1 | /* Malloc implementation for multiple threads without lock contention. |
2 | Copyright (C) 1996-2019 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Wolfram Gloger <wg@malloc.de> |
5 | and Doug Lea <dl@cs.oswego.edu>, 2001. |
6 | |
7 | The GNU C Library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License as |
9 | published by the Free Software Foundation; either version 2.1 of the |
10 | License, or (at your option) any later version. |
11 | |
12 | The GNU C Library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public |
18 | License along with the GNU C Library; see the file COPYING.LIB. If |
19 | not, see <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* |
22 | This is a version (aka ptmalloc2) of malloc/free/realloc written by |
23 | Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger. |
24 | |
25 | There have been substantial changes made after the integration into |
26 | glibc in all parts of the code. Do not look for much commonality |
27 | with the ptmalloc2 version. |
28 | |
29 | * Version ptmalloc2-20011215 |
30 | based on: |
31 | VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) |
32 | |
33 | * Quickstart |
34 | |
35 | In order to compile this implementation, a Makefile is provided with |
36 | the ptmalloc2 distribution, which has pre-defined targets for some |
37 | popular systems (e.g. "make posix" for Posix threads). All that is |
38 | typically required with regard to compiler flags is the selection of |
39 | the thread package via defining one out of USE_PTHREADS, USE_THR or |
40 | USE_SPROC. Check the thread-m.h file for what effects this has. |
41 | Many/most systems will additionally require USE_TSD_DATA_HACK to be |
42 | defined, so this is the default for "make posix". |
43 | |
44 | * Why use this malloc? |
45 | |
46 | This is not the fastest, most space-conserving, most portable, or |
47 | most tunable malloc ever written. However it is among the fastest |
48 | while also being among the most space-conserving, portable and tunable. |
49 | Consistent balance across these factors results in a good general-purpose |
50 | allocator for malloc-intensive programs. |
51 | |
52 | The main properties of the algorithms are: |
53 | * For large (>= 512 bytes) requests, it is a pure best-fit allocator, |
54 | with ties normally decided via FIFO (i.e. least recently used). |
55 | * For small (<= 64 bytes by default) requests, it is a caching |
56 | allocator, that maintains pools of quickly recycled chunks. |
57 | * In between, and for combinations of large and small requests, it does |
58 | the best it can trying to meet both goals at once. |
59 | * For very large requests (>= 128KB by default), it relies on system |
60 | memory mapping facilities, if supported. |
61 | |
62 | For a longer but slightly out of date high-level description, see |
63 | http://gee.cs.oswego.edu/dl/html/malloc.html |
64 | |
65 | You may already by default be using a C library containing a malloc |
66 | that is based on some version of this malloc (for example in |
67 | linux). You might still want to use the one in this file in order to |
68 | customize settings or to avoid overheads associated with library |
69 | versions. |
70 | |
71 | * Contents, described in more detail in "description of public routines" below. |
72 | |
73 | Standard (ANSI/SVID/...) functions: |
74 | malloc(size_t n); |
75 | calloc(size_t n_elements, size_t element_size); |
76 | free(void* p); |
77 | realloc(void* p, size_t n); |
78 | memalign(size_t alignment, size_t n); |
79 | valloc(size_t n); |
80 | mallinfo() |
81 | mallopt(int parameter_number, int parameter_value) |
82 | |
83 | Additional functions: |
84 | independent_calloc(size_t n_elements, size_t size, void* chunks[]); |
85 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
86 | pvalloc(size_t n); |
87 | malloc_trim(size_t pad); |
88 | malloc_usable_size(void* p); |
89 | malloc_stats(); |
90 | |
91 | * Vital statistics: |
92 | |
93 | Supported pointer representation: 4 or 8 bytes |
94 | Supported size_t representation: 4 or 8 bytes |
95 | Note that size_t is allowed to be 4 bytes even if pointers are 8. |
96 | You can adjust this by defining INTERNAL_SIZE_T |
97 | |
98 | Alignment: 2 * sizeof(size_t) (default) |
99 | (i.e., 8 byte alignment with 4byte size_t). This suffices for |
100 | nearly all current machines and C compilers. However, you can |
101 | define MALLOC_ALIGNMENT to be wider than this if necessary. |
102 | |
103 | Minimum overhead per allocated chunk: 4 or 8 bytes |
104 | Each malloced chunk has a hidden word of overhead holding size |
105 | and status information. |
106 | |
107 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) |
108 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
109 | |
110 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte |
111 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are |
112 | needed; 4 (8) for a trailing size field and 8 (16) bytes for |
113 | free list pointers. Thus, the minimum allocatable size is |
114 | 16/24/32 bytes. |
115 | |
116 | Even a request for zero bytes (i.e., malloc(0)) returns a |
117 | pointer to something of the minimum allocatable size. |
118 | |
119 | The maximum overhead wastage (i.e., number of extra bytes |
120 | allocated than were requested in malloc) is less than or equal |
121 | to the minimum size, except for requests >= mmap_threshold that |
122 | are serviced via mmap(), where the worst case wastage is 2 * |
123 | sizeof(size_t) bytes plus the remainder from a system page (the |
124 | minimal mmap unit); typically 4096 or 8192 bytes. |
125 | |
126 | Maximum allocated size: 4-byte size_t: 2^32 minus about two pages |
127 | 8-byte size_t: 2^64 minus about two pages |
128 | |
129 | It is assumed that (possibly signed) size_t values suffice to |
130 | represent chunk sizes. `Possibly signed' is due to the fact |
131 | that `size_t' may be defined on a system as either a signed or |
132 | an unsigned type. The ISO C standard says that it must be |
133 | unsigned, but a few systems are known not to adhere to this. |
134 | Additionally, even when size_t is unsigned, sbrk (which is by |
135 | default used to obtain memory from system) accepts signed |
136 | arguments, and may not be able to handle size_t-wide arguments |
137 | with negative sign bit. Generally, values that would |
138 | appear as negative after accounting for overhead and alignment |
139 | are supported only via mmap(), which does not have this |
140 | limitation. |
141 | |
142 | Requests for sizes outside the allowed range will perform an optional |
143 | failure action and then return null. (Requests may also |
144 | also fail because a system is out of memory.) |
145 | |
146 | Thread-safety: thread-safe |
147 | |
148 | Compliance: I believe it is compliant with the 1997 Single Unix Specification |
149 | Also SVID/XPG, ANSI C, and probably others as well. |
150 | |
151 | * Synopsis of compile-time options: |
152 | |
153 | People have reported using previous versions of this malloc on all |
154 | versions of Unix, sometimes by tweaking some of the defines |
155 | below. It has been tested most extensively on Solaris and Linux. |
156 | People also report using it in stand-alone embedded systems. |
157 | |
158 | The implementation is in straight, hand-tuned ANSI C. It is not |
159 | at all modular. (Sorry!) It uses a lot of macros. To be at all |
160 | usable, this code should be compiled using an optimizing compiler |
161 | (for example gcc -O3) that can simplify expressions and control |
162 | paths. (FAQ: some macros import variables as arguments rather than |
163 | declare locals because people reported that some debuggers |
164 | otherwise get confused.) |
165 | |
166 | OPTION DEFAULT VALUE |
167 | |
168 | Compilation Environment options: |
169 | |
170 | HAVE_MREMAP 0 |
171 | |
172 | Changing default word sizes: |
173 | |
174 | INTERNAL_SIZE_T size_t |
175 | |
176 | Configuration and functionality options: |
177 | |
178 | USE_PUBLIC_MALLOC_WRAPPERS NOT defined |
179 | USE_MALLOC_LOCK NOT defined |
180 | MALLOC_DEBUG NOT defined |
181 | REALLOC_ZERO_BYTES_FREES 1 |
182 | TRIM_FASTBINS 0 |
183 | |
184 | Options for customizing MORECORE: |
185 | |
186 | MORECORE sbrk |
187 | MORECORE_FAILURE -1 |
188 | MORECORE_CONTIGUOUS 1 |
189 | MORECORE_CANNOT_TRIM NOT defined |
190 | MORECORE_CLEARS 1 |
191 | MMAP_AS_MORECORE_SIZE (1024 * 1024) |
192 | |
193 | Tuning options that are also dynamically changeable via mallopt: |
194 | |
195 | DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit) |
196 | DEFAULT_TRIM_THRESHOLD 128 * 1024 |
197 | DEFAULT_TOP_PAD 0 |
198 | DEFAULT_MMAP_THRESHOLD 128 * 1024 |
199 | DEFAULT_MMAP_MAX 65536 |
200 | |
201 | There are several other #defined constants and macros that you |
202 | probably don't want to touch unless you are extending or adapting malloc. */ |
203 | |
204 | /* |
205 | void* is the pointer type that malloc should say it returns |
206 | */ |
207 | |
208 | #ifndef void |
209 | #define void void |
210 | #endif /*void*/ |
211 | |
212 | #include <stddef.h> /* for size_t */ |
213 | #include <stdlib.h> /* for getenv(), abort() */ |
214 | #include <unistd.h> /* for __libc_enable_secure */ |
215 | |
216 | #include <atomic.h> |
217 | #include <_itoa.h> |
218 | #include <bits/wordsize.h> |
219 | #include <sys/sysinfo.h> |
220 | |
221 | #include <ldsodefs.h> |
222 | |
223 | #include <unistd.h> |
224 | #include <stdio.h> /* needed for malloc_stats */ |
225 | #include <errno.h> |
226 | #include <assert.h> |
227 | |
228 | #include <shlib-compat.h> |
229 | |
230 | /* For uintptr_t. */ |
231 | #include <stdint.h> |
232 | |
233 | /* For va_arg, va_start, va_end. */ |
234 | #include <stdarg.h> |
235 | |
236 | /* For MIN, MAX, powerof2. */ |
237 | #include <sys/param.h> |
238 | |
239 | /* For ALIGN_UP et. al. */ |
240 | #include <libc-pointer-arith.h> |
241 | |
242 | /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */ |
243 | #include <libc-diag.h> |
244 | |
245 | #include <malloc/malloc-internal.h> |
246 | |
247 | /* For SINGLE_THREAD_P. */ |
248 | #include <sysdep-cancel.h> |
249 | |
250 | /* |
251 | Debugging: |
252 | |
253 | Because freed chunks may be overwritten with bookkeeping fields, this |
254 | malloc will often die when freed memory is overwritten by user |
255 | programs. This can be very effective (albeit in an annoying way) |
256 | in helping track down dangling pointers. |
257 | |
258 | If you compile with -DMALLOC_DEBUG, a number of assertion checks are |
259 | enabled that will catch more memory errors. You probably won't be |
260 | able to make much sense of the actual assertion errors, but they |
261 | should help you locate incorrectly overwritten memory. The checking |
262 | is fairly extensive, and will slow down execution |
263 | noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set |
264 | will attempt to check every non-mmapped allocated and free chunk in |
265 | the course of computing the summmaries. (By nature, mmapped regions |
266 | cannot be checked very much automatically.) |
267 | |
268 | Setting MALLOC_DEBUG may also be helpful if you are trying to modify |
269 | this code. The assertions in the check routines spell out in more |
270 | detail the assumptions and invariants underlying the algorithms. |
271 | |
272 | Setting MALLOC_DEBUG does NOT provide an automated mechanism for |
273 | checking that all accesses to malloced memory stay within their |
274 | bounds. However, there are several add-ons and adaptations of this |
275 | or other mallocs available that do this. |
276 | */ |
277 | |
278 | #ifndef MALLOC_DEBUG |
279 | #define MALLOC_DEBUG 0 |
280 | #endif |
281 | |
282 | #ifndef NDEBUG |
283 | # define __assert_fail(assertion, file, line, function) \ |
284 | __malloc_assert(assertion, file, line, function) |
285 | |
286 | extern const char *__progname; |
287 | |
288 | static void |
289 | __malloc_assert (const char *assertion, const char *file, unsigned int line, |
290 | const char *function) |
291 | { |
292 | (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n" , |
293 | __progname, __progname[0] ? ": " : "" , |
294 | file, line, |
295 | function ? function : "" , function ? ": " : "" , |
296 | assertion); |
297 | fflush (stderr); |
298 | abort (); |
299 | } |
300 | #endif |
301 | |
302 | #if USE_TCACHE |
303 | /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */ |
304 | # define TCACHE_MAX_BINS 64 |
305 | # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1) |
306 | |
307 | /* Only used to pre-fill the tunables. */ |
308 | # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ) |
309 | |
310 | /* When "x" is from chunksize(). */ |
311 | # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT) |
312 | /* When "x" is a user-provided size. */ |
313 | # define usize2tidx(x) csize2tidx (request2size (x)) |
314 | |
315 | /* With rounding and alignment, the bins are... |
316 | idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit) |
317 | idx 1 bytes 25..40 or 13..20 |
318 | idx 2 bytes 41..56 or 21..28 |
319 | etc. */ |
320 | |
321 | /* This is another arbitrary limit, which tunables can change. Each |
322 | tcache bin will hold at most this number of chunks. */ |
323 | # define TCACHE_FILL_COUNT 7 |
324 | #endif |
325 | |
326 | |
327 | /* |
328 | REALLOC_ZERO_BYTES_FREES should be set if a call to |
329 | realloc with zero bytes should be the same as a call to free. |
330 | This is required by the C standard. Otherwise, since this malloc |
331 | returns a unique pointer for malloc(0), so does realloc(p, 0). |
332 | */ |
333 | |
334 | #ifndef REALLOC_ZERO_BYTES_FREES |
335 | #define REALLOC_ZERO_BYTES_FREES 1 |
336 | #endif |
337 | |
338 | /* |
339 | TRIM_FASTBINS controls whether free() of a very small chunk can |
340 | immediately lead to trimming. Setting to true (1) can reduce memory |
341 | footprint, but will almost always slow down programs that use a lot |
342 | of small chunks. |
343 | |
344 | Define this only if you are willing to give up some speed to more |
345 | aggressively reduce system-level memory footprint when releasing |
346 | memory in programs that use many small chunks. You can get |
347 | essentially the same effect by setting MXFAST to 0, but this can |
348 | lead to even greater slowdowns in programs using many small chunks. |
349 | TRIM_FASTBINS is an in-between compile-time option, that disables |
350 | only those chunks bordering topmost memory from being placed in |
351 | fastbins. |
352 | */ |
353 | |
354 | #ifndef TRIM_FASTBINS |
355 | #define TRIM_FASTBINS 0 |
356 | #endif |
357 | |
358 | |
359 | /* Definition for getting more memory from the OS. */ |
360 | #define MORECORE (*__morecore) |
361 | #define MORECORE_FAILURE 0 |
362 | void * __default_morecore (ptrdiff_t); |
363 | void *(*__morecore)(ptrdiff_t) = __default_morecore; |
364 | |
365 | |
366 | #include <string.h> |
367 | |
368 | /* |
369 | MORECORE-related declarations. By default, rely on sbrk |
370 | */ |
371 | |
372 | |
373 | /* |
374 | MORECORE is the name of the routine to call to obtain more memory |
375 | from the system. See below for general guidance on writing |
376 | alternative MORECORE functions, as well as a version for WIN32 and a |
377 | sample version for pre-OSX macos. |
378 | */ |
379 | |
380 | #ifndef MORECORE |
381 | #define MORECORE sbrk |
382 | #endif |
383 | |
384 | /* |
385 | MORECORE_FAILURE is the value returned upon failure of MORECORE |
386 | as well as mmap. Since it cannot be an otherwise valid memory address, |
387 | and must reflect values of standard sys calls, you probably ought not |
388 | try to redefine it. |
389 | */ |
390 | |
391 | #ifndef MORECORE_FAILURE |
392 | #define MORECORE_FAILURE (-1) |
393 | #endif |
394 | |
395 | /* |
396 | If MORECORE_CONTIGUOUS is true, take advantage of fact that |
397 | consecutive calls to MORECORE with positive arguments always return |
398 | contiguous increasing addresses. This is true of unix sbrk. Even |
399 | if not defined, when regions happen to be contiguous, malloc will |
400 | permit allocations spanning regions obtained from different |
401 | calls. But defining this when applicable enables some stronger |
402 | consistency checks and space efficiencies. |
403 | */ |
404 | |
405 | #ifndef MORECORE_CONTIGUOUS |
406 | #define MORECORE_CONTIGUOUS 1 |
407 | #endif |
408 | |
409 | /* |
410 | Define MORECORE_CANNOT_TRIM if your version of MORECORE |
411 | cannot release space back to the system when given negative |
412 | arguments. This is generally necessary only if you are using |
413 | a hand-crafted MORECORE function that cannot handle negative arguments. |
414 | */ |
415 | |
416 | /* #define MORECORE_CANNOT_TRIM */ |
417 | |
418 | /* MORECORE_CLEARS (default 1) |
419 | The degree to which the routine mapped to MORECORE zeroes out |
420 | memory: never (0), only for newly allocated space (1) or always |
421 | (2). The distinction between (1) and (2) is necessary because on |
422 | some systems, if the application first decrements and then |
423 | increments the break value, the contents of the reallocated space |
424 | are unspecified. |
425 | */ |
426 | |
427 | #ifndef MORECORE_CLEARS |
428 | # define MORECORE_CLEARS 1 |
429 | #endif |
430 | |
431 | |
432 | /* |
433 | MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if |
434 | sbrk fails, and mmap is used as a backup. The value must be a |
435 | multiple of page size. This backup strategy generally applies only |
436 | when systems have "holes" in address space, so sbrk cannot perform |
437 | contiguous expansion, but there is still space available on system. |
438 | On systems for which this is known to be useful (i.e. most linux |
439 | kernels), this occurs only when programs allocate huge amounts of |
440 | memory. Between this, and the fact that mmap regions tend to be |
441 | limited, the size should be large, to avoid too many mmap calls and |
442 | thus avoid running out of kernel resources. */ |
443 | |
444 | #ifndef MMAP_AS_MORECORE_SIZE |
445 | #define MMAP_AS_MORECORE_SIZE (1024 * 1024) |
446 | #endif |
447 | |
448 | /* |
449 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate |
450 | large blocks. |
451 | */ |
452 | |
453 | #ifndef HAVE_MREMAP |
454 | #define HAVE_MREMAP 0 |
455 | #endif |
456 | |
457 | /* We may need to support __malloc_initialize_hook for backwards |
458 | compatibility. */ |
459 | |
460 | #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_24) |
461 | # define HAVE_MALLOC_INIT_HOOK 1 |
462 | #else |
463 | # define HAVE_MALLOC_INIT_HOOK 0 |
464 | #endif |
465 | |
466 | |
467 | /* |
468 | This version of malloc supports the standard SVID/XPG mallinfo |
469 | routine that returns a struct containing usage properties and |
470 | statistics. It should work on any SVID/XPG compliant system that has |
471 | a /usr/include/malloc.h defining struct mallinfo. (If you'd like to |
472 | install such a thing yourself, cut out the preliminary declarations |
473 | as described above and below and save them in a malloc.h file. But |
474 | there's no compelling reason to bother to do this.) |
475 | |
476 | The main declaration needed is the mallinfo struct that is returned |
477 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a |
478 | bunch of fields that are not even meaningful in this version of |
479 | malloc. These fields are are instead filled by mallinfo() with |
480 | other numbers that might be of interest. |
481 | */ |
482 | |
483 | |
484 | /* ---------- description of public routines ------------ */ |
485 | |
486 | /* |
487 | malloc(size_t n) |
488 | Returns a pointer to a newly allocated chunk of at least n bytes, or null |
489 | if no space is available. Additionally, on failure, errno is |
490 | set to ENOMEM on ANSI C systems. |
491 | |
492 | If n is zero, malloc returns a minumum-sized chunk. (The minimum |
493 | size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit |
494 | systems.) On most systems, size_t is an unsigned type, so calls |
495 | with negative arguments are interpreted as requests for huge amounts |
496 | of space, which will often fail. The maximum supported value of n |
497 | differs across systems, but is in all cases less than the maximum |
498 | representable value of a size_t. |
499 | */ |
500 | void* __libc_malloc(size_t); |
501 | libc_hidden_proto (__libc_malloc) |
502 | |
503 | /* |
504 | free(void* p) |
505 | Releases the chunk of memory pointed to by p, that had been previously |
506 | allocated using malloc or a related routine such as realloc. |
507 | It has no effect if p is null. It can have arbitrary (i.e., bad!) |
508 | effects if p has already been freed. |
509 | |
510 | Unless disabled (using mallopt), freeing very large spaces will |
511 | when possible, automatically trigger operations that give |
512 | back unused memory to the system, thus reducing program footprint. |
513 | */ |
514 | void __libc_free(void*); |
515 | libc_hidden_proto (__libc_free) |
516 | |
517 | /* |
518 | calloc(size_t n_elements, size_t element_size); |
519 | Returns a pointer to n_elements * element_size bytes, with all locations |
520 | set to zero. |
521 | */ |
522 | void* __libc_calloc(size_t, size_t); |
523 | |
524 | /* |
525 | realloc(void* p, size_t n) |
526 | Returns a pointer to a chunk of size n that contains the same data |
527 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
528 | if no space is available. |
529 | |
530 | The returned pointer may or may not be the same as p. The algorithm |
531 | prefers extending p when possible, otherwise it employs the |
532 | equivalent of a malloc-copy-free sequence. |
533 | |
534 | If p is null, realloc is equivalent to malloc. |
535 | |
536 | If space is not available, realloc returns null, errno is set (if on |
537 | ANSI) and p is NOT freed. |
538 | |
539 | if n is for fewer bytes than already held by p, the newly unused |
540 | space is lopped off and freed if possible. Unless the #define |
541 | REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of |
542 | zero (re)allocates a minimum-sized chunk. |
543 | |
544 | Large chunks that were internally obtained via mmap will always be |
545 | grown using malloc-copy-free sequences unless the system supports |
546 | MREMAP (currently only linux). |
547 | |
548 | The old unix realloc convention of allowing the last-free'd chunk |
549 | to be used as an argument to realloc is not supported. |
550 | */ |
551 | void* __libc_realloc(void*, size_t); |
552 | libc_hidden_proto (__libc_realloc) |
553 | |
554 | /* |
555 | memalign(size_t alignment, size_t n); |
556 | Returns a pointer to a newly allocated chunk of n bytes, aligned |
557 | in accord with the alignment argument. |
558 | |
559 | The alignment argument should be a power of two. If the argument is |
560 | not a power of two, the nearest greater power is used. |
561 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
562 | bother calling memalign with an argument of 8 or less. |
563 | |
564 | Overreliance on memalign is a sure way to fragment space. |
565 | */ |
566 | void* __libc_memalign(size_t, size_t); |
567 | libc_hidden_proto (__libc_memalign) |
568 | |
569 | /* |
570 | valloc(size_t n); |
571 | Equivalent to memalign(pagesize, n), where pagesize is the page |
572 | size of the system. If the pagesize is unknown, 4096 is used. |
573 | */ |
574 | void* __libc_valloc(size_t); |
575 | |
576 | |
577 | |
578 | /* |
579 | mallopt(int parameter_number, int parameter_value) |
580 | Sets tunable parameters The format is to provide a |
581 | (parameter-number, parameter-value) pair. mallopt then sets the |
582 | corresponding parameter to the argument value if it can (i.e., so |
583 | long as the value is meaningful), and returns 1 if successful else |
584 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, |
585 | normally defined in malloc.h. Only one of these (M_MXFAST) is used |
586 | in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, |
587 | so setting them has no effect. But this malloc also supports four |
588 | other options in mallopt. See below for details. Briefly, supported |
589 | parameters are as follows (listed defaults are for "typical" |
590 | configurations). |
591 | |
592 | Symbol param # default allowed param values |
593 | M_MXFAST 1 64 0-80 (0 disables fastbins) |
594 | M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming) |
595 | M_TOP_PAD -2 0 any |
596 | M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support) |
597 | M_MMAP_MAX -4 65536 any (0 disables use of mmap) |
598 | */ |
599 | int __libc_mallopt(int, int); |
600 | libc_hidden_proto (__libc_mallopt) |
601 | |
602 | |
603 | /* |
604 | mallinfo() |
605 | Returns (by copy) a struct containing various summary statistics: |
606 | |
607 | arena: current total non-mmapped bytes allocated from system |
608 | ordblks: the number of free chunks |
609 | smblks: the number of fastbin blocks (i.e., small chunks that |
610 | have been freed but not use resused or consolidated) |
611 | hblks: current number of mmapped regions |
612 | hblkhd: total bytes held in mmapped regions |
613 | usmblks: always 0 |
614 | fsmblks: total bytes held in fastbin blocks |
615 | uordblks: current total allocated space (normal or mmapped) |
616 | fordblks: total free space |
617 | keepcost: the maximum number of bytes that could ideally be released |
618 | back to system via malloc_trim. ("ideally" means that |
619 | it ignores page restrictions etc.) |
620 | |
621 | Because these fields are ints, but internal bookkeeping may |
622 | be kept as longs, the reported values may wrap around zero and |
623 | thus be inaccurate. |
624 | */ |
625 | struct mallinfo __libc_mallinfo(void); |
626 | |
627 | |
628 | /* |
629 | pvalloc(size_t n); |
630 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
631 | round up n to nearest pagesize. |
632 | */ |
633 | void* __libc_pvalloc(size_t); |
634 | |
635 | /* |
636 | malloc_trim(size_t pad); |
637 | |
638 | If possible, gives memory back to the system (via negative |
639 | arguments to sbrk) if there is unused memory at the `high' end of |
640 | the malloc pool. You can call this after freeing large blocks of |
641 | memory to potentially reduce the system-level memory requirements |
642 | of a program. However, it cannot guarantee to reduce memory. Under |
643 | some allocation patterns, some large free blocks of memory will be |
644 | locked between two used chunks, so they cannot be given back to |
645 | the system. |
646 | |
647 | The `pad' argument to malloc_trim represents the amount of free |
648 | trailing space to leave untrimmed. If this argument is zero, |
649 | only the minimum amount of memory to maintain internal data |
650 | structures will be left (one page or less). Non-zero arguments |
651 | can be supplied to maintain enough trailing space to service |
652 | future expected allocations without having to re-obtain memory |
653 | from the system. |
654 | |
655 | Malloc_trim returns 1 if it actually released any memory, else 0. |
656 | On systems that do not support "negative sbrks", it will always |
657 | return 0. |
658 | */ |
659 | int __malloc_trim(size_t); |
660 | |
661 | /* |
662 | malloc_usable_size(void* p); |
663 | |
664 | Returns the number of bytes you can actually use in |
665 | an allocated chunk, which may be more than you requested (although |
666 | often not) due to alignment and minimum size constraints. |
667 | You can use this many bytes without worrying about |
668 | overwriting other allocated objects. This is not a particularly great |
669 | programming practice. malloc_usable_size can be more useful in |
670 | debugging and assertions, for example: |
671 | |
672 | p = malloc(n); |
673 | assert(malloc_usable_size(p) >= 256); |
674 | |
675 | */ |
676 | size_t __malloc_usable_size(void*); |
677 | |
678 | /* |
679 | malloc_stats(); |
680 | Prints on stderr the amount of space obtained from the system (both |
681 | via sbrk and mmap), the maximum amount (which may be more than |
682 | current if malloc_trim and/or munmap got called), and the current |
683 | number of bytes allocated via malloc (or realloc, etc) but not yet |
684 | freed. Note that this is the number of bytes allocated, not the |
685 | number requested. It will be larger than the number requested |
686 | because of alignment and bookkeeping overhead. Because it includes |
687 | alignment wastage as being in use, this figure may be greater than |
688 | zero even when no user-level chunks are allocated. |
689 | |
690 | The reported current and maximum system memory can be inaccurate if |
691 | a program makes other calls to system memory allocation functions |
692 | (normally sbrk) outside of malloc. |
693 | |
694 | malloc_stats prints only the most commonly interesting statistics. |
695 | More information can be obtained by calling mallinfo. |
696 | |
697 | */ |
698 | void __malloc_stats(void); |
699 | |
700 | /* |
701 | posix_memalign(void **memptr, size_t alignment, size_t size); |
702 | |
703 | POSIX wrapper like memalign(), checking for validity of size. |
704 | */ |
705 | int __posix_memalign(void **, size_t, size_t); |
706 | |
707 | /* mallopt tuning options */ |
708 | |
709 | /* |
710 | M_MXFAST is the maximum request size used for "fastbins", special bins |
711 | that hold returned chunks without consolidating their spaces. This |
712 | enables future requests for chunks of the same size to be handled |
713 | very quickly, but can increase fragmentation, and thus increase the |
714 | overall memory footprint of a program. |
715 | |
716 | This malloc manages fastbins very conservatively yet still |
717 | efficiently, so fragmentation is rarely a problem for values less |
718 | than or equal to the default. The maximum supported value of MXFAST |
719 | is 80. You wouldn't want it any higher than this anyway. Fastbins |
720 | are designed especially for use with many small structs, objects or |
721 | strings -- the default handles structs/objects/arrays with sizes up |
722 | to 8 4byte fields, or small strings representing words, tokens, |
723 | etc. Using fastbins for larger objects normally worsens |
724 | fragmentation without improving speed. |
725 | |
726 | M_MXFAST is set in REQUEST size units. It is internally used in |
727 | chunksize units, which adds padding and alignment. You can reduce |
728 | M_MXFAST to 0 to disable all use of fastbins. This causes the malloc |
729 | algorithm to be a closer approximation of fifo-best-fit in all cases, |
730 | not just for larger requests, but will generally cause it to be |
731 | slower. |
732 | */ |
733 | |
734 | |
735 | /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */ |
736 | #ifndef M_MXFAST |
737 | #define M_MXFAST 1 |
738 | #endif |
739 | |
740 | #ifndef DEFAULT_MXFAST |
741 | #define DEFAULT_MXFAST (64 * SIZE_SZ / 4) |
742 | #endif |
743 | |
744 | |
745 | /* |
746 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory |
747 | to keep before releasing via malloc_trim in free(). |
748 | |
749 | Automatic trimming is mainly useful in long-lived programs. |
750 | Because trimming via sbrk can be slow on some systems, and can |
751 | sometimes be wasteful (in cases where programs immediately |
752 | afterward allocate more large chunks) the value should be high |
753 | enough so that your overall system performance would improve by |
754 | releasing this much memory. |
755 | |
756 | The trim threshold and the mmap control parameters (see below) |
757 | can be traded off with one another. Trimming and mmapping are |
758 | two different ways of releasing unused memory back to the |
759 | system. Between these two, it is often possible to keep |
760 | system-level demands of a long-lived program down to a bare |
761 | minimum. For example, in one test suite of sessions measuring |
762 | the XF86 X server on Linux, using a trim threshold of 128K and a |
763 | mmap threshold of 192K led to near-minimal long term resource |
764 | consumption. |
765 | |
766 | If you are using this malloc in a long-lived program, it should |
767 | pay to experiment with these values. As a rough guide, you |
768 | might set to a value close to the average size of a process |
769 | (program) running on your system. Releasing this much memory |
770 | would allow such a process to run in memory. Generally, it's |
771 | worth it to tune for trimming rather tham memory mapping when a |
772 | program undergoes phases where several large chunks are |
773 | allocated and released in ways that can reuse each other's |
774 | storage, perhaps mixed with phases where there are no such |
775 | chunks at all. And in well-behaved long-lived programs, |
776 | controlling release of large blocks via trimming versus mapping |
777 | is usually faster. |
778 | |
779 | However, in most programs, these parameters serve mainly as |
780 | protection against the system-level effects of carrying around |
781 | massive amounts of unneeded memory. Since frequent calls to |
782 | sbrk, mmap, and munmap otherwise degrade performance, the default |
783 | parameters are set to relatively high values that serve only as |
784 | safeguards. |
785 | |
786 | The trim value It must be greater than page size to have any useful |
787 | effect. To disable trimming completely, you can set to |
788 | (unsigned long)(-1) |
789 | |
790 | Trim settings interact with fastbin (MXFAST) settings: Unless |
791 | TRIM_FASTBINS is defined, automatic trimming never takes place upon |
792 | freeing a chunk with size less than or equal to MXFAST. Trimming is |
793 | instead delayed until subsequent freeing of larger chunks. However, |
794 | you can still force an attempted trim by calling malloc_trim. |
795 | |
796 | Also, trimming is not generally possible in cases where |
797 | the main arena is obtained via mmap. |
798 | |
799 | Note that the trick some people use of mallocing a huge space and |
800 | then freeing it at program startup, in an attempt to reserve system |
801 | memory, doesn't have the intended effect under automatic trimming, |
802 | since that memory will immediately be returned to the system. |
803 | */ |
804 | |
805 | #define M_TRIM_THRESHOLD -1 |
806 | |
807 | #ifndef DEFAULT_TRIM_THRESHOLD |
808 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) |
809 | #endif |
810 | |
811 | /* |
812 | M_TOP_PAD is the amount of extra `padding' space to allocate or |
813 | retain whenever sbrk is called. It is used in two ways internally: |
814 | |
815 | * When sbrk is called to extend the top of the arena to satisfy |
816 | a new malloc request, this much padding is added to the sbrk |
817 | request. |
818 | |
819 | * When malloc_trim is called automatically from free(), |
820 | it is used as the `pad' argument. |
821 | |
822 | In both cases, the actual amount of padding is rounded |
823 | so that the end of the arena is always a system page boundary. |
824 | |
825 | The main reason for using padding is to avoid calling sbrk so |
826 | often. Having even a small pad greatly reduces the likelihood |
827 | that nearly every malloc request during program start-up (or |
828 | after trimming) will invoke sbrk, which needlessly wastes |
829 | time. |
830 | |
831 | Automatic rounding-up to page-size units is normally sufficient |
832 | to avoid measurable overhead, so the default is 0. However, in |
833 | systems where sbrk is relatively slow, it can pay to increase |
834 | this value, at the expense of carrying around more memory than |
835 | the program needs. |
836 | */ |
837 | |
838 | #define M_TOP_PAD -2 |
839 | |
840 | #ifndef DEFAULT_TOP_PAD |
841 | #define DEFAULT_TOP_PAD (0) |
842 | #endif |
843 | |
844 | /* |
845 | MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically |
846 | adjusted MMAP_THRESHOLD. |
847 | */ |
848 | |
849 | #ifndef DEFAULT_MMAP_THRESHOLD_MIN |
850 | #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024) |
851 | #endif |
852 | |
853 | #ifndef DEFAULT_MMAP_THRESHOLD_MAX |
854 | /* For 32-bit platforms we cannot increase the maximum mmap |
855 | threshold much because it is also the minimum value for the |
856 | maximum heap size and its alignment. Going above 512k (i.e., 1M |
857 | for new heaps) wastes too much address space. */ |
858 | # if __WORDSIZE == 32 |
859 | # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024) |
860 | # else |
861 | # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long)) |
862 | # endif |
863 | #endif |
864 | |
865 | /* |
866 | M_MMAP_THRESHOLD is the request size threshold for using mmap() |
867 | to service a request. Requests of at least this size that cannot |
868 | be allocated using already-existing space will be serviced via mmap. |
869 | (If enough normal freed space already exists it is used instead.) |
870 | |
871 | Using mmap segregates relatively large chunks of memory so that |
872 | they can be individually obtained and released from the host |
873 | system. A request serviced through mmap is never reused by any |
874 | other request (at least not directly; the system may just so |
875 | happen to remap successive requests to the same locations). |
876 | |
877 | Segregating space in this way has the benefits that: |
878 | |
879 | 1. Mmapped space can ALWAYS be individually released back |
880 | to the system, which helps keep the system level memory |
881 | demands of a long-lived program low. |
882 | 2. Mapped memory can never become `locked' between |
883 | other chunks, as can happen with normally allocated chunks, which |
884 | means that even trimming via malloc_trim would not release them. |
885 | 3. On some systems with "holes" in address spaces, mmap can obtain |
886 | memory that sbrk cannot. |
887 | |
888 | However, it has the disadvantages that: |
889 | |
890 | 1. The space cannot be reclaimed, consolidated, and then |
891 | used to service later requests, as happens with normal chunks. |
892 | 2. It can lead to more wastage because of mmap page alignment |
893 | requirements |
894 | 3. It causes malloc performance to be more dependent on host |
895 | system memory management support routines which may vary in |
896 | implementation quality and may impose arbitrary |
897 | limitations. Generally, servicing a request via normal |
898 | malloc steps is faster than going through a system's mmap. |
899 | |
900 | The advantages of mmap nearly always outweigh disadvantages for |
901 | "large" chunks, but the value of "large" varies across systems. The |
902 | default is an empirically derived value that works well in most |
903 | systems. |
904 | |
905 | |
906 | Update in 2006: |
907 | The above was written in 2001. Since then the world has changed a lot. |
908 | Memory got bigger. Applications got bigger. The virtual address space |
909 | layout in 32 bit linux changed. |
910 | |
911 | In the new situation, brk() and mmap space is shared and there are no |
912 | artificial limits on brk size imposed by the kernel. What is more, |
913 | applications have started using transient allocations larger than the |
914 | 128Kb as was imagined in 2001. |
915 | |
916 | The price for mmap is also high now; each time glibc mmaps from the |
917 | kernel, the kernel is forced to zero out the memory it gives to the |
918 | application. Zeroing memory is expensive and eats a lot of cache and |
919 | memory bandwidth. This has nothing to do with the efficiency of the |
920 | virtual memory system, by doing mmap the kernel just has no choice but |
921 | to zero. |
922 | |
923 | In 2001, the kernel had a maximum size for brk() which was about 800 |
924 | megabytes on 32 bit x86, at that point brk() would hit the first |
925 | mmaped shared libaries and couldn't expand anymore. With current 2.6 |
926 | kernels, the VA space layout is different and brk() and mmap |
927 | both can span the entire heap at will. |
928 | |
929 | Rather than using a static threshold for the brk/mmap tradeoff, |
930 | we are now using a simple dynamic one. The goal is still to avoid |
931 | fragmentation. The old goals we kept are |
932 | 1) try to get the long lived large allocations to use mmap() |
933 | 2) really large allocations should always use mmap() |
934 | and we're adding now: |
935 | 3) transient allocations should use brk() to avoid forcing the kernel |
936 | having to zero memory over and over again |
937 | |
938 | The implementation works with a sliding threshold, which is by default |
939 | limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts |
940 | out at 128Kb as per the 2001 default. |
941 | |
942 | This allows us to satisfy requirement 1) under the assumption that long |
943 | lived allocations are made early in the process' lifespan, before it has |
944 | started doing dynamic allocations of the same size (which will |
945 | increase the threshold). |
946 | |
947 | The upperbound on the threshold satisfies requirement 2) |
948 | |
949 | The threshold goes up in value when the application frees memory that was |
950 | allocated with the mmap allocator. The idea is that once the application |
951 | starts freeing memory of a certain size, it's highly probable that this is |
952 | a size the application uses for transient allocations. This estimator |
953 | is there to satisfy the new third requirement. |
954 | |
955 | */ |
956 | |
957 | #define M_MMAP_THRESHOLD -3 |
958 | |
959 | #ifndef DEFAULT_MMAP_THRESHOLD |
960 | #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN |
961 | #endif |
962 | |
963 | /* |
964 | M_MMAP_MAX is the maximum number of requests to simultaneously |
965 | service using mmap. This parameter exists because |
966 | some systems have a limited number of internal tables for |
967 | use by mmap, and using more than a few of them may degrade |
968 | performance. |
969 | |
970 | The default is set to a value that serves only as a safeguard. |
971 | Setting to 0 disables use of mmap for servicing large requests. |
972 | */ |
973 | |
974 | #define M_MMAP_MAX -4 |
975 | |
976 | #ifndef DEFAULT_MMAP_MAX |
977 | #define DEFAULT_MMAP_MAX (65536) |
978 | #endif |
979 | |
980 | #include <malloc.h> |
981 | |
982 | #ifndef RETURN_ADDRESS |
983 | #define RETURN_ADDRESS(X_) (NULL) |
984 | #endif |
985 | |
986 | /* Forward declarations. */ |
987 | struct malloc_chunk; |
988 | typedef struct malloc_chunk* mchunkptr; |
989 | |
990 | /* Internal routines. */ |
991 | |
992 | static void* _int_malloc(mstate, size_t); |
993 | static void _int_free(mstate, mchunkptr, int); |
994 | static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T, |
995 | INTERNAL_SIZE_T); |
996 | static void* _int_memalign(mstate, size_t, size_t); |
997 | static void* _mid_memalign(size_t, size_t, void *); |
998 | |
999 | static void malloc_printerr(const char *str) __attribute__ ((noreturn)); |
1000 | |
1001 | static void* mem2mem_check(void *p, size_t sz); |
1002 | static void top_check(void); |
1003 | static void munmap_chunk(mchunkptr p); |
1004 | #if HAVE_MREMAP |
1005 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size); |
1006 | #endif |
1007 | |
1008 | static void* malloc_check(size_t sz, const void *caller); |
1009 | static void free_check(void* mem, const void *caller); |
1010 | static void* realloc_check(void* oldmem, size_t bytes, |
1011 | const void *caller); |
1012 | static void* memalign_check(size_t alignment, size_t bytes, |
1013 | const void *caller); |
1014 | |
1015 | /* ------------------ MMAP support ------------------ */ |
1016 | |
1017 | |
1018 | #include <fcntl.h> |
1019 | #include <sys/mman.h> |
1020 | |
1021 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
1022 | # define MAP_ANONYMOUS MAP_ANON |
1023 | #endif |
1024 | |
1025 | #ifndef MAP_NORESERVE |
1026 | # define MAP_NORESERVE 0 |
1027 | #endif |
1028 | |
1029 | #define MMAP(addr, size, prot, flags) \ |
1030 | __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0) |
1031 | |
1032 | |
1033 | /* |
1034 | ----------------------- Chunk representations ----------------------- |
1035 | */ |
1036 | |
1037 | |
1038 | /* |
1039 | This struct declaration is misleading (but accurate and necessary). |
1040 | It declares a "view" into memory allowing access to necessary |
1041 | fields at known offsets from a given base. See explanation below. |
1042 | */ |
1043 | |
1044 | struct malloc_chunk { |
1045 | |
1046 | INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */ |
1047 | INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */ |
1048 | |
1049 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
1050 | struct malloc_chunk* bk; |
1051 | |
1052 | /* Only used for large blocks: pointer to next larger size. */ |
1053 | struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ |
1054 | struct malloc_chunk* bk_nextsize; |
1055 | }; |
1056 | |
1057 | |
1058 | /* |
1059 | malloc_chunk details: |
1060 | |
1061 | (The following includes lightly edited explanations by Colin Plumb.) |
1062 | |
1063 | Chunks of memory are maintained using a `boundary tag' method as |
1064 | described in e.g., Knuth or Standish. (See the paper by Paul |
1065 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a |
1066 | survey of such techniques.) Sizes of free chunks are stored both |
1067 | in the front of each chunk and at the end. This makes |
1068 | consolidating fragmented chunks into bigger chunks very fast. The |
1069 | size fields also hold bits representing whether chunks are free or |
1070 | in use. |
1071 | |
1072 | An allocated chunk looks like this: |
1073 | |
1074 | |
1075 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1076 | | Size of previous chunk, if unallocated (P clear) | |
1077 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1078 | | Size of chunk, in bytes |A|M|P| |
1079 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1080 | | User data starts here... . |
1081 | . . |
1082 | . (malloc_usable_size() bytes) . |
1083 | . | |
1084 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1085 | | (size of chunk, but used for application data) | |
1086 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1087 | | Size of next chunk, in bytes |A|0|1| |
1088 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1089 | |
1090 | Where "chunk" is the front of the chunk for the purpose of most of |
1091 | the malloc code, but "mem" is the pointer that is returned to the |
1092 | user. "Nextchunk" is the beginning of the next contiguous chunk. |
1093 | |
1094 | Chunks always begin on even word boundaries, so the mem portion |
1095 | (which is returned to the user) is also on an even word boundary, and |
1096 | thus at least double-word aligned. |
1097 | |
1098 | Free chunks are stored in circular doubly-linked lists, and look like this: |
1099 | |
1100 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1101 | | Size of previous chunk, if unallocated (P clear) | |
1102 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1103 | `head:' | Size of chunk, in bytes |A|0|P| |
1104 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1105 | | Forward pointer to next chunk in list | |
1106 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1107 | | Back pointer to previous chunk in list | |
1108 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1109 | | Unused space (may be 0 bytes long) . |
1110 | . . |
1111 | . | |
1112 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1113 | `foot:' | Size of chunk, in bytes | |
1114 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1115 | | Size of next chunk, in bytes |A|0|0| |
1116 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1117 | |
1118 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the |
1119 | chunk size (which is always a multiple of two words), is an in-use |
1120 | bit for the *previous* chunk. If that bit is *clear*, then the |
1121 | word before the current chunk size contains the previous chunk |
1122 | size, and can be used to find the front of the previous chunk. |
1123 | The very first chunk allocated always has this bit set, |
1124 | preventing access to non-existent (or non-owned) memory. If |
1125 | prev_inuse is set for any given chunk, then you CANNOT determine |
1126 | the size of the previous chunk, and might even get a memory |
1127 | addressing fault when trying to do so. |
1128 | |
1129 | The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial, |
1130 | main arena, described by the main_arena variable. When additional |
1131 | threads are spawned, each thread receives its own arena (up to a |
1132 | configurable limit, after which arenas are reused for multiple |
1133 | threads), and the chunks in these arenas have the A bit set. To |
1134 | find the arena for a chunk on such a non-main arena, heap_for_ptr |
1135 | performs a bit mask operation and indirection through the ar_ptr |
1136 | member of the per-heap header heap_info (see arena.c). |
1137 | |
1138 | Note that the `foot' of the current chunk is actually represented |
1139 | as the prev_size of the NEXT chunk. This makes it easier to |
1140 | deal with alignments etc but can be very confusing when trying |
1141 | to extend or adapt this code. |
1142 | |
1143 | The three exceptions to all this are: |
1144 | |
1145 | 1. The special chunk `top' doesn't bother using the |
1146 | trailing size field since there is no next contiguous chunk |
1147 | that would have to index off it. After initialization, `top' |
1148 | is forced to always exist. If it would become less than |
1149 | MINSIZE bytes long, it is replenished. |
1150 | |
1151 | 2. Chunks allocated via mmap, which have the second-lowest-order |
1152 | bit M (IS_MMAPPED) set in their size fields. Because they are |
1153 | allocated one-by-one, each must contain its own trailing size |
1154 | field. If the M bit is set, the other bits are ignored |
1155 | (because mmapped chunks are neither in an arena, nor adjacent |
1156 | to a freed chunk). The M bit is also used for chunks which |
1157 | originally came from a dumped heap via malloc_set_state in |
1158 | hooks.c. |
1159 | |
1160 | 3. Chunks in fastbins are treated as allocated chunks from the |
1161 | point of view of the chunk allocator. They are consolidated |
1162 | with their neighbors only in bulk, in malloc_consolidate. |
1163 | */ |
1164 | |
1165 | /* |
1166 | ---------- Size and alignment checks and conversions ---------- |
1167 | */ |
1168 | |
1169 | /* conversion from malloc headers to user pointers, and back */ |
1170 | |
1171 | #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ)) |
1172 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) |
1173 | |
1174 | /* The smallest possible chunk */ |
1175 | #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize)) |
1176 | |
1177 | /* The smallest size we can malloc is an aligned minimal chunk */ |
1178 | |
1179 | #define MINSIZE \ |
1180 | (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)) |
1181 | |
1182 | /* Check if m has acceptable alignment */ |
1183 | |
1184 | #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0) |
1185 | |
1186 | #define misaligned_chunk(p) \ |
1187 | ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \ |
1188 | & MALLOC_ALIGN_MASK) |
1189 | |
1190 | |
1191 | /* |
1192 | Check if a request is so large that it would wrap around zero when |
1193 | padded and aligned. To simplify some other code, the bound is made |
1194 | low enough so that adding MINSIZE will also not wrap around zero. |
1195 | */ |
1196 | |
1197 | #define REQUEST_OUT_OF_RANGE(req) \ |
1198 | ((unsigned long) (req) >= \ |
1199 | (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE)) |
1200 | |
1201 | /* pad request bytes into a usable size -- internal version */ |
1202 | |
1203 | #define request2size(req) \ |
1204 | (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \ |
1205 | MINSIZE : \ |
1206 | ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK) |
1207 | |
1208 | /* Same, except also perform an argument and result check. First, we check |
1209 | that the padding done by request2size didn't result in an integer |
1210 | overflow. Then we check (using REQUEST_OUT_OF_RANGE) that the resulting |
1211 | size isn't so large that a later alignment would lead to another integer |
1212 | overflow. */ |
1213 | #define checked_request2size(req, sz) \ |
1214 | ({ \ |
1215 | (sz) = request2size (req); \ |
1216 | if (((sz) < (req)) \ |
1217 | || REQUEST_OUT_OF_RANGE (sz)) \ |
1218 | { \ |
1219 | __set_errno (ENOMEM); \ |
1220 | return 0; \ |
1221 | } \ |
1222 | }) |
1223 | |
1224 | /* |
1225 | --------------- Physical chunk operations --------------- |
1226 | */ |
1227 | |
1228 | |
1229 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ |
1230 | #define PREV_INUSE 0x1 |
1231 | |
1232 | /* extract inuse bit of previous chunk */ |
1233 | #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE) |
1234 | |
1235 | |
1236 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ |
1237 | #define IS_MMAPPED 0x2 |
1238 | |
1239 | /* check for mmap()'ed chunk */ |
1240 | #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED) |
1241 | |
1242 | |
1243 | /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained |
1244 | from a non-main arena. This is only set immediately before handing |
1245 | the chunk to the user, if necessary. */ |
1246 | #define NON_MAIN_ARENA 0x4 |
1247 | |
1248 | /* Check for chunk from main arena. */ |
1249 | #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0) |
1250 | |
1251 | /* Mark a chunk as not being on the main arena. */ |
1252 | #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA) |
1253 | |
1254 | |
1255 | /* |
1256 | Bits to mask off when extracting size |
1257 | |
1258 | Note: IS_MMAPPED is intentionally not masked off from size field in |
1259 | macros for which mmapped chunks should never be seen. This should |
1260 | cause helpful core dumps to occur if it is tried by accident by |
1261 | people extending or adapting this malloc. |
1262 | */ |
1263 | #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA) |
1264 | |
1265 | /* Get size, ignoring use bits */ |
1266 | #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS)) |
1267 | |
1268 | /* Like chunksize, but do not mask SIZE_BITS. */ |
1269 | #define chunksize_nomask(p) ((p)->mchunk_size) |
1270 | |
1271 | /* Ptr to next physical malloc_chunk. */ |
1272 | #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p))) |
1273 | |
1274 | /* Size of the chunk below P. Only valid if !prev_inuse (P). */ |
1275 | #define prev_size(p) ((p)->mchunk_prev_size) |
1276 | |
1277 | /* Set the size of the chunk below P. Only valid if !prev_inuse (P). */ |
1278 | #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz)) |
1279 | |
1280 | /* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */ |
1281 | #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p))) |
1282 | |
1283 | /* Treat space at ptr + offset as a chunk */ |
1284 | #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s))) |
1285 | |
1286 | /* extract p's inuse bit */ |
1287 | #define inuse(p) \ |
1288 | ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE) |
1289 | |
1290 | /* set/clear chunk as being inuse without otherwise disturbing */ |
1291 | #define set_inuse(p) \ |
1292 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE |
1293 | |
1294 | #define clear_inuse(p) \ |
1295 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE) |
1296 | |
1297 | |
1298 | /* check/set/clear inuse bits in known places */ |
1299 | #define inuse_bit_at_offset(p, s) \ |
1300 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE) |
1301 | |
1302 | #define set_inuse_bit_at_offset(p, s) \ |
1303 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE) |
1304 | |
1305 | #define clear_inuse_bit_at_offset(p, s) \ |
1306 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE)) |
1307 | |
1308 | |
1309 | /* Set size at head, without disturbing its use bit */ |
1310 | #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s))) |
1311 | |
1312 | /* Set size/use field */ |
1313 | #define set_head(p, s) ((p)->mchunk_size = (s)) |
1314 | |
1315 | /* Set size at footer (only when chunk is not in use) */ |
1316 | #define (p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s)) |
1317 | |
1318 | |
1319 | #pragma GCC poison mchunk_size |
1320 | #pragma GCC poison mchunk_prev_size |
1321 | |
1322 | /* |
1323 | -------------------- Internal data structures -------------------- |
1324 | |
1325 | All internal state is held in an instance of malloc_state defined |
1326 | below. There are no other static variables, except in two optional |
1327 | cases: |
1328 | * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. |
1329 | * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor |
1330 | for mmap. |
1331 | |
1332 | Beware of lots of tricks that minimize the total bookkeeping space |
1333 | requirements. The result is a little over 1K bytes (for 4byte |
1334 | pointers and size_t.) |
1335 | */ |
1336 | |
1337 | /* |
1338 | Bins |
1339 | |
1340 | An array of bin headers for free chunks. Each bin is doubly |
1341 | linked. The bins are approximately proportionally (log) spaced. |
1342 | There are a lot of these bins (128). This may look excessive, but |
1343 | works very well in practice. Most bins hold sizes that are |
1344 | unusual as malloc request sizes, but are more usual for fragments |
1345 | and consolidated sets of chunks, which is what these bins hold, so |
1346 | they can be found quickly. All procedures maintain the invariant |
1347 | that no consolidated chunk physically borders another one, so each |
1348 | chunk in a list is known to be preceeded and followed by either |
1349 | inuse chunks or the ends of memory. |
1350 | |
1351 | Chunks in bins are kept in size order, with ties going to the |
1352 | approximately least recently used chunk. Ordering isn't needed |
1353 | for the small bins, which all contain the same-sized chunks, but |
1354 | facilitates best-fit allocation for larger chunks. These lists |
1355 | are just sequential. Keeping them in order almost never requires |
1356 | enough traversal to warrant using fancier ordered data |
1357 | structures. |
1358 | |
1359 | Chunks of the same size are linked with the most |
1360 | recently freed at the front, and allocations are taken from the |
1361 | back. This results in LRU (FIFO) allocation order, which tends |
1362 | to give each chunk an equal opportunity to be consolidated with |
1363 | adjacent freed chunks, resulting in larger free chunks and less |
1364 | fragmentation. |
1365 | |
1366 | To simplify use in double-linked lists, each bin header acts |
1367 | as a malloc_chunk. This avoids special-casing for headers. |
1368 | But to conserve space and improve locality, we allocate |
1369 | only the fd/bk pointers of bins, and then use repositioning tricks |
1370 | to treat these as the fields of a malloc_chunk*. |
1371 | */ |
1372 | |
1373 | typedef struct malloc_chunk *mbinptr; |
1374 | |
1375 | /* addressing -- note that bin_at(0) does not exist */ |
1376 | #define bin_at(m, i) \ |
1377 | (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \ |
1378 | - offsetof (struct malloc_chunk, fd)) |
1379 | |
1380 | /* analog of ++bin */ |
1381 | #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1))) |
1382 | |
1383 | /* Reminders about list directionality within bins */ |
1384 | #define first(b) ((b)->fd) |
1385 | #define last(b) ((b)->bk) |
1386 | |
1387 | /* |
1388 | Indexing |
1389 | |
1390 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced |
1391 | 8 bytes apart. Larger bins are approximately logarithmically spaced: |
1392 | |
1393 | 64 bins of size 8 |
1394 | 32 bins of size 64 |
1395 | 16 bins of size 512 |
1396 | 8 bins of size 4096 |
1397 | 4 bins of size 32768 |
1398 | 2 bins of size 262144 |
1399 | 1 bin of size what's left |
1400 | |
1401 | There is actually a little bit of slop in the numbers in bin_index |
1402 | for the sake of speed. This makes no difference elsewhere. |
1403 | |
1404 | The bins top out around 1MB because we expect to service large |
1405 | requests via mmap. |
1406 | |
1407 | Bin 0 does not exist. Bin 1 is the unordered list; if that would be |
1408 | a valid chunk size the small bins are bumped up one. |
1409 | */ |
1410 | |
1411 | #define NBINS 128 |
1412 | #define NSMALLBINS 64 |
1413 | #define SMALLBIN_WIDTH MALLOC_ALIGNMENT |
1414 | #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ) |
1415 | #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH) |
1416 | |
1417 | #define in_smallbin_range(sz) \ |
1418 | ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE) |
1419 | |
1420 | #define smallbin_index(sz) \ |
1421 | ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\ |
1422 | + SMALLBIN_CORRECTION) |
1423 | |
1424 | #define largebin_index_32(sz) \ |
1425 | (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\ |
1426 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1427 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1428 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1429 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1430 | 126) |
1431 | |
1432 | #define largebin_index_32_big(sz) \ |
1433 | (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\ |
1434 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1435 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1436 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1437 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1438 | 126) |
1439 | |
1440 | // XXX It remains to be seen whether it is good to keep the widths of |
1441 | // XXX the buckets the same or whether it should be scaled by a factor |
1442 | // XXX of two as well. |
1443 | #define largebin_index_64(sz) \ |
1444 | (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\ |
1445 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1446 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1447 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1448 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1449 | 126) |
1450 | |
1451 | #define largebin_index(sz) \ |
1452 | (SIZE_SZ == 8 ? largebin_index_64 (sz) \ |
1453 | : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \ |
1454 | : largebin_index_32 (sz)) |
1455 | |
1456 | #define bin_index(sz) \ |
1457 | ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz)) |
1458 | |
1459 | /* Take a chunk off a bin list. */ |
1460 | static void |
1461 | unlink_chunk (mstate av, mchunkptr p) |
1462 | { |
1463 | if (chunksize (p) != prev_size (next_chunk (p))) |
1464 | malloc_printerr ("corrupted size vs. prev_size" ); |
1465 | |
1466 | mchunkptr fd = p->fd; |
1467 | mchunkptr bk = p->bk; |
1468 | |
1469 | if (__builtin_expect (fd->bk != p || bk->fd != p, 0)) |
1470 | malloc_printerr ("corrupted double-linked list" ); |
1471 | |
1472 | fd->bk = bk; |
1473 | bk->fd = fd; |
1474 | if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL) |
1475 | { |
1476 | if (p->fd_nextsize->bk_nextsize != p |
1477 | || p->bk_nextsize->fd_nextsize != p) |
1478 | malloc_printerr ("corrupted double-linked list (not small)" ); |
1479 | |
1480 | if (fd->fd_nextsize == NULL) |
1481 | { |
1482 | if (p->fd_nextsize == p) |
1483 | fd->fd_nextsize = fd->bk_nextsize = fd; |
1484 | else |
1485 | { |
1486 | fd->fd_nextsize = p->fd_nextsize; |
1487 | fd->bk_nextsize = p->bk_nextsize; |
1488 | p->fd_nextsize->bk_nextsize = fd; |
1489 | p->bk_nextsize->fd_nextsize = fd; |
1490 | } |
1491 | } |
1492 | else |
1493 | { |
1494 | p->fd_nextsize->bk_nextsize = p->bk_nextsize; |
1495 | p->bk_nextsize->fd_nextsize = p->fd_nextsize; |
1496 | } |
1497 | } |
1498 | } |
1499 | |
1500 | /* |
1501 | Unsorted chunks |
1502 | |
1503 | All remainders from chunk splits, as well as all returned chunks, |
1504 | are first placed in the "unsorted" bin. They are then placed |
1505 | in regular bins after malloc gives them ONE chance to be used before |
1506 | binning. So, basically, the unsorted_chunks list acts as a queue, |
1507 | with chunks being placed on it in free (and malloc_consolidate), |
1508 | and taken off (to be either used or placed in bins) in malloc. |
1509 | |
1510 | The NON_MAIN_ARENA flag is never set for unsorted chunks, so it |
1511 | does not have to be taken into account in size comparisons. |
1512 | */ |
1513 | |
1514 | /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */ |
1515 | #define unsorted_chunks(M) (bin_at (M, 1)) |
1516 | |
1517 | /* |
1518 | Top |
1519 | |
1520 | The top-most available chunk (i.e., the one bordering the end of |
1521 | available memory) is treated specially. It is never included in |
1522 | any bin, is used only if no other chunk is available, and is |
1523 | released back to the system if it is very large (see |
1524 | M_TRIM_THRESHOLD). Because top initially |
1525 | points to its own bin with initial zero size, thus forcing |
1526 | extension on the first malloc request, we avoid having any special |
1527 | code in malloc to check whether it even exists yet. But we still |
1528 | need to do so when getting memory from system, so we make |
1529 | initial_top treat the bin as a legal but unusable chunk during the |
1530 | interval between initialization and the first call to |
1531 | sysmalloc. (This is somewhat delicate, since it relies on |
1532 | the 2 preceding words to be zero during this interval as well.) |
1533 | */ |
1534 | |
1535 | /* Conveniently, the unsorted bin can be used as dummy top on first call */ |
1536 | #define initial_top(M) (unsorted_chunks (M)) |
1537 | |
1538 | /* |
1539 | Binmap |
1540 | |
1541 | To help compensate for the large number of bins, a one-level index |
1542 | structure is used for bin-by-bin searching. `binmap' is a |
1543 | bitvector recording whether bins are definitely empty so they can |
1544 | be skipped over during during traversals. The bits are NOT always |
1545 | cleared as soon as bins are empty, but instead only |
1546 | when they are noticed to be empty during traversal in malloc. |
1547 | */ |
1548 | |
1549 | /* Conservatively use 32 bits per map word, even if on 64bit system */ |
1550 | #define BINMAPSHIFT 5 |
1551 | #define BITSPERMAP (1U << BINMAPSHIFT) |
1552 | #define BINMAPSIZE (NBINS / BITSPERMAP) |
1553 | |
1554 | #define idx2block(i) ((i) >> BINMAPSHIFT) |
1555 | #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1)))) |
1556 | |
1557 | #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i)) |
1558 | #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i))) |
1559 | #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i)) |
1560 | |
1561 | /* |
1562 | Fastbins |
1563 | |
1564 | An array of lists holding recently freed small chunks. Fastbins |
1565 | are not doubly linked. It is faster to single-link them, and |
1566 | since chunks are never removed from the middles of these lists, |
1567 | double linking is not necessary. Also, unlike regular bins, they |
1568 | are not even processed in FIFO order (they use faster LIFO) since |
1569 | ordering doesn't much matter in the transient contexts in which |
1570 | fastbins are normally used. |
1571 | |
1572 | Chunks in fastbins keep their inuse bit set, so they cannot |
1573 | be consolidated with other free chunks. malloc_consolidate |
1574 | releases all chunks in fastbins and consolidates them with |
1575 | other free chunks. |
1576 | */ |
1577 | |
1578 | typedef struct malloc_chunk *mfastbinptr; |
1579 | #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx]) |
1580 | |
1581 | /* offset 2 to use otherwise unindexable first 2 bins */ |
1582 | #define fastbin_index(sz) \ |
1583 | ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2) |
1584 | |
1585 | |
1586 | /* The maximum fastbin request size we support */ |
1587 | #define MAX_FAST_SIZE (80 * SIZE_SZ / 4) |
1588 | |
1589 | #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1) |
1590 | |
1591 | /* |
1592 | FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free() |
1593 | that triggers automatic consolidation of possibly-surrounding |
1594 | fastbin chunks. This is a heuristic, so the exact value should not |
1595 | matter too much. It is defined at half the default trim threshold as a |
1596 | compromise heuristic to only attempt consolidation if it is likely |
1597 | to lead to trimming. However, it is not dynamically tunable, since |
1598 | consolidation reduces fragmentation surrounding large chunks even |
1599 | if trimming is not used. |
1600 | */ |
1601 | |
1602 | #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL) |
1603 | |
1604 | /* |
1605 | NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous |
1606 | regions. Otherwise, contiguity is exploited in merging together, |
1607 | when possible, results from consecutive MORECORE calls. |
1608 | |
1609 | The initial value comes from MORECORE_CONTIGUOUS, but is |
1610 | changed dynamically if mmap is ever used as an sbrk substitute. |
1611 | */ |
1612 | |
1613 | #define NONCONTIGUOUS_BIT (2U) |
1614 | |
1615 | #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0) |
1616 | #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0) |
1617 | #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT) |
1618 | #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT) |
1619 | |
1620 | /* Maximum size of memory handled in fastbins. */ |
1621 | static INTERNAL_SIZE_T global_max_fast; |
1622 | |
1623 | /* |
1624 | Set value of max_fast. |
1625 | Use impossibly small value if 0. |
1626 | Precondition: there are no existing fastbin chunks in the main arena. |
1627 | Since do_check_malloc_state () checks this, we call malloc_consolidate () |
1628 | before changing max_fast. Note other arenas will leak their fast bin |
1629 | entries if max_fast is reduced. |
1630 | */ |
1631 | |
1632 | #define set_max_fast(s) \ |
1633 | global_max_fast = (((s) == 0) \ |
1634 | ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK)) |
1635 | |
1636 | static inline INTERNAL_SIZE_T |
1637 | get_max_fast (void) |
1638 | { |
1639 | /* Tell the GCC optimizers that global_max_fast is never larger |
1640 | than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in |
1641 | _int_malloc after constant propagation of the size parameter. |
1642 | (The code never executes because malloc preserves the |
1643 | global_max_fast invariant, but the optimizers may not recognize |
1644 | this.) */ |
1645 | if (global_max_fast > MAX_FAST_SIZE) |
1646 | __builtin_unreachable (); |
1647 | return global_max_fast; |
1648 | } |
1649 | |
1650 | /* |
1651 | ----------- Internal state representation and initialization ----------- |
1652 | */ |
1653 | |
1654 | /* |
1655 | have_fastchunks indicates that there are probably some fastbin chunks. |
1656 | It is set true on entering a chunk into any fastbin, and cleared early in |
1657 | malloc_consolidate. The value is approximate since it may be set when there |
1658 | are no fastbin chunks, or it may be clear even if there are fastbin chunks |
1659 | available. Given it's sole purpose is to reduce number of redundant calls to |
1660 | malloc_consolidate, it does not affect correctness. As a result we can safely |
1661 | use relaxed atomic accesses. |
1662 | */ |
1663 | |
1664 | |
1665 | struct malloc_state |
1666 | { |
1667 | /* Serialize access. */ |
1668 | __libc_lock_define (, mutex); |
1669 | |
1670 | /* Flags (formerly in max_fast). */ |
1671 | int flags; |
1672 | |
1673 | /* Set if the fastbin chunks contain recently inserted free blocks. */ |
1674 | /* Note this is a bool but not all targets support atomics on booleans. */ |
1675 | int have_fastchunks; |
1676 | |
1677 | /* Fastbins */ |
1678 | mfastbinptr fastbinsY[NFASTBINS]; |
1679 | |
1680 | /* Base of the topmost chunk -- not otherwise kept in a bin */ |
1681 | mchunkptr top; |
1682 | |
1683 | /* The remainder from the most recent split of a small request */ |
1684 | mchunkptr last_remainder; |
1685 | |
1686 | /* Normal bins packed as described above */ |
1687 | mchunkptr bins[NBINS * 2 - 2]; |
1688 | |
1689 | /* Bitmap of bins */ |
1690 | unsigned int binmap[BINMAPSIZE]; |
1691 | |
1692 | /* Linked list */ |
1693 | struct malloc_state *next; |
1694 | |
1695 | /* Linked list for free arenas. Access to this field is serialized |
1696 | by free_list_lock in arena.c. */ |
1697 | struct malloc_state *next_free; |
1698 | |
1699 | /* Number of threads attached to this arena. 0 if the arena is on |
1700 | the free list. Access to this field is serialized by |
1701 | free_list_lock in arena.c. */ |
1702 | INTERNAL_SIZE_T attached_threads; |
1703 | |
1704 | /* Memory allocated from the system in this arena. */ |
1705 | INTERNAL_SIZE_T system_mem; |
1706 | INTERNAL_SIZE_T max_system_mem; |
1707 | }; |
1708 | |
1709 | struct malloc_par |
1710 | { |
1711 | /* Tunable parameters */ |
1712 | unsigned long trim_threshold; |
1713 | INTERNAL_SIZE_T top_pad; |
1714 | INTERNAL_SIZE_T mmap_threshold; |
1715 | INTERNAL_SIZE_T arena_test; |
1716 | INTERNAL_SIZE_T arena_max; |
1717 | |
1718 | /* Memory map support */ |
1719 | int n_mmaps; |
1720 | int n_mmaps_max; |
1721 | int max_n_mmaps; |
1722 | /* the mmap_threshold is dynamic, until the user sets |
1723 | it manually, at which point we need to disable any |
1724 | dynamic behavior. */ |
1725 | int no_dyn_threshold; |
1726 | |
1727 | /* Statistics */ |
1728 | INTERNAL_SIZE_T mmapped_mem; |
1729 | INTERNAL_SIZE_T max_mmapped_mem; |
1730 | |
1731 | /* First address handed out by MORECORE/sbrk. */ |
1732 | char *sbrk_base; |
1733 | |
1734 | #if USE_TCACHE |
1735 | /* Maximum number of buckets to use. */ |
1736 | size_t tcache_bins; |
1737 | size_t tcache_max_bytes; |
1738 | /* Maximum number of chunks in each bucket. */ |
1739 | size_t tcache_count; |
1740 | /* Maximum number of chunks to remove from the unsorted list, which |
1741 | aren't used to prefill the cache. */ |
1742 | size_t tcache_unsorted_limit; |
1743 | #endif |
1744 | }; |
1745 | |
1746 | /* There are several instances of this struct ("arenas") in this |
1747 | malloc. If you are adapting this malloc in a way that does NOT use |
1748 | a static or mmapped malloc_state, you MUST explicitly zero-fill it |
1749 | before using. This malloc relies on the property that malloc_state |
1750 | is initialized to all zeroes (as is true of C statics). */ |
1751 | |
1752 | static struct malloc_state main_arena = |
1753 | { |
1754 | .mutex = _LIBC_LOCK_INITIALIZER, |
1755 | .next = &main_arena, |
1756 | .attached_threads = 1 |
1757 | }; |
1758 | |
1759 | /* These variables are used for undumping support. Chunked are marked |
1760 | as using mmap, but we leave them alone if they fall into this |
1761 | range. NB: The chunk size for these chunks only includes the |
1762 | initial size field (of SIZE_SZ bytes), there is no trailing size |
1763 | field (unlike with regular mmapped chunks). */ |
1764 | static mchunkptr dumped_main_arena_start; /* Inclusive. */ |
1765 | static mchunkptr dumped_main_arena_end; /* Exclusive. */ |
1766 | |
1767 | /* True if the pointer falls into the dumped arena. Use this after |
1768 | chunk_is_mmapped indicates a chunk is mmapped. */ |
1769 | #define DUMPED_MAIN_ARENA_CHUNK(p) \ |
1770 | ((p) >= dumped_main_arena_start && (p) < dumped_main_arena_end) |
1771 | |
1772 | /* There is only one instance of the malloc parameters. */ |
1773 | |
1774 | static struct malloc_par mp_ = |
1775 | { |
1776 | .top_pad = DEFAULT_TOP_PAD, |
1777 | .n_mmaps_max = DEFAULT_MMAP_MAX, |
1778 | .mmap_threshold = DEFAULT_MMAP_THRESHOLD, |
1779 | .trim_threshold = DEFAULT_TRIM_THRESHOLD, |
1780 | #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8)) |
1781 | .arena_test = NARENAS_FROM_NCORES (1) |
1782 | #if USE_TCACHE |
1783 | , |
1784 | .tcache_count = TCACHE_FILL_COUNT, |
1785 | .tcache_bins = TCACHE_MAX_BINS, |
1786 | .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1), |
1787 | .tcache_unsorted_limit = 0 /* No limit. */ |
1788 | #endif |
1789 | }; |
1790 | |
1791 | /* |
1792 | Initialize a malloc_state struct. |
1793 | |
1794 | This is called from ptmalloc_init () or from _int_new_arena () |
1795 | when creating a new arena. |
1796 | */ |
1797 | |
1798 | static void |
1799 | malloc_init_state (mstate av) |
1800 | { |
1801 | int i; |
1802 | mbinptr bin; |
1803 | |
1804 | /* Establish circular links for normal bins */ |
1805 | for (i = 1; i < NBINS; ++i) |
1806 | { |
1807 | bin = bin_at (av, i); |
1808 | bin->fd = bin->bk = bin; |
1809 | } |
1810 | |
1811 | #if MORECORE_CONTIGUOUS |
1812 | if (av != &main_arena) |
1813 | #endif |
1814 | set_noncontiguous (av); |
1815 | if (av == &main_arena) |
1816 | set_max_fast (DEFAULT_MXFAST); |
1817 | atomic_store_relaxed (&av->have_fastchunks, false); |
1818 | |
1819 | av->top = initial_top (av); |
1820 | } |
1821 | |
1822 | /* |
1823 | Other internal utilities operating on mstates |
1824 | */ |
1825 | |
1826 | static void *sysmalloc (INTERNAL_SIZE_T, mstate); |
1827 | static int systrim (size_t, mstate); |
1828 | static void malloc_consolidate (mstate); |
1829 | |
1830 | |
1831 | /* -------------- Early definitions for debugging hooks ---------------- */ |
1832 | |
1833 | /* Define and initialize the hook variables. These weak definitions must |
1834 | appear before any use of the variables in a function (arena.c uses one). */ |
1835 | #ifndef weak_variable |
1836 | /* In GNU libc we want the hook variables to be weak definitions to |
1837 | avoid a problem with Emacs. */ |
1838 | # define weak_variable weak_function |
1839 | #endif |
1840 | |
1841 | /* Forward declarations. */ |
1842 | static void *malloc_hook_ini (size_t sz, |
1843 | const void *caller) __THROW; |
1844 | static void *realloc_hook_ini (void *ptr, size_t sz, |
1845 | const void *caller) __THROW; |
1846 | static void *memalign_hook_ini (size_t alignment, size_t sz, |
1847 | const void *caller) __THROW; |
1848 | |
1849 | #if HAVE_MALLOC_INIT_HOOK |
1850 | void weak_variable (*__malloc_initialize_hook) (void) = NULL; |
1851 | compat_symbol (libc, __malloc_initialize_hook, |
1852 | __malloc_initialize_hook, GLIBC_2_0); |
1853 | #endif |
1854 | |
1855 | void weak_variable (*__free_hook) (void *__ptr, |
1856 | const void *) = NULL; |
1857 | void *weak_variable (*__malloc_hook) |
1858 | (size_t __size, const void *) = malloc_hook_ini; |
1859 | void *weak_variable (*__realloc_hook) |
1860 | (void *__ptr, size_t __size, const void *) |
1861 | = realloc_hook_ini; |
1862 | void *weak_variable (*__memalign_hook) |
1863 | (size_t __alignment, size_t __size, const void *) |
1864 | = memalign_hook_ini; |
1865 | void weak_variable (*__after_morecore_hook) (void) = NULL; |
1866 | |
1867 | /* This function is called from the arena shutdown hook, to free the |
1868 | thread cache (if it exists). */ |
1869 | static void tcache_thread_shutdown (void); |
1870 | |
1871 | /* ------------------ Testing support ----------------------------------*/ |
1872 | |
1873 | static int perturb_byte; |
1874 | |
1875 | static void |
1876 | alloc_perturb (char *p, size_t n) |
1877 | { |
1878 | if (__glibc_unlikely (perturb_byte)) |
1879 | memset (p, perturb_byte ^ 0xff, n); |
1880 | } |
1881 | |
1882 | static void |
1883 | free_perturb (char *p, size_t n) |
1884 | { |
1885 | if (__glibc_unlikely (perturb_byte)) |
1886 | memset (p, perturb_byte, n); |
1887 | } |
1888 | |
1889 | |
1890 | |
1891 | #include <stap-probe.h> |
1892 | |
1893 | /* ------------------- Support for multiple arenas -------------------- */ |
1894 | #include "arena.c" |
1895 | |
1896 | /* |
1897 | Debugging support |
1898 | |
1899 | These routines make a number of assertions about the states |
1900 | of data structures that should be true at all times. If any |
1901 | are not true, it's very likely that a user program has somehow |
1902 | trashed memory. (It's also possible that there is a coding error |
1903 | in malloc. In which case, please report it!) |
1904 | */ |
1905 | |
1906 | #if !MALLOC_DEBUG |
1907 | |
1908 | # define check_chunk(A, P) |
1909 | # define check_free_chunk(A, P) |
1910 | # define check_inuse_chunk(A, P) |
1911 | # define check_remalloced_chunk(A, P, N) |
1912 | # define check_malloced_chunk(A, P, N) |
1913 | # define check_malloc_state(A) |
1914 | |
1915 | #else |
1916 | |
1917 | # define check_chunk(A, P) do_check_chunk (A, P) |
1918 | # define check_free_chunk(A, P) do_check_free_chunk (A, P) |
1919 | # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P) |
1920 | # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N) |
1921 | # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N) |
1922 | # define check_malloc_state(A) do_check_malloc_state (A) |
1923 | |
1924 | /* |
1925 | Properties of all chunks |
1926 | */ |
1927 | |
1928 | static void |
1929 | do_check_chunk (mstate av, mchunkptr p) |
1930 | { |
1931 | unsigned long sz = chunksize (p); |
1932 | /* min and max possible addresses assuming contiguous allocation */ |
1933 | char *max_address = (char *) (av->top) + chunksize (av->top); |
1934 | char *min_address = max_address - av->system_mem; |
1935 | |
1936 | if (!chunk_is_mmapped (p)) |
1937 | { |
1938 | /* Has legal address ... */ |
1939 | if (p != av->top) |
1940 | { |
1941 | if (contiguous (av)) |
1942 | { |
1943 | assert (((char *) p) >= min_address); |
1944 | assert (((char *) p + sz) <= ((char *) (av->top))); |
1945 | } |
1946 | } |
1947 | else |
1948 | { |
1949 | /* top size is always at least MINSIZE */ |
1950 | assert ((unsigned long) (sz) >= MINSIZE); |
1951 | /* top predecessor always marked inuse */ |
1952 | assert (prev_inuse (p)); |
1953 | } |
1954 | } |
1955 | else if (!DUMPED_MAIN_ARENA_CHUNK (p)) |
1956 | { |
1957 | /* address is outside main heap */ |
1958 | if (contiguous (av) && av->top != initial_top (av)) |
1959 | { |
1960 | assert (((char *) p) < min_address || ((char *) p) >= max_address); |
1961 | } |
1962 | /* chunk is page-aligned */ |
1963 | assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0); |
1964 | /* mem is aligned */ |
1965 | assert (aligned_OK (chunk2mem (p))); |
1966 | } |
1967 | } |
1968 | |
1969 | /* |
1970 | Properties of free chunks |
1971 | */ |
1972 | |
1973 | static void |
1974 | do_check_free_chunk (mstate av, mchunkptr p) |
1975 | { |
1976 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
1977 | mchunkptr next = chunk_at_offset (p, sz); |
1978 | |
1979 | do_check_chunk (av, p); |
1980 | |
1981 | /* Chunk must claim to be free ... */ |
1982 | assert (!inuse (p)); |
1983 | assert (!chunk_is_mmapped (p)); |
1984 | |
1985 | /* Unless a special marker, must have OK fields */ |
1986 | if ((unsigned long) (sz) >= MINSIZE) |
1987 | { |
1988 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
1989 | assert (aligned_OK (chunk2mem (p))); |
1990 | /* ... matching footer field */ |
1991 | assert (prev_size (next_chunk (p)) == sz); |
1992 | /* ... and is fully consolidated */ |
1993 | assert (prev_inuse (p)); |
1994 | assert (next == av->top || inuse (next)); |
1995 | |
1996 | /* ... and has minimally sane links */ |
1997 | assert (p->fd->bk == p); |
1998 | assert (p->bk->fd == p); |
1999 | } |
2000 | else /* markers are always of size SIZE_SZ */ |
2001 | assert (sz == SIZE_SZ); |
2002 | } |
2003 | |
2004 | /* |
2005 | Properties of inuse chunks |
2006 | */ |
2007 | |
2008 | static void |
2009 | do_check_inuse_chunk (mstate av, mchunkptr p) |
2010 | { |
2011 | mchunkptr next; |
2012 | |
2013 | do_check_chunk (av, p); |
2014 | |
2015 | if (chunk_is_mmapped (p)) |
2016 | return; /* mmapped chunks have no next/prev */ |
2017 | |
2018 | /* Check whether it claims to be in use ... */ |
2019 | assert (inuse (p)); |
2020 | |
2021 | next = next_chunk (p); |
2022 | |
2023 | /* ... and is surrounded by OK chunks. |
2024 | Since more things can be checked with free chunks than inuse ones, |
2025 | if an inuse chunk borders them and debug is on, it's worth doing them. |
2026 | */ |
2027 | if (!prev_inuse (p)) |
2028 | { |
2029 | /* Note that we cannot even look at prev unless it is not inuse */ |
2030 | mchunkptr prv = prev_chunk (p); |
2031 | assert (next_chunk (prv) == p); |
2032 | do_check_free_chunk (av, prv); |
2033 | } |
2034 | |
2035 | if (next == av->top) |
2036 | { |
2037 | assert (prev_inuse (next)); |
2038 | assert (chunksize (next) >= MINSIZE); |
2039 | } |
2040 | else if (!inuse (next)) |
2041 | do_check_free_chunk (av, next); |
2042 | } |
2043 | |
2044 | /* |
2045 | Properties of chunks recycled from fastbins |
2046 | */ |
2047 | |
2048 | static void |
2049 | do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2050 | { |
2051 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
2052 | |
2053 | if (!chunk_is_mmapped (p)) |
2054 | { |
2055 | assert (av == arena_for_chunk (p)); |
2056 | if (chunk_main_arena (p)) |
2057 | assert (av == &main_arena); |
2058 | else |
2059 | assert (av != &main_arena); |
2060 | } |
2061 | |
2062 | do_check_inuse_chunk (av, p); |
2063 | |
2064 | /* Legal size ... */ |
2065 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
2066 | assert ((unsigned long) (sz) >= MINSIZE); |
2067 | /* ... and alignment */ |
2068 | assert (aligned_OK (chunk2mem (p))); |
2069 | /* chunk is less than MINSIZE more than request */ |
2070 | assert ((long) (sz) - (long) (s) >= 0); |
2071 | assert ((long) (sz) - (long) (s + MINSIZE) < 0); |
2072 | } |
2073 | |
2074 | /* |
2075 | Properties of nonrecycled chunks at the point they are malloced |
2076 | */ |
2077 | |
2078 | static void |
2079 | do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2080 | { |
2081 | /* same as recycled case ... */ |
2082 | do_check_remalloced_chunk (av, p, s); |
2083 | |
2084 | /* |
2085 | ... plus, must obey implementation invariant that prev_inuse is |
2086 | always true of any allocated chunk; i.e., that each allocated |
2087 | chunk borders either a previously allocated and still in-use |
2088 | chunk, or the base of its memory arena. This is ensured |
2089 | by making all allocations from the `lowest' part of any found |
2090 | chunk. This does not necessarily hold however for chunks |
2091 | recycled via fastbins. |
2092 | */ |
2093 | |
2094 | assert (prev_inuse (p)); |
2095 | } |
2096 | |
2097 | |
2098 | /* |
2099 | Properties of malloc_state. |
2100 | |
2101 | This may be useful for debugging malloc, as well as detecting user |
2102 | programmer errors that somehow write into malloc_state. |
2103 | |
2104 | If you are extending or experimenting with this malloc, you can |
2105 | probably figure out how to hack this routine to print out or |
2106 | display chunk addresses, sizes, bins, and other instrumentation. |
2107 | */ |
2108 | |
2109 | static void |
2110 | do_check_malloc_state (mstate av) |
2111 | { |
2112 | int i; |
2113 | mchunkptr p; |
2114 | mchunkptr q; |
2115 | mbinptr b; |
2116 | unsigned int idx; |
2117 | INTERNAL_SIZE_T size; |
2118 | unsigned long total = 0; |
2119 | int max_fast_bin; |
2120 | |
2121 | /* internal size_t must be no wider than pointer type */ |
2122 | assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *)); |
2123 | |
2124 | /* alignment is a power of 2 */ |
2125 | assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0); |
2126 | |
2127 | /* Check the arena is initialized. */ |
2128 | assert (av->top != 0); |
2129 | |
2130 | /* No memory has been allocated yet, so doing more tests is not possible. */ |
2131 | if (av->top == initial_top (av)) |
2132 | return; |
2133 | |
2134 | /* pagesize is a power of 2 */ |
2135 | assert (powerof2(GLRO (dl_pagesize))); |
2136 | |
2137 | /* A contiguous main_arena is consistent with sbrk_base. */ |
2138 | if (av == &main_arena && contiguous (av)) |
2139 | assert ((char *) mp_.sbrk_base + av->system_mem == |
2140 | (char *) av->top + chunksize (av->top)); |
2141 | |
2142 | /* properties of fastbins */ |
2143 | |
2144 | /* max_fast is in allowed range */ |
2145 | assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE)); |
2146 | |
2147 | max_fast_bin = fastbin_index (get_max_fast ()); |
2148 | |
2149 | for (i = 0; i < NFASTBINS; ++i) |
2150 | { |
2151 | p = fastbin (av, i); |
2152 | |
2153 | /* The following test can only be performed for the main arena. |
2154 | While mallopt calls malloc_consolidate to get rid of all fast |
2155 | bins (especially those larger than the new maximum) this does |
2156 | only happen for the main arena. Trying to do this for any |
2157 | other arena would mean those arenas have to be locked and |
2158 | malloc_consolidate be called for them. This is excessive. And |
2159 | even if this is acceptable to somebody it still cannot solve |
2160 | the problem completely since if the arena is locked a |
2161 | concurrent malloc call might create a new arena which then |
2162 | could use the newly invalid fast bins. */ |
2163 | |
2164 | /* all bins past max_fast are empty */ |
2165 | if (av == &main_arena && i > max_fast_bin) |
2166 | assert (p == 0); |
2167 | |
2168 | while (p != 0) |
2169 | { |
2170 | /* each chunk claims to be inuse */ |
2171 | do_check_inuse_chunk (av, p); |
2172 | total += chunksize (p); |
2173 | /* chunk belongs in this bin */ |
2174 | assert (fastbin_index (chunksize (p)) == i); |
2175 | p = p->fd; |
2176 | } |
2177 | } |
2178 | |
2179 | /* check normal bins */ |
2180 | for (i = 1; i < NBINS; ++i) |
2181 | { |
2182 | b = bin_at (av, i); |
2183 | |
2184 | /* binmap is accurate (except for bin 1 == unsorted_chunks) */ |
2185 | if (i >= 2) |
2186 | { |
2187 | unsigned int binbit = get_binmap (av, i); |
2188 | int empty = last (b) == b; |
2189 | if (!binbit) |
2190 | assert (empty); |
2191 | else if (!empty) |
2192 | assert (binbit); |
2193 | } |
2194 | |
2195 | for (p = last (b); p != b; p = p->bk) |
2196 | { |
2197 | /* each chunk claims to be free */ |
2198 | do_check_free_chunk (av, p); |
2199 | size = chunksize (p); |
2200 | total += size; |
2201 | if (i >= 2) |
2202 | { |
2203 | /* chunk belongs in bin */ |
2204 | idx = bin_index (size); |
2205 | assert (idx == i); |
2206 | /* lists are sorted */ |
2207 | assert (p->bk == b || |
2208 | (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p)); |
2209 | |
2210 | if (!in_smallbin_range (size)) |
2211 | { |
2212 | if (p->fd_nextsize != NULL) |
2213 | { |
2214 | if (p->fd_nextsize == p) |
2215 | assert (p->bk_nextsize == p); |
2216 | else |
2217 | { |
2218 | if (p->fd_nextsize == first (b)) |
2219 | assert (chunksize (p) < chunksize (p->fd_nextsize)); |
2220 | else |
2221 | assert (chunksize (p) > chunksize (p->fd_nextsize)); |
2222 | |
2223 | if (p == first (b)) |
2224 | assert (chunksize (p) > chunksize (p->bk_nextsize)); |
2225 | else |
2226 | assert (chunksize (p) < chunksize (p->bk_nextsize)); |
2227 | } |
2228 | } |
2229 | else |
2230 | assert (p->bk_nextsize == NULL); |
2231 | } |
2232 | } |
2233 | else if (!in_smallbin_range (size)) |
2234 | assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL); |
2235 | /* chunk is followed by a legal chain of inuse chunks */ |
2236 | for (q = next_chunk (p); |
2237 | (q != av->top && inuse (q) && |
2238 | (unsigned long) (chunksize (q)) >= MINSIZE); |
2239 | q = next_chunk (q)) |
2240 | do_check_inuse_chunk (av, q); |
2241 | } |
2242 | } |
2243 | |
2244 | /* top chunk is OK */ |
2245 | check_chunk (av, av->top); |
2246 | } |
2247 | #endif |
2248 | |
2249 | |
2250 | /* ----------------- Support for debugging hooks -------------------- */ |
2251 | #include "hooks.c" |
2252 | |
2253 | |
2254 | /* ----------- Routines dealing with system allocation -------------- */ |
2255 | |
2256 | /* |
2257 | sysmalloc handles malloc cases requiring more memory from the system. |
2258 | On entry, it is assumed that av->top does not have enough |
2259 | space to service request for nb bytes, thus requiring that av->top |
2260 | be extended or replaced. |
2261 | */ |
2262 | |
2263 | static void * |
2264 | sysmalloc (INTERNAL_SIZE_T nb, mstate av) |
2265 | { |
2266 | mchunkptr old_top; /* incoming value of av->top */ |
2267 | INTERNAL_SIZE_T old_size; /* its size */ |
2268 | char *old_end; /* its end address */ |
2269 | |
2270 | long size; /* arg to first MORECORE or mmap call */ |
2271 | char *brk; /* return value from MORECORE */ |
2272 | |
2273 | long correction; /* arg to 2nd MORECORE call */ |
2274 | char *snd_brk; /* 2nd return val */ |
2275 | |
2276 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ |
2277 | INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ |
2278 | char *aligned_brk; /* aligned offset into brk */ |
2279 | |
2280 | mchunkptr p; /* the allocated/returned chunk */ |
2281 | mchunkptr remainder; /* remainder from allocation */ |
2282 | unsigned long remainder_size; /* its size */ |
2283 | |
2284 | |
2285 | size_t pagesize = GLRO (dl_pagesize); |
2286 | bool tried_mmap = false; |
2287 | |
2288 | |
2289 | /* |
2290 | If have mmap, and the request size meets the mmap threshold, and |
2291 | the system supports mmap, and there are few enough currently |
2292 | allocated mmapped regions, try to directly map this request |
2293 | rather than expanding top. |
2294 | */ |
2295 | |
2296 | if (av == NULL |
2297 | || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) |
2298 | && (mp_.n_mmaps < mp_.n_mmaps_max))) |
2299 | { |
2300 | char *mm; /* return value from mmap call*/ |
2301 | |
2302 | try_mmap: |
2303 | /* |
2304 | Round up size to nearest page. For mmapped chunks, the overhead |
2305 | is one SIZE_SZ unit larger than for normal chunks, because there |
2306 | is no following chunk whose prev_size field could be used. |
2307 | |
2308 | See the front_misalign handling below, for glibc there is no |
2309 | need for further alignments unless we have have high alignment. |
2310 | */ |
2311 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2312 | size = ALIGN_UP (nb + SIZE_SZ, pagesize); |
2313 | else |
2314 | size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize); |
2315 | tried_mmap = true; |
2316 | |
2317 | /* Don't try if size wraps around 0 */ |
2318 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2319 | { |
2320 | mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2321 | |
2322 | if (mm != MAP_FAILED) |
2323 | { |
2324 | /* |
2325 | The offset to the start of the mmapped region is stored |
2326 | in the prev_size field of the chunk. This allows us to adjust |
2327 | returned start address to meet alignment requirements here |
2328 | and in memalign(), and still be able to compute proper |
2329 | address argument for later munmap in free() and realloc(). |
2330 | */ |
2331 | |
2332 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2333 | { |
2334 | /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and |
2335 | MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page |
2336 | aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */ |
2337 | assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0); |
2338 | front_misalign = 0; |
2339 | } |
2340 | else |
2341 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK; |
2342 | if (front_misalign > 0) |
2343 | { |
2344 | correction = MALLOC_ALIGNMENT - front_misalign; |
2345 | p = (mchunkptr) (mm + correction); |
2346 | set_prev_size (p, correction); |
2347 | set_head (p, (size - correction) | IS_MMAPPED); |
2348 | } |
2349 | else |
2350 | { |
2351 | p = (mchunkptr) mm; |
2352 | set_prev_size (p, 0); |
2353 | set_head (p, size | IS_MMAPPED); |
2354 | } |
2355 | |
2356 | /* update statistics */ |
2357 | |
2358 | int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1; |
2359 | atomic_max (&mp_.max_n_mmaps, new); |
2360 | |
2361 | unsigned long sum; |
2362 | sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size; |
2363 | atomic_max (&mp_.max_mmapped_mem, sum); |
2364 | |
2365 | check_chunk (av, p); |
2366 | |
2367 | return chunk2mem (p); |
2368 | } |
2369 | } |
2370 | } |
2371 | |
2372 | /* There are no usable arenas and mmap also failed. */ |
2373 | if (av == NULL) |
2374 | return 0; |
2375 | |
2376 | /* Record incoming configuration of top */ |
2377 | |
2378 | old_top = av->top; |
2379 | old_size = chunksize (old_top); |
2380 | old_end = (char *) (chunk_at_offset (old_top, old_size)); |
2381 | |
2382 | brk = snd_brk = (char *) (MORECORE_FAILURE); |
2383 | |
2384 | /* |
2385 | If not the first time through, we require old_size to be |
2386 | at least MINSIZE and to have prev_inuse set. |
2387 | */ |
2388 | |
2389 | assert ((old_top == initial_top (av) && old_size == 0) || |
2390 | ((unsigned long) (old_size) >= MINSIZE && |
2391 | prev_inuse (old_top) && |
2392 | ((unsigned long) old_end & (pagesize - 1)) == 0)); |
2393 | |
2394 | /* Precondition: not enough current space to satisfy nb request */ |
2395 | assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE)); |
2396 | |
2397 | |
2398 | if (av != &main_arena) |
2399 | { |
2400 | heap_info *old_heap, *heap; |
2401 | size_t old_heap_size; |
2402 | |
2403 | /* First try to extend the current heap. */ |
2404 | old_heap = heap_for_ptr (old_top); |
2405 | old_heap_size = old_heap->size; |
2406 | if ((long) (MINSIZE + nb - old_size) > 0 |
2407 | && grow_heap (old_heap, MINSIZE + nb - old_size) == 0) |
2408 | { |
2409 | av->system_mem += old_heap->size - old_heap_size; |
2410 | set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top) |
2411 | | PREV_INUSE); |
2412 | } |
2413 | else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad))) |
2414 | { |
2415 | /* Use a newly allocated heap. */ |
2416 | heap->ar_ptr = av; |
2417 | heap->prev = old_heap; |
2418 | av->system_mem += heap->size; |
2419 | /* Set up the new top. */ |
2420 | top (av) = chunk_at_offset (heap, sizeof (*heap)); |
2421 | set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE); |
2422 | |
2423 | /* Setup fencepost and free the old top chunk with a multiple of |
2424 | MALLOC_ALIGNMENT in size. */ |
2425 | /* The fencepost takes at least MINSIZE bytes, because it might |
2426 | become the top chunk again later. Note that a footer is set |
2427 | up, too, although the chunk is marked in use. */ |
2428 | old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK; |
2429 | set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE); |
2430 | if (old_size >= MINSIZE) |
2431 | { |
2432 | set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE); |
2433 | set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ)); |
2434 | set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA); |
2435 | _int_free (av, old_top, 1); |
2436 | } |
2437 | else |
2438 | { |
2439 | set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE); |
2440 | set_foot (old_top, (old_size + 2 * SIZE_SZ)); |
2441 | } |
2442 | } |
2443 | else if (!tried_mmap) |
2444 | /* We can at least try to use to mmap memory. */ |
2445 | goto try_mmap; |
2446 | } |
2447 | else /* av == main_arena */ |
2448 | |
2449 | |
2450 | { /* Request enough space for nb + pad + overhead */ |
2451 | size = nb + mp_.top_pad + MINSIZE; |
2452 | |
2453 | /* |
2454 | If contiguous, we can subtract out existing space that we hope to |
2455 | combine with new space. We add it back later only if |
2456 | we don't actually get contiguous space. |
2457 | */ |
2458 | |
2459 | if (contiguous (av)) |
2460 | size -= old_size; |
2461 | |
2462 | /* |
2463 | Round to a multiple of page size. |
2464 | If MORECORE is not contiguous, this ensures that we only call it |
2465 | with whole-page arguments. And if MORECORE is contiguous and |
2466 | this is not first time through, this preserves page-alignment of |
2467 | previous calls. Otherwise, we correct to page-align below. |
2468 | */ |
2469 | |
2470 | size = ALIGN_UP (size, pagesize); |
2471 | |
2472 | /* |
2473 | Don't try to call MORECORE if argument is so big as to appear |
2474 | negative. Note that since mmap takes size_t arg, it may succeed |
2475 | below even if we cannot call MORECORE. |
2476 | */ |
2477 | |
2478 | if (size > 0) |
2479 | { |
2480 | brk = (char *) (MORECORE (size)); |
2481 | LIBC_PROBE (memory_sbrk_more, 2, brk, size); |
2482 | } |
2483 | |
2484 | if (brk != (char *) (MORECORE_FAILURE)) |
2485 | { |
2486 | /* Call the `morecore' hook if necessary. */ |
2487 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2488 | if (__builtin_expect (hook != NULL, 0)) |
2489 | (*hook)(); |
2490 | } |
2491 | else |
2492 | { |
2493 | /* |
2494 | If have mmap, try using it as a backup when MORECORE fails or |
2495 | cannot be used. This is worth doing on systems that have "holes" in |
2496 | address space, so sbrk cannot extend to give contiguous space, but |
2497 | space is available elsewhere. Note that we ignore mmap max count |
2498 | and threshold limits, since the space will not be used as a |
2499 | segregated mmap region. |
2500 | */ |
2501 | |
2502 | /* Cannot merge with old top, so add its size back in */ |
2503 | if (contiguous (av)) |
2504 | size = ALIGN_UP (size + old_size, pagesize); |
2505 | |
2506 | /* If we are relying on mmap as backup, then use larger units */ |
2507 | if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE)) |
2508 | size = MMAP_AS_MORECORE_SIZE; |
2509 | |
2510 | /* Don't try if size wraps around 0 */ |
2511 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2512 | { |
2513 | char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2514 | |
2515 | if (mbrk != MAP_FAILED) |
2516 | { |
2517 | /* We do not need, and cannot use, another sbrk call to find end */ |
2518 | brk = mbrk; |
2519 | snd_brk = brk + size; |
2520 | |
2521 | /* |
2522 | Record that we no longer have a contiguous sbrk region. |
2523 | After the first time mmap is used as backup, we do not |
2524 | ever rely on contiguous space since this could incorrectly |
2525 | bridge regions. |
2526 | */ |
2527 | set_noncontiguous (av); |
2528 | } |
2529 | } |
2530 | } |
2531 | |
2532 | if (brk != (char *) (MORECORE_FAILURE)) |
2533 | { |
2534 | if (mp_.sbrk_base == 0) |
2535 | mp_.sbrk_base = brk; |
2536 | av->system_mem += size; |
2537 | |
2538 | /* |
2539 | If MORECORE extends previous space, we can likewise extend top size. |
2540 | */ |
2541 | |
2542 | if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE)) |
2543 | set_head (old_top, (size + old_size) | PREV_INUSE); |
2544 | |
2545 | else if (contiguous (av) && old_size && brk < old_end) |
2546 | /* Oops! Someone else killed our space.. Can't touch anything. */ |
2547 | malloc_printerr ("break adjusted to free malloc space" ); |
2548 | |
2549 | /* |
2550 | Otherwise, make adjustments: |
2551 | |
2552 | * If the first time through or noncontiguous, we need to call sbrk |
2553 | just to find out where the end of memory lies. |
2554 | |
2555 | * We need to ensure that all returned chunks from malloc will meet |
2556 | MALLOC_ALIGNMENT |
2557 | |
2558 | * If there was an intervening foreign sbrk, we need to adjust sbrk |
2559 | request size to account for fact that we will not be able to |
2560 | combine new space with existing space in old_top. |
2561 | |
2562 | * Almost all systems internally allocate whole pages at a time, in |
2563 | which case we might as well use the whole last page of request. |
2564 | So we allocate enough more memory to hit a page boundary now, |
2565 | which in turn causes future contiguous calls to page-align. |
2566 | */ |
2567 | |
2568 | else |
2569 | { |
2570 | front_misalign = 0; |
2571 | end_misalign = 0; |
2572 | correction = 0; |
2573 | aligned_brk = brk; |
2574 | |
2575 | /* handle contiguous cases */ |
2576 | if (contiguous (av)) |
2577 | { |
2578 | /* Count foreign sbrk as system_mem. */ |
2579 | if (old_size) |
2580 | av->system_mem += brk - old_end; |
2581 | |
2582 | /* Guarantee alignment of first new chunk made from this space */ |
2583 | |
2584 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2585 | if (front_misalign > 0) |
2586 | { |
2587 | /* |
2588 | Skip over some bytes to arrive at an aligned position. |
2589 | We don't need to specially mark these wasted front bytes. |
2590 | They will never be accessed anyway because |
2591 | prev_inuse of av->top (and any chunk created from its start) |
2592 | is always true after initialization. |
2593 | */ |
2594 | |
2595 | correction = MALLOC_ALIGNMENT - front_misalign; |
2596 | aligned_brk += correction; |
2597 | } |
2598 | |
2599 | /* |
2600 | If this isn't adjacent to existing space, then we will not |
2601 | be able to merge with old_top space, so must add to 2nd request. |
2602 | */ |
2603 | |
2604 | correction += old_size; |
2605 | |
2606 | /* Extend the end address to hit a page boundary */ |
2607 | end_misalign = (INTERNAL_SIZE_T) (brk + size + correction); |
2608 | correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign; |
2609 | |
2610 | assert (correction >= 0); |
2611 | snd_brk = (char *) (MORECORE (correction)); |
2612 | |
2613 | /* |
2614 | If can't allocate correction, try to at least find out current |
2615 | brk. It might be enough to proceed without failing. |
2616 | |
2617 | Note that if second sbrk did NOT fail, we assume that space |
2618 | is contiguous with first sbrk. This is a safe assumption unless |
2619 | program is multithreaded but doesn't use locks and a foreign sbrk |
2620 | occurred between our first and second calls. |
2621 | */ |
2622 | |
2623 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2624 | { |
2625 | correction = 0; |
2626 | snd_brk = (char *) (MORECORE (0)); |
2627 | } |
2628 | else |
2629 | { |
2630 | /* Call the `morecore' hook if necessary. */ |
2631 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2632 | if (__builtin_expect (hook != NULL, 0)) |
2633 | (*hook)(); |
2634 | } |
2635 | } |
2636 | |
2637 | /* handle non-contiguous cases */ |
2638 | else |
2639 | { |
2640 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2641 | /* MORECORE/mmap must correctly align */ |
2642 | assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0); |
2643 | else |
2644 | { |
2645 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2646 | if (front_misalign > 0) |
2647 | { |
2648 | /* |
2649 | Skip over some bytes to arrive at an aligned position. |
2650 | We don't need to specially mark these wasted front bytes. |
2651 | They will never be accessed anyway because |
2652 | prev_inuse of av->top (and any chunk created from its start) |
2653 | is always true after initialization. |
2654 | */ |
2655 | |
2656 | aligned_brk += MALLOC_ALIGNMENT - front_misalign; |
2657 | } |
2658 | } |
2659 | |
2660 | /* Find out current end of memory */ |
2661 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2662 | { |
2663 | snd_brk = (char *) (MORECORE (0)); |
2664 | } |
2665 | } |
2666 | |
2667 | /* Adjust top based on results of second sbrk */ |
2668 | if (snd_brk != (char *) (MORECORE_FAILURE)) |
2669 | { |
2670 | av->top = (mchunkptr) aligned_brk; |
2671 | set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); |
2672 | av->system_mem += correction; |
2673 | |
2674 | /* |
2675 | If not the first time through, we either have a |
2676 | gap due to foreign sbrk or a non-contiguous region. Insert a |
2677 | double fencepost at old_top to prevent consolidation with space |
2678 | we don't own. These fenceposts are artificial chunks that are |
2679 | marked as inuse and are in any case too small to use. We need |
2680 | two to make sizes and alignments work out. |
2681 | */ |
2682 | |
2683 | if (old_size != 0) |
2684 | { |
2685 | /* |
2686 | Shrink old_top to insert fenceposts, keeping size a |
2687 | multiple of MALLOC_ALIGNMENT. We know there is at least |
2688 | enough space in old_top to do this. |
2689 | */ |
2690 | old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK; |
2691 | set_head (old_top, old_size | PREV_INUSE); |
2692 | |
2693 | /* |
2694 | Note that the following assignments completely overwrite |
2695 | old_top when old_size was previously MINSIZE. This is |
2696 | intentional. We need the fencepost, even if old_top otherwise gets |
2697 | lost. |
2698 | */ |
2699 | set_head (chunk_at_offset (old_top, old_size), |
2700 | (2 * SIZE_SZ) | PREV_INUSE); |
2701 | set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), |
2702 | (2 * SIZE_SZ) | PREV_INUSE); |
2703 | |
2704 | /* If possible, release the rest. */ |
2705 | if (old_size >= MINSIZE) |
2706 | { |
2707 | _int_free (av, old_top, 1); |
2708 | } |
2709 | } |
2710 | } |
2711 | } |
2712 | } |
2713 | } /* if (av != &main_arena) */ |
2714 | |
2715 | if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem)) |
2716 | av->max_system_mem = av->system_mem; |
2717 | check_malloc_state (av); |
2718 | |
2719 | /* finally, do the allocation */ |
2720 | p = av->top; |
2721 | size = chunksize (p); |
2722 | |
2723 | /* check that one of the above allocation paths succeeded */ |
2724 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
2725 | { |
2726 | remainder_size = size - nb; |
2727 | remainder = chunk_at_offset (p, nb); |
2728 | av->top = remainder; |
2729 | set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
2730 | set_head (remainder, remainder_size | PREV_INUSE); |
2731 | check_malloced_chunk (av, p, nb); |
2732 | return chunk2mem (p); |
2733 | } |
2734 | |
2735 | /* catch all failure paths */ |
2736 | __set_errno (ENOMEM); |
2737 | return 0; |
2738 | } |
2739 | |
2740 | |
2741 | /* |
2742 | systrim is an inverse of sorts to sysmalloc. It gives memory back |
2743 | to the system (via negative arguments to sbrk) if there is unused |
2744 | memory at the `high' end of the malloc pool. It is called |
2745 | automatically by free() when top space exceeds the trim |
2746 | threshold. It is also called by the public malloc_trim routine. It |
2747 | returns 1 if it actually released any memory, else 0. |
2748 | */ |
2749 | |
2750 | static int |
2751 | systrim (size_t pad, mstate av) |
2752 | { |
2753 | long top_size; /* Amount of top-most memory */ |
2754 | long ; /* Amount to release */ |
2755 | long released; /* Amount actually released */ |
2756 | char *current_brk; /* address returned by pre-check sbrk call */ |
2757 | char *new_brk; /* address returned by post-check sbrk call */ |
2758 | size_t pagesize; |
2759 | long top_area; |
2760 | |
2761 | pagesize = GLRO (dl_pagesize); |
2762 | top_size = chunksize (av->top); |
2763 | |
2764 | top_area = top_size - MINSIZE - 1; |
2765 | if (top_area <= pad) |
2766 | return 0; |
2767 | |
2768 | /* Release in pagesize units and round down to the nearest page. */ |
2769 | extra = ALIGN_DOWN(top_area - pad, pagesize); |
2770 | |
2771 | if (extra == 0) |
2772 | return 0; |
2773 | |
2774 | /* |
2775 | Only proceed if end of memory is where we last set it. |
2776 | This avoids problems if there were foreign sbrk calls. |
2777 | */ |
2778 | current_brk = (char *) (MORECORE (0)); |
2779 | if (current_brk == (char *) (av->top) + top_size) |
2780 | { |
2781 | /* |
2782 | Attempt to release memory. We ignore MORECORE return value, |
2783 | and instead call again to find out where new end of memory is. |
2784 | This avoids problems if first call releases less than we asked, |
2785 | of if failure somehow altered brk value. (We could still |
2786 | encounter problems if it altered brk in some very bad way, |
2787 | but the only thing we can do is adjust anyway, which will cause |
2788 | some downstream failure.) |
2789 | */ |
2790 | |
2791 | MORECORE (-extra); |
2792 | /* Call the `morecore' hook if necessary. */ |
2793 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2794 | if (__builtin_expect (hook != NULL, 0)) |
2795 | (*hook)(); |
2796 | new_brk = (char *) (MORECORE (0)); |
2797 | |
2798 | LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra); |
2799 | |
2800 | if (new_brk != (char *) MORECORE_FAILURE) |
2801 | { |
2802 | released = (long) (current_brk - new_brk); |
2803 | |
2804 | if (released != 0) |
2805 | { |
2806 | /* Success. Adjust top. */ |
2807 | av->system_mem -= released; |
2808 | set_head (av->top, (top_size - released) | PREV_INUSE); |
2809 | check_malloc_state (av); |
2810 | return 1; |
2811 | } |
2812 | } |
2813 | } |
2814 | return 0; |
2815 | } |
2816 | |
2817 | static void |
2818 | munmap_chunk (mchunkptr p) |
2819 | { |
2820 | size_t pagesize = GLRO (dl_pagesize); |
2821 | INTERNAL_SIZE_T size = chunksize (p); |
2822 | |
2823 | assert (chunk_is_mmapped (p)); |
2824 | |
2825 | /* Do nothing if the chunk is a faked mmapped chunk in the dumped |
2826 | main arena. We never free this memory. */ |
2827 | if (DUMPED_MAIN_ARENA_CHUNK (p)) |
2828 | return; |
2829 | |
2830 | uintptr_t mem = (uintptr_t) chunk2mem (p); |
2831 | uintptr_t block = (uintptr_t) p - prev_size (p); |
2832 | size_t total_size = prev_size (p) + size; |
2833 | /* Unfortunately we have to do the compilers job by hand here. Normally |
2834 | we would test BLOCK and TOTAL-SIZE separately for compliance with the |
2835 | page size. But gcc does not recognize the optimization possibility |
2836 | (in the moment at least) so we combine the two values into one before |
2837 | the bit test. */ |
2838 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
2839 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
2840 | malloc_printerr ("munmap_chunk(): invalid pointer" ); |
2841 | |
2842 | atomic_decrement (&mp_.n_mmaps); |
2843 | atomic_add (&mp_.mmapped_mem, -total_size); |
2844 | |
2845 | /* If munmap failed the process virtual memory address space is in a |
2846 | bad shape. Just leave the block hanging around, the process will |
2847 | terminate shortly anyway since not much can be done. */ |
2848 | __munmap ((char *) block, total_size); |
2849 | } |
2850 | |
2851 | #if HAVE_MREMAP |
2852 | |
2853 | static mchunkptr |
2854 | mremap_chunk (mchunkptr p, size_t new_size) |
2855 | { |
2856 | size_t pagesize = GLRO (dl_pagesize); |
2857 | INTERNAL_SIZE_T offset = prev_size (p); |
2858 | INTERNAL_SIZE_T size = chunksize (p); |
2859 | char *cp; |
2860 | |
2861 | assert (chunk_is_mmapped (p)); |
2862 | |
2863 | uintptr_t block = (uintptr_t) p - offset; |
2864 | uintptr_t mem = (uintptr_t) chunk2mem(p); |
2865 | size_t total_size = offset + size; |
2866 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
2867 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
2868 | malloc_printerr("mremap_chunk(): invalid pointer" ); |
2869 | |
2870 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ |
2871 | new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize); |
2872 | |
2873 | /* No need to remap if the number of pages does not change. */ |
2874 | if (total_size == new_size) |
2875 | return p; |
2876 | |
2877 | cp = (char *) __mremap ((char *) block, total_size, new_size, |
2878 | MREMAP_MAYMOVE); |
2879 | |
2880 | if (cp == MAP_FAILED) |
2881 | return 0; |
2882 | |
2883 | p = (mchunkptr) (cp + offset); |
2884 | |
2885 | assert (aligned_OK (chunk2mem (p))); |
2886 | |
2887 | assert (prev_size (p) == offset); |
2888 | set_head (p, (new_size - offset) | IS_MMAPPED); |
2889 | |
2890 | INTERNAL_SIZE_T new; |
2891 | new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset) |
2892 | + new_size - size - offset; |
2893 | atomic_max (&mp_.max_mmapped_mem, new); |
2894 | return p; |
2895 | } |
2896 | #endif /* HAVE_MREMAP */ |
2897 | |
2898 | /*------------------------ Public wrappers. --------------------------------*/ |
2899 | |
2900 | #if USE_TCACHE |
2901 | |
2902 | /* We overlay this structure on the user-data portion of a chunk when |
2903 | the chunk is stored in the per-thread cache. */ |
2904 | typedef struct tcache_entry |
2905 | { |
2906 | struct tcache_entry *next; |
2907 | /* This field exists to detect double frees. */ |
2908 | struct tcache_perthread_struct *key; |
2909 | } tcache_entry; |
2910 | |
2911 | /* There is one of these for each thread, which contains the |
2912 | per-thread cache (hence "tcache_perthread_struct"). Keeping |
2913 | overall size low is mildly important. Note that COUNTS and ENTRIES |
2914 | are redundant (we could have just counted the linked list each |
2915 | time), this is for performance reasons. */ |
2916 | typedef struct tcache_perthread_struct |
2917 | { |
2918 | char counts[TCACHE_MAX_BINS]; |
2919 | tcache_entry *entries[TCACHE_MAX_BINS]; |
2920 | } tcache_perthread_struct; |
2921 | |
2922 | static __thread bool tcache_shutting_down = false; |
2923 | static __thread tcache_perthread_struct *tcache = NULL; |
2924 | |
2925 | /* Caller must ensure that we know tc_idx is valid and there's room |
2926 | for more chunks. */ |
2927 | static __always_inline void |
2928 | tcache_put (mchunkptr chunk, size_t tc_idx) |
2929 | { |
2930 | tcache_entry *e = (tcache_entry *) chunk2mem (chunk); |
2931 | assert (tc_idx < TCACHE_MAX_BINS); |
2932 | |
2933 | /* Mark this chunk as "in the tcache" so the test in _int_free will |
2934 | detect a double free. */ |
2935 | e->key = tcache; |
2936 | |
2937 | e->next = tcache->entries[tc_idx]; |
2938 | tcache->entries[tc_idx] = e; |
2939 | ++(tcache->counts[tc_idx]); |
2940 | } |
2941 | |
2942 | /* Caller must ensure that we know tc_idx is valid and there's |
2943 | available chunks to remove. */ |
2944 | static __always_inline void * |
2945 | tcache_get (size_t tc_idx) |
2946 | { |
2947 | tcache_entry *e = tcache->entries[tc_idx]; |
2948 | assert (tc_idx < TCACHE_MAX_BINS); |
2949 | assert (tcache->entries[tc_idx] > 0); |
2950 | tcache->entries[tc_idx] = e->next; |
2951 | --(tcache->counts[tc_idx]); |
2952 | e->key = NULL; |
2953 | return (void *) e; |
2954 | } |
2955 | |
2956 | static void |
2957 | tcache_thread_shutdown (void) |
2958 | { |
2959 | int i; |
2960 | tcache_perthread_struct *tcache_tmp = tcache; |
2961 | |
2962 | if (!tcache) |
2963 | return; |
2964 | |
2965 | /* Disable the tcache and prevent it from being reinitialized. */ |
2966 | tcache = NULL; |
2967 | tcache_shutting_down = true; |
2968 | |
2969 | /* Free all of the entries and the tcache itself back to the arena |
2970 | heap for coalescing. */ |
2971 | for (i = 0; i < TCACHE_MAX_BINS; ++i) |
2972 | { |
2973 | while (tcache_tmp->entries[i]) |
2974 | { |
2975 | tcache_entry *e = tcache_tmp->entries[i]; |
2976 | tcache_tmp->entries[i] = e->next; |
2977 | __libc_free (e); |
2978 | } |
2979 | } |
2980 | |
2981 | __libc_free (tcache_tmp); |
2982 | } |
2983 | |
2984 | static void |
2985 | tcache_init(void) |
2986 | { |
2987 | mstate ar_ptr; |
2988 | void *victim = 0; |
2989 | const size_t bytes = sizeof (tcache_perthread_struct); |
2990 | |
2991 | if (tcache_shutting_down) |
2992 | return; |
2993 | |
2994 | arena_get (ar_ptr, bytes); |
2995 | victim = _int_malloc (ar_ptr, bytes); |
2996 | if (!victim && ar_ptr != NULL) |
2997 | { |
2998 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
2999 | victim = _int_malloc (ar_ptr, bytes); |
3000 | } |
3001 | |
3002 | |
3003 | if (ar_ptr != NULL) |
3004 | __libc_lock_unlock (ar_ptr->mutex); |
3005 | |
3006 | /* In a low memory situation, we may not be able to allocate memory |
3007 | - in which case, we just keep trying later. However, we |
3008 | typically do this very early, so either there is sufficient |
3009 | memory, or there isn't enough memory to do non-trivial |
3010 | allocations anyway. */ |
3011 | if (victim) |
3012 | { |
3013 | tcache = (tcache_perthread_struct *) victim; |
3014 | memset (tcache, 0, sizeof (tcache_perthread_struct)); |
3015 | } |
3016 | |
3017 | } |
3018 | |
3019 | # define MAYBE_INIT_TCACHE() \ |
3020 | if (__glibc_unlikely (tcache == NULL)) \ |
3021 | tcache_init(); |
3022 | |
3023 | #else /* !USE_TCACHE */ |
3024 | # define MAYBE_INIT_TCACHE() |
3025 | |
3026 | static void |
3027 | tcache_thread_shutdown (void) |
3028 | { |
3029 | /* Nothing to do if there is no thread cache. */ |
3030 | } |
3031 | |
3032 | #endif /* !USE_TCACHE */ |
3033 | |
3034 | void * |
3035 | __libc_malloc (size_t bytes) |
3036 | { |
3037 | mstate ar_ptr; |
3038 | void *victim; |
3039 | |
3040 | void *(*hook) (size_t, const void *) |
3041 | = atomic_forced_read (__malloc_hook); |
3042 | if (__builtin_expect (hook != NULL, 0)) |
3043 | return (*hook)(bytes, RETURN_ADDRESS (0)); |
3044 | #if USE_TCACHE |
3045 | /* int_free also calls request2size, be careful to not pad twice. */ |
3046 | size_t tbytes; |
3047 | checked_request2size (bytes, tbytes); |
3048 | size_t tc_idx = csize2tidx (tbytes); |
3049 | |
3050 | MAYBE_INIT_TCACHE (); |
3051 | |
3052 | DIAG_PUSH_NEEDS_COMMENT; |
3053 | if (tc_idx < mp_.tcache_bins |
3054 | /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */ |
3055 | && tcache |
3056 | && tcache->entries[tc_idx] != NULL) |
3057 | { |
3058 | return tcache_get (tc_idx); |
3059 | } |
3060 | DIAG_POP_NEEDS_COMMENT; |
3061 | #endif |
3062 | |
3063 | if (SINGLE_THREAD_P) |
3064 | { |
3065 | victim = _int_malloc (&main_arena, bytes); |
3066 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
3067 | &main_arena == arena_for_chunk (mem2chunk (victim))); |
3068 | return victim; |
3069 | } |
3070 | |
3071 | arena_get (ar_ptr, bytes); |
3072 | |
3073 | victim = _int_malloc (ar_ptr, bytes); |
3074 | /* Retry with another arena only if we were able to find a usable arena |
3075 | before. */ |
3076 | if (!victim && ar_ptr != NULL) |
3077 | { |
3078 | LIBC_PROBE (memory_malloc_retry, 1, bytes); |
3079 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
3080 | victim = _int_malloc (ar_ptr, bytes); |
3081 | } |
3082 | |
3083 | if (ar_ptr != NULL) |
3084 | __libc_lock_unlock (ar_ptr->mutex); |
3085 | |
3086 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
3087 | ar_ptr == arena_for_chunk (mem2chunk (victim))); |
3088 | return victim; |
3089 | } |
3090 | libc_hidden_def (__libc_malloc) |
3091 | |
3092 | void |
3093 | __libc_free (void *mem) |
3094 | { |
3095 | mstate ar_ptr; |
3096 | mchunkptr p; /* chunk corresponding to mem */ |
3097 | |
3098 | void (*hook) (void *, const void *) |
3099 | = atomic_forced_read (__free_hook); |
3100 | if (__builtin_expect (hook != NULL, 0)) |
3101 | { |
3102 | (*hook)(mem, RETURN_ADDRESS (0)); |
3103 | return; |
3104 | } |
3105 | |
3106 | if (mem == 0) /* free(0) has no effect */ |
3107 | return; |
3108 | |
3109 | p = mem2chunk (mem); |
3110 | |
3111 | if (chunk_is_mmapped (p)) /* release mmapped memory. */ |
3112 | { |
3113 | /* See if the dynamic brk/mmap threshold needs adjusting. |
3114 | Dumped fake mmapped chunks do not affect the threshold. */ |
3115 | if (!mp_.no_dyn_threshold |
3116 | && chunksize_nomask (p) > mp_.mmap_threshold |
3117 | && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX |
3118 | && !DUMPED_MAIN_ARENA_CHUNK (p)) |
3119 | { |
3120 | mp_.mmap_threshold = chunksize (p); |
3121 | mp_.trim_threshold = 2 * mp_.mmap_threshold; |
3122 | LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2, |
3123 | mp_.mmap_threshold, mp_.trim_threshold); |
3124 | } |
3125 | munmap_chunk (p); |
3126 | return; |
3127 | } |
3128 | |
3129 | MAYBE_INIT_TCACHE (); |
3130 | |
3131 | ar_ptr = arena_for_chunk (p); |
3132 | _int_free (ar_ptr, p, 0); |
3133 | } |
3134 | libc_hidden_def (__libc_free) |
3135 | |
3136 | void * |
3137 | __libc_realloc (void *oldmem, size_t bytes) |
3138 | { |
3139 | mstate ar_ptr; |
3140 | INTERNAL_SIZE_T nb; /* padded request size */ |
3141 | |
3142 | void *newp; /* chunk to return */ |
3143 | |
3144 | void *(*hook) (void *, size_t, const void *) = |
3145 | atomic_forced_read (__realloc_hook); |
3146 | if (__builtin_expect (hook != NULL, 0)) |
3147 | return (*hook)(oldmem, bytes, RETURN_ADDRESS (0)); |
3148 | |
3149 | #if REALLOC_ZERO_BYTES_FREES |
3150 | if (bytes == 0 && oldmem != NULL) |
3151 | { |
3152 | __libc_free (oldmem); return 0; |
3153 | } |
3154 | #endif |
3155 | |
3156 | /* realloc of null is supposed to be same as malloc */ |
3157 | if (oldmem == 0) |
3158 | return __libc_malloc (bytes); |
3159 | |
3160 | /* chunk corresponding to oldmem */ |
3161 | const mchunkptr oldp = mem2chunk (oldmem); |
3162 | /* its size */ |
3163 | const INTERNAL_SIZE_T oldsize = chunksize (oldp); |
3164 | |
3165 | if (chunk_is_mmapped (oldp)) |
3166 | ar_ptr = NULL; |
3167 | else |
3168 | { |
3169 | MAYBE_INIT_TCACHE (); |
3170 | ar_ptr = arena_for_chunk (oldp); |
3171 | } |
3172 | |
3173 | /* Little security check which won't hurt performance: the allocator |
3174 | never wrapps around at the end of the address space. Therefore |
3175 | we can exclude some size values which might appear here by |
3176 | accident or by "design" from some intruder. We need to bypass |
3177 | this check for dumped fake mmap chunks from the old main arena |
3178 | because the new malloc may provide additional alignment. */ |
3179 | if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0) |
3180 | || __builtin_expect (misaligned_chunk (oldp), 0)) |
3181 | && !DUMPED_MAIN_ARENA_CHUNK (oldp)) |
3182 | malloc_printerr ("realloc(): invalid pointer" ); |
3183 | |
3184 | checked_request2size (bytes, nb); |
3185 | |
3186 | if (chunk_is_mmapped (oldp)) |
3187 | { |
3188 | /* If this is a faked mmapped chunk from the dumped main arena, |
3189 | always make a copy (and do not free the old chunk). */ |
3190 | if (DUMPED_MAIN_ARENA_CHUNK (oldp)) |
3191 | { |
3192 | /* Must alloc, copy, free. */ |
3193 | void *newmem = __libc_malloc (bytes); |
3194 | if (newmem == 0) |
3195 | return NULL; |
3196 | /* Copy as many bytes as are available from the old chunk |
3197 | and fit into the new size. NB: The overhead for faked |
3198 | mmapped chunks is only SIZE_SZ, not 2 * SIZE_SZ as for |
3199 | regular mmapped chunks. */ |
3200 | if (bytes > oldsize - SIZE_SZ) |
3201 | bytes = oldsize - SIZE_SZ; |
3202 | memcpy (newmem, oldmem, bytes); |
3203 | return newmem; |
3204 | } |
3205 | |
3206 | void *newmem; |
3207 | |
3208 | #if HAVE_MREMAP |
3209 | newp = mremap_chunk (oldp, nb); |
3210 | if (newp) |
3211 | return chunk2mem (newp); |
3212 | #endif |
3213 | /* Note the extra SIZE_SZ overhead. */ |
3214 | if (oldsize - SIZE_SZ >= nb) |
3215 | return oldmem; /* do nothing */ |
3216 | |
3217 | /* Must alloc, copy, free. */ |
3218 | newmem = __libc_malloc (bytes); |
3219 | if (newmem == 0) |
3220 | return 0; /* propagate failure */ |
3221 | |
3222 | memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ); |
3223 | munmap_chunk (oldp); |
3224 | return newmem; |
3225 | } |
3226 | |
3227 | if (SINGLE_THREAD_P) |
3228 | { |
3229 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
3230 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
3231 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
3232 | |
3233 | return newp; |
3234 | } |
3235 | |
3236 | __libc_lock_lock (ar_ptr->mutex); |
3237 | |
3238 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
3239 | |
3240 | __libc_lock_unlock (ar_ptr->mutex); |
3241 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
3242 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
3243 | |
3244 | if (newp == NULL) |
3245 | { |
3246 | /* Try harder to allocate memory in other arenas. */ |
3247 | LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem); |
3248 | newp = __libc_malloc (bytes); |
3249 | if (newp != NULL) |
3250 | { |
3251 | memcpy (newp, oldmem, oldsize - SIZE_SZ); |
3252 | _int_free (ar_ptr, oldp, 0); |
3253 | } |
3254 | } |
3255 | |
3256 | return newp; |
3257 | } |
3258 | libc_hidden_def (__libc_realloc) |
3259 | |
3260 | void * |
3261 | __libc_memalign (size_t alignment, size_t bytes) |
3262 | { |
3263 | void *address = RETURN_ADDRESS (0); |
3264 | return _mid_memalign (alignment, bytes, address); |
3265 | } |
3266 | |
3267 | static void * |
3268 | _mid_memalign (size_t alignment, size_t bytes, void *address) |
3269 | { |
3270 | mstate ar_ptr; |
3271 | void *p; |
3272 | |
3273 | void *(*hook) (size_t, size_t, const void *) = |
3274 | atomic_forced_read (__memalign_hook); |
3275 | if (__builtin_expect (hook != NULL, 0)) |
3276 | return (*hook)(alignment, bytes, address); |
3277 | |
3278 | /* If we need less alignment than we give anyway, just relay to malloc. */ |
3279 | if (alignment <= MALLOC_ALIGNMENT) |
3280 | return __libc_malloc (bytes); |
3281 | |
3282 | /* Otherwise, ensure that it is at least a minimum chunk size */ |
3283 | if (alignment < MINSIZE) |
3284 | alignment = MINSIZE; |
3285 | |
3286 | /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a |
3287 | power of 2 and will cause overflow in the check below. */ |
3288 | if (alignment > SIZE_MAX / 2 + 1) |
3289 | { |
3290 | __set_errno (EINVAL); |
3291 | return 0; |
3292 | } |
3293 | |
3294 | /* Check for overflow. */ |
3295 | if (bytes > SIZE_MAX - alignment - MINSIZE) |
3296 | { |
3297 | __set_errno (ENOMEM); |
3298 | return 0; |
3299 | } |
3300 | |
3301 | |
3302 | /* Make sure alignment is power of 2. */ |
3303 | if (!powerof2 (alignment)) |
3304 | { |
3305 | size_t a = MALLOC_ALIGNMENT * 2; |
3306 | while (a < alignment) |
3307 | a <<= 1; |
3308 | alignment = a; |
3309 | } |
3310 | |
3311 | if (SINGLE_THREAD_P) |
3312 | { |
3313 | p = _int_memalign (&main_arena, alignment, bytes); |
3314 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
3315 | &main_arena == arena_for_chunk (mem2chunk (p))); |
3316 | |
3317 | return p; |
3318 | } |
3319 | |
3320 | arena_get (ar_ptr, bytes + alignment + MINSIZE); |
3321 | |
3322 | p = _int_memalign (ar_ptr, alignment, bytes); |
3323 | if (!p && ar_ptr != NULL) |
3324 | { |
3325 | LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment); |
3326 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
3327 | p = _int_memalign (ar_ptr, alignment, bytes); |
3328 | } |
3329 | |
3330 | if (ar_ptr != NULL) |
3331 | __libc_lock_unlock (ar_ptr->mutex); |
3332 | |
3333 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
3334 | ar_ptr == arena_for_chunk (mem2chunk (p))); |
3335 | return p; |
3336 | } |
3337 | /* For ISO C11. */ |
3338 | weak_alias (__libc_memalign, aligned_alloc) |
3339 | libc_hidden_def (__libc_memalign) |
3340 | |
3341 | void * |
3342 | __libc_valloc (size_t bytes) |
3343 | { |
3344 | if (__malloc_initialized < 0) |
3345 | ptmalloc_init (); |
3346 | |
3347 | void *address = RETURN_ADDRESS (0); |
3348 | size_t pagesize = GLRO (dl_pagesize); |
3349 | return _mid_memalign (pagesize, bytes, address); |
3350 | } |
3351 | |
3352 | void * |
3353 | __libc_pvalloc (size_t bytes) |
3354 | { |
3355 | if (__malloc_initialized < 0) |
3356 | ptmalloc_init (); |
3357 | |
3358 | void *address = RETURN_ADDRESS (0); |
3359 | size_t pagesize = GLRO (dl_pagesize); |
3360 | size_t rounded_bytes = ALIGN_UP (bytes, pagesize); |
3361 | |
3362 | /* Check for overflow. */ |
3363 | if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE) |
3364 | { |
3365 | __set_errno (ENOMEM); |
3366 | return 0; |
3367 | } |
3368 | |
3369 | return _mid_memalign (pagesize, rounded_bytes, address); |
3370 | } |
3371 | |
3372 | void * |
3373 | __libc_calloc (size_t n, size_t elem_size) |
3374 | { |
3375 | mstate av; |
3376 | mchunkptr oldtop, p; |
3377 | INTERNAL_SIZE_T bytes, sz, csz, oldtopsize; |
3378 | void *mem; |
3379 | unsigned long clearsize; |
3380 | unsigned long nclears; |
3381 | INTERNAL_SIZE_T *d; |
3382 | |
3383 | /* size_t is unsigned so the behavior on overflow is defined. */ |
3384 | bytes = n * elem_size; |
3385 | #define HALF_INTERNAL_SIZE_T \ |
3386 | (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2)) |
3387 | if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) |
3388 | { |
3389 | if (elem_size != 0 && bytes / elem_size != n) |
3390 | { |
3391 | __set_errno (ENOMEM); |
3392 | return 0; |
3393 | } |
3394 | } |
3395 | |
3396 | void *(*hook) (size_t, const void *) = |
3397 | atomic_forced_read (__malloc_hook); |
3398 | if (__builtin_expect (hook != NULL, 0)) |
3399 | { |
3400 | sz = bytes; |
3401 | mem = (*hook)(sz, RETURN_ADDRESS (0)); |
3402 | if (mem == 0) |
3403 | return 0; |
3404 | |
3405 | return memset (mem, 0, sz); |
3406 | } |
3407 | |
3408 | sz = bytes; |
3409 | |
3410 | MAYBE_INIT_TCACHE (); |
3411 | |
3412 | if (SINGLE_THREAD_P) |
3413 | av = &main_arena; |
3414 | else |
3415 | arena_get (av, sz); |
3416 | |
3417 | if (av) |
3418 | { |
3419 | /* Check if we hand out the top chunk, in which case there may be no |
3420 | need to clear. */ |
3421 | #if MORECORE_CLEARS |
3422 | oldtop = top (av); |
3423 | oldtopsize = chunksize (top (av)); |
3424 | # if MORECORE_CLEARS < 2 |
3425 | /* Only newly allocated memory is guaranteed to be cleared. */ |
3426 | if (av == &main_arena && |
3427 | oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop) |
3428 | oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop); |
3429 | # endif |
3430 | if (av != &main_arena) |
3431 | { |
3432 | heap_info *heap = heap_for_ptr (oldtop); |
3433 | if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop) |
3434 | oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop; |
3435 | } |
3436 | #endif |
3437 | } |
3438 | else |
3439 | { |
3440 | /* No usable arenas. */ |
3441 | oldtop = 0; |
3442 | oldtopsize = 0; |
3443 | } |
3444 | mem = _int_malloc (av, sz); |
3445 | |
3446 | assert (!mem || chunk_is_mmapped (mem2chunk (mem)) || |
3447 | av == arena_for_chunk (mem2chunk (mem))); |
3448 | |
3449 | if (!SINGLE_THREAD_P) |
3450 | { |
3451 | if (mem == 0 && av != NULL) |
3452 | { |
3453 | LIBC_PROBE (memory_calloc_retry, 1, sz); |
3454 | av = arena_get_retry (av, sz); |
3455 | mem = _int_malloc (av, sz); |
3456 | } |
3457 | |
3458 | if (av != NULL) |
3459 | __libc_lock_unlock (av->mutex); |
3460 | } |
3461 | |
3462 | /* Allocation failed even after a retry. */ |
3463 | if (mem == 0) |
3464 | return 0; |
3465 | |
3466 | p = mem2chunk (mem); |
3467 | |
3468 | /* Two optional cases in which clearing not necessary */ |
3469 | if (chunk_is_mmapped (p)) |
3470 | { |
3471 | if (__builtin_expect (perturb_byte, 0)) |
3472 | return memset (mem, 0, sz); |
3473 | |
3474 | return mem; |
3475 | } |
3476 | |
3477 | csz = chunksize (p); |
3478 | |
3479 | #if MORECORE_CLEARS |
3480 | if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) |
3481 | { |
3482 | /* clear only the bytes from non-freshly-sbrked memory */ |
3483 | csz = oldtopsize; |
3484 | } |
3485 | #endif |
3486 | |
3487 | /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that |
3488 | contents have an odd number of INTERNAL_SIZE_T-sized words; |
3489 | minimally 3. */ |
3490 | d = (INTERNAL_SIZE_T *) mem; |
3491 | clearsize = csz - SIZE_SZ; |
3492 | nclears = clearsize / sizeof (INTERNAL_SIZE_T); |
3493 | assert (nclears >= 3); |
3494 | |
3495 | if (nclears > 9) |
3496 | return memset (d, 0, clearsize); |
3497 | |
3498 | else |
3499 | { |
3500 | *(d + 0) = 0; |
3501 | *(d + 1) = 0; |
3502 | *(d + 2) = 0; |
3503 | if (nclears > 4) |
3504 | { |
3505 | *(d + 3) = 0; |
3506 | *(d + 4) = 0; |
3507 | if (nclears > 6) |
3508 | { |
3509 | *(d + 5) = 0; |
3510 | *(d + 6) = 0; |
3511 | if (nclears > 8) |
3512 | { |
3513 | *(d + 7) = 0; |
3514 | *(d + 8) = 0; |
3515 | } |
3516 | } |
3517 | } |
3518 | } |
3519 | |
3520 | return mem; |
3521 | } |
3522 | |
3523 | /* |
3524 | ------------------------------ malloc ------------------------------ |
3525 | */ |
3526 | |
3527 | static void * |
3528 | _int_malloc (mstate av, size_t bytes) |
3529 | { |
3530 | INTERNAL_SIZE_T nb; /* normalized request size */ |
3531 | unsigned int idx; /* associated bin index */ |
3532 | mbinptr bin; /* associated bin */ |
3533 | |
3534 | mchunkptr victim; /* inspected/selected chunk */ |
3535 | INTERNAL_SIZE_T size; /* its size */ |
3536 | int victim_index; /* its bin index */ |
3537 | |
3538 | mchunkptr remainder; /* remainder from a split */ |
3539 | unsigned long remainder_size; /* its size */ |
3540 | |
3541 | unsigned int block; /* bit map traverser */ |
3542 | unsigned int bit; /* bit map traverser */ |
3543 | unsigned int map; /* current word of binmap */ |
3544 | |
3545 | mchunkptr fwd; /* misc temp for linking */ |
3546 | mchunkptr bck; /* misc temp for linking */ |
3547 | |
3548 | #if USE_TCACHE |
3549 | size_t tcache_unsorted_count; /* count of unsorted chunks processed */ |
3550 | #endif |
3551 | |
3552 | /* |
3553 | Convert request size to internal form by adding SIZE_SZ bytes |
3554 | overhead plus possibly more to obtain necessary alignment and/or |
3555 | to obtain a size of at least MINSIZE, the smallest allocatable |
3556 | size. Also, checked_request2size traps (returning 0) request sizes |
3557 | that are so large that they wrap around zero when padded and |
3558 | aligned. |
3559 | */ |
3560 | |
3561 | checked_request2size (bytes, nb); |
3562 | |
3563 | /* There are no usable arenas. Fall back to sysmalloc to get a chunk from |
3564 | mmap. */ |
3565 | if (__glibc_unlikely (av == NULL)) |
3566 | { |
3567 | void *p = sysmalloc (nb, av); |
3568 | if (p != NULL) |
3569 | alloc_perturb (p, bytes); |
3570 | return p; |
3571 | } |
3572 | |
3573 | /* |
3574 | If the size qualifies as a fastbin, first check corresponding bin. |
3575 | This code is safe to execute even if av is not yet initialized, so we |
3576 | can try it without checking, which saves some time on this fast path. |
3577 | */ |
3578 | |
3579 | #define REMOVE_FB(fb, victim, pp) \ |
3580 | do \ |
3581 | { \ |
3582 | victim = pp; \ |
3583 | if (victim == NULL) \ |
3584 | break; \ |
3585 | } \ |
3586 | while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) \ |
3587 | != victim); \ |
3588 | |
3589 | if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ())) |
3590 | { |
3591 | idx = fastbin_index (nb); |
3592 | mfastbinptr *fb = &fastbin (av, idx); |
3593 | mchunkptr pp; |
3594 | victim = *fb; |
3595 | |
3596 | if (victim != NULL) |
3597 | { |
3598 | if (SINGLE_THREAD_P) |
3599 | *fb = victim->fd; |
3600 | else |
3601 | REMOVE_FB (fb, pp, victim); |
3602 | if (__glibc_likely (victim != NULL)) |
3603 | { |
3604 | size_t victim_idx = fastbin_index (chunksize (victim)); |
3605 | if (__builtin_expect (victim_idx != idx, 0)) |
3606 | malloc_printerr ("malloc(): memory corruption (fast)" ); |
3607 | check_remalloced_chunk (av, victim, nb); |
3608 | #if USE_TCACHE |
3609 | /* While we're here, if we see other chunks of the same size, |
3610 | stash them in the tcache. */ |
3611 | size_t tc_idx = csize2tidx (nb); |
3612 | if (tcache && tc_idx < mp_.tcache_bins) |
3613 | { |
3614 | mchunkptr tc_victim; |
3615 | |
3616 | /* While bin not empty and tcache not full, copy chunks. */ |
3617 | while (tcache->counts[tc_idx] < mp_.tcache_count |
3618 | && (tc_victim = *fb) != NULL) |
3619 | { |
3620 | if (SINGLE_THREAD_P) |
3621 | *fb = tc_victim->fd; |
3622 | else |
3623 | { |
3624 | REMOVE_FB (fb, pp, tc_victim); |
3625 | if (__glibc_unlikely (tc_victim == NULL)) |
3626 | break; |
3627 | } |
3628 | tcache_put (tc_victim, tc_idx); |
3629 | } |
3630 | } |
3631 | #endif |
3632 | void *p = chunk2mem (victim); |
3633 | alloc_perturb (p, bytes); |
3634 | return p; |
3635 | } |
3636 | } |
3637 | } |
3638 | |
3639 | /* |
3640 | If a small request, check regular bin. Since these "smallbins" |
3641 | hold one size each, no searching within bins is necessary. |
3642 | (For a large request, we need to wait until unsorted chunks are |
3643 | processed to find best fit. But for small ones, fits are exact |
3644 | anyway, so we can check now, which is faster.) |
3645 | */ |
3646 | |
3647 | if (in_smallbin_range (nb)) |
3648 | { |
3649 | idx = smallbin_index (nb); |
3650 | bin = bin_at (av, idx); |
3651 | |
3652 | if ((victim = last (bin)) != bin) |
3653 | { |
3654 | bck = victim->bk; |
3655 | if (__glibc_unlikely (bck->fd != victim)) |
3656 | malloc_printerr ("malloc(): smallbin double linked list corrupted" ); |
3657 | set_inuse_bit_at_offset (victim, nb); |
3658 | bin->bk = bck; |
3659 | bck->fd = bin; |
3660 | |
3661 | if (av != &main_arena) |
3662 | set_non_main_arena (victim); |
3663 | check_malloced_chunk (av, victim, nb); |
3664 | #if USE_TCACHE |
3665 | /* While we're here, if we see other chunks of the same size, |
3666 | stash them in the tcache. */ |
3667 | size_t tc_idx = csize2tidx (nb); |
3668 | if (tcache && tc_idx < mp_.tcache_bins) |
3669 | { |
3670 | mchunkptr tc_victim; |
3671 | |
3672 | /* While bin not empty and tcache not full, copy chunks over. */ |
3673 | while (tcache->counts[tc_idx] < mp_.tcache_count |
3674 | && (tc_victim = last (bin)) != bin) |
3675 | { |
3676 | if (tc_victim != 0) |
3677 | { |
3678 | bck = tc_victim->bk; |
3679 | set_inuse_bit_at_offset (tc_victim, nb); |
3680 | if (av != &main_arena) |
3681 | set_non_main_arena (tc_victim); |
3682 | bin->bk = bck; |
3683 | bck->fd = bin; |
3684 | |
3685 | tcache_put (tc_victim, tc_idx); |
3686 | } |
3687 | } |
3688 | } |
3689 | #endif |
3690 | void *p = chunk2mem (victim); |
3691 | alloc_perturb (p, bytes); |
3692 | return p; |
3693 | } |
3694 | } |
3695 | |
3696 | /* |
3697 | If this is a large request, consolidate fastbins before continuing. |
3698 | While it might look excessive to kill all fastbins before |
3699 | even seeing if there is space available, this avoids |
3700 | fragmentation problems normally associated with fastbins. |
3701 | Also, in practice, programs tend to have runs of either small or |
3702 | large requests, but less often mixtures, so consolidation is not |
3703 | invoked all that often in most programs. And the programs that |
3704 | it is called frequently in otherwise tend to fragment. |
3705 | */ |
3706 | |
3707 | else |
3708 | { |
3709 | idx = largebin_index (nb); |
3710 | if (atomic_load_relaxed (&av->have_fastchunks)) |
3711 | malloc_consolidate (av); |
3712 | } |
3713 | |
3714 | /* |
3715 | Process recently freed or remaindered chunks, taking one only if |
3716 | it is exact fit, or, if this a small request, the chunk is remainder from |
3717 | the most recent non-exact fit. Place other traversed chunks in |
3718 | bins. Note that this step is the only place in any routine where |
3719 | chunks are placed in bins. |
3720 | |
3721 | The outer loop here is needed because we might not realize until |
3722 | near the end of malloc that we should have consolidated, so must |
3723 | do so and retry. This happens at most once, and only when we would |
3724 | otherwise need to expand memory to service a "small" request. |
3725 | */ |
3726 | |
3727 | #if USE_TCACHE |
3728 | INTERNAL_SIZE_T tcache_nb = 0; |
3729 | size_t tc_idx = csize2tidx (nb); |
3730 | if (tcache && tc_idx < mp_.tcache_bins) |
3731 | tcache_nb = nb; |
3732 | int return_cached = 0; |
3733 | |
3734 | tcache_unsorted_count = 0; |
3735 | #endif |
3736 | |
3737 | for (;; ) |
3738 | { |
3739 | int iters = 0; |
3740 | while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av)) |
3741 | { |
3742 | bck = victim->bk; |
3743 | size = chunksize (victim); |
3744 | mchunkptr next = chunk_at_offset (victim, size); |
3745 | |
3746 | if (__glibc_unlikely (size <= 2 * SIZE_SZ) |
3747 | || __glibc_unlikely (size > av->system_mem)) |
3748 | malloc_printerr ("malloc(): invalid size (unsorted)" ); |
3749 | if (__glibc_unlikely (chunksize_nomask (next) < 2 * SIZE_SZ) |
3750 | || __glibc_unlikely (chunksize_nomask (next) > av->system_mem)) |
3751 | malloc_printerr ("malloc(): invalid next size (unsorted)" ); |
3752 | if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size)) |
3753 | malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)" ); |
3754 | if (__glibc_unlikely (bck->fd != victim) |
3755 | || __glibc_unlikely (victim->fd != unsorted_chunks (av))) |
3756 | malloc_printerr ("malloc(): unsorted double linked list corrupted" ); |
3757 | if (__glibc_unlikely (prev_inuse (next))) |
3758 | malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)" ); |
3759 | |
3760 | /* |
3761 | If a small request, try to use last remainder if it is the |
3762 | only chunk in unsorted bin. This helps promote locality for |
3763 | runs of consecutive small requests. This is the only |
3764 | exception to best-fit, and applies only when there is |
3765 | no exact fit for a small chunk. |
3766 | */ |
3767 | |
3768 | if (in_smallbin_range (nb) && |
3769 | bck == unsorted_chunks (av) && |
3770 | victim == av->last_remainder && |
3771 | (unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
3772 | { |
3773 | /* split and reattach remainder */ |
3774 | remainder_size = size - nb; |
3775 | remainder = chunk_at_offset (victim, nb); |
3776 | unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder; |
3777 | av->last_remainder = remainder; |
3778 | remainder->bk = remainder->fd = unsorted_chunks (av); |
3779 | if (!in_smallbin_range (remainder_size)) |
3780 | { |
3781 | remainder->fd_nextsize = NULL; |
3782 | remainder->bk_nextsize = NULL; |
3783 | } |
3784 | |
3785 | set_head (victim, nb | PREV_INUSE | |
3786 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3787 | set_head (remainder, remainder_size | PREV_INUSE); |
3788 | set_foot (remainder, remainder_size); |
3789 | |
3790 | check_malloced_chunk (av, victim, nb); |
3791 | void *p = chunk2mem (victim); |
3792 | alloc_perturb (p, bytes); |
3793 | return p; |
3794 | } |
3795 | |
3796 | /* remove from unsorted list */ |
3797 | if (__glibc_unlikely (bck->fd != victim)) |
3798 | malloc_printerr ("malloc(): corrupted unsorted chunks 3" ); |
3799 | unsorted_chunks (av)->bk = bck; |
3800 | bck->fd = unsorted_chunks (av); |
3801 | |
3802 | /* Take now instead of binning if exact fit */ |
3803 | |
3804 | if (size == nb) |
3805 | { |
3806 | set_inuse_bit_at_offset (victim, size); |
3807 | if (av != &main_arena) |
3808 | set_non_main_arena (victim); |
3809 | #if USE_TCACHE |
3810 | /* Fill cache first, return to user only if cache fills. |
3811 | We may return one of these chunks later. */ |
3812 | if (tcache_nb |
3813 | && tcache->counts[tc_idx] < mp_.tcache_count) |
3814 | { |
3815 | tcache_put (victim, tc_idx); |
3816 | return_cached = 1; |
3817 | continue; |
3818 | } |
3819 | else |
3820 | { |
3821 | #endif |
3822 | check_malloced_chunk (av, victim, nb); |
3823 | void *p = chunk2mem (victim); |
3824 | alloc_perturb (p, bytes); |
3825 | return p; |
3826 | #if USE_TCACHE |
3827 | } |
3828 | #endif |
3829 | } |
3830 | |
3831 | /* place chunk in bin */ |
3832 | |
3833 | if (in_smallbin_range (size)) |
3834 | { |
3835 | victim_index = smallbin_index (size); |
3836 | bck = bin_at (av, victim_index); |
3837 | fwd = bck->fd; |
3838 | } |
3839 | else |
3840 | { |
3841 | victim_index = largebin_index (size); |
3842 | bck = bin_at (av, victim_index); |
3843 | fwd = bck->fd; |
3844 | |
3845 | /* maintain large bins in sorted order */ |
3846 | if (fwd != bck) |
3847 | { |
3848 | /* Or with inuse bit to speed comparisons */ |
3849 | size |= PREV_INUSE; |
3850 | /* if smaller than smallest, bypass loop below */ |
3851 | assert (chunk_main_arena (bck->bk)); |
3852 | if ((unsigned long) (size) |
3853 | < (unsigned long) chunksize_nomask (bck->bk)) |
3854 | { |
3855 | fwd = bck; |
3856 | bck = bck->bk; |
3857 | |
3858 | victim->fd_nextsize = fwd->fd; |
3859 | victim->bk_nextsize = fwd->fd->bk_nextsize; |
3860 | fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; |
3861 | } |
3862 | else |
3863 | { |
3864 | assert (chunk_main_arena (fwd)); |
3865 | while ((unsigned long) size < chunksize_nomask (fwd)) |
3866 | { |
3867 | fwd = fwd->fd_nextsize; |
3868 | assert (chunk_main_arena (fwd)); |
3869 | } |
3870 | |
3871 | if ((unsigned long) size |
3872 | == (unsigned long) chunksize_nomask (fwd)) |
3873 | /* Always insert in the second position. */ |
3874 | fwd = fwd->fd; |
3875 | else |
3876 | { |
3877 | victim->fd_nextsize = fwd; |
3878 | victim->bk_nextsize = fwd->bk_nextsize; |
3879 | fwd->bk_nextsize = victim; |
3880 | victim->bk_nextsize->fd_nextsize = victim; |
3881 | } |
3882 | bck = fwd->bk; |
3883 | } |
3884 | } |
3885 | else |
3886 | victim->fd_nextsize = victim->bk_nextsize = victim; |
3887 | } |
3888 | |
3889 | mark_bin (av, victim_index); |
3890 | victim->bk = bck; |
3891 | victim->fd = fwd; |
3892 | fwd->bk = victim; |
3893 | bck->fd = victim; |
3894 | |
3895 | #if USE_TCACHE |
3896 | /* If we've processed as many chunks as we're allowed while |
3897 | filling the cache, return one of the cached ones. */ |
3898 | ++tcache_unsorted_count; |
3899 | if (return_cached |
3900 | && mp_.tcache_unsorted_limit > 0 |
3901 | && tcache_unsorted_count > mp_.tcache_unsorted_limit) |
3902 | { |
3903 | return tcache_get (tc_idx); |
3904 | } |
3905 | #endif |
3906 | |
3907 | #define MAX_ITERS 10000 |
3908 | if (++iters >= MAX_ITERS) |
3909 | break; |
3910 | } |
3911 | |
3912 | #if USE_TCACHE |
3913 | /* If all the small chunks we found ended up cached, return one now. */ |
3914 | if (return_cached) |
3915 | { |
3916 | return tcache_get (tc_idx); |
3917 | } |
3918 | #endif |
3919 | |
3920 | /* |
3921 | If a large request, scan through the chunks of current bin in |
3922 | sorted order to find smallest that fits. Use the skip list for this. |
3923 | */ |
3924 | |
3925 | if (!in_smallbin_range (nb)) |
3926 | { |
3927 | bin = bin_at (av, idx); |
3928 | |
3929 | /* skip scan if empty or largest chunk is too small */ |
3930 | if ((victim = first (bin)) != bin |
3931 | && (unsigned long) chunksize_nomask (victim) |
3932 | >= (unsigned long) (nb)) |
3933 | { |
3934 | victim = victim->bk_nextsize; |
3935 | while (((unsigned long) (size = chunksize (victim)) < |
3936 | (unsigned long) (nb))) |
3937 | victim = victim->bk_nextsize; |
3938 | |
3939 | /* Avoid removing the first entry for a size so that the skip |
3940 | list does not have to be rerouted. */ |
3941 | if (victim != last (bin) |
3942 | && chunksize_nomask (victim) |
3943 | == chunksize_nomask (victim->fd)) |
3944 | victim = victim->fd; |
3945 | |
3946 | remainder_size = size - nb; |
3947 | unlink_chunk (av, victim); |
3948 | |
3949 | /* Exhaust */ |
3950 | if (remainder_size < MINSIZE) |
3951 | { |
3952 | set_inuse_bit_at_offset (victim, size); |
3953 | if (av != &main_arena) |
3954 | set_non_main_arena (victim); |
3955 | } |
3956 | /* Split */ |
3957 | else |
3958 | { |
3959 | remainder = chunk_at_offset (victim, nb); |
3960 | /* We cannot assume the unsorted list is empty and therefore |
3961 | have to perform a complete insert here. */ |
3962 | bck = unsorted_chunks (av); |
3963 | fwd = bck->fd; |
3964 | if (__glibc_unlikely (fwd->bk != bck)) |
3965 | malloc_printerr ("malloc(): corrupted unsorted chunks" ); |
3966 | remainder->bk = bck; |
3967 | remainder->fd = fwd; |
3968 | bck->fd = remainder; |
3969 | fwd->bk = remainder; |
3970 | if (!in_smallbin_range (remainder_size)) |
3971 | { |
3972 | remainder->fd_nextsize = NULL; |
3973 | remainder->bk_nextsize = NULL; |
3974 | } |
3975 | set_head (victim, nb | PREV_INUSE | |
3976 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3977 | set_head (remainder, remainder_size | PREV_INUSE); |
3978 | set_foot (remainder, remainder_size); |
3979 | } |
3980 | check_malloced_chunk (av, victim, nb); |
3981 | void *p = chunk2mem (victim); |
3982 | alloc_perturb (p, bytes); |
3983 | return p; |
3984 | } |
3985 | } |
3986 | |
3987 | /* |
3988 | Search for a chunk by scanning bins, starting with next largest |
3989 | bin. This search is strictly by best-fit; i.e., the smallest |
3990 | (with ties going to approximately the least recently used) chunk |
3991 | that fits is selected. |
3992 | |
3993 | The bitmap avoids needing to check that most blocks are nonempty. |
3994 | The particular case of skipping all bins during warm-up phases |
3995 | when no chunks have been returned yet is faster than it might look. |
3996 | */ |
3997 | |
3998 | ++idx; |
3999 | bin = bin_at (av, idx); |
4000 | block = idx2block (idx); |
4001 | map = av->binmap[block]; |
4002 | bit = idx2bit (idx); |
4003 | |
4004 | for (;; ) |
4005 | { |
4006 | /* Skip rest of block if there are no more set bits in this block. */ |
4007 | if (bit > map || bit == 0) |
4008 | { |
4009 | do |
4010 | { |
4011 | if (++block >= BINMAPSIZE) /* out of bins */ |
4012 | goto use_top; |
4013 | } |
4014 | while ((map = av->binmap[block]) == 0); |
4015 | |
4016 | bin = bin_at (av, (block << BINMAPSHIFT)); |
4017 | bit = 1; |
4018 | } |
4019 | |
4020 | /* Advance to bin with set bit. There must be one. */ |
4021 | while ((bit & map) == 0) |
4022 | { |
4023 | bin = next_bin (bin); |
4024 | bit <<= 1; |
4025 | assert (bit != 0); |
4026 | } |
4027 | |
4028 | /* Inspect the bin. It is likely to be non-empty */ |
4029 | victim = last (bin); |
4030 | |
4031 | /* If a false alarm (empty bin), clear the bit. */ |
4032 | if (victim == bin) |
4033 | { |
4034 | av->binmap[block] = map &= ~bit; /* Write through */ |
4035 | bin = next_bin (bin); |
4036 | bit <<= 1; |
4037 | } |
4038 | |
4039 | else |
4040 | { |
4041 | size = chunksize (victim); |
4042 | |
4043 | /* We know the first chunk in this bin is big enough to use. */ |
4044 | assert ((unsigned long) (size) >= (unsigned long) (nb)); |
4045 | |
4046 | remainder_size = size - nb; |
4047 | |
4048 | /* unlink */ |
4049 | unlink_chunk (av, victim); |
4050 | |
4051 | /* Exhaust */ |
4052 | if (remainder_size < MINSIZE) |
4053 | { |
4054 | set_inuse_bit_at_offset (victim, size); |
4055 | if (av != &main_arena) |
4056 | set_non_main_arena (victim); |
4057 | } |
4058 | |
4059 | /* Split */ |
4060 | else |
4061 | { |
4062 | remainder = chunk_at_offset (victim, nb); |
4063 | |
4064 | /* We cannot assume the unsorted list is empty and therefore |
4065 | have to perform a complete insert here. */ |
4066 | bck = unsorted_chunks (av); |
4067 | fwd = bck->fd; |
4068 | if (__glibc_unlikely (fwd->bk != bck)) |
4069 | malloc_printerr ("malloc(): corrupted unsorted chunks 2" ); |
4070 | remainder->bk = bck; |
4071 | remainder->fd = fwd; |
4072 | bck->fd = remainder; |
4073 | fwd->bk = remainder; |
4074 | |
4075 | /* advertise as last remainder */ |
4076 | if (in_smallbin_range (nb)) |
4077 | av->last_remainder = remainder; |
4078 | if (!in_smallbin_range (remainder_size)) |
4079 | { |
4080 | remainder->fd_nextsize = NULL; |
4081 | remainder->bk_nextsize = NULL; |
4082 | } |
4083 | set_head (victim, nb | PREV_INUSE | |
4084 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4085 | set_head (remainder, remainder_size | PREV_INUSE); |
4086 | set_foot (remainder, remainder_size); |
4087 | } |
4088 | check_malloced_chunk (av, victim, nb); |
4089 | void *p = chunk2mem (victim); |
4090 | alloc_perturb (p, bytes); |
4091 | return p; |
4092 | } |
4093 | } |
4094 | |
4095 | use_top: |
4096 | /* |
4097 | If large enough, split off the chunk bordering the end of memory |
4098 | (held in av->top). Note that this is in accord with the best-fit |
4099 | search rule. In effect, av->top is treated as larger (and thus |
4100 | less well fitting) than any other available chunk since it can |
4101 | be extended to be as large as necessary (up to system |
4102 | limitations). |
4103 | |
4104 | We require that av->top always exists (i.e., has size >= |
4105 | MINSIZE) after initialization, so if it would otherwise be |
4106 | exhausted by current request, it is replenished. (The main |
4107 | reason for ensuring it exists is that we may need MINSIZE space |
4108 | to put in fenceposts in sysmalloc.) |
4109 | */ |
4110 | |
4111 | victim = av->top; |
4112 | size = chunksize (victim); |
4113 | |
4114 | if (__glibc_unlikely (size > av->system_mem)) |
4115 | malloc_printerr ("malloc(): corrupted top size" ); |
4116 | |
4117 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
4118 | { |
4119 | remainder_size = size - nb; |
4120 | remainder = chunk_at_offset (victim, nb); |
4121 | av->top = remainder; |
4122 | set_head (victim, nb | PREV_INUSE | |
4123 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4124 | set_head (remainder, remainder_size | PREV_INUSE); |
4125 | |
4126 | check_malloced_chunk (av, victim, nb); |
4127 | void *p = chunk2mem (victim); |
4128 | alloc_perturb (p, bytes); |
4129 | return p; |
4130 | } |
4131 | |
4132 | /* When we are using atomic ops to free fast chunks we can get |
4133 | here for all block sizes. */ |
4134 | else if (atomic_load_relaxed (&av->have_fastchunks)) |
4135 | { |
4136 | malloc_consolidate (av); |
4137 | /* restore original bin index */ |
4138 | if (in_smallbin_range (nb)) |
4139 | idx = smallbin_index (nb); |
4140 | else |
4141 | idx = largebin_index (nb); |
4142 | } |
4143 | |
4144 | /* |
4145 | Otherwise, relay to handle system-dependent cases |
4146 | */ |
4147 | else |
4148 | { |
4149 | void *p = sysmalloc (nb, av); |
4150 | if (p != NULL) |
4151 | alloc_perturb (p, bytes); |
4152 | return p; |
4153 | } |
4154 | } |
4155 | } |
4156 | |
4157 | /* |
4158 | ------------------------------ free ------------------------------ |
4159 | */ |
4160 | |
4161 | static void |
4162 | _int_free (mstate av, mchunkptr p, int have_lock) |
4163 | { |
4164 | INTERNAL_SIZE_T size; /* its size */ |
4165 | mfastbinptr *fb; /* associated fastbin */ |
4166 | mchunkptr nextchunk; /* next contiguous chunk */ |
4167 | INTERNAL_SIZE_T nextsize; /* its size */ |
4168 | int nextinuse; /* true if nextchunk is used */ |
4169 | INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */ |
4170 | mchunkptr bck; /* misc temp for linking */ |
4171 | mchunkptr fwd; /* misc temp for linking */ |
4172 | |
4173 | size = chunksize (p); |
4174 | |
4175 | /* Little security check which won't hurt performance: the |
4176 | allocator never wrapps around at the end of the address space. |
4177 | Therefore we can exclude some size values which might appear |
4178 | here by accident or by "design" from some intruder. */ |
4179 | if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) |
4180 | || __builtin_expect (misaligned_chunk (p), 0)) |
4181 | malloc_printerr ("free(): invalid pointer" ); |
4182 | /* We know that each chunk is at least MINSIZE bytes in size or a |
4183 | multiple of MALLOC_ALIGNMENT. */ |
4184 | if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size))) |
4185 | malloc_printerr ("free(): invalid size" ); |
4186 | |
4187 | check_inuse_chunk(av, p); |
4188 | |
4189 | #if USE_TCACHE |
4190 | { |
4191 | size_t tc_idx = csize2tidx (size); |
4192 | if (tcache != NULL && tc_idx < mp_.tcache_bins) |
4193 | { |
4194 | /* Check to see if it's already in the tcache. */ |
4195 | tcache_entry *e = (tcache_entry *) chunk2mem (p); |
4196 | |
4197 | /* This test succeeds on double free. However, we don't 100% |
4198 | trust it (it also matches random payload data at a 1 in |
4199 | 2^<size_t> chance), so verify it's not an unlikely |
4200 | coincidence before aborting. */ |
4201 | if (__glibc_unlikely (e->key == tcache)) |
4202 | { |
4203 | tcache_entry *tmp; |
4204 | LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx); |
4205 | for (tmp = tcache->entries[tc_idx]; |
4206 | tmp; |
4207 | tmp = tmp->next) |
4208 | if (tmp == e) |
4209 | malloc_printerr ("free(): double free detected in tcache 2" ); |
4210 | /* If we get here, it was a coincidence. We've wasted a |
4211 | few cycles, but don't abort. */ |
4212 | } |
4213 | |
4214 | if (tcache->counts[tc_idx] < mp_.tcache_count) |
4215 | { |
4216 | tcache_put (p, tc_idx); |
4217 | return; |
4218 | } |
4219 | } |
4220 | } |
4221 | #endif |
4222 | |
4223 | /* |
4224 | If eligible, place chunk on a fastbin so it can be found |
4225 | and used quickly in malloc. |
4226 | */ |
4227 | |
4228 | if ((unsigned long)(size) <= (unsigned long)(get_max_fast ()) |
4229 | |
4230 | #if TRIM_FASTBINS |
4231 | /* |
4232 | If TRIM_FASTBINS set, don't place chunks |
4233 | bordering top into fastbins |
4234 | */ |
4235 | && (chunk_at_offset(p, size) != av->top) |
4236 | #endif |
4237 | ) { |
4238 | |
4239 | if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size)) |
4240 | <= 2 * SIZE_SZ, 0) |
4241 | || __builtin_expect (chunksize (chunk_at_offset (p, size)) |
4242 | >= av->system_mem, 0)) |
4243 | { |
4244 | bool fail = true; |
4245 | /* We might not have a lock at this point and concurrent modifications |
4246 | of system_mem might result in a false positive. Redo the test after |
4247 | getting the lock. */ |
4248 | if (!have_lock) |
4249 | { |
4250 | __libc_lock_lock (av->mutex); |
4251 | fail = (chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ |
4252 | || chunksize (chunk_at_offset (p, size)) >= av->system_mem); |
4253 | __libc_lock_unlock (av->mutex); |
4254 | } |
4255 | |
4256 | if (fail) |
4257 | malloc_printerr ("free(): invalid next size (fast)" ); |
4258 | } |
4259 | |
4260 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
4261 | |
4262 | atomic_store_relaxed (&av->have_fastchunks, true); |
4263 | unsigned int idx = fastbin_index(size); |
4264 | fb = &fastbin (av, idx); |
4265 | |
4266 | /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */ |
4267 | mchunkptr old = *fb, old2; |
4268 | |
4269 | if (SINGLE_THREAD_P) |
4270 | { |
4271 | /* Check that the top of the bin is not the record we are going to |
4272 | add (i.e., double free). */ |
4273 | if (__builtin_expect (old == p, 0)) |
4274 | malloc_printerr ("double free or corruption (fasttop)" ); |
4275 | p->fd = old; |
4276 | *fb = p; |
4277 | } |
4278 | else |
4279 | do |
4280 | { |
4281 | /* Check that the top of the bin is not the record we are going to |
4282 | add (i.e., double free). */ |
4283 | if (__builtin_expect (old == p, 0)) |
4284 | malloc_printerr ("double free or corruption (fasttop)" ); |
4285 | p->fd = old2 = old; |
4286 | } |
4287 | while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) |
4288 | != old2); |
4289 | |
4290 | /* Check that size of fastbin chunk at the top is the same as |
4291 | size of the chunk that we are adding. We can dereference OLD |
4292 | only if we have the lock, otherwise it might have already been |
4293 | allocated again. */ |
4294 | if (have_lock && old != NULL |
4295 | && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0)) |
4296 | malloc_printerr ("invalid fastbin entry (free)" ); |
4297 | } |
4298 | |
4299 | /* |
4300 | Consolidate other non-mmapped chunks as they arrive. |
4301 | */ |
4302 | |
4303 | else if (!chunk_is_mmapped(p)) { |
4304 | |
4305 | /* If we're single-threaded, don't lock the arena. */ |
4306 | if (SINGLE_THREAD_P) |
4307 | have_lock = true; |
4308 | |
4309 | if (!have_lock) |
4310 | __libc_lock_lock (av->mutex); |
4311 | |
4312 | nextchunk = chunk_at_offset(p, size); |
4313 | |
4314 | /* Lightweight tests: check whether the block is already the |
4315 | top block. */ |
4316 | if (__glibc_unlikely (p == av->top)) |
4317 | malloc_printerr ("double free or corruption (top)" ); |
4318 | /* Or whether the next chunk is beyond the boundaries of the arena. */ |
4319 | if (__builtin_expect (contiguous (av) |
4320 | && (char *) nextchunk |
4321 | >= ((char *) av->top + chunksize(av->top)), 0)) |
4322 | malloc_printerr ("double free or corruption (out)" ); |
4323 | /* Or whether the block is actually not marked used. */ |
4324 | if (__glibc_unlikely (!prev_inuse(nextchunk))) |
4325 | malloc_printerr ("double free or corruption (!prev)" ); |
4326 | |
4327 | nextsize = chunksize(nextchunk); |
4328 | if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0) |
4329 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
4330 | malloc_printerr ("free(): invalid next size (normal)" ); |
4331 | |
4332 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
4333 | |
4334 | /* consolidate backward */ |
4335 | if (!prev_inuse(p)) { |
4336 | prevsize = prev_size (p); |
4337 | size += prevsize; |
4338 | p = chunk_at_offset(p, -((long) prevsize)); |
4339 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
4340 | malloc_printerr ("corrupted size vs. prev_size while consolidating" ); |
4341 | unlink_chunk (av, p); |
4342 | } |
4343 | |
4344 | if (nextchunk != av->top) { |
4345 | /* get and clear inuse bit */ |
4346 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4347 | |
4348 | /* consolidate forward */ |
4349 | if (!nextinuse) { |
4350 | unlink_chunk (av, nextchunk); |
4351 | size += nextsize; |
4352 | } else |
4353 | clear_inuse_bit_at_offset(nextchunk, 0); |
4354 | |
4355 | /* |
4356 | Place the chunk in unsorted chunk list. Chunks are |
4357 | not placed into regular bins until after they have |
4358 | been given one chance to be used in malloc. |
4359 | */ |
4360 | |
4361 | bck = unsorted_chunks(av); |
4362 | fwd = bck->fd; |
4363 | if (__glibc_unlikely (fwd->bk != bck)) |
4364 | malloc_printerr ("free(): corrupted unsorted chunks" ); |
4365 | p->fd = fwd; |
4366 | p->bk = bck; |
4367 | if (!in_smallbin_range(size)) |
4368 | { |
4369 | p->fd_nextsize = NULL; |
4370 | p->bk_nextsize = NULL; |
4371 | } |
4372 | bck->fd = p; |
4373 | fwd->bk = p; |
4374 | |
4375 | set_head(p, size | PREV_INUSE); |
4376 | set_foot(p, size); |
4377 | |
4378 | check_free_chunk(av, p); |
4379 | } |
4380 | |
4381 | /* |
4382 | If the chunk borders the current high end of memory, |
4383 | consolidate into top |
4384 | */ |
4385 | |
4386 | else { |
4387 | size += nextsize; |
4388 | set_head(p, size | PREV_INUSE); |
4389 | av->top = p; |
4390 | check_chunk(av, p); |
4391 | } |
4392 | |
4393 | /* |
4394 | If freeing a large space, consolidate possibly-surrounding |
4395 | chunks. Then, if the total unused topmost memory exceeds trim |
4396 | threshold, ask malloc_trim to reduce top. |
4397 | |
4398 | Unless max_fast is 0, we don't know if there are fastbins |
4399 | bordering top, so we cannot tell for sure whether threshold |
4400 | has been reached unless fastbins are consolidated. But we |
4401 | don't want to consolidate on each free. As a compromise, |
4402 | consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD |
4403 | is reached. |
4404 | */ |
4405 | |
4406 | if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { |
4407 | if (atomic_load_relaxed (&av->have_fastchunks)) |
4408 | malloc_consolidate(av); |
4409 | |
4410 | if (av == &main_arena) { |
4411 | #ifndef MORECORE_CANNOT_TRIM |
4412 | if ((unsigned long)(chunksize(av->top)) >= |
4413 | (unsigned long)(mp_.trim_threshold)) |
4414 | systrim(mp_.top_pad, av); |
4415 | #endif |
4416 | } else { |
4417 | /* Always try heap_trim(), even if the top chunk is not |
4418 | large, because the corresponding heap might go away. */ |
4419 | heap_info *heap = heap_for_ptr(top(av)); |
4420 | |
4421 | assert(heap->ar_ptr == av); |
4422 | heap_trim(heap, mp_.top_pad); |
4423 | } |
4424 | } |
4425 | |
4426 | if (!have_lock) |
4427 | __libc_lock_unlock (av->mutex); |
4428 | } |
4429 | /* |
4430 | If the chunk was allocated via mmap, release via munmap(). |
4431 | */ |
4432 | |
4433 | else { |
4434 | munmap_chunk (p); |
4435 | } |
4436 | } |
4437 | |
4438 | /* |
4439 | ------------------------- malloc_consolidate ------------------------- |
4440 | |
4441 | malloc_consolidate is a specialized version of free() that tears |
4442 | down chunks held in fastbins. Free itself cannot be used for this |
4443 | purpose since, among other things, it might place chunks back onto |
4444 | fastbins. So, instead, we need to use a minor variant of the same |
4445 | code. |
4446 | */ |
4447 | |
4448 | static void malloc_consolidate(mstate av) |
4449 | { |
4450 | mfastbinptr* fb; /* current fastbin being consolidated */ |
4451 | mfastbinptr* maxfb; /* last fastbin (for loop control) */ |
4452 | mchunkptr p; /* current chunk being consolidated */ |
4453 | mchunkptr nextp; /* next chunk to consolidate */ |
4454 | mchunkptr unsorted_bin; /* bin header */ |
4455 | mchunkptr first_unsorted; /* chunk to link to */ |
4456 | |
4457 | /* These have same use as in free() */ |
4458 | mchunkptr nextchunk; |
4459 | INTERNAL_SIZE_T size; |
4460 | INTERNAL_SIZE_T nextsize; |
4461 | INTERNAL_SIZE_T prevsize; |
4462 | int nextinuse; |
4463 | |
4464 | atomic_store_relaxed (&av->have_fastchunks, false); |
4465 | |
4466 | unsorted_bin = unsorted_chunks(av); |
4467 | |
4468 | /* |
4469 | Remove each chunk from fast bin and consolidate it, placing it |
4470 | then in unsorted bin. Among other reasons for doing this, |
4471 | placing in unsorted bin avoids needing to calculate actual bins |
4472 | until malloc is sure that chunks aren't immediately going to be |
4473 | reused anyway. |
4474 | */ |
4475 | |
4476 | maxfb = &fastbin (av, NFASTBINS - 1); |
4477 | fb = &fastbin (av, 0); |
4478 | do { |
4479 | p = atomic_exchange_acq (fb, NULL); |
4480 | if (p != 0) { |
4481 | do { |
4482 | { |
4483 | unsigned int idx = fastbin_index (chunksize (p)); |
4484 | if ((&fastbin (av, idx)) != fb) |
4485 | malloc_printerr ("malloc_consolidate(): invalid chunk size" ); |
4486 | } |
4487 | |
4488 | check_inuse_chunk(av, p); |
4489 | nextp = p->fd; |
4490 | |
4491 | /* Slightly streamlined version of consolidation code in free() */ |
4492 | size = chunksize (p); |
4493 | nextchunk = chunk_at_offset(p, size); |
4494 | nextsize = chunksize(nextchunk); |
4495 | |
4496 | if (!prev_inuse(p)) { |
4497 | prevsize = prev_size (p); |
4498 | size += prevsize; |
4499 | p = chunk_at_offset(p, -((long) prevsize)); |
4500 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
4501 | malloc_printerr ("corrupted size vs. prev_size in fastbins" ); |
4502 | unlink_chunk (av, p); |
4503 | } |
4504 | |
4505 | if (nextchunk != av->top) { |
4506 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4507 | |
4508 | if (!nextinuse) { |
4509 | size += nextsize; |
4510 | unlink_chunk (av, nextchunk); |
4511 | } else |
4512 | clear_inuse_bit_at_offset(nextchunk, 0); |
4513 | |
4514 | first_unsorted = unsorted_bin->fd; |
4515 | unsorted_bin->fd = p; |
4516 | first_unsorted->bk = p; |
4517 | |
4518 | if (!in_smallbin_range (size)) { |
4519 | p->fd_nextsize = NULL; |
4520 | p->bk_nextsize = NULL; |
4521 | } |
4522 | |
4523 | set_head(p, size | PREV_INUSE); |
4524 | p->bk = unsorted_bin; |
4525 | p->fd = first_unsorted; |
4526 | set_foot(p, size); |
4527 | } |
4528 | |
4529 | else { |
4530 | size += nextsize; |
4531 | set_head(p, size | PREV_INUSE); |
4532 | av->top = p; |
4533 | } |
4534 | |
4535 | } while ( (p = nextp) != 0); |
4536 | |
4537 | } |
4538 | } while (fb++ != maxfb); |
4539 | } |
4540 | |
4541 | /* |
4542 | ------------------------------ realloc ------------------------------ |
4543 | */ |
4544 | |
4545 | void* |
4546 | _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize, |
4547 | INTERNAL_SIZE_T nb) |
4548 | { |
4549 | mchunkptr newp; /* chunk to return */ |
4550 | INTERNAL_SIZE_T newsize; /* its size */ |
4551 | void* newmem; /* corresponding user mem */ |
4552 | |
4553 | mchunkptr next; /* next contiguous chunk after oldp */ |
4554 | |
4555 | mchunkptr remainder; /* extra space at end of newp */ |
4556 | unsigned long remainder_size; /* its size */ |
4557 | |
4558 | /* oldmem size */ |
4559 | if (__builtin_expect (chunksize_nomask (oldp) <= 2 * SIZE_SZ, 0) |
4560 | || __builtin_expect (oldsize >= av->system_mem, 0)) |
4561 | malloc_printerr ("realloc(): invalid old size" ); |
4562 | |
4563 | check_inuse_chunk (av, oldp); |
4564 | |
4565 | /* All callers already filter out mmap'ed chunks. */ |
4566 | assert (!chunk_is_mmapped (oldp)); |
4567 | |
4568 | next = chunk_at_offset (oldp, oldsize); |
4569 | INTERNAL_SIZE_T nextsize = chunksize (next); |
4570 | if (__builtin_expect (chunksize_nomask (next) <= 2 * SIZE_SZ, 0) |
4571 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
4572 | malloc_printerr ("realloc(): invalid next size" ); |
4573 | |
4574 | if ((unsigned long) (oldsize) >= (unsigned long) (nb)) |
4575 | { |
4576 | /* already big enough; split below */ |
4577 | newp = oldp; |
4578 | newsize = oldsize; |
4579 | } |
4580 | |
4581 | else |
4582 | { |
4583 | /* Try to expand forward into top */ |
4584 | if (next == av->top && |
4585 | (unsigned long) (newsize = oldsize + nextsize) >= |
4586 | (unsigned long) (nb + MINSIZE)) |
4587 | { |
4588 | set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4589 | av->top = chunk_at_offset (oldp, nb); |
4590 | set_head (av->top, (newsize - nb) | PREV_INUSE); |
4591 | check_inuse_chunk (av, oldp); |
4592 | return chunk2mem (oldp); |
4593 | } |
4594 | |
4595 | /* Try to expand forward into next chunk; split off remainder below */ |
4596 | else if (next != av->top && |
4597 | !inuse (next) && |
4598 | (unsigned long) (newsize = oldsize + nextsize) >= |
4599 | (unsigned long) (nb)) |
4600 | { |
4601 | newp = oldp; |
4602 | unlink_chunk (av, next); |
4603 | } |
4604 | |
4605 | /* allocate, copy, free */ |
4606 | else |
4607 | { |
4608 | newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK); |
4609 | if (newmem == 0) |
4610 | return 0; /* propagate failure */ |
4611 | |
4612 | newp = mem2chunk (newmem); |
4613 | newsize = chunksize (newp); |
4614 | |
4615 | /* |
4616 | Avoid copy if newp is next chunk after oldp. |
4617 | */ |
4618 | if (newp == next) |
4619 | { |
4620 | newsize += oldsize; |
4621 | newp = oldp; |
4622 | } |
4623 | else |
4624 | { |
4625 | memcpy (newmem, chunk2mem (oldp), oldsize - SIZE_SZ); |
4626 | _int_free (av, oldp, 1); |
4627 | check_inuse_chunk (av, newp); |
4628 | return chunk2mem (newp); |
4629 | } |
4630 | } |
4631 | } |
4632 | |
4633 | /* If possible, free extra space in old or extended chunk */ |
4634 | |
4635 | assert ((unsigned long) (newsize) >= (unsigned long) (nb)); |
4636 | |
4637 | remainder_size = newsize - nb; |
4638 | |
4639 | if (remainder_size < MINSIZE) /* not enough extra to split off */ |
4640 | { |
4641 | set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4642 | set_inuse_bit_at_offset (newp, newsize); |
4643 | } |
4644 | else /* split remainder */ |
4645 | { |
4646 | remainder = chunk_at_offset (newp, nb); |
4647 | set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4648 | set_head (remainder, remainder_size | PREV_INUSE | |
4649 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4650 | /* Mark remainder as inuse so free() won't complain */ |
4651 | set_inuse_bit_at_offset (remainder, remainder_size); |
4652 | _int_free (av, remainder, 1); |
4653 | } |
4654 | |
4655 | check_inuse_chunk (av, newp); |
4656 | return chunk2mem (newp); |
4657 | } |
4658 | |
4659 | /* |
4660 | ------------------------------ memalign ------------------------------ |
4661 | */ |
4662 | |
4663 | static void * |
4664 | _int_memalign (mstate av, size_t alignment, size_t bytes) |
4665 | { |
4666 | INTERNAL_SIZE_T nb; /* padded request size */ |
4667 | char *m; /* memory returned by malloc call */ |
4668 | mchunkptr p; /* corresponding chunk */ |
4669 | char *brk; /* alignment point within p */ |
4670 | mchunkptr newp; /* chunk to return */ |
4671 | INTERNAL_SIZE_T newsize; /* its size */ |
4672 | INTERNAL_SIZE_T leadsize; /* leading space before alignment point */ |
4673 | mchunkptr remainder; /* spare room at end to split off */ |
4674 | unsigned long remainder_size; /* its size */ |
4675 | INTERNAL_SIZE_T size; |
4676 | |
4677 | |
4678 | |
4679 | checked_request2size (bytes, nb); |
4680 | |
4681 | /* |
4682 | Strategy: find a spot within that chunk that meets the alignment |
4683 | request, and then possibly free the leading and trailing space. |
4684 | */ |
4685 | |
4686 | |
4687 | /* Check for overflow. */ |
4688 | if (nb > SIZE_MAX - alignment - MINSIZE) |
4689 | { |
4690 | __set_errno (ENOMEM); |
4691 | return 0; |
4692 | } |
4693 | |
4694 | /* Call malloc with worst case padding to hit alignment. */ |
4695 | |
4696 | m = (char *) (_int_malloc (av, nb + alignment + MINSIZE)); |
4697 | |
4698 | if (m == 0) |
4699 | return 0; /* propagate failure */ |
4700 | |
4701 | p = mem2chunk (m); |
4702 | |
4703 | if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */ |
4704 | |
4705 | { /* |
4706 | Find an aligned spot inside chunk. Since we need to give back |
4707 | leading space in a chunk of at least MINSIZE, if the first |
4708 | calculation places us at a spot with less than MINSIZE leader, |
4709 | we can move to the next aligned spot -- we've allocated enough |
4710 | total room so that this is always possible. |
4711 | */ |
4712 | brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) & |
4713 | - ((signed long) alignment)); |
4714 | if ((unsigned long) (brk - (char *) (p)) < MINSIZE) |
4715 | brk += alignment; |
4716 | |
4717 | newp = (mchunkptr) brk; |
4718 | leadsize = brk - (char *) (p); |
4719 | newsize = chunksize (p) - leadsize; |
4720 | |
4721 | /* For mmapped chunks, just adjust offset */ |
4722 | if (chunk_is_mmapped (p)) |
4723 | { |
4724 | set_prev_size (newp, prev_size (p) + leadsize); |
4725 | set_head (newp, newsize | IS_MMAPPED); |
4726 | return chunk2mem (newp); |
4727 | } |
4728 | |
4729 | /* Otherwise, give back leader, use the rest */ |
4730 | set_head (newp, newsize | PREV_INUSE | |
4731 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4732 | set_inuse_bit_at_offset (newp, newsize); |
4733 | set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4734 | _int_free (av, p, 1); |
4735 | p = newp; |
4736 | |
4737 | assert (newsize >= nb && |
4738 | (((unsigned long) (chunk2mem (p))) % alignment) == 0); |
4739 | } |
4740 | |
4741 | /* Also give back spare room at the end */ |
4742 | if (!chunk_is_mmapped (p)) |
4743 | { |
4744 | size = chunksize (p); |
4745 | if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
4746 | { |
4747 | remainder_size = size - nb; |
4748 | remainder = chunk_at_offset (p, nb); |
4749 | set_head (remainder, remainder_size | PREV_INUSE | |
4750 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4751 | set_head_size (p, nb); |
4752 | _int_free (av, remainder, 1); |
4753 | } |
4754 | } |
4755 | |
4756 | check_inuse_chunk (av, p); |
4757 | return chunk2mem (p); |
4758 | } |
4759 | |
4760 | |
4761 | /* |
4762 | ------------------------------ malloc_trim ------------------------------ |
4763 | */ |
4764 | |
4765 | static int |
4766 | mtrim (mstate av, size_t pad) |
4767 | { |
4768 | /* Ensure all blocks are consolidated. */ |
4769 | malloc_consolidate (av); |
4770 | |
4771 | const size_t ps = GLRO (dl_pagesize); |
4772 | int psindex = bin_index (ps); |
4773 | const size_t psm1 = ps - 1; |
4774 | |
4775 | int result = 0; |
4776 | for (int i = 1; i < NBINS; ++i) |
4777 | if (i == 1 || i >= psindex) |
4778 | { |
4779 | mbinptr bin = bin_at (av, i); |
4780 | |
4781 | for (mchunkptr p = last (bin); p != bin; p = p->bk) |
4782 | { |
4783 | INTERNAL_SIZE_T size = chunksize (p); |
4784 | |
4785 | if (size > psm1 + sizeof (struct malloc_chunk)) |
4786 | { |
4787 | /* See whether the chunk contains at least one unused page. */ |
4788 | char *paligned_mem = (char *) (((uintptr_t) p |
4789 | + sizeof (struct malloc_chunk) |
4790 | + psm1) & ~psm1); |
4791 | |
4792 | assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem); |
4793 | assert ((char *) p + size > paligned_mem); |
4794 | |
4795 | /* This is the size we could potentially free. */ |
4796 | size -= paligned_mem - (char *) p; |
4797 | |
4798 | if (size > psm1) |
4799 | { |
4800 | #if MALLOC_DEBUG |
4801 | /* When debugging we simulate destroying the memory |
4802 | content. */ |
4803 | memset (paligned_mem, 0x89, size & ~psm1); |
4804 | #endif |
4805 | __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED); |
4806 | |
4807 | result = 1; |
4808 | } |
4809 | } |
4810 | } |
4811 | } |
4812 | |
4813 | #ifndef MORECORE_CANNOT_TRIM |
4814 | return result | (av == &main_arena ? systrim (pad, av) : 0); |
4815 | |
4816 | #else |
4817 | return result; |
4818 | #endif |
4819 | } |
4820 | |
4821 | |
4822 | int |
4823 | __malloc_trim (size_t s) |
4824 | { |
4825 | int result = 0; |
4826 | |
4827 | if (__malloc_initialized < 0) |
4828 | ptmalloc_init (); |
4829 | |
4830 | mstate ar_ptr = &main_arena; |
4831 | do |
4832 | { |
4833 | __libc_lock_lock (ar_ptr->mutex); |
4834 | result |= mtrim (ar_ptr, s); |
4835 | __libc_lock_unlock (ar_ptr->mutex); |
4836 | |
4837 | ar_ptr = ar_ptr->next; |
4838 | } |
4839 | while (ar_ptr != &main_arena); |
4840 | |
4841 | return result; |
4842 | } |
4843 | |
4844 | |
4845 | /* |
4846 | ------------------------- malloc_usable_size ------------------------- |
4847 | */ |
4848 | |
4849 | static size_t |
4850 | musable (void *mem) |
4851 | { |
4852 | mchunkptr p; |
4853 | if (mem != 0) |
4854 | { |
4855 | p = mem2chunk (mem); |
4856 | |
4857 | if (__builtin_expect (using_malloc_checking == 1, 0)) |
4858 | return malloc_check_get_size (p); |
4859 | |
4860 | if (chunk_is_mmapped (p)) |
4861 | { |
4862 | if (DUMPED_MAIN_ARENA_CHUNK (p)) |
4863 | return chunksize (p) - SIZE_SZ; |
4864 | else |
4865 | return chunksize (p) - 2 * SIZE_SZ; |
4866 | } |
4867 | else if (inuse (p)) |
4868 | return chunksize (p) - SIZE_SZ; |
4869 | } |
4870 | return 0; |
4871 | } |
4872 | |
4873 | |
4874 | size_t |
4875 | __malloc_usable_size (void *m) |
4876 | { |
4877 | size_t result; |
4878 | |
4879 | result = musable (m); |
4880 | return result; |
4881 | } |
4882 | |
4883 | /* |
4884 | ------------------------------ mallinfo ------------------------------ |
4885 | Accumulate malloc statistics for arena AV into M. |
4886 | */ |
4887 | |
4888 | static void |
4889 | int_mallinfo (mstate av, struct mallinfo *m) |
4890 | { |
4891 | size_t i; |
4892 | mbinptr b; |
4893 | mchunkptr p; |
4894 | INTERNAL_SIZE_T avail; |
4895 | INTERNAL_SIZE_T fastavail; |
4896 | int nblocks; |
4897 | int nfastblocks; |
4898 | |
4899 | check_malloc_state (av); |
4900 | |
4901 | /* Account for top */ |
4902 | avail = chunksize (av->top); |
4903 | nblocks = 1; /* top always exists */ |
4904 | |
4905 | /* traverse fastbins */ |
4906 | nfastblocks = 0; |
4907 | fastavail = 0; |
4908 | |
4909 | for (i = 0; i < NFASTBINS; ++i) |
4910 | { |
4911 | for (p = fastbin (av, i); p != 0; p = p->fd) |
4912 | { |
4913 | ++nfastblocks; |
4914 | fastavail += chunksize (p); |
4915 | } |
4916 | } |
4917 | |
4918 | avail += fastavail; |
4919 | |
4920 | /* traverse regular bins */ |
4921 | for (i = 1; i < NBINS; ++i) |
4922 | { |
4923 | b = bin_at (av, i); |
4924 | for (p = last (b); p != b; p = p->bk) |
4925 | { |
4926 | ++nblocks; |
4927 | avail += chunksize (p); |
4928 | } |
4929 | } |
4930 | |
4931 | m->smblks += nfastblocks; |
4932 | m->ordblks += nblocks; |
4933 | m->fordblks += avail; |
4934 | m->uordblks += av->system_mem - avail; |
4935 | m->arena += av->system_mem; |
4936 | m->fsmblks += fastavail; |
4937 | if (av == &main_arena) |
4938 | { |
4939 | m->hblks = mp_.n_mmaps; |
4940 | m->hblkhd = mp_.mmapped_mem; |
4941 | m->usmblks = 0; |
4942 | m->keepcost = chunksize (av->top); |
4943 | } |
4944 | } |
4945 | |
4946 | |
4947 | struct mallinfo |
4948 | __libc_mallinfo (void) |
4949 | { |
4950 | struct mallinfo m; |
4951 | mstate ar_ptr; |
4952 | |
4953 | if (__malloc_initialized < 0) |
4954 | ptmalloc_init (); |
4955 | |
4956 | memset (&m, 0, sizeof (m)); |
4957 | ar_ptr = &main_arena; |
4958 | do |
4959 | { |
4960 | __libc_lock_lock (ar_ptr->mutex); |
4961 | int_mallinfo (ar_ptr, &m); |
4962 | __libc_lock_unlock (ar_ptr->mutex); |
4963 | |
4964 | ar_ptr = ar_ptr->next; |
4965 | } |
4966 | while (ar_ptr != &main_arena); |
4967 | |
4968 | return m; |
4969 | } |
4970 | |
4971 | /* |
4972 | ------------------------------ malloc_stats ------------------------------ |
4973 | */ |
4974 | |
4975 | void |
4976 | __malloc_stats (void) |
4977 | { |
4978 | int i; |
4979 | mstate ar_ptr; |
4980 | unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b; |
4981 | |
4982 | if (__malloc_initialized < 0) |
4983 | ptmalloc_init (); |
4984 | _IO_flockfile (stderr); |
4985 | int old_flags2 = stderr->_flags2; |
4986 | stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL; |
4987 | for (i = 0, ar_ptr = &main_arena;; i++) |
4988 | { |
4989 | struct mallinfo mi; |
4990 | |
4991 | memset (&mi, 0, sizeof (mi)); |
4992 | __libc_lock_lock (ar_ptr->mutex); |
4993 | int_mallinfo (ar_ptr, &mi); |
4994 | fprintf (stderr, "Arena %d:\n" , i); |
4995 | fprintf (stderr, "system bytes = %10u\n" , (unsigned int) mi.arena); |
4996 | fprintf (stderr, "in use bytes = %10u\n" , (unsigned int) mi.uordblks); |
4997 | #if MALLOC_DEBUG > 1 |
4998 | if (i > 0) |
4999 | dump_heap (heap_for_ptr (top (ar_ptr))); |
5000 | #endif |
5001 | system_b += mi.arena; |
5002 | in_use_b += mi.uordblks; |
5003 | __libc_lock_unlock (ar_ptr->mutex); |
5004 | ar_ptr = ar_ptr->next; |
5005 | if (ar_ptr == &main_arena) |
5006 | break; |
5007 | } |
5008 | fprintf (stderr, "Total (incl. mmap):\n" ); |
5009 | fprintf (stderr, "system bytes = %10u\n" , system_b); |
5010 | fprintf (stderr, "in use bytes = %10u\n" , in_use_b); |
5011 | fprintf (stderr, "max mmap regions = %10u\n" , (unsigned int) mp_.max_n_mmaps); |
5012 | fprintf (stderr, "max mmap bytes = %10lu\n" , |
5013 | (unsigned long) mp_.max_mmapped_mem); |
5014 | stderr->_flags2 = old_flags2; |
5015 | _IO_funlockfile (stderr); |
5016 | } |
5017 | |
5018 | |
5019 | /* |
5020 | ------------------------------ mallopt ------------------------------ |
5021 | */ |
5022 | static inline int |
5023 | __always_inline |
5024 | do_set_trim_threshold (size_t value) |
5025 | { |
5026 | LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold, |
5027 | mp_.no_dyn_threshold); |
5028 | mp_.trim_threshold = value; |
5029 | mp_.no_dyn_threshold = 1; |
5030 | return 1; |
5031 | } |
5032 | |
5033 | static inline int |
5034 | __always_inline |
5035 | do_set_top_pad (size_t value) |
5036 | { |
5037 | LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad, |
5038 | mp_.no_dyn_threshold); |
5039 | mp_.top_pad = value; |
5040 | mp_.no_dyn_threshold = 1; |
5041 | return 1; |
5042 | } |
5043 | |
5044 | static inline int |
5045 | __always_inline |
5046 | do_set_mmap_threshold (size_t value) |
5047 | { |
5048 | /* Forbid setting the threshold too high. */ |
5049 | if (value <= HEAP_MAX_SIZE / 2) |
5050 | { |
5051 | LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold, |
5052 | mp_.no_dyn_threshold); |
5053 | mp_.mmap_threshold = value; |
5054 | mp_.no_dyn_threshold = 1; |
5055 | return 1; |
5056 | } |
5057 | return 0; |
5058 | } |
5059 | |
5060 | static inline int |
5061 | __always_inline |
5062 | do_set_mmaps_max (int32_t value) |
5063 | { |
5064 | LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max, |
5065 | mp_.no_dyn_threshold); |
5066 | mp_.n_mmaps_max = value; |
5067 | mp_.no_dyn_threshold = 1; |
5068 | return 1; |
5069 | } |
5070 | |
5071 | static inline int |
5072 | __always_inline |
5073 | do_set_mallopt_check (int32_t value) |
5074 | { |
5075 | return 1; |
5076 | } |
5077 | |
5078 | static inline int |
5079 | __always_inline |
5080 | do_set_perturb_byte (int32_t value) |
5081 | { |
5082 | LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte); |
5083 | perturb_byte = value; |
5084 | return 1; |
5085 | } |
5086 | |
5087 | static inline int |
5088 | __always_inline |
5089 | do_set_arena_test (size_t value) |
5090 | { |
5091 | LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test); |
5092 | mp_.arena_test = value; |
5093 | return 1; |
5094 | } |
5095 | |
5096 | static inline int |
5097 | __always_inline |
5098 | do_set_arena_max (size_t value) |
5099 | { |
5100 | LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max); |
5101 | mp_.arena_max = value; |
5102 | return 1; |
5103 | } |
5104 | |
5105 | #if USE_TCACHE |
5106 | static inline int |
5107 | __always_inline |
5108 | do_set_tcache_max (size_t value) |
5109 | { |
5110 | if (value >= 0 && value <= MAX_TCACHE_SIZE) |
5111 | { |
5112 | LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes); |
5113 | mp_.tcache_max_bytes = value; |
5114 | mp_.tcache_bins = csize2tidx (request2size(value)) + 1; |
5115 | } |
5116 | return 1; |
5117 | } |
5118 | |
5119 | static inline int |
5120 | __always_inline |
5121 | do_set_tcache_count (size_t value) |
5122 | { |
5123 | LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count); |
5124 | mp_.tcache_count = value; |
5125 | return 1; |
5126 | } |
5127 | |
5128 | static inline int |
5129 | __always_inline |
5130 | do_set_tcache_unsorted_limit (size_t value) |
5131 | { |
5132 | LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit); |
5133 | mp_.tcache_unsorted_limit = value; |
5134 | return 1; |
5135 | } |
5136 | #endif |
5137 | |
5138 | int |
5139 | __libc_mallopt (int param_number, int value) |
5140 | { |
5141 | mstate av = &main_arena; |
5142 | int res = 1; |
5143 | |
5144 | if (__malloc_initialized < 0) |
5145 | ptmalloc_init (); |
5146 | __libc_lock_lock (av->mutex); |
5147 | |
5148 | LIBC_PROBE (memory_mallopt, 2, param_number, value); |
5149 | |
5150 | /* We must consolidate main arena before changing max_fast |
5151 | (see definition of set_max_fast). */ |
5152 | malloc_consolidate (av); |
5153 | |
5154 | switch (param_number) |
5155 | { |
5156 | case M_MXFAST: |
5157 | if (value >= 0 && value <= MAX_FAST_SIZE) |
5158 | { |
5159 | LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ()); |
5160 | set_max_fast (value); |
5161 | } |
5162 | else |
5163 | res = 0; |
5164 | break; |
5165 | |
5166 | case M_TRIM_THRESHOLD: |
5167 | do_set_trim_threshold (value); |
5168 | break; |
5169 | |
5170 | case M_TOP_PAD: |
5171 | do_set_top_pad (value); |
5172 | break; |
5173 | |
5174 | case M_MMAP_THRESHOLD: |
5175 | res = do_set_mmap_threshold (value); |
5176 | break; |
5177 | |
5178 | case M_MMAP_MAX: |
5179 | do_set_mmaps_max (value); |
5180 | break; |
5181 | |
5182 | case M_CHECK_ACTION: |
5183 | do_set_mallopt_check (value); |
5184 | break; |
5185 | |
5186 | case M_PERTURB: |
5187 | do_set_perturb_byte (value); |
5188 | break; |
5189 | |
5190 | case M_ARENA_TEST: |
5191 | if (value > 0) |
5192 | do_set_arena_test (value); |
5193 | break; |
5194 | |
5195 | case M_ARENA_MAX: |
5196 | if (value > 0) |
5197 | do_set_arena_max (value); |
5198 | break; |
5199 | } |
5200 | __libc_lock_unlock (av->mutex); |
5201 | return res; |
5202 | } |
5203 | libc_hidden_def (__libc_mallopt) |
5204 | |
5205 | |
5206 | /* |
5207 | -------------------- Alternative MORECORE functions -------------------- |
5208 | */ |
5209 | |
5210 | |
5211 | /* |
5212 | General Requirements for MORECORE. |
5213 | |
5214 | The MORECORE function must have the following properties: |
5215 | |
5216 | If MORECORE_CONTIGUOUS is false: |
5217 | |
5218 | * MORECORE must allocate in multiples of pagesize. It will |
5219 | only be called with arguments that are multiples of pagesize. |
5220 | |
5221 | * MORECORE(0) must return an address that is at least |
5222 | MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.) |
5223 | |
5224 | else (i.e. If MORECORE_CONTIGUOUS is true): |
5225 | |
5226 | * Consecutive calls to MORECORE with positive arguments |
5227 | return increasing addresses, indicating that space has been |
5228 | contiguously extended. |
5229 | |
5230 | * MORECORE need not allocate in multiples of pagesize. |
5231 | Calls to MORECORE need not have args of multiples of pagesize. |
5232 | |
5233 | * MORECORE need not page-align. |
5234 | |
5235 | In either case: |
5236 | |
5237 | * MORECORE may allocate more memory than requested. (Or even less, |
5238 | but this will generally result in a malloc failure.) |
5239 | |
5240 | * MORECORE must not allocate memory when given argument zero, but |
5241 | instead return one past the end address of memory from previous |
5242 | nonzero call. This malloc does NOT call MORECORE(0) |
5243 | until at least one call with positive arguments is made, so |
5244 | the initial value returned is not important. |
5245 | |
5246 | * Even though consecutive calls to MORECORE need not return contiguous |
5247 | addresses, it must be OK for malloc'ed chunks to span multiple |
5248 | regions in those cases where they do happen to be contiguous. |
5249 | |
5250 | * MORECORE need not handle negative arguments -- it may instead |
5251 | just return MORECORE_FAILURE when given negative arguments. |
5252 | Negative arguments are always multiples of pagesize. MORECORE |
5253 | must not misinterpret negative args as large positive unsigned |
5254 | args. You can suppress all such calls from even occurring by defining |
5255 | MORECORE_CANNOT_TRIM, |
5256 | |
5257 | There is some variation across systems about the type of the |
5258 | argument to sbrk/MORECORE. If size_t is unsigned, then it cannot |
5259 | actually be size_t, because sbrk supports negative args, so it is |
5260 | normally the signed type of the same width as size_t (sometimes |
5261 | declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much |
5262 | matter though. Internally, we use "long" as arguments, which should |
5263 | work across all reasonable possibilities. |
5264 | |
5265 | Additionally, if MORECORE ever returns failure for a positive |
5266 | request, then mmap is used as a noncontiguous system allocator. This |
5267 | is a useful backup strategy for systems with holes in address spaces |
5268 | -- in this case sbrk cannot contiguously expand the heap, but mmap |
5269 | may be able to map noncontiguous space. |
5270 | |
5271 | If you'd like mmap to ALWAYS be used, you can define MORECORE to be |
5272 | a function that always returns MORECORE_FAILURE. |
5273 | |
5274 | If you are using this malloc with something other than sbrk (or its |
5275 | emulation) to supply memory regions, you probably want to set |
5276 | MORECORE_CONTIGUOUS as false. As an example, here is a custom |
5277 | allocator kindly contributed for pre-OSX macOS. It uses virtually |
5278 | but not necessarily physically contiguous non-paged memory (locked |
5279 | in, present and won't get swapped out). You can use it by |
5280 | uncommenting this section, adding some #includes, and setting up the |
5281 | appropriate defines above: |
5282 | |
5283 | *#define MORECORE osMoreCore |
5284 | *#define MORECORE_CONTIGUOUS 0 |
5285 | |
5286 | There is also a shutdown routine that should somehow be called for |
5287 | cleanup upon program exit. |
5288 | |
5289 | *#define MAX_POOL_ENTRIES 100 |
5290 | *#define MINIMUM_MORECORE_SIZE (64 * 1024) |
5291 | static int next_os_pool; |
5292 | void *our_os_pools[MAX_POOL_ENTRIES]; |
5293 | |
5294 | void *osMoreCore(int size) |
5295 | { |
5296 | void *ptr = 0; |
5297 | static void *sbrk_top = 0; |
5298 | |
5299 | if (size > 0) |
5300 | { |
5301 | if (size < MINIMUM_MORECORE_SIZE) |
5302 | size = MINIMUM_MORECORE_SIZE; |
5303 | if (CurrentExecutionLevel() == kTaskLevel) |
5304 | ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); |
5305 | if (ptr == 0) |
5306 | { |
5307 | return (void *) MORECORE_FAILURE; |
5308 | } |
5309 | // save ptrs so they can be freed during cleanup |
5310 | our_os_pools[next_os_pool] = ptr; |
5311 | next_os_pool++; |
5312 | ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); |
5313 | sbrk_top = (char *) ptr + size; |
5314 | return ptr; |
5315 | } |
5316 | else if (size < 0) |
5317 | { |
5318 | // we don't currently support shrink behavior |
5319 | return (void *) MORECORE_FAILURE; |
5320 | } |
5321 | else |
5322 | { |
5323 | return sbrk_top; |
5324 | } |
5325 | } |
5326 | |
5327 | // cleanup any allocated memory pools |
5328 | // called as last thing before shutting down driver |
5329 | |
5330 | void osCleanupMem(void) |
5331 | { |
5332 | void **ptr; |
5333 | |
5334 | for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) |
5335 | if (*ptr) |
5336 | { |
5337 | PoolDeallocate(*ptr); |
5338 | * ptr = 0; |
5339 | } |
5340 | } |
5341 | |
5342 | */ |
5343 | |
5344 | |
5345 | /* Helper code. */ |
5346 | |
5347 | extern char **__libc_argv attribute_hidden; |
5348 | |
5349 | static void |
5350 | malloc_printerr (const char *str) |
5351 | { |
5352 | __libc_message (do_abort, "%s\n" , str); |
5353 | __builtin_unreachable (); |
5354 | } |
5355 | |
5356 | /* We need a wrapper function for one of the additions of POSIX. */ |
5357 | int |
5358 | __posix_memalign (void **memptr, size_t alignment, size_t size) |
5359 | { |
5360 | void *mem; |
5361 | |
5362 | /* Test whether the SIZE argument is valid. It must be a power of |
5363 | two multiple of sizeof (void *). */ |
5364 | if (alignment % sizeof (void *) != 0 |
5365 | || !powerof2 (alignment / sizeof (void *)) |
5366 | || alignment == 0) |
5367 | return EINVAL; |
5368 | |
5369 | |
5370 | void *address = RETURN_ADDRESS (0); |
5371 | mem = _mid_memalign (alignment, size, address); |
5372 | |
5373 | if (mem != NULL) |
5374 | { |
5375 | *memptr = mem; |
5376 | return 0; |
5377 | } |
5378 | |
5379 | return ENOMEM; |
5380 | } |
5381 | weak_alias (__posix_memalign, posix_memalign) |
5382 | |
5383 | |
5384 | int |
5385 | __malloc_info (int options, FILE *fp) |
5386 | { |
5387 | /* For now, at least. */ |
5388 | if (options != 0) |
5389 | return EINVAL; |
5390 | |
5391 | int n = 0; |
5392 | size_t total_nblocks = 0; |
5393 | size_t total_nfastblocks = 0; |
5394 | size_t total_avail = 0; |
5395 | size_t total_fastavail = 0; |
5396 | size_t total_system = 0; |
5397 | size_t total_max_system = 0; |
5398 | size_t total_aspace = 0; |
5399 | size_t total_aspace_mprotect = 0; |
5400 | |
5401 | |
5402 | |
5403 | if (__malloc_initialized < 0) |
5404 | ptmalloc_init (); |
5405 | |
5406 | fputs ("<malloc version=\"1\">\n" , fp); |
5407 | |
5408 | /* Iterate over all arenas currently in use. */ |
5409 | mstate ar_ptr = &main_arena; |
5410 | do |
5411 | { |
5412 | fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n" , n++); |
5413 | |
5414 | size_t nblocks = 0; |
5415 | size_t nfastblocks = 0; |
5416 | size_t avail = 0; |
5417 | size_t fastavail = 0; |
5418 | struct |
5419 | { |
5420 | size_t from; |
5421 | size_t to; |
5422 | size_t total; |
5423 | size_t count; |
5424 | } sizes[NFASTBINS + NBINS - 1]; |
5425 | #define nsizes (sizeof (sizes) / sizeof (sizes[0])) |
5426 | |
5427 | __libc_lock_lock (ar_ptr->mutex); |
5428 | |
5429 | for (size_t i = 0; i < NFASTBINS; ++i) |
5430 | { |
5431 | mchunkptr p = fastbin (ar_ptr, i); |
5432 | if (p != NULL) |
5433 | { |
5434 | size_t nthissize = 0; |
5435 | size_t thissize = chunksize (p); |
5436 | |
5437 | while (p != NULL) |
5438 | { |
5439 | ++nthissize; |
5440 | p = p->fd; |
5441 | } |
5442 | |
5443 | fastavail += nthissize * thissize; |
5444 | nfastblocks += nthissize; |
5445 | sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1); |
5446 | sizes[i].to = thissize; |
5447 | sizes[i].count = nthissize; |
5448 | } |
5449 | else |
5450 | sizes[i].from = sizes[i].to = sizes[i].count = 0; |
5451 | |
5452 | sizes[i].total = sizes[i].count * sizes[i].to; |
5453 | } |
5454 | |
5455 | |
5456 | mbinptr bin; |
5457 | struct malloc_chunk *r; |
5458 | |
5459 | for (size_t i = 1; i < NBINS; ++i) |
5460 | { |
5461 | bin = bin_at (ar_ptr, i); |
5462 | r = bin->fd; |
5463 | sizes[NFASTBINS - 1 + i].from = ~((size_t) 0); |
5464 | sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total |
5465 | = sizes[NFASTBINS - 1 + i].count = 0; |
5466 | |
5467 | if (r != NULL) |
5468 | while (r != bin) |
5469 | { |
5470 | size_t r_size = chunksize_nomask (r); |
5471 | ++sizes[NFASTBINS - 1 + i].count; |
5472 | sizes[NFASTBINS - 1 + i].total += r_size; |
5473 | sizes[NFASTBINS - 1 + i].from |
5474 | = MIN (sizes[NFASTBINS - 1 + i].from, r_size); |
5475 | sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to, |
5476 | r_size); |
5477 | |
5478 | r = r->fd; |
5479 | } |
5480 | |
5481 | if (sizes[NFASTBINS - 1 + i].count == 0) |
5482 | sizes[NFASTBINS - 1 + i].from = 0; |
5483 | nblocks += sizes[NFASTBINS - 1 + i].count; |
5484 | avail += sizes[NFASTBINS - 1 + i].total; |
5485 | } |
5486 | |
5487 | size_t heap_size = 0; |
5488 | size_t heap_mprotect_size = 0; |
5489 | size_t heap_count = 0; |
5490 | if (ar_ptr != &main_arena) |
5491 | { |
5492 | /* Iterate over the arena heaps from back to front. */ |
5493 | heap_info *heap = heap_for_ptr (top (ar_ptr)); |
5494 | do |
5495 | { |
5496 | heap_size += heap->size; |
5497 | heap_mprotect_size += heap->mprotect_size; |
5498 | heap = heap->prev; |
5499 | ++heap_count; |
5500 | } |
5501 | while (heap != NULL); |
5502 | } |
5503 | |
5504 | __libc_lock_unlock (ar_ptr->mutex); |
5505 | |
5506 | total_nfastblocks += nfastblocks; |
5507 | total_fastavail += fastavail; |
5508 | |
5509 | total_nblocks += nblocks; |
5510 | total_avail += avail; |
5511 | |
5512 | for (size_t i = 0; i < nsizes; ++i) |
5513 | if (sizes[i].count != 0 && i != NFASTBINS) |
5514 | fprintf (fp, " \ |
5515 | <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
5516 | sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count); |
5517 | |
5518 | if (sizes[NFASTBINS].count != 0) |
5519 | fprintf (fp, "\ |
5520 | <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
5521 | sizes[NFASTBINS].from, sizes[NFASTBINS].to, |
5522 | sizes[NFASTBINS].total, sizes[NFASTBINS].count); |
5523 | |
5524 | total_system += ar_ptr->system_mem; |
5525 | total_max_system += ar_ptr->max_system_mem; |
5526 | |
5527 | fprintf (fp, |
5528 | "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
5529 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
5530 | "<system type=\"current\" size=\"%zu\"/>\n" |
5531 | "<system type=\"max\" size=\"%zu\"/>\n" , |
5532 | nfastblocks, fastavail, nblocks, avail, |
5533 | ar_ptr->system_mem, ar_ptr->max_system_mem); |
5534 | |
5535 | if (ar_ptr != &main_arena) |
5536 | { |
5537 | fprintf (fp, |
5538 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5539 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" |
5540 | "<aspace type=\"subheaps\" size=\"%zu\"/>\n" , |
5541 | heap_size, heap_mprotect_size, heap_count); |
5542 | total_aspace += heap_size; |
5543 | total_aspace_mprotect += heap_mprotect_size; |
5544 | } |
5545 | else |
5546 | { |
5547 | fprintf (fp, |
5548 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5549 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" , |
5550 | ar_ptr->system_mem, ar_ptr->system_mem); |
5551 | total_aspace += ar_ptr->system_mem; |
5552 | total_aspace_mprotect += ar_ptr->system_mem; |
5553 | } |
5554 | |
5555 | fputs ("</heap>\n" , fp); |
5556 | ar_ptr = ar_ptr->next; |
5557 | } |
5558 | while (ar_ptr != &main_arena); |
5559 | |
5560 | fprintf (fp, |
5561 | "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
5562 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
5563 | "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n" |
5564 | "<system type=\"current\" size=\"%zu\"/>\n" |
5565 | "<system type=\"max\" size=\"%zu\"/>\n" |
5566 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5567 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" |
5568 | "</malloc>\n" , |
5569 | total_nfastblocks, total_fastavail, total_nblocks, total_avail, |
5570 | mp_.n_mmaps, mp_.mmapped_mem, |
5571 | total_system, total_max_system, |
5572 | total_aspace, total_aspace_mprotect); |
5573 | |
5574 | return 0; |
5575 | } |
5576 | weak_alias (__malloc_info, malloc_info) |
5577 | |
5578 | |
5579 | strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc) |
5580 | strong_alias (__libc_free, __free) strong_alias (__libc_free, free) |
5581 | strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc) |
5582 | strong_alias (__libc_memalign, __memalign) |
5583 | weak_alias (__libc_memalign, memalign) |
5584 | strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc) |
5585 | strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc) |
5586 | strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc) |
5587 | strong_alias (__libc_mallinfo, __mallinfo) |
5588 | weak_alias (__libc_mallinfo, mallinfo) |
5589 | strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt) |
5590 | |
5591 | weak_alias (__malloc_stats, malloc_stats) |
5592 | weak_alias (__malloc_usable_size, malloc_usable_size) |
5593 | weak_alias (__malloc_trim, malloc_trim) |
5594 | |
5595 | #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26) |
5596 | compat_symbol (libc, __libc_free, cfree, GLIBC_2_0); |
5597 | #endif |
5598 | |
5599 | /* ------------------------------------------------------------ |
5600 | History: |
5601 | |
5602 | [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc] |
5603 | |
5604 | */ |
5605 | /* |
5606 | * Local variables: |
5607 | * c-basic-offset: 2 |
5608 | * End: |
5609 | */ |
5610 | |