| 1 | /* Malloc implementation for multiple threads without lock contention. |
| 2 | Copyright (C) 1996-2022 Free Software Foundation, Inc. |
| 3 | Copyright The GNU Toolchain Authors. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public License as |
| 8 | published by the Free Software Foundation; either version 2.1 of the |
| 9 | License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; see the file COPYING.LIB. If |
| 18 | not, see <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | /* |
| 21 | This is a version (aka ptmalloc2) of malloc/free/realloc written by |
| 22 | Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger. |
| 23 | |
| 24 | There have been substantial changes made after the integration into |
| 25 | glibc in all parts of the code. Do not look for much commonality |
| 26 | with the ptmalloc2 version. |
| 27 | |
| 28 | * Version ptmalloc2-20011215 |
| 29 | based on: |
| 30 | VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) |
| 31 | |
| 32 | * Quickstart |
| 33 | |
| 34 | In order to compile this implementation, a Makefile is provided with |
| 35 | the ptmalloc2 distribution, which has pre-defined targets for some |
| 36 | popular systems (e.g. "make posix" for Posix threads). All that is |
| 37 | typically required with regard to compiler flags is the selection of |
| 38 | the thread package via defining one out of USE_PTHREADS, USE_THR or |
| 39 | USE_SPROC. Check the thread-m.h file for what effects this has. |
| 40 | Many/most systems will additionally require USE_TSD_DATA_HACK to be |
| 41 | defined, so this is the default for "make posix". |
| 42 | |
| 43 | * Why use this malloc? |
| 44 | |
| 45 | This is not the fastest, most space-conserving, most portable, or |
| 46 | most tunable malloc ever written. However it is among the fastest |
| 47 | while also being among the most space-conserving, portable and tunable. |
| 48 | Consistent balance across these factors results in a good general-purpose |
| 49 | allocator for malloc-intensive programs. |
| 50 | |
| 51 | The main properties of the algorithms are: |
| 52 | * For large (>= 512 bytes) requests, it is a pure best-fit allocator, |
| 53 | with ties normally decided via FIFO (i.e. least recently used). |
| 54 | * For small (<= 64 bytes by default) requests, it is a caching |
| 55 | allocator, that maintains pools of quickly recycled chunks. |
| 56 | * In between, and for combinations of large and small requests, it does |
| 57 | the best it can trying to meet both goals at once. |
| 58 | * For very large requests (>= 128KB by default), it relies on system |
| 59 | memory mapping facilities, if supported. |
| 60 | |
| 61 | For a longer but slightly out of date high-level description, see |
| 62 | http://gee.cs.oswego.edu/dl/html/malloc.html |
| 63 | |
| 64 | You may already by default be using a C library containing a malloc |
| 65 | that is based on some version of this malloc (for example in |
| 66 | linux). You might still want to use the one in this file in order to |
| 67 | customize settings or to avoid overheads associated with library |
| 68 | versions. |
| 69 | |
| 70 | * Contents, described in more detail in "description of public routines" below. |
| 71 | |
| 72 | Standard (ANSI/SVID/...) functions: |
| 73 | malloc(size_t n); |
| 74 | calloc(size_t n_elements, size_t element_size); |
| 75 | free(void* p); |
| 76 | realloc(void* p, size_t n); |
| 77 | memalign(size_t alignment, size_t n); |
| 78 | valloc(size_t n); |
| 79 | mallinfo() |
| 80 | mallopt(int parameter_number, int parameter_value) |
| 81 | |
| 82 | Additional functions: |
| 83 | independent_calloc(size_t n_elements, size_t size, void* chunks[]); |
| 84 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
| 85 | pvalloc(size_t n); |
| 86 | malloc_trim(size_t pad); |
| 87 | malloc_usable_size(void* p); |
| 88 | malloc_stats(); |
| 89 | |
| 90 | * Vital statistics: |
| 91 | |
| 92 | Supported pointer representation: 4 or 8 bytes |
| 93 | Supported size_t representation: 4 or 8 bytes |
| 94 | Note that size_t is allowed to be 4 bytes even if pointers are 8. |
| 95 | You can adjust this by defining INTERNAL_SIZE_T |
| 96 | |
| 97 | Alignment: 2 * sizeof(size_t) (default) |
| 98 | (i.e., 8 byte alignment with 4byte size_t). This suffices for |
| 99 | nearly all current machines and C compilers. However, you can |
| 100 | define MALLOC_ALIGNMENT to be wider than this if necessary. |
| 101 | |
| 102 | Minimum overhead per allocated chunk: 4 or 8 bytes |
| 103 | Each malloced chunk has a hidden word of overhead holding size |
| 104 | and status information. |
| 105 | |
| 106 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) |
| 107 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
| 108 | |
| 109 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte |
| 110 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are |
| 111 | needed; 4 (8) for a trailing size field and 8 (16) bytes for |
| 112 | free list pointers. Thus, the minimum allocatable size is |
| 113 | 16/24/32 bytes. |
| 114 | |
| 115 | Even a request for zero bytes (i.e., malloc(0)) returns a |
| 116 | pointer to something of the minimum allocatable size. |
| 117 | |
| 118 | The maximum overhead wastage (i.e., number of extra bytes |
| 119 | allocated than were requested in malloc) is less than or equal |
| 120 | to the minimum size, except for requests >= mmap_threshold that |
| 121 | are serviced via mmap(), where the worst case wastage is 2 * |
| 122 | sizeof(size_t) bytes plus the remainder from a system page (the |
| 123 | minimal mmap unit); typically 4096 or 8192 bytes. |
| 124 | |
| 125 | Maximum allocated size: 4-byte size_t: 2^32 minus about two pages |
| 126 | 8-byte size_t: 2^64 minus about two pages |
| 127 | |
| 128 | It is assumed that (possibly signed) size_t values suffice to |
| 129 | represent chunk sizes. `Possibly signed' is due to the fact |
| 130 | that `size_t' may be defined on a system as either a signed or |
| 131 | an unsigned type. The ISO C standard says that it must be |
| 132 | unsigned, but a few systems are known not to adhere to this. |
| 133 | Additionally, even when size_t is unsigned, sbrk (which is by |
| 134 | default used to obtain memory from system) accepts signed |
| 135 | arguments, and may not be able to handle size_t-wide arguments |
| 136 | with negative sign bit. Generally, values that would |
| 137 | appear as negative after accounting for overhead and alignment |
| 138 | are supported only via mmap(), which does not have this |
| 139 | limitation. |
| 140 | |
| 141 | Requests for sizes outside the allowed range will perform an optional |
| 142 | failure action and then return null. (Requests may also |
| 143 | also fail because a system is out of memory.) |
| 144 | |
| 145 | Thread-safety: thread-safe |
| 146 | |
| 147 | Compliance: I believe it is compliant with the 1997 Single Unix Specification |
| 148 | Also SVID/XPG, ANSI C, and probably others as well. |
| 149 | |
| 150 | * Synopsis of compile-time options: |
| 151 | |
| 152 | People have reported using previous versions of this malloc on all |
| 153 | versions of Unix, sometimes by tweaking some of the defines |
| 154 | below. It has been tested most extensively on Solaris and Linux. |
| 155 | People also report using it in stand-alone embedded systems. |
| 156 | |
| 157 | The implementation is in straight, hand-tuned ANSI C. It is not |
| 158 | at all modular. (Sorry!) It uses a lot of macros. To be at all |
| 159 | usable, this code should be compiled using an optimizing compiler |
| 160 | (for example gcc -O3) that can simplify expressions and control |
| 161 | paths. (FAQ: some macros import variables as arguments rather than |
| 162 | declare locals because people reported that some debuggers |
| 163 | otherwise get confused.) |
| 164 | |
| 165 | OPTION DEFAULT VALUE |
| 166 | |
| 167 | Compilation Environment options: |
| 168 | |
| 169 | HAVE_MREMAP 0 |
| 170 | |
| 171 | Changing default word sizes: |
| 172 | |
| 173 | INTERNAL_SIZE_T size_t |
| 174 | |
| 175 | Configuration and functionality options: |
| 176 | |
| 177 | USE_PUBLIC_MALLOC_WRAPPERS NOT defined |
| 178 | USE_MALLOC_LOCK NOT defined |
| 179 | MALLOC_DEBUG NOT defined |
| 180 | REALLOC_ZERO_BYTES_FREES 1 |
| 181 | TRIM_FASTBINS 0 |
| 182 | |
| 183 | Options for customizing MORECORE: |
| 184 | |
| 185 | MORECORE sbrk |
| 186 | MORECORE_FAILURE -1 |
| 187 | MORECORE_CONTIGUOUS 1 |
| 188 | MORECORE_CANNOT_TRIM NOT defined |
| 189 | MORECORE_CLEARS 1 |
| 190 | MMAP_AS_MORECORE_SIZE (1024 * 1024) |
| 191 | |
| 192 | Tuning options that are also dynamically changeable via mallopt: |
| 193 | |
| 194 | DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit) |
| 195 | DEFAULT_TRIM_THRESHOLD 128 * 1024 |
| 196 | DEFAULT_TOP_PAD 0 |
| 197 | DEFAULT_MMAP_THRESHOLD 128 * 1024 |
| 198 | DEFAULT_MMAP_MAX 65536 |
| 199 | |
| 200 | There are several other #defined constants and macros that you |
| 201 | probably don't want to touch unless you are extending or adapting malloc. */ |
| 202 | |
| 203 | /* |
| 204 | void* is the pointer type that malloc should say it returns |
| 205 | */ |
| 206 | |
| 207 | #ifndef void |
| 208 | #define void void |
| 209 | #endif /*void*/ |
| 210 | |
| 211 | #include <stddef.h> /* for size_t */ |
| 212 | #include <stdlib.h> /* for getenv(), abort() */ |
| 213 | #include <unistd.h> /* for __libc_enable_secure */ |
| 214 | |
| 215 | #include <atomic.h> |
| 216 | #include <_itoa.h> |
| 217 | #include <bits/wordsize.h> |
| 218 | #include <sys/sysinfo.h> |
| 219 | |
| 220 | #include <ldsodefs.h> |
| 221 | |
| 222 | #include <unistd.h> |
| 223 | #include <stdio.h> /* needed for malloc_stats */ |
| 224 | #include <errno.h> |
| 225 | #include <assert.h> |
| 226 | |
| 227 | #include <shlib-compat.h> |
| 228 | |
| 229 | /* For uintptr_t. */ |
| 230 | #include <stdint.h> |
| 231 | |
| 232 | /* For va_arg, va_start, va_end. */ |
| 233 | #include <stdarg.h> |
| 234 | |
| 235 | /* For MIN, MAX, powerof2. */ |
| 236 | #include <sys/param.h> |
| 237 | |
| 238 | /* For ALIGN_UP et. al. */ |
| 239 | #include <libc-pointer-arith.h> |
| 240 | |
| 241 | /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */ |
| 242 | #include <libc-diag.h> |
| 243 | |
| 244 | /* For memory tagging. */ |
| 245 | #include <libc-mtag.h> |
| 246 | |
| 247 | #include <malloc/malloc-internal.h> |
| 248 | |
| 249 | /* For SINGLE_THREAD_P. */ |
| 250 | #include <sysdep-cancel.h> |
| 251 | |
| 252 | #include <libc-internal.h> |
| 253 | |
| 254 | /* For tcache double-free check. */ |
| 255 | #include <random-bits.h> |
| 256 | #include <sys/random.h> |
| 257 | |
| 258 | /* |
| 259 | Debugging: |
| 260 | |
| 261 | Because freed chunks may be overwritten with bookkeeping fields, this |
| 262 | malloc will often die when freed memory is overwritten by user |
| 263 | programs. This can be very effective (albeit in an annoying way) |
| 264 | in helping track down dangling pointers. |
| 265 | |
| 266 | If you compile with -DMALLOC_DEBUG, a number of assertion checks are |
| 267 | enabled that will catch more memory errors. You probably won't be |
| 268 | able to make much sense of the actual assertion errors, but they |
| 269 | should help you locate incorrectly overwritten memory. The checking |
| 270 | is fairly extensive, and will slow down execution |
| 271 | noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set |
| 272 | will attempt to check every non-mmapped allocated and free chunk in |
| 273 | the course of computing the summmaries. (By nature, mmapped regions |
| 274 | cannot be checked very much automatically.) |
| 275 | |
| 276 | Setting MALLOC_DEBUG may also be helpful if you are trying to modify |
| 277 | this code. The assertions in the check routines spell out in more |
| 278 | detail the assumptions and invariants underlying the algorithms. |
| 279 | |
| 280 | Setting MALLOC_DEBUG does NOT provide an automated mechanism for |
| 281 | checking that all accesses to malloced memory stay within their |
| 282 | bounds. However, there are several add-ons and adaptations of this |
| 283 | or other mallocs available that do this. |
| 284 | */ |
| 285 | |
| 286 | #ifndef MALLOC_DEBUG |
| 287 | #define MALLOC_DEBUG 0 |
| 288 | #endif |
| 289 | |
| 290 | #if IS_IN (libc) |
| 291 | #ifndef NDEBUG |
| 292 | # define __assert_fail(assertion, file, line, function) \ |
| 293 | __malloc_assert(assertion, file, line, function) |
| 294 | |
| 295 | _Noreturn static void |
| 296 | __malloc_assert (const char *assertion, const char *file, unsigned int line, |
| 297 | const char *function) |
| 298 | { |
| 299 | __libc_message (do_abort, "\ |
| 300 | Fatal glibc error: malloc assertion failure in %s: %s\n" , |
| 301 | function, assertion); |
| 302 | __builtin_unreachable (); |
| 303 | } |
| 304 | #endif |
| 305 | #endif |
| 306 | |
| 307 | #if USE_TCACHE |
| 308 | /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */ |
| 309 | # define TCACHE_MAX_BINS 64 |
| 310 | # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1) |
| 311 | |
| 312 | /* Only used to pre-fill the tunables. */ |
| 313 | # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ) |
| 314 | |
| 315 | /* When "x" is from chunksize(). */ |
| 316 | # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT) |
| 317 | /* When "x" is a user-provided size. */ |
| 318 | # define usize2tidx(x) csize2tidx (request2size (x)) |
| 319 | |
| 320 | /* With rounding and alignment, the bins are... |
| 321 | idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit) |
| 322 | idx 1 bytes 25..40 or 13..20 |
| 323 | idx 2 bytes 41..56 or 21..28 |
| 324 | etc. */ |
| 325 | |
| 326 | /* This is another arbitrary limit, which tunables can change. Each |
| 327 | tcache bin will hold at most this number of chunks. */ |
| 328 | # define TCACHE_FILL_COUNT 7 |
| 329 | |
| 330 | /* Maximum chunks in tcache bins for tunables. This value must fit the range |
| 331 | of tcache->counts[] entries, else they may overflow. */ |
| 332 | # define MAX_TCACHE_COUNT UINT16_MAX |
| 333 | #endif |
| 334 | |
| 335 | /* Safe-Linking: |
| 336 | Use randomness from ASLR (mmap_base) to protect single-linked lists |
| 337 | of Fast-Bins and TCache. That is, mask the "next" pointers of the |
| 338 | lists' chunks, and also perform allocation alignment checks on them. |
| 339 | This mechanism reduces the risk of pointer hijacking, as was done with |
| 340 | Safe-Unlinking in the double-linked lists of Small-Bins. |
| 341 | It assumes a minimum page size of 4096 bytes (12 bits). Systems with |
| 342 | larger pages provide less entropy, although the pointer mangling |
| 343 | still works. */ |
| 344 | #define PROTECT_PTR(pos, ptr) \ |
| 345 | ((__typeof (ptr)) ((((size_t) pos) >> 12) ^ ((size_t) ptr))) |
| 346 | #define REVEAL_PTR(ptr) PROTECT_PTR (&ptr, ptr) |
| 347 | |
| 348 | /* |
| 349 | The REALLOC_ZERO_BYTES_FREES macro controls the behavior of realloc (p, 0) |
| 350 | when p is nonnull. If the macro is nonzero, the realloc call returns NULL; |
| 351 | otherwise, the call returns what malloc (0) would. In either case, |
| 352 | p is freed. Glibc uses a nonzero REALLOC_ZERO_BYTES_FREES, which |
| 353 | implements common historical practice. |
| 354 | |
| 355 | ISO C17 says the realloc call has implementation-defined behavior, |
| 356 | and it might not even free p. |
| 357 | */ |
| 358 | |
| 359 | #ifndef REALLOC_ZERO_BYTES_FREES |
| 360 | #define REALLOC_ZERO_BYTES_FREES 1 |
| 361 | #endif |
| 362 | |
| 363 | /* |
| 364 | TRIM_FASTBINS controls whether free() of a very small chunk can |
| 365 | immediately lead to trimming. Setting to true (1) can reduce memory |
| 366 | footprint, but will almost always slow down programs that use a lot |
| 367 | of small chunks. |
| 368 | |
| 369 | Define this only if you are willing to give up some speed to more |
| 370 | aggressively reduce system-level memory footprint when releasing |
| 371 | memory in programs that use many small chunks. You can get |
| 372 | essentially the same effect by setting MXFAST to 0, but this can |
| 373 | lead to even greater slowdowns in programs using many small chunks. |
| 374 | TRIM_FASTBINS is an in-between compile-time option, that disables |
| 375 | only those chunks bordering topmost memory from being placed in |
| 376 | fastbins. |
| 377 | */ |
| 378 | |
| 379 | #ifndef TRIM_FASTBINS |
| 380 | #define TRIM_FASTBINS 0 |
| 381 | #endif |
| 382 | |
| 383 | /* Definition for getting more memory from the OS. */ |
| 384 | #include "morecore.c" |
| 385 | |
| 386 | #define MORECORE (*__glibc_morecore) |
| 387 | #define MORECORE_FAILURE 0 |
| 388 | |
| 389 | /* Memory tagging. */ |
| 390 | |
| 391 | /* Some systems support the concept of tagging (sometimes known as |
| 392 | coloring) memory locations on a fine grained basis. Each memory |
| 393 | location is given a color (normally allocated randomly) and |
| 394 | pointers are also colored. When the pointer is dereferenced, the |
| 395 | pointer's color is checked against the memory's color and if they |
| 396 | differ the access is faulted (sometimes lazily). |
| 397 | |
| 398 | We use this in glibc by maintaining a single color for the malloc |
| 399 | data structures that are interleaved with the user data and then |
| 400 | assigning separate colors for each block allocation handed out. In |
| 401 | this way simple buffer overruns will be rapidly detected. When |
| 402 | memory is freed, the memory is recolored back to the glibc default |
| 403 | so that simple use-after-free errors can also be detected. |
| 404 | |
| 405 | If memory is reallocated the buffer is recolored even if the |
| 406 | address remains the same. This has a performance impact, but |
| 407 | guarantees that the old pointer cannot mistakenly be reused (code |
| 408 | that compares old against new will see a mismatch and will then |
| 409 | need to behave as though realloc moved the data to a new location). |
| 410 | |
| 411 | Internal API for memory tagging support. |
| 412 | |
| 413 | The aim is to keep the code for memory tagging support as close to |
| 414 | the normal APIs in glibc as possible, so that if tagging is not |
| 415 | enabled in the library, or is disabled at runtime then standard |
| 416 | operations can continue to be used. Support macros are used to do |
| 417 | this: |
| 418 | |
| 419 | void *tag_new_zero_region (void *ptr, size_t size) |
| 420 | |
| 421 | Allocates a new tag, colors the memory with that tag, zeros the |
| 422 | memory and returns a pointer that is correctly colored for that |
| 423 | location. The non-tagging version will simply call memset with 0. |
| 424 | |
| 425 | void *tag_region (void *ptr, size_t size) |
| 426 | |
| 427 | Color the region of memory pointed to by PTR and size SIZE with |
| 428 | the color of PTR. Returns the original pointer. |
| 429 | |
| 430 | void *tag_new_usable (void *ptr) |
| 431 | |
| 432 | Allocate a new random color and use it to color the user region of |
| 433 | a chunk; this may include data from the subsequent chunk's header |
| 434 | if tagging is sufficiently fine grained. Returns PTR suitably |
| 435 | recolored for accessing the memory there. |
| 436 | |
| 437 | void *tag_at (void *ptr) |
| 438 | |
| 439 | Read the current color of the memory at the address pointed to by |
| 440 | PTR (ignoring it's current color) and return PTR recolored to that |
| 441 | color. PTR must be valid address in all other respects. When |
| 442 | tagging is not enabled, it simply returns the original pointer. |
| 443 | */ |
| 444 | |
| 445 | #ifdef USE_MTAG |
| 446 | static bool mtag_enabled = false; |
| 447 | static int mtag_mmap_flags = 0; |
| 448 | #else |
| 449 | # define mtag_enabled false |
| 450 | # define mtag_mmap_flags 0 |
| 451 | #endif |
| 452 | |
| 453 | static __always_inline void * |
| 454 | tag_region (void *ptr, size_t size) |
| 455 | { |
| 456 | if (__glibc_unlikely (mtag_enabled)) |
| 457 | return __libc_mtag_tag_region (ptr, size); |
| 458 | return ptr; |
| 459 | } |
| 460 | |
| 461 | static __always_inline void * |
| 462 | tag_new_zero_region (void *ptr, size_t size) |
| 463 | { |
| 464 | if (__glibc_unlikely (mtag_enabled)) |
| 465 | return __libc_mtag_tag_zero_region (__libc_mtag_new_tag (ptr), size); |
| 466 | return memset (ptr, 0, size); |
| 467 | } |
| 468 | |
| 469 | /* Defined later. */ |
| 470 | static void * |
| 471 | tag_new_usable (void *ptr); |
| 472 | |
| 473 | static __always_inline void * |
| 474 | tag_at (void *ptr) |
| 475 | { |
| 476 | if (__glibc_unlikely (mtag_enabled)) |
| 477 | return __libc_mtag_address_get_tag (ptr); |
| 478 | return ptr; |
| 479 | } |
| 480 | |
| 481 | #include <string.h> |
| 482 | |
| 483 | /* |
| 484 | MORECORE-related declarations. By default, rely on sbrk |
| 485 | */ |
| 486 | |
| 487 | |
| 488 | /* |
| 489 | MORECORE is the name of the routine to call to obtain more memory |
| 490 | from the system. See below for general guidance on writing |
| 491 | alternative MORECORE functions, as well as a version for WIN32 and a |
| 492 | sample version for pre-OSX macos. |
| 493 | */ |
| 494 | |
| 495 | #ifndef MORECORE |
| 496 | #define MORECORE sbrk |
| 497 | #endif |
| 498 | |
| 499 | /* |
| 500 | MORECORE_FAILURE is the value returned upon failure of MORECORE |
| 501 | as well as mmap. Since it cannot be an otherwise valid memory address, |
| 502 | and must reflect values of standard sys calls, you probably ought not |
| 503 | try to redefine it. |
| 504 | */ |
| 505 | |
| 506 | #ifndef MORECORE_FAILURE |
| 507 | #define MORECORE_FAILURE (-1) |
| 508 | #endif |
| 509 | |
| 510 | /* |
| 511 | If MORECORE_CONTIGUOUS is true, take advantage of fact that |
| 512 | consecutive calls to MORECORE with positive arguments always return |
| 513 | contiguous increasing addresses. This is true of unix sbrk. Even |
| 514 | if not defined, when regions happen to be contiguous, malloc will |
| 515 | permit allocations spanning regions obtained from different |
| 516 | calls. But defining this when applicable enables some stronger |
| 517 | consistency checks and space efficiencies. |
| 518 | */ |
| 519 | |
| 520 | #ifndef MORECORE_CONTIGUOUS |
| 521 | #define MORECORE_CONTIGUOUS 1 |
| 522 | #endif |
| 523 | |
| 524 | /* |
| 525 | Define MORECORE_CANNOT_TRIM if your version of MORECORE |
| 526 | cannot release space back to the system when given negative |
| 527 | arguments. This is generally necessary only if you are using |
| 528 | a hand-crafted MORECORE function that cannot handle negative arguments. |
| 529 | */ |
| 530 | |
| 531 | /* #define MORECORE_CANNOT_TRIM */ |
| 532 | |
| 533 | /* MORECORE_CLEARS (default 1) |
| 534 | The degree to which the routine mapped to MORECORE zeroes out |
| 535 | memory: never (0), only for newly allocated space (1) or always |
| 536 | (2). The distinction between (1) and (2) is necessary because on |
| 537 | some systems, if the application first decrements and then |
| 538 | increments the break value, the contents of the reallocated space |
| 539 | are unspecified. |
| 540 | */ |
| 541 | |
| 542 | #ifndef MORECORE_CLEARS |
| 543 | # define MORECORE_CLEARS 1 |
| 544 | #endif |
| 545 | |
| 546 | |
| 547 | /* |
| 548 | MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if |
| 549 | sbrk fails, and mmap is used as a backup. The value must be a |
| 550 | multiple of page size. This backup strategy generally applies only |
| 551 | when systems have "holes" in address space, so sbrk cannot perform |
| 552 | contiguous expansion, but there is still space available on system. |
| 553 | On systems for which this is known to be useful (i.e. most linux |
| 554 | kernels), this occurs only when programs allocate huge amounts of |
| 555 | memory. Between this, and the fact that mmap regions tend to be |
| 556 | limited, the size should be large, to avoid too many mmap calls and |
| 557 | thus avoid running out of kernel resources. */ |
| 558 | |
| 559 | #ifndef MMAP_AS_MORECORE_SIZE |
| 560 | #define MMAP_AS_MORECORE_SIZE (1024 * 1024) |
| 561 | #endif |
| 562 | |
| 563 | /* |
| 564 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate |
| 565 | large blocks. |
| 566 | */ |
| 567 | |
| 568 | #ifndef HAVE_MREMAP |
| 569 | #define HAVE_MREMAP 0 |
| 570 | #endif |
| 571 | |
| 572 | /* |
| 573 | This version of malloc supports the standard SVID/XPG mallinfo |
| 574 | routine that returns a struct containing usage properties and |
| 575 | statistics. It should work on any SVID/XPG compliant system that has |
| 576 | a /usr/include/malloc.h defining struct mallinfo. (If you'd like to |
| 577 | install such a thing yourself, cut out the preliminary declarations |
| 578 | as described above and below and save them in a malloc.h file. But |
| 579 | there's no compelling reason to bother to do this.) |
| 580 | |
| 581 | The main declaration needed is the mallinfo struct that is returned |
| 582 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a |
| 583 | bunch of fields that are not even meaningful in this version of |
| 584 | malloc. These fields are are instead filled by mallinfo() with |
| 585 | other numbers that might be of interest. |
| 586 | */ |
| 587 | |
| 588 | |
| 589 | /* ---------- description of public routines ------------ */ |
| 590 | |
| 591 | #if IS_IN (libc) |
| 592 | /* |
| 593 | malloc(size_t n) |
| 594 | Returns a pointer to a newly allocated chunk of at least n bytes, or null |
| 595 | if no space is available. Additionally, on failure, errno is |
| 596 | set to ENOMEM on ANSI C systems. |
| 597 | |
| 598 | If n is zero, malloc returns a minimum-sized chunk. (The minimum |
| 599 | size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit |
| 600 | systems.) On most systems, size_t is an unsigned type, so calls |
| 601 | with negative arguments are interpreted as requests for huge amounts |
| 602 | of space, which will often fail. The maximum supported value of n |
| 603 | differs across systems, but is in all cases less than the maximum |
| 604 | representable value of a size_t. |
| 605 | */ |
| 606 | void* __libc_malloc(size_t); |
| 607 | libc_hidden_proto (__libc_malloc) |
| 608 | |
| 609 | /* |
| 610 | free(void* p) |
| 611 | Releases the chunk of memory pointed to by p, that had been previously |
| 612 | allocated using malloc or a related routine such as realloc. |
| 613 | It has no effect if p is null. It can have arbitrary (i.e., bad!) |
| 614 | effects if p has already been freed. |
| 615 | |
| 616 | Unless disabled (using mallopt), freeing very large spaces will |
| 617 | when possible, automatically trigger operations that give |
| 618 | back unused memory to the system, thus reducing program footprint. |
| 619 | */ |
| 620 | void __libc_free(void*); |
| 621 | libc_hidden_proto (__libc_free) |
| 622 | |
| 623 | /* |
| 624 | calloc(size_t n_elements, size_t element_size); |
| 625 | Returns a pointer to n_elements * element_size bytes, with all locations |
| 626 | set to zero. |
| 627 | */ |
| 628 | void* __libc_calloc(size_t, size_t); |
| 629 | |
| 630 | /* |
| 631 | realloc(void* p, size_t n) |
| 632 | Returns a pointer to a chunk of size n that contains the same data |
| 633 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
| 634 | if no space is available. |
| 635 | |
| 636 | The returned pointer may or may not be the same as p. The algorithm |
| 637 | prefers extending p when possible, otherwise it employs the |
| 638 | equivalent of a malloc-copy-free sequence. |
| 639 | |
| 640 | If p is null, realloc is equivalent to malloc. |
| 641 | |
| 642 | If space is not available, realloc returns null, errno is set (if on |
| 643 | ANSI) and p is NOT freed. |
| 644 | |
| 645 | if n is for fewer bytes than already held by p, the newly unused |
| 646 | space is lopped off and freed if possible. Unless the #define |
| 647 | REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of |
| 648 | zero (re)allocates a minimum-sized chunk. |
| 649 | |
| 650 | Large chunks that were internally obtained via mmap will always be |
| 651 | grown using malloc-copy-free sequences unless the system supports |
| 652 | MREMAP (currently only linux). |
| 653 | |
| 654 | The old unix realloc convention of allowing the last-free'd chunk |
| 655 | to be used as an argument to realloc is not supported. |
| 656 | */ |
| 657 | void* __libc_realloc(void*, size_t); |
| 658 | libc_hidden_proto (__libc_realloc) |
| 659 | |
| 660 | /* |
| 661 | memalign(size_t alignment, size_t n); |
| 662 | Returns a pointer to a newly allocated chunk of n bytes, aligned |
| 663 | in accord with the alignment argument. |
| 664 | |
| 665 | The alignment argument should be a power of two. If the argument is |
| 666 | not a power of two, the nearest greater power is used. |
| 667 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
| 668 | bother calling memalign with an argument of 8 or less. |
| 669 | |
| 670 | Overreliance on memalign is a sure way to fragment space. |
| 671 | */ |
| 672 | void* __libc_memalign(size_t, size_t); |
| 673 | libc_hidden_proto (__libc_memalign) |
| 674 | |
| 675 | /* |
| 676 | valloc(size_t n); |
| 677 | Equivalent to memalign(pagesize, n), where pagesize is the page |
| 678 | size of the system. If the pagesize is unknown, 4096 is used. |
| 679 | */ |
| 680 | void* __libc_valloc(size_t); |
| 681 | |
| 682 | |
| 683 | |
| 684 | /* |
| 685 | mallinfo() |
| 686 | Returns (by copy) a struct containing various summary statistics: |
| 687 | |
| 688 | arena: current total non-mmapped bytes allocated from system |
| 689 | ordblks: the number of free chunks |
| 690 | smblks: the number of fastbin blocks (i.e., small chunks that |
| 691 | have been freed but not use resused or consolidated) |
| 692 | hblks: current number of mmapped regions |
| 693 | hblkhd: total bytes held in mmapped regions |
| 694 | usmblks: always 0 |
| 695 | fsmblks: total bytes held in fastbin blocks |
| 696 | uordblks: current total allocated space (normal or mmapped) |
| 697 | fordblks: total free space |
| 698 | keepcost: the maximum number of bytes that could ideally be released |
| 699 | back to system via malloc_trim. ("ideally" means that |
| 700 | it ignores page restrictions etc.) |
| 701 | |
| 702 | Because these fields are ints, but internal bookkeeping may |
| 703 | be kept as longs, the reported values may wrap around zero and |
| 704 | thus be inaccurate. |
| 705 | */ |
| 706 | struct mallinfo2 __libc_mallinfo2(void); |
| 707 | libc_hidden_proto (__libc_mallinfo2) |
| 708 | |
| 709 | struct mallinfo __libc_mallinfo(void); |
| 710 | |
| 711 | |
| 712 | /* |
| 713 | pvalloc(size_t n); |
| 714 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
| 715 | round up n to nearest pagesize. |
| 716 | */ |
| 717 | void* __libc_pvalloc(size_t); |
| 718 | |
| 719 | /* |
| 720 | malloc_trim(size_t pad); |
| 721 | |
| 722 | If possible, gives memory back to the system (via negative |
| 723 | arguments to sbrk) if there is unused memory at the `high' end of |
| 724 | the malloc pool. You can call this after freeing large blocks of |
| 725 | memory to potentially reduce the system-level memory requirements |
| 726 | of a program. However, it cannot guarantee to reduce memory. Under |
| 727 | some allocation patterns, some large free blocks of memory will be |
| 728 | locked between two used chunks, so they cannot be given back to |
| 729 | the system. |
| 730 | |
| 731 | The `pad' argument to malloc_trim represents the amount of free |
| 732 | trailing space to leave untrimmed. If this argument is zero, |
| 733 | only the minimum amount of memory to maintain internal data |
| 734 | structures will be left (one page or less). Non-zero arguments |
| 735 | can be supplied to maintain enough trailing space to service |
| 736 | future expected allocations without having to re-obtain memory |
| 737 | from the system. |
| 738 | |
| 739 | Malloc_trim returns 1 if it actually released any memory, else 0. |
| 740 | On systems that do not support "negative sbrks", it will always |
| 741 | return 0. |
| 742 | */ |
| 743 | int __malloc_trim(size_t); |
| 744 | |
| 745 | /* |
| 746 | malloc_usable_size(void* p); |
| 747 | |
| 748 | Returns the number of bytes you can actually use in |
| 749 | an allocated chunk, which may be more than you requested (although |
| 750 | often not) due to alignment and minimum size constraints. |
| 751 | You can use this many bytes without worrying about |
| 752 | overwriting other allocated objects. This is not a particularly great |
| 753 | programming practice. malloc_usable_size can be more useful in |
| 754 | debugging and assertions, for example: |
| 755 | |
| 756 | p = malloc(n); |
| 757 | assert(malloc_usable_size(p) >= 256); |
| 758 | |
| 759 | */ |
| 760 | size_t __malloc_usable_size(void*); |
| 761 | |
| 762 | /* |
| 763 | malloc_stats(); |
| 764 | Prints on stderr the amount of space obtained from the system (both |
| 765 | via sbrk and mmap), the maximum amount (which may be more than |
| 766 | current if malloc_trim and/or munmap got called), and the current |
| 767 | number of bytes allocated via malloc (or realloc, etc) but not yet |
| 768 | freed. Note that this is the number of bytes allocated, not the |
| 769 | number requested. It will be larger than the number requested |
| 770 | because of alignment and bookkeeping overhead. Because it includes |
| 771 | alignment wastage as being in use, this figure may be greater than |
| 772 | zero even when no user-level chunks are allocated. |
| 773 | |
| 774 | The reported current and maximum system memory can be inaccurate if |
| 775 | a program makes other calls to system memory allocation functions |
| 776 | (normally sbrk) outside of malloc. |
| 777 | |
| 778 | malloc_stats prints only the most commonly interesting statistics. |
| 779 | More information can be obtained by calling mallinfo. |
| 780 | |
| 781 | */ |
| 782 | void __malloc_stats(void); |
| 783 | |
| 784 | /* |
| 785 | posix_memalign(void **memptr, size_t alignment, size_t size); |
| 786 | |
| 787 | POSIX wrapper like memalign(), checking for validity of size. |
| 788 | */ |
| 789 | int __posix_memalign(void **, size_t, size_t); |
| 790 | #endif /* IS_IN (libc) */ |
| 791 | |
| 792 | /* |
| 793 | mallopt(int parameter_number, int parameter_value) |
| 794 | Sets tunable parameters The format is to provide a |
| 795 | (parameter-number, parameter-value) pair. mallopt then sets the |
| 796 | corresponding parameter to the argument value if it can (i.e., so |
| 797 | long as the value is meaningful), and returns 1 if successful else |
| 798 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, |
| 799 | normally defined in malloc.h. Only one of these (M_MXFAST) is used |
| 800 | in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, |
| 801 | so setting them has no effect. But this malloc also supports four |
| 802 | other options in mallopt. See below for details. Briefly, supported |
| 803 | parameters are as follows (listed defaults are for "typical" |
| 804 | configurations). |
| 805 | |
| 806 | Symbol param # default allowed param values |
| 807 | M_MXFAST 1 64 0-80 (0 disables fastbins) |
| 808 | M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming) |
| 809 | M_TOP_PAD -2 0 any |
| 810 | M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support) |
| 811 | M_MMAP_MAX -4 65536 any (0 disables use of mmap) |
| 812 | */ |
| 813 | int __libc_mallopt(int, int); |
| 814 | #if IS_IN (libc) |
| 815 | libc_hidden_proto (__libc_mallopt) |
| 816 | #endif |
| 817 | |
| 818 | /* mallopt tuning options */ |
| 819 | |
| 820 | /* |
| 821 | M_MXFAST is the maximum request size used for "fastbins", special bins |
| 822 | that hold returned chunks without consolidating their spaces. This |
| 823 | enables future requests for chunks of the same size to be handled |
| 824 | very quickly, but can increase fragmentation, and thus increase the |
| 825 | overall memory footprint of a program. |
| 826 | |
| 827 | This malloc manages fastbins very conservatively yet still |
| 828 | efficiently, so fragmentation is rarely a problem for values less |
| 829 | than or equal to the default. The maximum supported value of MXFAST |
| 830 | is 80. You wouldn't want it any higher than this anyway. Fastbins |
| 831 | are designed especially for use with many small structs, objects or |
| 832 | strings -- the default handles structs/objects/arrays with sizes up |
| 833 | to 8 4byte fields, or small strings representing words, tokens, |
| 834 | etc. Using fastbins for larger objects normally worsens |
| 835 | fragmentation without improving speed. |
| 836 | |
| 837 | M_MXFAST is set in REQUEST size units. It is internally used in |
| 838 | chunksize units, which adds padding and alignment. You can reduce |
| 839 | M_MXFAST to 0 to disable all use of fastbins. This causes the malloc |
| 840 | algorithm to be a closer approximation of fifo-best-fit in all cases, |
| 841 | not just for larger requests, but will generally cause it to be |
| 842 | slower. |
| 843 | */ |
| 844 | |
| 845 | |
| 846 | /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */ |
| 847 | #ifndef M_MXFAST |
| 848 | #define M_MXFAST 1 |
| 849 | #endif |
| 850 | |
| 851 | #ifndef DEFAULT_MXFAST |
| 852 | #define DEFAULT_MXFAST (64 * SIZE_SZ / 4) |
| 853 | #endif |
| 854 | |
| 855 | |
| 856 | /* |
| 857 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory |
| 858 | to keep before releasing via malloc_trim in free(). |
| 859 | |
| 860 | Automatic trimming is mainly useful in long-lived programs. |
| 861 | Because trimming via sbrk can be slow on some systems, and can |
| 862 | sometimes be wasteful (in cases where programs immediately |
| 863 | afterward allocate more large chunks) the value should be high |
| 864 | enough so that your overall system performance would improve by |
| 865 | releasing this much memory. |
| 866 | |
| 867 | The trim threshold and the mmap control parameters (see below) |
| 868 | can be traded off with one another. Trimming and mmapping are |
| 869 | two different ways of releasing unused memory back to the |
| 870 | system. Between these two, it is often possible to keep |
| 871 | system-level demands of a long-lived program down to a bare |
| 872 | minimum. For example, in one test suite of sessions measuring |
| 873 | the XF86 X server on Linux, using a trim threshold of 128K and a |
| 874 | mmap threshold of 192K led to near-minimal long term resource |
| 875 | consumption. |
| 876 | |
| 877 | If you are using this malloc in a long-lived program, it should |
| 878 | pay to experiment with these values. As a rough guide, you |
| 879 | might set to a value close to the average size of a process |
| 880 | (program) running on your system. Releasing this much memory |
| 881 | would allow such a process to run in memory. Generally, it's |
| 882 | worth it to tune for trimming rather tham memory mapping when a |
| 883 | program undergoes phases where several large chunks are |
| 884 | allocated and released in ways that can reuse each other's |
| 885 | storage, perhaps mixed with phases where there are no such |
| 886 | chunks at all. And in well-behaved long-lived programs, |
| 887 | controlling release of large blocks via trimming versus mapping |
| 888 | is usually faster. |
| 889 | |
| 890 | However, in most programs, these parameters serve mainly as |
| 891 | protection against the system-level effects of carrying around |
| 892 | massive amounts of unneeded memory. Since frequent calls to |
| 893 | sbrk, mmap, and munmap otherwise degrade performance, the default |
| 894 | parameters are set to relatively high values that serve only as |
| 895 | safeguards. |
| 896 | |
| 897 | The trim value It must be greater than page size to have any useful |
| 898 | effect. To disable trimming completely, you can set to |
| 899 | (unsigned long)(-1) |
| 900 | |
| 901 | Trim settings interact with fastbin (MXFAST) settings: Unless |
| 902 | TRIM_FASTBINS is defined, automatic trimming never takes place upon |
| 903 | freeing a chunk with size less than or equal to MXFAST. Trimming is |
| 904 | instead delayed until subsequent freeing of larger chunks. However, |
| 905 | you can still force an attempted trim by calling malloc_trim. |
| 906 | |
| 907 | Also, trimming is not generally possible in cases where |
| 908 | the main arena is obtained via mmap. |
| 909 | |
| 910 | Note that the trick some people use of mallocing a huge space and |
| 911 | then freeing it at program startup, in an attempt to reserve system |
| 912 | memory, doesn't have the intended effect under automatic trimming, |
| 913 | since that memory will immediately be returned to the system. |
| 914 | */ |
| 915 | |
| 916 | #define M_TRIM_THRESHOLD -1 |
| 917 | |
| 918 | #ifndef DEFAULT_TRIM_THRESHOLD |
| 919 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) |
| 920 | #endif |
| 921 | |
| 922 | /* |
| 923 | M_TOP_PAD is the amount of extra `padding' space to allocate or |
| 924 | retain whenever sbrk is called. It is used in two ways internally: |
| 925 | |
| 926 | * When sbrk is called to extend the top of the arena to satisfy |
| 927 | a new malloc request, this much padding is added to the sbrk |
| 928 | request. |
| 929 | |
| 930 | * When malloc_trim is called automatically from free(), |
| 931 | it is used as the `pad' argument. |
| 932 | |
| 933 | In both cases, the actual amount of padding is rounded |
| 934 | so that the end of the arena is always a system page boundary. |
| 935 | |
| 936 | The main reason for using padding is to avoid calling sbrk so |
| 937 | often. Having even a small pad greatly reduces the likelihood |
| 938 | that nearly every malloc request during program start-up (or |
| 939 | after trimming) will invoke sbrk, which needlessly wastes |
| 940 | time. |
| 941 | |
| 942 | Automatic rounding-up to page-size units is normally sufficient |
| 943 | to avoid measurable overhead, so the default is 0. However, in |
| 944 | systems where sbrk is relatively slow, it can pay to increase |
| 945 | this value, at the expense of carrying around more memory than |
| 946 | the program needs. |
| 947 | */ |
| 948 | |
| 949 | #define M_TOP_PAD -2 |
| 950 | |
| 951 | #ifndef DEFAULT_TOP_PAD |
| 952 | #define DEFAULT_TOP_PAD (0) |
| 953 | #endif |
| 954 | |
| 955 | /* |
| 956 | MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically |
| 957 | adjusted MMAP_THRESHOLD. |
| 958 | */ |
| 959 | |
| 960 | #ifndef DEFAULT_MMAP_THRESHOLD_MIN |
| 961 | #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024) |
| 962 | #endif |
| 963 | |
| 964 | #ifndef DEFAULT_MMAP_THRESHOLD_MAX |
| 965 | /* For 32-bit platforms we cannot increase the maximum mmap |
| 966 | threshold much because it is also the minimum value for the |
| 967 | maximum heap size and its alignment. Going above 512k (i.e., 1M |
| 968 | for new heaps) wastes too much address space. */ |
| 969 | # if __WORDSIZE == 32 |
| 970 | # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024) |
| 971 | # else |
| 972 | # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long)) |
| 973 | # endif |
| 974 | #endif |
| 975 | |
| 976 | /* |
| 977 | M_MMAP_THRESHOLD is the request size threshold for using mmap() |
| 978 | to service a request. Requests of at least this size that cannot |
| 979 | be allocated using already-existing space will be serviced via mmap. |
| 980 | (If enough normal freed space already exists it is used instead.) |
| 981 | |
| 982 | Using mmap segregates relatively large chunks of memory so that |
| 983 | they can be individually obtained and released from the host |
| 984 | system. A request serviced through mmap is never reused by any |
| 985 | other request (at least not directly; the system may just so |
| 986 | happen to remap successive requests to the same locations). |
| 987 | |
| 988 | Segregating space in this way has the benefits that: |
| 989 | |
| 990 | 1. Mmapped space can ALWAYS be individually released back |
| 991 | to the system, which helps keep the system level memory |
| 992 | demands of a long-lived program low. |
| 993 | 2. Mapped memory can never become `locked' between |
| 994 | other chunks, as can happen with normally allocated chunks, which |
| 995 | means that even trimming via malloc_trim would not release them. |
| 996 | 3. On some systems with "holes" in address spaces, mmap can obtain |
| 997 | memory that sbrk cannot. |
| 998 | |
| 999 | However, it has the disadvantages that: |
| 1000 | |
| 1001 | 1. The space cannot be reclaimed, consolidated, and then |
| 1002 | used to service later requests, as happens with normal chunks. |
| 1003 | 2. It can lead to more wastage because of mmap page alignment |
| 1004 | requirements |
| 1005 | 3. It causes malloc performance to be more dependent on host |
| 1006 | system memory management support routines which may vary in |
| 1007 | implementation quality and may impose arbitrary |
| 1008 | limitations. Generally, servicing a request via normal |
| 1009 | malloc steps is faster than going through a system's mmap. |
| 1010 | |
| 1011 | The advantages of mmap nearly always outweigh disadvantages for |
| 1012 | "large" chunks, but the value of "large" varies across systems. The |
| 1013 | default is an empirically derived value that works well in most |
| 1014 | systems. |
| 1015 | |
| 1016 | |
| 1017 | Update in 2006: |
| 1018 | The above was written in 2001. Since then the world has changed a lot. |
| 1019 | Memory got bigger. Applications got bigger. The virtual address space |
| 1020 | layout in 32 bit linux changed. |
| 1021 | |
| 1022 | In the new situation, brk() and mmap space is shared and there are no |
| 1023 | artificial limits on brk size imposed by the kernel. What is more, |
| 1024 | applications have started using transient allocations larger than the |
| 1025 | 128Kb as was imagined in 2001. |
| 1026 | |
| 1027 | The price for mmap is also high now; each time glibc mmaps from the |
| 1028 | kernel, the kernel is forced to zero out the memory it gives to the |
| 1029 | application. Zeroing memory is expensive and eats a lot of cache and |
| 1030 | memory bandwidth. This has nothing to do with the efficiency of the |
| 1031 | virtual memory system, by doing mmap the kernel just has no choice but |
| 1032 | to zero. |
| 1033 | |
| 1034 | In 2001, the kernel had a maximum size for brk() which was about 800 |
| 1035 | megabytes on 32 bit x86, at that point brk() would hit the first |
| 1036 | mmaped shared libaries and couldn't expand anymore. With current 2.6 |
| 1037 | kernels, the VA space layout is different and brk() and mmap |
| 1038 | both can span the entire heap at will. |
| 1039 | |
| 1040 | Rather than using a static threshold for the brk/mmap tradeoff, |
| 1041 | we are now using a simple dynamic one. The goal is still to avoid |
| 1042 | fragmentation. The old goals we kept are |
| 1043 | 1) try to get the long lived large allocations to use mmap() |
| 1044 | 2) really large allocations should always use mmap() |
| 1045 | and we're adding now: |
| 1046 | 3) transient allocations should use brk() to avoid forcing the kernel |
| 1047 | having to zero memory over and over again |
| 1048 | |
| 1049 | The implementation works with a sliding threshold, which is by default |
| 1050 | limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts |
| 1051 | out at 128Kb as per the 2001 default. |
| 1052 | |
| 1053 | This allows us to satisfy requirement 1) under the assumption that long |
| 1054 | lived allocations are made early in the process' lifespan, before it has |
| 1055 | started doing dynamic allocations of the same size (which will |
| 1056 | increase the threshold). |
| 1057 | |
| 1058 | The upperbound on the threshold satisfies requirement 2) |
| 1059 | |
| 1060 | The threshold goes up in value when the application frees memory that was |
| 1061 | allocated with the mmap allocator. The idea is that once the application |
| 1062 | starts freeing memory of a certain size, it's highly probable that this is |
| 1063 | a size the application uses for transient allocations. This estimator |
| 1064 | is there to satisfy the new third requirement. |
| 1065 | |
| 1066 | */ |
| 1067 | |
| 1068 | #define M_MMAP_THRESHOLD -3 |
| 1069 | |
| 1070 | #ifndef DEFAULT_MMAP_THRESHOLD |
| 1071 | #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN |
| 1072 | #endif |
| 1073 | |
| 1074 | /* |
| 1075 | M_MMAP_MAX is the maximum number of requests to simultaneously |
| 1076 | service using mmap. This parameter exists because |
| 1077 | some systems have a limited number of internal tables for |
| 1078 | use by mmap, and using more than a few of them may degrade |
| 1079 | performance. |
| 1080 | |
| 1081 | The default is set to a value that serves only as a safeguard. |
| 1082 | Setting to 0 disables use of mmap for servicing large requests. |
| 1083 | */ |
| 1084 | |
| 1085 | #define M_MMAP_MAX -4 |
| 1086 | |
| 1087 | #ifndef DEFAULT_MMAP_MAX |
| 1088 | #define DEFAULT_MMAP_MAX (65536) |
| 1089 | #endif |
| 1090 | |
| 1091 | #include <malloc.h> |
| 1092 | |
| 1093 | #ifndef RETURN_ADDRESS |
| 1094 | #define RETURN_ADDRESS(X_) (NULL) |
| 1095 | #endif |
| 1096 | |
| 1097 | /* Forward declarations. */ |
| 1098 | struct malloc_chunk; |
| 1099 | typedef struct malloc_chunk* mchunkptr; |
| 1100 | |
| 1101 | /* Internal routines. */ |
| 1102 | |
| 1103 | static void* _int_malloc(mstate, size_t); |
| 1104 | static void _int_free(mstate, mchunkptr, int); |
| 1105 | static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T, |
| 1106 | INTERNAL_SIZE_T); |
| 1107 | static void* _int_memalign(mstate, size_t, size_t); |
| 1108 | #if IS_IN (libc) |
| 1109 | static void* _mid_memalign(size_t, size_t, void *); |
| 1110 | #endif |
| 1111 | |
| 1112 | static void malloc_printerr(const char *str) __attribute__ ((noreturn)); |
| 1113 | |
| 1114 | static void munmap_chunk(mchunkptr p); |
| 1115 | #if HAVE_MREMAP |
| 1116 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size); |
| 1117 | #endif |
| 1118 | |
| 1119 | /* ------------------ MMAP support ------------------ */ |
| 1120 | |
| 1121 | |
| 1122 | #include <fcntl.h> |
| 1123 | #include <sys/mman.h> |
| 1124 | |
| 1125 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
| 1126 | # define MAP_ANONYMOUS MAP_ANON |
| 1127 | #endif |
| 1128 | |
| 1129 | #ifndef MAP_NORESERVE |
| 1130 | # define MAP_NORESERVE 0 |
| 1131 | #endif |
| 1132 | |
| 1133 | #define MMAP(addr, size, prot, flags) \ |
| 1134 | __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0) |
| 1135 | |
| 1136 | |
| 1137 | /* |
| 1138 | ----------------------- Chunk representations ----------------------- |
| 1139 | */ |
| 1140 | |
| 1141 | |
| 1142 | /* |
| 1143 | This struct declaration is misleading (but accurate and necessary). |
| 1144 | It declares a "view" into memory allowing access to necessary |
| 1145 | fields at known offsets from a given base. See explanation below. |
| 1146 | */ |
| 1147 | |
| 1148 | struct malloc_chunk { |
| 1149 | |
| 1150 | INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */ |
| 1151 | INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */ |
| 1152 | |
| 1153 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
| 1154 | struct malloc_chunk* bk; |
| 1155 | |
| 1156 | /* Only used for large blocks: pointer to next larger size. */ |
| 1157 | struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ |
| 1158 | struct malloc_chunk* bk_nextsize; |
| 1159 | }; |
| 1160 | |
| 1161 | |
| 1162 | /* |
| 1163 | malloc_chunk details: |
| 1164 | |
| 1165 | (The following includes lightly edited explanations by Colin Plumb.) |
| 1166 | |
| 1167 | Chunks of memory are maintained using a `boundary tag' method as |
| 1168 | described in e.g., Knuth or Standish. (See the paper by Paul |
| 1169 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a |
| 1170 | survey of such techniques.) Sizes of free chunks are stored both |
| 1171 | in the front of each chunk and at the end. This makes |
| 1172 | consolidating fragmented chunks into bigger chunks very fast. The |
| 1173 | size fields also hold bits representing whether chunks are free or |
| 1174 | in use. |
| 1175 | |
| 1176 | An allocated chunk looks like this: |
| 1177 | |
| 1178 | |
| 1179 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1180 | | Size of previous chunk, if unallocated (P clear) | |
| 1181 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1182 | | Size of chunk, in bytes |A|M|P| |
| 1183 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1184 | | User data starts here... . |
| 1185 | . . |
| 1186 | . (malloc_usable_size() bytes) . |
| 1187 | . | |
| 1188 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1189 | | (size of chunk, but used for application data) | |
| 1190 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1191 | | Size of next chunk, in bytes |A|0|1| |
| 1192 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1193 | |
| 1194 | Where "chunk" is the front of the chunk for the purpose of most of |
| 1195 | the malloc code, but "mem" is the pointer that is returned to the |
| 1196 | user. "Nextchunk" is the beginning of the next contiguous chunk. |
| 1197 | |
| 1198 | Chunks always begin on even word boundaries, so the mem portion |
| 1199 | (which is returned to the user) is also on an even word boundary, and |
| 1200 | thus at least double-word aligned. |
| 1201 | |
| 1202 | Free chunks are stored in circular doubly-linked lists, and look like this: |
| 1203 | |
| 1204 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1205 | | Size of previous chunk, if unallocated (P clear) | |
| 1206 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1207 | `head:' | Size of chunk, in bytes |A|0|P| |
| 1208 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1209 | | Forward pointer to next chunk in list | |
| 1210 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1211 | | Back pointer to previous chunk in list | |
| 1212 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1213 | | Unused space (may be 0 bytes long) . |
| 1214 | . . |
| 1215 | . | |
| 1216 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1217 | `foot:' | Size of chunk, in bytes | |
| 1218 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1219 | | Size of next chunk, in bytes |A|0|0| |
| 1220 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1221 | |
| 1222 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the |
| 1223 | chunk size (which is always a multiple of two words), is an in-use |
| 1224 | bit for the *previous* chunk. If that bit is *clear*, then the |
| 1225 | word before the current chunk size contains the previous chunk |
| 1226 | size, and can be used to find the front of the previous chunk. |
| 1227 | The very first chunk allocated always has this bit set, |
| 1228 | preventing access to non-existent (or non-owned) memory. If |
| 1229 | prev_inuse is set for any given chunk, then you CANNOT determine |
| 1230 | the size of the previous chunk, and might even get a memory |
| 1231 | addressing fault when trying to do so. |
| 1232 | |
| 1233 | The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial, |
| 1234 | main arena, described by the main_arena variable. When additional |
| 1235 | threads are spawned, each thread receives its own arena (up to a |
| 1236 | configurable limit, after which arenas are reused for multiple |
| 1237 | threads), and the chunks in these arenas have the A bit set. To |
| 1238 | find the arena for a chunk on such a non-main arena, heap_for_ptr |
| 1239 | performs a bit mask operation and indirection through the ar_ptr |
| 1240 | member of the per-heap header heap_info (see arena.c). |
| 1241 | |
| 1242 | Note that the `foot' of the current chunk is actually represented |
| 1243 | as the prev_size of the NEXT chunk. This makes it easier to |
| 1244 | deal with alignments etc but can be very confusing when trying |
| 1245 | to extend or adapt this code. |
| 1246 | |
| 1247 | The three exceptions to all this are: |
| 1248 | |
| 1249 | 1. The special chunk `top' doesn't bother using the |
| 1250 | trailing size field since there is no next contiguous chunk |
| 1251 | that would have to index off it. After initialization, `top' |
| 1252 | is forced to always exist. If it would become less than |
| 1253 | MINSIZE bytes long, it is replenished. |
| 1254 | |
| 1255 | 2. Chunks allocated via mmap, which have the second-lowest-order |
| 1256 | bit M (IS_MMAPPED) set in their size fields. Because they are |
| 1257 | allocated one-by-one, each must contain its own trailing size |
| 1258 | field. If the M bit is set, the other bits are ignored |
| 1259 | (because mmapped chunks are neither in an arena, nor adjacent |
| 1260 | to a freed chunk). The M bit is also used for chunks which |
| 1261 | originally came from a dumped heap via malloc_set_state in |
| 1262 | hooks.c. |
| 1263 | |
| 1264 | 3. Chunks in fastbins are treated as allocated chunks from the |
| 1265 | point of view of the chunk allocator. They are consolidated |
| 1266 | with their neighbors only in bulk, in malloc_consolidate. |
| 1267 | */ |
| 1268 | |
| 1269 | /* |
| 1270 | ---------- Size and alignment checks and conversions ---------- |
| 1271 | */ |
| 1272 | |
| 1273 | /* Conversion from malloc headers to user pointers, and back. When |
| 1274 | using memory tagging the user data and the malloc data structure |
| 1275 | headers have distinct tags. Converting fully from one to the other |
| 1276 | involves extracting the tag at the other address and creating a |
| 1277 | suitable pointer using it. That can be quite expensive. There are |
| 1278 | cases when the pointers are not dereferenced (for example only used |
| 1279 | for alignment check) so the tags are not relevant, and there are |
| 1280 | cases when user data is not tagged distinctly from malloc headers |
| 1281 | (user data is untagged because tagging is done late in malloc and |
| 1282 | early in free). User memory tagging across internal interfaces: |
| 1283 | |
| 1284 | sysmalloc: Returns untagged memory. |
| 1285 | _int_malloc: Returns untagged memory. |
| 1286 | _int_free: Takes untagged memory. |
| 1287 | _int_memalign: Returns untagged memory. |
| 1288 | _int_memalign: Returns untagged memory. |
| 1289 | _mid_memalign: Returns tagged memory. |
| 1290 | _int_realloc: Takes and returns tagged memory. |
| 1291 | */ |
| 1292 | |
| 1293 | /* The chunk header is two SIZE_SZ elements, but this is used widely, so |
| 1294 | we define it here for clarity later. */ |
| 1295 | #define CHUNK_HDR_SZ (2 * SIZE_SZ) |
| 1296 | |
| 1297 | /* Convert a chunk address to a user mem pointer without correcting |
| 1298 | the tag. */ |
| 1299 | #define chunk2mem(p) ((void*)((char*)(p) + CHUNK_HDR_SZ)) |
| 1300 | |
| 1301 | /* Convert a chunk address to a user mem pointer and extract the right tag. */ |
| 1302 | #define chunk2mem_tag(p) ((void*)tag_at ((char*)(p) + CHUNK_HDR_SZ)) |
| 1303 | |
| 1304 | /* Convert a user mem pointer to a chunk address and extract the right tag. */ |
| 1305 | #define mem2chunk(mem) ((mchunkptr)tag_at (((char*)(mem) - CHUNK_HDR_SZ))) |
| 1306 | |
| 1307 | /* The smallest possible chunk */ |
| 1308 | #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize)) |
| 1309 | |
| 1310 | /* The smallest size we can malloc is an aligned minimal chunk */ |
| 1311 | |
| 1312 | #define MINSIZE \ |
| 1313 | (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)) |
| 1314 | |
| 1315 | /* Check if m has acceptable alignment */ |
| 1316 | |
| 1317 | #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0) |
| 1318 | |
| 1319 | #define misaligned_chunk(p) \ |
| 1320 | ((uintptr_t)(MALLOC_ALIGNMENT == CHUNK_HDR_SZ ? (p) : chunk2mem (p)) \ |
| 1321 | & MALLOC_ALIGN_MASK) |
| 1322 | |
| 1323 | /* pad request bytes into a usable size -- internal version */ |
| 1324 | /* Note: This must be a macro that evaluates to a compile time constant |
| 1325 | if passed a literal constant. */ |
| 1326 | #define request2size(req) \ |
| 1327 | (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \ |
| 1328 | MINSIZE : \ |
| 1329 | ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK) |
| 1330 | |
| 1331 | /* Check if REQ overflows when padded and aligned and if the resulting |
| 1332 | value is less than PTRDIFF_T. Returns the requested size or |
| 1333 | MINSIZE in case the value is less than MINSIZE, or 0 if any of the |
| 1334 | previous checks fail. */ |
| 1335 | static inline size_t |
| 1336 | checked_request2size (size_t req) __nonnull (1) |
| 1337 | { |
| 1338 | if (__glibc_unlikely (req > PTRDIFF_MAX)) |
| 1339 | return 0; |
| 1340 | |
| 1341 | /* When using tagged memory, we cannot share the end of the user |
| 1342 | block with the header for the next chunk, so ensure that we |
| 1343 | allocate blocks that are rounded up to the granule size. Take |
| 1344 | care not to overflow from close to MAX_SIZE_T to a small |
| 1345 | number. Ideally, this would be part of request2size(), but that |
| 1346 | must be a macro that produces a compile time constant if passed |
| 1347 | a constant literal. */ |
| 1348 | if (__glibc_unlikely (mtag_enabled)) |
| 1349 | { |
| 1350 | /* Ensure this is not evaluated if !mtag_enabled, see gcc PR 99551. */ |
| 1351 | asm ("" ); |
| 1352 | |
| 1353 | req = (req + (__MTAG_GRANULE_SIZE - 1)) & |
| 1354 | ~(size_t)(__MTAG_GRANULE_SIZE - 1); |
| 1355 | } |
| 1356 | |
| 1357 | return request2size (req); |
| 1358 | } |
| 1359 | |
| 1360 | /* |
| 1361 | --------------- Physical chunk operations --------------- |
| 1362 | */ |
| 1363 | |
| 1364 | |
| 1365 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ |
| 1366 | #define PREV_INUSE 0x1 |
| 1367 | |
| 1368 | /* extract inuse bit of previous chunk */ |
| 1369 | #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE) |
| 1370 | |
| 1371 | |
| 1372 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ |
| 1373 | #define IS_MMAPPED 0x2 |
| 1374 | |
| 1375 | /* check for mmap()'ed chunk */ |
| 1376 | #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED) |
| 1377 | |
| 1378 | |
| 1379 | /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained |
| 1380 | from a non-main arena. This is only set immediately before handing |
| 1381 | the chunk to the user, if necessary. */ |
| 1382 | #define NON_MAIN_ARENA 0x4 |
| 1383 | |
| 1384 | /* Check for chunk from main arena. */ |
| 1385 | #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0) |
| 1386 | |
| 1387 | /* Mark a chunk as not being on the main arena. */ |
| 1388 | #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA) |
| 1389 | |
| 1390 | |
| 1391 | /* |
| 1392 | Bits to mask off when extracting size |
| 1393 | |
| 1394 | Note: IS_MMAPPED is intentionally not masked off from size field in |
| 1395 | macros for which mmapped chunks should never be seen. This should |
| 1396 | cause helpful core dumps to occur if it is tried by accident by |
| 1397 | people extending or adapting this malloc. |
| 1398 | */ |
| 1399 | #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA) |
| 1400 | |
| 1401 | /* Get size, ignoring use bits */ |
| 1402 | #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS)) |
| 1403 | |
| 1404 | /* Like chunksize, but do not mask SIZE_BITS. */ |
| 1405 | #define chunksize_nomask(p) ((p)->mchunk_size) |
| 1406 | |
| 1407 | /* Ptr to next physical malloc_chunk. */ |
| 1408 | #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p))) |
| 1409 | |
| 1410 | /* Size of the chunk below P. Only valid if !prev_inuse (P). */ |
| 1411 | #define prev_size(p) ((p)->mchunk_prev_size) |
| 1412 | |
| 1413 | /* Set the size of the chunk below P. Only valid if !prev_inuse (P). */ |
| 1414 | #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz)) |
| 1415 | |
| 1416 | /* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */ |
| 1417 | #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p))) |
| 1418 | |
| 1419 | /* Treat space at ptr + offset as a chunk */ |
| 1420 | #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s))) |
| 1421 | |
| 1422 | /* extract p's inuse bit */ |
| 1423 | #define inuse(p) \ |
| 1424 | ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE) |
| 1425 | |
| 1426 | /* set/clear chunk as being inuse without otherwise disturbing */ |
| 1427 | #define set_inuse(p) \ |
| 1428 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE |
| 1429 | |
| 1430 | #define clear_inuse(p) \ |
| 1431 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE) |
| 1432 | |
| 1433 | |
| 1434 | /* check/set/clear inuse bits in known places */ |
| 1435 | #define inuse_bit_at_offset(p, s) \ |
| 1436 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE) |
| 1437 | |
| 1438 | #define set_inuse_bit_at_offset(p, s) \ |
| 1439 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE) |
| 1440 | |
| 1441 | #define clear_inuse_bit_at_offset(p, s) \ |
| 1442 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE)) |
| 1443 | |
| 1444 | |
| 1445 | /* Set size at head, without disturbing its use bit */ |
| 1446 | #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s))) |
| 1447 | |
| 1448 | /* Set size/use field */ |
| 1449 | #define set_head(p, s) ((p)->mchunk_size = (s)) |
| 1450 | |
| 1451 | /* Set size at footer (only when chunk is not in use) */ |
| 1452 | #define (p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s)) |
| 1453 | |
| 1454 | #pragma GCC poison mchunk_size |
| 1455 | #pragma GCC poison mchunk_prev_size |
| 1456 | |
| 1457 | /* This is the size of the real usable data in the chunk. Not valid for |
| 1458 | dumped heap chunks. */ |
| 1459 | #define memsize(p) \ |
| 1460 | (__MTAG_GRANULE_SIZE > SIZE_SZ && __glibc_unlikely (mtag_enabled) ? \ |
| 1461 | chunksize (p) - CHUNK_HDR_SZ : \ |
| 1462 | chunksize (p) - CHUNK_HDR_SZ + (chunk_is_mmapped (p) ? 0 : SIZE_SZ)) |
| 1463 | |
| 1464 | /* If memory tagging is enabled the layout changes to accommodate the granule |
| 1465 | size, this is wasteful for small allocations so not done by default. |
| 1466 | Both the chunk header and user data has to be granule aligned. */ |
| 1467 | _Static_assert (__MTAG_GRANULE_SIZE <= CHUNK_HDR_SZ, |
| 1468 | "memory tagging is not supported with large granule." ); |
| 1469 | |
| 1470 | static __always_inline void * |
| 1471 | tag_new_usable (void *ptr) |
| 1472 | { |
| 1473 | if (__glibc_unlikely (mtag_enabled) && ptr) |
| 1474 | { |
| 1475 | mchunkptr cp = mem2chunk(ptr); |
| 1476 | ptr = __libc_mtag_tag_region (__libc_mtag_new_tag (ptr), memsize (cp)); |
| 1477 | } |
| 1478 | return ptr; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | -------------------- Internal data structures -------------------- |
| 1483 | |
| 1484 | All internal state is held in an instance of malloc_state defined |
| 1485 | below. There are no other static variables, except in two optional |
| 1486 | cases: |
| 1487 | * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. |
| 1488 | * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor |
| 1489 | for mmap. |
| 1490 | |
| 1491 | Beware of lots of tricks that minimize the total bookkeeping space |
| 1492 | requirements. The result is a little over 1K bytes (for 4byte |
| 1493 | pointers and size_t.) |
| 1494 | */ |
| 1495 | |
| 1496 | /* |
| 1497 | Bins |
| 1498 | |
| 1499 | An array of bin headers for free chunks. Each bin is doubly |
| 1500 | linked. The bins are approximately proportionally (log) spaced. |
| 1501 | There are a lot of these bins (128). This may look excessive, but |
| 1502 | works very well in practice. Most bins hold sizes that are |
| 1503 | unusual as malloc request sizes, but are more usual for fragments |
| 1504 | and consolidated sets of chunks, which is what these bins hold, so |
| 1505 | they can be found quickly. All procedures maintain the invariant |
| 1506 | that no consolidated chunk physically borders another one, so each |
| 1507 | chunk in a list is known to be preceeded and followed by either |
| 1508 | inuse chunks or the ends of memory. |
| 1509 | |
| 1510 | Chunks in bins are kept in size order, with ties going to the |
| 1511 | approximately least recently used chunk. Ordering isn't needed |
| 1512 | for the small bins, which all contain the same-sized chunks, but |
| 1513 | facilitates best-fit allocation for larger chunks. These lists |
| 1514 | are just sequential. Keeping them in order almost never requires |
| 1515 | enough traversal to warrant using fancier ordered data |
| 1516 | structures. |
| 1517 | |
| 1518 | Chunks of the same size are linked with the most |
| 1519 | recently freed at the front, and allocations are taken from the |
| 1520 | back. This results in LRU (FIFO) allocation order, which tends |
| 1521 | to give each chunk an equal opportunity to be consolidated with |
| 1522 | adjacent freed chunks, resulting in larger free chunks and less |
| 1523 | fragmentation. |
| 1524 | |
| 1525 | To simplify use in double-linked lists, each bin header acts |
| 1526 | as a malloc_chunk. This avoids special-casing for headers. |
| 1527 | But to conserve space and improve locality, we allocate |
| 1528 | only the fd/bk pointers of bins, and then use repositioning tricks |
| 1529 | to treat these as the fields of a malloc_chunk*. |
| 1530 | */ |
| 1531 | |
| 1532 | typedef struct malloc_chunk *mbinptr; |
| 1533 | |
| 1534 | /* addressing -- note that bin_at(0) does not exist */ |
| 1535 | #define bin_at(m, i) \ |
| 1536 | (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \ |
| 1537 | - offsetof (struct malloc_chunk, fd)) |
| 1538 | |
| 1539 | /* analog of ++bin */ |
| 1540 | #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1))) |
| 1541 | |
| 1542 | /* Reminders about list directionality within bins */ |
| 1543 | #define first(b) ((b)->fd) |
| 1544 | #define last(b) ((b)->bk) |
| 1545 | |
| 1546 | /* |
| 1547 | Indexing |
| 1548 | |
| 1549 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced |
| 1550 | 8 bytes apart. Larger bins are approximately logarithmically spaced: |
| 1551 | |
| 1552 | 64 bins of size 8 |
| 1553 | 32 bins of size 64 |
| 1554 | 16 bins of size 512 |
| 1555 | 8 bins of size 4096 |
| 1556 | 4 bins of size 32768 |
| 1557 | 2 bins of size 262144 |
| 1558 | 1 bin of size what's left |
| 1559 | |
| 1560 | There is actually a little bit of slop in the numbers in bin_index |
| 1561 | for the sake of speed. This makes no difference elsewhere. |
| 1562 | |
| 1563 | The bins top out around 1MB because we expect to service large |
| 1564 | requests via mmap. |
| 1565 | |
| 1566 | Bin 0 does not exist. Bin 1 is the unordered list; if that would be |
| 1567 | a valid chunk size the small bins are bumped up one. |
| 1568 | */ |
| 1569 | |
| 1570 | #define NBINS 128 |
| 1571 | #define NSMALLBINS 64 |
| 1572 | #define SMALLBIN_WIDTH MALLOC_ALIGNMENT |
| 1573 | #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > CHUNK_HDR_SZ) |
| 1574 | #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH) |
| 1575 | |
| 1576 | #define in_smallbin_range(sz) \ |
| 1577 | ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE) |
| 1578 | |
| 1579 | #define smallbin_index(sz) \ |
| 1580 | ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\ |
| 1581 | + SMALLBIN_CORRECTION) |
| 1582 | |
| 1583 | #define largebin_index_32(sz) \ |
| 1584 | (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\ |
| 1585 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
| 1586 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
| 1587 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
| 1588 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
| 1589 | 126) |
| 1590 | |
| 1591 | #define largebin_index_32_big(sz) \ |
| 1592 | (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\ |
| 1593 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
| 1594 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
| 1595 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
| 1596 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
| 1597 | 126) |
| 1598 | |
| 1599 | // XXX It remains to be seen whether it is good to keep the widths of |
| 1600 | // XXX the buckets the same or whether it should be scaled by a factor |
| 1601 | // XXX of two as well. |
| 1602 | #define largebin_index_64(sz) \ |
| 1603 | (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\ |
| 1604 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
| 1605 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
| 1606 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
| 1607 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
| 1608 | 126) |
| 1609 | |
| 1610 | #define largebin_index(sz) \ |
| 1611 | (SIZE_SZ == 8 ? largebin_index_64 (sz) \ |
| 1612 | : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \ |
| 1613 | : largebin_index_32 (sz)) |
| 1614 | |
| 1615 | #define bin_index(sz) \ |
| 1616 | ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz)) |
| 1617 | |
| 1618 | /* Take a chunk off a bin list. */ |
| 1619 | static void |
| 1620 | unlink_chunk (mstate av, mchunkptr p) |
| 1621 | { |
| 1622 | if (chunksize (p) != prev_size (next_chunk (p))) |
| 1623 | malloc_printerr ("corrupted size vs. prev_size" ); |
| 1624 | |
| 1625 | mchunkptr fd = p->fd; |
| 1626 | mchunkptr bk = p->bk; |
| 1627 | |
| 1628 | if (__builtin_expect (fd->bk != p || bk->fd != p, 0)) |
| 1629 | malloc_printerr ("corrupted double-linked list" ); |
| 1630 | |
| 1631 | fd->bk = bk; |
| 1632 | bk->fd = fd; |
| 1633 | if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL) |
| 1634 | { |
| 1635 | if (p->fd_nextsize->bk_nextsize != p |
| 1636 | || p->bk_nextsize->fd_nextsize != p) |
| 1637 | malloc_printerr ("corrupted double-linked list (not small)" ); |
| 1638 | |
| 1639 | if (fd->fd_nextsize == NULL) |
| 1640 | { |
| 1641 | if (p->fd_nextsize == p) |
| 1642 | fd->fd_nextsize = fd->bk_nextsize = fd; |
| 1643 | else |
| 1644 | { |
| 1645 | fd->fd_nextsize = p->fd_nextsize; |
| 1646 | fd->bk_nextsize = p->bk_nextsize; |
| 1647 | p->fd_nextsize->bk_nextsize = fd; |
| 1648 | p->bk_nextsize->fd_nextsize = fd; |
| 1649 | } |
| 1650 | } |
| 1651 | else |
| 1652 | { |
| 1653 | p->fd_nextsize->bk_nextsize = p->bk_nextsize; |
| 1654 | p->bk_nextsize->fd_nextsize = p->fd_nextsize; |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | /* |
| 1660 | Unsorted chunks |
| 1661 | |
| 1662 | All remainders from chunk splits, as well as all returned chunks, |
| 1663 | are first placed in the "unsorted" bin. They are then placed |
| 1664 | in regular bins after malloc gives them ONE chance to be used before |
| 1665 | binning. So, basically, the unsorted_chunks list acts as a queue, |
| 1666 | with chunks being placed on it in free (and malloc_consolidate), |
| 1667 | and taken off (to be either used or placed in bins) in malloc. |
| 1668 | |
| 1669 | The NON_MAIN_ARENA flag is never set for unsorted chunks, so it |
| 1670 | does not have to be taken into account in size comparisons. |
| 1671 | */ |
| 1672 | |
| 1673 | /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */ |
| 1674 | #define unsorted_chunks(M) (bin_at (M, 1)) |
| 1675 | |
| 1676 | /* |
| 1677 | Top |
| 1678 | |
| 1679 | The top-most available chunk (i.e., the one bordering the end of |
| 1680 | available memory) is treated specially. It is never included in |
| 1681 | any bin, is used only if no other chunk is available, and is |
| 1682 | released back to the system if it is very large (see |
| 1683 | M_TRIM_THRESHOLD). Because top initially |
| 1684 | points to its own bin with initial zero size, thus forcing |
| 1685 | extension on the first malloc request, we avoid having any special |
| 1686 | code in malloc to check whether it even exists yet. But we still |
| 1687 | need to do so when getting memory from system, so we make |
| 1688 | initial_top treat the bin as a legal but unusable chunk during the |
| 1689 | interval between initialization and the first call to |
| 1690 | sysmalloc. (This is somewhat delicate, since it relies on |
| 1691 | the 2 preceding words to be zero during this interval as well.) |
| 1692 | */ |
| 1693 | |
| 1694 | /* Conveniently, the unsorted bin can be used as dummy top on first call */ |
| 1695 | #define initial_top(M) (unsorted_chunks (M)) |
| 1696 | |
| 1697 | /* |
| 1698 | Binmap |
| 1699 | |
| 1700 | To help compensate for the large number of bins, a one-level index |
| 1701 | structure is used for bin-by-bin searching. `binmap' is a |
| 1702 | bitvector recording whether bins are definitely empty so they can |
| 1703 | be skipped over during during traversals. The bits are NOT always |
| 1704 | cleared as soon as bins are empty, but instead only |
| 1705 | when they are noticed to be empty during traversal in malloc. |
| 1706 | */ |
| 1707 | |
| 1708 | /* Conservatively use 32 bits per map word, even if on 64bit system */ |
| 1709 | #define BINMAPSHIFT 5 |
| 1710 | #define BITSPERMAP (1U << BINMAPSHIFT) |
| 1711 | #define BINMAPSIZE (NBINS / BITSPERMAP) |
| 1712 | |
| 1713 | #define idx2block(i) ((i) >> BINMAPSHIFT) |
| 1714 | #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1)))) |
| 1715 | |
| 1716 | #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i)) |
| 1717 | #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i))) |
| 1718 | #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i)) |
| 1719 | |
| 1720 | /* |
| 1721 | Fastbins |
| 1722 | |
| 1723 | An array of lists holding recently freed small chunks. Fastbins |
| 1724 | are not doubly linked. It is faster to single-link them, and |
| 1725 | since chunks are never removed from the middles of these lists, |
| 1726 | double linking is not necessary. Also, unlike regular bins, they |
| 1727 | are not even processed in FIFO order (they use faster LIFO) since |
| 1728 | ordering doesn't much matter in the transient contexts in which |
| 1729 | fastbins are normally used. |
| 1730 | |
| 1731 | Chunks in fastbins keep their inuse bit set, so they cannot |
| 1732 | be consolidated with other free chunks. malloc_consolidate |
| 1733 | releases all chunks in fastbins and consolidates them with |
| 1734 | other free chunks. |
| 1735 | */ |
| 1736 | |
| 1737 | typedef struct malloc_chunk *mfastbinptr; |
| 1738 | #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx]) |
| 1739 | |
| 1740 | /* offset 2 to use otherwise unindexable first 2 bins */ |
| 1741 | #define fastbin_index(sz) \ |
| 1742 | ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2) |
| 1743 | |
| 1744 | |
| 1745 | /* The maximum fastbin request size we support */ |
| 1746 | #define MAX_FAST_SIZE (80 * SIZE_SZ / 4) |
| 1747 | |
| 1748 | #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1) |
| 1749 | |
| 1750 | /* |
| 1751 | FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free() |
| 1752 | that triggers automatic consolidation of possibly-surrounding |
| 1753 | fastbin chunks. This is a heuristic, so the exact value should not |
| 1754 | matter too much. It is defined at half the default trim threshold as a |
| 1755 | compromise heuristic to only attempt consolidation if it is likely |
| 1756 | to lead to trimming. However, it is not dynamically tunable, since |
| 1757 | consolidation reduces fragmentation surrounding large chunks even |
| 1758 | if trimming is not used. |
| 1759 | */ |
| 1760 | |
| 1761 | #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL) |
| 1762 | |
| 1763 | /* |
| 1764 | NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous |
| 1765 | regions. Otherwise, contiguity is exploited in merging together, |
| 1766 | when possible, results from consecutive MORECORE calls. |
| 1767 | |
| 1768 | The initial value comes from MORECORE_CONTIGUOUS, but is |
| 1769 | changed dynamically if mmap is ever used as an sbrk substitute. |
| 1770 | */ |
| 1771 | |
| 1772 | #define NONCONTIGUOUS_BIT (2U) |
| 1773 | |
| 1774 | #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0) |
| 1775 | #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0) |
| 1776 | #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT) |
| 1777 | #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT) |
| 1778 | |
| 1779 | /* Maximum size of memory handled in fastbins. */ |
| 1780 | static INTERNAL_SIZE_T global_max_fast; |
| 1781 | |
| 1782 | /* |
| 1783 | Set value of max_fast. |
| 1784 | Use impossibly small value if 0. |
| 1785 | Precondition: there are no existing fastbin chunks in the main arena. |
| 1786 | Since do_check_malloc_state () checks this, we call malloc_consolidate () |
| 1787 | before changing max_fast. Note other arenas will leak their fast bin |
| 1788 | entries if max_fast is reduced. |
| 1789 | */ |
| 1790 | |
| 1791 | #define set_max_fast(s) \ |
| 1792 | global_max_fast = (((size_t) (s) <= MALLOC_ALIGN_MASK - SIZE_SZ) \ |
| 1793 | ? MIN_CHUNK_SIZE / 2 : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK)) |
| 1794 | |
| 1795 | static inline INTERNAL_SIZE_T |
| 1796 | get_max_fast (void) |
| 1797 | { |
| 1798 | /* Tell the GCC optimizers that global_max_fast is never larger |
| 1799 | than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in |
| 1800 | _int_malloc after constant propagation of the size parameter. |
| 1801 | (The code never executes because malloc preserves the |
| 1802 | global_max_fast invariant, but the optimizers may not recognize |
| 1803 | this.) */ |
| 1804 | if (global_max_fast > MAX_FAST_SIZE) |
| 1805 | __builtin_unreachable (); |
| 1806 | return global_max_fast; |
| 1807 | } |
| 1808 | |
| 1809 | /* |
| 1810 | ----------- Internal state representation and initialization ----------- |
| 1811 | */ |
| 1812 | |
| 1813 | /* |
| 1814 | have_fastchunks indicates that there are probably some fastbin chunks. |
| 1815 | It is set true on entering a chunk into any fastbin, and cleared early in |
| 1816 | malloc_consolidate. The value is approximate since it may be set when there |
| 1817 | are no fastbin chunks, or it may be clear even if there are fastbin chunks |
| 1818 | available. Given it's sole purpose is to reduce number of redundant calls to |
| 1819 | malloc_consolidate, it does not affect correctness. As a result we can safely |
| 1820 | use relaxed atomic accesses. |
| 1821 | */ |
| 1822 | |
| 1823 | |
| 1824 | struct malloc_state |
| 1825 | { |
| 1826 | /* Serialize access. */ |
| 1827 | __libc_lock_define (, mutex); |
| 1828 | |
| 1829 | /* Flags (formerly in max_fast). */ |
| 1830 | int flags; |
| 1831 | |
| 1832 | /* Set if the fastbin chunks contain recently inserted free blocks. */ |
| 1833 | /* Note this is a bool but not all targets support atomics on booleans. */ |
| 1834 | int have_fastchunks; |
| 1835 | |
| 1836 | /* Fastbins */ |
| 1837 | mfastbinptr fastbinsY[NFASTBINS]; |
| 1838 | |
| 1839 | /* Base of the topmost chunk -- not otherwise kept in a bin */ |
| 1840 | mchunkptr top; |
| 1841 | |
| 1842 | /* The remainder from the most recent split of a small request */ |
| 1843 | mchunkptr last_remainder; |
| 1844 | |
| 1845 | /* Normal bins packed as described above */ |
| 1846 | mchunkptr bins[NBINS * 2 - 2]; |
| 1847 | |
| 1848 | /* Bitmap of bins */ |
| 1849 | unsigned int binmap[BINMAPSIZE]; |
| 1850 | |
| 1851 | /* Linked list */ |
| 1852 | struct malloc_state *next; |
| 1853 | |
| 1854 | /* Linked list for free arenas. Access to this field is serialized |
| 1855 | by free_list_lock in arena.c. */ |
| 1856 | struct malloc_state *next_free; |
| 1857 | |
| 1858 | /* Number of threads attached to this arena. 0 if the arena is on |
| 1859 | the free list. Access to this field is serialized by |
| 1860 | free_list_lock in arena.c. */ |
| 1861 | INTERNAL_SIZE_T attached_threads; |
| 1862 | |
| 1863 | /* Memory allocated from the system in this arena. */ |
| 1864 | INTERNAL_SIZE_T system_mem; |
| 1865 | INTERNAL_SIZE_T max_system_mem; |
| 1866 | }; |
| 1867 | |
| 1868 | struct malloc_par |
| 1869 | { |
| 1870 | /* Tunable parameters */ |
| 1871 | unsigned long trim_threshold; |
| 1872 | INTERNAL_SIZE_T top_pad; |
| 1873 | INTERNAL_SIZE_T mmap_threshold; |
| 1874 | INTERNAL_SIZE_T arena_test; |
| 1875 | INTERNAL_SIZE_T arena_max; |
| 1876 | |
| 1877 | #if HAVE_TUNABLES |
| 1878 | /* Transparent Large Page support. */ |
| 1879 | INTERNAL_SIZE_T thp_pagesize; |
| 1880 | /* A value different than 0 means to align mmap allocation to hp_pagesize |
| 1881 | add hp_flags on flags. */ |
| 1882 | INTERNAL_SIZE_T hp_pagesize; |
| 1883 | int hp_flags; |
| 1884 | #endif |
| 1885 | |
| 1886 | /* Memory map support */ |
| 1887 | int n_mmaps; |
| 1888 | int n_mmaps_max; |
| 1889 | int max_n_mmaps; |
| 1890 | /* the mmap_threshold is dynamic, until the user sets |
| 1891 | it manually, at which point we need to disable any |
| 1892 | dynamic behavior. */ |
| 1893 | int no_dyn_threshold; |
| 1894 | |
| 1895 | /* Statistics */ |
| 1896 | INTERNAL_SIZE_T mmapped_mem; |
| 1897 | INTERNAL_SIZE_T max_mmapped_mem; |
| 1898 | |
| 1899 | /* First address handed out by MORECORE/sbrk. */ |
| 1900 | char *sbrk_base; |
| 1901 | |
| 1902 | #if USE_TCACHE |
| 1903 | /* Maximum number of buckets to use. */ |
| 1904 | size_t tcache_bins; |
| 1905 | size_t tcache_max_bytes; |
| 1906 | /* Maximum number of chunks in each bucket. */ |
| 1907 | size_t tcache_count; |
| 1908 | /* Maximum number of chunks to remove from the unsorted list, which |
| 1909 | aren't used to prefill the cache. */ |
| 1910 | size_t tcache_unsorted_limit; |
| 1911 | #endif |
| 1912 | }; |
| 1913 | |
| 1914 | /* There are several instances of this struct ("arenas") in this |
| 1915 | malloc. If you are adapting this malloc in a way that does NOT use |
| 1916 | a static or mmapped malloc_state, you MUST explicitly zero-fill it |
| 1917 | before using. This malloc relies on the property that malloc_state |
| 1918 | is initialized to all zeroes (as is true of C statics). */ |
| 1919 | |
| 1920 | static struct malloc_state main_arena = |
| 1921 | { |
| 1922 | .mutex = _LIBC_LOCK_INITIALIZER, |
| 1923 | .next = &main_arena, |
| 1924 | .attached_threads = 1 |
| 1925 | }; |
| 1926 | |
| 1927 | /* There is only one instance of the malloc parameters. */ |
| 1928 | |
| 1929 | static struct malloc_par mp_ = |
| 1930 | { |
| 1931 | .top_pad = DEFAULT_TOP_PAD, |
| 1932 | .n_mmaps_max = DEFAULT_MMAP_MAX, |
| 1933 | .mmap_threshold = DEFAULT_MMAP_THRESHOLD, |
| 1934 | .trim_threshold = DEFAULT_TRIM_THRESHOLD, |
| 1935 | #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8)) |
| 1936 | .arena_test = NARENAS_FROM_NCORES (1) |
| 1937 | #if USE_TCACHE |
| 1938 | , |
| 1939 | .tcache_count = TCACHE_FILL_COUNT, |
| 1940 | .tcache_bins = TCACHE_MAX_BINS, |
| 1941 | .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1), |
| 1942 | .tcache_unsorted_limit = 0 /* No limit. */ |
| 1943 | #endif |
| 1944 | }; |
| 1945 | |
| 1946 | /* |
| 1947 | Initialize a malloc_state struct. |
| 1948 | |
| 1949 | This is called from ptmalloc_init () or from _int_new_arena () |
| 1950 | when creating a new arena. |
| 1951 | */ |
| 1952 | |
| 1953 | static void |
| 1954 | malloc_init_state (mstate av) |
| 1955 | { |
| 1956 | int i; |
| 1957 | mbinptr bin; |
| 1958 | |
| 1959 | /* Establish circular links for normal bins */ |
| 1960 | for (i = 1; i < NBINS; ++i) |
| 1961 | { |
| 1962 | bin = bin_at (av, i); |
| 1963 | bin->fd = bin->bk = bin; |
| 1964 | } |
| 1965 | |
| 1966 | #if MORECORE_CONTIGUOUS |
| 1967 | if (av != &main_arena) |
| 1968 | #endif |
| 1969 | set_noncontiguous (av); |
| 1970 | if (av == &main_arena) |
| 1971 | set_max_fast (DEFAULT_MXFAST); |
| 1972 | atomic_store_relaxed (&av->have_fastchunks, false); |
| 1973 | |
| 1974 | av->top = initial_top (av); |
| 1975 | } |
| 1976 | |
| 1977 | /* |
| 1978 | Other internal utilities operating on mstates |
| 1979 | */ |
| 1980 | |
| 1981 | static void *sysmalloc (INTERNAL_SIZE_T, mstate); |
| 1982 | static int systrim (size_t, mstate); |
| 1983 | static void malloc_consolidate (mstate); |
| 1984 | |
| 1985 | |
| 1986 | /* -------------- Early definitions for debugging hooks ---------------- */ |
| 1987 | |
| 1988 | /* This function is called from the arena shutdown hook, to free the |
| 1989 | thread cache (if it exists). */ |
| 1990 | static void tcache_thread_shutdown (void); |
| 1991 | |
| 1992 | /* ------------------ Testing support ----------------------------------*/ |
| 1993 | |
| 1994 | static int perturb_byte; |
| 1995 | |
| 1996 | static void |
| 1997 | alloc_perturb (char *p, size_t n) |
| 1998 | { |
| 1999 | if (__glibc_unlikely (perturb_byte)) |
| 2000 | memset (p, perturb_byte ^ 0xff, n); |
| 2001 | } |
| 2002 | |
| 2003 | static void |
| 2004 | free_perturb (char *p, size_t n) |
| 2005 | { |
| 2006 | if (__glibc_unlikely (perturb_byte)) |
| 2007 | memset (p, perturb_byte, n); |
| 2008 | } |
| 2009 | |
| 2010 | |
| 2011 | |
| 2012 | #include <stap-probe.h> |
| 2013 | |
| 2014 | /* ----------- Routines dealing with transparent huge pages ----------- */ |
| 2015 | |
| 2016 | static inline void |
| 2017 | madvise_thp (void *p, INTERNAL_SIZE_T size) |
| 2018 | { |
| 2019 | #if HAVE_TUNABLES && defined (MADV_HUGEPAGE) |
| 2020 | /* Do not consider areas smaller than a huge page or if the tunable is |
| 2021 | not active. */ |
| 2022 | if (mp_.thp_pagesize == 0 || size < mp_.thp_pagesize) |
| 2023 | return; |
| 2024 | |
| 2025 | /* Linux requires the input address to be page-aligned, and unaligned |
| 2026 | inputs happens only for initial data segment. */ |
| 2027 | if (__glibc_unlikely (!PTR_IS_ALIGNED (p, GLRO (dl_pagesize)))) |
| 2028 | { |
| 2029 | void *q = PTR_ALIGN_DOWN (p, GLRO (dl_pagesize)); |
| 2030 | size += PTR_DIFF (p, q); |
| 2031 | p = q; |
| 2032 | } |
| 2033 | |
| 2034 | __madvise (p, size, MADV_HUGEPAGE); |
| 2035 | #endif |
| 2036 | } |
| 2037 | |
| 2038 | /* ------------------- Support for multiple arenas -------------------- */ |
| 2039 | #include "arena.c" |
| 2040 | |
| 2041 | /* |
| 2042 | Debugging support |
| 2043 | |
| 2044 | These routines make a number of assertions about the states |
| 2045 | of data structures that should be true at all times. If any |
| 2046 | are not true, it's very likely that a user program has somehow |
| 2047 | trashed memory. (It's also possible that there is a coding error |
| 2048 | in malloc. In which case, please report it!) |
| 2049 | */ |
| 2050 | |
| 2051 | #if !MALLOC_DEBUG |
| 2052 | |
| 2053 | # define check_chunk(A, P) |
| 2054 | # define check_free_chunk(A, P) |
| 2055 | # define check_inuse_chunk(A, P) |
| 2056 | # define check_remalloced_chunk(A, P, N) |
| 2057 | # define check_malloced_chunk(A, P, N) |
| 2058 | # define check_malloc_state(A) |
| 2059 | |
| 2060 | #else |
| 2061 | |
| 2062 | # define check_chunk(A, P) do_check_chunk (A, P) |
| 2063 | # define check_free_chunk(A, P) do_check_free_chunk (A, P) |
| 2064 | # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P) |
| 2065 | # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N) |
| 2066 | # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N) |
| 2067 | # define check_malloc_state(A) do_check_malloc_state (A) |
| 2068 | |
| 2069 | /* |
| 2070 | Properties of all chunks |
| 2071 | */ |
| 2072 | |
| 2073 | static void |
| 2074 | do_check_chunk (mstate av, mchunkptr p) |
| 2075 | { |
| 2076 | unsigned long sz = chunksize (p); |
| 2077 | /* min and max possible addresses assuming contiguous allocation */ |
| 2078 | char *max_address = (char *) (av->top) + chunksize (av->top); |
| 2079 | char *min_address = max_address - av->system_mem; |
| 2080 | |
| 2081 | if (!chunk_is_mmapped (p)) |
| 2082 | { |
| 2083 | /* Has legal address ... */ |
| 2084 | if (p != av->top) |
| 2085 | { |
| 2086 | if (contiguous (av)) |
| 2087 | { |
| 2088 | assert (((char *) p) >= min_address); |
| 2089 | assert (((char *) p + sz) <= ((char *) (av->top))); |
| 2090 | } |
| 2091 | } |
| 2092 | else |
| 2093 | { |
| 2094 | /* top size is always at least MINSIZE */ |
| 2095 | assert ((unsigned long) (sz) >= MINSIZE); |
| 2096 | /* top predecessor always marked inuse */ |
| 2097 | assert (prev_inuse (p)); |
| 2098 | } |
| 2099 | } |
| 2100 | else |
| 2101 | { |
| 2102 | /* address is outside main heap */ |
| 2103 | if (contiguous (av) && av->top != initial_top (av)) |
| 2104 | { |
| 2105 | assert (((char *) p) < min_address || ((char *) p) >= max_address); |
| 2106 | } |
| 2107 | /* chunk is page-aligned */ |
| 2108 | assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0); |
| 2109 | /* mem is aligned */ |
| 2110 | assert (aligned_OK (chunk2mem (p))); |
| 2111 | } |
| 2112 | } |
| 2113 | |
| 2114 | /* |
| 2115 | Properties of free chunks |
| 2116 | */ |
| 2117 | |
| 2118 | static void |
| 2119 | do_check_free_chunk (mstate av, mchunkptr p) |
| 2120 | { |
| 2121 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
| 2122 | mchunkptr next = chunk_at_offset (p, sz); |
| 2123 | |
| 2124 | do_check_chunk (av, p); |
| 2125 | |
| 2126 | /* Chunk must claim to be free ... */ |
| 2127 | assert (!inuse (p)); |
| 2128 | assert (!chunk_is_mmapped (p)); |
| 2129 | |
| 2130 | /* Unless a special marker, must have OK fields */ |
| 2131 | if ((unsigned long) (sz) >= MINSIZE) |
| 2132 | { |
| 2133 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
| 2134 | assert (aligned_OK (chunk2mem (p))); |
| 2135 | /* ... matching footer field */ |
| 2136 | assert (prev_size (next_chunk (p)) == sz); |
| 2137 | /* ... and is fully consolidated */ |
| 2138 | assert (prev_inuse (p)); |
| 2139 | assert (next == av->top || inuse (next)); |
| 2140 | |
| 2141 | /* ... and has minimally sane links */ |
| 2142 | assert (p->fd->bk == p); |
| 2143 | assert (p->bk->fd == p); |
| 2144 | } |
| 2145 | else /* markers are always of size SIZE_SZ */ |
| 2146 | assert (sz == SIZE_SZ); |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | Properties of inuse chunks |
| 2151 | */ |
| 2152 | |
| 2153 | static void |
| 2154 | do_check_inuse_chunk (mstate av, mchunkptr p) |
| 2155 | { |
| 2156 | mchunkptr next; |
| 2157 | |
| 2158 | do_check_chunk (av, p); |
| 2159 | |
| 2160 | if (chunk_is_mmapped (p)) |
| 2161 | return; /* mmapped chunks have no next/prev */ |
| 2162 | |
| 2163 | /* Check whether it claims to be in use ... */ |
| 2164 | assert (inuse (p)); |
| 2165 | |
| 2166 | next = next_chunk (p); |
| 2167 | |
| 2168 | /* ... and is surrounded by OK chunks. |
| 2169 | Since more things can be checked with free chunks than inuse ones, |
| 2170 | if an inuse chunk borders them and debug is on, it's worth doing them. |
| 2171 | */ |
| 2172 | if (!prev_inuse (p)) |
| 2173 | { |
| 2174 | /* Note that we cannot even look at prev unless it is not inuse */ |
| 2175 | mchunkptr prv = prev_chunk (p); |
| 2176 | assert (next_chunk (prv) == p); |
| 2177 | do_check_free_chunk (av, prv); |
| 2178 | } |
| 2179 | |
| 2180 | if (next == av->top) |
| 2181 | { |
| 2182 | assert (prev_inuse (next)); |
| 2183 | assert (chunksize (next) >= MINSIZE); |
| 2184 | } |
| 2185 | else if (!inuse (next)) |
| 2186 | do_check_free_chunk (av, next); |
| 2187 | } |
| 2188 | |
| 2189 | /* |
| 2190 | Properties of chunks recycled from fastbins |
| 2191 | */ |
| 2192 | |
| 2193 | static void |
| 2194 | do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
| 2195 | { |
| 2196 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
| 2197 | |
| 2198 | if (!chunk_is_mmapped (p)) |
| 2199 | { |
| 2200 | assert (av == arena_for_chunk (p)); |
| 2201 | if (chunk_main_arena (p)) |
| 2202 | assert (av == &main_arena); |
| 2203 | else |
| 2204 | assert (av != &main_arena); |
| 2205 | } |
| 2206 | |
| 2207 | do_check_inuse_chunk (av, p); |
| 2208 | |
| 2209 | /* Legal size ... */ |
| 2210 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
| 2211 | assert ((unsigned long) (sz) >= MINSIZE); |
| 2212 | /* ... and alignment */ |
| 2213 | assert (aligned_OK (chunk2mem (p))); |
| 2214 | /* chunk is less than MINSIZE more than request */ |
| 2215 | assert ((long) (sz) - (long) (s) >= 0); |
| 2216 | assert ((long) (sz) - (long) (s + MINSIZE) < 0); |
| 2217 | } |
| 2218 | |
| 2219 | /* |
| 2220 | Properties of nonrecycled chunks at the point they are malloced |
| 2221 | */ |
| 2222 | |
| 2223 | static void |
| 2224 | do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
| 2225 | { |
| 2226 | /* same as recycled case ... */ |
| 2227 | do_check_remalloced_chunk (av, p, s); |
| 2228 | |
| 2229 | /* |
| 2230 | ... plus, must obey implementation invariant that prev_inuse is |
| 2231 | always true of any allocated chunk; i.e., that each allocated |
| 2232 | chunk borders either a previously allocated and still in-use |
| 2233 | chunk, or the base of its memory arena. This is ensured |
| 2234 | by making all allocations from the `lowest' part of any found |
| 2235 | chunk. This does not necessarily hold however for chunks |
| 2236 | recycled via fastbins. |
| 2237 | */ |
| 2238 | |
| 2239 | assert (prev_inuse (p)); |
| 2240 | } |
| 2241 | |
| 2242 | |
| 2243 | /* |
| 2244 | Properties of malloc_state. |
| 2245 | |
| 2246 | This may be useful for debugging malloc, as well as detecting user |
| 2247 | programmer errors that somehow write into malloc_state. |
| 2248 | |
| 2249 | If you are extending or experimenting with this malloc, you can |
| 2250 | probably figure out how to hack this routine to print out or |
| 2251 | display chunk addresses, sizes, bins, and other instrumentation. |
| 2252 | */ |
| 2253 | |
| 2254 | static void |
| 2255 | do_check_malloc_state (mstate av) |
| 2256 | { |
| 2257 | int i; |
| 2258 | mchunkptr p; |
| 2259 | mchunkptr q; |
| 2260 | mbinptr b; |
| 2261 | unsigned int idx; |
| 2262 | INTERNAL_SIZE_T size; |
| 2263 | unsigned long total = 0; |
| 2264 | int max_fast_bin; |
| 2265 | |
| 2266 | /* internal size_t must be no wider than pointer type */ |
| 2267 | assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *)); |
| 2268 | |
| 2269 | /* alignment is a power of 2 */ |
| 2270 | assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0); |
| 2271 | |
| 2272 | /* Check the arena is initialized. */ |
| 2273 | assert (av->top != 0); |
| 2274 | |
| 2275 | /* No memory has been allocated yet, so doing more tests is not possible. */ |
| 2276 | if (av->top == initial_top (av)) |
| 2277 | return; |
| 2278 | |
| 2279 | /* pagesize is a power of 2 */ |
| 2280 | assert (powerof2(GLRO (dl_pagesize))); |
| 2281 | |
| 2282 | /* A contiguous main_arena is consistent with sbrk_base. */ |
| 2283 | if (av == &main_arena && contiguous (av)) |
| 2284 | assert ((char *) mp_.sbrk_base + av->system_mem == |
| 2285 | (char *) av->top + chunksize (av->top)); |
| 2286 | |
| 2287 | /* properties of fastbins */ |
| 2288 | |
| 2289 | /* max_fast is in allowed range */ |
| 2290 | assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE)); |
| 2291 | |
| 2292 | max_fast_bin = fastbin_index (get_max_fast ()); |
| 2293 | |
| 2294 | for (i = 0; i < NFASTBINS; ++i) |
| 2295 | { |
| 2296 | p = fastbin (av, i); |
| 2297 | |
| 2298 | /* The following test can only be performed for the main arena. |
| 2299 | While mallopt calls malloc_consolidate to get rid of all fast |
| 2300 | bins (especially those larger than the new maximum) this does |
| 2301 | only happen for the main arena. Trying to do this for any |
| 2302 | other arena would mean those arenas have to be locked and |
| 2303 | malloc_consolidate be called for them. This is excessive. And |
| 2304 | even if this is acceptable to somebody it still cannot solve |
| 2305 | the problem completely since if the arena is locked a |
| 2306 | concurrent malloc call might create a new arena which then |
| 2307 | could use the newly invalid fast bins. */ |
| 2308 | |
| 2309 | /* all bins past max_fast are empty */ |
| 2310 | if (av == &main_arena && i > max_fast_bin) |
| 2311 | assert (p == 0); |
| 2312 | |
| 2313 | while (p != 0) |
| 2314 | { |
| 2315 | if (__glibc_unlikely (misaligned_chunk (p))) |
| 2316 | malloc_printerr ("do_check_malloc_state(): " |
| 2317 | "unaligned fastbin chunk detected" ); |
| 2318 | /* each chunk claims to be inuse */ |
| 2319 | do_check_inuse_chunk (av, p); |
| 2320 | total += chunksize (p); |
| 2321 | /* chunk belongs in this bin */ |
| 2322 | assert (fastbin_index (chunksize (p)) == i); |
| 2323 | p = REVEAL_PTR (p->fd); |
| 2324 | } |
| 2325 | } |
| 2326 | |
| 2327 | /* check normal bins */ |
| 2328 | for (i = 1; i < NBINS; ++i) |
| 2329 | { |
| 2330 | b = bin_at (av, i); |
| 2331 | |
| 2332 | /* binmap is accurate (except for bin 1 == unsorted_chunks) */ |
| 2333 | if (i >= 2) |
| 2334 | { |
| 2335 | unsigned int binbit = get_binmap (av, i); |
| 2336 | int empty = last (b) == b; |
| 2337 | if (!binbit) |
| 2338 | assert (empty); |
| 2339 | else if (!empty) |
| 2340 | assert (binbit); |
| 2341 | } |
| 2342 | |
| 2343 | for (p = last (b); p != b; p = p->bk) |
| 2344 | { |
| 2345 | /* each chunk claims to be free */ |
| 2346 | do_check_free_chunk (av, p); |
| 2347 | size = chunksize (p); |
| 2348 | total += size; |
| 2349 | if (i >= 2) |
| 2350 | { |
| 2351 | /* chunk belongs in bin */ |
| 2352 | idx = bin_index (size); |
| 2353 | assert (idx == i); |
| 2354 | /* lists are sorted */ |
| 2355 | assert (p->bk == b || |
| 2356 | (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p)); |
| 2357 | |
| 2358 | if (!in_smallbin_range (size)) |
| 2359 | { |
| 2360 | if (p->fd_nextsize != NULL) |
| 2361 | { |
| 2362 | if (p->fd_nextsize == p) |
| 2363 | assert (p->bk_nextsize == p); |
| 2364 | else |
| 2365 | { |
| 2366 | if (p->fd_nextsize == first (b)) |
| 2367 | assert (chunksize (p) < chunksize (p->fd_nextsize)); |
| 2368 | else |
| 2369 | assert (chunksize (p) > chunksize (p->fd_nextsize)); |
| 2370 | |
| 2371 | if (p == first (b)) |
| 2372 | assert (chunksize (p) > chunksize (p->bk_nextsize)); |
| 2373 | else |
| 2374 | assert (chunksize (p) < chunksize (p->bk_nextsize)); |
| 2375 | } |
| 2376 | } |
| 2377 | else |
| 2378 | assert (p->bk_nextsize == NULL); |
| 2379 | } |
| 2380 | } |
| 2381 | else if (!in_smallbin_range (size)) |
| 2382 | assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL); |
| 2383 | /* chunk is followed by a legal chain of inuse chunks */ |
| 2384 | for (q = next_chunk (p); |
| 2385 | (q != av->top && inuse (q) && |
| 2386 | (unsigned long) (chunksize (q)) >= MINSIZE); |
| 2387 | q = next_chunk (q)) |
| 2388 | do_check_inuse_chunk (av, q); |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | /* top chunk is OK */ |
| 2393 | check_chunk (av, av->top); |
| 2394 | } |
| 2395 | #endif |
| 2396 | |
| 2397 | |
| 2398 | /* ----------------- Support for debugging hooks -------------------- */ |
| 2399 | #if IS_IN (libc) |
| 2400 | #include "hooks.c" |
| 2401 | #endif |
| 2402 | |
| 2403 | |
| 2404 | /* ----------- Routines dealing with system allocation -------------- */ |
| 2405 | |
| 2406 | /* |
| 2407 | sysmalloc handles malloc cases requiring more memory from the system. |
| 2408 | On entry, it is assumed that av->top does not have enough |
| 2409 | space to service request for nb bytes, thus requiring that av->top |
| 2410 | be extended or replaced. |
| 2411 | */ |
| 2412 | |
| 2413 | static void * |
| 2414 | sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int , mstate av) |
| 2415 | { |
| 2416 | long int size; |
| 2417 | |
| 2418 | /* |
| 2419 | Round up size to nearest page. For mmapped chunks, the overhead is one |
| 2420 | SIZE_SZ unit larger than for normal chunks, because there is no |
| 2421 | following chunk whose prev_size field could be used. |
| 2422 | |
| 2423 | See the front_misalign handling below, for glibc there is no need for |
| 2424 | further alignments unless we have have high alignment. |
| 2425 | */ |
| 2426 | if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) |
| 2427 | size = ALIGN_UP (nb + SIZE_SZ, pagesize); |
| 2428 | else |
| 2429 | size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize); |
| 2430 | |
| 2431 | /* Don't try if size wraps around 0. */ |
| 2432 | if ((unsigned long) (size) <= (unsigned long) (nb)) |
| 2433 | return MAP_FAILED; |
| 2434 | |
| 2435 | char *mm = (char *) MMAP (0, size, |
| 2436 | mtag_mmap_flags | PROT_READ | PROT_WRITE, |
| 2437 | extra_flags); |
| 2438 | if (mm == MAP_FAILED) |
| 2439 | return mm; |
| 2440 | |
| 2441 | #ifdef MAP_HUGETLB |
| 2442 | if (!(extra_flags & MAP_HUGETLB)) |
| 2443 | madvise_thp (mm, size); |
| 2444 | #endif |
| 2445 | |
| 2446 | /* |
| 2447 | The offset to the start of the mmapped region is stored in the prev_size |
| 2448 | field of the chunk. This allows us to adjust returned start address to |
| 2449 | meet alignment requirements here and in memalign(), and still be able to |
| 2450 | compute proper address argument for later munmap in free() and realloc(). |
| 2451 | */ |
| 2452 | |
| 2453 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ |
| 2454 | |
| 2455 | if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) |
| 2456 | { |
| 2457 | /* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and |
| 2458 | MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page |
| 2459 | aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */ |
| 2460 | assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0); |
| 2461 | front_misalign = 0; |
| 2462 | } |
| 2463 | else |
| 2464 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK; |
| 2465 | |
| 2466 | mchunkptr p; /* the allocated/returned chunk */ |
| 2467 | |
| 2468 | if (front_misalign > 0) |
| 2469 | { |
| 2470 | ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign; |
| 2471 | p = (mchunkptr) (mm + correction); |
| 2472 | set_prev_size (p, correction); |
| 2473 | set_head (p, (size - correction) | IS_MMAPPED); |
| 2474 | } |
| 2475 | else |
| 2476 | { |
| 2477 | p = (mchunkptr) mm; |
| 2478 | set_prev_size (p, 0); |
| 2479 | set_head (p, size | IS_MMAPPED); |
| 2480 | } |
| 2481 | |
| 2482 | /* update statistics */ |
| 2483 | int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1; |
| 2484 | atomic_max (&mp_.max_n_mmaps, new); |
| 2485 | |
| 2486 | unsigned long sum; |
| 2487 | sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size; |
| 2488 | atomic_max (&mp_.max_mmapped_mem, sum); |
| 2489 | |
| 2490 | check_chunk (av, p); |
| 2491 | |
| 2492 | return chunk2mem (p); |
| 2493 | } |
| 2494 | |
| 2495 | /* |
| 2496 | Allocate memory using mmap() based on S and NB requested size, aligning to |
| 2497 | PAGESIZE if required. The EXTRA_FLAGS is used on mmap() call. If the call |
| 2498 | succeedes S is updated with the allocated size. This is used as a fallback |
| 2499 | if MORECORE fails. |
| 2500 | */ |
| 2501 | static void * |
| 2502 | sysmalloc_mmap_fallback (long int *s, INTERNAL_SIZE_T nb, |
| 2503 | INTERNAL_SIZE_T old_size, size_t minsize, |
| 2504 | size_t pagesize, int , mstate av) |
| 2505 | { |
| 2506 | long int size = *s; |
| 2507 | |
| 2508 | /* Cannot merge with old top, so add its size back in */ |
| 2509 | if (contiguous (av)) |
| 2510 | size = ALIGN_UP (size + old_size, pagesize); |
| 2511 | |
| 2512 | /* If we are relying on mmap as backup, then use larger units */ |
| 2513 | if ((unsigned long) (size) < minsize) |
| 2514 | size = minsize; |
| 2515 | |
| 2516 | /* Don't try if size wraps around 0 */ |
| 2517 | if ((unsigned long) (size) <= (unsigned long) (nb)) |
| 2518 | return MORECORE_FAILURE; |
| 2519 | |
| 2520 | char *mbrk = (char *) (MMAP (0, size, |
| 2521 | mtag_mmap_flags | PROT_READ | PROT_WRITE, |
| 2522 | extra_flags)); |
| 2523 | if (mbrk == MAP_FAILED) |
| 2524 | return MAP_FAILED; |
| 2525 | |
| 2526 | #ifdef MAP_HUGETLB |
| 2527 | if (!(extra_flags & MAP_HUGETLB)) |
| 2528 | madvise_thp (mbrk, size); |
| 2529 | #endif |
| 2530 | |
| 2531 | /* Record that we no longer have a contiguous sbrk region. After the first |
| 2532 | time mmap is used as backup, we do not ever rely on contiguous space |
| 2533 | since this could incorrectly bridge regions. */ |
| 2534 | set_noncontiguous (av); |
| 2535 | |
| 2536 | *s = size; |
| 2537 | return mbrk; |
| 2538 | } |
| 2539 | |
| 2540 | static void * |
| 2541 | sysmalloc (INTERNAL_SIZE_T nb, mstate av) |
| 2542 | { |
| 2543 | mchunkptr old_top; /* incoming value of av->top */ |
| 2544 | INTERNAL_SIZE_T old_size; /* its size */ |
| 2545 | char *old_end; /* its end address */ |
| 2546 | |
| 2547 | long size; /* arg to first MORECORE or mmap call */ |
| 2548 | char *brk; /* return value from MORECORE */ |
| 2549 | |
| 2550 | long correction; /* arg to 2nd MORECORE call */ |
| 2551 | char *snd_brk; /* 2nd return val */ |
| 2552 | |
| 2553 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ |
| 2554 | INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ |
| 2555 | char *aligned_brk; /* aligned offset into brk */ |
| 2556 | |
| 2557 | mchunkptr p; /* the allocated/returned chunk */ |
| 2558 | mchunkptr remainder; /* remainder from allocation */ |
| 2559 | unsigned long remainder_size; /* its size */ |
| 2560 | |
| 2561 | |
| 2562 | size_t pagesize = GLRO (dl_pagesize); |
| 2563 | bool tried_mmap = false; |
| 2564 | |
| 2565 | |
| 2566 | /* |
| 2567 | If have mmap, and the request size meets the mmap threshold, and |
| 2568 | the system supports mmap, and there are few enough currently |
| 2569 | allocated mmapped regions, try to directly map this request |
| 2570 | rather than expanding top. |
| 2571 | */ |
| 2572 | |
| 2573 | if (av == NULL |
| 2574 | || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) |
| 2575 | && (mp_.n_mmaps < mp_.n_mmaps_max))) |
| 2576 | { |
| 2577 | char *mm; |
| 2578 | #if HAVE_TUNABLES |
| 2579 | if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize) |
| 2580 | { |
| 2581 | /* There is no need to isse the THP madvise call if Huge Pages are |
| 2582 | used directly. */ |
| 2583 | mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av); |
| 2584 | if (mm != MAP_FAILED) |
| 2585 | return mm; |
| 2586 | } |
| 2587 | #endif |
| 2588 | mm = sysmalloc_mmap (nb, pagesize, 0, av); |
| 2589 | if (mm != MAP_FAILED) |
| 2590 | return mm; |
| 2591 | tried_mmap = true; |
| 2592 | } |
| 2593 | |
| 2594 | /* There are no usable arenas and mmap also failed. */ |
| 2595 | if (av == NULL) |
| 2596 | return 0; |
| 2597 | |
| 2598 | /* Record incoming configuration of top */ |
| 2599 | |
| 2600 | old_top = av->top; |
| 2601 | old_size = chunksize (old_top); |
| 2602 | old_end = (char *) (chunk_at_offset (old_top, old_size)); |
| 2603 | |
| 2604 | brk = snd_brk = (char *) (MORECORE_FAILURE); |
| 2605 | |
| 2606 | /* |
| 2607 | If not the first time through, we require old_size to be |
| 2608 | at least MINSIZE and to have prev_inuse set. |
| 2609 | */ |
| 2610 | |
| 2611 | assert ((old_top == initial_top (av) && old_size == 0) || |
| 2612 | ((unsigned long) (old_size) >= MINSIZE && |
| 2613 | prev_inuse (old_top) && |
| 2614 | ((unsigned long) old_end & (pagesize - 1)) == 0)); |
| 2615 | |
| 2616 | /* Precondition: not enough current space to satisfy nb request */ |
| 2617 | assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE)); |
| 2618 | |
| 2619 | |
| 2620 | if (av != &main_arena) |
| 2621 | { |
| 2622 | heap_info *old_heap, *heap; |
| 2623 | size_t old_heap_size; |
| 2624 | |
| 2625 | /* First try to extend the current heap. */ |
| 2626 | old_heap = heap_for_ptr (old_top); |
| 2627 | old_heap_size = old_heap->size; |
| 2628 | if ((long) (MINSIZE + nb - old_size) > 0 |
| 2629 | && grow_heap (old_heap, MINSIZE + nb - old_size) == 0) |
| 2630 | { |
| 2631 | av->system_mem += old_heap->size - old_heap_size; |
| 2632 | set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top) |
| 2633 | | PREV_INUSE); |
| 2634 | } |
| 2635 | else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad))) |
| 2636 | { |
| 2637 | /* Use a newly allocated heap. */ |
| 2638 | heap->ar_ptr = av; |
| 2639 | heap->prev = old_heap; |
| 2640 | av->system_mem += heap->size; |
| 2641 | /* Set up the new top. */ |
| 2642 | top (av) = chunk_at_offset (heap, sizeof (*heap)); |
| 2643 | set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE); |
| 2644 | |
| 2645 | /* Setup fencepost and free the old top chunk with a multiple of |
| 2646 | MALLOC_ALIGNMENT in size. */ |
| 2647 | /* The fencepost takes at least MINSIZE bytes, because it might |
| 2648 | become the top chunk again later. Note that a footer is set |
| 2649 | up, too, although the chunk is marked in use. */ |
| 2650 | old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK; |
| 2651 | set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ), |
| 2652 | 0 | PREV_INUSE); |
| 2653 | if (old_size >= MINSIZE) |
| 2654 | { |
| 2655 | set_head (chunk_at_offset (old_top, old_size), |
| 2656 | CHUNK_HDR_SZ | PREV_INUSE); |
| 2657 | set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ); |
| 2658 | set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA); |
| 2659 | _int_free (av, old_top, 1); |
| 2660 | } |
| 2661 | else |
| 2662 | { |
| 2663 | set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE); |
| 2664 | set_foot (old_top, (old_size + CHUNK_HDR_SZ)); |
| 2665 | } |
| 2666 | } |
| 2667 | else if (!tried_mmap) |
| 2668 | { |
| 2669 | /* We can at least try to use to mmap memory. If new_heap fails |
| 2670 | it is unlikely that trying to allocate huge pages will |
| 2671 | succeed. */ |
| 2672 | char *mm = sysmalloc_mmap (nb, pagesize, 0, av); |
| 2673 | if (mm != MAP_FAILED) |
| 2674 | return mm; |
| 2675 | } |
| 2676 | } |
| 2677 | else /* av == main_arena */ |
| 2678 | |
| 2679 | |
| 2680 | { /* Request enough space for nb + pad + overhead */ |
| 2681 | size = nb + mp_.top_pad + MINSIZE; |
| 2682 | |
| 2683 | /* |
| 2684 | If contiguous, we can subtract out existing space that we hope to |
| 2685 | combine with new space. We add it back later only if |
| 2686 | we don't actually get contiguous space. |
| 2687 | */ |
| 2688 | |
| 2689 | if (contiguous (av)) |
| 2690 | size -= old_size; |
| 2691 | |
| 2692 | /* |
| 2693 | Round to a multiple of page size or huge page size. |
| 2694 | If MORECORE is not contiguous, this ensures that we only call it |
| 2695 | with whole-page arguments. And if MORECORE is contiguous and |
| 2696 | this is not first time through, this preserves page-alignment of |
| 2697 | previous calls. Otherwise, we correct to page-align below. |
| 2698 | */ |
| 2699 | |
| 2700 | #if HAVE_TUNABLES && defined (MADV_HUGEPAGE) |
| 2701 | /* Defined in brk.c. */ |
| 2702 | extern void *__curbrk; |
| 2703 | if (__glibc_unlikely (mp_.thp_pagesize != 0)) |
| 2704 | { |
| 2705 | uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size, |
| 2706 | mp_.thp_pagesize); |
| 2707 | size = top - (uintptr_t) __curbrk; |
| 2708 | } |
| 2709 | else |
| 2710 | #endif |
| 2711 | size = ALIGN_UP (size, GLRO(dl_pagesize)); |
| 2712 | |
| 2713 | /* |
| 2714 | Don't try to call MORECORE if argument is so big as to appear |
| 2715 | negative. Note that since mmap takes size_t arg, it may succeed |
| 2716 | below even if we cannot call MORECORE. |
| 2717 | */ |
| 2718 | |
| 2719 | if (size > 0) |
| 2720 | { |
| 2721 | brk = (char *) (MORECORE (size)); |
| 2722 | if (brk != (char *) (MORECORE_FAILURE)) |
| 2723 | madvise_thp (brk, size); |
| 2724 | LIBC_PROBE (memory_sbrk_more, 2, brk, size); |
| 2725 | } |
| 2726 | |
| 2727 | if (brk == (char *) (MORECORE_FAILURE)) |
| 2728 | { |
| 2729 | /* |
| 2730 | If have mmap, try using it as a backup when MORECORE fails or |
| 2731 | cannot be used. This is worth doing on systems that have "holes" in |
| 2732 | address space, so sbrk cannot extend to give contiguous space, but |
| 2733 | space is available elsewhere. Note that we ignore mmap max count |
| 2734 | and threshold limits, since the space will not be used as a |
| 2735 | segregated mmap region. |
| 2736 | */ |
| 2737 | |
| 2738 | char *mbrk = MAP_FAILED; |
| 2739 | #if HAVE_TUNABLES |
| 2740 | if (mp_.hp_pagesize > 0) |
| 2741 | mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, |
| 2742 | mp_.hp_pagesize, mp_.hp_pagesize, |
| 2743 | mp_.hp_flags, av); |
| 2744 | #endif |
| 2745 | if (mbrk == MAP_FAILED) |
| 2746 | mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, pagesize, |
| 2747 | MMAP_AS_MORECORE_SIZE, 0, av); |
| 2748 | if (mbrk != MAP_FAILED) |
| 2749 | { |
| 2750 | /* We do not need, and cannot use, another sbrk call to find end */ |
| 2751 | brk = mbrk; |
| 2752 | snd_brk = brk + size; |
| 2753 | } |
| 2754 | } |
| 2755 | |
| 2756 | if (brk != (char *) (MORECORE_FAILURE)) |
| 2757 | { |
| 2758 | if (mp_.sbrk_base == 0) |
| 2759 | mp_.sbrk_base = brk; |
| 2760 | av->system_mem += size; |
| 2761 | |
| 2762 | /* |
| 2763 | If MORECORE extends previous space, we can likewise extend top size. |
| 2764 | */ |
| 2765 | |
| 2766 | if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE)) |
| 2767 | set_head (old_top, (size + old_size) | PREV_INUSE); |
| 2768 | |
| 2769 | else if (contiguous (av) && old_size && brk < old_end) |
| 2770 | /* Oops! Someone else killed our space.. Can't touch anything. */ |
| 2771 | malloc_printerr ("break adjusted to free malloc space" ); |
| 2772 | |
| 2773 | /* |
| 2774 | Otherwise, make adjustments: |
| 2775 | |
| 2776 | * If the first time through or noncontiguous, we need to call sbrk |
| 2777 | just to find out where the end of memory lies. |
| 2778 | |
| 2779 | * We need to ensure that all returned chunks from malloc will meet |
| 2780 | MALLOC_ALIGNMENT |
| 2781 | |
| 2782 | * If there was an intervening foreign sbrk, we need to adjust sbrk |
| 2783 | request size to account for fact that we will not be able to |
| 2784 | combine new space with existing space in old_top. |
| 2785 | |
| 2786 | * Almost all systems internally allocate whole pages at a time, in |
| 2787 | which case we might as well use the whole last page of request. |
| 2788 | So we allocate enough more memory to hit a page boundary now, |
| 2789 | which in turn causes future contiguous calls to page-align. |
| 2790 | */ |
| 2791 | |
| 2792 | else |
| 2793 | { |
| 2794 | front_misalign = 0; |
| 2795 | end_misalign = 0; |
| 2796 | correction = 0; |
| 2797 | aligned_brk = brk; |
| 2798 | |
| 2799 | /* handle contiguous cases */ |
| 2800 | if (contiguous (av)) |
| 2801 | { |
| 2802 | /* Count foreign sbrk as system_mem. */ |
| 2803 | if (old_size) |
| 2804 | av->system_mem += brk - old_end; |
| 2805 | |
| 2806 | /* Guarantee alignment of first new chunk made from this space */ |
| 2807 | |
| 2808 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
| 2809 | if (front_misalign > 0) |
| 2810 | { |
| 2811 | /* |
| 2812 | Skip over some bytes to arrive at an aligned position. |
| 2813 | We don't need to specially mark these wasted front bytes. |
| 2814 | They will never be accessed anyway because |
| 2815 | prev_inuse of av->top (and any chunk created from its start) |
| 2816 | is always true after initialization. |
| 2817 | */ |
| 2818 | |
| 2819 | correction = MALLOC_ALIGNMENT - front_misalign; |
| 2820 | aligned_brk += correction; |
| 2821 | } |
| 2822 | |
| 2823 | /* |
| 2824 | If this isn't adjacent to existing space, then we will not |
| 2825 | be able to merge with old_top space, so must add to 2nd request. |
| 2826 | */ |
| 2827 | |
| 2828 | correction += old_size; |
| 2829 | |
| 2830 | /* Extend the end address to hit a page boundary */ |
| 2831 | end_misalign = (INTERNAL_SIZE_T) (brk + size + correction); |
| 2832 | correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign; |
| 2833 | |
| 2834 | assert (correction >= 0); |
| 2835 | snd_brk = (char *) (MORECORE (correction)); |
| 2836 | |
| 2837 | /* |
| 2838 | If can't allocate correction, try to at least find out current |
| 2839 | brk. It might be enough to proceed without failing. |
| 2840 | |
| 2841 | Note that if second sbrk did NOT fail, we assume that space |
| 2842 | is contiguous with first sbrk. This is a safe assumption unless |
| 2843 | program is multithreaded but doesn't use locks and a foreign sbrk |
| 2844 | occurred between our first and second calls. |
| 2845 | */ |
| 2846 | |
| 2847 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
| 2848 | { |
| 2849 | correction = 0; |
| 2850 | snd_brk = (char *) (MORECORE (0)); |
| 2851 | } |
| 2852 | else |
| 2853 | madvise_thp (snd_brk, correction); |
| 2854 | } |
| 2855 | |
| 2856 | /* handle non-contiguous cases */ |
| 2857 | else |
| 2858 | { |
| 2859 | if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ) |
| 2860 | /* MORECORE/mmap must correctly align */ |
| 2861 | assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0); |
| 2862 | else |
| 2863 | { |
| 2864 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
| 2865 | if (front_misalign > 0) |
| 2866 | { |
| 2867 | /* |
| 2868 | Skip over some bytes to arrive at an aligned position. |
| 2869 | We don't need to specially mark these wasted front bytes. |
| 2870 | They will never be accessed anyway because |
| 2871 | prev_inuse of av->top (and any chunk created from its start) |
| 2872 | is always true after initialization. |
| 2873 | */ |
| 2874 | |
| 2875 | aligned_brk += MALLOC_ALIGNMENT - front_misalign; |
| 2876 | } |
| 2877 | } |
| 2878 | |
| 2879 | /* Find out current end of memory */ |
| 2880 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
| 2881 | { |
| 2882 | snd_brk = (char *) (MORECORE (0)); |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | /* Adjust top based on results of second sbrk */ |
| 2887 | if (snd_brk != (char *) (MORECORE_FAILURE)) |
| 2888 | { |
| 2889 | av->top = (mchunkptr) aligned_brk; |
| 2890 | set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); |
| 2891 | av->system_mem += correction; |
| 2892 | |
| 2893 | /* |
| 2894 | If not the first time through, we either have a |
| 2895 | gap due to foreign sbrk or a non-contiguous region. Insert a |
| 2896 | double fencepost at old_top to prevent consolidation with space |
| 2897 | we don't own. These fenceposts are artificial chunks that are |
| 2898 | marked as inuse and are in any case too small to use. We need |
| 2899 | two to make sizes and alignments work out. |
| 2900 | */ |
| 2901 | |
| 2902 | if (old_size != 0) |
| 2903 | { |
| 2904 | /* |
| 2905 | Shrink old_top to insert fenceposts, keeping size a |
| 2906 | multiple of MALLOC_ALIGNMENT. We know there is at least |
| 2907 | enough space in old_top to do this. |
| 2908 | */ |
| 2909 | old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK; |
| 2910 | set_head (old_top, old_size | PREV_INUSE); |
| 2911 | |
| 2912 | /* |
| 2913 | Note that the following assignments completely overwrite |
| 2914 | old_top when old_size was previously MINSIZE. This is |
| 2915 | intentional. We need the fencepost, even if old_top otherwise gets |
| 2916 | lost. |
| 2917 | */ |
| 2918 | set_head (chunk_at_offset (old_top, old_size), |
| 2919 | CHUNK_HDR_SZ | PREV_INUSE); |
| 2920 | set_head (chunk_at_offset (old_top, |
| 2921 | old_size + CHUNK_HDR_SZ), |
| 2922 | CHUNK_HDR_SZ | PREV_INUSE); |
| 2923 | |
| 2924 | /* If possible, release the rest. */ |
| 2925 | if (old_size >= MINSIZE) |
| 2926 | { |
| 2927 | _int_free (av, old_top, 1); |
| 2928 | } |
| 2929 | } |
| 2930 | } |
| 2931 | } |
| 2932 | } |
| 2933 | } /* if (av != &main_arena) */ |
| 2934 | |
| 2935 | if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem)) |
| 2936 | av->max_system_mem = av->system_mem; |
| 2937 | check_malloc_state (av); |
| 2938 | |
| 2939 | /* finally, do the allocation */ |
| 2940 | p = av->top; |
| 2941 | size = chunksize (p); |
| 2942 | |
| 2943 | /* check that one of the above allocation paths succeeded */ |
| 2944 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
| 2945 | { |
| 2946 | remainder_size = size - nb; |
| 2947 | remainder = chunk_at_offset (p, nb); |
| 2948 | av->top = remainder; |
| 2949 | set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 2950 | set_head (remainder, remainder_size | PREV_INUSE); |
| 2951 | check_malloced_chunk (av, p, nb); |
| 2952 | return chunk2mem (p); |
| 2953 | } |
| 2954 | |
| 2955 | /* catch all failure paths */ |
| 2956 | __set_errno (ENOMEM); |
| 2957 | return 0; |
| 2958 | } |
| 2959 | |
| 2960 | |
| 2961 | /* |
| 2962 | systrim is an inverse of sorts to sysmalloc. It gives memory back |
| 2963 | to the system (via negative arguments to sbrk) if there is unused |
| 2964 | memory at the `high' end of the malloc pool. It is called |
| 2965 | automatically by free() when top space exceeds the trim |
| 2966 | threshold. It is also called by the public malloc_trim routine. It |
| 2967 | returns 1 if it actually released any memory, else 0. |
| 2968 | */ |
| 2969 | |
| 2970 | static int |
| 2971 | systrim (size_t pad, mstate av) |
| 2972 | { |
| 2973 | long top_size; /* Amount of top-most memory */ |
| 2974 | long ; /* Amount to release */ |
| 2975 | long released; /* Amount actually released */ |
| 2976 | char *current_brk; /* address returned by pre-check sbrk call */ |
| 2977 | char *new_brk; /* address returned by post-check sbrk call */ |
| 2978 | long top_area; |
| 2979 | |
| 2980 | top_size = chunksize (av->top); |
| 2981 | |
| 2982 | top_area = top_size - MINSIZE - 1; |
| 2983 | if (top_area <= pad) |
| 2984 | return 0; |
| 2985 | |
| 2986 | /* Release in pagesize units and round down to the nearest page. */ |
| 2987 | #if HAVE_TUNABLES && defined (MADV_HUGEPAGE) |
| 2988 | if (__glibc_unlikely (mp_.thp_pagesize != 0)) |
| 2989 | extra = ALIGN_DOWN (top_area - pad, mp_.thp_pagesize); |
| 2990 | else |
| 2991 | #endif |
| 2992 | extra = ALIGN_DOWN (top_area - pad, GLRO(dl_pagesize)); |
| 2993 | |
| 2994 | if (extra == 0) |
| 2995 | return 0; |
| 2996 | |
| 2997 | /* |
| 2998 | Only proceed if end of memory is where we last set it. |
| 2999 | This avoids problems if there were foreign sbrk calls. |
| 3000 | */ |
| 3001 | current_brk = (char *) (MORECORE (0)); |
| 3002 | if (current_brk == (char *) (av->top) + top_size) |
| 3003 | { |
| 3004 | /* |
| 3005 | Attempt to release memory. We ignore MORECORE return value, |
| 3006 | and instead call again to find out where new end of memory is. |
| 3007 | This avoids problems if first call releases less than we asked, |
| 3008 | of if failure somehow altered brk value. (We could still |
| 3009 | encounter problems if it altered brk in some very bad way, |
| 3010 | but the only thing we can do is adjust anyway, which will cause |
| 3011 | some downstream failure.) |
| 3012 | */ |
| 3013 | |
| 3014 | MORECORE (-extra); |
| 3015 | new_brk = (char *) (MORECORE (0)); |
| 3016 | |
| 3017 | LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra); |
| 3018 | |
| 3019 | if (new_brk != (char *) MORECORE_FAILURE) |
| 3020 | { |
| 3021 | released = (long) (current_brk - new_brk); |
| 3022 | |
| 3023 | if (released != 0) |
| 3024 | { |
| 3025 | /* Success. Adjust top. */ |
| 3026 | av->system_mem -= released; |
| 3027 | set_head (av->top, (top_size - released) | PREV_INUSE); |
| 3028 | check_malloc_state (av); |
| 3029 | return 1; |
| 3030 | } |
| 3031 | } |
| 3032 | } |
| 3033 | return 0; |
| 3034 | } |
| 3035 | |
| 3036 | static void |
| 3037 | munmap_chunk (mchunkptr p) |
| 3038 | { |
| 3039 | size_t pagesize = GLRO (dl_pagesize); |
| 3040 | INTERNAL_SIZE_T size = chunksize (p); |
| 3041 | |
| 3042 | assert (chunk_is_mmapped (p)); |
| 3043 | |
| 3044 | uintptr_t mem = (uintptr_t) chunk2mem (p); |
| 3045 | uintptr_t block = (uintptr_t) p - prev_size (p); |
| 3046 | size_t total_size = prev_size (p) + size; |
| 3047 | /* Unfortunately we have to do the compilers job by hand here. Normally |
| 3048 | we would test BLOCK and TOTAL-SIZE separately for compliance with the |
| 3049 | page size. But gcc does not recognize the optimization possibility |
| 3050 | (in the moment at least) so we combine the two values into one before |
| 3051 | the bit test. */ |
| 3052 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
| 3053 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
| 3054 | malloc_printerr ("munmap_chunk(): invalid pointer" ); |
| 3055 | |
| 3056 | atomic_decrement (&mp_.n_mmaps); |
| 3057 | atomic_add (&mp_.mmapped_mem, -total_size); |
| 3058 | |
| 3059 | /* If munmap failed the process virtual memory address space is in a |
| 3060 | bad shape. Just leave the block hanging around, the process will |
| 3061 | terminate shortly anyway since not much can be done. */ |
| 3062 | __munmap ((char *) block, total_size); |
| 3063 | } |
| 3064 | |
| 3065 | #if HAVE_MREMAP |
| 3066 | |
| 3067 | static mchunkptr |
| 3068 | mremap_chunk (mchunkptr p, size_t new_size) |
| 3069 | { |
| 3070 | size_t pagesize = GLRO (dl_pagesize); |
| 3071 | INTERNAL_SIZE_T offset = prev_size (p); |
| 3072 | INTERNAL_SIZE_T size = chunksize (p); |
| 3073 | char *cp; |
| 3074 | |
| 3075 | assert (chunk_is_mmapped (p)); |
| 3076 | |
| 3077 | uintptr_t block = (uintptr_t) p - offset; |
| 3078 | uintptr_t mem = (uintptr_t) chunk2mem(p); |
| 3079 | size_t total_size = offset + size; |
| 3080 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
| 3081 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
| 3082 | malloc_printerr("mremap_chunk(): invalid pointer" ); |
| 3083 | |
| 3084 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ |
| 3085 | new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize); |
| 3086 | |
| 3087 | /* No need to remap if the number of pages does not change. */ |
| 3088 | if (total_size == new_size) |
| 3089 | return p; |
| 3090 | |
| 3091 | cp = (char *) __mremap ((char *) block, total_size, new_size, |
| 3092 | MREMAP_MAYMOVE); |
| 3093 | |
| 3094 | if (cp == MAP_FAILED) |
| 3095 | return 0; |
| 3096 | |
| 3097 | madvise_thp (cp, new_size); |
| 3098 | |
| 3099 | p = (mchunkptr) (cp + offset); |
| 3100 | |
| 3101 | assert (aligned_OK (chunk2mem (p))); |
| 3102 | |
| 3103 | assert (prev_size (p) == offset); |
| 3104 | set_head (p, (new_size - offset) | IS_MMAPPED); |
| 3105 | |
| 3106 | INTERNAL_SIZE_T new; |
| 3107 | new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset) |
| 3108 | + new_size - size - offset; |
| 3109 | atomic_max (&mp_.max_mmapped_mem, new); |
| 3110 | return p; |
| 3111 | } |
| 3112 | #endif /* HAVE_MREMAP */ |
| 3113 | |
| 3114 | /*------------------------ Public wrappers. --------------------------------*/ |
| 3115 | |
| 3116 | #if USE_TCACHE |
| 3117 | |
| 3118 | /* We overlay this structure on the user-data portion of a chunk when |
| 3119 | the chunk is stored in the per-thread cache. */ |
| 3120 | typedef struct tcache_entry |
| 3121 | { |
| 3122 | struct tcache_entry *next; |
| 3123 | /* This field exists to detect double frees. */ |
| 3124 | uintptr_t key; |
| 3125 | } tcache_entry; |
| 3126 | |
| 3127 | /* There is one of these for each thread, which contains the |
| 3128 | per-thread cache (hence "tcache_perthread_struct"). Keeping |
| 3129 | overall size low is mildly important. Note that COUNTS and ENTRIES |
| 3130 | are redundant (we could have just counted the linked list each |
| 3131 | time), this is for performance reasons. */ |
| 3132 | typedef struct tcache_perthread_struct |
| 3133 | { |
| 3134 | uint16_t counts[TCACHE_MAX_BINS]; |
| 3135 | tcache_entry *entries[TCACHE_MAX_BINS]; |
| 3136 | } tcache_perthread_struct; |
| 3137 | |
| 3138 | static __thread bool tcache_shutting_down = false; |
| 3139 | static __thread tcache_perthread_struct *tcache = NULL; |
| 3140 | |
| 3141 | /* Process-wide key to try and catch a double-free in the same thread. */ |
| 3142 | static uintptr_t tcache_key; |
| 3143 | |
| 3144 | /* The value of tcache_key does not really have to be a cryptographically |
| 3145 | secure random number. It only needs to be arbitrary enough so that it does |
| 3146 | not collide with values present in applications. If a collision does happen |
| 3147 | consistently enough, it could cause a degradation in performance since the |
| 3148 | entire list is checked to check if the block indeed has been freed the |
| 3149 | second time. The odds of this happening are exceedingly low though, about 1 |
| 3150 | in 2^wordsize. There is probably a higher chance of the performance |
| 3151 | degradation being due to a double free where the first free happened in a |
| 3152 | different thread; that's a case this check does not cover. */ |
| 3153 | static void |
| 3154 | tcache_key_initialize (void) |
| 3155 | { |
| 3156 | if (__getrandom (&tcache_key, sizeof(tcache_key), GRND_NONBLOCK) |
| 3157 | != sizeof (tcache_key)) |
| 3158 | { |
| 3159 | tcache_key = random_bits (); |
| 3160 | #if __WORDSIZE == 64 |
| 3161 | tcache_key = (tcache_key << 32) | random_bits (); |
| 3162 | #endif |
| 3163 | } |
| 3164 | } |
| 3165 | |
| 3166 | /* Caller must ensure that we know tc_idx is valid and there's room |
| 3167 | for more chunks. */ |
| 3168 | static __always_inline void |
| 3169 | tcache_put (mchunkptr chunk, size_t tc_idx) |
| 3170 | { |
| 3171 | tcache_entry *e = (tcache_entry *) chunk2mem (chunk); |
| 3172 | |
| 3173 | /* Mark this chunk as "in the tcache" so the test in _int_free will |
| 3174 | detect a double free. */ |
| 3175 | e->key = tcache_key; |
| 3176 | |
| 3177 | e->next = PROTECT_PTR (&e->next, tcache->entries[tc_idx]); |
| 3178 | tcache->entries[tc_idx] = e; |
| 3179 | ++(tcache->counts[tc_idx]); |
| 3180 | } |
| 3181 | |
| 3182 | /* Caller must ensure that we know tc_idx is valid and there's |
| 3183 | available chunks to remove. */ |
| 3184 | static __always_inline void * |
| 3185 | tcache_get (size_t tc_idx) |
| 3186 | { |
| 3187 | tcache_entry *e = tcache->entries[tc_idx]; |
| 3188 | if (__glibc_unlikely (!aligned_OK (e))) |
| 3189 | malloc_printerr ("malloc(): unaligned tcache chunk detected" ); |
| 3190 | tcache->entries[tc_idx] = REVEAL_PTR (e->next); |
| 3191 | --(tcache->counts[tc_idx]); |
| 3192 | e->key = 0; |
| 3193 | return (void *) e; |
| 3194 | } |
| 3195 | |
| 3196 | static void |
| 3197 | tcache_thread_shutdown (void) |
| 3198 | { |
| 3199 | int i; |
| 3200 | tcache_perthread_struct *tcache_tmp = tcache; |
| 3201 | |
| 3202 | tcache_shutting_down = true; |
| 3203 | |
| 3204 | if (!tcache) |
| 3205 | return; |
| 3206 | |
| 3207 | /* Disable the tcache and prevent it from being reinitialized. */ |
| 3208 | tcache = NULL; |
| 3209 | |
| 3210 | /* Free all of the entries and the tcache itself back to the arena |
| 3211 | heap for coalescing. */ |
| 3212 | for (i = 0; i < TCACHE_MAX_BINS; ++i) |
| 3213 | { |
| 3214 | while (tcache_tmp->entries[i]) |
| 3215 | { |
| 3216 | tcache_entry *e = tcache_tmp->entries[i]; |
| 3217 | if (__glibc_unlikely (!aligned_OK (e))) |
| 3218 | malloc_printerr ("tcache_thread_shutdown(): " |
| 3219 | "unaligned tcache chunk detected" ); |
| 3220 | tcache_tmp->entries[i] = REVEAL_PTR (e->next); |
| 3221 | __libc_free (e); |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | __libc_free (tcache_tmp); |
| 3226 | } |
| 3227 | |
| 3228 | static void |
| 3229 | tcache_init(void) |
| 3230 | { |
| 3231 | mstate ar_ptr; |
| 3232 | void *victim = 0; |
| 3233 | const size_t bytes = sizeof (tcache_perthread_struct); |
| 3234 | |
| 3235 | if (tcache_shutting_down) |
| 3236 | return; |
| 3237 | |
| 3238 | arena_get (ar_ptr, bytes); |
| 3239 | victim = _int_malloc (ar_ptr, bytes); |
| 3240 | if (!victim && ar_ptr != NULL) |
| 3241 | { |
| 3242 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
| 3243 | victim = _int_malloc (ar_ptr, bytes); |
| 3244 | } |
| 3245 | |
| 3246 | |
| 3247 | if (ar_ptr != NULL) |
| 3248 | __libc_lock_unlock (ar_ptr->mutex); |
| 3249 | |
| 3250 | /* In a low memory situation, we may not be able to allocate memory |
| 3251 | - in which case, we just keep trying later. However, we |
| 3252 | typically do this very early, so either there is sufficient |
| 3253 | memory, or there isn't enough memory to do non-trivial |
| 3254 | allocations anyway. */ |
| 3255 | if (victim) |
| 3256 | { |
| 3257 | tcache = (tcache_perthread_struct *) victim; |
| 3258 | memset (tcache, 0, sizeof (tcache_perthread_struct)); |
| 3259 | } |
| 3260 | |
| 3261 | } |
| 3262 | |
| 3263 | # define MAYBE_INIT_TCACHE() \ |
| 3264 | if (__glibc_unlikely (tcache == NULL)) \ |
| 3265 | tcache_init(); |
| 3266 | |
| 3267 | #else /* !USE_TCACHE */ |
| 3268 | # define MAYBE_INIT_TCACHE() |
| 3269 | |
| 3270 | static void |
| 3271 | tcache_thread_shutdown (void) |
| 3272 | { |
| 3273 | /* Nothing to do if there is no thread cache. */ |
| 3274 | } |
| 3275 | |
| 3276 | #endif /* !USE_TCACHE */ |
| 3277 | |
| 3278 | #if IS_IN (libc) |
| 3279 | void * |
| 3280 | __libc_malloc (size_t bytes) |
| 3281 | { |
| 3282 | mstate ar_ptr; |
| 3283 | void *victim; |
| 3284 | |
| 3285 | _Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2, |
| 3286 | "PTRDIFF_MAX is not more than half of SIZE_MAX" ); |
| 3287 | |
| 3288 | if (!__malloc_initialized) |
| 3289 | ptmalloc_init (); |
| 3290 | #if USE_TCACHE |
| 3291 | /* int_free also calls request2size, be careful to not pad twice. */ |
| 3292 | size_t tbytes = checked_request2size (bytes); |
| 3293 | if (tbytes == 0) |
| 3294 | { |
| 3295 | __set_errno (ENOMEM); |
| 3296 | return NULL; |
| 3297 | } |
| 3298 | size_t tc_idx = csize2tidx (tbytes); |
| 3299 | |
| 3300 | MAYBE_INIT_TCACHE (); |
| 3301 | |
| 3302 | DIAG_PUSH_NEEDS_COMMENT; |
| 3303 | if (tc_idx < mp_.tcache_bins |
| 3304 | && tcache |
| 3305 | && tcache->counts[tc_idx] > 0) |
| 3306 | { |
| 3307 | victim = tcache_get (tc_idx); |
| 3308 | return tag_new_usable (victim); |
| 3309 | } |
| 3310 | DIAG_POP_NEEDS_COMMENT; |
| 3311 | #endif |
| 3312 | |
| 3313 | if (SINGLE_THREAD_P) |
| 3314 | { |
| 3315 | victim = tag_new_usable (_int_malloc (&main_arena, bytes)); |
| 3316 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
| 3317 | &main_arena == arena_for_chunk (mem2chunk (victim))); |
| 3318 | return victim; |
| 3319 | } |
| 3320 | |
| 3321 | arena_get (ar_ptr, bytes); |
| 3322 | |
| 3323 | victim = _int_malloc (ar_ptr, bytes); |
| 3324 | /* Retry with another arena only if we were able to find a usable arena |
| 3325 | before. */ |
| 3326 | if (!victim && ar_ptr != NULL) |
| 3327 | { |
| 3328 | LIBC_PROBE (memory_malloc_retry, 1, bytes); |
| 3329 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
| 3330 | victim = _int_malloc (ar_ptr, bytes); |
| 3331 | } |
| 3332 | |
| 3333 | if (ar_ptr != NULL) |
| 3334 | __libc_lock_unlock (ar_ptr->mutex); |
| 3335 | |
| 3336 | victim = tag_new_usable (victim); |
| 3337 | |
| 3338 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
| 3339 | ar_ptr == arena_for_chunk (mem2chunk (victim))); |
| 3340 | return victim; |
| 3341 | } |
| 3342 | libc_hidden_def (__libc_malloc) |
| 3343 | |
| 3344 | void |
| 3345 | __libc_free (void *mem) |
| 3346 | { |
| 3347 | mstate ar_ptr; |
| 3348 | mchunkptr p; /* chunk corresponding to mem */ |
| 3349 | |
| 3350 | if (mem == 0) /* free(0) has no effect */ |
| 3351 | return; |
| 3352 | |
| 3353 | /* Quickly check that the freed pointer matches the tag for the memory. |
| 3354 | This gives a useful double-free detection. */ |
| 3355 | if (__glibc_unlikely (mtag_enabled)) |
| 3356 | *(volatile char *)mem; |
| 3357 | |
| 3358 | int err = errno; |
| 3359 | |
| 3360 | p = mem2chunk (mem); |
| 3361 | |
| 3362 | if (chunk_is_mmapped (p)) /* release mmapped memory. */ |
| 3363 | { |
| 3364 | /* See if the dynamic brk/mmap threshold needs adjusting. |
| 3365 | Dumped fake mmapped chunks do not affect the threshold. */ |
| 3366 | if (!mp_.no_dyn_threshold |
| 3367 | && chunksize_nomask (p) > mp_.mmap_threshold |
| 3368 | && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX) |
| 3369 | { |
| 3370 | mp_.mmap_threshold = chunksize (p); |
| 3371 | mp_.trim_threshold = 2 * mp_.mmap_threshold; |
| 3372 | LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2, |
| 3373 | mp_.mmap_threshold, mp_.trim_threshold); |
| 3374 | } |
| 3375 | munmap_chunk (p); |
| 3376 | } |
| 3377 | else |
| 3378 | { |
| 3379 | MAYBE_INIT_TCACHE (); |
| 3380 | |
| 3381 | /* Mark the chunk as belonging to the library again. */ |
| 3382 | (void)tag_region (chunk2mem (p), memsize (p)); |
| 3383 | |
| 3384 | ar_ptr = arena_for_chunk (p); |
| 3385 | _int_free (ar_ptr, p, 0); |
| 3386 | } |
| 3387 | |
| 3388 | __set_errno (err); |
| 3389 | } |
| 3390 | libc_hidden_def (__libc_free) |
| 3391 | |
| 3392 | void * |
| 3393 | __libc_realloc (void *oldmem, size_t bytes) |
| 3394 | { |
| 3395 | mstate ar_ptr; |
| 3396 | INTERNAL_SIZE_T nb; /* padded request size */ |
| 3397 | |
| 3398 | void *newp; /* chunk to return */ |
| 3399 | |
| 3400 | if (!__malloc_initialized) |
| 3401 | ptmalloc_init (); |
| 3402 | |
| 3403 | #if REALLOC_ZERO_BYTES_FREES |
| 3404 | if (bytes == 0 && oldmem != NULL) |
| 3405 | { |
| 3406 | __libc_free (oldmem); return 0; |
| 3407 | } |
| 3408 | #endif |
| 3409 | |
| 3410 | /* realloc of null is supposed to be same as malloc */ |
| 3411 | if (oldmem == 0) |
| 3412 | return __libc_malloc (bytes); |
| 3413 | |
| 3414 | /* Perform a quick check to ensure that the pointer's tag matches the |
| 3415 | memory's tag. */ |
| 3416 | if (__glibc_unlikely (mtag_enabled)) |
| 3417 | *(volatile char*) oldmem; |
| 3418 | |
| 3419 | /* chunk corresponding to oldmem */ |
| 3420 | const mchunkptr oldp = mem2chunk (oldmem); |
| 3421 | /* its size */ |
| 3422 | const INTERNAL_SIZE_T oldsize = chunksize (oldp); |
| 3423 | |
| 3424 | if (chunk_is_mmapped (oldp)) |
| 3425 | ar_ptr = NULL; |
| 3426 | else |
| 3427 | { |
| 3428 | MAYBE_INIT_TCACHE (); |
| 3429 | ar_ptr = arena_for_chunk (oldp); |
| 3430 | } |
| 3431 | |
| 3432 | /* Little security check which won't hurt performance: the allocator |
| 3433 | never wrapps around at the end of the address space. Therefore |
| 3434 | we can exclude some size values which might appear here by |
| 3435 | accident or by "design" from some intruder. */ |
| 3436 | if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0) |
| 3437 | || __builtin_expect (misaligned_chunk (oldp), 0))) |
| 3438 | malloc_printerr ("realloc(): invalid pointer" ); |
| 3439 | |
| 3440 | nb = checked_request2size (bytes); |
| 3441 | if (nb == 0) |
| 3442 | { |
| 3443 | __set_errno (ENOMEM); |
| 3444 | return NULL; |
| 3445 | } |
| 3446 | |
| 3447 | if (chunk_is_mmapped (oldp)) |
| 3448 | { |
| 3449 | void *newmem; |
| 3450 | |
| 3451 | #if HAVE_MREMAP |
| 3452 | newp = mremap_chunk (oldp, nb); |
| 3453 | if (newp) |
| 3454 | { |
| 3455 | void *newmem = chunk2mem_tag (newp); |
| 3456 | /* Give the new block a different tag. This helps to ensure |
| 3457 | that stale handles to the previous mapping are not |
| 3458 | reused. There's a performance hit for both us and the |
| 3459 | caller for doing this, so we might want to |
| 3460 | reconsider. */ |
| 3461 | return tag_new_usable (newmem); |
| 3462 | } |
| 3463 | #endif |
| 3464 | /* Note the extra SIZE_SZ overhead. */ |
| 3465 | if (oldsize - SIZE_SZ >= nb) |
| 3466 | return oldmem; /* do nothing */ |
| 3467 | |
| 3468 | /* Must alloc, copy, free. */ |
| 3469 | newmem = __libc_malloc (bytes); |
| 3470 | if (newmem == 0) |
| 3471 | return 0; /* propagate failure */ |
| 3472 | |
| 3473 | memcpy (newmem, oldmem, oldsize - CHUNK_HDR_SZ); |
| 3474 | munmap_chunk (oldp); |
| 3475 | return newmem; |
| 3476 | } |
| 3477 | |
| 3478 | if (SINGLE_THREAD_P) |
| 3479 | { |
| 3480 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
| 3481 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
| 3482 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
| 3483 | |
| 3484 | return newp; |
| 3485 | } |
| 3486 | |
| 3487 | __libc_lock_lock (ar_ptr->mutex); |
| 3488 | |
| 3489 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
| 3490 | |
| 3491 | __libc_lock_unlock (ar_ptr->mutex); |
| 3492 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
| 3493 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
| 3494 | |
| 3495 | if (newp == NULL) |
| 3496 | { |
| 3497 | /* Try harder to allocate memory in other arenas. */ |
| 3498 | LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem); |
| 3499 | newp = __libc_malloc (bytes); |
| 3500 | if (newp != NULL) |
| 3501 | { |
| 3502 | size_t sz = memsize (oldp); |
| 3503 | memcpy (newp, oldmem, sz); |
| 3504 | (void) tag_region (chunk2mem (oldp), sz); |
| 3505 | _int_free (ar_ptr, oldp, 0); |
| 3506 | } |
| 3507 | } |
| 3508 | |
| 3509 | return newp; |
| 3510 | } |
| 3511 | libc_hidden_def (__libc_realloc) |
| 3512 | |
| 3513 | void * |
| 3514 | __libc_memalign (size_t alignment, size_t bytes) |
| 3515 | { |
| 3516 | if (!__malloc_initialized) |
| 3517 | ptmalloc_init (); |
| 3518 | |
| 3519 | void *address = RETURN_ADDRESS (0); |
| 3520 | return _mid_memalign (alignment, bytes, address); |
| 3521 | } |
| 3522 | |
| 3523 | static void * |
| 3524 | _mid_memalign (size_t alignment, size_t bytes, void *address) |
| 3525 | { |
| 3526 | mstate ar_ptr; |
| 3527 | void *p; |
| 3528 | |
| 3529 | /* If we need less alignment than we give anyway, just relay to malloc. */ |
| 3530 | if (alignment <= MALLOC_ALIGNMENT) |
| 3531 | return __libc_malloc (bytes); |
| 3532 | |
| 3533 | /* Otherwise, ensure that it is at least a minimum chunk size */ |
| 3534 | if (alignment < MINSIZE) |
| 3535 | alignment = MINSIZE; |
| 3536 | |
| 3537 | /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a |
| 3538 | power of 2 and will cause overflow in the check below. */ |
| 3539 | if (alignment > SIZE_MAX / 2 + 1) |
| 3540 | { |
| 3541 | __set_errno (EINVAL); |
| 3542 | return 0; |
| 3543 | } |
| 3544 | |
| 3545 | |
| 3546 | /* Make sure alignment is power of 2. */ |
| 3547 | if (!powerof2 (alignment)) |
| 3548 | { |
| 3549 | size_t a = MALLOC_ALIGNMENT * 2; |
| 3550 | while (a < alignment) |
| 3551 | a <<= 1; |
| 3552 | alignment = a; |
| 3553 | } |
| 3554 | |
| 3555 | if (SINGLE_THREAD_P) |
| 3556 | { |
| 3557 | p = _int_memalign (&main_arena, alignment, bytes); |
| 3558 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
| 3559 | &main_arena == arena_for_chunk (mem2chunk (p))); |
| 3560 | return tag_new_usable (p); |
| 3561 | } |
| 3562 | |
| 3563 | arena_get (ar_ptr, bytes + alignment + MINSIZE); |
| 3564 | |
| 3565 | p = _int_memalign (ar_ptr, alignment, bytes); |
| 3566 | if (!p && ar_ptr != NULL) |
| 3567 | { |
| 3568 | LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment); |
| 3569 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
| 3570 | p = _int_memalign (ar_ptr, alignment, bytes); |
| 3571 | } |
| 3572 | |
| 3573 | if (ar_ptr != NULL) |
| 3574 | __libc_lock_unlock (ar_ptr->mutex); |
| 3575 | |
| 3576 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
| 3577 | ar_ptr == arena_for_chunk (mem2chunk (p))); |
| 3578 | return tag_new_usable (p); |
| 3579 | } |
| 3580 | /* For ISO C11. */ |
| 3581 | weak_alias (__libc_memalign, aligned_alloc) |
| 3582 | libc_hidden_def (__libc_memalign) |
| 3583 | |
| 3584 | void * |
| 3585 | __libc_valloc (size_t bytes) |
| 3586 | { |
| 3587 | if (!__malloc_initialized) |
| 3588 | ptmalloc_init (); |
| 3589 | |
| 3590 | void *address = RETURN_ADDRESS (0); |
| 3591 | size_t pagesize = GLRO (dl_pagesize); |
| 3592 | return _mid_memalign (pagesize, bytes, address); |
| 3593 | } |
| 3594 | |
| 3595 | void * |
| 3596 | __libc_pvalloc (size_t bytes) |
| 3597 | { |
| 3598 | if (!__malloc_initialized) |
| 3599 | ptmalloc_init (); |
| 3600 | |
| 3601 | void *address = RETURN_ADDRESS (0); |
| 3602 | size_t pagesize = GLRO (dl_pagesize); |
| 3603 | size_t rounded_bytes; |
| 3604 | /* ALIGN_UP with overflow check. */ |
| 3605 | if (__glibc_unlikely (__builtin_add_overflow (bytes, |
| 3606 | pagesize - 1, |
| 3607 | &rounded_bytes))) |
| 3608 | { |
| 3609 | __set_errno (ENOMEM); |
| 3610 | return 0; |
| 3611 | } |
| 3612 | rounded_bytes = rounded_bytes & -(pagesize - 1); |
| 3613 | |
| 3614 | return _mid_memalign (pagesize, rounded_bytes, address); |
| 3615 | } |
| 3616 | |
| 3617 | void * |
| 3618 | __libc_calloc (size_t n, size_t elem_size) |
| 3619 | { |
| 3620 | mstate av; |
| 3621 | mchunkptr oldtop; |
| 3622 | INTERNAL_SIZE_T sz, oldtopsize; |
| 3623 | void *mem; |
| 3624 | unsigned long clearsize; |
| 3625 | unsigned long nclears; |
| 3626 | INTERNAL_SIZE_T *d; |
| 3627 | ptrdiff_t bytes; |
| 3628 | |
| 3629 | if (__glibc_unlikely (__builtin_mul_overflow (n, elem_size, &bytes))) |
| 3630 | { |
| 3631 | __set_errno (ENOMEM); |
| 3632 | return NULL; |
| 3633 | } |
| 3634 | |
| 3635 | sz = bytes; |
| 3636 | |
| 3637 | if (!__malloc_initialized) |
| 3638 | ptmalloc_init (); |
| 3639 | |
| 3640 | MAYBE_INIT_TCACHE (); |
| 3641 | |
| 3642 | if (SINGLE_THREAD_P) |
| 3643 | av = &main_arena; |
| 3644 | else |
| 3645 | arena_get (av, sz); |
| 3646 | |
| 3647 | if (av) |
| 3648 | { |
| 3649 | /* Check if we hand out the top chunk, in which case there may be no |
| 3650 | need to clear. */ |
| 3651 | #if MORECORE_CLEARS |
| 3652 | oldtop = top (av); |
| 3653 | oldtopsize = chunksize (top (av)); |
| 3654 | # if MORECORE_CLEARS < 2 |
| 3655 | /* Only newly allocated memory is guaranteed to be cleared. */ |
| 3656 | if (av == &main_arena && |
| 3657 | oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop) |
| 3658 | oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop); |
| 3659 | # endif |
| 3660 | if (av != &main_arena) |
| 3661 | { |
| 3662 | heap_info *heap = heap_for_ptr (oldtop); |
| 3663 | if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop) |
| 3664 | oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop; |
| 3665 | } |
| 3666 | #endif |
| 3667 | } |
| 3668 | else |
| 3669 | { |
| 3670 | /* No usable arenas. */ |
| 3671 | oldtop = 0; |
| 3672 | oldtopsize = 0; |
| 3673 | } |
| 3674 | mem = _int_malloc (av, sz); |
| 3675 | |
| 3676 | assert (!mem || chunk_is_mmapped (mem2chunk (mem)) || |
| 3677 | av == arena_for_chunk (mem2chunk (mem))); |
| 3678 | |
| 3679 | if (!SINGLE_THREAD_P) |
| 3680 | { |
| 3681 | if (mem == 0 && av != NULL) |
| 3682 | { |
| 3683 | LIBC_PROBE (memory_calloc_retry, 1, sz); |
| 3684 | av = arena_get_retry (av, sz); |
| 3685 | mem = _int_malloc (av, sz); |
| 3686 | } |
| 3687 | |
| 3688 | if (av != NULL) |
| 3689 | __libc_lock_unlock (av->mutex); |
| 3690 | } |
| 3691 | |
| 3692 | /* Allocation failed even after a retry. */ |
| 3693 | if (mem == 0) |
| 3694 | return 0; |
| 3695 | |
| 3696 | mchunkptr p = mem2chunk (mem); |
| 3697 | |
| 3698 | /* If we are using memory tagging, then we need to set the tags |
| 3699 | regardless of MORECORE_CLEARS, so we zero the whole block while |
| 3700 | doing so. */ |
| 3701 | if (__glibc_unlikely (mtag_enabled)) |
| 3702 | return tag_new_zero_region (mem, memsize (p)); |
| 3703 | |
| 3704 | INTERNAL_SIZE_T csz = chunksize (p); |
| 3705 | |
| 3706 | /* Two optional cases in which clearing not necessary */ |
| 3707 | if (chunk_is_mmapped (p)) |
| 3708 | { |
| 3709 | if (__builtin_expect (perturb_byte, 0)) |
| 3710 | return memset (mem, 0, sz); |
| 3711 | |
| 3712 | return mem; |
| 3713 | } |
| 3714 | |
| 3715 | #if MORECORE_CLEARS |
| 3716 | if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) |
| 3717 | { |
| 3718 | /* clear only the bytes from non-freshly-sbrked memory */ |
| 3719 | csz = oldtopsize; |
| 3720 | } |
| 3721 | #endif |
| 3722 | |
| 3723 | /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that |
| 3724 | contents have an odd number of INTERNAL_SIZE_T-sized words; |
| 3725 | minimally 3. */ |
| 3726 | d = (INTERNAL_SIZE_T *) mem; |
| 3727 | clearsize = csz - SIZE_SZ; |
| 3728 | nclears = clearsize / sizeof (INTERNAL_SIZE_T); |
| 3729 | assert (nclears >= 3); |
| 3730 | |
| 3731 | if (nclears > 9) |
| 3732 | return memset (d, 0, clearsize); |
| 3733 | |
| 3734 | else |
| 3735 | { |
| 3736 | *(d + 0) = 0; |
| 3737 | *(d + 1) = 0; |
| 3738 | *(d + 2) = 0; |
| 3739 | if (nclears > 4) |
| 3740 | { |
| 3741 | *(d + 3) = 0; |
| 3742 | *(d + 4) = 0; |
| 3743 | if (nclears > 6) |
| 3744 | { |
| 3745 | *(d + 5) = 0; |
| 3746 | *(d + 6) = 0; |
| 3747 | if (nclears > 8) |
| 3748 | { |
| 3749 | *(d + 7) = 0; |
| 3750 | *(d + 8) = 0; |
| 3751 | } |
| 3752 | } |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | return mem; |
| 3757 | } |
| 3758 | #endif /* IS_IN (libc) */ |
| 3759 | |
| 3760 | /* |
| 3761 | ------------------------------ malloc ------------------------------ |
| 3762 | */ |
| 3763 | |
| 3764 | static void * |
| 3765 | _int_malloc (mstate av, size_t bytes) |
| 3766 | { |
| 3767 | INTERNAL_SIZE_T nb; /* normalized request size */ |
| 3768 | unsigned int idx; /* associated bin index */ |
| 3769 | mbinptr bin; /* associated bin */ |
| 3770 | |
| 3771 | mchunkptr victim; /* inspected/selected chunk */ |
| 3772 | INTERNAL_SIZE_T size; /* its size */ |
| 3773 | int victim_index; /* its bin index */ |
| 3774 | |
| 3775 | mchunkptr remainder; /* remainder from a split */ |
| 3776 | unsigned long remainder_size; /* its size */ |
| 3777 | |
| 3778 | unsigned int block; /* bit map traverser */ |
| 3779 | unsigned int bit; /* bit map traverser */ |
| 3780 | unsigned int map; /* current word of binmap */ |
| 3781 | |
| 3782 | mchunkptr fwd; /* misc temp for linking */ |
| 3783 | mchunkptr bck; /* misc temp for linking */ |
| 3784 | |
| 3785 | #if USE_TCACHE |
| 3786 | size_t tcache_unsorted_count; /* count of unsorted chunks processed */ |
| 3787 | #endif |
| 3788 | |
| 3789 | /* |
| 3790 | Convert request size to internal form by adding SIZE_SZ bytes |
| 3791 | overhead plus possibly more to obtain necessary alignment and/or |
| 3792 | to obtain a size of at least MINSIZE, the smallest allocatable |
| 3793 | size. Also, checked_request2size returns false for request sizes |
| 3794 | that are so large that they wrap around zero when padded and |
| 3795 | aligned. |
| 3796 | */ |
| 3797 | |
| 3798 | nb = checked_request2size (bytes); |
| 3799 | if (nb == 0) |
| 3800 | { |
| 3801 | __set_errno (ENOMEM); |
| 3802 | return NULL; |
| 3803 | } |
| 3804 | |
| 3805 | /* There are no usable arenas. Fall back to sysmalloc to get a chunk from |
| 3806 | mmap. */ |
| 3807 | if (__glibc_unlikely (av == NULL)) |
| 3808 | { |
| 3809 | void *p = sysmalloc (nb, av); |
| 3810 | if (p != NULL) |
| 3811 | alloc_perturb (p, bytes); |
| 3812 | return p; |
| 3813 | } |
| 3814 | |
| 3815 | /* |
| 3816 | If the size qualifies as a fastbin, first check corresponding bin. |
| 3817 | This code is safe to execute even if av is not yet initialized, so we |
| 3818 | can try it without checking, which saves some time on this fast path. |
| 3819 | */ |
| 3820 | |
| 3821 | #define REMOVE_FB(fb, victim, pp) \ |
| 3822 | do \ |
| 3823 | { \ |
| 3824 | victim = pp; \ |
| 3825 | if (victim == NULL) \ |
| 3826 | break; \ |
| 3827 | pp = REVEAL_PTR (victim->fd); \ |
| 3828 | if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \ |
| 3829 | malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \ |
| 3830 | } \ |
| 3831 | while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \ |
| 3832 | != victim); \ |
| 3833 | |
| 3834 | if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ())) |
| 3835 | { |
| 3836 | idx = fastbin_index (nb); |
| 3837 | mfastbinptr *fb = &fastbin (av, idx); |
| 3838 | mchunkptr pp; |
| 3839 | victim = *fb; |
| 3840 | |
| 3841 | if (victim != NULL) |
| 3842 | { |
| 3843 | if (__glibc_unlikely (misaligned_chunk (victim))) |
| 3844 | malloc_printerr ("malloc(): unaligned fastbin chunk detected 2" ); |
| 3845 | |
| 3846 | if (SINGLE_THREAD_P) |
| 3847 | *fb = REVEAL_PTR (victim->fd); |
| 3848 | else |
| 3849 | REMOVE_FB (fb, pp, victim); |
| 3850 | if (__glibc_likely (victim != NULL)) |
| 3851 | { |
| 3852 | size_t victim_idx = fastbin_index (chunksize (victim)); |
| 3853 | if (__builtin_expect (victim_idx != idx, 0)) |
| 3854 | malloc_printerr ("malloc(): memory corruption (fast)" ); |
| 3855 | check_remalloced_chunk (av, victim, nb); |
| 3856 | #if USE_TCACHE |
| 3857 | /* While we're here, if we see other chunks of the same size, |
| 3858 | stash them in the tcache. */ |
| 3859 | size_t tc_idx = csize2tidx (nb); |
| 3860 | if (tcache && tc_idx < mp_.tcache_bins) |
| 3861 | { |
| 3862 | mchunkptr tc_victim; |
| 3863 | |
| 3864 | /* While bin not empty and tcache not full, copy chunks. */ |
| 3865 | while (tcache->counts[tc_idx] < mp_.tcache_count |
| 3866 | && (tc_victim = *fb) != NULL) |
| 3867 | { |
| 3868 | if (__glibc_unlikely (misaligned_chunk (tc_victim))) |
| 3869 | malloc_printerr ("malloc(): unaligned fastbin chunk detected 3" ); |
| 3870 | if (SINGLE_THREAD_P) |
| 3871 | *fb = REVEAL_PTR (tc_victim->fd); |
| 3872 | else |
| 3873 | { |
| 3874 | REMOVE_FB (fb, pp, tc_victim); |
| 3875 | if (__glibc_unlikely (tc_victim == NULL)) |
| 3876 | break; |
| 3877 | } |
| 3878 | tcache_put (tc_victim, tc_idx); |
| 3879 | } |
| 3880 | } |
| 3881 | #endif |
| 3882 | void *p = chunk2mem (victim); |
| 3883 | alloc_perturb (p, bytes); |
| 3884 | return p; |
| 3885 | } |
| 3886 | } |
| 3887 | } |
| 3888 | |
| 3889 | /* |
| 3890 | If a small request, check regular bin. Since these "smallbins" |
| 3891 | hold one size each, no searching within bins is necessary. |
| 3892 | (For a large request, we need to wait until unsorted chunks are |
| 3893 | processed to find best fit. But for small ones, fits are exact |
| 3894 | anyway, so we can check now, which is faster.) |
| 3895 | */ |
| 3896 | |
| 3897 | if (in_smallbin_range (nb)) |
| 3898 | { |
| 3899 | idx = smallbin_index (nb); |
| 3900 | bin = bin_at (av, idx); |
| 3901 | |
| 3902 | if ((victim = last (bin)) != bin) |
| 3903 | { |
| 3904 | bck = victim->bk; |
| 3905 | if (__glibc_unlikely (bck->fd != victim)) |
| 3906 | malloc_printerr ("malloc(): smallbin double linked list corrupted" ); |
| 3907 | set_inuse_bit_at_offset (victim, nb); |
| 3908 | bin->bk = bck; |
| 3909 | bck->fd = bin; |
| 3910 | |
| 3911 | if (av != &main_arena) |
| 3912 | set_non_main_arena (victim); |
| 3913 | check_malloced_chunk (av, victim, nb); |
| 3914 | #if USE_TCACHE |
| 3915 | /* While we're here, if we see other chunks of the same size, |
| 3916 | stash them in the tcache. */ |
| 3917 | size_t tc_idx = csize2tidx (nb); |
| 3918 | if (tcache && tc_idx < mp_.tcache_bins) |
| 3919 | { |
| 3920 | mchunkptr tc_victim; |
| 3921 | |
| 3922 | /* While bin not empty and tcache not full, copy chunks over. */ |
| 3923 | while (tcache->counts[tc_idx] < mp_.tcache_count |
| 3924 | && (tc_victim = last (bin)) != bin) |
| 3925 | { |
| 3926 | if (tc_victim != 0) |
| 3927 | { |
| 3928 | bck = tc_victim->bk; |
| 3929 | set_inuse_bit_at_offset (tc_victim, nb); |
| 3930 | if (av != &main_arena) |
| 3931 | set_non_main_arena (tc_victim); |
| 3932 | bin->bk = bck; |
| 3933 | bck->fd = bin; |
| 3934 | |
| 3935 | tcache_put (tc_victim, tc_idx); |
| 3936 | } |
| 3937 | } |
| 3938 | } |
| 3939 | #endif |
| 3940 | void *p = chunk2mem (victim); |
| 3941 | alloc_perturb (p, bytes); |
| 3942 | return p; |
| 3943 | } |
| 3944 | } |
| 3945 | |
| 3946 | /* |
| 3947 | If this is a large request, consolidate fastbins before continuing. |
| 3948 | While it might look excessive to kill all fastbins before |
| 3949 | even seeing if there is space available, this avoids |
| 3950 | fragmentation problems normally associated with fastbins. |
| 3951 | Also, in practice, programs tend to have runs of either small or |
| 3952 | large requests, but less often mixtures, so consolidation is not |
| 3953 | invoked all that often in most programs. And the programs that |
| 3954 | it is called frequently in otherwise tend to fragment. |
| 3955 | */ |
| 3956 | |
| 3957 | else |
| 3958 | { |
| 3959 | idx = largebin_index (nb); |
| 3960 | if (atomic_load_relaxed (&av->have_fastchunks)) |
| 3961 | malloc_consolidate (av); |
| 3962 | } |
| 3963 | |
| 3964 | /* |
| 3965 | Process recently freed or remaindered chunks, taking one only if |
| 3966 | it is exact fit, or, if this a small request, the chunk is remainder from |
| 3967 | the most recent non-exact fit. Place other traversed chunks in |
| 3968 | bins. Note that this step is the only place in any routine where |
| 3969 | chunks are placed in bins. |
| 3970 | |
| 3971 | The outer loop here is needed because we might not realize until |
| 3972 | near the end of malloc that we should have consolidated, so must |
| 3973 | do so and retry. This happens at most once, and only when we would |
| 3974 | otherwise need to expand memory to service a "small" request. |
| 3975 | */ |
| 3976 | |
| 3977 | #if USE_TCACHE |
| 3978 | INTERNAL_SIZE_T tcache_nb = 0; |
| 3979 | size_t tc_idx = csize2tidx (nb); |
| 3980 | if (tcache && tc_idx < mp_.tcache_bins) |
| 3981 | tcache_nb = nb; |
| 3982 | int return_cached = 0; |
| 3983 | |
| 3984 | tcache_unsorted_count = 0; |
| 3985 | #endif |
| 3986 | |
| 3987 | for (;; ) |
| 3988 | { |
| 3989 | int iters = 0; |
| 3990 | while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av)) |
| 3991 | { |
| 3992 | bck = victim->bk; |
| 3993 | size = chunksize (victim); |
| 3994 | mchunkptr next = chunk_at_offset (victim, size); |
| 3995 | |
| 3996 | if (__glibc_unlikely (size <= CHUNK_HDR_SZ) |
| 3997 | || __glibc_unlikely (size > av->system_mem)) |
| 3998 | malloc_printerr ("malloc(): invalid size (unsorted)" ); |
| 3999 | if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ) |
| 4000 | || __glibc_unlikely (chunksize_nomask (next) > av->system_mem)) |
| 4001 | malloc_printerr ("malloc(): invalid next size (unsorted)" ); |
| 4002 | if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size)) |
| 4003 | malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)" ); |
| 4004 | if (__glibc_unlikely (bck->fd != victim) |
| 4005 | || __glibc_unlikely (victim->fd != unsorted_chunks (av))) |
| 4006 | malloc_printerr ("malloc(): unsorted double linked list corrupted" ); |
| 4007 | if (__glibc_unlikely (prev_inuse (next))) |
| 4008 | malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)" ); |
| 4009 | |
| 4010 | /* |
| 4011 | If a small request, try to use last remainder if it is the |
| 4012 | only chunk in unsorted bin. This helps promote locality for |
| 4013 | runs of consecutive small requests. This is the only |
| 4014 | exception to best-fit, and applies only when there is |
| 4015 | no exact fit for a small chunk. |
| 4016 | */ |
| 4017 | |
| 4018 | if (in_smallbin_range (nb) && |
| 4019 | bck == unsorted_chunks (av) && |
| 4020 | victim == av->last_remainder && |
| 4021 | (unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
| 4022 | { |
| 4023 | /* split and reattach remainder */ |
| 4024 | remainder_size = size - nb; |
| 4025 | remainder = chunk_at_offset (victim, nb); |
| 4026 | unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder; |
| 4027 | av->last_remainder = remainder; |
| 4028 | remainder->bk = remainder->fd = unsorted_chunks (av); |
| 4029 | if (!in_smallbin_range (remainder_size)) |
| 4030 | { |
| 4031 | remainder->fd_nextsize = NULL; |
| 4032 | remainder->bk_nextsize = NULL; |
| 4033 | } |
| 4034 | |
| 4035 | set_head (victim, nb | PREV_INUSE | |
| 4036 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4037 | set_head (remainder, remainder_size | PREV_INUSE); |
| 4038 | set_foot (remainder, remainder_size); |
| 4039 | |
| 4040 | check_malloced_chunk (av, victim, nb); |
| 4041 | void *p = chunk2mem (victim); |
| 4042 | alloc_perturb (p, bytes); |
| 4043 | return p; |
| 4044 | } |
| 4045 | |
| 4046 | /* remove from unsorted list */ |
| 4047 | if (__glibc_unlikely (bck->fd != victim)) |
| 4048 | malloc_printerr ("malloc(): corrupted unsorted chunks 3" ); |
| 4049 | unsorted_chunks (av)->bk = bck; |
| 4050 | bck->fd = unsorted_chunks (av); |
| 4051 | |
| 4052 | /* Take now instead of binning if exact fit */ |
| 4053 | |
| 4054 | if (size == nb) |
| 4055 | { |
| 4056 | set_inuse_bit_at_offset (victim, size); |
| 4057 | if (av != &main_arena) |
| 4058 | set_non_main_arena (victim); |
| 4059 | #if USE_TCACHE |
| 4060 | /* Fill cache first, return to user only if cache fills. |
| 4061 | We may return one of these chunks later. */ |
| 4062 | if (tcache_nb |
| 4063 | && tcache->counts[tc_idx] < mp_.tcache_count) |
| 4064 | { |
| 4065 | tcache_put (victim, tc_idx); |
| 4066 | return_cached = 1; |
| 4067 | continue; |
| 4068 | } |
| 4069 | else |
| 4070 | { |
| 4071 | #endif |
| 4072 | check_malloced_chunk (av, victim, nb); |
| 4073 | void *p = chunk2mem (victim); |
| 4074 | alloc_perturb (p, bytes); |
| 4075 | return p; |
| 4076 | #if USE_TCACHE |
| 4077 | } |
| 4078 | #endif |
| 4079 | } |
| 4080 | |
| 4081 | /* place chunk in bin */ |
| 4082 | |
| 4083 | if (in_smallbin_range (size)) |
| 4084 | { |
| 4085 | victim_index = smallbin_index (size); |
| 4086 | bck = bin_at (av, victim_index); |
| 4087 | fwd = bck->fd; |
| 4088 | } |
| 4089 | else |
| 4090 | { |
| 4091 | victim_index = largebin_index (size); |
| 4092 | bck = bin_at (av, victim_index); |
| 4093 | fwd = bck->fd; |
| 4094 | |
| 4095 | /* maintain large bins in sorted order */ |
| 4096 | if (fwd != bck) |
| 4097 | { |
| 4098 | /* Or with inuse bit to speed comparisons */ |
| 4099 | size |= PREV_INUSE; |
| 4100 | /* if smaller than smallest, bypass loop below */ |
| 4101 | assert (chunk_main_arena (bck->bk)); |
| 4102 | if ((unsigned long) (size) |
| 4103 | < (unsigned long) chunksize_nomask (bck->bk)) |
| 4104 | { |
| 4105 | fwd = bck; |
| 4106 | bck = bck->bk; |
| 4107 | |
| 4108 | victim->fd_nextsize = fwd->fd; |
| 4109 | victim->bk_nextsize = fwd->fd->bk_nextsize; |
| 4110 | fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; |
| 4111 | } |
| 4112 | else |
| 4113 | { |
| 4114 | assert (chunk_main_arena (fwd)); |
| 4115 | while ((unsigned long) size < chunksize_nomask (fwd)) |
| 4116 | { |
| 4117 | fwd = fwd->fd_nextsize; |
| 4118 | assert (chunk_main_arena (fwd)); |
| 4119 | } |
| 4120 | |
| 4121 | if ((unsigned long) size |
| 4122 | == (unsigned long) chunksize_nomask (fwd)) |
| 4123 | /* Always insert in the second position. */ |
| 4124 | fwd = fwd->fd; |
| 4125 | else |
| 4126 | { |
| 4127 | victim->fd_nextsize = fwd; |
| 4128 | victim->bk_nextsize = fwd->bk_nextsize; |
| 4129 | if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd)) |
| 4130 | malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)" ); |
| 4131 | fwd->bk_nextsize = victim; |
| 4132 | victim->bk_nextsize->fd_nextsize = victim; |
| 4133 | } |
| 4134 | bck = fwd->bk; |
| 4135 | if (bck->fd != fwd) |
| 4136 | malloc_printerr ("malloc(): largebin double linked list corrupted (bk)" ); |
| 4137 | } |
| 4138 | } |
| 4139 | else |
| 4140 | victim->fd_nextsize = victim->bk_nextsize = victim; |
| 4141 | } |
| 4142 | |
| 4143 | mark_bin (av, victim_index); |
| 4144 | victim->bk = bck; |
| 4145 | victim->fd = fwd; |
| 4146 | fwd->bk = victim; |
| 4147 | bck->fd = victim; |
| 4148 | |
| 4149 | #if USE_TCACHE |
| 4150 | /* If we've processed as many chunks as we're allowed while |
| 4151 | filling the cache, return one of the cached ones. */ |
| 4152 | ++tcache_unsorted_count; |
| 4153 | if (return_cached |
| 4154 | && mp_.tcache_unsorted_limit > 0 |
| 4155 | && tcache_unsorted_count > mp_.tcache_unsorted_limit) |
| 4156 | { |
| 4157 | return tcache_get (tc_idx); |
| 4158 | } |
| 4159 | #endif |
| 4160 | |
| 4161 | #define MAX_ITERS 10000 |
| 4162 | if (++iters >= MAX_ITERS) |
| 4163 | break; |
| 4164 | } |
| 4165 | |
| 4166 | #if USE_TCACHE |
| 4167 | /* If all the small chunks we found ended up cached, return one now. */ |
| 4168 | if (return_cached) |
| 4169 | { |
| 4170 | return tcache_get (tc_idx); |
| 4171 | } |
| 4172 | #endif |
| 4173 | |
| 4174 | /* |
| 4175 | If a large request, scan through the chunks of current bin in |
| 4176 | sorted order to find smallest that fits. Use the skip list for this. |
| 4177 | */ |
| 4178 | |
| 4179 | if (!in_smallbin_range (nb)) |
| 4180 | { |
| 4181 | bin = bin_at (av, idx); |
| 4182 | |
| 4183 | /* skip scan if empty or largest chunk is too small */ |
| 4184 | if ((victim = first (bin)) != bin |
| 4185 | && (unsigned long) chunksize_nomask (victim) |
| 4186 | >= (unsigned long) (nb)) |
| 4187 | { |
| 4188 | victim = victim->bk_nextsize; |
| 4189 | while (((unsigned long) (size = chunksize (victim)) < |
| 4190 | (unsigned long) (nb))) |
| 4191 | victim = victim->bk_nextsize; |
| 4192 | |
| 4193 | /* Avoid removing the first entry for a size so that the skip |
| 4194 | list does not have to be rerouted. */ |
| 4195 | if (victim != last (bin) |
| 4196 | && chunksize_nomask (victim) |
| 4197 | == chunksize_nomask (victim->fd)) |
| 4198 | victim = victim->fd; |
| 4199 | |
| 4200 | remainder_size = size - nb; |
| 4201 | unlink_chunk (av, victim); |
| 4202 | |
| 4203 | /* Exhaust */ |
| 4204 | if (remainder_size < MINSIZE) |
| 4205 | { |
| 4206 | set_inuse_bit_at_offset (victim, size); |
| 4207 | if (av != &main_arena) |
| 4208 | set_non_main_arena (victim); |
| 4209 | } |
| 4210 | /* Split */ |
| 4211 | else |
| 4212 | { |
| 4213 | remainder = chunk_at_offset (victim, nb); |
| 4214 | /* We cannot assume the unsorted list is empty and therefore |
| 4215 | have to perform a complete insert here. */ |
| 4216 | bck = unsorted_chunks (av); |
| 4217 | fwd = bck->fd; |
| 4218 | if (__glibc_unlikely (fwd->bk != bck)) |
| 4219 | malloc_printerr ("malloc(): corrupted unsorted chunks" ); |
| 4220 | remainder->bk = bck; |
| 4221 | remainder->fd = fwd; |
| 4222 | bck->fd = remainder; |
| 4223 | fwd->bk = remainder; |
| 4224 | if (!in_smallbin_range (remainder_size)) |
| 4225 | { |
| 4226 | remainder->fd_nextsize = NULL; |
| 4227 | remainder->bk_nextsize = NULL; |
| 4228 | } |
| 4229 | set_head (victim, nb | PREV_INUSE | |
| 4230 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4231 | set_head (remainder, remainder_size | PREV_INUSE); |
| 4232 | set_foot (remainder, remainder_size); |
| 4233 | } |
| 4234 | check_malloced_chunk (av, victim, nb); |
| 4235 | void *p = chunk2mem (victim); |
| 4236 | alloc_perturb (p, bytes); |
| 4237 | return p; |
| 4238 | } |
| 4239 | } |
| 4240 | |
| 4241 | /* |
| 4242 | Search for a chunk by scanning bins, starting with next largest |
| 4243 | bin. This search is strictly by best-fit; i.e., the smallest |
| 4244 | (with ties going to approximately the least recently used) chunk |
| 4245 | that fits is selected. |
| 4246 | |
| 4247 | The bitmap avoids needing to check that most blocks are nonempty. |
| 4248 | The particular case of skipping all bins during warm-up phases |
| 4249 | when no chunks have been returned yet is faster than it might look. |
| 4250 | */ |
| 4251 | |
| 4252 | ++idx; |
| 4253 | bin = bin_at (av, idx); |
| 4254 | block = idx2block (idx); |
| 4255 | map = av->binmap[block]; |
| 4256 | bit = idx2bit (idx); |
| 4257 | |
| 4258 | for (;; ) |
| 4259 | { |
| 4260 | /* Skip rest of block if there are no more set bits in this block. */ |
| 4261 | if (bit > map || bit == 0) |
| 4262 | { |
| 4263 | do |
| 4264 | { |
| 4265 | if (++block >= BINMAPSIZE) /* out of bins */ |
| 4266 | goto use_top; |
| 4267 | } |
| 4268 | while ((map = av->binmap[block]) == 0); |
| 4269 | |
| 4270 | bin = bin_at (av, (block << BINMAPSHIFT)); |
| 4271 | bit = 1; |
| 4272 | } |
| 4273 | |
| 4274 | /* Advance to bin with set bit. There must be one. */ |
| 4275 | while ((bit & map) == 0) |
| 4276 | { |
| 4277 | bin = next_bin (bin); |
| 4278 | bit <<= 1; |
| 4279 | assert (bit != 0); |
| 4280 | } |
| 4281 | |
| 4282 | /* Inspect the bin. It is likely to be non-empty */ |
| 4283 | victim = last (bin); |
| 4284 | |
| 4285 | /* If a false alarm (empty bin), clear the bit. */ |
| 4286 | if (victim == bin) |
| 4287 | { |
| 4288 | av->binmap[block] = map &= ~bit; /* Write through */ |
| 4289 | bin = next_bin (bin); |
| 4290 | bit <<= 1; |
| 4291 | } |
| 4292 | |
| 4293 | else |
| 4294 | { |
| 4295 | size = chunksize (victim); |
| 4296 | |
| 4297 | /* We know the first chunk in this bin is big enough to use. */ |
| 4298 | assert ((unsigned long) (size) >= (unsigned long) (nb)); |
| 4299 | |
| 4300 | remainder_size = size - nb; |
| 4301 | |
| 4302 | /* unlink */ |
| 4303 | unlink_chunk (av, victim); |
| 4304 | |
| 4305 | /* Exhaust */ |
| 4306 | if (remainder_size < MINSIZE) |
| 4307 | { |
| 4308 | set_inuse_bit_at_offset (victim, size); |
| 4309 | if (av != &main_arena) |
| 4310 | set_non_main_arena (victim); |
| 4311 | } |
| 4312 | |
| 4313 | /* Split */ |
| 4314 | else |
| 4315 | { |
| 4316 | remainder = chunk_at_offset (victim, nb); |
| 4317 | |
| 4318 | /* We cannot assume the unsorted list is empty and therefore |
| 4319 | have to perform a complete insert here. */ |
| 4320 | bck = unsorted_chunks (av); |
| 4321 | fwd = bck->fd; |
| 4322 | if (__glibc_unlikely (fwd->bk != bck)) |
| 4323 | malloc_printerr ("malloc(): corrupted unsorted chunks 2" ); |
| 4324 | remainder->bk = bck; |
| 4325 | remainder->fd = fwd; |
| 4326 | bck->fd = remainder; |
| 4327 | fwd->bk = remainder; |
| 4328 | |
| 4329 | /* advertise as last remainder */ |
| 4330 | if (in_smallbin_range (nb)) |
| 4331 | av->last_remainder = remainder; |
| 4332 | if (!in_smallbin_range (remainder_size)) |
| 4333 | { |
| 4334 | remainder->fd_nextsize = NULL; |
| 4335 | remainder->bk_nextsize = NULL; |
| 4336 | } |
| 4337 | set_head (victim, nb | PREV_INUSE | |
| 4338 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4339 | set_head (remainder, remainder_size | PREV_INUSE); |
| 4340 | set_foot (remainder, remainder_size); |
| 4341 | } |
| 4342 | check_malloced_chunk (av, victim, nb); |
| 4343 | void *p = chunk2mem (victim); |
| 4344 | alloc_perturb (p, bytes); |
| 4345 | return p; |
| 4346 | } |
| 4347 | } |
| 4348 | |
| 4349 | use_top: |
| 4350 | /* |
| 4351 | If large enough, split off the chunk bordering the end of memory |
| 4352 | (held in av->top). Note that this is in accord with the best-fit |
| 4353 | search rule. In effect, av->top is treated as larger (and thus |
| 4354 | less well fitting) than any other available chunk since it can |
| 4355 | be extended to be as large as necessary (up to system |
| 4356 | limitations). |
| 4357 | |
| 4358 | We require that av->top always exists (i.e., has size >= |
| 4359 | MINSIZE) after initialization, so if it would otherwise be |
| 4360 | exhausted by current request, it is replenished. (The main |
| 4361 | reason for ensuring it exists is that we may need MINSIZE space |
| 4362 | to put in fenceposts in sysmalloc.) |
| 4363 | */ |
| 4364 | |
| 4365 | victim = av->top; |
| 4366 | size = chunksize (victim); |
| 4367 | |
| 4368 | if (__glibc_unlikely (size > av->system_mem)) |
| 4369 | malloc_printerr ("malloc(): corrupted top size" ); |
| 4370 | |
| 4371 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
| 4372 | { |
| 4373 | remainder_size = size - nb; |
| 4374 | remainder = chunk_at_offset (victim, nb); |
| 4375 | av->top = remainder; |
| 4376 | set_head (victim, nb | PREV_INUSE | |
| 4377 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4378 | set_head (remainder, remainder_size | PREV_INUSE); |
| 4379 | |
| 4380 | check_malloced_chunk (av, victim, nb); |
| 4381 | void *p = chunk2mem (victim); |
| 4382 | alloc_perturb (p, bytes); |
| 4383 | return p; |
| 4384 | } |
| 4385 | |
| 4386 | /* When we are using atomic ops to free fast chunks we can get |
| 4387 | here for all block sizes. */ |
| 4388 | else if (atomic_load_relaxed (&av->have_fastchunks)) |
| 4389 | { |
| 4390 | malloc_consolidate (av); |
| 4391 | /* restore original bin index */ |
| 4392 | if (in_smallbin_range (nb)) |
| 4393 | idx = smallbin_index (nb); |
| 4394 | else |
| 4395 | idx = largebin_index (nb); |
| 4396 | } |
| 4397 | |
| 4398 | /* |
| 4399 | Otherwise, relay to handle system-dependent cases |
| 4400 | */ |
| 4401 | else |
| 4402 | { |
| 4403 | void *p = sysmalloc (nb, av); |
| 4404 | if (p != NULL) |
| 4405 | alloc_perturb (p, bytes); |
| 4406 | return p; |
| 4407 | } |
| 4408 | } |
| 4409 | } |
| 4410 | |
| 4411 | /* |
| 4412 | ------------------------------ free ------------------------------ |
| 4413 | */ |
| 4414 | |
| 4415 | static void |
| 4416 | _int_free (mstate av, mchunkptr p, int have_lock) |
| 4417 | { |
| 4418 | INTERNAL_SIZE_T size; /* its size */ |
| 4419 | mfastbinptr *fb; /* associated fastbin */ |
| 4420 | mchunkptr nextchunk; /* next contiguous chunk */ |
| 4421 | INTERNAL_SIZE_T nextsize; /* its size */ |
| 4422 | int nextinuse; /* true if nextchunk is used */ |
| 4423 | INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */ |
| 4424 | mchunkptr bck; /* misc temp for linking */ |
| 4425 | mchunkptr fwd; /* misc temp for linking */ |
| 4426 | |
| 4427 | size = chunksize (p); |
| 4428 | |
| 4429 | /* Little security check which won't hurt performance: the |
| 4430 | allocator never wrapps around at the end of the address space. |
| 4431 | Therefore we can exclude some size values which might appear |
| 4432 | here by accident or by "design" from some intruder. */ |
| 4433 | if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) |
| 4434 | || __builtin_expect (misaligned_chunk (p), 0)) |
| 4435 | malloc_printerr ("free(): invalid pointer" ); |
| 4436 | /* We know that each chunk is at least MINSIZE bytes in size or a |
| 4437 | multiple of MALLOC_ALIGNMENT. */ |
| 4438 | if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size))) |
| 4439 | malloc_printerr ("free(): invalid size" ); |
| 4440 | |
| 4441 | check_inuse_chunk(av, p); |
| 4442 | |
| 4443 | #if USE_TCACHE |
| 4444 | { |
| 4445 | size_t tc_idx = csize2tidx (size); |
| 4446 | if (tcache != NULL && tc_idx < mp_.tcache_bins) |
| 4447 | { |
| 4448 | /* Check to see if it's already in the tcache. */ |
| 4449 | tcache_entry *e = (tcache_entry *) chunk2mem (p); |
| 4450 | |
| 4451 | /* This test succeeds on double free. However, we don't 100% |
| 4452 | trust it (it also matches random payload data at a 1 in |
| 4453 | 2^<size_t> chance), so verify it's not an unlikely |
| 4454 | coincidence before aborting. */ |
| 4455 | if (__glibc_unlikely (e->key == tcache_key)) |
| 4456 | { |
| 4457 | tcache_entry *tmp; |
| 4458 | size_t cnt = 0; |
| 4459 | LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx); |
| 4460 | for (tmp = tcache->entries[tc_idx]; |
| 4461 | tmp; |
| 4462 | tmp = REVEAL_PTR (tmp->next), ++cnt) |
| 4463 | { |
| 4464 | if (cnt >= mp_.tcache_count) |
| 4465 | malloc_printerr ("free(): too many chunks detected in tcache" ); |
| 4466 | if (__glibc_unlikely (!aligned_OK (tmp))) |
| 4467 | malloc_printerr ("free(): unaligned chunk detected in tcache 2" ); |
| 4468 | if (tmp == e) |
| 4469 | malloc_printerr ("free(): double free detected in tcache 2" ); |
| 4470 | /* If we get here, it was a coincidence. We've wasted a |
| 4471 | few cycles, but don't abort. */ |
| 4472 | } |
| 4473 | } |
| 4474 | |
| 4475 | if (tcache->counts[tc_idx] < mp_.tcache_count) |
| 4476 | { |
| 4477 | tcache_put (p, tc_idx); |
| 4478 | return; |
| 4479 | } |
| 4480 | } |
| 4481 | } |
| 4482 | #endif |
| 4483 | |
| 4484 | /* |
| 4485 | If eligible, place chunk on a fastbin so it can be found |
| 4486 | and used quickly in malloc. |
| 4487 | */ |
| 4488 | |
| 4489 | if ((unsigned long)(size) <= (unsigned long)(get_max_fast ()) |
| 4490 | |
| 4491 | #if TRIM_FASTBINS |
| 4492 | /* |
| 4493 | If TRIM_FASTBINS set, don't place chunks |
| 4494 | bordering top into fastbins |
| 4495 | */ |
| 4496 | && (chunk_at_offset(p, size) != av->top) |
| 4497 | #endif |
| 4498 | ) { |
| 4499 | |
| 4500 | if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size)) |
| 4501 | <= CHUNK_HDR_SZ, 0) |
| 4502 | || __builtin_expect (chunksize (chunk_at_offset (p, size)) |
| 4503 | >= av->system_mem, 0)) |
| 4504 | { |
| 4505 | bool fail = true; |
| 4506 | /* We might not have a lock at this point and concurrent modifications |
| 4507 | of system_mem might result in a false positive. Redo the test after |
| 4508 | getting the lock. */ |
| 4509 | if (!have_lock) |
| 4510 | { |
| 4511 | __libc_lock_lock (av->mutex); |
| 4512 | fail = (chunksize_nomask (chunk_at_offset (p, size)) <= CHUNK_HDR_SZ |
| 4513 | || chunksize (chunk_at_offset (p, size)) >= av->system_mem); |
| 4514 | __libc_lock_unlock (av->mutex); |
| 4515 | } |
| 4516 | |
| 4517 | if (fail) |
| 4518 | malloc_printerr ("free(): invalid next size (fast)" ); |
| 4519 | } |
| 4520 | |
| 4521 | free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ); |
| 4522 | |
| 4523 | atomic_store_relaxed (&av->have_fastchunks, true); |
| 4524 | unsigned int idx = fastbin_index(size); |
| 4525 | fb = &fastbin (av, idx); |
| 4526 | |
| 4527 | /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */ |
| 4528 | mchunkptr old = *fb, old2; |
| 4529 | |
| 4530 | if (SINGLE_THREAD_P) |
| 4531 | { |
| 4532 | /* Check that the top of the bin is not the record we are going to |
| 4533 | add (i.e., double free). */ |
| 4534 | if (__builtin_expect (old == p, 0)) |
| 4535 | malloc_printerr ("double free or corruption (fasttop)" ); |
| 4536 | p->fd = PROTECT_PTR (&p->fd, old); |
| 4537 | *fb = p; |
| 4538 | } |
| 4539 | else |
| 4540 | do |
| 4541 | { |
| 4542 | /* Check that the top of the bin is not the record we are going to |
| 4543 | add (i.e., double free). */ |
| 4544 | if (__builtin_expect (old == p, 0)) |
| 4545 | malloc_printerr ("double free or corruption (fasttop)" ); |
| 4546 | old2 = old; |
| 4547 | p->fd = PROTECT_PTR (&p->fd, old); |
| 4548 | } |
| 4549 | while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) |
| 4550 | != old2); |
| 4551 | |
| 4552 | /* Check that size of fastbin chunk at the top is the same as |
| 4553 | size of the chunk that we are adding. We can dereference OLD |
| 4554 | only if we have the lock, otherwise it might have already been |
| 4555 | allocated again. */ |
| 4556 | if (have_lock && old != NULL |
| 4557 | && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0)) |
| 4558 | malloc_printerr ("invalid fastbin entry (free)" ); |
| 4559 | } |
| 4560 | |
| 4561 | /* |
| 4562 | Consolidate other non-mmapped chunks as they arrive. |
| 4563 | */ |
| 4564 | |
| 4565 | else if (!chunk_is_mmapped(p)) { |
| 4566 | |
| 4567 | /* If we're single-threaded, don't lock the arena. */ |
| 4568 | if (SINGLE_THREAD_P) |
| 4569 | have_lock = true; |
| 4570 | |
| 4571 | if (!have_lock) |
| 4572 | __libc_lock_lock (av->mutex); |
| 4573 | |
| 4574 | nextchunk = chunk_at_offset(p, size); |
| 4575 | |
| 4576 | /* Lightweight tests: check whether the block is already the |
| 4577 | top block. */ |
| 4578 | if (__glibc_unlikely (p == av->top)) |
| 4579 | malloc_printerr ("double free or corruption (top)" ); |
| 4580 | /* Or whether the next chunk is beyond the boundaries of the arena. */ |
| 4581 | if (__builtin_expect (contiguous (av) |
| 4582 | && (char *) nextchunk |
| 4583 | >= ((char *) av->top + chunksize(av->top)), 0)) |
| 4584 | malloc_printerr ("double free or corruption (out)" ); |
| 4585 | /* Or whether the block is actually not marked used. */ |
| 4586 | if (__glibc_unlikely (!prev_inuse(nextchunk))) |
| 4587 | malloc_printerr ("double free or corruption (!prev)" ); |
| 4588 | |
| 4589 | nextsize = chunksize(nextchunk); |
| 4590 | if (__builtin_expect (chunksize_nomask (nextchunk) <= CHUNK_HDR_SZ, 0) |
| 4591 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
| 4592 | malloc_printerr ("free(): invalid next size (normal)" ); |
| 4593 | |
| 4594 | free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ); |
| 4595 | |
| 4596 | /* consolidate backward */ |
| 4597 | if (!prev_inuse(p)) { |
| 4598 | prevsize = prev_size (p); |
| 4599 | size += prevsize; |
| 4600 | p = chunk_at_offset(p, -((long) prevsize)); |
| 4601 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
| 4602 | malloc_printerr ("corrupted size vs. prev_size while consolidating" ); |
| 4603 | unlink_chunk (av, p); |
| 4604 | } |
| 4605 | |
| 4606 | if (nextchunk != av->top) { |
| 4607 | /* get and clear inuse bit */ |
| 4608 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
| 4609 | |
| 4610 | /* consolidate forward */ |
| 4611 | if (!nextinuse) { |
| 4612 | unlink_chunk (av, nextchunk); |
| 4613 | size += nextsize; |
| 4614 | } else |
| 4615 | clear_inuse_bit_at_offset(nextchunk, 0); |
| 4616 | |
| 4617 | /* |
| 4618 | Place the chunk in unsorted chunk list. Chunks are |
| 4619 | not placed into regular bins until after they have |
| 4620 | been given one chance to be used in malloc. |
| 4621 | */ |
| 4622 | |
| 4623 | bck = unsorted_chunks(av); |
| 4624 | fwd = bck->fd; |
| 4625 | if (__glibc_unlikely (fwd->bk != bck)) |
| 4626 | malloc_printerr ("free(): corrupted unsorted chunks" ); |
| 4627 | p->fd = fwd; |
| 4628 | p->bk = bck; |
| 4629 | if (!in_smallbin_range(size)) |
| 4630 | { |
| 4631 | p->fd_nextsize = NULL; |
| 4632 | p->bk_nextsize = NULL; |
| 4633 | } |
| 4634 | bck->fd = p; |
| 4635 | fwd->bk = p; |
| 4636 | |
| 4637 | set_head(p, size | PREV_INUSE); |
| 4638 | set_foot(p, size); |
| 4639 | |
| 4640 | check_free_chunk(av, p); |
| 4641 | } |
| 4642 | |
| 4643 | /* |
| 4644 | If the chunk borders the current high end of memory, |
| 4645 | consolidate into top |
| 4646 | */ |
| 4647 | |
| 4648 | else { |
| 4649 | size += nextsize; |
| 4650 | set_head(p, size | PREV_INUSE); |
| 4651 | av->top = p; |
| 4652 | check_chunk(av, p); |
| 4653 | } |
| 4654 | |
| 4655 | /* |
| 4656 | If freeing a large space, consolidate possibly-surrounding |
| 4657 | chunks. Then, if the total unused topmost memory exceeds trim |
| 4658 | threshold, ask malloc_trim to reduce top. |
| 4659 | |
| 4660 | Unless max_fast is 0, we don't know if there are fastbins |
| 4661 | bordering top, so we cannot tell for sure whether threshold |
| 4662 | has been reached unless fastbins are consolidated. But we |
| 4663 | don't want to consolidate on each free. As a compromise, |
| 4664 | consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD |
| 4665 | is reached. |
| 4666 | */ |
| 4667 | |
| 4668 | if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { |
| 4669 | if (atomic_load_relaxed (&av->have_fastchunks)) |
| 4670 | malloc_consolidate(av); |
| 4671 | |
| 4672 | if (av == &main_arena) { |
| 4673 | #ifndef MORECORE_CANNOT_TRIM |
| 4674 | if ((unsigned long)(chunksize(av->top)) >= |
| 4675 | (unsigned long)(mp_.trim_threshold)) |
| 4676 | systrim(mp_.top_pad, av); |
| 4677 | #endif |
| 4678 | } else { |
| 4679 | /* Always try heap_trim(), even if the top chunk is not |
| 4680 | large, because the corresponding heap might go away. */ |
| 4681 | heap_info *heap = heap_for_ptr(top(av)); |
| 4682 | |
| 4683 | assert(heap->ar_ptr == av); |
| 4684 | heap_trim(heap, mp_.top_pad); |
| 4685 | } |
| 4686 | } |
| 4687 | |
| 4688 | if (!have_lock) |
| 4689 | __libc_lock_unlock (av->mutex); |
| 4690 | } |
| 4691 | /* |
| 4692 | If the chunk was allocated via mmap, release via munmap(). |
| 4693 | */ |
| 4694 | |
| 4695 | else { |
| 4696 | munmap_chunk (p); |
| 4697 | } |
| 4698 | } |
| 4699 | |
| 4700 | /* |
| 4701 | ------------------------- malloc_consolidate ------------------------- |
| 4702 | |
| 4703 | malloc_consolidate is a specialized version of free() that tears |
| 4704 | down chunks held in fastbins. Free itself cannot be used for this |
| 4705 | purpose since, among other things, it might place chunks back onto |
| 4706 | fastbins. So, instead, we need to use a minor variant of the same |
| 4707 | code. |
| 4708 | */ |
| 4709 | |
| 4710 | static void malloc_consolidate(mstate av) |
| 4711 | { |
| 4712 | mfastbinptr* fb; /* current fastbin being consolidated */ |
| 4713 | mfastbinptr* maxfb; /* last fastbin (for loop control) */ |
| 4714 | mchunkptr p; /* current chunk being consolidated */ |
| 4715 | mchunkptr nextp; /* next chunk to consolidate */ |
| 4716 | mchunkptr unsorted_bin; /* bin header */ |
| 4717 | mchunkptr first_unsorted; /* chunk to link to */ |
| 4718 | |
| 4719 | /* These have same use as in free() */ |
| 4720 | mchunkptr nextchunk; |
| 4721 | INTERNAL_SIZE_T size; |
| 4722 | INTERNAL_SIZE_T nextsize; |
| 4723 | INTERNAL_SIZE_T prevsize; |
| 4724 | int nextinuse; |
| 4725 | |
| 4726 | atomic_store_relaxed (&av->have_fastchunks, false); |
| 4727 | |
| 4728 | unsorted_bin = unsorted_chunks(av); |
| 4729 | |
| 4730 | /* |
| 4731 | Remove each chunk from fast bin and consolidate it, placing it |
| 4732 | then in unsorted bin. Among other reasons for doing this, |
| 4733 | placing in unsorted bin avoids needing to calculate actual bins |
| 4734 | until malloc is sure that chunks aren't immediately going to be |
| 4735 | reused anyway. |
| 4736 | */ |
| 4737 | |
| 4738 | maxfb = &fastbin (av, NFASTBINS - 1); |
| 4739 | fb = &fastbin (av, 0); |
| 4740 | do { |
| 4741 | p = atomic_exchange_acq (fb, NULL); |
| 4742 | if (p != 0) { |
| 4743 | do { |
| 4744 | { |
| 4745 | if (__glibc_unlikely (misaligned_chunk (p))) |
| 4746 | malloc_printerr ("malloc_consolidate(): " |
| 4747 | "unaligned fastbin chunk detected" ); |
| 4748 | |
| 4749 | unsigned int idx = fastbin_index (chunksize (p)); |
| 4750 | if ((&fastbin (av, idx)) != fb) |
| 4751 | malloc_printerr ("malloc_consolidate(): invalid chunk size" ); |
| 4752 | } |
| 4753 | |
| 4754 | check_inuse_chunk(av, p); |
| 4755 | nextp = REVEAL_PTR (p->fd); |
| 4756 | |
| 4757 | /* Slightly streamlined version of consolidation code in free() */ |
| 4758 | size = chunksize (p); |
| 4759 | nextchunk = chunk_at_offset(p, size); |
| 4760 | nextsize = chunksize(nextchunk); |
| 4761 | |
| 4762 | if (!prev_inuse(p)) { |
| 4763 | prevsize = prev_size (p); |
| 4764 | size += prevsize; |
| 4765 | p = chunk_at_offset(p, -((long) prevsize)); |
| 4766 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
| 4767 | malloc_printerr ("corrupted size vs. prev_size in fastbins" ); |
| 4768 | unlink_chunk (av, p); |
| 4769 | } |
| 4770 | |
| 4771 | if (nextchunk != av->top) { |
| 4772 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
| 4773 | |
| 4774 | if (!nextinuse) { |
| 4775 | size += nextsize; |
| 4776 | unlink_chunk (av, nextchunk); |
| 4777 | } else |
| 4778 | clear_inuse_bit_at_offset(nextchunk, 0); |
| 4779 | |
| 4780 | first_unsorted = unsorted_bin->fd; |
| 4781 | unsorted_bin->fd = p; |
| 4782 | first_unsorted->bk = p; |
| 4783 | |
| 4784 | if (!in_smallbin_range (size)) { |
| 4785 | p->fd_nextsize = NULL; |
| 4786 | p->bk_nextsize = NULL; |
| 4787 | } |
| 4788 | |
| 4789 | set_head(p, size | PREV_INUSE); |
| 4790 | p->bk = unsorted_bin; |
| 4791 | p->fd = first_unsorted; |
| 4792 | set_foot(p, size); |
| 4793 | } |
| 4794 | |
| 4795 | else { |
| 4796 | size += nextsize; |
| 4797 | set_head(p, size | PREV_INUSE); |
| 4798 | av->top = p; |
| 4799 | } |
| 4800 | |
| 4801 | } while ( (p = nextp) != 0); |
| 4802 | |
| 4803 | } |
| 4804 | } while (fb++ != maxfb); |
| 4805 | } |
| 4806 | |
| 4807 | /* |
| 4808 | ------------------------------ realloc ------------------------------ |
| 4809 | */ |
| 4810 | |
| 4811 | static void * |
| 4812 | _int_realloc (mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize, |
| 4813 | INTERNAL_SIZE_T nb) |
| 4814 | { |
| 4815 | mchunkptr newp; /* chunk to return */ |
| 4816 | INTERNAL_SIZE_T newsize; /* its size */ |
| 4817 | void* newmem; /* corresponding user mem */ |
| 4818 | |
| 4819 | mchunkptr next; /* next contiguous chunk after oldp */ |
| 4820 | |
| 4821 | mchunkptr remainder; /* extra space at end of newp */ |
| 4822 | unsigned long remainder_size; /* its size */ |
| 4823 | |
| 4824 | /* oldmem size */ |
| 4825 | if (__builtin_expect (chunksize_nomask (oldp) <= CHUNK_HDR_SZ, 0) |
| 4826 | || __builtin_expect (oldsize >= av->system_mem, 0)) |
| 4827 | malloc_printerr ("realloc(): invalid old size" ); |
| 4828 | |
| 4829 | check_inuse_chunk (av, oldp); |
| 4830 | |
| 4831 | /* All callers already filter out mmap'ed chunks. */ |
| 4832 | assert (!chunk_is_mmapped (oldp)); |
| 4833 | |
| 4834 | next = chunk_at_offset (oldp, oldsize); |
| 4835 | INTERNAL_SIZE_T nextsize = chunksize (next); |
| 4836 | if (__builtin_expect (chunksize_nomask (next) <= CHUNK_HDR_SZ, 0) |
| 4837 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
| 4838 | malloc_printerr ("realloc(): invalid next size" ); |
| 4839 | |
| 4840 | if ((unsigned long) (oldsize) >= (unsigned long) (nb)) |
| 4841 | { |
| 4842 | /* already big enough; split below */ |
| 4843 | newp = oldp; |
| 4844 | newsize = oldsize; |
| 4845 | } |
| 4846 | |
| 4847 | else |
| 4848 | { |
| 4849 | /* Try to expand forward into top */ |
| 4850 | if (next == av->top && |
| 4851 | (unsigned long) (newsize = oldsize + nextsize) >= |
| 4852 | (unsigned long) (nb + MINSIZE)) |
| 4853 | { |
| 4854 | set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4855 | av->top = chunk_at_offset (oldp, nb); |
| 4856 | set_head (av->top, (newsize - nb) | PREV_INUSE); |
| 4857 | check_inuse_chunk (av, oldp); |
| 4858 | return tag_new_usable (chunk2mem (oldp)); |
| 4859 | } |
| 4860 | |
| 4861 | /* Try to expand forward into next chunk; split off remainder below */ |
| 4862 | else if (next != av->top && |
| 4863 | !inuse (next) && |
| 4864 | (unsigned long) (newsize = oldsize + nextsize) >= |
| 4865 | (unsigned long) (nb)) |
| 4866 | { |
| 4867 | newp = oldp; |
| 4868 | unlink_chunk (av, next); |
| 4869 | } |
| 4870 | |
| 4871 | /* allocate, copy, free */ |
| 4872 | else |
| 4873 | { |
| 4874 | newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK); |
| 4875 | if (newmem == 0) |
| 4876 | return 0; /* propagate failure */ |
| 4877 | |
| 4878 | newp = mem2chunk (newmem); |
| 4879 | newsize = chunksize (newp); |
| 4880 | |
| 4881 | /* |
| 4882 | Avoid copy if newp is next chunk after oldp. |
| 4883 | */ |
| 4884 | if (newp == next) |
| 4885 | { |
| 4886 | newsize += oldsize; |
| 4887 | newp = oldp; |
| 4888 | } |
| 4889 | else |
| 4890 | { |
| 4891 | void *oldmem = chunk2mem (oldp); |
| 4892 | size_t sz = memsize (oldp); |
| 4893 | (void) tag_region (oldmem, sz); |
| 4894 | newmem = tag_new_usable (newmem); |
| 4895 | memcpy (newmem, oldmem, sz); |
| 4896 | _int_free (av, oldp, 1); |
| 4897 | check_inuse_chunk (av, newp); |
| 4898 | return newmem; |
| 4899 | } |
| 4900 | } |
| 4901 | } |
| 4902 | |
| 4903 | /* If possible, free extra space in old or extended chunk */ |
| 4904 | |
| 4905 | assert ((unsigned long) (newsize) >= (unsigned long) (nb)); |
| 4906 | |
| 4907 | remainder_size = newsize - nb; |
| 4908 | |
| 4909 | if (remainder_size < MINSIZE) /* not enough extra to split off */ |
| 4910 | { |
| 4911 | set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4912 | set_inuse_bit_at_offset (newp, newsize); |
| 4913 | } |
| 4914 | else /* split remainder */ |
| 4915 | { |
| 4916 | remainder = chunk_at_offset (newp, nb); |
| 4917 | /* Clear any user-space tags before writing the header. */ |
| 4918 | remainder = tag_region (remainder, remainder_size); |
| 4919 | set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4920 | set_head (remainder, remainder_size | PREV_INUSE | |
| 4921 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 4922 | /* Mark remainder as inuse so free() won't complain */ |
| 4923 | set_inuse_bit_at_offset (remainder, remainder_size); |
| 4924 | _int_free (av, remainder, 1); |
| 4925 | } |
| 4926 | |
| 4927 | check_inuse_chunk (av, newp); |
| 4928 | return tag_new_usable (chunk2mem (newp)); |
| 4929 | } |
| 4930 | |
| 4931 | /* |
| 4932 | ------------------------------ memalign ------------------------------ |
| 4933 | */ |
| 4934 | |
| 4935 | static void * |
| 4936 | _int_memalign (mstate av, size_t alignment, size_t bytes) |
| 4937 | { |
| 4938 | INTERNAL_SIZE_T nb; /* padded request size */ |
| 4939 | char *m; /* memory returned by malloc call */ |
| 4940 | mchunkptr p; /* corresponding chunk */ |
| 4941 | char *brk; /* alignment point within p */ |
| 4942 | mchunkptr newp; /* chunk to return */ |
| 4943 | INTERNAL_SIZE_T newsize; /* its size */ |
| 4944 | INTERNAL_SIZE_T leadsize; /* leading space before alignment point */ |
| 4945 | mchunkptr remainder; /* spare room at end to split off */ |
| 4946 | unsigned long remainder_size; /* its size */ |
| 4947 | INTERNAL_SIZE_T size; |
| 4948 | |
| 4949 | |
| 4950 | |
| 4951 | nb = checked_request2size (bytes); |
| 4952 | if (nb == 0) |
| 4953 | { |
| 4954 | __set_errno (ENOMEM); |
| 4955 | return NULL; |
| 4956 | } |
| 4957 | |
| 4958 | /* |
| 4959 | Strategy: find a spot within that chunk that meets the alignment |
| 4960 | request, and then possibly free the leading and trailing space. |
| 4961 | */ |
| 4962 | |
| 4963 | /* Call malloc with worst case padding to hit alignment. */ |
| 4964 | |
| 4965 | m = (char *) (_int_malloc (av, nb + alignment + MINSIZE)); |
| 4966 | |
| 4967 | if (m == 0) |
| 4968 | return 0; /* propagate failure */ |
| 4969 | |
| 4970 | p = mem2chunk (m); |
| 4971 | |
| 4972 | if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */ |
| 4973 | |
| 4974 | { /* |
| 4975 | Find an aligned spot inside chunk. Since we need to give back |
| 4976 | leading space in a chunk of at least MINSIZE, if the first |
| 4977 | calculation places us at a spot with less than MINSIZE leader, |
| 4978 | we can move to the next aligned spot -- we've allocated enough |
| 4979 | total room so that this is always possible. |
| 4980 | */ |
| 4981 | brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) & |
| 4982 | - ((signed long) alignment)); |
| 4983 | if ((unsigned long) (brk - (char *) (p)) < MINSIZE) |
| 4984 | brk += alignment; |
| 4985 | |
| 4986 | newp = (mchunkptr) brk; |
| 4987 | leadsize = brk - (char *) (p); |
| 4988 | newsize = chunksize (p) - leadsize; |
| 4989 | |
| 4990 | /* For mmapped chunks, just adjust offset */ |
| 4991 | if (chunk_is_mmapped (p)) |
| 4992 | { |
| 4993 | set_prev_size (newp, prev_size (p) + leadsize); |
| 4994 | set_head (newp, newsize | IS_MMAPPED); |
| 4995 | return chunk2mem (newp); |
| 4996 | } |
| 4997 | |
| 4998 | /* Otherwise, give back leader, use the rest */ |
| 4999 | set_head (newp, newsize | PREV_INUSE | |
| 5000 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 5001 | set_inuse_bit_at_offset (newp, newsize); |
| 5002 | set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 5003 | _int_free (av, p, 1); |
| 5004 | p = newp; |
| 5005 | |
| 5006 | assert (newsize >= nb && |
| 5007 | (((unsigned long) (chunk2mem (p))) % alignment) == 0); |
| 5008 | } |
| 5009 | |
| 5010 | /* Also give back spare room at the end */ |
| 5011 | if (!chunk_is_mmapped (p)) |
| 5012 | { |
| 5013 | size = chunksize (p); |
| 5014 | if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
| 5015 | { |
| 5016 | remainder_size = size - nb; |
| 5017 | remainder = chunk_at_offset (p, nb); |
| 5018 | set_head (remainder, remainder_size | PREV_INUSE | |
| 5019 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
| 5020 | set_head_size (p, nb); |
| 5021 | _int_free (av, remainder, 1); |
| 5022 | } |
| 5023 | } |
| 5024 | |
| 5025 | check_inuse_chunk (av, p); |
| 5026 | return chunk2mem (p); |
| 5027 | } |
| 5028 | |
| 5029 | |
| 5030 | /* |
| 5031 | ------------------------------ malloc_trim ------------------------------ |
| 5032 | */ |
| 5033 | |
| 5034 | static int |
| 5035 | mtrim (mstate av, size_t pad) |
| 5036 | { |
| 5037 | /* Ensure all blocks are consolidated. */ |
| 5038 | malloc_consolidate (av); |
| 5039 | |
| 5040 | const size_t ps = GLRO (dl_pagesize); |
| 5041 | int psindex = bin_index (ps); |
| 5042 | const size_t psm1 = ps - 1; |
| 5043 | |
| 5044 | int result = 0; |
| 5045 | for (int i = 1; i < NBINS; ++i) |
| 5046 | if (i == 1 || i >= psindex) |
| 5047 | { |
| 5048 | mbinptr bin = bin_at (av, i); |
| 5049 | |
| 5050 | for (mchunkptr p = last (bin); p != bin; p = p->bk) |
| 5051 | { |
| 5052 | INTERNAL_SIZE_T size = chunksize (p); |
| 5053 | |
| 5054 | if (size > psm1 + sizeof (struct malloc_chunk)) |
| 5055 | { |
| 5056 | /* See whether the chunk contains at least one unused page. */ |
| 5057 | char *paligned_mem = (char *) (((uintptr_t) p |
| 5058 | + sizeof (struct malloc_chunk) |
| 5059 | + psm1) & ~psm1); |
| 5060 | |
| 5061 | assert ((char *) chunk2mem (p) + 2 * CHUNK_HDR_SZ |
| 5062 | <= paligned_mem); |
| 5063 | assert ((char *) p + size > paligned_mem); |
| 5064 | |
| 5065 | /* This is the size we could potentially free. */ |
| 5066 | size -= paligned_mem - (char *) p; |
| 5067 | |
| 5068 | if (size > psm1) |
| 5069 | { |
| 5070 | #if MALLOC_DEBUG |
| 5071 | /* When debugging we simulate destroying the memory |
| 5072 | content. */ |
| 5073 | memset (paligned_mem, 0x89, size & ~psm1); |
| 5074 | #endif |
| 5075 | __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED); |
| 5076 | |
| 5077 | result = 1; |
| 5078 | } |
| 5079 | } |
| 5080 | } |
| 5081 | } |
| 5082 | |
| 5083 | #ifndef MORECORE_CANNOT_TRIM |
| 5084 | return result | (av == &main_arena ? systrim (pad, av) : 0); |
| 5085 | |
| 5086 | #else |
| 5087 | return result; |
| 5088 | #endif |
| 5089 | } |
| 5090 | |
| 5091 | |
| 5092 | int |
| 5093 | __malloc_trim (size_t s) |
| 5094 | { |
| 5095 | int result = 0; |
| 5096 | |
| 5097 | if (!__malloc_initialized) |
| 5098 | ptmalloc_init (); |
| 5099 | |
| 5100 | mstate ar_ptr = &main_arena; |
| 5101 | do |
| 5102 | { |
| 5103 | __libc_lock_lock (ar_ptr->mutex); |
| 5104 | result |= mtrim (ar_ptr, s); |
| 5105 | __libc_lock_unlock (ar_ptr->mutex); |
| 5106 | |
| 5107 | ar_ptr = ar_ptr->next; |
| 5108 | } |
| 5109 | while (ar_ptr != &main_arena); |
| 5110 | |
| 5111 | return result; |
| 5112 | } |
| 5113 | |
| 5114 | |
| 5115 | /* |
| 5116 | ------------------------- malloc_usable_size ------------------------- |
| 5117 | */ |
| 5118 | |
| 5119 | static size_t |
| 5120 | musable (void *mem) |
| 5121 | { |
| 5122 | mchunkptr p = mem2chunk (mem); |
| 5123 | |
| 5124 | if (chunk_is_mmapped (p)) |
| 5125 | return chunksize (p) - CHUNK_HDR_SZ; |
| 5126 | else if (inuse (p)) |
| 5127 | return memsize (p); |
| 5128 | |
| 5129 | return 0; |
| 5130 | } |
| 5131 | |
| 5132 | #if IS_IN (libc) |
| 5133 | size_t |
| 5134 | __malloc_usable_size (void *m) |
| 5135 | { |
| 5136 | if (m == NULL) |
| 5137 | return 0; |
| 5138 | return musable (m); |
| 5139 | } |
| 5140 | #endif |
| 5141 | |
| 5142 | /* |
| 5143 | ------------------------------ mallinfo ------------------------------ |
| 5144 | Accumulate malloc statistics for arena AV into M. |
| 5145 | */ |
| 5146 | static void |
| 5147 | int_mallinfo (mstate av, struct mallinfo2 *m) |
| 5148 | { |
| 5149 | size_t i; |
| 5150 | mbinptr b; |
| 5151 | mchunkptr p; |
| 5152 | INTERNAL_SIZE_T avail; |
| 5153 | INTERNAL_SIZE_T fastavail; |
| 5154 | int nblocks; |
| 5155 | int nfastblocks; |
| 5156 | |
| 5157 | check_malloc_state (av); |
| 5158 | |
| 5159 | /* Account for top */ |
| 5160 | avail = chunksize (av->top); |
| 5161 | nblocks = 1; /* top always exists */ |
| 5162 | |
| 5163 | /* traverse fastbins */ |
| 5164 | nfastblocks = 0; |
| 5165 | fastavail = 0; |
| 5166 | |
| 5167 | for (i = 0; i < NFASTBINS; ++i) |
| 5168 | { |
| 5169 | for (p = fastbin (av, i); |
| 5170 | p != 0; |
| 5171 | p = REVEAL_PTR (p->fd)) |
| 5172 | { |
| 5173 | if (__glibc_unlikely (misaligned_chunk (p))) |
| 5174 | malloc_printerr ("int_mallinfo(): " |
| 5175 | "unaligned fastbin chunk detected" ); |
| 5176 | ++nfastblocks; |
| 5177 | fastavail += chunksize (p); |
| 5178 | } |
| 5179 | } |
| 5180 | |
| 5181 | avail += fastavail; |
| 5182 | |
| 5183 | /* traverse regular bins */ |
| 5184 | for (i = 1; i < NBINS; ++i) |
| 5185 | { |
| 5186 | b = bin_at (av, i); |
| 5187 | for (p = last (b); p != b; p = p->bk) |
| 5188 | { |
| 5189 | ++nblocks; |
| 5190 | avail += chunksize (p); |
| 5191 | } |
| 5192 | } |
| 5193 | |
| 5194 | m->smblks += nfastblocks; |
| 5195 | m->ordblks += nblocks; |
| 5196 | m->fordblks += avail; |
| 5197 | m->uordblks += av->system_mem - avail; |
| 5198 | m->arena += av->system_mem; |
| 5199 | m->fsmblks += fastavail; |
| 5200 | if (av == &main_arena) |
| 5201 | { |
| 5202 | m->hblks = mp_.n_mmaps; |
| 5203 | m->hblkhd = mp_.mmapped_mem; |
| 5204 | m->usmblks = 0; |
| 5205 | m->keepcost = chunksize (av->top); |
| 5206 | } |
| 5207 | } |
| 5208 | |
| 5209 | |
| 5210 | struct mallinfo2 |
| 5211 | __libc_mallinfo2 (void) |
| 5212 | { |
| 5213 | struct mallinfo2 m; |
| 5214 | mstate ar_ptr; |
| 5215 | |
| 5216 | if (!__malloc_initialized) |
| 5217 | ptmalloc_init (); |
| 5218 | |
| 5219 | memset (&m, 0, sizeof (m)); |
| 5220 | ar_ptr = &main_arena; |
| 5221 | do |
| 5222 | { |
| 5223 | __libc_lock_lock (ar_ptr->mutex); |
| 5224 | int_mallinfo (ar_ptr, &m); |
| 5225 | __libc_lock_unlock (ar_ptr->mutex); |
| 5226 | |
| 5227 | ar_ptr = ar_ptr->next; |
| 5228 | } |
| 5229 | while (ar_ptr != &main_arena); |
| 5230 | |
| 5231 | return m; |
| 5232 | } |
| 5233 | libc_hidden_def (__libc_mallinfo2) |
| 5234 | |
| 5235 | struct mallinfo |
| 5236 | __libc_mallinfo (void) |
| 5237 | { |
| 5238 | struct mallinfo m; |
| 5239 | struct mallinfo2 m2 = __libc_mallinfo2 (); |
| 5240 | |
| 5241 | m.arena = m2.arena; |
| 5242 | m.ordblks = m2.ordblks; |
| 5243 | m.smblks = m2.smblks; |
| 5244 | m.hblks = m2.hblks; |
| 5245 | m.hblkhd = m2.hblkhd; |
| 5246 | m.usmblks = m2.usmblks; |
| 5247 | m.fsmblks = m2.fsmblks; |
| 5248 | m.uordblks = m2.uordblks; |
| 5249 | m.fordblks = m2.fordblks; |
| 5250 | m.keepcost = m2.keepcost; |
| 5251 | |
| 5252 | return m; |
| 5253 | } |
| 5254 | |
| 5255 | |
| 5256 | /* |
| 5257 | ------------------------------ malloc_stats ------------------------------ |
| 5258 | */ |
| 5259 | |
| 5260 | void |
| 5261 | __malloc_stats (void) |
| 5262 | { |
| 5263 | int i; |
| 5264 | mstate ar_ptr; |
| 5265 | unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b; |
| 5266 | |
| 5267 | if (!__malloc_initialized) |
| 5268 | ptmalloc_init (); |
| 5269 | _IO_flockfile (stderr); |
| 5270 | int old_flags2 = stderr->_flags2; |
| 5271 | stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL; |
| 5272 | for (i = 0, ar_ptr = &main_arena;; i++) |
| 5273 | { |
| 5274 | struct mallinfo2 mi; |
| 5275 | |
| 5276 | memset (&mi, 0, sizeof (mi)); |
| 5277 | __libc_lock_lock (ar_ptr->mutex); |
| 5278 | int_mallinfo (ar_ptr, &mi); |
| 5279 | fprintf (stderr, "Arena %d:\n" , i); |
| 5280 | fprintf (stderr, "system bytes = %10u\n" , (unsigned int) mi.arena); |
| 5281 | fprintf (stderr, "in use bytes = %10u\n" , (unsigned int) mi.uordblks); |
| 5282 | #if MALLOC_DEBUG > 1 |
| 5283 | if (i > 0) |
| 5284 | dump_heap (heap_for_ptr (top (ar_ptr))); |
| 5285 | #endif |
| 5286 | system_b += mi.arena; |
| 5287 | in_use_b += mi.uordblks; |
| 5288 | __libc_lock_unlock (ar_ptr->mutex); |
| 5289 | ar_ptr = ar_ptr->next; |
| 5290 | if (ar_ptr == &main_arena) |
| 5291 | break; |
| 5292 | } |
| 5293 | fprintf (stderr, "Total (incl. mmap):\n" ); |
| 5294 | fprintf (stderr, "system bytes = %10u\n" , system_b); |
| 5295 | fprintf (stderr, "in use bytes = %10u\n" , in_use_b); |
| 5296 | fprintf (stderr, "max mmap regions = %10u\n" , (unsigned int) mp_.max_n_mmaps); |
| 5297 | fprintf (stderr, "max mmap bytes = %10lu\n" , |
| 5298 | (unsigned long) mp_.max_mmapped_mem); |
| 5299 | stderr->_flags2 = old_flags2; |
| 5300 | _IO_funlockfile (stderr); |
| 5301 | } |
| 5302 | |
| 5303 | |
| 5304 | /* |
| 5305 | ------------------------------ mallopt ------------------------------ |
| 5306 | */ |
| 5307 | static __always_inline int |
| 5308 | do_set_trim_threshold (size_t value) |
| 5309 | { |
| 5310 | LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold, |
| 5311 | mp_.no_dyn_threshold); |
| 5312 | mp_.trim_threshold = value; |
| 5313 | mp_.no_dyn_threshold = 1; |
| 5314 | return 1; |
| 5315 | } |
| 5316 | |
| 5317 | static __always_inline int |
| 5318 | do_set_top_pad (size_t value) |
| 5319 | { |
| 5320 | LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad, |
| 5321 | mp_.no_dyn_threshold); |
| 5322 | mp_.top_pad = value; |
| 5323 | mp_.no_dyn_threshold = 1; |
| 5324 | return 1; |
| 5325 | } |
| 5326 | |
| 5327 | static __always_inline int |
| 5328 | do_set_mmap_threshold (size_t value) |
| 5329 | { |
| 5330 | LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold, |
| 5331 | mp_.no_dyn_threshold); |
| 5332 | mp_.mmap_threshold = value; |
| 5333 | mp_.no_dyn_threshold = 1; |
| 5334 | return 1; |
| 5335 | } |
| 5336 | |
| 5337 | static __always_inline int |
| 5338 | do_set_mmaps_max (int32_t value) |
| 5339 | { |
| 5340 | LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max, |
| 5341 | mp_.no_dyn_threshold); |
| 5342 | mp_.n_mmaps_max = value; |
| 5343 | mp_.no_dyn_threshold = 1; |
| 5344 | return 1; |
| 5345 | } |
| 5346 | |
| 5347 | static __always_inline int |
| 5348 | do_set_mallopt_check (int32_t value) |
| 5349 | { |
| 5350 | return 1; |
| 5351 | } |
| 5352 | |
| 5353 | static __always_inline int |
| 5354 | do_set_perturb_byte (int32_t value) |
| 5355 | { |
| 5356 | LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte); |
| 5357 | perturb_byte = value; |
| 5358 | return 1; |
| 5359 | } |
| 5360 | |
| 5361 | static __always_inline int |
| 5362 | do_set_arena_test (size_t value) |
| 5363 | { |
| 5364 | LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test); |
| 5365 | mp_.arena_test = value; |
| 5366 | return 1; |
| 5367 | } |
| 5368 | |
| 5369 | static __always_inline int |
| 5370 | do_set_arena_max (size_t value) |
| 5371 | { |
| 5372 | LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max); |
| 5373 | mp_.arena_max = value; |
| 5374 | return 1; |
| 5375 | } |
| 5376 | |
| 5377 | #if USE_TCACHE |
| 5378 | static __always_inline int |
| 5379 | do_set_tcache_max (size_t value) |
| 5380 | { |
| 5381 | if (value <= MAX_TCACHE_SIZE) |
| 5382 | { |
| 5383 | LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes); |
| 5384 | mp_.tcache_max_bytes = value; |
| 5385 | mp_.tcache_bins = csize2tidx (request2size(value)) + 1; |
| 5386 | return 1; |
| 5387 | } |
| 5388 | return 0; |
| 5389 | } |
| 5390 | |
| 5391 | static __always_inline int |
| 5392 | do_set_tcache_count (size_t value) |
| 5393 | { |
| 5394 | if (value <= MAX_TCACHE_COUNT) |
| 5395 | { |
| 5396 | LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count); |
| 5397 | mp_.tcache_count = value; |
| 5398 | return 1; |
| 5399 | } |
| 5400 | return 0; |
| 5401 | } |
| 5402 | |
| 5403 | static __always_inline int |
| 5404 | do_set_tcache_unsorted_limit (size_t value) |
| 5405 | { |
| 5406 | LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit); |
| 5407 | mp_.tcache_unsorted_limit = value; |
| 5408 | return 1; |
| 5409 | } |
| 5410 | #endif |
| 5411 | |
| 5412 | static __always_inline int |
| 5413 | do_set_mxfast (size_t value) |
| 5414 | { |
| 5415 | if (value <= MAX_FAST_SIZE) |
| 5416 | { |
| 5417 | LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ()); |
| 5418 | set_max_fast (value); |
| 5419 | return 1; |
| 5420 | } |
| 5421 | return 0; |
| 5422 | } |
| 5423 | |
| 5424 | #if HAVE_TUNABLES |
| 5425 | static __always_inline int |
| 5426 | do_set_hugetlb (size_t value) |
| 5427 | { |
| 5428 | if (value == 1) |
| 5429 | { |
| 5430 | enum malloc_thp_mode_t thp_mode = __malloc_thp_mode (); |
| 5431 | /* |
| 5432 | Only enable THP madvise usage if system does support it and |
| 5433 | has 'madvise' mode. Otherwise the madvise() call is wasteful. |
| 5434 | */ |
| 5435 | if (thp_mode == malloc_thp_mode_madvise) |
| 5436 | mp_.thp_pagesize = __malloc_default_thp_pagesize (); |
| 5437 | } |
| 5438 | else if (value >= 2) |
| 5439 | __malloc_hugepage_config (value == 2 ? 0 : value, &mp_.hp_pagesize, |
| 5440 | &mp_.hp_flags); |
| 5441 | return 0; |
| 5442 | } |
| 5443 | #endif |
| 5444 | |
| 5445 | int |
| 5446 | __libc_mallopt (int param_number, int value) |
| 5447 | { |
| 5448 | mstate av = &main_arena; |
| 5449 | int res = 1; |
| 5450 | |
| 5451 | if (!__malloc_initialized) |
| 5452 | ptmalloc_init (); |
| 5453 | __libc_lock_lock (av->mutex); |
| 5454 | |
| 5455 | LIBC_PROBE (memory_mallopt, 2, param_number, value); |
| 5456 | |
| 5457 | /* We must consolidate main arena before changing max_fast |
| 5458 | (see definition of set_max_fast). */ |
| 5459 | malloc_consolidate (av); |
| 5460 | |
| 5461 | /* Many of these helper functions take a size_t. We do not worry |
| 5462 | about overflow here, because negative int values will wrap to |
| 5463 | very large size_t values and the helpers have sufficient range |
| 5464 | checking for such conversions. Many of these helpers are also |
| 5465 | used by the tunables macros in arena.c. */ |
| 5466 | |
| 5467 | switch (param_number) |
| 5468 | { |
| 5469 | case M_MXFAST: |
| 5470 | res = do_set_mxfast (value); |
| 5471 | break; |
| 5472 | |
| 5473 | case M_TRIM_THRESHOLD: |
| 5474 | res = do_set_trim_threshold (value); |
| 5475 | break; |
| 5476 | |
| 5477 | case M_TOP_PAD: |
| 5478 | res = do_set_top_pad (value); |
| 5479 | break; |
| 5480 | |
| 5481 | case M_MMAP_THRESHOLD: |
| 5482 | res = do_set_mmap_threshold (value); |
| 5483 | break; |
| 5484 | |
| 5485 | case M_MMAP_MAX: |
| 5486 | res = do_set_mmaps_max (value); |
| 5487 | break; |
| 5488 | |
| 5489 | case M_CHECK_ACTION: |
| 5490 | res = do_set_mallopt_check (value); |
| 5491 | break; |
| 5492 | |
| 5493 | case M_PERTURB: |
| 5494 | res = do_set_perturb_byte (value); |
| 5495 | break; |
| 5496 | |
| 5497 | case M_ARENA_TEST: |
| 5498 | if (value > 0) |
| 5499 | res = do_set_arena_test (value); |
| 5500 | break; |
| 5501 | |
| 5502 | case M_ARENA_MAX: |
| 5503 | if (value > 0) |
| 5504 | res = do_set_arena_max (value); |
| 5505 | break; |
| 5506 | } |
| 5507 | __libc_lock_unlock (av->mutex); |
| 5508 | return res; |
| 5509 | } |
| 5510 | libc_hidden_def (__libc_mallopt) |
| 5511 | |
| 5512 | |
| 5513 | /* |
| 5514 | -------------------- Alternative MORECORE functions -------------------- |
| 5515 | */ |
| 5516 | |
| 5517 | |
| 5518 | /* |
| 5519 | General Requirements for MORECORE. |
| 5520 | |
| 5521 | The MORECORE function must have the following properties: |
| 5522 | |
| 5523 | If MORECORE_CONTIGUOUS is false: |
| 5524 | |
| 5525 | * MORECORE must allocate in multiples of pagesize. It will |
| 5526 | only be called with arguments that are multiples of pagesize. |
| 5527 | |
| 5528 | * MORECORE(0) must return an address that is at least |
| 5529 | MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.) |
| 5530 | |
| 5531 | else (i.e. If MORECORE_CONTIGUOUS is true): |
| 5532 | |
| 5533 | * Consecutive calls to MORECORE with positive arguments |
| 5534 | return increasing addresses, indicating that space has been |
| 5535 | contiguously extended. |
| 5536 | |
| 5537 | * MORECORE need not allocate in multiples of pagesize. |
| 5538 | Calls to MORECORE need not have args of multiples of pagesize. |
| 5539 | |
| 5540 | * MORECORE need not page-align. |
| 5541 | |
| 5542 | In either case: |
| 5543 | |
| 5544 | * MORECORE may allocate more memory than requested. (Or even less, |
| 5545 | but this will generally result in a malloc failure.) |
| 5546 | |
| 5547 | * MORECORE must not allocate memory when given argument zero, but |
| 5548 | instead return one past the end address of memory from previous |
| 5549 | nonzero call. This malloc does NOT call MORECORE(0) |
| 5550 | until at least one call with positive arguments is made, so |
| 5551 | the initial value returned is not important. |
| 5552 | |
| 5553 | * Even though consecutive calls to MORECORE need not return contiguous |
| 5554 | addresses, it must be OK for malloc'ed chunks to span multiple |
| 5555 | regions in those cases where they do happen to be contiguous. |
| 5556 | |
| 5557 | * MORECORE need not handle negative arguments -- it may instead |
| 5558 | just return MORECORE_FAILURE when given negative arguments. |
| 5559 | Negative arguments are always multiples of pagesize. MORECORE |
| 5560 | must not misinterpret negative args as large positive unsigned |
| 5561 | args. You can suppress all such calls from even occurring by defining |
| 5562 | MORECORE_CANNOT_TRIM, |
| 5563 | |
| 5564 | There is some variation across systems about the type of the |
| 5565 | argument to sbrk/MORECORE. If size_t is unsigned, then it cannot |
| 5566 | actually be size_t, because sbrk supports negative args, so it is |
| 5567 | normally the signed type of the same width as size_t (sometimes |
| 5568 | declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much |
| 5569 | matter though. Internally, we use "long" as arguments, which should |
| 5570 | work across all reasonable possibilities. |
| 5571 | |
| 5572 | Additionally, if MORECORE ever returns failure for a positive |
| 5573 | request, then mmap is used as a noncontiguous system allocator. This |
| 5574 | is a useful backup strategy for systems with holes in address spaces |
| 5575 | -- in this case sbrk cannot contiguously expand the heap, but mmap |
| 5576 | may be able to map noncontiguous space. |
| 5577 | |
| 5578 | If you'd like mmap to ALWAYS be used, you can define MORECORE to be |
| 5579 | a function that always returns MORECORE_FAILURE. |
| 5580 | |
| 5581 | If you are using this malloc with something other than sbrk (or its |
| 5582 | emulation) to supply memory regions, you probably want to set |
| 5583 | MORECORE_CONTIGUOUS as false. As an example, here is a custom |
| 5584 | allocator kindly contributed for pre-OSX macOS. It uses virtually |
| 5585 | but not necessarily physically contiguous non-paged memory (locked |
| 5586 | in, present and won't get swapped out). You can use it by |
| 5587 | uncommenting this section, adding some #includes, and setting up the |
| 5588 | appropriate defines above: |
| 5589 | |
| 5590 | *#define MORECORE osMoreCore |
| 5591 | *#define MORECORE_CONTIGUOUS 0 |
| 5592 | |
| 5593 | There is also a shutdown routine that should somehow be called for |
| 5594 | cleanup upon program exit. |
| 5595 | |
| 5596 | *#define MAX_POOL_ENTRIES 100 |
| 5597 | *#define MINIMUM_MORECORE_SIZE (64 * 1024) |
| 5598 | static int next_os_pool; |
| 5599 | void *our_os_pools[MAX_POOL_ENTRIES]; |
| 5600 | |
| 5601 | void *osMoreCore(int size) |
| 5602 | { |
| 5603 | void *ptr = 0; |
| 5604 | static void *sbrk_top = 0; |
| 5605 | |
| 5606 | if (size > 0) |
| 5607 | { |
| 5608 | if (size < MINIMUM_MORECORE_SIZE) |
| 5609 | size = MINIMUM_MORECORE_SIZE; |
| 5610 | if (CurrentExecutionLevel() == kTaskLevel) |
| 5611 | ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); |
| 5612 | if (ptr == 0) |
| 5613 | { |
| 5614 | return (void *) MORECORE_FAILURE; |
| 5615 | } |
| 5616 | // save ptrs so they can be freed during cleanup |
| 5617 | our_os_pools[next_os_pool] = ptr; |
| 5618 | next_os_pool++; |
| 5619 | ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); |
| 5620 | sbrk_top = (char *) ptr + size; |
| 5621 | return ptr; |
| 5622 | } |
| 5623 | else if (size < 0) |
| 5624 | { |
| 5625 | // we don't currently support shrink behavior |
| 5626 | return (void *) MORECORE_FAILURE; |
| 5627 | } |
| 5628 | else |
| 5629 | { |
| 5630 | return sbrk_top; |
| 5631 | } |
| 5632 | } |
| 5633 | |
| 5634 | // cleanup any allocated memory pools |
| 5635 | // called as last thing before shutting down driver |
| 5636 | |
| 5637 | void osCleanupMem(void) |
| 5638 | { |
| 5639 | void **ptr; |
| 5640 | |
| 5641 | for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) |
| 5642 | if (*ptr) |
| 5643 | { |
| 5644 | PoolDeallocate(*ptr); |
| 5645 | * ptr = 0; |
| 5646 | } |
| 5647 | } |
| 5648 | |
| 5649 | */ |
| 5650 | |
| 5651 | |
| 5652 | /* Helper code. */ |
| 5653 | |
| 5654 | extern char **__libc_argv attribute_hidden; |
| 5655 | |
| 5656 | static void |
| 5657 | malloc_printerr (const char *str) |
| 5658 | { |
| 5659 | #if IS_IN (libc) |
| 5660 | __libc_message (do_abort, "%s\n" , str); |
| 5661 | #else |
| 5662 | __libc_fatal (str); |
| 5663 | #endif |
| 5664 | __builtin_unreachable (); |
| 5665 | } |
| 5666 | |
| 5667 | #if IS_IN (libc) |
| 5668 | /* We need a wrapper function for one of the additions of POSIX. */ |
| 5669 | int |
| 5670 | __posix_memalign (void **memptr, size_t alignment, size_t size) |
| 5671 | { |
| 5672 | void *mem; |
| 5673 | |
| 5674 | if (!__malloc_initialized) |
| 5675 | ptmalloc_init (); |
| 5676 | |
| 5677 | /* Test whether the SIZE argument is valid. It must be a power of |
| 5678 | two multiple of sizeof (void *). */ |
| 5679 | if (alignment % sizeof (void *) != 0 |
| 5680 | || !powerof2 (alignment / sizeof (void *)) |
| 5681 | || alignment == 0) |
| 5682 | return EINVAL; |
| 5683 | |
| 5684 | |
| 5685 | void *address = RETURN_ADDRESS (0); |
| 5686 | mem = _mid_memalign (alignment, size, address); |
| 5687 | |
| 5688 | if (mem != NULL) |
| 5689 | { |
| 5690 | *memptr = mem; |
| 5691 | return 0; |
| 5692 | } |
| 5693 | |
| 5694 | return ENOMEM; |
| 5695 | } |
| 5696 | weak_alias (__posix_memalign, posix_memalign) |
| 5697 | #endif |
| 5698 | |
| 5699 | |
| 5700 | int |
| 5701 | __malloc_info (int options, FILE *fp) |
| 5702 | { |
| 5703 | /* For now, at least. */ |
| 5704 | if (options != 0) |
| 5705 | return EINVAL; |
| 5706 | |
| 5707 | int n = 0; |
| 5708 | size_t total_nblocks = 0; |
| 5709 | size_t total_nfastblocks = 0; |
| 5710 | size_t total_avail = 0; |
| 5711 | size_t total_fastavail = 0; |
| 5712 | size_t total_system = 0; |
| 5713 | size_t total_max_system = 0; |
| 5714 | size_t total_aspace = 0; |
| 5715 | size_t total_aspace_mprotect = 0; |
| 5716 | |
| 5717 | |
| 5718 | |
| 5719 | if (!__malloc_initialized) |
| 5720 | ptmalloc_init (); |
| 5721 | |
| 5722 | fputs ("<malloc version=\"1\">\n" , fp); |
| 5723 | |
| 5724 | /* Iterate over all arenas currently in use. */ |
| 5725 | mstate ar_ptr = &main_arena; |
| 5726 | do |
| 5727 | { |
| 5728 | fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n" , n++); |
| 5729 | |
| 5730 | size_t nblocks = 0; |
| 5731 | size_t nfastblocks = 0; |
| 5732 | size_t avail = 0; |
| 5733 | size_t fastavail = 0; |
| 5734 | struct |
| 5735 | { |
| 5736 | size_t from; |
| 5737 | size_t to; |
| 5738 | size_t total; |
| 5739 | size_t count; |
| 5740 | } sizes[NFASTBINS + NBINS - 1]; |
| 5741 | #define nsizes (sizeof (sizes) / sizeof (sizes[0])) |
| 5742 | |
| 5743 | __libc_lock_lock (ar_ptr->mutex); |
| 5744 | |
| 5745 | /* Account for top chunk. The top-most available chunk is |
| 5746 | treated specially and is never in any bin. See "initial_top" |
| 5747 | comments. */ |
| 5748 | avail = chunksize (ar_ptr->top); |
| 5749 | nblocks = 1; /* Top always exists. */ |
| 5750 | |
| 5751 | for (size_t i = 0; i < NFASTBINS; ++i) |
| 5752 | { |
| 5753 | mchunkptr p = fastbin (ar_ptr, i); |
| 5754 | if (p != NULL) |
| 5755 | { |
| 5756 | size_t nthissize = 0; |
| 5757 | size_t thissize = chunksize (p); |
| 5758 | |
| 5759 | while (p != NULL) |
| 5760 | { |
| 5761 | if (__glibc_unlikely (misaligned_chunk (p))) |
| 5762 | malloc_printerr ("__malloc_info(): " |
| 5763 | "unaligned fastbin chunk detected" ); |
| 5764 | ++nthissize; |
| 5765 | p = REVEAL_PTR (p->fd); |
| 5766 | } |
| 5767 | |
| 5768 | fastavail += nthissize * thissize; |
| 5769 | nfastblocks += nthissize; |
| 5770 | sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1); |
| 5771 | sizes[i].to = thissize; |
| 5772 | sizes[i].count = nthissize; |
| 5773 | } |
| 5774 | else |
| 5775 | sizes[i].from = sizes[i].to = sizes[i].count = 0; |
| 5776 | |
| 5777 | sizes[i].total = sizes[i].count * sizes[i].to; |
| 5778 | } |
| 5779 | |
| 5780 | |
| 5781 | mbinptr bin; |
| 5782 | struct malloc_chunk *r; |
| 5783 | |
| 5784 | for (size_t i = 1; i < NBINS; ++i) |
| 5785 | { |
| 5786 | bin = bin_at (ar_ptr, i); |
| 5787 | r = bin->fd; |
| 5788 | sizes[NFASTBINS - 1 + i].from = ~((size_t) 0); |
| 5789 | sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total |
| 5790 | = sizes[NFASTBINS - 1 + i].count = 0; |
| 5791 | |
| 5792 | if (r != NULL) |
| 5793 | while (r != bin) |
| 5794 | { |
| 5795 | size_t r_size = chunksize_nomask (r); |
| 5796 | ++sizes[NFASTBINS - 1 + i].count; |
| 5797 | sizes[NFASTBINS - 1 + i].total += r_size; |
| 5798 | sizes[NFASTBINS - 1 + i].from |
| 5799 | = MIN (sizes[NFASTBINS - 1 + i].from, r_size); |
| 5800 | sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to, |
| 5801 | r_size); |
| 5802 | |
| 5803 | r = r->fd; |
| 5804 | } |
| 5805 | |
| 5806 | if (sizes[NFASTBINS - 1 + i].count == 0) |
| 5807 | sizes[NFASTBINS - 1 + i].from = 0; |
| 5808 | nblocks += sizes[NFASTBINS - 1 + i].count; |
| 5809 | avail += sizes[NFASTBINS - 1 + i].total; |
| 5810 | } |
| 5811 | |
| 5812 | size_t heap_size = 0; |
| 5813 | size_t heap_mprotect_size = 0; |
| 5814 | size_t heap_count = 0; |
| 5815 | if (ar_ptr != &main_arena) |
| 5816 | { |
| 5817 | /* Iterate over the arena heaps from back to front. */ |
| 5818 | heap_info *heap = heap_for_ptr (top (ar_ptr)); |
| 5819 | do |
| 5820 | { |
| 5821 | heap_size += heap->size; |
| 5822 | heap_mprotect_size += heap->mprotect_size; |
| 5823 | heap = heap->prev; |
| 5824 | ++heap_count; |
| 5825 | } |
| 5826 | while (heap != NULL); |
| 5827 | } |
| 5828 | |
| 5829 | __libc_lock_unlock (ar_ptr->mutex); |
| 5830 | |
| 5831 | total_nfastblocks += nfastblocks; |
| 5832 | total_fastavail += fastavail; |
| 5833 | |
| 5834 | total_nblocks += nblocks; |
| 5835 | total_avail += avail; |
| 5836 | |
| 5837 | for (size_t i = 0; i < nsizes; ++i) |
| 5838 | if (sizes[i].count != 0 && i != NFASTBINS) |
| 5839 | fprintf (fp, "\ |
| 5840 | <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
| 5841 | sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count); |
| 5842 | |
| 5843 | if (sizes[NFASTBINS].count != 0) |
| 5844 | fprintf (fp, "\ |
| 5845 | <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
| 5846 | sizes[NFASTBINS].from, sizes[NFASTBINS].to, |
| 5847 | sizes[NFASTBINS].total, sizes[NFASTBINS].count); |
| 5848 | |
| 5849 | total_system += ar_ptr->system_mem; |
| 5850 | total_max_system += ar_ptr->max_system_mem; |
| 5851 | |
| 5852 | fprintf (fp, |
| 5853 | "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
| 5854 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
| 5855 | "<system type=\"current\" size=\"%zu\"/>\n" |
| 5856 | "<system type=\"max\" size=\"%zu\"/>\n" , |
| 5857 | nfastblocks, fastavail, nblocks, avail, |
| 5858 | ar_ptr->system_mem, ar_ptr->max_system_mem); |
| 5859 | |
| 5860 | if (ar_ptr != &main_arena) |
| 5861 | { |
| 5862 | fprintf (fp, |
| 5863 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
| 5864 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" |
| 5865 | "<aspace type=\"subheaps\" size=\"%zu\"/>\n" , |
| 5866 | heap_size, heap_mprotect_size, heap_count); |
| 5867 | total_aspace += heap_size; |
| 5868 | total_aspace_mprotect += heap_mprotect_size; |
| 5869 | } |
| 5870 | else |
| 5871 | { |
| 5872 | fprintf (fp, |
| 5873 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
| 5874 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" , |
| 5875 | ar_ptr->system_mem, ar_ptr->system_mem); |
| 5876 | total_aspace += ar_ptr->system_mem; |
| 5877 | total_aspace_mprotect += ar_ptr->system_mem; |
| 5878 | } |
| 5879 | |
| 5880 | fputs ("</heap>\n" , fp); |
| 5881 | ar_ptr = ar_ptr->next; |
| 5882 | } |
| 5883 | while (ar_ptr != &main_arena); |
| 5884 | |
| 5885 | fprintf (fp, |
| 5886 | "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
| 5887 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
| 5888 | "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n" |
| 5889 | "<system type=\"current\" size=\"%zu\"/>\n" |
| 5890 | "<system type=\"max\" size=\"%zu\"/>\n" |
| 5891 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
| 5892 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" |
| 5893 | "</malloc>\n" , |
| 5894 | total_nfastblocks, total_fastavail, total_nblocks, total_avail, |
| 5895 | mp_.n_mmaps, mp_.mmapped_mem, |
| 5896 | total_system, total_max_system, |
| 5897 | total_aspace, total_aspace_mprotect); |
| 5898 | |
| 5899 | return 0; |
| 5900 | } |
| 5901 | #if IS_IN (libc) |
| 5902 | weak_alias (__malloc_info, malloc_info) |
| 5903 | |
| 5904 | strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc) |
| 5905 | strong_alias (__libc_free, __free) strong_alias (__libc_free, free) |
| 5906 | strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc) |
| 5907 | strong_alias (__libc_memalign, __memalign) |
| 5908 | weak_alias (__libc_memalign, memalign) |
| 5909 | strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc) |
| 5910 | strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc) |
| 5911 | strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc) |
| 5912 | strong_alias (__libc_mallinfo, __mallinfo) |
| 5913 | weak_alias (__libc_mallinfo, mallinfo) |
| 5914 | strong_alias (__libc_mallinfo2, __mallinfo2) |
| 5915 | weak_alias (__libc_mallinfo2, mallinfo2) |
| 5916 | strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt) |
| 5917 | |
| 5918 | weak_alias (__malloc_stats, malloc_stats) |
| 5919 | weak_alias (__malloc_usable_size, malloc_usable_size) |
| 5920 | weak_alias (__malloc_trim, malloc_trim) |
| 5921 | #endif |
| 5922 | |
| 5923 | #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26) |
| 5924 | compat_symbol (libc, __libc_free, cfree, GLIBC_2_0); |
| 5925 | #endif |
| 5926 | |
| 5927 | /* ------------------------------------------------------------ |
| 5928 | History: |
| 5929 | |
| 5930 | [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc] |
| 5931 | |
| 5932 | */ |
| 5933 | /* |
| 5934 | * Local variables: |
| 5935 | * c-basic-offset: 2 |
| 5936 | * End: |
| 5937 | */ |
| 5938 | |