867 program undergoes phases where several large chunks are
868 allocated and released in ways that can reuse each other's
869 storage, perhaps mixed with phases where there are no such
870 chunks at all. And in well-behaved long-lived programs,
871 controlling release of large blocks via trimming versus mapping
872 is usually faster.
873
874 However, in most programs, these parameters serve mainly as
875 protection against the system-level effects of carrying around
876 massive amounts of unneeded memory. Since frequent calls to
877 sbrk, mmap, and munmap otherwise degrade performance, the default
878 parameters are set to relatively high values that serve only as
879 safeguards.
880
881 The trim value It must be greater than page size to have any useful
882 effect. To disable trimming completely, you can set to
883 (unsigned long)(-1)
884
885 Trim settings interact with fastbin (MXFAST) settings: Unless
886 TRIM_FASTBINS is defined, automatic trimming never takes place upon
887 freeing a chunk with size less than or equal to MXFAST. Trimming is
888 instead delayed until subsequent freeing of larger chunks. However,
889 you can still force an attempted trim by calling malloc_trim.
890
891 Also, trimming is not generally possible in cases where
892 the main arena is obtained via mmap.
893
894 Note that the trick some people use of mallocing a huge space and
895 then freeing it at program startup, in an attempt to reserve system
896 memory, doesn't have the intended effect under automatic trimming,
897 since that memory will immediately be returned to the system.
898*/
899
900#define M_TRIM_THRESHOLD -1
901
902#ifndef DEFAULT_TRIM_THRESHOLD
903#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
904#endif
905
906/*
907 M_TOP_PAD is the amount of extra `padding' space to allocate or
908 retain whenever sbrk is called. It is used in two ways internally:
909
910 * When sbrk is called to extend the top of the arena to satisfy
911 a new malloc request, this much padding is added to the sbrk
912 request.
913
914 * When malloc_trim is called automatically from free(),
915 it is used as the `pad' argument.
916
917 In both cases, the actual amount of padding is rounded
918 so that the end of the arena is always a system page boundary.
919
920 The main reason for using padding is to avoid calling sbrk so
921 often. Having even a small pad greatly reduces the likelihood
922 that nearly every malloc request during program start-up (or
923 after trimming) will invoke sbrk, which needlessly wastes
924 time.
925
926 Automatic rounding-up to page-size units is normally sufficient
927 to avoid measurable overhead, so the default is 0. However, in
928 systems where sbrk is relatively slow, it can pay to increase
929 this value, at the expense of carrying around more memory than
930 the program needs.
931*/
932
933#define M_TOP_PAD -2
934
935#ifndef DEFAULT_TOP_PAD
936#define DEFAULT_TOP_PAD (0)
937#endif
938
939/*
940 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
941 adjusted MMAP_THRESHOLD.
942*/
943
944#ifndef DEFAULT_MMAP_THRESHOLD_MIN
945#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
946#endif
947
948#ifndef DEFAULT_MMAP_THRESHOLD_MAX
949 /* For 32-bit platforms we cannot increase the maximum mmap
950 threshold much because it is also the minimum value for the
951 maximum heap size and its alignment. Going above 512k (i.e., 1M
952 for new heaps) wastes too much address space. */
953# if __WORDSIZE == 32
954# define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
955# else
956# define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
957# endif
958#endif
959
960/*
961 M_MMAP_THRESHOLD is the request size threshold for using mmap()
962 to service a request. Requests of at least this size that cannot
963 be allocated using already-existing space will be serviced via mmap.
964 (If enough normal freed space already exists it is used instead.)
965
966 Using mmap segregates relatively large chunks of memory so that
967 they can be individually obtained and released from the host
968 system. A request serviced through mmap is never reused by any
969 other request (at least not directly; the system may just so
970 happen to remap successive requests to the same locations).
971
972 Segregating space in this way has the benefits that:
973
974 1. Mmapped space can ALWAYS be individually released back
975 to the system, which helps keep the system level memory
976 demands of a long-lived program low.
977 2. Mapped memory can never become `locked' between
978 other chunks, as can happen with normally allocated chunks, which
979 means that even trimming via malloc_trim would not release them.
980 3. On some systems with "holes" in address spaces, mmap can obtain
981 memory that sbrk cannot.
982
983 However, it has the disadvantages that:
984
985 1. The space cannot be reclaimed, consolidated, and then
986 used to service later requests, as happens with normal chunks.
987 2. It can lead to more wastage because of mmap page alignment
988 requirements
989 3. It causes malloc performance to be more dependent on host
990 system memory management support routines which may vary in
991 implementation quality and may impose arbitrary
992 limitations. Generally, servicing a request via normal
993 malloc steps is faster than going through a system's mmap.
994
995 The advantages of mmap nearly always outweigh disadvantages for
996 "large" chunks, but the value of "large" varies across systems. The
997 default is an empirically derived value that works well in most
998 systems.
999
1000
1001 Update in 2006:
1002 The above was written in 2001. Since then the world has changed a lot.
1003 Memory got bigger. Applications got bigger. The virtual address space
1004 layout in 32 bit linux changed.
1005
1006 In the new situation, brk() and mmap space is shared and there are no
1007 artificial limits on brk size imposed by the kernel. What is more,
1008 applications have started using transient allocations larger than the
1009 128Kb as was imagined in 2001.
1010
1011 The price for mmap is also high now; each time glibc mmaps from the
1012 kernel, the kernel is forced to zero out the memory it gives to the
1013 application. Zeroing memory is expensive and eats a lot of cache and
1014 memory bandwidth. This has nothing to do with the efficiency of the
1015 virtual memory system, by doing mmap the kernel just has no choice but
1016 to zero.
1017
1018 In 2001, the kernel had a maximum size for brk() which was about 800
1019 megabytes on 32 bit x86, at that point brk() would hit the first
1020 mmaped shared libaries and couldn't expand anymore. With current 2.6
1021 kernels, the VA space layout is different and brk() and mmap
1022 both can span the entire heap at will.
1023
1024 Rather than using a static threshold for the brk/mmap tradeoff,
1025 we are now using a simple dynamic one. The goal is still to avoid
1026 fragmentation. The old goals we kept are
1027 1) try to get the long lived large allocations to use mmap()
1028 2) really large allocations should always use mmap()
1029 and we're adding now:
1030 3) transient allocations should use brk() to avoid forcing the kernel
1031 having to zero memory over and over again
1032
1033 The implementation works with a sliding threshold, which is by default
1034 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1035 out at 128Kb as per the 2001 default.
1036
1037 This allows us to satisfy requirement 1) under the assumption that long
1038 lived allocations are made early in the process' lifespan, before it has
1039 started doing dynamic allocations of the same size (which will
1040 increase the threshold).
1041
1042 The upperbound on the threshold satisfies requirement 2)
1043
1044 The threshold goes up in value when the application frees memory that was
1045 allocated with the mmap allocator. The idea is that once the application
1046 starts freeing memory of a certain size, it's highly probable that this is
1047 a size the application uses for transient allocations. This estimator
1048 is there to satisfy the new third requirement.
1049
1050*/
1051
1052#define M_MMAP_THRESHOLD -3
1053
1054#ifndef DEFAULT_MMAP_THRESHOLD
1055#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1056#endif
1057
1058/*
1059 M_MMAP_MAX is the maximum number of requests to simultaneously
1060 service using mmap. This parameter exists because
1061 some systems have a limited number of internal tables for
1062 use by mmap, and using more than a few of them may degrade
1063 performance.
1064
1065 The default is set to a value that serves only as a safeguard.
1066 Setting to 0 disables use of mmap for servicing large requests.
1067*/
1068
1069#define M_MMAP_MAX -4
1070
1071#ifndef DEFAULT_MMAP_MAX
1072#define DEFAULT_MMAP_MAX (65536)
1073#endif
1074
1075#include <malloc.h>
1076
1077#ifndef RETURN_ADDRESS
1078#define RETURN_ADDRESS(X_) (NULL)
1079#endif
1080
1081/* Forward declarations. */
1082struct malloc_chunk;
1083typedef struct malloc_chunk* mchunkptr;
1084
1085/* Internal routines. */
1086
1087static void* _int_malloc(mstate, size_t);
1088static void _int_free(mstate, mchunkptr, int);
1089static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1090 INTERNAL_SIZE_T);
1091static void* _int_memalign(mstate, size_t, size_t);
1092#if IS_IN (libc)
1093static void* _mid_memalign(size_t, size_t, void *);
1094#endif
1095
1096static void malloc_printerr(const char *str) __attribute__ ((noreturn));
1097
1098static void munmap_chunk(mchunkptr p);
1099#if HAVE_MREMAP
1100static mchunkptr mremap_chunk(mchunkptr p, size_t new_size);
1101#endif
1102
1103static size_t musable (void *mem);
1104
1105/* ------------------ MMAP support ------------------ */
1106
1107
1108#include <fcntl.h>
1109#include <sys/mman.h>
1110
1111#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1112# define MAP_ANONYMOUS MAP_ANON
1113#endif
1114
1115#define MMAP(addr, size, prot, flags) \
1116 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1117
1118
1119/*
1120 ----------------------- Chunk representations -----------------------
1121*/
1122
1123
1124/*
1125 This struct declaration is misleading (but accurate and necessary).
1126 It declares a "view" into memory allowing access to necessary
1127 fields at known offsets from a given base. See explanation below.
1128*/
1129
1130struct malloc_chunk {
1131
1132 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1133 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1134
1135 struct malloc_chunk* fd; /* double links -- used only if free. */
1136 struct malloc_chunk* bk;
1137
1138 /* Only used for large blocks: pointer to next larger size. */
1139 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1140 struct malloc_chunk* bk_nextsize;
1141};
1142
1143
1144/*
1145 malloc_chunk details:
1146
1147 (The following includes lightly edited explanations by Colin Plumb.)
1148
1149 Chunks of memory are maintained using a `boundary tag' method as
1150 described in e.g., Knuth or Standish. (See the paper by Paul
1151 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1152 survey of such techniques.) Sizes of free chunks are stored both
1153 in the front of each chunk and at the end. This makes
1154 consolidating fragmented chunks into bigger chunks very fast. The
1155 size fields also hold bits representing whether chunks are free or
1156 in use.
1157
1158 An allocated chunk looks like this:
1159
1160
1161 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1162 | Size of previous chunk, if unallocated (P clear) |
1163 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1164 | Size of chunk, in bytes |A|M|P|
1165 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1166 | User data starts here... .
1167 . .
1168 . (malloc_usable_size() bytes) .
1169 . |
1170nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1171 | (size of chunk, but used for application data) |
1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1173 | Size of next chunk, in bytes |A|0|1|
1174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1175
1176 Where "chunk" is the front of the chunk for the purpose of most of
1177 the malloc code, but "mem" is the pointer that is returned to the
1178 user. "Nextchunk" is the beginning of the next contiguous chunk.
1179
1180 Chunks always begin on even word boundaries, so the mem portion
1181 (which is returned to the user) is also on an even word boundary, and
1182 thus at least double-word aligned.
1183
1184 Free chunks are stored in circular doubly-linked lists, and look like this:
1185
1186 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Size of previous chunk, if unallocated (P clear) |
1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 `head:' | Size of chunk, in bytes |A|0|P|
1190 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1191 | Forward pointer to next chunk in list |
1192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1193 | Back pointer to previous chunk in list |
1194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1195 | Unused space (may be 0 bytes long) .
1196 . .
1197 . |
1198nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1199 `foot:' | Size of chunk, in bytes |
1200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1201 | Size of next chunk, in bytes |A|0|0|
1202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1203
1204 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1205 chunk size (which is always a multiple of two words), is an in-use
1206 bit for the *previous* chunk. If that bit is *clear*, then the
1207 word before the current chunk size contains the previous chunk
1208 size, and can be used to find the front of the previous chunk.
1209 The very first chunk allocated always has this bit set,
1210 preventing access to non-existent (or non-owned) memory. If
1211 prev_inuse is set for any given chunk, then you CANNOT determine
1212 the size of the previous chunk, and might even get a memory
1213 addressing fault when trying to do so.
1214
1215 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1216 main arena, described by the main_arena variable. When additional
1217 threads are spawned, each thread receives its own arena (up to a
1218 configurable limit, after which arenas are reused for multiple
1219 threads), and the chunks in these arenas have the A bit set. To
1220 find the arena for a chunk on such a non-main arena, heap_for_ptr
1221 performs a bit mask operation and indirection through the ar_ptr
1222 member of the per-heap header heap_info (see arena.c).
1223
1224 Note that the `foot' of the current chunk is actually represented
1225 as the prev_size of the NEXT chunk. This makes it easier to
1226 deal with alignments etc but can be very confusing when trying
1227 to extend or adapt this code.
1228
1229 The three exceptions to all this are:
1230
1231 1. The special chunk `top' doesn't bother using the
1232 trailing size field since there is no next contiguous chunk
1233 that would have to index off it. After initialization, `top'
1234 is forced to always exist. If it would become less than
1235 MINSIZE bytes long, it is replenished.
1236
1237 2. Chunks allocated via mmap, which have the second-lowest-order
1238 bit M (IS_MMAPPED) set in their size fields. Because they are
1239 allocated one-by-one, each must contain its own trailing size
1240 field. If the M bit is set, the other bits are ignored
1241 (because mmapped chunks are neither in an arena, nor adjacent
1242 to a freed chunk). The M bit is also used for chunks which
1243 originally came from a dumped heap via malloc_set_state in
1244 hooks.c.
1245
1246 3. Chunks in fastbins are treated as allocated chunks from the
1247 point of view of the chunk allocator. They are consolidated
1248 with their neighbors only in bulk, in malloc_consolidate.
1249*/
1250
1251/*
1252 ---------- Size and alignment checks and conversions ----------
1253*/
1254
1255/* Conversion from malloc headers to user pointers, and back. When
1256 using memory tagging the user data and the malloc data structure
1257 headers have distinct tags. Converting fully from one to the other
1258 involves extracting the tag at the other address and creating a
1259 suitable pointer using it. That can be quite expensive. There are
1260 cases when the pointers are not dereferenced (for example only used
1261 for alignment check) so the tags are not relevant, and there are
1262 cases when user data is not tagged distinctly from malloc headers
1263 (user data is untagged because tagging is done late in malloc and
1264 early in free). User memory tagging across internal interfaces:
1265
1266 sysmalloc: Returns untagged memory.
1267 _int_malloc: Returns untagged memory.
1268 _int_free: Takes untagged memory.
1269 _int_memalign: Returns untagged memory.
1270 _int_memalign: Returns untagged memory.
1271 _mid_memalign: Returns tagged memory.
1272 _int_realloc: Takes and returns tagged memory.
1273*/
1274
1275/* The chunk header is two SIZE_SZ elements, but this is used widely, so
1276 we define it here for clarity later. */
1277#define CHUNK_HDR_SZ (2 * SIZE_SZ)
1278
1279/* Convert a chunk address to a user mem pointer without correcting
1280 the tag. */
1281#define chunk2mem(p) ((void*)((char*)(p) + CHUNK_HDR_SZ))
1282
1283/* Convert a chunk address to a user mem pointer and extract the right tag. */
1284#define chunk2mem_tag(p) ((void*)tag_at ((char*)(p) + CHUNK_HDR_SZ))
1285
1286/* Convert a user mem pointer to a chunk address and extract the right tag. */
1287#define mem2chunk(mem) ((mchunkptr)tag_at (((char*)(mem) - CHUNK_HDR_SZ)))
1288
1289/* The smallest possible chunk */
1290#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1291
1292/* The smallest size we can malloc is an aligned minimal chunk */
1293
1294#define MINSIZE \
1295 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1296
1297/* Check if m has acceptable alignment */
1298
1299#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1300
1301#define misaligned_chunk(p) \
1302 ((uintptr_t)(MALLOC_ALIGNMENT == CHUNK_HDR_SZ ? (p) : chunk2mem (p)) \
1303 & MALLOC_ALIGN_MASK)
1304
1305/* pad request bytes into a usable size -- internal version */
1306/* Note: This must be a macro that evaluates to a compile time constant
1307 if passed a literal constant. */
1308#define request2size(req) \
1309 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1310 MINSIZE : \
1311 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1312
1313/* Check if REQ overflows when padded and aligned and if the resulting
1314 value is less than PTRDIFF_T. Returns the requested size or
1315 MINSIZE in case the value is less than MINSIZE, or 0 if any of the
1316 previous checks fail. */
1317static inline size_t
1318checked_request2size (size_t req) __nonnull (1)
1319{
1320 if (__glibc_unlikely (req > PTRDIFF_MAX))
1321 return 0;
1322
1323 /* When using tagged memory, we cannot share the end of the user
1324 block with the header for the next chunk, so ensure that we
1325 allocate blocks that are rounded up to the granule size. Take
1326 care not to overflow from close to MAX_SIZE_T to a small
1327 number. Ideally, this would be part of request2size(), but that
1328 must be a macro that produces a compile time constant if passed
1329 a constant literal. */
1330 if (__glibc_unlikely (mtag_enabled))
1331 {
1332 /* Ensure this is not evaluated if !mtag_enabled, see gcc PR 99551. */
1333 asm ("");
1334
1335 req = (req + (__MTAG_GRANULE_SIZE - 1)) &
1336 ~(size_t)(__MTAG_GRANULE_SIZE - 1);
1337 }
1338
1339 return request2size (req);
1340}
1341
1342/*
1343 --------------- Physical chunk operations ---------------
1344 */
1345
1346
1347/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1348#define PREV_INUSE 0x1
1349
1350/* extract inuse bit of previous chunk */
1351#define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1352
1353
1354/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1355#define IS_MMAPPED 0x2
1356
1357/* check for mmap()'ed chunk */
1358#define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1359
1360
1361/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1362 from a non-main arena. This is only set immediately before handing
1363 the chunk to the user, if necessary. */
1364#define NON_MAIN_ARENA 0x4
1365
1366/* Check for chunk from main arena. */
1367#define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1368
1369/* Mark a chunk as not being on the main arena. */
1370#define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1371
1372
1373/*
1374 Bits to mask off when extracting size
1375
1376 Note: IS_MMAPPED is intentionally not masked off from size field in
1377 macros for which mmapped chunks should never be seen. This should
1378 cause helpful core dumps to occur if it is tried by accident by
1379 people extending or adapting this malloc.
1380 */
1381#define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1382
1383/* Get size, ignoring use bits */
1384#define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1385
1386/* Like chunksize, but do not mask SIZE_BITS. */
1387#define chunksize_nomask(p) ((p)->mchunk_size)
1388
1389/* Ptr to next physical malloc_chunk. */
1390#define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1391
1392/* Size of the chunk below P. Only valid if !prev_inuse (P). */
1393#define prev_size(p) ((p)->mchunk_prev_size)
1394
1395/* Set the size of the chunk below P. Only valid if !prev_inuse (P). */
1396#define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1397
1398/* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */
1399#define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1400
1401/* Treat space at ptr + offset as a chunk */
1402#define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1403
1404/* extract p's inuse bit */
1405#define inuse(p) \
1406 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1407
1408/* set/clear chunk as being inuse without otherwise disturbing */
1409#define set_inuse(p) \
1410 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1411
1412#define clear_inuse(p) \
1413 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1414
1415
1416/* check/set/clear inuse bits in known places */
1417#define inuse_bit_at_offset(p, s) \
1418 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1419
1420#define set_inuse_bit_at_offset(p, s) \
1421 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1422
1423#define clear_inuse_bit_at_offset(p, s) \
1424 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1425
1426
1427/* Set size at head, without disturbing its use bit */
1428#define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1429
1430/* Set size/use field */
1431#define set_head(p, s) ((p)->mchunk_size = (s))
1432
1433/* Set size at footer (only when chunk is not in use) */
1434#define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1435
1436#pragma GCC poison mchunk_size
1437#pragma GCC poison mchunk_prev_size
1438
1439/* This is the size of the real usable data in the chunk. Not valid for
1440 dumped heap chunks. */
1441#define memsize(p) \
1442 (__MTAG_GRANULE_SIZE > SIZE_SZ && __glibc_unlikely (mtag_enabled) ? \
1443 chunksize (p) - CHUNK_HDR_SZ : \
1444 chunksize (p) - CHUNK_HDR_SZ + (chunk_is_mmapped (p) ? 0 : SIZE_SZ))
1445
1446/* If memory tagging is enabled the layout changes to accommodate the granule
1447 size, this is wasteful for small allocations so not done by default.
1448 Both the chunk header and user data has to be granule aligned. */
1449_Static_assert (__MTAG_GRANULE_SIZE <= CHUNK_HDR_SZ,
1450 "memory tagging is not supported with large granule.");
1451
1452static __always_inline void *
1453tag_new_usable (void *ptr)
1454{
1455 if (__glibc_unlikely (mtag_enabled) && ptr)
1456 {
1457 mchunkptr cp = mem2chunk(ptr);
1458 ptr = __libc_mtag_tag_region (__libc_mtag_new_tag (ptr), memsize (cp));
1459 }
1460 return ptr;
1461}
1462
1463/*
1464 -------------------- Internal data structures --------------------
1465
1466 All internal state is held in an instance of malloc_state defined
1467 below. There are no other static variables, except in two optional
1468 cases:
1469 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1470 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1471 for mmap.
1472
1473 Beware of lots of tricks that minimize the total bookkeeping space
1474 requirements. The result is a little over 1K bytes (for 4byte
1475 pointers and size_t.)
1476 */
1477
1478/*
1479 Bins
1480
1481 An array of bin headers for free chunks. Each bin is doubly
1482 linked. The bins are approximately proportionally (log) spaced.
1483 There are a lot of these bins (128). This may look excessive, but
1484 works very well in practice. Most bins hold sizes that are
1485 unusual as malloc request sizes, but are more usual for fragments
1486 and consolidated sets of chunks, which is what these bins hold, so
1487 they can be found quickly. All procedures maintain the invariant
1488 that no consolidated chunk physically borders another one, so each
1489 chunk in a list is known to be preceeded and followed by either
1490 inuse chunks or the ends of memory.
1491
1492 Chunks in bins are kept in size order, with ties going to the
1493 approximately least recently used chunk. Ordering isn't needed
1494 for the small bins, which all contain the same-sized chunks, but
1495 facilitates best-fit allocation for larger chunks. These lists
1496 are just sequential. Keeping them in order almost never requires
1497 enough traversal to warrant using fancier ordered data
1498 structures.
1499
1500 Chunks of the same size are linked with the most
1501 recently freed at the front, and allocations are taken from the
1502 back. This results in LRU (FIFO) allocation order, which tends
1503 to give each chunk an equal opportunity to be consolidated with
1504 adjacent freed chunks, resulting in larger free chunks and less
1505 fragmentation.
1506
1507 To simplify use in double-linked lists, each bin header acts
1508 as a malloc_chunk. This avoids special-casing for headers.
1509 But to conserve space and improve locality, we allocate
1510 only the fd/bk pointers of bins, and then use repositioning tricks
1511 to treat these as the fields of a malloc_chunk*.
1512 */
1513
1514typedef struct malloc_chunk *mbinptr;
1515
1516/* addressing -- note that bin_at(0) does not exist */
1517#define bin_at(m, i) \
1518 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1519 - offsetof (struct malloc_chunk, fd))
1520
1521/* analog of ++bin */
1522#define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1523
1524/* Reminders about list directionality within bins */
1525#define first(b) ((b)->fd)
1526#define last(b) ((b)->bk)
1527
1528/*
1529 Indexing
1530
1531 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1532 8 bytes apart. Larger bins are approximately logarithmically spaced:
1533
1534 64 bins of size 8
1535 32 bins of size 64
1536 16 bins of size 512
1537 8 bins of size 4096
1538 4 bins of size 32768
1539 2 bins of size 262144
1540 1 bin of size what's left
1541
1542 There is actually a little bit of slop in the numbers in bin_index
1543 for the sake of speed. This makes no difference elsewhere.
1544
1545 The bins top out around 1MB because we expect to service large
1546 requests via mmap.
1547
1548 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1549 a valid chunk size the small bins are bumped up one.
1550 */
1551
1552#define NBINS 128
1553#define NSMALLBINS 64
1554#define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1555#define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > CHUNK_HDR_SZ)
1556#define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1557
1558#define in_smallbin_range(sz) \
1559 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1560
1561#define smallbin_index(sz) \
1562 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1563 + SMALLBIN_CORRECTION)
1564
1565#define largebin_index_32(sz) \
1566 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1567 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1568 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1569 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1570 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1571 126)
1572
1573#define largebin_index_32_big(sz) \
1574 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1575 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1576 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1577 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1578 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1579 126)
1580
1581// XXX It remains to be seen whether it is good to keep the widths of
1582// XXX the buckets the same or whether it should be scaled by a factor
1583// XXX of two as well.
1584#define largebin_index_64(sz) \
1585 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1586 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1587 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1588 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1589 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1590 126)
1591
1592#define largebin_index(sz) \
1593 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1594 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1595 : largebin_index_32 (sz))
1596
1597#define bin_index(sz) \
1598 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1599
1600/* Take a chunk off a bin list. */
1601static void
1602unlink_chunk (mstate av, mchunkptr p)
1603{
1604 if (chunksize (p) != prev_size (next_chunk (p)))
1605 malloc_printerr ("corrupted size vs. prev_size");
1606
1607 mchunkptr fd = p->fd;
1608 mchunkptr bk = p->bk;
1609
1610 if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
1611 malloc_printerr ("corrupted double-linked list");
1612
1613 fd->bk = bk;
1614 bk->fd = fd;
1615 if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL)
1616 {
1617 if (p->fd_nextsize->bk_nextsize != p
1618 || p->bk_nextsize->fd_nextsize != p)
1619 malloc_printerr ("corrupted double-linked list (not small)");
1620
1621 if (fd->fd_nextsize == NULL)
1622 {
1623 if (p->fd_nextsize == p)
1624 fd->fd_nextsize = fd->bk_nextsize = fd;
1625 else
1626 {
1627 fd->fd_nextsize = p->fd_nextsize;
1628 fd->bk_nextsize = p->bk_nextsize;
1629 p->fd_nextsize->bk_nextsize = fd;
1630 p->bk_nextsize->fd_nextsize = fd;
1631 }
1632 }
1633 else
1634 {
1635 p->fd_nextsize->bk_nextsize = p->bk_nextsize;
1636 p->bk_nextsize->fd_nextsize = p->fd_nextsize;
1637 }
1638 }
1639}
1640
1641/*
1642 Unsorted chunks
1643
1644 All remainders from chunk splits, as well as all returned chunks,
1645 are first placed in the "unsorted" bin. They are then placed
1646 in regular bins after malloc gives them ONE chance to be used before
1647 binning. So, basically, the unsorted_chunks list acts as a queue,
1648 with chunks being placed on it in free (and malloc_consolidate),
1649 and taken off (to be either used or placed in bins) in malloc.
1650
1651 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1652 does not have to be taken into account in size comparisons.
1653 */
1654
1655/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1656#define unsorted_chunks(M) (bin_at (M, 1))
1657
1658/*
1659 Top
1660
1661 The top-most available chunk (i.e., the one bordering the end of
1662 available memory) is treated specially. It is never included in
1663 any bin, is used only if no other chunk is available, and is
1664 released back to the system if it is very large (see
1665 M_TRIM_THRESHOLD). Because top initially
1666 points to its own bin with initial zero size, thus forcing
1667 extension on the first malloc request, we avoid having any special
1668 code in malloc to check whether it even exists yet. But we still
1669 need to do so when getting memory from system, so we make
1670 initial_top treat the bin as a legal but unusable chunk during the
1671 interval between initialization and the first call to
1672 sysmalloc. (This is somewhat delicate, since it relies on
1673 the 2 preceding words to be zero during this interval as well.)
1674 */
1675
1676/* Conveniently, the unsorted bin can be used as dummy top on first call */
1677#define initial_top(M) (unsorted_chunks (M))
1678
1679/*
1680 Binmap
1681
1682 To help compensate for the large number of bins, a one-level index
1683 structure is used for bin-by-bin searching. `binmap' is a
1684 bitvector recording whether bins are definitely empty so they can
1685 be skipped over during during traversals. The bits are NOT always
1686 cleared as soon as bins are empty, but instead only
1687 when they are noticed to be empty during traversal in malloc.
1688 */
1689
1690/* Conservatively use 32 bits per map word, even if on 64bit system */
1691#define BINMAPSHIFT 5
1692#define BITSPERMAP (1U << BINMAPSHIFT)
1693#define BINMAPSIZE (NBINS / BITSPERMAP)
1694
1695#define idx2block(i) ((i) >> BINMAPSHIFT)
1696#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1697
1698#define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1699#define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1700#define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1701
1702/*
1703 Fastbins
1704
1705 An array of lists holding recently freed small chunks. Fastbins
1706 are not doubly linked. It is faster to single-link them, and
1707 since chunks are never removed from the middles of these lists,
1708 double linking is not necessary. Also, unlike regular bins, they
1709 are not even processed in FIFO order (they use faster LIFO) since
1710 ordering doesn't much matter in the transient contexts in which
1711 fastbins are normally used.
1712
1713 Chunks in fastbins keep their inuse bit set, so they cannot
1714 be consolidated with other free chunks. malloc_consolidate
1715 releases all chunks in fastbins and consolidates them with
1716 other free chunks.
1717 */
1718
1719typedef struct malloc_chunk *mfastbinptr;
1720#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1721
1722/* offset 2 to use otherwise unindexable first 2 bins */
1723#define fastbin_index(sz) \
1724 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1725
1726
1727/* The maximum fastbin request size we support */
1728#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1729
1730#define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1731
1732/*
1733 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1734 that triggers automatic consolidation of possibly-surrounding
1735 fastbin chunks. This is a heuristic, so the exact value should not
1736 matter too much. It is defined at half the default trim threshold as a
1737 compromise heuristic to only attempt consolidation if it is likely
1738 to lead to trimming. However, it is not dynamically tunable, since
1739 consolidation reduces fragmentation surrounding large chunks even
1740 if trimming is not used.
1741 */
1742
1743#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1744
1745/*
1746 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1747 regions. Otherwise, contiguity is exploited in merging together,
1748 when possible, results from consecutive MORECORE calls.
1749
1750 The initial value comes from MORECORE_CONTIGUOUS, but is
1751 changed dynamically if mmap is ever used as an sbrk substitute.
1752 */
1753
1754#define NONCONTIGUOUS_BIT (2U)
1755
1756#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1757#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1758#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1759#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1760
1761/* Maximum size of memory handled in fastbins. */
1762static uint8_t global_max_fast;
1763
1764/*
1765 Set value of max_fast.
1766 Use impossibly small value if 0.
1767 Precondition: there are no existing fastbin chunks in the main arena.
1768 Since do_check_malloc_state () checks this, we call malloc_consolidate ()
1769 before changing max_fast. Note other arenas will leak their fast bin
1770 entries if max_fast is reduced.
1771 */
1772
1773#define set_max_fast(s) \
1774 global_max_fast = (((size_t) (s) <= MALLOC_ALIGN_MASK - SIZE_SZ) \
1775 ? MIN_CHUNK_SIZE / 2 : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1776
1777static inline INTERNAL_SIZE_T
1778get_max_fast (void)
1779{
1780 /* Tell the GCC optimizers that global_max_fast is never larger
1781 than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in
1782 _int_malloc after constant propagation of the size parameter.
1783 (The code never executes because malloc preserves the
1784 global_max_fast invariant, but the optimizers may not recognize
1785 this.) */
1786 if (global_max_fast > MAX_FAST_SIZE)
1787 __builtin_unreachable ();
1788 return global_max_fast;
1789}
1790
1791/*
1792 ----------- Internal state representation and initialization -----------
1793 */
1794
1795/*
1796 have_fastchunks indicates that there are probably some fastbin chunks.
1797 It is set true on entering a chunk into any fastbin, and cleared early in
1798 malloc_consolidate. The value is approximate since it may be set when there
1799 are no fastbin chunks, or it may be clear even if there are fastbin chunks
1800 available. Given it's sole purpose is to reduce number of redundant calls to
1801 malloc_consolidate, it does not affect correctness. As a result we can safely
1802 use relaxed atomic accesses.
1803 */
1804
1805
1806struct malloc_state
1807{
1808 /* Serialize access. */
1809 __libc_lock_define (, mutex);
1810
1811 /* Flags (formerly in max_fast). */
1812 int flags;
1813
1814 /* Set if the fastbin chunks contain recently inserted free blocks. */
1815 /* Note this is a bool but not all targets support atomics on booleans. */
1816 int have_fastchunks;
1817
1818 /* Fastbins */
1819 mfastbinptr fastbinsY[NFASTBINS];
1820
1821 /* Base of the topmost chunk -- not otherwise kept in a bin */
1822 mchunkptr top;
1823
1824 /* The remainder from the most recent split of a small request */
1825 mchunkptr last_remainder;
1826
1827 /* Normal bins packed as described above */
1828 mchunkptr bins[NBINS * 2 - 2];
1829
1830 /* Bitmap of bins */
1831 unsigned int binmap[BINMAPSIZE];
1832
1833 /* Linked list */
1834 struct malloc_state *next;
1835
1836 /* Linked list for free arenas. Access to this field is serialized
1837 by free_list_lock in arena.c. */
1838 struct malloc_state *next_free;
1839
1840 /* Number of threads attached to this arena. 0 if the arena is on
1841 the free list. Access to this field is serialized by
1842 free_list_lock in arena.c. */
1843 INTERNAL_SIZE_T attached_threads;
1844
1845 /* Memory allocated from the system in this arena. */
1846 INTERNAL_SIZE_T system_mem;
1847 INTERNAL_SIZE_T max_system_mem;
1848};
1849
1850struct malloc_par
1851{
1852 /* Tunable parameters */
1853 unsigned long trim_threshold;
1854 INTERNAL_SIZE_T top_pad;
1855 INTERNAL_SIZE_T mmap_threshold;
1856 INTERNAL_SIZE_T arena_test;
1857 INTERNAL_SIZE_T arena_max;
1858
1859#if HAVE_TUNABLES
1860 /* Transparent Large Page support. */
1861 INTERNAL_SIZE_T thp_pagesize;
1862 /* A value different than 0 means to align mmap allocation to hp_pagesize
1863 add hp_flags on flags. */
1864 INTERNAL_SIZE_T hp_pagesize;
1865 int hp_flags;
1866#endif
1867
1868 /* Memory map support */
1869 int n_mmaps;
1870 int n_mmaps_max;
1871 int max_n_mmaps;
1872 /* the mmap_threshold is dynamic, until the user sets
1873 it manually, at which point we need to disable any
1874 dynamic behavior. */
1875 int no_dyn_threshold;
1876
1877 /* Statistics */
1878 INTERNAL_SIZE_T mmapped_mem;
1879 INTERNAL_SIZE_T max_mmapped_mem;
1880
1881 /* First address handed out by MORECORE/sbrk. */
1882 char *sbrk_base;
1883
1884#if USE_TCACHE
1885 /* Maximum number of buckets to use. */
1886 size_t tcache_bins;
1887 size_t tcache_max_bytes;
1888 /* Maximum number of chunks in each bucket. */
1889 size_t tcache_count;
1890 /* Maximum number of chunks to remove from the unsorted list, which
1891 aren't used to prefill the cache. */
1892 size_t tcache_unsorted_limit;
1893#endif
1894};
1895
1896/* There are several instances of this struct ("arenas") in this
1897 malloc. If you are adapting this malloc in a way that does NOT use
1898 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1899 before using. This malloc relies on the property that malloc_state
1900 is initialized to all zeroes (as is true of C statics). */
1901
1902static struct malloc_state main_arena =
1903{
1904 .mutex = _LIBC_LOCK_INITIALIZER,
1905 .next = &main_arena,
1906 .attached_threads = 1
1907};
1908
1909/* There is only one instance of the malloc parameters. */
1910
1911static struct malloc_par mp_ =
1912{
1913 .top_pad = DEFAULT_TOP_PAD,
1914 .n_mmaps_max = DEFAULT_MMAP_MAX,
1915 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1916 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1917#define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1918 .arena_test = NARENAS_FROM_NCORES (1)
1919#if USE_TCACHE
1920 ,
1921 .tcache_count = TCACHE_FILL_COUNT,
1922 .tcache_bins = TCACHE_MAX_BINS,
1923 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1924 .tcache_unsorted_limit = 0 /* No limit. */
1925#endif
1926};
1927
1928/*
1929 Initialize a malloc_state struct.
1930
1931 This is called from ptmalloc_init () or from _int_new_arena ()
1932 when creating a new arena.
1933 */
1934
1935static void
1936malloc_init_state (mstate av)
1937{
1938 int i;
1939 mbinptr bin;
1940
1941 /* Establish circular links for normal bins */
1942 for (i = 1; i < NBINS; ++i)
1943 {
1944 bin = bin_at (av, i);
1945 bin->fd = bin->bk = bin;
1946 }
1947
1948#if MORECORE_CONTIGUOUS
1949 if (av != &main_arena)
1950#endif
1951 set_noncontiguous (av);
1952 if (av == &main_arena)
1953 set_max_fast (DEFAULT_MXFAST);
1954 atomic_store_relaxed (&av->have_fastchunks, false);
1955
1956 av->top = initial_top (av);
1957}
1958
1959/*
1960 Other internal utilities operating on mstates
1961 */
1962
1963static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1964static int systrim (size_t, mstate);
1965static void malloc_consolidate (mstate);
1966
1967
1968/* -------------- Early definitions for debugging hooks ---------------- */
1969
1970/* This function is called from the arena shutdown hook, to free the
1971 thread cache (if it exists). */
1972static void tcache_thread_shutdown (void);
1973
1974/* ------------------ Testing support ----------------------------------*/
1975
1976static int perturb_byte;
1977
1978static void
1979alloc_perturb (char *p, size_t n)
1980{
1981 if (__glibc_unlikely (perturb_byte))
1982 memset (p, perturb_byte ^ 0xff, n);
1983}
1984
1985static void
1986free_perturb (char *p, size_t n)
1987{
1988 if (__glibc_unlikely (perturb_byte))
1989 memset (p, perturb_byte, n);
1990}
1991
1992
1993
1994#include <stap-probe.h>
1995
1996/* ----------- Routines dealing with transparent huge pages ----------- */
1997
1998static inline void
1999madvise_thp (void *p, INTERNAL_SIZE_T size)
2000{
2001#if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2002 /* Do not consider areas smaller than a huge page or if the tunable is
2003 not active. */
2004 if (mp_.thp_pagesize == 0 || size < mp_.thp_pagesize)
2005 return;
2006
2007 /* Linux requires the input address to be page-aligned, and unaligned
2008 inputs happens only for initial data segment. */
2009 if (__glibc_unlikely (!PTR_IS_ALIGNED (p, GLRO (dl_pagesize))))
2010 {
2011 void *q = PTR_ALIGN_DOWN (p, GLRO (dl_pagesize));
2012 size += PTR_DIFF (p, q);
2013 p = q;
2014 }
2015
2016 __madvise (p, size, MADV_HUGEPAGE);
2017#endif
2018}
2019
2020/* ------------------- Support for multiple arenas -------------------- */
2021#include "arena.c"
2022
2023/*
2024 Debugging support
2025
2026 These routines make a number of assertions about the states
2027 of data structures that should be true at all times. If any
2028 are not true, it's very likely that a user program has somehow
2029 trashed memory. (It's also possible that there is a coding error
2030 in malloc. In which case, please report it!)
2031 */
2032
2033#if !MALLOC_DEBUG
2034
2035# define check_chunk(A, P)
2036# define check_free_chunk(A, P)
2037# define check_inuse_chunk(A, P)
2038# define check_remalloced_chunk(A, P, N)
2039# define check_malloced_chunk(A, P, N)
2040# define check_malloc_state(A)
2041
2042#else
2043
2044# define check_chunk(A, P) do_check_chunk (A, P)
2045# define check_free_chunk(A, P) do_check_free_chunk (A, P)
2046# define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
2047# define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
2048# define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
2049# define check_malloc_state(A) do_check_malloc_state (A)
2050
2051/*
2052 Properties of all chunks
2053 */
2054
2055static void
2056do_check_chunk (mstate av, mchunkptr p)
2057{
2058 unsigned long sz = chunksize (p);
2059 /* min and max possible addresses assuming contiguous allocation */
2060 char *max_address = (char *) (av->top) + chunksize (av->top);
2061 char *min_address = max_address - av->system_mem;
2062
2063 if (!chunk_is_mmapped (p))
2064 {
2065 /* Has legal address ... */
2066 if (p != av->top)
2067 {
2068 if (contiguous (av))
2069 {
2070 assert (((char *) p) >= min_address);
2071 assert (((char *) p + sz) <= ((char *) (av->top)));
2072 }
2073 }
2074 else
2075 {
2076 /* top size is always at least MINSIZE */
2077 assert ((unsigned long) (sz) >= MINSIZE);
2078 /* top predecessor always marked inuse */
2079 assert (prev_inuse (p));
2080 }
2081 }
2082 else
2083 {
2084 /* address is outside main heap */
2085 if (contiguous (av) && av->top != initial_top (av))
2086 {
2087 assert (((char *) p) < min_address || ((char *) p) >= max_address);
2088 }
2089 /* chunk is page-aligned */
2090 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
2091 /* mem is aligned */
2092 assert (aligned_OK (chunk2mem (p)));
2093 }
2094}
2095
2096/*
2097 Properties of free chunks
2098 */
2099
2100static void
2101do_check_free_chunk (mstate av, mchunkptr p)
2102{
2103 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2104 mchunkptr next = chunk_at_offset (p, sz);
2105
2106 do_check_chunk (av, p);
2107
2108 /* Chunk must claim to be free ... */
2109 assert (!inuse (p));
2110 assert (!chunk_is_mmapped (p));
2111
2112 /* Unless a special marker, must have OK fields */
2113 if ((unsigned long) (sz) >= MINSIZE)
2114 {
2115 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2116 assert (aligned_OK (chunk2mem (p)));
2117 /* ... matching footer field */
2118 assert (prev_size (next_chunk (p)) == sz);
2119 /* ... and is fully consolidated */
2120 assert (prev_inuse (p));
2121 assert (next == av->top || inuse (next));
2122
2123 /* ... and has minimally sane links */
2124 assert (p->fd->bk == p);
2125 assert (p->bk->fd == p);
2126 }
2127 else /* markers are always of size SIZE_SZ */
2128 assert (sz == SIZE_SZ);
2129}
2130
2131/*
2132 Properties of inuse chunks
2133 */
2134
2135static void
2136do_check_inuse_chunk (mstate av, mchunkptr p)
2137{
2138 mchunkptr next;
2139
2140 do_check_chunk (av, p);
2141
2142 if (chunk_is_mmapped (p))
2143 return; /* mmapped chunks have no next/prev */
2144
2145 /* Check whether it claims to be in use ... */
2146 assert (inuse (p));
2147
2148 next = next_chunk (p);
2149
2150 /* ... and is surrounded by OK chunks.
2151 Since more things can be checked with free chunks than inuse ones,
2152 if an inuse chunk borders them and debug is on, it's worth doing them.
2153 */
2154 if (!prev_inuse (p))
2155 {
2156 /* Note that we cannot even look at prev unless it is not inuse */
2157 mchunkptr prv = prev_chunk (p);
2158 assert (next_chunk (prv) == p);
2159 do_check_free_chunk (av, prv);
2160 }
2161
2162 if (next == av->top)
2163 {
2164 assert (prev_inuse (next));
2165 assert (chunksize (next) >= MINSIZE);
2166 }
2167 else if (!inuse (next))
2168 do_check_free_chunk (av, next);
2169}
2170
2171/*
2172 Properties of chunks recycled from fastbins
2173 */
2174
2175static void
2176do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2177{
2178 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2179
2180 if (!chunk_is_mmapped (p))
2181 {
2182 assert (av == arena_for_chunk (p));
2183 if (chunk_main_arena (p))
2184 assert (av == &main_arena);
2185 else
2186 assert (av != &main_arena);
2187 }
2188
2189 do_check_inuse_chunk (av, p);
2190
2191 /* Legal size ... */
2192 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2193 assert ((unsigned long) (sz) >= MINSIZE);
2194 /* ... and alignment */
2195 assert (aligned_OK (chunk2mem (p)));
2196 /* chunk is less than MINSIZE more than request */
2197 assert ((long) (sz) - (long) (s) >= 0);
2198 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2199}
2200
2201/*
2202 Properties of nonrecycled chunks at the point they are malloced
2203 */
2204
2205static void
2206do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2207{
2208 /* same as recycled case ... */
2209 do_check_remalloced_chunk (av, p, s);
2210
2211 /*
2212 ... plus, must obey implementation invariant that prev_inuse is
2213 always true of any allocated chunk; i.e., that each allocated
2214 chunk borders either a previously allocated and still in-use
2215 chunk, or the base of its memory arena. This is ensured
2216 by making all allocations from the `lowest' part of any found
2217 chunk. This does not necessarily hold however for chunks
2218 recycled via fastbins.
2219 */
2220
2221 assert (prev_inuse (p));
2222}
2223
2224
2225/*
2226 Properties of malloc_state.
2227
2228 This may be useful for debugging malloc, as well as detecting user
2229 programmer errors that somehow write into malloc_state.
2230
2231 If you are extending or experimenting with this malloc, you can
2232 probably figure out how to hack this routine to print out or
2233 display chunk addresses, sizes, bins, and other instrumentation.
2234 */
2235
2236static void
2237do_check_malloc_state (mstate av)
2238{
2239 int i;
2240 mchunkptr p;
2241 mchunkptr q;
2242 mbinptr b;
2243 unsigned int idx;
2244 INTERNAL_SIZE_T size;
2245 unsigned long total = 0;
2246 int max_fast_bin;
2247
2248 /* internal size_t must be no wider than pointer type */
2249 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2250
2251 /* alignment is a power of 2 */
2252 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2253
2254 /* Check the arena is initialized. */
2255 assert (av->top != 0);
2256
2257 /* No memory has been allocated yet, so doing more tests is not possible. */
2258 if (av->top == initial_top (av))
2259 return;
2260
2261 /* pagesize is a power of 2 */
2262 assert (powerof2(GLRO (dl_pagesize)));
2263
2264 /* A contiguous main_arena is consistent with sbrk_base. */
2265 if (av == &main_arena && contiguous (av))
2266 assert ((char *) mp_.sbrk_base + av->system_mem ==
2267 (char *) av->top + chunksize (av->top));
2268
2269 /* properties of fastbins */
2270
2271 /* max_fast is in allowed range */
2272 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2273
2274 max_fast_bin = fastbin_index (get_max_fast ());
2275
2276 for (i = 0; i < NFASTBINS; ++i)
2277 {
2278 p = fastbin (av, i);
2279
2280 /* The following test can only be performed for the main arena.
2281 While mallopt calls malloc_consolidate to get rid of all fast
2282 bins (especially those larger than the new maximum) this does
2283 only happen for the main arena. Trying to do this for any
2284 other arena would mean those arenas have to be locked and
2285 malloc_consolidate be called for them. This is excessive. And
2286 even if this is acceptable to somebody it still cannot solve
2287 the problem completely since if the arena is locked a
2288 concurrent malloc call might create a new arena which then
2289 could use the newly invalid fast bins. */
2290
2291 /* all bins past max_fast are empty */
2292 if (av == &main_arena && i > max_fast_bin)
2293 assert (p == 0);
2294
2295 while (p != 0)
2296 {
2297 if (__glibc_unlikely (misaligned_chunk (p)))
2298 malloc_printerr ("do_check_malloc_state(): "
2299 "unaligned fastbin chunk detected");
2300 /* each chunk claims to be inuse */
2301 do_check_inuse_chunk (av, p);
2302 total += chunksize (p);
2303 /* chunk belongs in this bin */
2304 assert (fastbin_index (chunksize (p)) == i);
2305 p = REVEAL_PTR (p->fd);
2306 }
2307 }
2308
2309 /* check normal bins */
2310 for (i = 1; i < NBINS; ++i)
2311 {
2312 b = bin_at (av, i);
2313
2314 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2315 if (i >= 2)
2316 {
2317 unsigned int binbit = get_binmap (av, i);
2318 int empty = last (b) == b;
2319 if (!binbit)
2320 assert (empty);
2321 else if (!empty)
2322 assert (binbit);
2323 }
2324
2325 for (p = last (b); p != b; p = p->bk)
2326 {
2327 /* each chunk claims to be free */
2328 do_check_free_chunk (av, p);
2329 size = chunksize (p);
2330 total += size;
2331 if (i >= 2)
2332 {
2333 /* chunk belongs in bin */
2334 idx = bin_index (size);
2335 assert (idx == i);
2336 /* lists are sorted */
2337 assert (p->bk == b ||
2338 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2339
2340 if (!in_smallbin_range (size))
2341 {
2342 if (p->fd_nextsize != NULL)
2343 {
2344 if (p->fd_nextsize == p)
2345 assert (p->bk_nextsize == p);
2346 else
2347 {
2348 if (p->fd_nextsize == first (b))
2349 assert (chunksize (p) < chunksize (p->fd_nextsize));
2350 else
2351 assert (chunksize (p) > chunksize (p->fd_nextsize));
2352
2353 if (p == first (b))
2354 assert (chunksize (p) > chunksize (p->bk_nextsize));
2355 else
2356 assert (chunksize (p) < chunksize (p->bk_nextsize));
2357 }
2358 }
2359 else
2360 assert (p->bk_nextsize == NULL);
2361 }
2362 }
2363 else if (!in_smallbin_range (size))
2364 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2365 /* chunk is followed by a legal chain of inuse chunks */
2366 for (q = next_chunk (p);
2367 (q != av->top && inuse (q) &&
2368 (unsigned long) (chunksize (q)) >= MINSIZE);
2369 q = next_chunk (q))
2370 do_check_inuse_chunk (av, q);
2371 }
2372 }
2373
2374 /* top chunk is OK */
2375 check_chunk (av, av->top);
2376}
2377#endif
2378
2379
2380/* ----------------- Support for debugging hooks -------------------- */
2381#if IS_IN (libc)
2382#include "hooks.c"
2383#endif
2384
2385
2386/* ----------- Routines dealing with system allocation -------------- */
2387
2388/*
2389 sysmalloc handles malloc cases requiring more memory from the system.
2390 On entry, it is assumed that av->top does not have enough
2391 space to service request for nb bytes, thus requiring that av->top
2392 be extended or replaced.
2393 */
2394
2395static void *
2396sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av)
2397{
2398 long int size;
2399
2400 /*
2401 Round up size to nearest page. For mmapped chunks, the overhead is one
2402 SIZE_SZ unit larger than for normal chunks, because there is no
2403 following chunk whose prev_size field could be used.
2404
2405 See the front_misalign handling below, for glibc there is no need for
2406 further alignments unless we have have high alignment.
2407 */
2408 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2409 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2410 else
2411 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2412
2413 /* Don't try if size wraps around 0. */
2414 if ((unsigned long) (size) <= (unsigned long) (nb))
2415 return MAP_FAILED;
2416
2417 char *mm = (char *) MMAP (0, size,
2418 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2419 extra_flags);
2420 if (mm == MAP_FAILED)
2421 return mm;
2422
2423#ifdef MAP_HUGETLB
2424 if (!(extra_flags & MAP_HUGETLB))
2425 madvise_thp (mm, size);
2426#endif
2427
2428 /*
2429 The offset to the start of the mmapped region is stored in the prev_size
2430 field of the chunk. This allows us to adjust returned start address to
2431 meet alignment requirements here and in memalign(), and still be able to
2432 compute proper address argument for later munmap in free() and realloc().
2433 */
2434
2435 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2436
2437 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2438 {
2439 /* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and
2440 MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page
2441 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2442 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2443 front_misalign = 0;
2444 }
2445 else
2446 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2447
2448 mchunkptr p; /* the allocated/returned chunk */
2449
2450 if (front_misalign > 0)
2451 {
2452 ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign;
2453 p = (mchunkptr) (mm + correction);
2454 set_prev_size (p, correction);
2455 set_head (p, (size - correction) | IS_MMAPPED);
2456 }
2457 else
2458 {
2459 p = (mchunkptr) mm;
2460 set_prev_size (p, 0);
2461 set_head (p, size | IS_MMAPPED);
2462 }
2463
2464 /* update statistics */
2465 int new = atomic_fetch_add_relaxed (&mp_.n_mmaps, 1) + 1;
2466 atomic_max (&mp_.max_n_mmaps, new);
2467
2468 unsigned long sum;
2469 sum = atomic_fetch_add_relaxed (&mp_.mmapped_mem, size) + size;
2470 atomic_max (&mp_.max_mmapped_mem, sum);
2471
2472 check_chunk (av, p);
2473
2474 return chunk2mem (p);
2475}
2476
2477/*
2478 Allocate memory using mmap() based on S and NB requested size, aligning to
2479 PAGESIZE if required. The EXTRA_FLAGS is used on mmap() call. If the call
2480 succeedes S is updated with the allocated size. This is used as a fallback
2481 if MORECORE fails.
2482 */
2483static void *
2484sysmalloc_mmap_fallback (long int *s, INTERNAL_SIZE_T nb,
2485 INTERNAL_SIZE_T old_size, size_t minsize,
2486 size_t pagesize, int extra_flags, mstate av)
2487{
2488 long int size = *s;
2489
2490 /* Cannot merge with old top, so add its size back in */
2491 if (contiguous (av))
2492 size = ALIGN_UP (size + old_size, pagesize);
2493
2494 /* If we are relying on mmap as backup, then use larger units */
2495 if ((unsigned long) (size) < minsize)
2496 size = minsize;
2497
2498 /* Don't try if size wraps around 0 */
2499 if ((unsigned long) (size) <= (unsigned long) (nb))
2500 return MORECORE_FAILURE;
2501
2502 char *mbrk = (char *) (MMAP (0, size,
2503 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2504 extra_flags));
2505 if (mbrk == MAP_FAILED)
2506 return MAP_FAILED;
2507
2508#ifdef MAP_HUGETLB
2509 if (!(extra_flags & MAP_HUGETLB))
2510 madvise_thp (mbrk, size);
2511#endif
2512
2513 /* Record that we no longer have a contiguous sbrk region. After the first
2514 time mmap is used as backup, we do not ever rely on contiguous space
2515 since this could incorrectly bridge regions. */
2516 set_noncontiguous (av);
2517
2518 *s = size;
2519 return mbrk;
2520}
2521
2522static void *
2523sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2524{
2525 mchunkptr old_top; /* incoming value of av->top */
2526 INTERNAL_SIZE_T old_size; /* its size */
2527 char *old_end; /* its end address */
2528
2529 long size; /* arg to first MORECORE or mmap call */
2530 char *brk; /* return value from MORECORE */
2531
2532 long correction; /* arg to 2nd MORECORE call */
2533 char *snd_brk; /* 2nd return val */
2534
2535 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2536 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2537 char *aligned_brk; /* aligned offset into brk */
2538
2539 mchunkptr p; /* the allocated/returned chunk */
2540 mchunkptr remainder; /* remainder from allocation */
2541 unsigned long remainder_size; /* its size */
2542
2543
2544 size_t pagesize = GLRO (dl_pagesize);
2545 bool tried_mmap = false;
2546
2547
2548 /*
2549 If have mmap, and the request size meets the mmap threshold, and
2550 the system supports mmap, and there are few enough currently
2551 allocated mmapped regions, try to directly map this request
2552 rather than expanding top.
2553 */
2554
2555 if (av == NULL
2556 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2557 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2558 {
2559 char *mm;
2560#if HAVE_TUNABLES
2561 if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize)
2562 {
2563 /* There is no need to isse the THP madvise call if Huge Pages are
2564 used directly. */
2565 mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av);
2566 if (mm != MAP_FAILED)
2567 return mm;
2568 }
2569#endif
2570 mm = sysmalloc_mmap (nb, pagesize, 0, av);
2571 if (mm != MAP_FAILED)
2572 return mm;
2573 tried_mmap = true;
2574 }
2575
2576 /* There are no usable arenas and mmap also failed. */
2577 if (av == NULL)
2578 return 0;
2579
2580 /* Record incoming configuration of top */
2581
2582 old_top = av->top;
2583 old_size = chunksize (old_top);
2584 old_end = (char *) (chunk_at_offset (old_top, old_size));
2585
2586 brk = snd_brk = (char *) (MORECORE_FAILURE);
2587
2588 /*
2589 If not the first time through, we require old_size to be
2590 at least MINSIZE and to have prev_inuse set.
2591 */
2592
2593 assert ((old_top == initial_top (av) && old_size == 0) ||
2594 ((unsigned long) (old_size) >= MINSIZE &&
2595 prev_inuse (old_top) &&
2596 ((unsigned long) old_end & (pagesize - 1)) == 0));
2597
2598 /* Precondition: not enough current space to satisfy nb request */
2599 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2600
2601
2602 if (av != &main_arena)
2603 {
2604 heap_info *old_heap, *heap;
2605 size_t old_heap_size;
2606
2607 /* First try to extend the current heap. */
2608 old_heap = heap_for_ptr (old_top);
2609 old_heap_size = old_heap->size;
2610 if ((long) (MINSIZE + nb - old_size) > 0
2611 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2612 {
2613 av->system_mem += old_heap->size - old_heap_size;
2614 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2615 | PREV_INUSE);
2616 }
2617 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2618 {
2619 /* Use a newly allocated heap. */
2620 heap->ar_ptr = av;
2621 heap->prev = old_heap;
2622 av->system_mem += heap->size;
2623 /* Set up the new top. */
2624 top (av) = chunk_at_offset (heap, sizeof (*heap));
2625 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2626
2627 /* Setup fencepost and free the old top chunk with a multiple of
2628 MALLOC_ALIGNMENT in size. */
2629 /* The fencepost takes at least MINSIZE bytes, because it might
2630 become the top chunk again later. Note that a footer is set
2631 up, too, although the chunk is marked in use. */
2632 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2633 set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ),
2634 0 | PREV_INUSE);
2635 if (old_size >= MINSIZE)
2636 {
2637 set_head (chunk_at_offset (old_top, old_size),
2638 CHUNK_HDR_SZ | PREV_INUSE);
2639 set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ);
2640 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2641 _int_free (av, old_top, 1);
2642 }
2643 else
2644 {
2645 set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE);
2646 set_foot (old_top, (old_size + CHUNK_HDR_SZ));
2647 }
2648 }
2649 else if (!tried_mmap)
2650 {
2651 /* We can at least try to use to mmap memory. If new_heap fails
2652 it is unlikely that trying to allocate huge pages will
2653 succeed. */
2654 char *mm = sysmalloc_mmap (nb, pagesize, 0, av);
2655 if (mm != MAP_FAILED)
2656 return mm;
2657 }
2658 }
2659 else /* av == main_arena */
2660
2661
2662 { /* Request enough space for nb + pad + overhead */
2663 size = nb + mp_.top_pad + MINSIZE;
2664
2665 /*
2666 If contiguous, we can subtract out existing space that we hope to
2667 combine with new space. We add it back later only if
2668 we don't actually get contiguous space.
2669 */
2670
2671 if (contiguous (av))
2672 size -= old_size;
2673
2674 /*
2675 Round to a multiple of page size or huge page size.
2676 If MORECORE is not contiguous, this ensures that we only call it
2677 with whole-page arguments. And if MORECORE is contiguous and
2678 this is not first time through, this preserves page-alignment of
2679 previous calls. Otherwise, we correct to page-align below.
2680 */
2681
2682#if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2683 /* Defined in brk.c. */
2684 extern void *__curbrk;
2685 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2686 {
2687 uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size,
2688 mp_.thp_pagesize);
2689 size = top - (uintptr_t) __curbrk;
2690 }
2691 else
2692#endif
2693 size = ALIGN_UP (size, GLRO(dl_pagesize));
2694
2695 /*
2696 Don't try to call MORECORE if argument is so big as to appear
2697 negative. Note that since mmap takes size_t arg, it may succeed
2698 below even if we cannot call MORECORE.
2699 */
2700
2701 if (size > 0)
2702 {
2703 brk = (char *) (MORECORE (size));
2704 if (brk != (char *) (MORECORE_FAILURE))
2705 madvise_thp (brk, size);
2706 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2707 }
2708
2709 if (brk == (char *) (MORECORE_FAILURE))
2710 {
2711 /*
2712 If have mmap, try using it as a backup when MORECORE fails or
2713 cannot be used. This is worth doing on systems that have "holes" in
2714 address space, so sbrk cannot extend to give contiguous space, but
2715 space is available elsewhere. Note that we ignore mmap max count
2716 and threshold limits, since the space will not be used as a
2717 segregated mmap region.
2718 */
2719
2720 char *mbrk = MAP_FAILED;
2721#if HAVE_TUNABLES
2722 if (mp_.hp_pagesize > 0)
2723 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size,
2724 mp_.hp_pagesize, mp_.hp_pagesize,
2725 mp_.hp_flags, av);
2726#endif
2727 if (mbrk == MAP_FAILED)
2728 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, pagesize,
2729 MMAP_AS_MORECORE_SIZE, 0, av);
2730 if (mbrk != MAP_FAILED)
2731 {
2732 /* We do not need, and cannot use, another sbrk call to find end */
2733 brk = mbrk;
2734 snd_brk = brk + size;
2735 }
2736 }
2737
2738 if (brk != (char *) (MORECORE_FAILURE))
2739 {
2740 if (mp_.sbrk_base == 0)
2741 mp_.sbrk_base = brk;
2742 av->system_mem += size;
2743
2744 /*
2745 If MORECORE extends previous space, we can likewise extend top size.
2746 */
2747
2748 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2749 set_head (old_top, (size + old_size) | PREV_INUSE);
2750
2751 else if (contiguous (av) && old_size && brk < old_end)
2752 /* Oops! Someone else killed our space.. Can't touch anything. */
2753 malloc_printerr ("break adjusted to free malloc space");
2754
2755 /*
2756 Otherwise, make adjustments:
2757
2758 * If the first time through or noncontiguous, we need to call sbrk
2759 just to find out where the end of memory lies.
2760
2761 * We need to ensure that all returned chunks from malloc will meet
2762 MALLOC_ALIGNMENT
2763
2764 * If there was an intervening foreign sbrk, we need to adjust sbrk
2765 request size to account for fact that we will not be able to
2766 combine new space with existing space in old_top.
2767
2768 * Almost all systems internally allocate whole pages at a time, in
2769 which case we might as well use the whole last page of request.
2770 So we allocate enough more memory to hit a page boundary now,
2771 which in turn causes future contiguous calls to page-align.
2772 */
2773
2774 else
2775 {
2776 front_misalign = 0;
2777 end_misalign = 0;
2778 correction = 0;
2779 aligned_brk = brk;
2780
2781 /* handle contiguous cases */
2782 if (contiguous (av))
2783 {
2784 /* Count foreign sbrk as system_mem. */
2785 if (old_size)
2786 av->system_mem += brk - old_end;
2787
2788 /* Guarantee alignment of first new chunk made from this space */
2789
2790 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2791 if (front_misalign > 0)
2792 {
2793 /*
2794 Skip over some bytes to arrive at an aligned position.
2795 We don't need to specially mark these wasted front bytes.
2796 They will never be accessed anyway because
2797 prev_inuse of av->top (and any chunk created from its start)
2798 is always true after initialization.
2799 */
2800
2801 correction = MALLOC_ALIGNMENT - front_misalign;
2802 aligned_brk += correction;
2803 }
2804
2805 /*
2806 If this isn't adjacent to existing space, then we will not
2807 be able to merge with old_top space, so must add to 2nd request.
2808 */
2809
2810 correction += old_size;
2811
2812 /* Extend the end address to hit a page boundary */
2813 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2814 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2815
2816 assert (correction >= 0);
2817 snd_brk = (char *) (MORECORE (correction));
2818
2819 /*
2820 If can't allocate correction, try to at least find out current
2821 brk. It might be enough to proceed without failing.
2822
2823 Note that if second sbrk did NOT fail, we assume that space
2824 is contiguous with first sbrk. This is a safe assumption unless
2825 program is multithreaded but doesn't use locks and a foreign sbrk
2826 occurred between our first and second calls.
2827 */
2828
2829 if (snd_brk == (char *) (MORECORE_FAILURE))
2830 {
2831 correction = 0;
2832 snd_brk = (char *) (MORECORE (0));
2833 }
2834 else
2835 madvise_thp (snd_brk, correction);
2836 }
2837
2838 /* handle non-contiguous cases */
2839 else
2840 {
2841 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2842 /* MORECORE/mmap must correctly align */
2843 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2844 else
2845 {
2846 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2847 if (front_misalign > 0)
2848 {
2849 /*
2850 Skip over some bytes to arrive at an aligned position.
2851 We don't need to specially mark these wasted front bytes.
2852 They will never be accessed anyway because
2853 prev_inuse of av->top (and any chunk created from its start)
2854 is always true after initialization.
2855 */
2856
2857 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2858 }
2859 }
2860
2861 /* Find out current end of memory */
2862 if (snd_brk == (char *) (MORECORE_FAILURE))
2863 {
2864 snd_brk = (char *) (MORECORE (0));
2865 }
2866 }
2867
2868 /* Adjust top based on results of second sbrk */
2869 if (snd_brk != (char *) (MORECORE_FAILURE))
2870 {
2871 av->top = (mchunkptr) aligned_brk;
2872 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2873 av->system_mem += correction;
2874
2875 /*
2876 If not the first time through, we either have a
2877 gap due to foreign sbrk or a non-contiguous region. Insert a
2878 double fencepost at old_top to prevent consolidation with space
2879 we don't own. These fenceposts are artificial chunks that are
2880 marked as inuse and are in any case too small to use. We need
2881 two to make sizes and alignments work out.
2882 */
2883
2884 if (old_size != 0)
2885 {
2886 /*
2887 Shrink old_top to insert fenceposts, keeping size a
2888 multiple of MALLOC_ALIGNMENT. We know there is at least
2889 enough space in old_top to do this.
2890 */
2891 old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK;
2892 set_head (old_top, old_size | PREV_INUSE);
2893
2894 /*
2895 Note that the following assignments completely overwrite
2896 old_top when old_size was previously MINSIZE. This is
2897 intentional. We need the fencepost, even if old_top otherwise gets
2898 lost.
2899 */
2900 set_head (chunk_at_offset (old_top, old_size),
2901 CHUNK_HDR_SZ | PREV_INUSE);
2902 set_head (chunk_at_offset (old_top,
2903 old_size + CHUNK_HDR_SZ),
2904 CHUNK_HDR_SZ | PREV_INUSE);
2905
2906 /* If possible, release the rest. */
2907 if (old_size >= MINSIZE)
2908 {
2909 _int_free (av, old_top, 1);
2910 }
2911 }
2912 }
2913 }
2914 }
2915 } /* if (av != &main_arena) */
2916
2917 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2918 av->max_system_mem = av->system_mem;
2919 check_malloc_state (av);
2920
2921 /* finally, do the allocation */
2922 p = av->top;
2923 size = chunksize (p);
2924
2925 /* check that one of the above allocation paths succeeded */
2926 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2927 {
2928 remainder_size = size - nb;
2929 remainder = chunk_at_offset (p, nb);
2930 av->top = remainder;
2931 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2932 set_head (remainder, remainder_size | PREV_INUSE);
2933 check_malloced_chunk (av, p, nb);
2934 return chunk2mem (p);
2935 }
2936
2937 /* catch all failure paths */
2938 __set_errno (ENOMEM);
2939 return 0;
2940}
2941
2942
2943/*
2944 systrim is an inverse of sorts to sysmalloc. It gives memory back
2945 to the system (via negative arguments to sbrk) if there is unused
2946 memory at the `high' end of the malloc pool. It is called
2947 automatically by free() when top space exceeds the trim
2948 threshold. It is also called by the public malloc_trim routine. It
2949 returns 1 if it actually released any memory, else 0.
2950 */
2951
2952static int
2953systrim (size_t pad, mstate av)
2954{
2955 long top_size; /* Amount of top-most memory */
2956 long extra; /* Amount to release */
2957 long released; /* Amount actually released */
2958 char *current_brk; /* address returned by pre-check sbrk call */
2959 char *new_brk; /* address returned by post-check sbrk call */
2960 long top_area;
2961
2962 top_size = chunksize (av->top);
2963
2964 top_area = top_size - MINSIZE - 1;
2965 if (top_area <= pad)
2966 return 0;
2967
2968 /* Release in pagesize units and round down to the nearest page. */
2969#if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2970 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2971 extra = ALIGN_DOWN (top_area - pad, mp_.thp_pagesize);
2972 else
2973#endif
2974 extra = ALIGN_DOWN (top_area - pad, GLRO(dl_pagesize));
2975
2976 if (extra == 0)
2977 return 0;
2978
2979 /*
2980 Only proceed if end of memory is where we last set it.
2981 This avoids problems if there were foreign sbrk calls.
2982 */
2983 current_brk = (char *) (MORECORE (0));
2984 if (current_brk == (char *) (av->top) + top_size)
2985 {
2986 /*
2987 Attempt to release memory. We ignore MORECORE return value,
2988 and instead call again to find out where new end of memory is.
2989 This avoids problems if first call releases less than we asked,
2990 of if failure somehow altered brk value. (We could still
2991 encounter problems if it altered brk in some very bad way,
2992 but the only thing we can do is adjust anyway, which will cause
2993 some downstream failure.)
2994 */
2995
2996 MORECORE (-extra);
2997 new_brk = (char *) (MORECORE (0));
2998
2999 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
3000
3001 if (new_brk != (char *) MORECORE_FAILURE)
3002 {
3003 released = (long) (current_brk - new_brk);
3004
3005 if (released != 0)
3006 {
3007 /* Success. Adjust top. */
3008 av->system_mem -= released;
3009 set_head (av->top, (top_size - released) | PREV_INUSE);
3010 check_malloc_state (av);
3011 return 1;
3012 }
3013 }
3014 }
3015 return 0;
3016}
3017
3018static void
3019munmap_chunk (mchunkptr p)
3020{
3021 size_t pagesize = GLRO (dl_pagesize);
3022 INTERNAL_SIZE_T size = chunksize (p);
3023
3024 assert (chunk_is_mmapped (p));
3025
3026 uintptr_t mem = (uintptr_t) chunk2mem (p);
3027 uintptr_t block = (uintptr_t) p - prev_size (p);
3028 size_t total_size = prev_size (p) + size;
3029 /* Unfortunately we have to do the compilers job by hand here. Normally
3030 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3031 page size. But gcc does not recognize the optimization possibility
3032 (in the moment at least) so we combine the two values into one before
3033 the bit test. */
3034 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3035 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3036 malloc_printerr ("munmap_chunk(): invalid pointer");
3037
3038 atomic_fetch_add_relaxed (&mp_.n_mmaps, -1);
3039 atomic_fetch_add_relaxed (&mp_.mmapped_mem, -total_size);
3040
3041 /* If munmap failed the process virtual memory address space is in a
3042 bad shape. Just leave the block hanging around, the process will
3043 terminate shortly anyway since not much can be done. */
3044 __munmap ((char *) block, total_size);
3045}
3046
3047#if HAVE_MREMAP
3048
3049static mchunkptr
3050mremap_chunk (mchunkptr p, size_t new_size)
3051{
3052 size_t pagesize = GLRO (dl_pagesize);
3053 INTERNAL_SIZE_T offset = prev_size (p);
3054 INTERNAL_SIZE_T size = chunksize (p);
3055 char *cp;
3056
3057 assert (chunk_is_mmapped (p));
3058
3059 uintptr_t block = (uintptr_t) p - offset;
3060 uintptr_t mem = (uintptr_t) chunk2mem(p);
3061 size_t total_size = offset + size;
3062 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3063 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3064 malloc_printerr("mremap_chunk(): invalid pointer");
3065
3066 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3067 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
3068
3069 /* No need to remap if the number of pages does not change. */
3070 if (total_size == new_size)
3071 return p;
3072
3073 cp = (char *) __mremap ((char *) block, total_size, new_size,
3074 MREMAP_MAYMOVE);
3075
3076 if (cp == MAP_FAILED)
3077 return 0;
3078
3079 madvise_thp (cp, new_size);
3080
3081 p = (mchunkptr) (cp + offset);
3082
3083 assert (aligned_OK (chunk2mem (p)));
3084
3085 assert (prev_size (p) == offset);
3086 set_head (p, (new_size - offset) | IS_MMAPPED);
3087
3088 INTERNAL_SIZE_T new;
3089 new = atomic_fetch_add_relaxed (&mp_.mmapped_mem, new_size - size - offset)
3090 + new_size - size - offset;
3091 atomic_max (&mp_.max_mmapped_mem, new);
3092 return p;
3093}
3094#endif /* HAVE_MREMAP */
3095
3096/*------------------------ Public wrappers. --------------------------------*/
3097
3098#if USE_TCACHE
3099
3100/* We overlay this structure on the user-data portion of a chunk when
3101 the chunk is stored in the per-thread cache. */
3102typedef struct tcache_entry
3103{
3104 struct tcache_entry *next;
3105 /* This field exists to detect double frees. */
3106 uintptr_t key;
3107} tcache_entry;
3108
3109/* There is one of these for each thread, which contains the
3110 per-thread cache (hence "tcache_perthread_struct"). Keeping
3111 overall size low is mildly important. Note that COUNTS and ENTRIES
3112 are redundant (we could have just counted the linked list each
3113 time), this is for performance reasons. */
3114typedef struct tcache_perthread_struct
3115{
3116 uint16_t counts[TCACHE_MAX_BINS];
3117 tcache_entry *entries[TCACHE_MAX_BINS];
3118} tcache_perthread_struct;
3119
3120static __thread bool tcache_shutting_down = false;
3121static __thread tcache_perthread_struct *tcache = NULL;
3122
3123/* Process-wide key to try and catch a double-free in the same thread. */
3124static uintptr_t tcache_key;
3125
3126/* The value of tcache_key does not really have to be a cryptographically
3127 secure random number. It only needs to be arbitrary enough so that it does
3128 not collide with values present in applications. If a collision does happen
3129 consistently enough, it could cause a degradation in performance since the
3130 entire list is checked to check if the block indeed has been freed the
3131 second time. The odds of this happening are exceedingly low though, about 1
3132 in 2^wordsize. There is probably a higher chance of the performance
3133 degradation being due to a double free where the first free happened in a
3134 different thread; that's a case this check does not cover. */
3135static void
3136tcache_key_initialize (void)
3137{
3138 if (__getrandom_nocancel (&tcache_key, sizeof(tcache_key), GRND_NONBLOCK)
3139 != sizeof (tcache_key))
3140 {
3141 tcache_key = random_bits ();
3142#if __WORDSIZE == 64
3143 tcache_key = (tcache_key << 32) | random_bits ();
3144#endif
3145 }
3146}
3147
3148/* Caller must ensure that we know tc_idx is valid and there's room
3149 for more chunks. */
3150static __always_inline void
3151tcache_put (mchunkptr chunk, size_t tc_idx)
3152{
3153 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
3154
3155 /* Mark this chunk as "in the tcache" so the test in _int_free will
3156 detect a double free. */
3157 e->key = tcache_key;
3158
3159 e->next = PROTECT_PTR (&e->next, tcache->entries[tc_idx]);
3160 tcache->entries[tc_idx] = e;
3161 ++(tcache->counts[tc_idx]);
3162}
3163
3164/* Caller must ensure that we know tc_idx is valid and there's
3165 available chunks to remove. */
3166static __always_inline void *
3167tcache_get (size_t tc_idx)
3168{
3169 tcache_entry *e = tcache->entries[tc_idx];
3170 if (__glibc_unlikely (!aligned_OK (e)))
3171 malloc_printerr ("malloc(): unaligned tcache chunk detected");
3172 tcache->entries[tc_idx] = REVEAL_PTR (e->next);
3173 --(tcache->counts[tc_idx]);
3174 e->key = 0;
3175 return (void *) e;
3176}
3177
3178static void
3179tcache_thread_shutdown (void)
3180{
3181 int i;
3182 tcache_perthread_struct *tcache_tmp = tcache;
3183
3184 tcache_shutting_down = true;
3185
3186 if (!tcache)
3187 return;
3188
3189 /* Disable the tcache and prevent it from being reinitialized. */
3190 tcache = NULL;
3191
3192 /* Free all of the entries and the tcache itself back to the arena
3193 heap for coalescing. */
3194 for (i = 0; i < TCACHE_MAX_BINS; ++i)
3195 {
3196 while (tcache_tmp->entries[i])
3197 {
3198 tcache_entry *e = tcache_tmp->entries[i];
3199 if (__glibc_unlikely (!aligned_OK (e)))
3200 malloc_printerr ("tcache_thread_shutdown(): "
3201 "unaligned tcache chunk detected");
3202 tcache_tmp->entries[i] = REVEAL_PTR (e->next);
3203 __libc_free (e);
3204 }
3205 }
3206
3207 __libc_free (tcache_tmp);
3208}
3209
3210static void
3211tcache_init(void)
3212{
3213 mstate ar_ptr;
3214 void *victim = 0;
3215 const size_t bytes = sizeof (tcache_perthread_struct);
3216
3217 if (tcache_shutting_down)
3218 return;
3219
3220 arena_get (ar_ptr, bytes);
3221 victim = _int_malloc (ar_ptr, bytes);
3222 if (!victim && ar_ptr != NULL)
3223 {
3224 ar_ptr = arena_get_retry (ar_ptr, bytes);
3225 victim = _int_malloc (ar_ptr, bytes);
3226 }
3227
3228
3229 if (ar_ptr != NULL)
3230 __libc_lock_unlock (ar_ptr->mutex);
3231
3232 /* In a low memory situation, we may not be able to allocate memory
3233 - in which case, we just keep trying later. However, we
3234 typically do this very early, so either there is sufficient
3235 memory, or there isn't enough memory to do non-trivial
3236 allocations anyway. */
3237 if (victim)
3238 {
3239 tcache = (tcache_perthread_struct *) victim;
3240 memset (tcache, 0, sizeof (tcache_perthread_struct));
3241 }
3242
3243}
3244
3245# define MAYBE_INIT_TCACHE() \
3246 if (__glibc_unlikely (tcache == NULL)) \
3247 tcache_init();
3248
3249#else /* !USE_TCACHE */
3250# define MAYBE_INIT_TCACHE()
3251
3252static void
3253tcache_thread_shutdown (void)
3254{
3255 /* Nothing to do if there is no thread cache. */
3256}
3257
3258#endif /* !USE_TCACHE */
3259
3260#if IS_IN (libc)
3261void *
3262__libc_malloc (size_t bytes)
3263{
3264 mstate ar_ptr;
3265 void *victim;
3266
3267 _Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2,
3268 "PTRDIFF_MAX is not more than half of SIZE_MAX");
3269
3270 if (!__malloc_initialized)
3271 ptmalloc_init ();
3272#if USE_TCACHE
3273 /* int_free also calls request2size, be careful to not pad twice. */
3274 size_t tbytes = checked_request2size (bytes);
3275 if (tbytes == 0)
3276 {
3277 __set_errno (ENOMEM);
3278 return NULL;
3279 }
3280 size_t tc_idx = csize2tidx (tbytes);
3281
3282 MAYBE_INIT_TCACHE ();
3283
3284 DIAG_PUSH_NEEDS_COMMENT;
3285 if (tc_idx < mp_.tcache_bins
3286 && tcache
3287 && tcache->counts[tc_idx] > 0)
3288 {
3289 victim = tcache_get (tc_idx);
3290 return tag_new_usable (victim);
3291 }
3292 DIAG_POP_NEEDS_COMMENT;
3293#endif
3294
3295 if (SINGLE_THREAD_P)
3296 {
3297 victim = tag_new_usable (_int_malloc (&main_arena, bytes));
3298 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3299 &main_arena == arena_for_chunk (mem2chunk (victim)));
3300 return victim;
3301 }
3302
3303 arena_get (ar_ptr, bytes);
3304
3305 victim = _int_malloc (ar_ptr, bytes);
3306 /* Retry with another arena only if we were able to find a usable arena
3307 before. */
3308 if (!victim && ar_ptr != NULL)
3309 {
3310 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3311 ar_ptr = arena_get_retry (ar_ptr, bytes);
3312 victim = _int_malloc (ar_ptr, bytes);
3313 }
3314
3315 if (ar_ptr != NULL)
3316 __libc_lock_unlock (ar_ptr->mutex);
3317
3318 victim = tag_new_usable (victim);
3319
3320 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3321 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3322 return victim;
3323}
3324libc_hidden_def (__libc_malloc)
3325
3326void
3327__libc_free (void *mem)
3328{
3329 mstate ar_ptr;
3330 mchunkptr p; /* chunk corresponding to mem */
3331
3332 if (mem == 0) /* free(0) has no effect */
3333 return;
3334
3335 /* Quickly check that the freed pointer matches the tag for the memory.
3336 This gives a useful double-free detection. */
3337 if (__glibc_unlikely (mtag_enabled))
3338 *(volatile char *)mem;
3339
3340 int err = errno;
3341
3342 p = mem2chunk (mem);
3343
3344 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3345 {
3346 /* See if the dynamic brk/mmap threshold needs adjusting.
3347 Dumped fake mmapped chunks do not affect the threshold. */
3348 if (!mp_.no_dyn_threshold
3349 && chunksize_nomask (p) > mp_.mmap_threshold
3350 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX)
3351 {
3352 mp_.mmap_threshold = chunksize (p);
3353 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3354 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3355 mp_.mmap_threshold, mp_.trim_threshold);
3356 }
3357 munmap_chunk (p);
3358 }
3359 else
3360 {
3361 MAYBE_INIT_TCACHE ();
3362
3363 /* Mark the chunk as belonging to the library again. */
3364 (void)tag_region (chunk2mem (p), memsize (p));
3365
3366 ar_ptr = arena_for_chunk (p);
3367 _int_free (ar_ptr, p, 0);
3368 }
3369
3370 __set_errno (err);
3371}
3372libc_hidden_def (__libc_free)
3373
3374void *
3375__libc_realloc (void *oldmem, size_t bytes)
3376{
3377 mstate ar_ptr;
3378 INTERNAL_SIZE_T nb; /* padded request size */
3379
3380 void *newp; /* chunk to return */
3381
3382 if (!__malloc_initialized)
3383 ptmalloc_init ();
3384
3385#if REALLOC_ZERO_BYTES_FREES
3386 if (bytes == 0 && oldmem != NULL)
3387 {
3388 __libc_free (oldmem); return 0;
3389 }
3390#endif
3391
3392 /* realloc of null is supposed to be same as malloc */
3393 if (oldmem == 0)
3394 return __libc_malloc (bytes);
3395
3396 /* Perform a quick check to ensure that the pointer's tag matches the
3397 memory's tag. */
3398 if (__glibc_unlikely (mtag_enabled))
3399 *(volatile char*) oldmem;
3400
3401 /* Return the chunk as is whenever possible, i.e. there's enough usable space
3402 but not so much that we end up fragmenting the block. We use the trim
3403 threshold as the heuristic to decide the latter. */
3404 size_t usable = musable (oldmem);
3405 if (bytes <= usable
3406 && (unsigned long) (usable - bytes) <= mp_.trim_threshold)
3407 return oldmem;
3408
3409 /* chunk corresponding to oldmem */
3410 const mchunkptr oldp = mem2chunk (oldmem);
3411 /* its size */
3412 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3413
3414 if (chunk_is_mmapped (oldp))
3415 ar_ptr = NULL;
3416 else
3417 {
3418 MAYBE_INIT_TCACHE ();
3419 ar_ptr = arena_for_chunk (oldp);
3420 }
3421
3422 /* Little security check which won't hurt performance: the allocator
3423 never wrapps around at the end of the address space. Therefore
3424 we can exclude some size values which might appear here by
3425 accident or by "design" from some intruder. */
3426 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3427 || __builtin_expect (misaligned_chunk (oldp), 0)))
3428 malloc_printerr ("realloc(): invalid pointer");
3429
3430 nb = checked_request2size (bytes);
3431 if (nb == 0)
3432 {
3433 __set_errno (ENOMEM);
3434 return NULL;
3435 }
3436
3437 if (chunk_is_mmapped (oldp))
3438 {
3439 void *newmem;
3440
3441#if HAVE_MREMAP
3442 newp = mremap_chunk (oldp, nb);
3443 if (newp)
3444 {
3445 void *newmem = chunk2mem_tag (newp);
3446 /* Give the new block a different tag. This helps to ensure
3447 that stale handles to the previous mapping are not
3448 reused. There's a performance hit for both us and the
3449 caller for doing this, so we might want to
3450 reconsider. */
3451 return tag_new_usable (newmem);
3452 }
3453#endif
3454 /* Note the extra SIZE_SZ overhead. */
3455 if (oldsize - SIZE_SZ >= nb)
3456 return oldmem; /* do nothing */
3457
3458 /* Must alloc, copy, free. */
3459 newmem = __libc_malloc (bytes);
3460 if (newmem == 0)
3461 return 0; /* propagate failure */
3462
3463 memcpy (newmem, oldmem, oldsize - CHUNK_HDR_SZ);
3464 munmap_chunk (oldp);
3465 return newmem;
3466 }
3467
3468 if (SINGLE_THREAD_P)
3469 {
3470 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3471 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3472 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3473
3474 return newp;
3475 }
3476
3477 __libc_lock_lock (ar_ptr->mutex);
3478
3479 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3480
3481 __libc_lock_unlock (ar_ptr->mutex);
3482 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3483 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3484
3485 if (newp == NULL)
3486 {
3487 /* Try harder to allocate memory in other arenas. */
3488 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3489 newp = __libc_malloc (bytes);
3490 if (newp != NULL)
3491 {
3492 size_t sz = memsize (oldp);
3493 memcpy (newp, oldmem, sz);
3494 (void) tag_region (chunk2mem (oldp), sz);
3495 _int_free (ar_ptr, oldp, 0);
3496 }
3497 }
3498
3499 return newp;
3500}
3501libc_hidden_def (__libc_realloc)
3502
3503void *
3504__libc_memalign (size_t alignment, size_t bytes)
3505{
3506 if (!__malloc_initialized)
3507 ptmalloc_init ();
3508
3509 void *address = RETURN_ADDRESS (0);
3510 return _mid_memalign (alignment, bytes, address);
3511}
3512
3513static void *
3514_mid_memalign (size_t alignment, size_t bytes, void *address)
3515{
3516 mstate ar_ptr;
3517 void *p;
3518
3519 /* If we need less alignment than we give anyway, just relay to malloc. */
3520 if (alignment <= MALLOC_ALIGNMENT)
3521 return __libc_malloc (bytes);
3522
3523 /* Otherwise, ensure that it is at least a minimum chunk size */
3524 if (alignment < MINSIZE)
3525 alignment = MINSIZE;
3526
3527 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3528 power of 2 and will cause overflow in the check below. */
3529 if (alignment > SIZE_MAX / 2 + 1)
3530 {
3531 __set_errno (EINVAL);
3532 return 0;
3533 }
3534
3535
3536 /* Make sure alignment is power of 2. */
3537 if (!powerof2 (alignment))
3538 {
3539 size_t a = MALLOC_ALIGNMENT * 2;
3540 while (a < alignment)
3541 a <<= 1;
3542 alignment = a;
3543 }
3544
3545 if (SINGLE_THREAD_P)
3546 {
3547 p = _int_memalign (&main_arena, alignment, bytes);
3548 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3549 &main_arena == arena_for_chunk (mem2chunk (p)));
3550 return tag_new_usable (p);
3551 }
3552
3553 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3554
3555 p = _int_memalign (ar_ptr, alignment, bytes);
3556 if (!p && ar_ptr != NULL)
3557 {
3558 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3559 ar_ptr = arena_get_retry (ar_ptr, bytes);
3560 p = _int_memalign (ar_ptr, alignment, bytes);
3561 }
3562
3563 if (ar_ptr != NULL)
3564 __libc_lock_unlock (ar_ptr->mutex);
3565
3566 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3567 ar_ptr == arena_for_chunk (mem2chunk (p)));
3568 return tag_new_usable (p);
3569}
3570/* For ISO C11. */
3571weak_alias (__libc_memalign, aligned_alloc)
3572libc_hidden_def (__libc_memalign)
3573
3574void *
3575__libc_valloc (size_t bytes)
3576{
3577 if (!__malloc_initialized)
3578 ptmalloc_init ();
3579
3580 void *address = RETURN_ADDRESS (0);
3581 size_t pagesize = GLRO (dl_pagesize);
3582 return _mid_memalign (pagesize, bytes, address);
3583}
3584
3585void *
3586__libc_pvalloc (size_t bytes)
3587{
3588 if (!__malloc_initialized)
3589 ptmalloc_init ();
3590
3591 void *address = RETURN_ADDRESS (0);
3592 size_t pagesize = GLRO (dl_pagesize);
3593 size_t rounded_bytes;
3594 /* ALIGN_UP with overflow check. */
3595 if (__glibc_unlikely (__builtin_add_overflow (bytes,
3596 pagesize - 1,
3597 &rounded_bytes)))
3598 {
3599 __set_errno (ENOMEM);
3600 return 0;
3601 }
3602 rounded_bytes = rounded_bytes & -(pagesize - 1);
3603
3604 return _mid_memalign (pagesize, rounded_bytes, address);
3605}
3606
3607void *
3608__libc_calloc (size_t n, size_t elem_size)
3609{
3610 mstate av;
3611 mchunkptr oldtop;
3612 INTERNAL_SIZE_T sz, oldtopsize;
3613 void *mem;
3614 unsigned long clearsize;
3615 unsigned long nclears;
3616 INTERNAL_SIZE_T *d;
3617 ptrdiff_t bytes;
3618
3619 if (__glibc_unlikely (__builtin_mul_overflow (n, elem_size, &bytes)))
3620 {
3621 __set_errno (ENOMEM);
3622 return NULL;
3623 }
3624
3625 sz = bytes;
3626
3627 if (!__malloc_initialized)
3628 ptmalloc_init ();
3629
3630 MAYBE_INIT_TCACHE ();
3631
3632 if (SINGLE_THREAD_P)
3633 av = &main_arena;
3634 else
3635 arena_get (av, sz);
3636
3637 if (av)
3638 {
3639 /* Check if we hand out the top chunk, in which case there may be no
3640 need to clear. */
3641#if MORECORE_CLEARS
3642 oldtop = top (av);
3643 oldtopsize = chunksize (top (av));
3644# if MORECORE_CLEARS < 2
3645 /* Only newly allocated memory is guaranteed to be cleared. */
3646 if (av == &main_arena &&
3647 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3648 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3649# endif
3650 if (av != &main_arena)
3651 {
3652 heap_info *heap = heap_for_ptr (oldtop);
3653 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3654 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3655 }
3656#endif
3657 }
3658 else
3659 {
3660 /* No usable arenas. */
3661 oldtop = 0;
3662 oldtopsize = 0;
3663 }
3664 mem = _int_malloc (av, sz);
3665
3666 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3667 av == arena_for_chunk (mem2chunk (mem)));
3668
3669 if (!SINGLE_THREAD_P)
3670 {
3671 if (mem == 0 && av != NULL)
3672 {
3673 LIBC_PROBE (memory_calloc_retry, 1, sz);
3674 av = arena_get_retry (av, sz);
3675 mem = _int_malloc (av, sz);
3676 }
3677
3678 if (av != NULL)
3679 __libc_lock_unlock (av->mutex);
3680 }
3681
3682 /* Allocation failed even after a retry. */
3683 if (mem == 0)
3684 return 0;
3685
3686 mchunkptr p = mem2chunk (mem);
3687
3688 /* If we are using memory tagging, then we need to set the tags
3689 regardless of MORECORE_CLEARS, so we zero the whole block while
3690 doing so. */
3691 if (__glibc_unlikely (mtag_enabled))
3692 return tag_new_zero_region (mem, memsize (p));
3693
3694 INTERNAL_SIZE_T csz = chunksize (p);
3695
3696 /* Two optional cases in which clearing not necessary */
3697 if (chunk_is_mmapped (p))
3698 {
3699 if (__builtin_expect (perturb_byte, 0))
3700 return memset (mem, 0, sz);
3701
3702 return mem;
3703 }
3704
3705#if MORECORE_CLEARS
3706 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3707 {
3708 /* clear only the bytes from non-freshly-sbrked memory */
3709 csz = oldtopsize;
3710 }
3711#endif
3712
3713 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3714 contents have an odd number of INTERNAL_SIZE_T-sized words;
3715 minimally 3. */
3716 d = (INTERNAL_SIZE_T *) mem;
3717 clearsize = csz - SIZE_SZ;
3718 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3719 assert (nclears >= 3);
3720
3721 if (nclears > 9)
3722 return memset (d, 0, clearsize);
3723
3724 else
3725 {
3726 *(d + 0) = 0;
3727 *(d + 1) = 0;
3728 *(d + 2) = 0;
3729 if (nclears > 4)
3730 {
3731 *(d + 3) = 0;
3732 *(d + 4) = 0;
3733 if (nclears > 6)
3734 {
3735 *(d + 5) = 0;
3736 *(d + 6) = 0;
3737 if (nclears > 8)
3738 {
3739 *(d + 7) = 0;
3740 *(d + 8) = 0;
3741 }
3742 }
3743 }
3744 }
3745
3746 return mem;
3747}
3748#endif /* IS_IN (libc) */
3749
3750/*
3751 ------------------------------ malloc ------------------------------
3752 */
3753
3754static void *
3755_int_malloc (mstate av, size_t bytes)
3756{
3757 INTERNAL_SIZE_T nb; /* normalized request size */
3758 unsigned int idx; /* associated bin index */
3759 mbinptr bin; /* associated bin */
3760
3761 mchunkptr victim; /* inspected/selected chunk */
3762 INTERNAL_SIZE_T size; /* its size */
3763 int victim_index; /* its bin index */
3764
3765 mchunkptr remainder; /* remainder from a split */
3766 unsigned long remainder_size; /* its size */
3767
3768 unsigned int block; /* bit map traverser */
3769 unsigned int bit; /* bit map traverser */
3770 unsigned int map; /* current word of binmap */
3771
3772 mchunkptr fwd; /* misc temp for linking */
3773 mchunkptr bck; /* misc temp for linking */
3774
3775#if USE_TCACHE
3776 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3777#endif
3778
3779 /*
3780 Convert request size to internal form by adding SIZE_SZ bytes
3781 overhead plus possibly more to obtain necessary alignment and/or
3782 to obtain a size of at least MINSIZE, the smallest allocatable
3783 size. Also, checked_request2size returns false for request sizes
3784 that are so large that they wrap around zero when padded and
3785 aligned.
3786 */
3787
3788 nb = checked_request2size (bytes);
3789 if (nb == 0)
3790 {
3791 __set_errno (ENOMEM);
3792 return NULL;
3793 }
3794
3795 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3796 mmap. */
3797 if (__glibc_unlikely (av == NULL))
3798 {
3799 void *p = sysmalloc (nb, av);
3800 if (p != NULL)
3801 alloc_perturb (p, bytes);
3802 return p;
3803 }
3804
3805 /*
3806 If the size qualifies as a fastbin, first check corresponding bin.
3807 This code is safe to execute even if av is not yet initialized, so we
3808 can try it without checking, which saves some time on this fast path.
3809 */
3810
3811#define REMOVE_FB(fb, victim, pp) \
3812 do \
3813 { \
3814 victim = pp; \
3815 if (victim == NULL) \
3816 break; \
3817 pp = REVEAL_PTR (victim->fd); \
3818 if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \
3819 malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \
3820 } \
3821 while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \
3822 != victim); \
3823
3824 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3825 {
3826 idx = fastbin_index (nb);
3827 mfastbinptr *fb = &fastbin (av, idx);
3828 mchunkptr pp;
3829 victim = *fb;
3830
3831 if (victim != NULL)
3832 {
3833 if (__glibc_unlikely (misaligned_chunk (victim)))
3834 malloc_printerr ("malloc(): unaligned fastbin chunk detected 2");
3835
3836 if (SINGLE_THREAD_P)
3837 *fb = REVEAL_PTR (victim->fd);
3838 else
3839 REMOVE_FB (fb, pp, victim);
3840 if (__glibc_likely (victim != NULL))
3841 {
3842 size_t victim_idx = fastbin_index (chunksize (victim));
3843 if (__builtin_expect (victim_idx != idx, 0))
3844 malloc_printerr ("malloc(): memory corruption (fast)");
3845 check_remalloced_chunk (av, victim, nb);
3846#if USE_TCACHE
3847 /* While we're here, if we see other chunks of the same size,
3848 stash them in the tcache. */
3849 size_t tc_idx = csize2tidx (nb);
3850 if (tcache && tc_idx < mp_.tcache_bins)
3851 {
3852 mchunkptr tc_victim;
3853
3854 /* While bin not empty and tcache not full, copy chunks. */
3855 while (tcache->counts[tc_idx] < mp_.tcache_count
3856 && (tc_victim = *fb) != NULL)
3857 {
3858 if (__glibc_unlikely (misaligned_chunk (tc_victim)))
3859 malloc_printerr ("malloc(): unaligned fastbin chunk detected 3");
3860 if (SINGLE_THREAD_P)
3861 *fb = REVEAL_PTR (tc_victim->fd);
3862 else
3863 {
3864 REMOVE_FB (fb, pp, tc_victim);
3865 if (__glibc_unlikely (tc_victim == NULL))
3866 break;
3867 }
3868 tcache_put (tc_victim, tc_idx);
3869 }
3870 }
3871#endif
3872 void *p = chunk2mem (victim);
3873 alloc_perturb (p, bytes);
3874 return p;
3875 }
3876 }
3877 }
3878
3879 /*
3880 If a small request, check regular bin. Since these "smallbins"
3881 hold one size each, no searching within bins is necessary.
3882 (For a large request, we need to wait until unsorted chunks are
3883 processed to find best fit. But for small ones, fits are exact
3884 anyway, so we can check now, which is faster.)
3885 */
3886
3887 if (in_smallbin_range (nb))
3888 {
3889 idx = smallbin_index (nb);
3890 bin = bin_at (av, idx);
3891
3892 if ((victim = last (bin)) != bin)
3893 {
3894 bck = victim->bk;
3895 if (__glibc_unlikely (bck->fd != victim))
3896 malloc_printerr ("malloc(): smallbin double linked list corrupted");
3897 set_inuse_bit_at_offset (victim, nb);
3898 bin->bk = bck;
3899 bck->fd = bin;
3900
3901 if (av != &main_arena)
3902 set_non_main_arena (victim);
3903 check_malloced_chunk (av, victim, nb);
3904#if USE_TCACHE
3905 /* While we're here, if we see other chunks of the same size,
3906 stash them in the tcache. */
3907 size_t tc_idx = csize2tidx (nb);
3908 if (tcache && tc_idx < mp_.tcache_bins)
3909 {
3910 mchunkptr tc_victim;
3911
3912 /* While bin not empty and tcache not full, copy chunks over. */
3913 while (tcache->counts[tc_idx] < mp_.tcache_count
3914 && (tc_victim = last (bin)) != bin)
3915 {
3916 if (tc_victim != 0)
3917 {
3918 bck = tc_victim->bk;
3919 set_inuse_bit_at_offset (tc_victim, nb);
3920 if (av != &main_arena)
3921 set_non_main_arena (tc_victim);
3922 bin->bk = bck;
3923 bck->fd = bin;
3924
3925 tcache_put (tc_victim, tc_idx);
3926 }
3927 }
3928 }
3929#endif
3930 void *p = chunk2mem (victim);
3931 alloc_perturb (p, bytes);
3932 return p;
3933 }
3934 }
3935
3936 /*
3937 If this is a large request, consolidate fastbins before continuing.
3938 While it might look excessive to kill all fastbins before
3939 even seeing if there is space available, this avoids
3940 fragmentation problems normally associated with fastbins.
3941 Also, in practice, programs tend to have runs of either small or
3942 large requests, but less often mixtures, so consolidation is not
3943 invoked all that often in most programs. And the programs that
3944 it is called frequently in otherwise tend to fragment.
3945 */
3946
3947 else
3948 {
3949 idx = largebin_index (nb);
3950 if (atomic_load_relaxed (&av->have_fastchunks))
3951 malloc_consolidate (av);
3952 }
3953
3954 /*
3955 Process recently freed or remaindered chunks, taking one only if
3956 it is exact fit, or, if this a small request, the chunk is remainder from
3957 the most recent non-exact fit. Place other traversed chunks in
3958 bins. Note that this step is the only place in any routine where
3959 chunks are placed in bins.
3960
3961 The outer loop here is needed because we might not realize until
3962 near the end of malloc that we should have consolidated, so must
3963 do so and retry. This happens at most once, and only when we would
3964 otherwise need to expand memory to service a "small" request.
3965 */
3966
3967#if USE_TCACHE
3968 INTERNAL_SIZE_T tcache_nb = 0;
3969 size_t tc_idx = csize2tidx (nb);
3970 if (tcache && tc_idx < mp_.tcache_bins)
3971 tcache_nb = nb;
3972 int return_cached = 0;
3973
3974 tcache_unsorted_count = 0;
3975#endif
3976
3977 for (;; )
3978 {
3979 int iters = 0;
3980 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3981 {
3982 bck = victim->bk;
3983 size = chunksize (victim);
3984 mchunkptr next = chunk_at_offset (victim, size);
3985
3986 if (__glibc_unlikely (size <= CHUNK_HDR_SZ)
3987 || __glibc_unlikely (size > av->system_mem))
3988 malloc_printerr ("malloc(): invalid size (unsorted)");
3989 if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ)
3990 || __glibc_unlikely (chunksize_nomask (next) > av->system_mem))
3991 malloc_printerr ("malloc(): invalid next size (unsorted)");
3992 if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size))
3993 malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)");
3994 if (__glibc_unlikely (bck->fd != victim)
3995 || __glibc_unlikely (victim->fd != unsorted_chunks (av)))
3996 malloc_printerr ("malloc(): unsorted double linked list corrupted");
3997 if (__glibc_unlikely (prev_inuse (next)))
3998 malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)");
3999
4000 /*
4001 If a small request, try to use last remainder if it is the
4002 only chunk in unsorted bin. This helps promote locality for
4003 runs of consecutive small requests. This is the only
4004 exception to best-fit, and applies only when there is
4005 no exact fit for a small chunk.
4006 */
4007
4008 if (in_smallbin_range (nb) &&
4009 bck == unsorted_chunks (av) &&
4010 victim == av->last_remainder &&
4011 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4012 {
4013 /* split and reattach remainder */
4014 remainder_size = size - nb;
4015 remainder = chunk_at_offset (victim, nb);
4016 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
4017 av->last_remainder = remainder;
4018 remainder->bk = remainder->fd = unsorted_chunks (av);
4019 if (!in_smallbin_range (remainder_size))
4020 {
4021 remainder->fd_nextsize = NULL;
4022 remainder->bk_nextsize = NULL;
4023 }
4024
4025 set_head (victim, nb | PREV_INUSE |
4026 (av != &main_arena ? NON_MAIN_ARENA : 0));
4027 set_head (remainder, remainder_size | PREV_INUSE);
4028 set_foot (remainder, remainder_size);
4029
4030 check_malloced_chunk (av, victim, nb);
4031 void *p = chunk2mem (victim);
4032 alloc_perturb (p, bytes);
4033 return p;
4034 }
4035
4036 /* remove from unsorted list */
4037 if (__glibc_unlikely (bck->fd != victim))
4038 malloc_printerr ("malloc(): corrupted unsorted chunks 3");
4039 unsorted_chunks (av)->bk = bck;
4040 bck->fd = unsorted_chunks (av);
4041
4042 /* Take now instead of binning if exact fit */
4043
4044 if (size == nb)
4045 {
4046 set_inuse_bit_at_offset (victim, size);
4047 if (av != &main_arena)
4048 set_non_main_arena (victim);
4049#if USE_TCACHE
4050 /* Fill cache first, return to user only if cache fills.
4051 We may return one of these chunks later. */
4052 if (tcache_nb
4053 && tcache->counts[tc_idx] < mp_.tcache_count)
4054 {
4055 tcache_put (victim, tc_idx);
4056 return_cached = 1;
4057 continue;
4058 }
4059 else
4060 {
4061#endif
4062 check_malloced_chunk (av, victim, nb);
4063 void *p = chunk2mem (victim);
4064 alloc_perturb (p, bytes);
4065 return p;
4066#if USE_TCACHE
4067 }
4068#endif
4069 }
4070
4071 /* place chunk in bin */
4072
4073 if (in_smallbin_range (size))
4074 {
4075 victim_index = smallbin_index (size);
4076 bck = bin_at (av, victim_index);
4077 fwd = bck->fd;
4078 }
4079 else
4080 {
4081 victim_index = largebin_index (size);
4082 bck = bin_at (av, victim_index);
4083 fwd = bck->fd;
4084
4085 /* maintain large bins in sorted order */
4086 if (fwd != bck)
4087 {
4088 /* Or with inuse bit to speed comparisons */
4089 size |= PREV_INUSE;
4090 /* if smaller than smallest, bypass loop below */
4091 assert (chunk_main_arena (bck->bk));
4092 if ((unsigned long) (size)
4093 < (unsigned long) chunksize_nomask (bck->bk))
4094 {
4095 fwd = bck;
4096 bck = bck->bk;
4097
4098 victim->fd_nextsize = fwd->fd;
4099 victim->bk_nextsize = fwd->fd->bk_nextsize;
4100 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
4101 }
4102 else
4103 {
4104 assert (chunk_main_arena (fwd));
4105 while ((unsigned long) size < chunksize_nomask (fwd))
4106 {
4107 fwd = fwd->fd_nextsize;
4108 assert (chunk_main_arena (fwd));
4109 }
4110
4111 if ((unsigned long) size
4112 == (unsigned long) chunksize_nomask (fwd))
4113 /* Always insert in the second position. */
4114 fwd = fwd->fd;
4115 else
4116 {
4117 victim->fd_nextsize = fwd;
4118 victim->bk_nextsize = fwd->bk_nextsize;
4119 if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd))
4120 malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)");
4121 fwd->bk_nextsize = victim;
4122 victim->bk_nextsize->fd_nextsize = victim;
4123 }
4124 bck = fwd->bk;
4125 if (bck->fd != fwd)
4126 malloc_printerr ("malloc(): largebin double linked list corrupted (bk)");
4127 }
4128 }
4129 else
4130 victim->fd_nextsize = victim->bk_nextsize = victim;
4131 }
4132
4133 mark_bin (av, victim_index);
4134 victim->bk = bck;
4135 victim->fd = fwd;
4136 fwd->bk = victim;
4137 bck->fd = victim;
4138
4139#if USE_TCACHE
4140 /* If we've processed as many chunks as we're allowed while
4141 filling the cache, return one of the cached ones. */
4142 ++tcache_unsorted_count;
4143 if (return_cached
4144 && mp_.tcache_unsorted_limit > 0
4145 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
4146 {
4147 return tcache_get (tc_idx);
4148 }
4149#endif
4150
4151#define MAX_ITERS 10000
4152 if (++iters >= MAX_ITERS)
4153 break;
4154 }
4155
4156#if USE_TCACHE
4157 /* If all the small chunks we found ended up cached, return one now. */
4158 if (return_cached)
4159 {
4160 return tcache_get (tc_idx);
4161 }
4162#endif
4163
4164 /*
4165 If a large request, scan through the chunks of current bin in
4166 sorted order to find smallest that fits. Use the skip list for this.
4167 */
4168
4169 if (!in_smallbin_range (nb))
4170 {
4171 bin = bin_at (av, idx);
4172
4173 /* skip scan if empty or largest chunk is too small */
4174 if ((victim = first (bin)) != bin
4175 && (unsigned long) chunksize_nomask (victim)
4176 >= (unsigned long) (nb))
4177 {
4178 victim = victim->bk_nextsize;
4179 while (((unsigned long) (size = chunksize (victim)) <
4180 (unsigned long) (nb)))
4181 victim = victim->bk_nextsize;
4182
4183 /* Avoid removing the first entry for a size so that the skip
4184 list does not have to be rerouted. */
4185 if (victim != last (bin)
4186 && chunksize_nomask (victim)
4187 == chunksize_nomask (victim->fd))
4188 victim = victim->fd;
4189
4190 remainder_size = size - nb;
4191 unlink_chunk (av, victim);
4192
4193 /* Exhaust */
4194 if (remainder_size < MINSIZE)
4195 {
4196 set_inuse_bit_at_offset (victim, size);
4197 if (av != &main_arena)
4198 set_non_main_arena (victim);
4199 }
4200 /* Split */
4201 else
4202 {
4203 remainder = chunk_at_offset (victim, nb);
4204 /* We cannot assume the unsorted list is empty and therefore
4205 have to perform a complete insert here. */
4206 bck = unsorted_chunks (av);
4207 fwd = bck->fd;
4208 if (__glibc_unlikely (fwd->bk != bck))
4209 malloc_printerr ("malloc(): corrupted unsorted chunks");
4210 remainder->bk = bck;
4211 remainder->fd = fwd;
4212 bck->fd = remainder;
4213 fwd->bk = remainder;
4214 if (!in_smallbin_range (remainder_size))
4215 {
4216 remainder->fd_nextsize = NULL;
4217 remainder->bk_nextsize = NULL;
4218 }
4219 set_head (victim, nb | PREV_INUSE |
4220 (av != &main_arena ? NON_MAIN_ARENA : 0));
4221 set_head (remainder, remainder_size | PREV_INUSE);
4222 set_foot (remainder, remainder_size);
4223 }
4224 check_malloced_chunk (av, victim, nb);
4225 void *p = chunk2mem (victim);
4226 alloc_perturb (p, bytes);
4227 return p;
4228 }
4229 }
4230
4231 /*
4232 Search for a chunk by scanning bins, starting with next largest
4233 bin. This search is strictly by best-fit; i.e., the smallest
4234 (with ties going to approximately the least recently used) chunk
4235 that fits is selected.
4236
4237 The bitmap avoids needing to check that most blocks are nonempty.
4238 The particular case of skipping all bins during warm-up phases
4239 when no chunks have been returned yet is faster than it might look.
4240 */
4241
4242 ++idx;
4243 bin = bin_at (av, idx);
4244 block = idx2block (idx);
4245 map = av->binmap[block];
4246 bit = idx2bit (idx);
4247
4248 for (;; )
4249 {
4250 /* Skip rest of block if there are no more set bits in this block. */
4251 if (bit > map || bit == 0)
4252 {
4253 do
4254 {
4255 if (++block >= BINMAPSIZE) /* out of bins */
4256 goto use_top;
4257 }
4258 while ((map = av->binmap[block]) == 0);
4259
4260 bin = bin_at (av, (block << BINMAPSHIFT));
4261 bit = 1;
4262 }
4263
4264 /* Advance to bin with set bit. There must be one. */
4265 while ((bit & map) == 0)
4266 {
4267 bin = next_bin (bin);
4268 bit <<= 1;
4269 assert (bit != 0);
4270 }
4271
4272 /* Inspect the bin. It is likely to be non-empty */
4273 victim = last (bin);
4274
4275 /* If a false alarm (empty bin), clear the bit. */
4276 if (victim == bin)
4277 {
4278 av->binmap[block] = map &= ~bit; /* Write through */
4279 bin = next_bin (bin);
4280 bit <<= 1;
4281 }
4282
4283 else
4284 {
4285 size = chunksize (victim);
4286
4287 /* We know the first chunk in this bin is big enough to use. */
4288 assert ((unsigned long) (size) >= (unsigned long) (nb));
4289
4290 remainder_size = size - nb;
4291
4292 /* unlink */
4293 unlink_chunk (av, victim);
4294
4295 /* Exhaust */
4296 if (remainder_size < MINSIZE)
4297 {
4298 set_inuse_bit_at_offset (victim, size);
4299 if (av != &main_arena)
4300 set_non_main_arena (victim);
4301 }
4302
4303 /* Split */
4304 else
4305 {
4306 remainder = chunk_at_offset (victim, nb);
4307
4308 /* We cannot assume the unsorted list is empty and therefore
4309 have to perform a complete insert here. */
4310 bck = unsorted_chunks (av);
4311 fwd = bck->fd;
4312 if (__glibc_unlikely (fwd->bk != bck))
4313 malloc_printerr ("malloc(): corrupted unsorted chunks 2");
4314 remainder->bk = bck;
4315 remainder->fd = fwd;
4316 bck->fd = remainder;
4317 fwd->bk = remainder;
4318
4319 /* advertise as last remainder */
4320 if (in_smallbin_range (nb))
4321 av->last_remainder = remainder;
4322 if (!in_smallbin_range (remainder_size))
4323 {
4324 remainder->fd_nextsize = NULL;
4325 remainder->bk_nextsize = NULL;
4326 }
4327 set_head (victim, nb | PREV_INUSE |
4328 (av != &main_arena ? NON_MAIN_ARENA : 0));
4329 set_head (remainder, remainder_size | PREV_INUSE);
4330 set_foot (remainder, remainder_size);
4331 }
4332 check_malloced_chunk (av, victim, nb);
4333 void *p = chunk2mem (victim);
4334 alloc_perturb (p, bytes);
4335 return p;
4336 }
4337 }
4338
4339 use_top:
4340 /*
4341 If large enough, split off the chunk bordering the end of memory
4342 (held in av->top). Note that this is in accord with the best-fit
4343 search rule. In effect, av->top is treated as larger (and thus
4344 less well fitting) than any other available chunk since it can
4345 be extended to be as large as necessary (up to system
4346 limitations).
4347
4348 We require that av->top always exists (i.e., has size >=
4349 MINSIZE) after initialization, so if it would otherwise be
4350 exhausted by current request, it is replenished. (The main
4351 reason for ensuring it exists is that we may need MINSIZE space
4352 to put in fenceposts in sysmalloc.)
4353 */
4354
4355 victim = av->top;
4356 size = chunksize (victim);
4357
4358 if (__glibc_unlikely (size > av->system_mem))
4359 malloc_printerr ("malloc(): corrupted top size");
4360
4361 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4362 {
4363 remainder_size = size - nb;
4364 remainder = chunk_at_offset (victim, nb);
4365 av->top = remainder;
4366 set_head (victim, nb | PREV_INUSE |
4367 (av != &main_arena ? NON_MAIN_ARENA : 0));
4368 set_head (remainder, remainder_size | PREV_INUSE);
4369
4370 check_malloced_chunk (av, victim, nb);
4371 void *p = chunk2mem (victim);
4372 alloc_perturb (p, bytes);
4373 return p;
4374 }
4375
4376 /* When we are using atomic ops to free fast chunks we can get
4377 here for all block sizes. */
4378 else if (atomic_load_relaxed (&av->have_fastchunks))
4379 {
4380 malloc_consolidate (av);
4381 /* restore original bin index */
4382 if (in_smallbin_range (nb))
4383 idx = smallbin_index (nb);
4384 else
4385 idx = largebin_index (nb);
4386 }
4387
4388 /*
4389 Otherwise, relay to handle system-dependent cases
4390 */
4391 else
4392 {
4393 void *p = sysmalloc (nb, av);
4394 if (p != NULL)
4395 alloc_perturb (p, bytes);
4396 return p;
4397 }
4398 }
4399}
4400
4401/*
4402 ------------------------------ free ------------------------------
4403 */
4404
4405static void
4406_int_free (mstate av, mchunkptr p, int have_lock)
4407{
4408 INTERNAL_SIZE_T size; /* its size */
4409 mfastbinptr *fb; /* associated fastbin */
4410 mchunkptr nextchunk; /* next contiguous chunk */
4411 INTERNAL_SIZE_T nextsize; /* its size */
4412 int nextinuse; /* true if nextchunk is used */
4413 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4414 mchunkptr bck; /* misc temp for linking */
4415 mchunkptr fwd; /* misc temp for linking */
4416
4417 size = chunksize (p);
4418
4419 /* Little security check which won't hurt performance: the
4420 allocator never wrapps around at the end of the address space.
4421 Therefore we can exclude some size values which might appear
4422 here by accident or by "design" from some intruder. */
4423 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4424 || __builtin_expect (misaligned_chunk (p), 0))
4425 malloc_printerr ("free(): invalid pointer");
4426 /* We know that each chunk is at least MINSIZE bytes in size or a
4427 multiple of MALLOC_ALIGNMENT. */
4428 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4429 malloc_printerr ("free(): invalid size");
4430
4431 check_inuse_chunk(av, p);
4432
4433#if USE_TCACHE
4434 {
4435 size_t tc_idx = csize2tidx (size);
4436 if (tcache != NULL && tc_idx < mp_.tcache_bins)
4437 {
4438 /* Check to see if it's already in the tcache. */
4439 tcache_entry *e = (tcache_entry *) chunk2mem (p);
4440
4441 /* This test succeeds on double free. However, we don't 100%
4442 trust it (it also matches random payload data at a 1 in
4443 2^<size_t> chance), so verify it's not an unlikely
4444 coincidence before aborting. */
4445 if (__glibc_unlikely (e->key == tcache_key))
4446 {
4447 tcache_entry *tmp;
4448 size_t cnt = 0;
4449 LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx);
4450 for (tmp = tcache->entries[tc_idx];
4451 tmp;
4452 tmp = REVEAL_PTR (tmp->next), ++cnt)
4453 {
4454 if (cnt >= mp_.tcache_count)
4455 malloc_printerr ("free(): too many chunks detected in tcache");
4456 if (__glibc_unlikely (!aligned_OK (tmp)))
4457 malloc_printerr ("free(): unaligned chunk detected in tcache 2");
4458 if (tmp == e)
4459 malloc_printerr ("free(): double free detected in tcache 2");
4460 /* If we get here, it was a coincidence. We've wasted a
4461 few cycles, but don't abort. */
4462 }
4463 }
4464
4465 if (tcache->counts[tc_idx] < mp_.tcache_count)
4466 {
4467 tcache_put (p, tc_idx);
4468 return;
4469 }
4470 }
4471 }
4472#endif
4473
4474 /*
4475 If eligible, place chunk on a fastbin so it can be found
4476 and used quickly in malloc.
4477 */
4478
4479 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4480
4481#if TRIM_FASTBINS
4482 /*
4483 If TRIM_FASTBINS set, don't place chunks
4484 bordering top into fastbins
4485 */
4486 && (chunk_at_offset(p, size) != av->top)
4487#endif
4488 ) {
4489
4490 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4491 <= CHUNK_HDR_SZ, 0)
4492 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4493 >= av->system_mem, 0))
4494 {
4495 bool fail = true;
4496 /* We might not have a lock at this point and concurrent modifications
4497 of system_mem might result in a false positive. Redo the test after
4498 getting the lock. */
4499 if (!have_lock)
4500 {
4501 __libc_lock_lock (av->mutex);
4502 fail = (chunksize_nomask (chunk_at_offset (p, size)) <= CHUNK_HDR_SZ
4503 || chunksize (chunk_at_offset (p, size)) >= av->system_mem);
4504 __libc_lock_unlock (av->mutex);
4505 }
4506
4507 if (fail)
4508 malloc_printerr ("free(): invalid next size (fast)");
4509 }
4510
4511 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4512
4513 atomic_store_relaxed (&av->have_fastchunks, true);
4514 unsigned int idx = fastbin_index(size);
4515 fb = &fastbin (av, idx);
4516
4517 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4518 mchunkptr old = *fb, old2;
4519
4520 if (SINGLE_THREAD_P)
4521 {
4522 /* Check that the top of the bin is not the record we are going to
4523 add (i.e., double free). */
4524 if (__builtin_expect (old == p, 0))
4525 malloc_printerr ("double free or corruption (fasttop)");
4526 p->fd = PROTECT_PTR (&p->fd, old);
4527 *fb = p;
4528 }
4529 else
4530 do
4531 {
4532 /* Check that the top of the bin is not the record we are going to
4533 add (i.e., double free). */
4534 if (__builtin_expect (old == p, 0))
4535 malloc_printerr ("double free or corruption (fasttop)");
4536 old2 = old;
4537 p->fd = PROTECT_PTR (&p->fd, old);
4538 }
4539 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2))
4540 != old2);
4541
4542 /* Check that size of fastbin chunk at the top is the same as
4543 size of the chunk that we are adding. We can dereference OLD
4544 only if we have the lock, otherwise it might have already been
4545 allocated again. */
4546 if (have_lock && old != NULL
4547 && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0))
4548 malloc_printerr ("invalid fastbin entry (free)");
4549 }
4550
4551 /*
4552 Consolidate other non-mmapped chunks as they arrive.
4553 */
4554
4555 else if (!chunk_is_mmapped(p)) {
4556
4557 /* If we're single-threaded, don't lock the arena. */
4558 if (SINGLE_THREAD_P)
4559 have_lock = true;
4560
4561 if (!have_lock)
4562 __libc_lock_lock (av->mutex);
4563
4564 nextchunk = chunk_at_offset(p, size);
4565
4566 /* Lightweight tests: check whether the block is already the
4567 top block. */
4568 if (__glibc_unlikely (p == av->top))
4569 malloc_printerr ("double free or corruption (top)");
4570 /* Or whether the next chunk is beyond the boundaries of the arena. */
4571 if (__builtin_expect (contiguous (av)
4572 && (char *) nextchunk
4573 >= ((char *) av->top + chunksize(av->top)), 0))
4574 malloc_printerr ("double free or corruption (out)");
4575 /* Or whether the block is actually not marked used. */
4576 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4577 malloc_printerr ("double free or corruption (!prev)");
4578
4579 nextsize = chunksize(nextchunk);
4580 if (__builtin_expect (chunksize_nomask (nextchunk) <= CHUNK_HDR_SZ, 0)
4581 || __builtin_expect (nextsize >= av->system_mem, 0))
4582 malloc_printerr ("free(): invalid next size (normal)");
4583
4584 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4585
4586 /* consolidate backward */
4587 if (!prev_inuse(p)) {
4588 prevsize = prev_size (p);
4589 size += prevsize;
4590 p = chunk_at_offset(p, -((long) prevsize));
4591 if (__glibc_unlikely (chunksize(p) != prevsize))
4592 malloc_printerr ("corrupted size vs. prev_size while consolidating");
4593 unlink_chunk (av, p);
4594 }
4595
4596 if (nextchunk != av->top) {
4597 /* get and clear inuse bit */
4598 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4599
4600 /* consolidate forward */
4601 if (!nextinuse) {
4602 unlink_chunk (av, nextchunk);
4603 size += nextsize;
4604 } else
4605 clear_inuse_bit_at_offset(nextchunk, 0);
4606
4607 /*
4608 Place the chunk in unsorted chunk list. Chunks are
4609 not placed into regular bins until after they have
4610 been given one chance to be used in malloc.
4611 */
4612
4613 bck = unsorted_chunks(av);
4614 fwd = bck->fd;
4615 if (__glibc_unlikely (fwd->bk != bck))
4616 malloc_printerr ("free(): corrupted unsorted chunks");
4617 p->fd = fwd;
4618 p->bk = bck;
4619 if (!in_smallbin_range(size))
4620 {
4621 p->fd_nextsize = NULL;
4622 p->bk_nextsize = NULL;
4623 }
4624 bck->fd = p;
4625 fwd->bk = p;
4626
4627 set_head(p, size | PREV_INUSE);
4628 set_foot(p, size);
4629
4630 check_free_chunk(av, p);
4631 }
4632
4633 /*
4634 If the chunk borders the current high end of memory,
4635 consolidate into top
4636 */
4637
4638 else {
4639 size += nextsize;
4640 set_head(p, size | PREV_INUSE);
4641 av->top = p;
4642 check_chunk(av, p);
4643 }
4644
4645 /*
4646 If freeing a large space, consolidate possibly-surrounding
4647 chunks. Then, if the total unused topmost memory exceeds trim
4648 threshold, ask malloc_trim to reduce top.
4649
4650 Unless max_fast is 0, we don't know if there are fastbins
4651 bordering top, so we cannot tell for sure whether threshold
4652 has been reached unless fastbins are consolidated. But we
4653 don't want to consolidate on each free. As a compromise,
4654 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4655 is reached.
4656 */
4657
4658 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4659 if (atomic_load_relaxed (&av->have_fastchunks))
4660 malloc_consolidate(av);
4661
4662 if (av == &main_arena) {
4663#ifndef MORECORE_CANNOT_TRIM
4664 if ((unsigned long)(chunksize(av->top)) >=
4665 (unsigned long)(mp_.trim_threshold))
4666 systrim(mp_.top_pad, av);
4667#endif
4668 } else {
4669 /* Always try heap_trim(), even if the top chunk is not
4670 large, because the corresponding heap might go away. */
4671 heap_info *heap = heap_for_ptr(top(av));
4672
4673 assert(heap->ar_ptr == av);
4674 heap_trim(heap, mp_.top_pad);
4675 }
4676 }
4677
4678 if (!have_lock)
4679 __libc_lock_unlock (av->mutex);
4680 }
4681 /*
4682 If the chunk was allocated via mmap, release via munmap().
4683 */
4684
4685 else {
4686 munmap_chunk (p);
4687 }
4688}
4689
4690/*
4691 ------------------------- malloc_consolidate -------------------------
4692
4693 malloc_consolidate is a specialized version of free() that tears
4694 down chunks held in fastbins. Free itself cannot be used for this
4695 purpose since, among other things, it might place chunks back onto
4696 fastbins. So, instead, we need to use a minor variant of the same
4697 code.
4698*/
4699
4700static void malloc_consolidate(mstate av)
4701{
4702 mfastbinptr* fb; /* current fastbin being consolidated */
4703 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4704 mchunkptr p; /* current chunk being consolidated */
4705 mchunkptr nextp; /* next chunk to consolidate */
4706 mchunkptr unsorted_bin; /* bin header */
4707 mchunkptr first_unsorted; /* chunk to link to */
4708
4709 /* These have same use as in free() */
4710 mchunkptr nextchunk;
4711 INTERNAL_SIZE_T size;
4712 INTERNAL_SIZE_T nextsize;
4713 INTERNAL_SIZE_T prevsize;
4714 int nextinuse;
4715
4716 atomic_store_relaxed (&av->have_fastchunks, false);
4717
4718 unsorted_bin = unsorted_chunks(av);
4719
4720 /*
4721 Remove each chunk from fast bin and consolidate it, placing it
4722 then in unsorted bin. Among other reasons for doing this,
4723 placing in unsorted bin avoids needing to calculate actual bins
4724 until malloc is sure that chunks aren't immediately going to be
4725 reused anyway.
4726 */
4727
4728 maxfb = &fastbin (av, NFASTBINS - 1);
4729 fb = &fastbin (av, 0);
4730 do {
4731 p = atomic_exchange_acquire (fb, NULL);
4732 if (p != 0) {
4733 do {
4734 {
4735 if (__glibc_unlikely (misaligned_chunk (p)))
4736 malloc_printerr ("malloc_consolidate(): "
4737 "unaligned fastbin chunk detected");
4738
4739 unsigned int idx = fastbin_index (chunksize (p));
4740 if ((&fastbin (av, idx)) != fb)
4741 malloc_printerr ("malloc_consolidate(): invalid chunk size");
4742 }
4743
4744 check_inuse_chunk(av, p);
4745 nextp = REVEAL_PTR (p->fd);
4746
4747 /* Slightly streamlined version of consolidation code in free() */
4748 size = chunksize (p);
4749 nextchunk = chunk_at_offset(p, size);
4750 nextsize = chunksize(nextchunk);
4751
4752 if (!prev_inuse(p)) {
4753 prevsize = prev_size (p);
4754 size += prevsize;
4755 p = chunk_at_offset(p, -((long) prevsize));
4756 if (__glibc_unlikely (chunksize(p) != prevsize))
4757 malloc_printerr ("corrupted size vs. prev_size in fastbins");
4758 unlink_chunk (av, p);
4759 }
4760
4761 if (nextchunk != av->top) {
4762 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4763
4764 if (!nextinuse) {
4765 size += nextsize;
4766 unlink_chunk (av, nextchunk);
4767 } else
4768 clear_inuse_bit_at_offset(nextchunk, 0);
4769
4770 first_unsorted = unsorted_bin->fd;
4771 unsorted_bin->fd = p;
4772 first_unsorted->bk = p;
4773
4774 if (!in_smallbin_range (size)) {
4775 p->fd_nextsize = NULL;
4776 p->bk_nextsize = NULL;
4777 }
4778
4779 set_head(p, size | PREV_INUSE);
4780 p->bk = unsorted_bin;
4781 p->fd = first_unsorted;
4782 set_foot(p, size);
4783 }
4784
4785 else {
4786 size += nextsize;
4787 set_head(p, size | PREV_INUSE);
4788 av->top = p;
4789 }
4790
4791 } while ( (p = nextp) != 0);
4792
4793 }
4794 } while (fb++ != maxfb);
4795}
4796
4797/*
4798 ------------------------------ realloc ------------------------------
4799*/
4800
4801static void *
4802_int_realloc (mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4803 INTERNAL_SIZE_T nb)
4804{
4805 mchunkptr newp; /* chunk to return */
4806 INTERNAL_SIZE_T newsize; /* its size */
4807 void* newmem; /* corresponding user mem */
4808
4809 mchunkptr next; /* next contiguous chunk after oldp */
4810
4811 mchunkptr remainder; /* extra space at end of newp */
4812 unsigned long remainder_size; /* its size */
4813
4814 /* oldmem size */
4815 if (__builtin_expect (chunksize_nomask (oldp) <= CHUNK_HDR_SZ, 0)
4816 || __builtin_expect (oldsize >= av->system_mem, 0)
4817 || __builtin_expect (oldsize != chunksize (oldp), 0))
4818 malloc_printerr ("realloc(): invalid old size");
4819
4820 check_inuse_chunk (av, oldp);
4821
4822 /* All callers already filter out mmap'ed chunks. */
4823 assert (!chunk_is_mmapped (oldp));
4824
4825 next = chunk_at_offset (oldp, oldsize);
4826 INTERNAL_SIZE_T nextsize = chunksize (next);
4827 if (__builtin_expect (chunksize_nomask (next) <= CHUNK_HDR_SZ, 0)
4828 || __builtin_expect (nextsize >= av->system_mem, 0))
4829 malloc_printerr ("realloc(): invalid next size");
4830
4831 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4832 {
4833 /* already big enough; split below */
4834 newp = oldp;
4835 newsize = oldsize;
4836 }
4837
4838 else
4839 {
4840 /* Try to expand forward into top */
4841 if (next == av->top &&
4842 (unsigned long) (newsize = oldsize + nextsize) >=
4843 (unsigned long) (nb + MINSIZE))
4844 {
4845 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4846 av->top = chunk_at_offset (oldp, nb);
4847 set_head (av->top, (newsize - nb) | PREV_INUSE);
4848 check_inuse_chunk (av, oldp);
4849 return tag_new_usable (chunk2mem (oldp));
4850 }
4851
4852 /* Try to expand forward into next chunk; split off remainder below */
4853 else if (next != av->top &&
4854 !inuse (next) &&
4855 (unsigned long) (newsize = oldsize + nextsize) >=
4856 (unsigned long) (nb))
4857 {
4858 newp = oldp;
4859 unlink_chunk (av, next);
4860 }
4861
4862 /* allocate, copy, free */
4863 else
4864 {
4865 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4866 if (newmem == 0)
4867 return 0; /* propagate failure */
4868
4869 newp = mem2chunk (newmem);
4870 newsize = chunksize (newp);
4871
4872 /*
4873 Avoid copy if newp is next chunk after oldp.
4874 */
4875 if (newp == next)
4876 {
4877 newsize += oldsize;
4878 newp = oldp;
4879 }
4880 else
4881 {
4882 void *oldmem = chunk2mem (oldp);
4883 size_t sz = memsize (oldp);
4884 (void) tag_region (oldmem, sz);
4885 newmem = tag_new_usable (newmem);
4886 memcpy (newmem, oldmem, sz);
4887 _int_free (av, oldp, 1);
4888 check_inuse_chunk (av, newp);
4889 return newmem;
4890 }
4891 }
4892 }
4893
4894 /* If possible, free extra space in old or extended chunk */
4895
4896 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4897
4898 remainder_size = newsize - nb;
4899
4900 if (remainder_size < MINSIZE) /* not enough extra to split off */
4901 {
4902 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4903 set_inuse_bit_at_offset (newp, newsize);
4904 }
4905 else /* split remainder */
4906 {
4907 remainder = chunk_at_offset (newp, nb);
4908 /* Clear any user-space tags before writing the header. */
4909 remainder = tag_region (remainder, remainder_size);
4910 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4911 set_head (remainder, remainder_size | PREV_INUSE |
4912 (av != &main_arena ? NON_MAIN_ARENA : 0));
4913 /* Mark remainder as inuse so free() won't complain */
4914 set_inuse_bit_at_offset (remainder, remainder_size);
4915 _int_free (av, remainder, 1);
4916 }
4917
4918 check_inuse_chunk (av, newp);
4919 return tag_new_usable (chunk2mem (newp));
4920}
4921
4922/*
4923 ------------------------------ memalign ------------------------------
4924 */
4925
4926static void *
4927_int_memalign (mstate av, size_t alignment, size_t bytes)
4928{
4929 INTERNAL_SIZE_T nb; /* padded request size */
4930 char *m; /* memory returned by malloc call */
4931 mchunkptr p; /* corresponding chunk */
4932 char *brk; /* alignment point within p */
4933 mchunkptr newp; /* chunk to return */
4934 INTERNAL_SIZE_T newsize; /* its size */
4935 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4936 mchunkptr remainder; /* spare room at end to split off */
4937 unsigned long remainder_size; /* its size */
4938 INTERNAL_SIZE_T size;
4939
4940
4941
4942 nb = checked_request2size (bytes);
4943 if (nb == 0)
4944 {
4945 __set_errno (ENOMEM);
4946 return NULL;
4947 }
4948
4949 /*
4950 Strategy: find a spot within that chunk that meets the alignment
4951 request, and then possibly free the leading and trailing space.
4952 */
4953
4954 /* Call malloc with worst case padding to hit alignment. */
4955
4956 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4957
4958 if (m == 0)
4959 return 0; /* propagate failure */
4960
4961 p = mem2chunk (m);
4962
4963 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4964
4965 { /*
4966 Find an aligned spot inside chunk. Since we need to give back
4967 leading space in a chunk of at least MINSIZE, if the first
4968 calculation places us at a spot with less than MINSIZE leader,
4969 we can move to the next aligned spot -- we've allocated enough
4970 total room so that this is always possible.
4971 */
4972 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4973 - ((signed long) alignment));
4974 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4975 brk += alignment;
4976
4977 newp = (mchunkptr) brk;
4978 leadsize = brk - (char *) (p);
4979 newsize = chunksize (p) - leadsize;
4980
4981 /* For mmapped chunks, just adjust offset */
4982 if (chunk_is_mmapped (p))
4983 {
4984 set_prev_size (newp, prev_size (p) + leadsize);
4985 set_head (newp, newsize | IS_MMAPPED);
4986 return chunk2mem (newp);
4987 }
4988
4989 /* Otherwise, give back leader, use the rest */
4990 set_head (newp, newsize | PREV_INUSE |
4991 (av != &main_arena ? NON_MAIN_ARENA : 0));
4992 set_inuse_bit_at_offset (newp, newsize);
4993 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4994 _int_free (av, p, 1);
4995 p = newp;
4996
4997 assert (newsize >= nb &&
4998 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4999 }
5000
5001 /* Also give back spare room at the end */
5002 if (!chunk_is_mmapped (p))
5003 {
5004 size = chunksize (p);
5005 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
5006 {
5007 remainder_size = size - nb;
5008 remainder = chunk_at_offset (p, nb);
5009 set_head (remainder, remainder_size | PREV_INUSE |
5010 (av != &main_arena ? NON_MAIN_ARENA : 0));
5011 set_head_size (p, nb);
5012 _int_free (av, remainder, 1);
5013 }
5014 }
5015
5016 check_inuse_chunk (av, p);
5017 return chunk2mem (p);
5018}
5019
5020
5021/*
5022 ------------------------------ malloc_trim ------------------------------
5023 */
5024
5025static int
5026mtrim (mstate av, size_t pad)
5027{
5028 /* Ensure all blocks are consolidated. */
5029 malloc_consolidate (av);
5030
5031 const size_t ps = GLRO (dl_pagesize);
5032 int psindex = bin_index (ps);
5033 const size_t psm1 = ps - 1;
5034
5035 int result = 0;
5036 for (int i = 1; i < NBINS; ++i)
5037 if (i == 1 || i >= psindex)
5038 {
5039 mbinptr bin = bin_at (av, i);
5040
5041 for (mchunkptr p = last (bin); p != bin; p = p->bk)
5042 {
5043 INTERNAL_SIZE_T size = chunksize (p);
5044
5045 if (size > psm1 + sizeof (struct malloc_chunk))
5046 {
5047 /* See whether the chunk contains at least one unused page. */
5048 char *paligned_mem = (char *) (((uintptr_t) p
5049 + sizeof (struct malloc_chunk)
5050 + psm1) & ~psm1);
5051
5052 assert ((char *) chunk2mem (p) + 2 * CHUNK_HDR_SZ
5053 <= paligned_mem);
5054 assert ((char *) p + size > paligned_mem);
5055
5056 /* This is the size we could potentially free. */
5057 size -= paligned_mem - (char *) p;
5058
5059 if (size > psm1)
5060 {
5061#if MALLOC_DEBUG
5062 /* When debugging we simulate destroying the memory
5063 content. */
5064 memset (paligned_mem, 0x89, size & ~psm1);
5065#endif
5066 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
5067
5068 result = 1;
5069 }
5070 }
5071 }
5072 }
5073
5074#ifndef MORECORE_CANNOT_TRIM
5075 return result | (av == &main_arena ? systrim (pad, av) : 0);
5076
5077#else
5078 return result;
5079#endif
5080}
5081
5082
5083int
5084__malloc_trim (size_t s)
5085{
5086 int result = 0;
5087
5088 if (!__malloc_initialized)
5089 ptmalloc_init ();
5090
5091 mstate ar_ptr = &main_arena;
5092 do
5093 {
5094 __libc_lock_lock (ar_ptr->mutex);
5095 result |= mtrim (ar_ptr, s);
5096 __libc_lock_unlock (ar_ptr->mutex);
5097
5098 ar_ptr = ar_ptr->next;
5099 }
5100 while (ar_ptr != &main_arena);
5101
5102 return result;
5103}
5104
5105
5106/*
5107 ------------------------- malloc_usable_size -------------------------
5108 */
5109
5110static size_t
5111musable (void *mem)
5112{
5113 mchunkptr p = mem2chunk (mem);
5114
5115 if (chunk_is_mmapped (p))
5116 return chunksize (p) - CHUNK_HDR_SZ;
5117 else if (inuse (p))
5118 return memsize (p);
5119
5120 return 0;
5121}
5122
5123#if IS_IN (libc)
5124size_t
5125__malloc_usable_size (void *m)
5126{
5127 if (m == NULL)
5128 return 0;
5129 return musable (m);
5130}
5131#endif
5132
5133/*
5134 ------------------------------ mallinfo ------------------------------
5135 Accumulate malloc statistics for arena AV into M.
5136 */
5137static void
5138int_mallinfo (mstate av, struct mallinfo2 *m)
5139{
5140 size_t i;
5141 mbinptr b;
5142 mchunkptr p;
5143 INTERNAL_SIZE_T avail;
5144 INTERNAL_SIZE_T fastavail;
5145 int nblocks;
5146 int nfastblocks;
5147
5148 check_malloc_state (av);
5149
5150 /* Account for top */
5151 avail = chunksize (av->top);
5152 nblocks = 1; /* top always exists */
5153
5154 /* traverse fastbins */
5155 nfastblocks = 0;
5156 fastavail = 0;
5157
5158 for (i = 0; i < NFASTBINS; ++i)
5159 {
5160 for (p = fastbin (av, i);
5161 p != 0;
5162 p = REVEAL_PTR (p->fd))
5163 {
5164 if (__glibc_unlikely (misaligned_chunk (p)))
5165 malloc_printerr ("int_mallinfo(): "
5166 "unaligned fastbin chunk detected");
5167 ++nfastblocks;
5168 fastavail += chunksize (p);
5169 }
5170 }
5171
5172 avail += fastavail;
5173
5174 /* traverse regular bins */
5175 for (i = 1; i < NBINS; ++i)
5176 {
5177 b = bin_at (av, i);
5178 for (p = last (b); p != b; p = p->bk)
5179 {
5180 ++nblocks;
5181 avail += chunksize (p);
5182 }
5183 }
5184
5185 m->smblks += nfastblocks;
5186 m->ordblks += nblocks;
5187 m->fordblks += avail;
5188 m->uordblks += av->system_mem - avail;
5189 m->arena += av->system_mem;
5190 m->fsmblks += fastavail;
5191 if (av == &main_arena)
5192 {
5193 m->hblks = mp_.n_mmaps;
5194 m->hblkhd = mp_.mmapped_mem;
5195 m->usmblks = 0;
5196 m->keepcost = chunksize (av->top);
5197 }
5198}
5199
5200
5201struct mallinfo2
5202__libc_mallinfo2 (void)
5203{
5204 struct mallinfo2 m;
5205 mstate ar_ptr;
5206
5207 if (!__malloc_initialized)
5208 ptmalloc_init ();
5209
5210 memset (&m, 0, sizeof (m));
5211 ar_ptr = &main_arena;
5212 do
5213 {
5214 __libc_lock_lock (ar_ptr->mutex);
5215 int_mallinfo (ar_ptr, &m);
5216 __libc_lock_unlock (ar_ptr->mutex);
5217
5218 ar_ptr = ar_ptr->next;
5219 }
5220 while (ar_ptr != &main_arena);
5221
5222 return m;
5223}
5224libc_hidden_def (__libc_mallinfo2)
5225
5226struct mallinfo
5227__libc_mallinfo (void)
5228{
5229 struct mallinfo m;
5230 struct mallinfo2 m2 = __libc_mallinfo2 ();
5231
5232 m.arena = m2.arena;
5233 m.ordblks = m2.ordblks;
5234 m.smblks = m2.smblks;
5235 m.hblks = m2.hblks;
5236 m.hblkhd = m2.hblkhd;
5237 m.usmblks = m2.usmblks;
5238 m.fsmblks = m2.fsmblks;
5239 m.uordblks = m2.uordblks;
5240 m.fordblks = m2.fordblks;
5241 m.keepcost = m2.keepcost;
5242
5243 return m;
5244}
5245
5246
5247/*
5248 ------------------------------ malloc_stats ------------------------------
5249 */
5250
5251void
5252__malloc_stats (void)
5253{
5254 int i;
5255 mstate ar_ptr;
5256 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5257
5258 if (!__malloc_initialized)
5259 ptmalloc_init ();
5260 _IO_flockfile (stderr);
5261 int old_flags2 = stderr->_flags2;
5262 stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5263 for (i = 0, ar_ptr = &main_arena;; i++)
5264 {
5265 struct mallinfo2 mi;
5266
5267 memset (&mi, 0, sizeof (mi));
5268 __libc_lock_lock (ar_ptr->mutex);
5269 int_mallinfo (ar_ptr, &mi);
5270 fprintf (stderr, "Arena %d:\n", i);
5271 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
5272 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
5273#if MALLOC_DEBUG > 1
5274 if (i > 0)
5275 dump_heap (heap_for_ptr (top (ar_ptr)));
5276#endif
5277 system_b += mi.arena;
5278 in_use_b += mi.uordblks;
5279 __libc_lock_unlock (ar_ptr->mutex);
5280 ar_ptr = ar_ptr->next;
5281 if (ar_ptr == &main_arena)
5282 break;
5283 }
5284 fprintf (stderr, "Total (incl. mmap):\n");
5285 fprintf (stderr, "system bytes = %10u\n", system_b);
5286 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
5287 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
5288 fprintf (stderr, "max mmap bytes = %10lu\n",
5289 (unsigned long) mp_.max_mmapped_mem);
5290 stderr->_flags2 = old_flags2;
5291 _IO_funlockfile (stderr);
5292}
5293
5294
5295/*
5296 ------------------------------ mallopt ------------------------------
5297 */
5298static __always_inline int
5299do_set_trim_threshold (size_t value)
5300{
5301 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
5302 mp_.no_dyn_threshold);
5303 mp_.trim_threshold = value;
5304 mp_.no_dyn_threshold = 1;
5305 return 1;
5306}
5307
5308static __always_inline int
5309do_set_top_pad (size_t value)
5310{
5311 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
5312 mp_.no_dyn_threshold);
5313 mp_.top_pad = value;
5314 mp_.no_dyn_threshold = 1;
5315 return 1;
5316}
5317
5318static __always_inline int
5319do_set_mmap_threshold (size_t value)
5320{
5321 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
5322 mp_.no_dyn_threshold);
5323 mp_.mmap_threshold = value;
5324 mp_.no_dyn_threshold = 1;
5325 return 1;
5326}
5327
5328static __always_inline int
5329do_set_mmaps_max (int32_t value)
5330{
5331 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
5332 mp_.no_dyn_threshold);
5333 mp_.n_mmaps_max = value;
5334 mp_.no_dyn_threshold = 1;
5335 return 1;
5336}
5337
5338static __always_inline int
5339do_set_mallopt_check (int32_t value)
5340{
5341 return 1;
5342}
5343
5344static __always_inline int
5345do_set_perturb_byte (int32_t value)
5346{
5347 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5348 perturb_byte = value;
5349 return 1;
5350}
5351
5352static __always_inline int
5353do_set_arena_test (size_t value)
5354{
5355 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5356 mp_.arena_test = value;
5357 return 1;
5358}
5359
5360static __always_inline int
5361do_set_arena_max (size_t value)
5362{
5363 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5364 mp_.arena_max = value;
5365 return 1;
5366}
5367
5368#if USE_TCACHE
5369static __always_inline int
5370do_set_tcache_max (size_t value)
5371{
5372 if (value <= MAX_TCACHE_SIZE)
5373 {
5374 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5375 mp_.tcache_max_bytes = value;
5376 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5377 return 1;
5378 }
5379 return 0;
5380}
5381
5382static __always_inline int
5383do_set_tcache_count (size_t value)
5384{
5385 if (value <= MAX_TCACHE_COUNT)
5386 {
5387 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5388 mp_.tcache_count = value;
5389 return 1;
5390 }
5391 return 0;
5392}
5393
5394static __always_inline int
5395do_set_tcache_unsorted_limit (size_t value)
5396{
5397 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5398 mp_.tcache_unsorted_limit = value;
5399 return 1;
5400}
5401#endif
5402
5403static __always_inline int
5404do_set_mxfast (size_t value)
5405{
5406 if (value <= MAX_FAST_SIZE)
5407 {
5408 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5409 set_max_fast (value);
5410 return 1;
5411 }
5412 return 0;
5413}
5414
5415#if HAVE_TUNABLES
5416static __always_inline int
5417do_set_hugetlb (size_t value)
5418{
5419 if (value == 1)
5420 {
5421 enum malloc_thp_mode_t thp_mode = __malloc_thp_mode ();
5422 /*
5423 Only enable THP madvise usage if system does support it and
5424 has 'madvise' mode. Otherwise the madvise() call is wasteful.
5425 */
5426 if (thp_mode == malloc_thp_mode_madvise)
5427 mp_.thp_pagesize = __malloc_default_thp_pagesize ();
5428 }
5429 else if (value >= 2)
5430 __malloc_hugepage_config (value == 2 ? 0 : value, &mp_.hp_pagesize,
5431 &mp_.hp_flags);
5432 return 0;
5433}
5434#endif
5435
5436int
5437__libc_mallopt (int param_number, int value)
5438{
5439 mstate av = &main_arena;
5440 int res = 1;
5441
5442 if (!__malloc_initialized)
5443 ptmalloc_init ();
5444 __libc_lock_lock (av->mutex);
5445
5446 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5447
5448 /* We must consolidate main arena before changing max_fast
5449 (see definition of set_max_fast). */
5450 malloc_consolidate (av);
5451
5452 /* Many of these helper functions take a size_t. We do not worry
5453 about overflow here, because negative int values will wrap to
5454 very large size_t values and the helpers have sufficient range
5455 checking for such conversions. Many of these helpers are also
5456 used by the tunables macros in arena.c. */
5457
5458 switch (param_number)
5459 {
5460 case M_MXFAST:
5461 res = do_set_mxfast (value);
5462 break;
5463
5464 case M_TRIM_THRESHOLD:
5465 res = do_set_trim_threshold (value);
5466 break;
5467
5468 case M_TOP_PAD:
5469 res = do_set_top_pad (value);
5470 break;
5471
5472 case M_MMAP_THRESHOLD:
5473 res = do_set_mmap_threshold (value);
5474 break;
5475
5476 case M_MMAP_MAX:
5477 res = do_set_mmaps_max (value);
5478 break;
5479
5480 case M_CHECK_ACTION:
5481 res = do_set_mallopt_check (value);
5482 break;
5483
5484 case M_PERTURB:
5485 res = do_set_perturb_byte (value);
5486 break;
5487
5488 case M_ARENA_TEST:
5489 if (value > 0)
5490 res = do_set_arena_test (value);
5491 break;
5492
5493 case M_ARENA_MAX:
5494 if (value > 0)
5495 res = do_set_arena_max (value);
5496 break;
5497 }
5498 __libc_lock_unlock (av->mutex);
5499 return res;
5500}
5501libc_hidden_def (__libc_mallopt)
5502
5503
5504/*
5505 -------------------- Alternative MORECORE functions --------------------
5506 */
5507
5508
5509/*
5510 General Requirements for MORECORE.
5511
5512 The MORECORE function must have the following properties:
5513
5514 If MORECORE_CONTIGUOUS is false:
5515
5516 * MORECORE must allocate in multiples of pagesize. It will
5517 only be called with arguments that are multiples of pagesize.
5518
5519 * MORECORE(0) must return an address that is at least
5520 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5521
5522 else (i.e. If MORECORE_CONTIGUOUS is true):
5523
5524 * Consecutive calls to MORECORE with positive arguments
5525 return increasing addresses, indicating that space has been
5526 contiguously extended.
5527
5528 * MORECORE need not allocate in multiples of pagesize.
5529 Calls to MORECORE need not have args of multiples of pagesize.
5530
5531 * MORECORE need not page-align.
5532
5533 In either case:
5534
5535 * MORECORE may allocate more memory than requested. (Or even less,
5536 but this will generally result in a malloc failure.)
5537
5538 * MORECORE must not allocate memory when given argument zero, but
5539 instead return one past the end address of memory from previous
5540 nonzero call. This malloc does NOT call MORECORE(0)
5541 until at least one call with positive arguments is made, so
5542 the initial value returned is not important.
5543
5544 * Even though consecutive calls to MORECORE need not return contiguous
5545 addresses, it must be OK for malloc'ed chunks to span multiple
5546 regions in those cases where they do happen to be contiguous.
5547
5548 * MORECORE need not handle negative arguments -- it may instead
5549 just return MORECORE_FAILURE when given negative arguments.
5550 Negative arguments are always multiples of pagesize. MORECORE
5551 must not misinterpret negative args as large positive unsigned
5552 args. You can suppress all such calls from even occurring by defining
5553 MORECORE_CANNOT_TRIM,
5554
5555 There is some variation across systems about the type of the
5556 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5557 actually be size_t, because sbrk supports negative args, so it is
5558 normally the signed type of the same width as size_t (sometimes
5559 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5560 matter though. Internally, we use "long" as arguments, which should
5561 work across all reasonable possibilities.
5562
5563 Additionally, if MORECORE ever returns failure for a positive
5564 request, then mmap is used as a noncontiguous system allocator. This
5565 is a useful backup strategy for systems with holes in address spaces
5566 -- in this case sbrk cannot contiguously expand the heap, but mmap
5567 may be able to map noncontiguous space.
5568
5569 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5570 a function that always returns MORECORE_FAILURE.
5571
5572 If you are using this malloc with something other than sbrk (or its
5573 emulation) to supply memory regions, you probably want to set
5574 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5575 allocator kindly contributed for pre-OSX macOS. It uses virtually
5576 but not necessarily physically contiguous non-paged memory (locked
5577 in, present and won't get swapped out). You can use it by
5578 uncommenting this section, adding some #includes, and setting up the
5579 appropriate defines above:
5580
5581 *#define MORECORE osMoreCore
5582 *#define MORECORE_CONTIGUOUS 0
5583
5584 There is also a shutdown routine that should somehow be called for
5585 cleanup upon program exit.
5586
5587 *#define MAX_POOL_ENTRIES 100
5588 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5589 static int next_os_pool;
5590 void *our_os_pools[MAX_POOL_ENTRIES];
5591
5592 void *osMoreCore(int size)
5593 {
5594 void *ptr = 0;
5595 static void *sbrk_top = 0;
5596
5597 if (size > 0)
5598 {
5599 if (size < MINIMUM_MORECORE_SIZE)
5600 size = MINIMUM_MORECORE_SIZE;
5601 if (CurrentExecutionLevel() == kTaskLevel)
5602 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5603 if (ptr == 0)
5604 {
5605 return (void *) MORECORE_FAILURE;
5606 }
5607 // save ptrs so they can be freed during cleanup
5608 our_os_pools[next_os_pool] = ptr;
5609 next_os_pool++;
5610 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5611 sbrk_top = (char *) ptr + size;
5612 return ptr;
5613 }
5614 else if (size < 0)
5615 {
5616 // we don't currently support shrink behavior
5617 return (void *) MORECORE_FAILURE;
5618 }
5619 else
5620 {
5621 return sbrk_top;
5622 }
5623 }
5624
5625 // cleanup any allocated memory pools
5626 // called as last thing before shutting down driver
5627
5628 void osCleanupMem(void)
5629 {
5630 void **ptr;
5631
5632 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5633 if (*ptr)
5634 {
5635 PoolDeallocate(*ptr);
5636 * ptr = 0;
5637 }
5638 }
5639
5640 */
5641
5642
5643/* Helper code. */
5644
5645extern char **__libc_argv attribute_hidden;
5646
5647static void
5648malloc_printerr (const char *str)
5649{
5650#if IS_IN (libc)
5651 __libc_message ("%s\n", str);
5652#else
5653 __libc_fatal (str);
5654#endif
5655 __builtin_unreachable ();
5656}
5657
5658#if IS_IN (libc)
5659/* We need a wrapper function for one of the additions of POSIX. */
5660int
5661__posix_memalign (void **memptr, size_t alignment, size_t size)
5662{
5663 void *mem;
5664
5665 if (!__malloc_initialized)
5666 ptmalloc_init ();
5667
5668 /* Test whether the SIZE argument is valid. It must be a power of
5669 two multiple of sizeof (void *). */
5670 if (alignment % sizeof (void *) != 0
5671 || !powerof2 (alignment / sizeof (void *))
5672 || alignment == 0)
5673 return EINVAL;
5674
5675
5676 void *address = RETURN_ADDRESS (0);
5677 mem = _mid_memalign (alignment, size, address);
5678
5679 if (mem != NULL)
5680 {
5681 *memptr = mem;
5682 return 0;
5683 }
5684
5685 return ENOMEM;
5686}
5687weak_alias (__posix_memalign, posix_memalign)
5688#endif
5689
5690
5691int
5692__malloc_info (int options, FILE *fp)
5693{
5694 /* For now, at least. */
5695 if (options != 0)
5696 return EINVAL;
5697
5698 int n = 0;
5699 size_t total_nblocks = 0;
5700 size_t total_nfastblocks = 0;
5701 size_t total_avail = 0;
5702 size_t total_fastavail = 0;
5703 size_t total_system = 0;
5704 size_t total_max_system = 0;
5705 size_t total_aspace = 0;
5706 size_t total_aspace_mprotect = 0;
5707
5708
5709
5710 if (!__malloc_initialized)
5711 ptmalloc_init ();
5712
5713 fputs ("<malloc version=\"1\">\n", fp);
5714
5715 /* Iterate over all arenas currently in use. */
5716 mstate ar_ptr = &main_arena;
5717 do
5718 {
5719 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5720
5721 size_t nblocks = 0;
5722 size_t nfastblocks = 0;
5723 size_t avail = 0;
5724 size_t fastavail = 0;
5725 struct
5726 {
5727 size_t from;
5728 size_t to;
5729 size_t total;
5730 size_t count;
5731 } sizes[NFASTBINS + NBINS - 1];
5732#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5733
5734 __libc_lock_lock (ar_ptr->mutex);
5735
5736 /* Account for top chunk. The top-most available chunk is
5737 treated specially and is never in any bin. See "initial_top"
5738 comments. */
5739 avail = chunksize (ar_ptr->top);
5740 nblocks = 1; /* Top always exists. */
5741
5742 for (size_t i = 0; i < NFASTBINS; ++i)
5743 {
5744 mchunkptr p = fastbin (ar_ptr, i);
5745 if (p != NULL)
5746 {
5747 size_t nthissize = 0;
5748 size_t thissize = chunksize (p);
5749
5750 while (p != NULL)
5751 {
5752 if (__glibc_unlikely (misaligned_chunk (p)))
5753 malloc_printerr ("__malloc_info(): "
5754 "unaligned fastbin chunk detected");
5755 ++nthissize;
5756 p = REVEAL_PTR (p->fd);
5757 }
5758
5759 fastavail += nthissize * thissize;
5760 nfastblocks += nthissize;
5761 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5762 sizes[i].to = thissize;
5763 sizes[i].count = nthissize;
5764 }
5765 else
5766 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5767
5768 sizes[i].total = sizes[i].count * sizes[i].to;
5769 }
5770
5771
5772 mbinptr bin;
5773 struct malloc_chunk *r;
5774
5775 for (size_t i = 1; i < NBINS; ++i)
5776 {
5777 bin = bin_at (ar_ptr, i);
5778 r = bin->fd;
5779 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5780 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5781 = sizes[NFASTBINS - 1 + i].count = 0;
5782
5783 if (r != NULL)
5784 while (r != bin)
5785 {
5786 size_t r_size = chunksize_nomask (r);
5787 ++sizes[NFASTBINS - 1 + i].count;
5788 sizes[NFASTBINS - 1 + i].total += r_size;
5789 sizes[NFASTBINS - 1 + i].from
5790 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5791 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5792 r_size);
5793
5794 r = r->fd;
5795 }
5796
5797 if (sizes[NFASTBINS - 1 + i].count == 0)
5798 sizes[NFASTBINS - 1 + i].from = 0;
5799 nblocks += sizes[NFASTBINS - 1 + i].count;
5800 avail += sizes[NFASTBINS - 1 + i].total;
5801 }
5802
5803 size_t heap_size = 0;
5804 size_t heap_mprotect_size = 0;
5805 size_t heap_count = 0;
5806 if (ar_ptr != &main_arena)
5807 {
5808 /* Iterate over the arena heaps from back to front. */
5809 heap_info *heap = heap_for_ptr (top (ar_ptr));
5810 do
5811 {
5812 heap_size += heap->size;
5813 heap_mprotect_size += heap->mprotect_size;
5814 heap = heap->prev;
5815 ++heap_count;
5816 }
5817 while (heap != NULL);
5818 }
5819
5820 __libc_lock_unlock (ar_ptr->mutex);
5821
5822 total_nfastblocks += nfastblocks;
5823 total_fastavail += fastavail;
5824
5825 total_nblocks += nblocks;
5826 total_avail += avail;
5827
5828 for (size_t i = 0; i < nsizes; ++i)
5829 if (sizes[i].count != 0 && i != NFASTBINS)
5830 fprintf (fp, "\
5831 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5832 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5833
5834 if (sizes[NFASTBINS].count != 0)
5835 fprintf (fp, "\
5836 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5837 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5838 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5839
5840 total_system += ar_ptr->system_mem;
5841 total_max_system += ar_ptr->max_system_mem;
5842
5843 fprintf (fp,
5844 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5845 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5846 "<system type=\"current\" size=\"%zu\"/>\n"
5847 "<system type=\"max\" size=\"%zu\"/>\n",
5848 nfastblocks, fastavail, nblocks, avail,
5849 ar_ptr->system_mem, ar_ptr->max_system_mem);
5850
5851 if (ar_ptr != &main_arena)
5852 {
5853 fprintf (fp,
5854 "<aspace type=\"total\" size=\"%zu\"/>\n"
5855 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5856 "<aspace type=\"subheaps\" size=\"%zu\"/>\n",
5857 heap_size, heap_mprotect_size, heap_count);
5858 total_aspace += heap_size;
5859 total_aspace_mprotect += heap_mprotect_size;
5860 }
5861 else
5862 {
5863 fprintf (fp,
5864 "<aspace type=\"total\" size=\"%zu\"/>\n"
5865 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5866 ar_ptr->system_mem, ar_ptr->system_mem);
5867 total_aspace += ar_ptr->system_mem;
5868 total_aspace_mprotect += ar_ptr->system_mem;
5869 }
5870
5871 fputs ("</heap>\n", fp);
5872 ar_ptr = ar_ptr->next;
5873 }
5874 while (ar_ptr != &main_arena);
5875
5876 fprintf (fp,
5877 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5878 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5879 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5880 "<system type=\"current\" size=\"%zu\"/>\n"
5881 "<system type=\"max\" size=\"%zu\"/>\n"
5882 "<aspace type=\"total\" size=\"%zu\"/>\n"
5883 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5884 "</malloc>\n",
5885 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5886 mp_.n_mmaps, mp_.mmapped_mem,
5887 total_system, total_max_system,
5888 total_aspace, total_aspace_mprotect);
5889
5890 return 0;
5891}
5892#if IS_IN (libc)
5893weak_alias (__malloc_info, malloc_info)
5894
5895strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5896strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5897strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5898strong_alias (__libc_memalign, __memalign)
5899weak_alias (__libc_memalign, memalign)
5900strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5901strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5902strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5903strong_alias (__libc_mallinfo, __mallinfo)
5904weak_alias (__libc_mallinfo, mallinfo)
5905strong_alias (__libc_mallinfo2, __mallinfo2)
5906weak_alias (__libc_mallinfo2, mallinfo2)
5907strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5908
5909weak_alias (__malloc_stats, malloc_stats)
5910weak_alias (__malloc_usable_size, malloc_usable_size)
5911weak_alias (__malloc_trim, malloc_trim)
5912#endif
5913
5914#if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5915compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5916#endif
5917
5918/* ------------------------------------------------------------
5919 History:
5920
5921 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5922
5923 */
5924/*
5925 * Local variables:
5926 * c-basic-offset: 2
5927 * End:
5928 */
5929