1/* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
20
21/*
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24
25 There have been substantial changes made after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
28
29* Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32
33* Quickstart
34
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
43
44* Why use this malloc?
45
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
51
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
61
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
64
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
70
71* Contents, described in more detail in "description of public routines" below.
72
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
82
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 malloc_trim(size_t pad);
88 malloc_usable_size(void* p);
89 malloc_stats();
90
91* Vital statistics:
92
93 Supported pointer representation: 4 or 8 bytes
94 Supported size_t representation: 4 or 8 bytes
95 Note that size_t is allowed to be 4 bytes even if pointers are 8.
96 You can adjust this by defining INTERNAL_SIZE_T
97
98 Alignment: 2 * sizeof(size_t) (default)
99 (i.e., 8 byte alignment with 4byte size_t). This suffices for
100 nearly all current machines and C compilers. However, you can
101 define MALLOC_ALIGNMENT to be wider than this if necessary.
102
103 Minimum overhead per allocated chunk: 4 or 8 bytes
104 Each malloced chunk has a hidden word of overhead holding size
105 and status information.
106
107 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
108 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
109
110 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
111 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
112 needed; 4 (8) for a trailing size field and 8 (16) bytes for
113 free list pointers. Thus, the minimum allocatable size is
114 16/24/32 bytes.
115
116 Even a request for zero bytes (i.e., malloc(0)) returns a
117 pointer to something of the minimum allocatable size.
118
119 The maximum overhead wastage (i.e., number of extra bytes
120 allocated than were requested in malloc) is less than or equal
121 to the minimum size, except for requests >= mmap_threshold that
122 are serviced via mmap(), where the worst case wastage is 2 *
123 sizeof(size_t) bytes plus the remainder from a system page (the
124 minimal mmap unit); typically 4096 or 8192 bytes.
125
126 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
127 8-byte size_t: 2^64 minus about two pages
128
129 It is assumed that (possibly signed) size_t values suffice to
130 represent chunk sizes. `Possibly signed' is due to the fact
131 that `size_t' may be defined on a system as either a signed or
132 an unsigned type. The ISO C standard says that it must be
133 unsigned, but a few systems are known not to adhere to this.
134 Additionally, even when size_t is unsigned, sbrk (which is by
135 default used to obtain memory from system) accepts signed
136 arguments, and may not be able to handle size_t-wide arguments
137 with negative sign bit. Generally, values that would
138 appear as negative after accounting for overhead and alignment
139 are supported only via mmap(), which does not have this
140 limitation.
141
142 Requests for sizes outside the allowed range will perform an optional
143 failure action and then return null. (Requests may also
144 also fail because a system is out of memory.)
145
146 Thread-safety: thread-safe
147
148 Compliance: I believe it is compliant with the 1997 Single Unix Specification
149 Also SVID/XPG, ANSI C, and probably others as well.
150
151* Synopsis of compile-time options:
152
153 People have reported using previous versions of this malloc on all
154 versions of Unix, sometimes by tweaking some of the defines
155 below. It has been tested most extensively on Solaris and Linux.
156 People also report using it in stand-alone embedded systems.
157
158 The implementation is in straight, hand-tuned ANSI C. It is not
159 at all modular. (Sorry!) It uses a lot of macros. To be at all
160 usable, this code should be compiled using an optimizing compiler
161 (for example gcc -O3) that can simplify expressions and control
162 paths. (FAQ: some macros import variables as arguments rather than
163 declare locals because people reported that some debuggers
164 otherwise get confused.)
165
166 OPTION DEFAULT VALUE
167
168 Compilation Environment options:
169
170 HAVE_MREMAP 0
171
172 Changing default word sizes:
173
174 INTERNAL_SIZE_T size_t
175
176 Configuration and functionality options:
177
178 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
179 USE_MALLOC_LOCK NOT defined
180 MALLOC_DEBUG NOT defined
181 REALLOC_ZERO_BYTES_FREES 1
182 TRIM_FASTBINS 0
183
184 Options for customizing MORECORE:
185
186 MORECORE sbrk
187 MORECORE_FAILURE -1
188 MORECORE_CONTIGUOUS 1
189 MORECORE_CANNOT_TRIM NOT defined
190 MORECORE_CLEARS 1
191 MMAP_AS_MORECORE_SIZE (1024 * 1024)
192
193 Tuning options that are also dynamically changeable via mallopt:
194
195 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
196 DEFAULT_TRIM_THRESHOLD 128 * 1024
197 DEFAULT_TOP_PAD 0
198 DEFAULT_MMAP_THRESHOLD 128 * 1024
199 DEFAULT_MMAP_MAX 65536
200
201 There are several other #defined constants and macros that you
202 probably don't want to touch unless you are extending or adapting malloc. */
203
204/*
205 void* is the pointer type that malloc should say it returns
206*/
207
208#ifndef void
209#define void void
210#endif /*void*/
211
212#include <stddef.h> /* for size_t */
213#include <stdlib.h> /* for getenv(), abort() */
214#include <unistd.h> /* for __libc_enable_secure */
215
216#include <atomic.h>
217#include <_itoa.h>
218#include <bits/wordsize.h>
219#include <sys/sysinfo.h>
220
221#include <ldsodefs.h>
222
223#include <unistd.h>
224#include <stdio.h> /* needed for malloc_stats */
225#include <errno.h>
226
227#include <shlib-compat.h>
228
229/* For uintptr_t. */
230#include <stdint.h>
231
232/* For va_arg, va_start, va_end. */
233#include <stdarg.h>
234
235/* For MIN, MAX, powerof2. */
236#include <sys/param.h>
237
238/* For ALIGN_UP et. al. */
239#include <libc-pointer-arith.h>
240
241/* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242#include <libc-diag.h>
243
244#include <malloc/malloc-internal.h>
245
246/*
247 Debugging:
248
249 Because freed chunks may be overwritten with bookkeeping fields, this
250 malloc will often die when freed memory is overwritten by user
251 programs. This can be very effective (albeit in an annoying way)
252 in helping track down dangling pointers.
253
254 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
255 enabled that will catch more memory errors. You probably won't be
256 able to make much sense of the actual assertion errors, but they
257 should help you locate incorrectly overwritten memory. The checking
258 is fairly extensive, and will slow down execution
259 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
260 will attempt to check every non-mmapped allocated and free chunk in
261 the course of computing the summmaries. (By nature, mmapped regions
262 cannot be checked very much automatically.)
263
264 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
265 this code. The assertions in the check routines spell out in more
266 detail the assumptions and invariants underlying the algorithms.
267
268 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
269 checking that all accesses to malloced memory stay within their
270 bounds. However, there are several add-ons and adaptations of this
271 or other mallocs available that do this.
272*/
273
274#ifndef MALLOC_DEBUG
275#define MALLOC_DEBUG 0
276#endif
277
278#ifdef NDEBUG
279# define assert(expr) ((void) 0)
280#else
281# define assert(expr) \
282 ((expr) \
283 ? ((void) 0) \
284 : __malloc_assert (#expr, __FILE__, __LINE__, __func__))
285
286extern const char *__progname;
287
288static void
289__malloc_assert (const char *assertion, const char *file, unsigned int line,
290 const char *function)
291{
292 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
293 __progname, __progname[0] ? ": " : "",
294 file, line,
295 function ? function : "", function ? ": " : "",
296 assertion);
297 fflush (stderr);
298 abort ();
299}
300#endif
301
302#if USE_TCACHE
303/* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
304# define TCACHE_MAX_BINS 64
305# define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
306
307/* Only used to pre-fill the tunables. */
308# define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
309
310/* When "x" is from chunksize(). */
311# define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
312/* When "x" is a user-provided size. */
313# define usize2tidx(x) csize2tidx (request2size (x))
314
315/* With rounding and alignment, the bins are...
316 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
317 idx 1 bytes 25..40 or 13..20
318 idx 2 bytes 41..56 or 21..28
319 etc. */
320
321/* This is another arbitrary limit, which tunables can change. Each
322 tcache bin will hold at most this number of chunks. */
323# define TCACHE_FILL_COUNT 7
324#endif
325
326
327/*
328 REALLOC_ZERO_BYTES_FREES should be set if a call to
329 realloc with zero bytes should be the same as a call to free.
330 This is required by the C standard. Otherwise, since this malloc
331 returns a unique pointer for malloc(0), so does realloc(p, 0).
332*/
333
334#ifndef REALLOC_ZERO_BYTES_FREES
335#define REALLOC_ZERO_BYTES_FREES 1
336#endif
337
338/*
339 TRIM_FASTBINS controls whether free() of a very small chunk can
340 immediately lead to trimming. Setting to true (1) can reduce memory
341 footprint, but will almost always slow down programs that use a lot
342 of small chunks.
343
344 Define this only if you are willing to give up some speed to more
345 aggressively reduce system-level memory footprint when releasing
346 memory in programs that use many small chunks. You can get
347 essentially the same effect by setting MXFAST to 0, but this can
348 lead to even greater slowdowns in programs using many small chunks.
349 TRIM_FASTBINS is an in-between compile-time option, that disables
350 only those chunks bordering topmost memory from being placed in
351 fastbins.
352*/
353
354#ifndef TRIM_FASTBINS
355#define TRIM_FASTBINS 0
356#endif
357
358
359/* Definition for getting more memory from the OS. */
360#define MORECORE (*__morecore)
361#define MORECORE_FAILURE 0
362void * __default_morecore (ptrdiff_t);
363void *(*__morecore)(ptrdiff_t) = __default_morecore;
364
365
366#include <string.h>
367
368/*
369 MORECORE-related declarations. By default, rely on sbrk
370*/
371
372
373/*
374 MORECORE is the name of the routine to call to obtain more memory
375 from the system. See below for general guidance on writing
376 alternative MORECORE functions, as well as a version for WIN32 and a
377 sample version for pre-OSX macos.
378*/
379
380#ifndef MORECORE
381#define MORECORE sbrk
382#endif
383
384/*
385 MORECORE_FAILURE is the value returned upon failure of MORECORE
386 as well as mmap. Since it cannot be an otherwise valid memory address,
387 and must reflect values of standard sys calls, you probably ought not
388 try to redefine it.
389*/
390
391#ifndef MORECORE_FAILURE
392#define MORECORE_FAILURE (-1)
393#endif
394
395/*
396 If MORECORE_CONTIGUOUS is true, take advantage of fact that
397 consecutive calls to MORECORE with positive arguments always return
398 contiguous increasing addresses. This is true of unix sbrk. Even
399 if not defined, when regions happen to be contiguous, malloc will
400 permit allocations spanning regions obtained from different
401 calls. But defining this when applicable enables some stronger
402 consistency checks and space efficiencies.
403*/
404
405#ifndef MORECORE_CONTIGUOUS
406#define MORECORE_CONTIGUOUS 1
407#endif
408
409/*
410 Define MORECORE_CANNOT_TRIM if your version of MORECORE
411 cannot release space back to the system when given negative
412 arguments. This is generally necessary only if you are using
413 a hand-crafted MORECORE function that cannot handle negative arguments.
414*/
415
416/* #define MORECORE_CANNOT_TRIM */
417
418/* MORECORE_CLEARS (default 1)
419 The degree to which the routine mapped to MORECORE zeroes out
420 memory: never (0), only for newly allocated space (1) or always
421 (2). The distinction between (1) and (2) is necessary because on
422 some systems, if the application first decrements and then
423 increments the break value, the contents of the reallocated space
424 are unspecified.
425 */
426
427#ifndef MORECORE_CLEARS
428# define MORECORE_CLEARS 1
429#endif
430
431
432/*
433 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
434 sbrk fails, and mmap is used as a backup. The value must be a
435 multiple of page size. This backup strategy generally applies only
436 when systems have "holes" in address space, so sbrk cannot perform
437 contiguous expansion, but there is still space available on system.
438 On systems for which this is known to be useful (i.e. most linux
439 kernels), this occurs only when programs allocate huge amounts of
440 memory. Between this, and the fact that mmap regions tend to be
441 limited, the size should be large, to avoid too many mmap calls and
442 thus avoid running out of kernel resources. */
443
444#ifndef MMAP_AS_MORECORE_SIZE
445#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
446#endif
447
448/*
449 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
450 large blocks.
451*/
452
453#ifndef HAVE_MREMAP
454#define HAVE_MREMAP 0
455#endif
456
457/* We may need to support __malloc_initialize_hook for backwards
458 compatibility. */
459
460#if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_24)
461# define HAVE_MALLOC_INIT_HOOK 1
462#else
463# define HAVE_MALLOC_INIT_HOOK 0
464#endif
465
466
467/*
468 This version of malloc supports the standard SVID/XPG mallinfo
469 routine that returns a struct containing usage properties and
470 statistics. It should work on any SVID/XPG compliant system that has
471 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
472 install such a thing yourself, cut out the preliminary declarations
473 as described above and below and save them in a malloc.h file. But
474 there's no compelling reason to bother to do this.)
475
476 The main declaration needed is the mallinfo struct that is returned
477 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
478 bunch of fields that are not even meaningful in this version of
479 malloc. These fields are are instead filled by mallinfo() with
480 other numbers that might be of interest.
481*/
482
483
484/* ---------- description of public routines ------------ */
485
486/*
487 malloc(size_t n)
488 Returns a pointer to a newly allocated chunk of at least n bytes, or null
489 if no space is available. Additionally, on failure, errno is
490 set to ENOMEM on ANSI C systems.
491
492 If n is zero, malloc returns a minumum-sized chunk. (The minimum
493 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
494 systems.) On most systems, size_t is an unsigned type, so calls
495 with negative arguments are interpreted as requests for huge amounts
496 of space, which will often fail. The maximum supported value of n
497 differs across systems, but is in all cases less than the maximum
498 representable value of a size_t.
499*/
500void* __libc_malloc(size_t);
501libc_hidden_proto (__libc_malloc)
502
503/*
504 free(void* p)
505 Releases the chunk of memory pointed to by p, that had been previously
506 allocated using malloc or a related routine such as realloc.
507 It has no effect if p is null. It can have arbitrary (i.e., bad!)
508 effects if p has already been freed.
509
510 Unless disabled (using mallopt), freeing very large spaces will
511 when possible, automatically trigger operations that give
512 back unused memory to the system, thus reducing program footprint.
513*/
514void __libc_free(void*);
515libc_hidden_proto (__libc_free)
516
517/*
518 calloc(size_t n_elements, size_t element_size);
519 Returns a pointer to n_elements * element_size bytes, with all locations
520 set to zero.
521*/
522void* __libc_calloc(size_t, size_t);
523
524/*
525 realloc(void* p, size_t n)
526 Returns a pointer to a chunk of size n that contains the same data
527 as does chunk p up to the minimum of (n, p's size) bytes, or null
528 if no space is available.
529
530 The returned pointer may or may not be the same as p. The algorithm
531 prefers extending p when possible, otherwise it employs the
532 equivalent of a malloc-copy-free sequence.
533
534 If p is null, realloc is equivalent to malloc.
535
536 If space is not available, realloc returns null, errno is set (if on
537 ANSI) and p is NOT freed.
538
539 if n is for fewer bytes than already held by p, the newly unused
540 space is lopped off and freed if possible. Unless the #define
541 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
542 zero (re)allocates a minimum-sized chunk.
543
544 Large chunks that were internally obtained via mmap will always be
545 grown using malloc-copy-free sequences unless the system supports
546 MREMAP (currently only linux).
547
548 The old unix realloc convention of allowing the last-free'd chunk
549 to be used as an argument to realloc is not supported.
550*/
551void* __libc_realloc(void*, size_t);
552libc_hidden_proto (__libc_realloc)
553
554/*
555 memalign(size_t alignment, size_t n);
556 Returns a pointer to a newly allocated chunk of n bytes, aligned
557 in accord with the alignment argument.
558
559 The alignment argument should be a power of two. If the argument is
560 not a power of two, the nearest greater power is used.
561 8-byte alignment is guaranteed by normal malloc calls, so don't
562 bother calling memalign with an argument of 8 or less.
563
564 Overreliance on memalign is a sure way to fragment space.
565*/
566void* __libc_memalign(size_t, size_t);
567libc_hidden_proto (__libc_memalign)
568
569/*
570 valloc(size_t n);
571 Equivalent to memalign(pagesize, n), where pagesize is the page
572 size of the system. If the pagesize is unknown, 4096 is used.
573*/
574void* __libc_valloc(size_t);
575
576
577
578/*
579 mallopt(int parameter_number, int parameter_value)
580 Sets tunable parameters The format is to provide a
581 (parameter-number, parameter-value) pair. mallopt then sets the
582 corresponding parameter to the argument value if it can (i.e., so
583 long as the value is meaningful), and returns 1 if successful else
584 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
585 normally defined in malloc.h. Only one of these (M_MXFAST) is used
586 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
587 so setting them has no effect. But this malloc also supports four
588 other options in mallopt. See below for details. Briefly, supported
589 parameters are as follows (listed defaults are for "typical"
590 configurations).
591
592 Symbol param # default allowed param values
593 M_MXFAST 1 64 0-80 (0 disables fastbins)
594 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
595 M_TOP_PAD -2 0 any
596 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
597 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
598*/
599int __libc_mallopt(int, int);
600libc_hidden_proto (__libc_mallopt)
601
602
603/*
604 mallinfo()
605 Returns (by copy) a struct containing various summary statistics:
606
607 arena: current total non-mmapped bytes allocated from system
608 ordblks: the number of free chunks
609 smblks: the number of fastbin blocks (i.e., small chunks that
610 have been freed but not use resused or consolidated)
611 hblks: current number of mmapped regions
612 hblkhd: total bytes held in mmapped regions
613 usmblks: always 0
614 fsmblks: total bytes held in fastbin blocks
615 uordblks: current total allocated space (normal or mmapped)
616 fordblks: total free space
617 keepcost: the maximum number of bytes that could ideally be released
618 back to system via malloc_trim. ("ideally" means that
619 it ignores page restrictions etc.)
620
621 Because these fields are ints, but internal bookkeeping may
622 be kept as longs, the reported values may wrap around zero and
623 thus be inaccurate.
624*/
625struct mallinfo __libc_mallinfo(void);
626
627
628/*
629 pvalloc(size_t n);
630 Equivalent to valloc(minimum-page-that-holds(n)), that is,
631 round up n to nearest pagesize.
632 */
633void* __libc_pvalloc(size_t);
634
635/*
636 malloc_trim(size_t pad);
637
638 If possible, gives memory back to the system (via negative
639 arguments to sbrk) if there is unused memory at the `high' end of
640 the malloc pool. You can call this after freeing large blocks of
641 memory to potentially reduce the system-level memory requirements
642 of a program. However, it cannot guarantee to reduce memory. Under
643 some allocation patterns, some large free blocks of memory will be
644 locked between two used chunks, so they cannot be given back to
645 the system.
646
647 The `pad' argument to malloc_trim represents the amount of free
648 trailing space to leave untrimmed. If this argument is zero,
649 only the minimum amount of memory to maintain internal data
650 structures will be left (one page or less). Non-zero arguments
651 can be supplied to maintain enough trailing space to service
652 future expected allocations without having to re-obtain memory
653 from the system.
654
655 Malloc_trim returns 1 if it actually released any memory, else 0.
656 On systems that do not support "negative sbrks", it will always
657 return 0.
658*/
659int __malloc_trim(size_t);
660
661/*
662 malloc_usable_size(void* p);
663
664 Returns the number of bytes you can actually use in
665 an allocated chunk, which may be more than you requested (although
666 often not) due to alignment and minimum size constraints.
667 You can use this many bytes without worrying about
668 overwriting other allocated objects. This is not a particularly great
669 programming practice. malloc_usable_size can be more useful in
670 debugging and assertions, for example:
671
672 p = malloc(n);
673 assert(malloc_usable_size(p) >= 256);
674
675*/
676size_t __malloc_usable_size(void*);
677
678/*
679 malloc_stats();
680 Prints on stderr the amount of space obtained from the system (both
681 via sbrk and mmap), the maximum amount (which may be more than
682 current if malloc_trim and/or munmap got called), and the current
683 number of bytes allocated via malloc (or realloc, etc) but not yet
684 freed. Note that this is the number of bytes allocated, not the
685 number requested. It will be larger than the number requested
686 because of alignment and bookkeeping overhead. Because it includes
687 alignment wastage as being in use, this figure may be greater than
688 zero even when no user-level chunks are allocated.
689
690 The reported current and maximum system memory can be inaccurate if
691 a program makes other calls to system memory allocation functions
692 (normally sbrk) outside of malloc.
693
694 malloc_stats prints only the most commonly interesting statistics.
695 More information can be obtained by calling mallinfo.
696
697*/
698void __malloc_stats(void);
699
700/*
701 malloc_get_state(void);
702
703 Returns the state of all malloc variables in an opaque data
704 structure.
705*/
706void* __malloc_get_state(void);
707
708/*
709 malloc_set_state(void* state);
710
711 Restore the state of all malloc variables from data obtained with
712 malloc_get_state().
713*/
714int __malloc_set_state(void*);
715
716/*
717 posix_memalign(void **memptr, size_t alignment, size_t size);
718
719 POSIX wrapper like memalign(), checking for validity of size.
720*/
721int __posix_memalign(void **, size_t, size_t);
722
723/* mallopt tuning options */
724
725/*
726 M_MXFAST is the maximum request size used for "fastbins", special bins
727 that hold returned chunks without consolidating their spaces. This
728 enables future requests for chunks of the same size to be handled
729 very quickly, but can increase fragmentation, and thus increase the
730 overall memory footprint of a program.
731
732 This malloc manages fastbins very conservatively yet still
733 efficiently, so fragmentation is rarely a problem for values less
734 than or equal to the default. The maximum supported value of MXFAST
735 is 80. You wouldn't want it any higher than this anyway. Fastbins
736 are designed especially for use with many small structs, objects or
737 strings -- the default handles structs/objects/arrays with sizes up
738 to 8 4byte fields, or small strings representing words, tokens,
739 etc. Using fastbins for larger objects normally worsens
740 fragmentation without improving speed.
741
742 M_MXFAST is set in REQUEST size units. It is internally used in
743 chunksize units, which adds padding and alignment. You can reduce
744 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
745 algorithm to be a closer approximation of fifo-best-fit in all cases,
746 not just for larger requests, but will generally cause it to be
747 slower.
748*/
749
750
751/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
752#ifndef M_MXFAST
753#define M_MXFAST 1
754#endif
755
756#ifndef DEFAULT_MXFAST
757#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
758#endif
759
760
761/*
762 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
763 to keep before releasing via malloc_trim in free().
764
765 Automatic trimming is mainly useful in long-lived programs.
766 Because trimming via sbrk can be slow on some systems, and can
767 sometimes be wasteful (in cases where programs immediately
768 afterward allocate more large chunks) the value should be high
769 enough so that your overall system performance would improve by
770 releasing this much memory.
771
772 The trim threshold and the mmap control parameters (see below)
773 can be traded off with one another. Trimming and mmapping are
774 two different ways of releasing unused memory back to the
775 system. Between these two, it is often possible to keep
776 system-level demands of a long-lived program down to a bare
777 minimum. For example, in one test suite of sessions measuring
778 the XF86 X server on Linux, using a trim threshold of 128K and a
779 mmap threshold of 192K led to near-minimal long term resource
780 consumption.
781
782 If you are using this malloc in a long-lived program, it should
783 pay to experiment with these values. As a rough guide, you
784 might set to a value close to the average size of a process
785 (program) running on your system. Releasing this much memory
786 would allow such a process to run in memory. Generally, it's
787 worth it to tune for trimming rather tham memory mapping when a
788 program undergoes phases where several large chunks are
789 allocated and released in ways that can reuse each other's
790 storage, perhaps mixed with phases where there are no such
791 chunks at all. And in well-behaved long-lived programs,
792 controlling release of large blocks via trimming versus mapping
793 is usually faster.
794
795 However, in most programs, these parameters serve mainly as
796 protection against the system-level effects of carrying around
797 massive amounts of unneeded memory. Since frequent calls to
798 sbrk, mmap, and munmap otherwise degrade performance, the default
799 parameters are set to relatively high values that serve only as
800 safeguards.
801
802 The trim value It must be greater than page size to have any useful
803 effect. To disable trimming completely, you can set to
804 (unsigned long)(-1)
805
806 Trim settings interact with fastbin (MXFAST) settings: Unless
807 TRIM_FASTBINS is defined, automatic trimming never takes place upon
808 freeing a chunk with size less than or equal to MXFAST. Trimming is
809 instead delayed until subsequent freeing of larger chunks. However,
810 you can still force an attempted trim by calling malloc_trim.
811
812 Also, trimming is not generally possible in cases where
813 the main arena is obtained via mmap.
814
815 Note that the trick some people use of mallocing a huge space and
816 then freeing it at program startup, in an attempt to reserve system
817 memory, doesn't have the intended effect under automatic trimming,
818 since that memory will immediately be returned to the system.
819*/
820
821#define M_TRIM_THRESHOLD -1
822
823#ifndef DEFAULT_TRIM_THRESHOLD
824#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
825#endif
826
827/*
828 M_TOP_PAD is the amount of extra `padding' space to allocate or
829 retain whenever sbrk is called. It is used in two ways internally:
830
831 * When sbrk is called to extend the top of the arena to satisfy
832 a new malloc request, this much padding is added to the sbrk
833 request.
834
835 * When malloc_trim is called automatically from free(),
836 it is used as the `pad' argument.
837
838 In both cases, the actual amount of padding is rounded
839 so that the end of the arena is always a system page boundary.
840
841 The main reason for using padding is to avoid calling sbrk so
842 often. Having even a small pad greatly reduces the likelihood
843 that nearly every malloc request during program start-up (or
844 after trimming) will invoke sbrk, which needlessly wastes
845 time.
846
847 Automatic rounding-up to page-size units is normally sufficient
848 to avoid measurable overhead, so the default is 0. However, in
849 systems where sbrk is relatively slow, it can pay to increase
850 this value, at the expense of carrying around more memory than
851 the program needs.
852*/
853
854#define M_TOP_PAD -2
855
856#ifndef DEFAULT_TOP_PAD
857#define DEFAULT_TOP_PAD (0)
858#endif
859
860/*
861 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
862 adjusted MMAP_THRESHOLD.
863*/
864
865#ifndef DEFAULT_MMAP_THRESHOLD_MIN
866#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
867#endif
868
869#ifndef DEFAULT_MMAP_THRESHOLD_MAX
870 /* For 32-bit platforms we cannot increase the maximum mmap
871 threshold much because it is also the minimum value for the
872 maximum heap size and its alignment. Going above 512k (i.e., 1M
873 for new heaps) wastes too much address space. */
874# if __WORDSIZE == 32
875# define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
876# else
877# define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
878# endif
879#endif
880
881/*
882 M_MMAP_THRESHOLD is the request size threshold for using mmap()
883 to service a request. Requests of at least this size that cannot
884 be allocated using already-existing space will be serviced via mmap.
885 (If enough normal freed space already exists it is used instead.)
886
887 Using mmap segregates relatively large chunks of memory so that
888 they can be individually obtained and released from the host
889 system. A request serviced through mmap is never reused by any
890 other request (at least not directly; the system may just so
891 happen to remap successive requests to the same locations).
892
893 Segregating space in this way has the benefits that:
894
895 1. Mmapped space can ALWAYS be individually released back
896 to the system, which helps keep the system level memory
897 demands of a long-lived program low.
898 2. Mapped memory can never become `locked' between
899 other chunks, as can happen with normally allocated chunks, which
900 means that even trimming via malloc_trim would not release them.
901 3. On some systems with "holes" in address spaces, mmap can obtain
902 memory that sbrk cannot.
903
904 However, it has the disadvantages that:
905
906 1. The space cannot be reclaimed, consolidated, and then
907 used to service later requests, as happens with normal chunks.
908 2. It can lead to more wastage because of mmap page alignment
909 requirements
910 3. It causes malloc performance to be more dependent on host
911 system memory management support routines which may vary in
912 implementation quality and may impose arbitrary
913 limitations. Generally, servicing a request via normal
914 malloc steps is faster than going through a system's mmap.
915
916 The advantages of mmap nearly always outweigh disadvantages for
917 "large" chunks, but the value of "large" varies across systems. The
918 default is an empirically derived value that works well in most
919 systems.
920
921
922 Update in 2006:
923 The above was written in 2001. Since then the world has changed a lot.
924 Memory got bigger. Applications got bigger. The virtual address space
925 layout in 32 bit linux changed.
926
927 In the new situation, brk() and mmap space is shared and there are no
928 artificial limits on brk size imposed by the kernel. What is more,
929 applications have started using transient allocations larger than the
930 128Kb as was imagined in 2001.
931
932 The price for mmap is also high now; each time glibc mmaps from the
933 kernel, the kernel is forced to zero out the memory it gives to the
934 application. Zeroing memory is expensive and eats a lot of cache and
935 memory bandwidth. This has nothing to do with the efficiency of the
936 virtual memory system, by doing mmap the kernel just has no choice but
937 to zero.
938
939 In 2001, the kernel had a maximum size for brk() which was about 800
940 megabytes on 32 bit x86, at that point brk() would hit the first
941 mmaped shared libaries and couldn't expand anymore. With current 2.6
942 kernels, the VA space layout is different and brk() and mmap
943 both can span the entire heap at will.
944
945 Rather than using a static threshold for the brk/mmap tradeoff,
946 we are now using a simple dynamic one. The goal is still to avoid
947 fragmentation. The old goals we kept are
948 1) try to get the long lived large allocations to use mmap()
949 2) really large allocations should always use mmap()
950 and we're adding now:
951 3) transient allocations should use brk() to avoid forcing the kernel
952 having to zero memory over and over again
953
954 The implementation works with a sliding threshold, which is by default
955 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
956 out at 128Kb as per the 2001 default.
957
958 This allows us to satisfy requirement 1) under the assumption that long
959 lived allocations are made early in the process' lifespan, before it has
960 started doing dynamic allocations of the same size (which will
961 increase the threshold).
962
963 The upperbound on the threshold satisfies requirement 2)
964
965 The threshold goes up in value when the application frees memory that was
966 allocated with the mmap allocator. The idea is that once the application
967 starts freeing memory of a certain size, it's highly probable that this is
968 a size the application uses for transient allocations. This estimator
969 is there to satisfy the new third requirement.
970
971*/
972
973#define M_MMAP_THRESHOLD -3
974
975#ifndef DEFAULT_MMAP_THRESHOLD
976#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
977#endif
978
979/*
980 M_MMAP_MAX is the maximum number of requests to simultaneously
981 service using mmap. This parameter exists because
982 some systems have a limited number of internal tables for
983 use by mmap, and using more than a few of them may degrade
984 performance.
985
986 The default is set to a value that serves only as a safeguard.
987 Setting to 0 disables use of mmap for servicing large requests.
988*/
989
990#define M_MMAP_MAX -4
991
992#ifndef DEFAULT_MMAP_MAX
993#define DEFAULT_MMAP_MAX (65536)
994#endif
995
996#include <malloc.h>
997
998#ifndef RETURN_ADDRESS
999#define RETURN_ADDRESS(X_) (NULL)
1000#endif
1001
1002/* On some platforms we can compile internal, not exported functions better.
1003 Let the environment provide a macro and define it to be empty if it
1004 is not available. */
1005#ifndef internal_function
1006# define internal_function
1007#endif
1008
1009/* Forward declarations. */
1010struct malloc_chunk;
1011typedef struct malloc_chunk* mchunkptr;
1012
1013/* Internal routines. */
1014
1015static void* _int_malloc(mstate, size_t);
1016static void _int_free(mstate, mchunkptr, int);
1017static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1018 INTERNAL_SIZE_T);
1019static void* _int_memalign(mstate, size_t, size_t);
1020static void* _mid_memalign(size_t, size_t, void *);
1021
1022static void malloc_printerr(int action, const char *str, void *ptr, mstate av);
1023
1024static void* internal_function mem2mem_check(void *p, size_t sz);
1025static int internal_function top_check(void);
1026static void internal_function munmap_chunk(mchunkptr p);
1027#if HAVE_MREMAP
1028static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1029#endif
1030
1031static void* malloc_check(size_t sz, const void *caller);
1032static void free_check(void* mem, const void *caller);
1033static void* realloc_check(void* oldmem, size_t bytes,
1034 const void *caller);
1035static void* memalign_check(size_t alignment, size_t bytes,
1036 const void *caller);
1037
1038/* ------------------ MMAP support ------------------ */
1039
1040
1041#include <fcntl.h>
1042#include <sys/mman.h>
1043
1044#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1045# define MAP_ANONYMOUS MAP_ANON
1046#endif
1047
1048#ifndef MAP_NORESERVE
1049# define MAP_NORESERVE 0
1050#endif
1051
1052#define MMAP(addr, size, prot, flags) \
1053 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1054
1055
1056/*
1057 ----------------------- Chunk representations -----------------------
1058*/
1059
1060
1061/*
1062 This struct declaration is misleading (but accurate and necessary).
1063 It declares a "view" into memory allowing access to necessary
1064 fields at known offsets from a given base. See explanation below.
1065*/
1066
1067struct malloc_chunk {
1068
1069 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1070 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1071
1072 struct malloc_chunk* fd; /* double links -- used only if free. */
1073 struct malloc_chunk* bk;
1074
1075 /* Only used for large blocks: pointer to next larger size. */
1076 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1077 struct malloc_chunk* bk_nextsize;
1078};
1079
1080
1081/*
1082 malloc_chunk details:
1083
1084 (The following includes lightly edited explanations by Colin Plumb.)
1085
1086 Chunks of memory are maintained using a `boundary tag' method as
1087 described in e.g., Knuth or Standish. (See the paper by Paul
1088 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1089 survey of such techniques.) Sizes of free chunks are stored both
1090 in the front of each chunk and at the end. This makes
1091 consolidating fragmented chunks into bigger chunks very fast. The
1092 size fields also hold bits representing whether chunks are free or
1093 in use.
1094
1095 An allocated chunk looks like this:
1096
1097
1098 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1099 | Size of previous chunk, if unallocated (P clear) |
1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1101 | Size of chunk, in bytes |A|M|P|
1102 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | User data starts here... .
1104 . .
1105 . (malloc_usable_size() bytes) .
1106 . |
1107nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1108 | (size of chunk, but used for application data) |
1109 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1110 | Size of next chunk, in bytes |A|0|1|
1111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1112
1113 Where "chunk" is the front of the chunk for the purpose of most of
1114 the malloc code, but "mem" is the pointer that is returned to the
1115 user. "Nextchunk" is the beginning of the next contiguous chunk.
1116
1117 Chunks always begin on even word boundaries, so the mem portion
1118 (which is returned to the user) is also on an even word boundary, and
1119 thus at least double-word aligned.
1120
1121 Free chunks are stored in circular doubly-linked lists, and look like this:
1122
1123 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1124 | Size of previous chunk, if unallocated (P clear) |
1125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1126 `head:' | Size of chunk, in bytes |A|0|P|
1127 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1128 | Forward pointer to next chunk in list |
1129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1130 | Back pointer to previous chunk in list |
1131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1132 | Unused space (may be 0 bytes long) .
1133 . .
1134 . |
1135nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1136 `foot:' | Size of chunk, in bytes |
1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1138 | Size of next chunk, in bytes |A|0|0|
1139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1140
1141 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1142 chunk size (which is always a multiple of two words), is an in-use
1143 bit for the *previous* chunk. If that bit is *clear*, then the
1144 word before the current chunk size contains the previous chunk
1145 size, and can be used to find the front of the previous chunk.
1146 The very first chunk allocated always has this bit set,
1147 preventing access to non-existent (or non-owned) memory. If
1148 prev_inuse is set for any given chunk, then you CANNOT determine
1149 the size of the previous chunk, and might even get a memory
1150 addressing fault when trying to do so.
1151
1152 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1153 main arena, described by the main_arena variable. When additional
1154 threads are spawned, each thread receives its own arena (up to a
1155 configurable limit, after which arenas are reused for multiple
1156 threads), and the chunks in these arenas have the A bit set. To
1157 find the arena for a chunk on such a non-main arena, heap_for_ptr
1158 performs a bit mask operation and indirection through the ar_ptr
1159 member of the per-heap header heap_info (see arena.c).
1160
1161 Note that the `foot' of the current chunk is actually represented
1162 as the prev_size of the NEXT chunk. This makes it easier to
1163 deal with alignments etc but can be very confusing when trying
1164 to extend or adapt this code.
1165
1166 The three exceptions to all this are:
1167
1168 1. The special chunk `top' doesn't bother using the
1169 trailing size field since there is no next contiguous chunk
1170 that would have to index off it. After initialization, `top'
1171 is forced to always exist. If it would become less than
1172 MINSIZE bytes long, it is replenished.
1173
1174 2. Chunks allocated via mmap, which have the second-lowest-order
1175 bit M (IS_MMAPPED) set in their size fields. Because they are
1176 allocated one-by-one, each must contain its own trailing size
1177 field. If the M bit is set, the other bits are ignored
1178 (because mmapped chunks are neither in an arena, nor adjacent
1179 to a freed chunk). The M bit is also used for chunks which
1180 originally came from a dumped heap via malloc_set_state in
1181 hooks.c.
1182
1183 3. Chunks in fastbins are treated as allocated chunks from the
1184 point of view of the chunk allocator. They are consolidated
1185 with their neighbors only in bulk, in malloc_consolidate.
1186*/
1187
1188/*
1189 ---------- Size and alignment checks and conversions ----------
1190*/
1191
1192/* conversion from malloc headers to user pointers, and back */
1193
1194#define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1195#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1196
1197/* The smallest possible chunk */
1198#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1199
1200/* The smallest size we can malloc is an aligned minimal chunk */
1201
1202#define MINSIZE \
1203 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1204
1205/* Check if m has acceptable alignment */
1206
1207#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1208
1209#define misaligned_chunk(p) \
1210 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1211 & MALLOC_ALIGN_MASK)
1212
1213
1214/*
1215 Check if a request is so large that it would wrap around zero when
1216 padded and aligned. To simplify some other code, the bound is made
1217 low enough so that adding MINSIZE will also not wrap around zero.
1218 */
1219
1220#define REQUEST_OUT_OF_RANGE(req) \
1221 ((unsigned long) (req) >= \
1222 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
1223
1224/* pad request bytes into a usable size -- internal version */
1225
1226#define request2size(req) \
1227 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1228 MINSIZE : \
1229 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1230
1231/* Same, except also perform argument check */
1232
1233#define checked_request2size(req, sz) \
1234 if (REQUEST_OUT_OF_RANGE (req)) { \
1235 __set_errno (ENOMEM); \
1236 return 0; \
1237 } \
1238 (sz) = request2size (req);
1239
1240/*
1241 --------------- Physical chunk operations ---------------
1242 */
1243
1244
1245/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1246#define PREV_INUSE 0x1
1247
1248/* extract inuse bit of previous chunk */
1249#define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1250
1251
1252/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1253#define IS_MMAPPED 0x2
1254
1255/* check for mmap()'ed chunk */
1256#define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1257
1258
1259/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1260 from a non-main arena. This is only set immediately before handing
1261 the chunk to the user, if necessary. */
1262#define NON_MAIN_ARENA 0x4
1263
1264/* Check for chunk from main arena. */
1265#define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1266
1267/* Mark a chunk as not being on the main arena. */
1268#define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1269
1270
1271/*
1272 Bits to mask off when extracting size
1273
1274 Note: IS_MMAPPED is intentionally not masked off from size field in
1275 macros for which mmapped chunks should never be seen. This should
1276 cause helpful core dumps to occur if it is tried by accident by
1277 people extending or adapting this malloc.
1278 */
1279#define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1280
1281/* Get size, ignoring use bits */
1282#define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1283
1284/* Like chunksize, but do not mask SIZE_BITS. */
1285#define chunksize_nomask(p) ((p)->mchunk_size)
1286
1287/* Ptr to next physical malloc_chunk. */
1288#define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1289
1290/* Size of the chunk below P. Only valid if prev_inuse (P). */
1291#define prev_size(p) ((p)->mchunk_prev_size)
1292
1293/* Set the size of the chunk below P. Only valid if prev_inuse (P). */
1294#define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1295
1296/* Ptr to previous physical malloc_chunk. Only valid if prev_inuse (P). */
1297#define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1298
1299/* Treat space at ptr + offset as a chunk */
1300#define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1301
1302/* extract p's inuse bit */
1303#define inuse(p) \
1304 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1305
1306/* set/clear chunk as being inuse without otherwise disturbing */
1307#define set_inuse(p) \
1308 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1309
1310#define clear_inuse(p) \
1311 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1312
1313
1314/* check/set/clear inuse bits in known places */
1315#define inuse_bit_at_offset(p, s) \
1316 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1317
1318#define set_inuse_bit_at_offset(p, s) \
1319 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1320
1321#define clear_inuse_bit_at_offset(p, s) \
1322 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1323
1324
1325/* Set size at head, without disturbing its use bit */
1326#define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1327
1328/* Set size/use field */
1329#define set_head(p, s) ((p)->mchunk_size = (s))
1330
1331/* Set size at footer (only when chunk is not in use) */
1332#define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1333
1334
1335#pragma GCC poison mchunk_size
1336#pragma GCC poison mchunk_prev_size
1337
1338/*
1339 -------------------- Internal data structures --------------------
1340
1341 All internal state is held in an instance of malloc_state defined
1342 below. There are no other static variables, except in two optional
1343 cases:
1344 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1345 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1346 for mmap.
1347
1348 Beware of lots of tricks that minimize the total bookkeeping space
1349 requirements. The result is a little over 1K bytes (for 4byte
1350 pointers and size_t.)
1351 */
1352
1353/*
1354 Bins
1355
1356 An array of bin headers for free chunks. Each bin is doubly
1357 linked. The bins are approximately proportionally (log) spaced.
1358 There are a lot of these bins (128). This may look excessive, but
1359 works very well in practice. Most bins hold sizes that are
1360 unusual as malloc request sizes, but are more usual for fragments
1361 and consolidated sets of chunks, which is what these bins hold, so
1362 they can be found quickly. All procedures maintain the invariant
1363 that no consolidated chunk physically borders another one, so each
1364 chunk in a list is known to be preceeded and followed by either
1365 inuse chunks or the ends of memory.
1366
1367 Chunks in bins are kept in size order, with ties going to the
1368 approximately least recently used chunk. Ordering isn't needed
1369 for the small bins, which all contain the same-sized chunks, but
1370 facilitates best-fit allocation for larger chunks. These lists
1371 are just sequential. Keeping them in order almost never requires
1372 enough traversal to warrant using fancier ordered data
1373 structures.
1374
1375 Chunks of the same size are linked with the most
1376 recently freed at the front, and allocations are taken from the
1377 back. This results in LRU (FIFO) allocation order, which tends
1378 to give each chunk an equal opportunity to be consolidated with
1379 adjacent freed chunks, resulting in larger free chunks and less
1380 fragmentation.
1381
1382 To simplify use in double-linked lists, each bin header acts
1383 as a malloc_chunk. This avoids special-casing for headers.
1384 But to conserve space and improve locality, we allocate
1385 only the fd/bk pointers of bins, and then use repositioning tricks
1386 to treat these as the fields of a malloc_chunk*.
1387 */
1388
1389typedef struct malloc_chunk *mbinptr;
1390
1391/* addressing -- note that bin_at(0) does not exist */
1392#define bin_at(m, i) \
1393 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1394 - offsetof (struct malloc_chunk, fd))
1395
1396/* analog of ++bin */
1397#define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1398
1399/* Reminders about list directionality within bins */
1400#define first(b) ((b)->fd)
1401#define last(b) ((b)->bk)
1402
1403/* Take a chunk off a bin list */
1404#define unlink(AV, P, BK, FD) { \
1405 if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0)) \
1406 malloc_printerr (check_action, "corrupted size vs. prev_size", P, AV); \
1407 FD = P->fd; \
1408 BK = P->bk; \
1409 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1410 malloc_printerr (check_action, "corrupted double-linked list", P, AV); \
1411 else { \
1412 FD->bk = BK; \
1413 BK->fd = FD; \
1414 if (!in_smallbin_range (chunksize_nomask (P)) \
1415 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1416 if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \
1417 || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \
1418 malloc_printerr (check_action, \
1419 "corrupted double-linked list (not small)", \
1420 P, AV); \
1421 if (FD->fd_nextsize == NULL) { \
1422 if (P->fd_nextsize == P) \
1423 FD->fd_nextsize = FD->bk_nextsize = FD; \
1424 else { \
1425 FD->fd_nextsize = P->fd_nextsize; \
1426 FD->bk_nextsize = P->bk_nextsize; \
1427 P->fd_nextsize->bk_nextsize = FD; \
1428 P->bk_nextsize->fd_nextsize = FD; \
1429 } \
1430 } else { \
1431 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1432 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1433 } \
1434 } \
1435 } \
1436}
1437
1438/*
1439 Indexing
1440
1441 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1442 8 bytes apart. Larger bins are approximately logarithmically spaced:
1443
1444 64 bins of size 8
1445 32 bins of size 64
1446 16 bins of size 512
1447 8 bins of size 4096
1448 4 bins of size 32768
1449 2 bins of size 262144
1450 1 bin of size what's left
1451
1452 There is actually a little bit of slop in the numbers in bin_index
1453 for the sake of speed. This makes no difference elsewhere.
1454
1455 The bins top out around 1MB because we expect to service large
1456 requests via mmap.
1457
1458 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1459 a valid chunk size the small bins are bumped up one.
1460 */
1461
1462#define NBINS 128
1463#define NSMALLBINS 64
1464#define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1465#define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1466#define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1467
1468#define in_smallbin_range(sz) \
1469 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1470
1471#define smallbin_index(sz) \
1472 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1473 + SMALLBIN_CORRECTION)
1474
1475#define largebin_index_32(sz) \
1476 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1477 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1478 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1479 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1480 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1481 126)
1482
1483#define largebin_index_32_big(sz) \
1484 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1485 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1486 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1487 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1488 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1489 126)
1490
1491// XXX It remains to be seen whether it is good to keep the widths of
1492// XXX the buckets the same or whether it should be scaled by a factor
1493// XXX of two as well.
1494#define largebin_index_64(sz) \
1495 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1496 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1497 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1498 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1499 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1500 126)
1501
1502#define largebin_index(sz) \
1503 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1504 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1505 : largebin_index_32 (sz))
1506
1507#define bin_index(sz) \
1508 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1509
1510
1511/*
1512 Unsorted chunks
1513
1514 All remainders from chunk splits, as well as all returned chunks,
1515 are first placed in the "unsorted" bin. They are then placed
1516 in regular bins after malloc gives them ONE chance to be used before
1517 binning. So, basically, the unsorted_chunks list acts as a queue,
1518 with chunks being placed on it in free (and malloc_consolidate),
1519 and taken off (to be either used or placed in bins) in malloc.
1520
1521 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1522 does not have to be taken into account in size comparisons.
1523 */
1524
1525/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1526#define unsorted_chunks(M) (bin_at (M, 1))
1527
1528/*
1529 Top
1530
1531 The top-most available chunk (i.e., the one bordering the end of
1532 available memory) is treated specially. It is never included in
1533 any bin, is used only if no other chunk is available, and is
1534 released back to the system if it is very large (see
1535 M_TRIM_THRESHOLD). Because top initially
1536 points to its own bin with initial zero size, thus forcing
1537 extension on the first malloc request, we avoid having any special
1538 code in malloc to check whether it even exists yet. But we still
1539 need to do so when getting memory from system, so we make
1540 initial_top treat the bin as a legal but unusable chunk during the
1541 interval between initialization and the first call to
1542 sysmalloc. (This is somewhat delicate, since it relies on
1543 the 2 preceding words to be zero during this interval as well.)
1544 */
1545
1546/* Conveniently, the unsorted bin can be used as dummy top on first call */
1547#define initial_top(M) (unsorted_chunks (M))
1548
1549/*
1550 Binmap
1551
1552 To help compensate for the large number of bins, a one-level index
1553 structure is used for bin-by-bin searching. `binmap' is a
1554 bitvector recording whether bins are definitely empty so they can
1555 be skipped over during during traversals. The bits are NOT always
1556 cleared as soon as bins are empty, but instead only
1557 when they are noticed to be empty during traversal in malloc.
1558 */
1559
1560/* Conservatively use 32 bits per map word, even if on 64bit system */
1561#define BINMAPSHIFT 5
1562#define BITSPERMAP (1U << BINMAPSHIFT)
1563#define BINMAPSIZE (NBINS / BITSPERMAP)
1564
1565#define idx2block(i) ((i) >> BINMAPSHIFT)
1566#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1567
1568#define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1569#define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1570#define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1571
1572/*
1573 Fastbins
1574
1575 An array of lists holding recently freed small chunks. Fastbins
1576 are not doubly linked. It is faster to single-link them, and
1577 since chunks are never removed from the middles of these lists,
1578 double linking is not necessary. Also, unlike regular bins, they
1579 are not even processed in FIFO order (they use faster LIFO) since
1580 ordering doesn't much matter in the transient contexts in which
1581 fastbins are normally used.
1582
1583 Chunks in fastbins keep their inuse bit set, so they cannot
1584 be consolidated with other free chunks. malloc_consolidate
1585 releases all chunks in fastbins and consolidates them with
1586 other free chunks.
1587 */
1588
1589typedef struct malloc_chunk *mfastbinptr;
1590#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1591
1592/* offset 2 to use otherwise unindexable first 2 bins */
1593#define fastbin_index(sz) \
1594 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1595
1596
1597/* The maximum fastbin request size we support */
1598#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1599
1600#define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1601
1602/*
1603 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1604 that triggers automatic consolidation of possibly-surrounding
1605 fastbin chunks. This is a heuristic, so the exact value should not
1606 matter too much. It is defined at half the default trim threshold as a
1607 compromise heuristic to only attempt consolidation if it is likely
1608 to lead to trimming. However, it is not dynamically tunable, since
1609 consolidation reduces fragmentation surrounding large chunks even
1610 if trimming is not used.
1611 */
1612
1613#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1614
1615/*
1616 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1617 they are used as flags.
1618 */
1619
1620/*
1621 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1622 some fastbin chunks. It is set true on entering a chunk into any
1623 fastbin, and cleared only in malloc_consolidate.
1624
1625 The truth value is inverted so that have_fastchunks will be true
1626 upon startup (since statics are zero-filled), simplifying
1627 initialization checks.
1628 */
1629
1630#define FASTCHUNKS_BIT (1U)
1631
1632#define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1633#define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1634#define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1635
1636/*
1637 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1638 regions. Otherwise, contiguity is exploited in merging together,
1639 when possible, results from consecutive MORECORE calls.
1640
1641 The initial value comes from MORECORE_CONTIGUOUS, but is
1642 changed dynamically if mmap is ever used as an sbrk substitute.
1643 */
1644
1645#define NONCONTIGUOUS_BIT (2U)
1646
1647#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1648#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1649#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1650#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1651
1652/* ARENA_CORRUPTION_BIT is set if a memory corruption was detected on the
1653 arena. Such an arena is no longer used to allocate chunks. Chunks
1654 allocated in that arena before detecting corruption are not freed. */
1655
1656#define ARENA_CORRUPTION_BIT (4U)
1657
1658#define arena_is_corrupt(A) (((A)->flags & ARENA_CORRUPTION_BIT))
1659#define set_arena_corrupt(A) ((A)->flags |= ARENA_CORRUPTION_BIT)
1660
1661/*
1662 Set value of max_fast.
1663 Use impossibly small value if 0.
1664 Precondition: there are no existing fastbin chunks.
1665 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1666 */
1667
1668#define set_max_fast(s) \
1669 global_max_fast = (((s) == 0) \
1670 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1671#define get_max_fast() global_max_fast
1672
1673
1674/*
1675 ----------- Internal state representation and initialization -----------
1676 */
1677
1678struct malloc_state
1679{
1680 /* Serialize access. */
1681 __libc_lock_define (, mutex);
1682
1683 /* Flags (formerly in max_fast). */
1684 int flags;
1685
1686 /* Fastbins */
1687 mfastbinptr fastbinsY[NFASTBINS];
1688
1689 /* Base of the topmost chunk -- not otherwise kept in a bin */
1690 mchunkptr top;
1691
1692 /* The remainder from the most recent split of a small request */
1693 mchunkptr last_remainder;
1694
1695 /* Normal bins packed as described above */
1696 mchunkptr bins[NBINS * 2 - 2];
1697
1698 /* Bitmap of bins */
1699 unsigned int binmap[BINMAPSIZE];
1700
1701 /* Linked list */
1702 struct malloc_state *next;
1703
1704 /* Linked list for free arenas. Access to this field is serialized
1705 by free_list_lock in arena.c. */
1706 struct malloc_state *next_free;
1707
1708 /* Number of threads attached to this arena. 0 if the arena is on
1709 the free list. Access to this field is serialized by
1710 free_list_lock in arena.c. */
1711 INTERNAL_SIZE_T attached_threads;
1712
1713 /* Memory allocated from the system in this arena. */
1714 INTERNAL_SIZE_T system_mem;
1715 INTERNAL_SIZE_T max_system_mem;
1716};
1717
1718struct malloc_par
1719{
1720 /* Tunable parameters */
1721 unsigned long trim_threshold;
1722 INTERNAL_SIZE_T top_pad;
1723 INTERNAL_SIZE_T mmap_threshold;
1724 INTERNAL_SIZE_T arena_test;
1725 INTERNAL_SIZE_T arena_max;
1726
1727 /* Memory map support */
1728 int n_mmaps;
1729 int n_mmaps_max;
1730 int max_n_mmaps;
1731 /* the mmap_threshold is dynamic, until the user sets
1732 it manually, at which point we need to disable any
1733 dynamic behavior. */
1734 int no_dyn_threshold;
1735
1736 /* Statistics */
1737 INTERNAL_SIZE_T mmapped_mem;
1738 INTERNAL_SIZE_T max_mmapped_mem;
1739
1740 /* First address handed out by MORECORE/sbrk. */
1741 char *sbrk_base;
1742
1743#if USE_TCACHE
1744 /* Maximum number of buckets to use. */
1745 size_t tcache_bins;
1746 size_t tcache_max_bytes;
1747 /* Maximum number of chunks in each bucket. */
1748 size_t tcache_count;
1749 /* Maximum number of chunks to remove from the unsorted list, which
1750 aren't used to prefill the cache. */
1751 size_t tcache_unsorted_limit;
1752#endif
1753};
1754
1755/* There are several instances of this struct ("arenas") in this
1756 malloc. If you are adapting this malloc in a way that does NOT use
1757 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1758 before using. This malloc relies on the property that malloc_state
1759 is initialized to all zeroes (as is true of C statics). */
1760
1761static struct malloc_state main_arena =
1762{
1763 .mutex = _LIBC_LOCK_INITIALIZER,
1764 .next = &main_arena,
1765 .attached_threads = 1
1766};
1767
1768/* These variables are used for undumping support. Chunked are marked
1769 as using mmap, but we leave them alone if they fall into this
1770 range. NB: The chunk size for these chunks only includes the
1771 initial size field (of SIZE_SZ bytes), there is no trailing size
1772 field (unlike with regular mmapped chunks). */
1773static mchunkptr dumped_main_arena_start; /* Inclusive. */
1774static mchunkptr dumped_main_arena_end; /* Exclusive. */
1775
1776/* True if the pointer falls into the dumped arena. Use this after
1777 chunk_is_mmapped indicates a chunk is mmapped. */
1778#define DUMPED_MAIN_ARENA_CHUNK(p) \
1779 ((p) >= dumped_main_arena_start && (p) < dumped_main_arena_end)
1780
1781/* There is only one instance of the malloc parameters. */
1782
1783static struct malloc_par mp_ =
1784{
1785 .top_pad = DEFAULT_TOP_PAD,
1786 .n_mmaps_max = DEFAULT_MMAP_MAX,
1787 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1788 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1789#define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1790 .arena_test = NARENAS_FROM_NCORES (1)
1791#if USE_TCACHE
1792 ,
1793 .tcache_count = TCACHE_FILL_COUNT,
1794 .tcache_bins = TCACHE_MAX_BINS,
1795 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1796 .tcache_unsorted_limit = 0 /* No limit. */
1797#endif
1798};
1799
1800/* Maximum size of memory handled in fastbins. */
1801static INTERNAL_SIZE_T global_max_fast;
1802
1803/*
1804 Initialize a malloc_state struct.
1805
1806 This is called only from within malloc_consolidate, which needs
1807 be called in the same contexts anyway. It is never called directly
1808 outside of malloc_consolidate because some optimizing compilers try
1809 to inline it at all call points, which turns out not to be an
1810 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1811 */
1812
1813static void
1814malloc_init_state (mstate av)
1815{
1816 int i;
1817 mbinptr bin;
1818
1819 /* Establish circular links for normal bins */
1820 for (i = 1; i < NBINS; ++i)
1821 {
1822 bin = bin_at (av, i);
1823 bin->fd = bin->bk = bin;
1824 }
1825
1826#if MORECORE_CONTIGUOUS
1827 if (av != &main_arena)
1828#endif
1829 set_noncontiguous (av);
1830 if (av == &main_arena)
1831 set_max_fast (DEFAULT_MXFAST);
1832 av->flags |= FASTCHUNKS_BIT;
1833
1834 av->top = initial_top (av);
1835}
1836
1837/*
1838 Other internal utilities operating on mstates
1839 */
1840
1841static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1842static int systrim (size_t, mstate);
1843static void malloc_consolidate (mstate);
1844
1845
1846/* -------------- Early definitions for debugging hooks ---------------- */
1847
1848/* Define and initialize the hook variables. These weak definitions must
1849 appear before any use of the variables in a function (arena.c uses one). */
1850#ifndef weak_variable
1851/* In GNU libc we want the hook variables to be weak definitions to
1852 avoid a problem with Emacs. */
1853# define weak_variable weak_function
1854#endif
1855
1856/* Forward declarations. */
1857static void *malloc_hook_ini (size_t sz,
1858 const void *caller) __THROW;
1859static void *realloc_hook_ini (void *ptr, size_t sz,
1860 const void *caller) __THROW;
1861static void *memalign_hook_ini (size_t alignment, size_t sz,
1862 const void *caller) __THROW;
1863
1864#if HAVE_MALLOC_INIT_HOOK
1865void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1866compat_symbol (libc, __malloc_initialize_hook,
1867 __malloc_initialize_hook, GLIBC_2_0);
1868#endif
1869
1870void weak_variable (*__free_hook) (void *__ptr,
1871 const void *) = NULL;
1872void *weak_variable (*__malloc_hook)
1873 (size_t __size, const void *) = malloc_hook_ini;
1874void *weak_variable (*__realloc_hook)
1875 (void *__ptr, size_t __size, const void *)
1876 = realloc_hook_ini;
1877void *weak_variable (*__memalign_hook)
1878 (size_t __alignment, size_t __size, const void *)
1879 = memalign_hook_ini;
1880void weak_variable (*__after_morecore_hook) (void) = NULL;
1881
1882
1883/* ---------------- Error behavior ------------------------------------ */
1884
1885#ifndef DEFAULT_CHECK_ACTION
1886# define DEFAULT_CHECK_ACTION 3
1887#endif
1888
1889static int check_action = DEFAULT_CHECK_ACTION;
1890
1891
1892/* ------------------ Testing support ----------------------------------*/
1893
1894static int perturb_byte;
1895
1896static void
1897alloc_perturb (char *p, size_t n)
1898{
1899 if (__glibc_unlikely (perturb_byte))
1900 memset (p, perturb_byte ^ 0xff, n);
1901}
1902
1903static void
1904free_perturb (char *p, size_t n)
1905{
1906 if (__glibc_unlikely (perturb_byte))
1907 memset (p, perturb_byte, n);
1908}
1909
1910
1911
1912#include <stap-probe.h>
1913
1914/* ------------------- Support for multiple arenas -------------------- */
1915#include "arena.c"
1916
1917/*
1918 Debugging support
1919
1920 These routines make a number of assertions about the states
1921 of data structures that should be true at all times. If any
1922 are not true, it's very likely that a user program has somehow
1923 trashed memory. (It's also possible that there is a coding error
1924 in malloc. In which case, please report it!)
1925 */
1926
1927#if !MALLOC_DEBUG
1928
1929# define check_chunk(A, P)
1930# define check_free_chunk(A, P)
1931# define check_inuse_chunk(A, P)
1932# define check_remalloced_chunk(A, P, N)
1933# define check_malloced_chunk(A, P, N)
1934# define check_malloc_state(A)
1935
1936#else
1937
1938# define check_chunk(A, P) do_check_chunk (A, P)
1939# define check_free_chunk(A, P) do_check_free_chunk (A, P)
1940# define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1941# define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1942# define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1943# define check_malloc_state(A) do_check_malloc_state (A)
1944
1945/*
1946 Properties of all chunks
1947 */
1948
1949static void
1950do_check_chunk (mstate av, mchunkptr p)
1951{
1952 unsigned long sz = chunksize (p);
1953 /* min and max possible addresses assuming contiguous allocation */
1954 char *max_address = (char *) (av->top) + chunksize (av->top);
1955 char *min_address = max_address - av->system_mem;
1956
1957 if (!chunk_is_mmapped (p))
1958 {
1959 /* Has legal address ... */
1960 if (p != av->top)
1961 {
1962 if (contiguous (av))
1963 {
1964 assert (((char *) p) >= min_address);
1965 assert (((char *) p + sz) <= ((char *) (av->top)));
1966 }
1967 }
1968 else
1969 {
1970 /* top size is always at least MINSIZE */
1971 assert ((unsigned long) (sz) >= MINSIZE);
1972 /* top predecessor always marked inuse */
1973 assert (prev_inuse (p));
1974 }
1975 }
1976 else if (!DUMPED_MAIN_ARENA_CHUNK (p))
1977 {
1978 /* address is outside main heap */
1979 if (contiguous (av) && av->top != initial_top (av))
1980 {
1981 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1982 }
1983 /* chunk is page-aligned */
1984 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1985 /* mem is aligned */
1986 assert (aligned_OK (chunk2mem (p)));
1987 }
1988}
1989
1990/*
1991 Properties of free chunks
1992 */
1993
1994static void
1995do_check_free_chunk (mstate av, mchunkptr p)
1996{
1997 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1998 mchunkptr next = chunk_at_offset (p, sz);
1999
2000 do_check_chunk (av, p);
2001
2002 /* Chunk must claim to be free ... */
2003 assert (!inuse (p));
2004 assert (!chunk_is_mmapped (p));
2005
2006 /* Unless a special marker, must have OK fields */
2007 if ((unsigned long) (sz) >= MINSIZE)
2008 {
2009 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2010 assert (aligned_OK (chunk2mem (p)));
2011 /* ... matching footer field */
2012 assert (prev_size (p) == sz);
2013 /* ... and is fully consolidated */
2014 assert (prev_inuse (p));
2015 assert (next == av->top || inuse (next));
2016
2017 /* ... and has minimally sane links */
2018 assert (p->fd->bk == p);
2019 assert (p->bk->fd == p);
2020 }
2021 else /* markers are always of size SIZE_SZ */
2022 assert (sz == SIZE_SZ);
2023}
2024
2025/*
2026 Properties of inuse chunks
2027 */
2028
2029static void
2030do_check_inuse_chunk (mstate av, mchunkptr p)
2031{
2032 mchunkptr next;
2033
2034 do_check_chunk (av, p);
2035
2036 if (chunk_is_mmapped (p))
2037 return; /* mmapped chunks have no next/prev */
2038
2039 /* Check whether it claims to be in use ... */
2040 assert (inuse (p));
2041
2042 next = next_chunk (p);
2043
2044 /* ... and is surrounded by OK chunks.
2045 Since more things can be checked with free chunks than inuse ones,
2046 if an inuse chunk borders them and debug is on, it's worth doing them.
2047 */
2048 if (!prev_inuse (p))
2049 {
2050 /* Note that we cannot even look at prev unless it is not inuse */
2051 mchunkptr prv = prev_chunk (p);
2052 assert (next_chunk (prv) == p);
2053 do_check_free_chunk (av, prv);
2054 }
2055
2056 if (next == av->top)
2057 {
2058 assert (prev_inuse (next));
2059 assert (chunksize (next) >= MINSIZE);
2060 }
2061 else if (!inuse (next))
2062 do_check_free_chunk (av, next);
2063}
2064
2065/*
2066 Properties of chunks recycled from fastbins
2067 */
2068
2069static void
2070do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2071{
2072 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
2073
2074 if (!chunk_is_mmapped (p))
2075 {
2076 assert (av == arena_for_chunk (p));
2077 if (chunk_main_arena (p))
2078 assert (av == &main_arena);
2079 else
2080 assert (av != &main_arena);
2081 }
2082
2083 do_check_inuse_chunk (av, p);
2084
2085 /* Legal size ... */
2086 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2087 assert ((unsigned long) (sz) >= MINSIZE);
2088 /* ... and alignment */
2089 assert (aligned_OK (chunk2mem (p)));
2090 /* chunk is less than MINSIZE more than request */
2091 assert ((long) (sz) - (long) (s) >= 0);
2092 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2093}
2094
2095/*
2096 Properties of nonrecycled chunks at the point they are malloced
2097 */
2098
2099static void
2100do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2101{
2102 /* same as recycled case ... */
2103 do_check_remalloced_chunk (av, p, s);
2104
2105 /*
2106 ... plus, must obey implementation invariant that prev_inuse is
2107 always true of any allocated chunk; i.e., that each allocated
2108 chunk borders either a previously allocated and still in-use
2109 chunk, or the base of its memory arena. This is ensured
2110 by making all allocations from the `lowest' part of any found
2111 chunk. This does not necessarily hold however for chunks
2112 recycled via fastbins.
2113 */
2114
2115 assert (prev_inuse (p));
2116}
2117
2118
2119/*
2120 Properties of malloc_state.
2121
2122 This may be useful for debugging malloc, as well as detecting user
2123 programmer errors that somehow write into malloc_state.
2124
2125 If you are extending or experimenting with this malloc, you can
2126 probably figure out how to hack this routine to print out or
2127 display chunk addresses, sizes, bins, and other instrumentation.
2128 */
2129
2130static void
2131do_check_malloc_state (mstate av)
2132{
2133 int i;
2134 mchunkptr p;
2135 mchunkptr q;
2136 mbinptr b;
2137 unsigned int idx;
2138 INTERNAL_SIZE_T size;
2139 unsigned long total = 0;
2140 int max_fast_bin;
2141
2142 /* internal size_t must be no wider than pointer type */
2143 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2144
2145 /* alignment is a power of 2 */
2146 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2147
2148 /* cannot run remaining checks until fully initialized */
2149 if (av->top == 0 || av->top == initial_top (av))
2150 return;
2151
2152 /* pagesize is a power of 2 */
2153 assert (powerof2(GLRO (dl_pagesize)));
2154
2155 /* A contiguous main_arena is consistent with sbrk_base. */
2156 if (av == &main_arena && contiguous (av))
2157 assert ((char *) mp_.sbrk_base + av->system_mem ==
2158 (char *) av->top + chunksize (av->top));
2159
2160 /* properties of fastbins */
2161
2162 /* max_fast is in allowed range */
2163 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2164
2165 max_fast_bin = fastbin_index (get_max_fast ());
2166
2167 for (i = 0; i < NFASTBINS; ++i)
2168 {
2169 p = fastbin (av, i);
2170
2171 /* The following test can only be performed for the main arena.
2172 While mallopt calls malloc_consolidate to get rid of all fast
2173 bins (especially those larger than the new maximum) this does
2174 only happen for the main arena. Trying to do this for any
2175 other arena would mean those arenas have to be locked and
2176 malloc_consolidate be called for them. This is excessive. And
2177 even if this is acceptable to somebody it still cannot solve
2178 the problem completely since if the arena is locked a
2179 concurrent malloc call might create a new arena which then
2180 could use the newly invalid fast bins. */
2181
2182 /* all bins past max_fast are empty */
2183 if (av == &main_arena && i > max_fast_bin)
2184 assert (p == 0);
2185
2186 while (p != 0)
2187 {
2188 /* each chunk claims to be inuse */
2189 do_check_inuse_chunk (av, p);
2190 total += chunksize (p);
2191 /* chunk belongs in this bin */
2192 assert (fastbin_index (chunksize (p)) == i);
2193 p = p->fd;
2194 }
2195 }
2196
2197 if (total != 0)
2198 assert (have_fastchunks (av));
2199 else if (!have_fastchunks (av))
2200 assert (total == 0);
2201
2202 /* check normal bins */
2203 for (i = 1; i < NBINS; ++i)
2204 {
2205 b = bin_at (av, i);
2206
2207 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2208 if (i >= 2)
2209 {
2210 unsigned int binbit = get_binmap (av, i);
2211 int empty = last (b) == b;
2212 if (!binbit)
2213 assert (empty);
2214 else if (!empty)
2215 assert (binbit);
2216 }
2217
2218 for (p = last (b); p != b; p = p->bk)
2219 {
2220 /* each chunk claims to be free */
2221 do_check_free_chunk (av, p);
2222 size = chunksize (p);
2223 total += size;
2224 if (i >= 2)
2225 {
2226 /* chunk belongs in bin */
2227 idx = bin_index (size);
2228 assert (idx == i);
2229 /* lists are sorted */
2230 assert (p->bk == b ||
2231 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2232
2233 if (!in_smallbin_range (size))
2234 {
2235 if (p->fd_nextsize != NULL)
2236 {
2237 if (p->fd_nextsize == p)
2238 assert (p->bk_nextsize == p);
2239 else
2240 {
2241 if (p->fd_nextsize == first (b))
2242 assert (chunksize (p) < chunksize (p->fd_nextsize));
2243 else
2244 assert (chunksize (p) > chunksize (p->fd_nextsize));
2245
2246 if (p == first (b))
2247 assert (chunksize (p) > chunksize (p->bk_nextsize));
2248 else
2249 assert (chunksize (p) < chunksize (p->bk_nextsize));
2250 }
2251 }
2252 else
2253 assert (p->bk_nextsize == NULL);
2254 }
2255 }
2256 else if (!in_smallbin_range (size))
2257 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2258 /* chunk is followed by a legal chain of inuse chunks */
2259 for (q = next_chunk (p);
2260 (q != av->top && inuse (q) &&
2261 (unsigned long) (chunksize (q)) >= MINSIZE);
2262 q = next_chunk (q))
2263 do_check_inuse_chunk (av, q);
2264 }
2265 }
2266
2267 /* top chunk is OK */
2268 check_chunk (av, av->top);
2269}
2270#endif
2271
2272
2273/* ----------------- Support for debugging hooks -------------------- */
2274#include "hooks.c"
2275
2276
2277/* ----------- Routines dealing with system allocation -------------- */
2278
2279/*
2280 sysmalloc handles malloc cases requiring more memory from the system.
2281 On entry, it is assumed that av->top does not have enough
2282 space to service request for nb bytes, thus requiring that av->top
2283 be extended or replaced.
2284 */
2285
2286static void *
2287sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2288{
2289 mchunkptr old_top; /* incoming value of av->top */
2290 INTERNAL_SIZE_T old_size; /* its size */
2291 char *old_end; /* its end address */
2292
2293 long size; /* arg to first MORECORE or mmap call */
2294 char *brk; /* return value from MORECORE */
2295
2296 long correction; /* arg to 2nd MORECORE call */
2297 char *snd_brk; /* 2nd return val */
2298
2299 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2300 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2301 char *aligned_brk; /* aligned offset into brk */
2302
2303 mchunkptr p; /* the allocated/returned chunk */
2304 mchunkptr remainder; /* remainder from allocation */
2305 unsigned long remainder_size; /* its size */
2306
2307
2308 size_t pagesize = GLRO (dl_pagesize);
2309 bool tried_mmap = false;
2310
2311
2312 /*
2313 If have mmap, and the request size meets the mmap threshold, and
2314 the system supports mmap, and there are few enough currently
2315 allocated mmapped regions, try to directly map this request
2316 rather than expanding top.
2317 */
2318
2319 if (av == NULL
2320 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2321 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2322 {
2323 char *mm; /* return value from mmap call*/
2324
2325 try_mmap:
2326 /*
2327 Round up size to nearest page. For mmapped chunks, the overhead
2328 is one SIZE_SZ unit larger than for normal chunks, because there
2329 is no following chunk whose prev_size field could be used.
2330
2331 See the front_misalign handling below, for glibc there is no
2332 need for further alignments unless we have have high alignment.
2333 */
2334 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2335 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2336 else
2337 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2338 tried_mmap = true;
2339
2340 /* Don't try if size wraps around 0 */
2341 if ((unsigned long) (size) > (unsigned long) (nb))
2342 {
2343 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2344
2345 if (mm != MAP_FAILED)
2346 {
2347 /*
2348 The offset to the start of the mmapped region is stored
2349 in the prev_size field of the chunk. This allows us to adjust
2350 returned start address to meet alignment requirements here
2351 and in memalign(), and still be able to compute proper
2352 address argument for later munmap in free() and realloc().
2353 */
2354
2355 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2356 {
2357 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2358 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2359 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2360 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2361 front_misalign = 0;
2362 }
2363 else
2364 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2365 if (front_misalign > 0)
2366 {
2367 correction = MALLOC_ALIGNMENT - front_misalign;
2368 p = (mchunkptr) (mm + correction);
2369 set_prev_size (p, correction);
2370 set_head (p, (size - correction) | IS_MMAPPED);
2371 }
2372 else
2373 {
2374 p = (mchunkptr) mm;
2375 set_prev_size (p, 0);
2376 set_head (p, size | IS_MMAPPED);
2377 }
2378
2379 /* update statistics */
2380
2381 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2382 atomic_max (&mp_.max_n_mmaps, new);
2383
2384 unsigned long sum;
2385 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2386 atomic_max (&mp_.max_mmapped_mem, sum);
2387
2388 check_chunk (av, p);
2389
2390 return chunk2mem (p);
2391 }
2392 }
2393 }
2394
2395 /* There are no usable arenas and mmap also failed. */
2396 if (av == NULL)
2397 return 0;
2398
2399 /* Record incoming configuration of top */
2400
2401 old_top = av->top;
2402 old_size = chunksize (old_top);
2403 old_end = (char *) (chunk_at_offset (old_top, old_size));
2404
2405 brk = snd_brk = (char *) (MORECORE_FAILURE);
2406
2407 /*
2408 If not the first time through, we require old_size to be
2409 at least MINSIZE and to have prev_inuse set.
2410 */
2411
2412 assert ((old_top == initial_top (av) && old_size == 0) ||
2413 ((unsigned long) (old_size) >= MINSIZE &&
2414 prev_inuse (old_top) &&
2415 ((unsigned long) old_end & (pagesize - 1)) == 0));
2416
2417 /* Precondition: not enough current space to satisfy nb request */
2418 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2419
2420
2421 if (av != &main_arena)
2422 {
2423 heap_info *old_heap, *heap;
2424 size_t old_heap_size;
2425
2426 /* First try to extend the current heap. */
2427 old_heap = heap_for_ptr (old_top);
2428 old_heap_size = old_heap->size;
2429 if ((long) (MINSIZE + nb - old_size) > 0
2430 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2431 {
2432 av->system_mem += old_heap->size - old_heap_size;
2433 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2434 | PREV_INUSE);
2435 }
2436 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2437 {
2438 /* Use a newly allocated heap. */
2439 heap->ar_ptr = av;
2440 heap->prev = old_heap;
2441 av->system_mem += heap->size;
2442 /* Set up the new top. */
2443 top (av) = chunk_at_offset (heap, sizeof (*heap));
2444 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2445
2446 /* Setup fencepost and free the old top chunk with a multiple of
2447 MALLOC_ALIGNMENT in size. */
2448 /* The fencepost takes at least MINSIZE bytes, because it might
2449 become the top chunk again later. Note that a footer is set
2450 up, too, although the chunk is marked in use. */
2451 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2452 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2453 if (old_size >= MINSIZE)
2454 {
2455 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2456 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2457 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2458 _int_free (av, old_top, 1);
2459 }
2460 else
2461 {
2462 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2463 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2464 }
2465 }
2466 else if (!tried_mmap)
2467 /* We can at least try to use to mmap memory. */
2468 goto try_mmap;
2469 }
2470 else /* av == main_arena */
2471
2472
2473 { /* Request enough space for nb + pad + overhead */
2474 size = nb + mp_.top_pad + MINSIZE;
2475
2476 /*
2477 If contiguous, we can subtract out existing space that we hope to
2478 combine with new space. We add it back later only if
2479 we don't actually get contiguous space.
2480 */
2481
2482 if (contiguous (av))
2483 size -= old_size;
2484
2485 /*
2486 Round to a multiple of page size.
2487 If MORECORE is not contiguous, this ensures that we only call it
2488 with whole-page arguments. And if MORECORE is contiguous and
2489 this is not first time through, this preserves page-alignment of
2490 previous calls. Otherwise, we correct to page-align below.
2491 */
2492
2493 size = ALIGN_UP (size, pagesize);
2494
2495 /*
2496 Don't try to call MORECORE if argument is so big as to appear
2497 negative. Note that since mmap takes size_t arg, it may succeed
2498 below even if we cannot call MORECORE.
2499 */
2500
2501 if (size > 0)
2502 {
2503 brk = (char *) (MORECORE (size));
2504 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2505 }
2506
2507 if (brk != (char *) (MORECORE_FAILURE))
2508 {
2509 /* Call the `morecore' hook if necessary. */
2510 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2511 if (__builtin_expect (hook != NULL, 0))
2512 (*hook)();
2513 }
2514 else
2515 {
2516 /*
2517 If have mmap, try using it as a backup when MORECORE fails or
2518 cannot be used. This is worth doing on systems that have "holes" in
2519 address space, so sbrk cannot extend to give contiguous space, but
2520 space is available elsewhere. Note that we ignore mmap max count
2521 and threshold limits, since the space will not be used as a
2522 segregated mmap region.
2523 */
2524
2525 /* Cannot merge with old top, so add its size back in */
2526 if (contiguous (av))
2527 size = ALIGN_UP (size + old_size, pagesize);
2528
2529 /* If we are relying on mmap as backup, then use larger units */
2530 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2531 size = MMAP_AS_MORECORE_SIZE;
2532
2533 /* Don't try if size wraps around 0 */
2534 if ((unsigned long) (size) > (unsigned long) (nb))
2535 {
2536 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2537
2538 if (mbrk != MAP_FAILED)
2539 {
2540 /* We do not need, and cannot use, another sbrk call to find end */
2541 brk = mbrk;
2542 snd_brk = brk + size;
2543
2544 /*
2545 Record that we no longer have a contiguous sbrk region.
2546 After the first time mmap is used as backup, we do not
2547 ever rely on contiguous space since this could incorrectly
2548 bridge regions.
2549 */
2550 set_noncontiguous (av);
2551 }
2552 }
2553 }
2554
2555 if (brk != (char *) (MORECORE_FAILURE))
2556 {
2557 if (mp_.sbrk_base == 0)
2558 mp_.sbrk_base = brk;
2559 av->system_mem += size;
2560
2561 /*
2562 If MORECORE extends previous space, we can likewise extend top size.
2563 */
2564
2565 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2566 set_head (old_top, (size + old_size) | PREV_INUSE);
2567
2568 else if (contiguous (av) && old_size && brk < old_end)
2569 {
2570 /* Oops! Someone else killed our space.. Can't touch anything. */
2571 malloc_printerr (3, "break adjusted to free malloc space", brk,
2572 av);
2573 }
2574
2575 /*
2576 Otherwise, make adjustments:
2577
2578 * If the first time through or noncontiguous, we need to call sbrk
2579 just to find out where the end of memory lies.
2580
2581 * We need to ensure that all returned chunks from malloc will meet
2582 MALLOC_ALIGNMENT
2583
2584 * If there was an intervening foreign sbrk, we need to adjust sbrk
2585 request size to account for fact that we will not be able to
2586 combine new space with existing space in old_top.
2587
2588 * Almost all systems internally allocate whole pages at a time, in
2589 which case we might as well use the whole last page of request.
2590 So we allocate enough more memory to hit a page boundary now,
2591 which in turn causes future contiguous calls to page-align.
2592 */
2593
2594 else
2595 {
2596 front_misalign = 0;
2597 end_misalign = 0;
2598 correction = 0;
2599 aligned_brk = brk;
2600
2601 /* handle contiguous cases */
2602 if (contiguous (av))
2603 {
2604 /* Count foreign sbrk as system_mem. */
2605 if (old_size)
2606 av->system_mem += brk - old_end;
2607
2608 /* Guarantee alignment of first new chunk made from this space */
2609
2610 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2611 if (front_misalign > 0)
2612 {
2613 /*
2614 Skip over some bytes to arrive at an aligned position.
2615 We don't need to specially mark these wasted front bytes.
2616 They will never be accessed anyway because
2617 prev_inuse of av->top (and any chunk created from its start)
2618 is always true after initialization.
2619 */
2620
2621 correction = MALLOC_ALIGNMENT - front_misalign;
2622 aligned_brk += correction;
2623 }
2624
2625 /*
2626 If this isn't adjacent to existing space, then we will not
2627 be able to merge with old_top space, so must add to 2nd request.
2628 */
2629
2630 correction += old_size;
2631
2632 /* Extend the end address to hit a page boundary */
2633 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2634 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2635
2636 assert (correction >= 0);
2637 snd_brk = (char *) (MORECORE (correction));
2638
2639 /*
2640 If can't allocate correction, try to at least find out current
2641 brk. It might be enough to proceed without failing.
2642
2643 Note that if second sbrk did NOT fail, we assume that space
2644 is contiguous with first sbrk. This is a safe assumption unless
2645 program is multithreaded but doesn't use locks and a foreign sbrk
2646 occurred between our first and second calls.
2647 */
2648
2649 if (snd_brk == (char *) (MORECORE_FAILURE))
2650 {
2651 correction = 0;
2652 snd_brk = (char *) (MORECORE (0));
2653 }
2654 else
2655 {
2656 /* Call the `morecore' hook if necessary. */
2657 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2658 if (__builtin_expect (hook != NULL, 0))
2659 (*hook)();
2660 }
2661 }
2662
2663 /* handle non-contiguous cases */
2664 else
2665 {
2666 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2667 /* MORECORE/mmap must correctly align */
2668 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2669 else
2670 {
2671 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2672 if (front_misalign > 0)
2673 {
2674 /*
2675 Skip over some bytes to arrive at an aligned position.
2676 We don't need to specially mark these wasted front bytes.
2677 They will never be accessed anyway because
2678 prev_inuse of av->top (and any chunk created from its start)
2679 is always true after initialization.
2680 */
2681
2682 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2683 }
2684 }
2685
2686 /* Find out current end of memory */
2687 if (snd_brk == (char *) (MORECORE_FAILURE))
2688 {
2689 snd_brk = (char *) (MORECORE (0));
2690 }
2691 }
2692
2693 /* Adjust top based on results of second sbrk */
2694 if (snd_brk != (char *) (MORECORE_FAILURE))
2695 {
2696 av->top = (mchunkptr) aligned_brk;
2697 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2698 av->system_mem += correction;
2699
2700 /*
2701 If not the first time through, we either have a
2702 gap due to foreign sbrk or a non-contiguous region. Insert a
2703 double fencepost at old_top to prevent consolidation with space
2704 we don't own. These fenceposts are artificial chunks that are
2705 marked as inuse and are in any case too small to use. We need
2706 two to make sizes and alignments work out.
2707 */
2708
2709 if (old_size != 0)
2710 {
2711 /*
2712 Shrink old_top to insert fenceposts, keeping size a
2713 multiple of MALLOC_ALIGNMENT. We know there is at least
2714 enough space in old_top to do this.
2715 */
2716 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2717 set_head (old_top, old_size | PREV_INUSE);
2718
2719 /*
2720 Note that the following assignments completely overwrite
2721 old_top when old_size was previously MINSIZE. This is
2722 intentional. We need the fencepost, even if old_top otherwise gets
2723 lost.
2724 */
2725 set_head (chunk_at_offset (old_top, old_size),
2726 (2 * SIZE_SZ) | PREV_INUSE);
2727 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ),
2728 (2 * SIZE_SZ) | PREV_INUSE);
2729
2730 /* If possible, release the rest. */
2731 if (old_size >= MINSIZE)
2732 {
2733 _int_free (av, old_top, 1);
2734 }
2735 }
2736 }
2737 }
2738 }
2739 } /* if (av != &main_arena) */
2740
2741 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2742 av->max_system_mem = av->system_mem;
2743 check_malloc_state (av);
2744
2745 /* finally, do the allocation */
2746 p = av->top;
2747 size = chunksize (p);
2748
2749 /* check that one of the above allocation paths succeeded */
2750 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2751 {
2752 remainder_size = size - nb;
2753 remainder = chunk_at_offset (p, nb);
2754 av->top = remainder;
2755 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2756 set_head (remainder, remainder_size | PREV_INUSE);
2757 check_malloced_chunk (av, p, nb);
2758 return chunk2mem (p);
2759 }
2760
2761 /* catch all failure paths */
2762 __set_errno (ENOMEM);
2763 return 0;
2764}
2765
2766
2767/*
2768 systrim is an inverse of sorts to sysmalloc. It gives memory back
2769 to the system (via negative arguments to sbrk) if there is unused
2770 memory at the `high' end of the malloc pool. It is called
2771 automatically by free() when top space exceeds the trim
2772 threshold. It is also called by the public malloc_trim routine. It
2773 returns 1 if it actually released any memory, else 0.
2774 */
2775
2776static int
2777systrim (size_t pad, mstate av)
2778{
2779 long top_size; /* Amount of top-most memory */
2780 long extra; /* Amount to release */
2781 long released; /* Amount actually released */
2782 char *current_brk; /* address returned by pre-check sbrk call */
2783 char *new_brk; /* address returned by post-check sbrk call */
2784 size_t pagesize;
2785 long top_area;
2786
2787 pagesize = GLRO (dl_pagesize);
2788 top_size = chunksize (av->top);
2789
2790 top_area = top_size - MINSIZE - 1;
2791 if (top_area <= pad)
2792 return 0;
2793
2794 /* Release in pagesize units and round down to the nearest page. */
2795 extra = ALIGN_DOWN(top_area - pad, pagesize);
2796
2797 if (extra == 0)
2798 return 0;
2799
2800 /*
2801 Only proceed if end of memory is where we last set it.
2802 This avoids problems if there were foreign sbrk calls.
2803 */
2804 current_brk = (char *) (MORECORE (0));
2805 if (current_brk == (char *) (av->top) + top_size)
2806 {
2807 /*
2808 Attempt to release memory. We ignore MORECORE return value,
2809 and instead call again to find out where new end of memory is.
2810 This avoids problems if first call releases less than we asked,
2811 of if failure somehow altered brk value. (We could still
2812 encounter problems if it altered brk in some very bad way,
2813 but the only thing we can do is adjust anyway, which will cause
2814 some downstream failure.)
2815 */
2816
2817 MORECORE (-extra);
2818 /* Call the `morecore' hook if necessary. */
2819 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2820 if (__builtin_expect (hook != NULL, 0))
2821 (*hook)();
2822 new_brk = (char *) (MORECORE (0));
2823
2824 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2825
2826 if (new_brk != (char *) MORECORE_FAILURE)
2827 {
2828 released = (long) (current_brk - new_brk);
2829
2830 if (released != 0)
2831 {
2832 /* Success. Adjust top. */
2833 av->system_mem -= released;
2834 set_head (av->top, (top_size - released) | PREV_INUSE);
2835 check_malloc_state (av);
2836 return 1;
2837 }
2838 }
2839 }
2840 return 0;
2841}
2842
2843static void
2844internal_function
2845munmap_chunk (mchunkptr p)
2846{
2847 INTERNAL_SIZE_T size = chunksize (p);
2848
2849 assert (chunk_is_mmapped (p));
2850
2851 /* Do nothing if the chunk is a faked mmapped chunk in the dumped
2852 main arena. We never free this memory. */
2853 if (DUMPED_MAIN_ARENA_CHUNK (p))
2854 return;
2855
2856 uintptr_t block = (uintptr_t) p - prev_size (p);
2857 size_t total_size = prev_size (p) + size;
2858 /* Unfortunately we have to do the compilers job by hand here. Normally
2859 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2860 page size. But gcc does not recognize the optimization possibility
2861 (in the moment at least) so we combine the two values into one before
2862 the bit test. */
2863 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
2864 {
2865 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
2866 chunk2mem (p), NULL);
2867 return;
2868 }
2869
2870 atomic_decrement (&mp_.n_mmaps);
2871 atomic_add (&mp_.mmapped_mem, -total_size);
2872
2873 /* If munmap failed the process virtual memory address space is in a
2874 bad shape. Just leave the block hanging around, the process will
2875 terminate shortly anyway since not much can be done. */
2876 __munmap ((char *) block, total_size);
2877}
2878
2879#if HAVE_MREMAP
2880
2881static mchunkptr
2882internal_function
2883mremap_chunk (mchunkptr p, size_t new_size)
2884{
2885 size_t pagesize = GLRO (dl_pagesize);
2886 INTERNAL_SIZE_T offset = prev_size (p);
2887 INTERNAL_SIZE_T size = chunksize (p);
2888 char *cp;
2889
2890 assert (chunk_is_mmapped (p));
2891 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
2892
2893 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2894 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
2895
2896 /* No need to remap if the number of pages does not change. */
2897 if (size + offset == new_size)
2898 return p;
2899
2900 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2901 MREMAP_MAYMOVE);
2902
2903 if (cp == MAP_FAILED)
2904 return 0;
2905
2906 p = (mchunkptr) (cp + offset);
2907
2908 assert (aligned_OK (chunk2mem (p)));
2909
2910 assert (prev_size (p) == offset);
2911 set_head (p, (new_size - offset) | IS_MMAPPED);
2912
2913 INTERNAL_SIZE_T new;
2914 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
2915 + new_size - size - offset;
2916 atomic_max (&mp_.max_mmapped_mem, new);
2917 return p;
2918}
2919#endif /* HAVE_MREMAP */
2920
2921/*------------------------ Public wrappers. --------------------------------*/
2922
2923#if USE_TCACHE
2924
2925/* We overlay this structure on the user-data portion of a chunk when
2926 the chunk is stored in the per-thread cache. */
2927typedef struct tcache_entry
2928{
2929 struct tcache_entry *next;
2930} tcache_entry;
2931
2932/* There is one of these for each thread, which contains the
2933 per-thread cache (hence "tcache_perthread_struct"). Keeping
2934 overall size low is mildly important. Note that COUNTS and ENTRIES
2935 are redundant (we could have just counted the linked list each
2936 time), this is for performance reasons. */
2937typedef struct tcache_perthread_struct
2938{
2939 char counts[TCACHE_MAX_BINS];
2940 tcache_entry *entries[TCACHE_MAX_BINS];
2941} tcache_perthread_struct;
2942
2943static __thread char tcache_shutting_down = 0;
2944static __thread tcache_perthread_struct *tcache = NULL;
2945
2946/* Caller must ensure that we know tc_idx is valid and there's room
2947 for more chunks. */
2948static void
2949tcache_put (mchunkptr chunk, size_t tc_idx)
2950{
2951 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
2952 assert (tc_idx < TCACHE_MAX_BINS);
2953 e->next = tcache->entries[tc_idx];
2954 tcache->entries[tc_idx] = e;
2955 ++(tcache->counts[tc_idx]);
2956}
2957
2958/* Caller must ensure that we know tc_idx is valid and there's
2959 available chunks to remove. */
2960static void *
2961tcache_get (size_t tc_idx)
2962{
2963 tcache_entry *e = tcache->entries[tc_idx];
2964 assert (tc_idx < TCACHE_MAX_BINS);
2965 assert (tcache->entries[tc_idx] > 0);
2966 tcache->entries[tc_idx] = e->next;
2967 --(tcache->counts[tc_idx]);
2968 return (void *) e;
2969}
2970
2971static void __attribute__ ((section ("__libc_thread_freeres_fn")))
2972tcache_thread_freeres (void)
2973{
2974 int i;
2975 tcache_perthread_struct *tcache_tmp = tcache;
2976
2977 if (!tcache)
2978 return;
2979
2980 tcache = NULL;
2981
2982 for (i = 0; i < TCACHE_MAX_BINS; ++i)
2983 {
2984 while (tcache_tmp->entries[i])
2985 {
2986 tcache_entry *e = tcache_tmp->entries[i];
2987 tcache_tmp->entries[i] = e->next;
2988 __libc_free (e);
2989 }
2990 }
2991
2992 __libc_free (tcache_tmp);
2993
2994 tcache_shutting_down = 1;
2995}
2996text_set_element (__libc_thread_subfreeres, tcache_thread_freeres);
2997
2998static void
2999tcache_init(void)
3000{
3001 mstate ar_ptr;
3002 void *victim = 0;
3003 const size_t bytes = sizeof (tcache_perthread_struct);
3004
3005 if (tcache_shutting_down)
3006 return;
3007
3008 arena_get (ar_ptr, bytes);
3009 victim = _int_malloc (ar_ptr, bytes);
3010 if (!victim && ar_ptr != NULL)
3011 {
3012 ar_ptr = arena_get_retry (ar_ptr, bytes);
3013 victim = _int_malloc (ar_ptr, bytes);
3014 }
3015
3016
3017 if (ar_ptr != NULL)
3018 __libc_lock_unlock (ar_ptr->mutex);
3019
3020 /* In a low memory situation, we may not be able to allocate memory
3021 - in which case, we just keep trying later. However, we
3022 typically do this very early, so either there is sufficient
3023 memory, or there isn't enough memory to do non-trivial
3024 allocations anyway. */
3025 if (victim)
3026 {
3027 tcache = (tcache_perthread_struct *) victim;
3028 memset (tcache, 0, sizeof (tcache_perthread_struct));
3029 }
3030
3031}
3032
3033#define MAYBE_INIT_TCACHE() \
3034 if (__glibc_unlikely (tcache == NULL)) \
3035 tcache_init();
3036
3037#else
3038#define MAYBE_INIT_TCACHE()
3039#endif
3040
3041void *
3042__libc_malloc (size_t bytes)
3043{
3044 mstate ar_ptr;
3045 void *victim;
3046
3047 void *(*hook) (size_t, const void *)
3048 = atomic_forced_read (__malloc_hook);
3049 if (__builtin_expect (hook != NULL, 0))
3050 return (*hook)(bytes, RETURN_ADDRESS (0));
3051#if USE_TCACHE
3052 /* int_free also calls request2size, be careful to not pad twice. */
3053 size_t tbytes = request2size (bytes);
3054 size_t tc_idx = csize2tidx (tbytes);
3055
3056 MAYBE_INIT_TCACHE ();
3057
3058 DIAG_PUSH_NEEDS_COMMENT;
3059 if (tc_idx < mp_.tcache_bins
3060 /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
3061 && tcache
3062 && tcache->entries[tc_idx] != NULL)
3063 {
3064 return tcache_get (tc_idx);
3065 }
3066 DIAG_POP_NEEDS_COMMENT;
3067#endif
3068
3069 arena_get (ar_ptr, bytes);
3070
3071 victim = _int_malloc (ar_ptr, bytes);
3072 /* Retry with another arena only if we were able to find a usable arena
3073 before. */
3074 if (!victim && ar_ptr != NULL)
3075 {
3076 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3077 ar_ptr = arena_get_retry (ar_ptr, bytes);
3078 victim = _int_malloc (ar_ptr, bytes);
3079 }
3080
3081 if (ar_ptr != NULL)
3082 __libc_lock_unlock (ar_ptr->mutex);
3083
3084 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3085 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3086 return victim;
3087}
3088libc_hidden_def (__libc_malloc)
3089
3090void
3091__libc_free (void *mem)
3092{
3093 mstate ar_ptr;
3094 mchunkptr p; /* chunk corresponding to mem */
3095
3096 void (*hook) (void *, const void *)
3097 = atomic_forced_read (__free_hook);
3098 if (__builtin_expect (hook != NULL, 0))
3099 {
3100 (*hook)(mem, RETURN_ADDRESS (0));
3101 return;
3102 }
3103
3104 if (mem == 0) /* free(0) has no effect */
3105 return;
3106
3107 p = mem2chunk (mem);
3108
3109 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3110 {
3111 /* See if the dynamic brk/mmap threshold needs adjusting.
3112 Dumped fake mmapped chunks do not affect the threshold. */
3113 if (!mp_.no_dyn_threshold
3114 && chunksize_nomask (p) > mp_.mmap_threshold
3115 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX
3116 && !DUMPED_MAIN_ARENA_CHUNK (p))
3117 {
3118 mp_.mmap_threshold = chunksize (p);
3119 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3120 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3121 mp_.mmap_threshold, mp_.trim_threshold);
3122 }
3123 munmap_chunk (p);
3124 return;
3125 }
3126
3127 MAYBE_INIT_TCACHE ();
3128
3129 ar_ptr = arena_for_chunk (p);
3130 _int_free (ar_ptr, p, 0);
3131}
3132libc_hidden_def (__libc_free)
3133
3134void *
3135__libc_realloc (void *oldmem, size_t bytes)
3136{
3137 mstate ar_ptr;
3138 INTERNAL_SIZE_T nb; /* padded request size */
3139
3140 void *newp; /* chunk to return */
3141
3142 void *(*hook) (void *, size_t, const void *) =
3143 atomic_forced_read (__realloc_hook);
3144 if (__builtin_expect (hook != NULL, 0))
3145 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3146
3147#if REALLOC_ZERO_BYTES_FREES
3148 if (bytes == 0 && oldmem != NULL)
3149 {
3150 __libc_free (oldmem); return 0;
3151 }
3152#endif
3153
3154 /* realloc of null is supposed to be same as malloc */
3155 if (oldmem == 0)
3156 return __libc_malloc (bytes);
3157
3158 /* chunk corresponding to oldmem */
3159 const mchunkptr oldp = mem2chunk (oldmem);
3160 /* its size */
3161 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3162
3163 if (chunk_is_mmapped (oldp))
3164 ar_ptr = NULL;
3165 else
3166 {
3167 MAYBE_INIT_TCACHE ();
3168 ar_ptr = arena_for_chunk (oldp);
3169 }
3170
3171 /* Little security check which won't hurt performance: the allocator
3172 never wrapps around at the end of the address space. Therefore
3173 we can exclude some size values which might appear here by
3174 accident or by "design" from some intruder. We need to bypass
3175 this check for dumped fake mmap chunks from the old main arena
3176 because the new malloc may provide additional alignment. */
3177 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3178 || __builtin_expect (misaligned_chunk (oldp), 0))
3179 && !DUMPED_MAIN_ARENA_CHUNK (oldp))
3180 {
3181 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem,
3182 ar_ptr);
3183 return NULL;
3184 }
3185
3186 checked_request2size (bytes, nb);
3187
3188 if (chunk_is_mmapped (oldp))
3189 {
3190 /* If this is a faked mmapped chunk from the dumped main arena,
3191 always make a copy (and do not free the old chunk). */
3192 if (DUMPED_MAIN_ARENA_CHUNK (oldp))
3193 {
3194 /* Must alloc, copy, free. */
3195 void *newmem = __libc_malloc (bytes);
3196 if (newmem == 0)
3197 return NULL;
3198 /* Copy as many bytes as are available from the old chunk
3199 and fit into the new size. NB: The overhead for faked
3200 mmapped chunks is only SIZE_SZ, not 2 * SIZE_SZ as for
3201 regular mmapped chunks. */
3202 if (bytes > oldsize - SIZE_SZ)
3203 bytes = oldsize - SIZE_SZ;
3204 memcpy (newmem, oldmem, bytes);
3205 return newmem;
3206 }
3207
3208 void *newmem;
3209
3210#if HAVE_MREMAP
3211 newp = mremap_chunk (oldp, nb);
3212 if (newp)
3213 return chunk2mem (newp);
3214#endif
3215 /* Note the extra SIZE_SZ overhead. */
3216 if (oldsize - SIZE_SZ >= nb)
3217 return oldmem; /* do nothing */
3218
3219 /* Must alloc, copy, free. */
3220 newmem = __libc_malloc (bytes);
3221 if (newmem == 0)
3222 return 0; /* propagate failure */
3223
3224 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3225 munmap_chunk (oldp);
3226 return newmem;
3227 }
3228
3229 __libc_lock_lock (ar_ptr->mutex);
3230
3231 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3232
3233 __libc_lock_unlock (ar_ptr->mutex);
3234 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3235 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3236
3237 if (newp == NULL)
3238 {
3239 /* Try harder to allocate memory in other arenas. */
3240 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3241 newp = __libc_malloc (bytes);
3242 if (newp != NULL)
3243 {
3244 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3245 _int_free (ar_ptr, oldp, 0);
3246 }
3247 }
3248
3249 return newp;
3250}
3251libc_hidden_def (__libc_realloc)
3252
3253void *
3254__libc_memalign (size_t alignment, size_t bytes)
3255{
3256 void *address = RETURN_ADDRESS (0);
3257 return _mid_memalign (alignment, bytes, address);
3258}
3259
3260static void *
3261_mid_memalign (size_t alignment, size_t bytes, void *address)
3262{
3263 mstate ar_ptr;
3264 void *p;
3265
3266 void *(*hook) (size_t, size_t, const void *) =
3267 atomic_forced_read (__memalign_hook);
3268 if (__builtin_expect (hook != NULL, 0))
3269 return (*hook)(alignment, bytes, address);
3270
3271 /* If we need less alignment than we give anyway, just relay to malloc. */
3272 if (alignment <= MALLOC_ALIGNMENT)
3273 return __libc_malloc (bytes);
3274
3275 /* Otherwise, ensure that it is at least a minimum chunk size */
3276 if (alignment < MINSIZE)
3277 alignment = MINSIZE;
3278
3279 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3280 power of 2 and will cause overflow in the check below. */
3281 if (alignment > SIZE_MAX / 2 + 1)
3282 {
3283 __set_errno (EINVAL);
3284 return 0;
3285 }
3286
3287 /* Check for overflow. */
3288 if (bytes > SIZE_MAX - alignment - MINSIZE)
3289 {
3290 __set_errno (ENOMEM);
3291 return 0;
3292 }
3293
3294
3295 /* Make sure alignment is power of 2. */
3296 if (!powerof2 (alignment))
3297 {
3298 size_t a = MALLOC_ALIGNMENT * 2;
3299 while (a < alignment)
3300 a <<= 1;
3301 alignment = a;
3302 }
3303
3304 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3305
3306 p = _int_memalign (ar_ptr, alignment, bytes);
3307 if (!p && ar_ptr != NULL)
3308 {
3309 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3310 ar_ptr = arena_get_retry (ar_ptr, bytes);
3311 p = _int_memalign (ar_ptr, alignment, bytes);
3312 }
3313
3314 if (ar_ptr != NULL)
3315 __libc_lock_unlock (ar_ptr->mutex);
3316
3317 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3318 ar_ptr == arena_for_chunk (mem2chunk (p)));
3319 return p;
3320}
3321/* For ISO C11. */
3322weak_alias (__libc_memalign, aligned_alloc)
3323libc_hidden_def (__libc_memalign)
3324
3325void *
3326__libc_valloc (size_t bytes)
3327{
3328 if (__malloc_initialized < 0)
3329 ptmalloc_init ();
3330
3331 void *address = RETURN_ADDRESS (0);
3332 size_t pagesize = GLRO (dl_pagesize);
3333 return _mid_memalign (pagesize, bytes, address);
3334}
3335
3336void *
3337__libc_pvalloc (size_t bytes)
3338{
3339 if (__malloc_initialized < 0)
3340 ptmalloc_init ();
3341
3342 void *address = RETURN_ADDRESS (0);
3343 size_t pagesize = GLRO (dl_pagesize);
3344 size_t rounded_bytes = ALIGN_UP (bytes, pagesize);
3345
3346 /* Check for overflow. */
3347 if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE)
3348 {
3349 __set_errno (ENOMEM);
3350 return 0;
3351 }
3352
3353 return _mid_memalign (pagesize, rounded_bytes, address);
3354}
3355
3356void *
3357__libc_calloc (size_t n, size_t elem_size)
3358{
3359 mstate av;
3360 mchunkptr oldtop, p;
3361 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3362 void *mem;
3363 unsigned long clearsize;
3364 unsigned long nclears;
3365 INTERNAL_SIZE_T *d;
3366
3367 /* size_t is unsigned so the behavior on overflow is defined. */
3368 bytes = n * elem_size;
3369#define HALF_INTERNAL_SIZE_T \
3370 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3371 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3372 {
3373 if (elem_size != 0 && bytes / elem_size != n)
3374 {
3375 __set_errno (ENOMEM);
3376 return 0;
3377 }
3378 }
3379
3380 void *(*hook) (size_t, const void *) =
3381 atomic_forced_read (__malloc_hook);
3382 if (__builtin_expect (hook != NULL, 0))
3383 {
3384 sz = bytes;
3385 mem = (*hook)(sz, RETURN_ADDRESS (0));
3386 if (mem == 0)
3387 return 0;
3388
3389 return memset (mem, 0, sz);
3390 }
3391
3392 sz = bytes;
3393
3394 MAYBE_INIT_TCACHE ();
3395
3396 arena_get (av, sz);
3397 if (av)
3398 {
3399 /* Check if we hand out the top chunk, in which case there may be no
3400 need to clear. */
3401#if MORECORE_CLEARS
3402 oldtop = top (av);
3403 oldtopsize = chunksize (top (av));
3404# if MORECORE_CLEARS < 2
3405 /* Only newly allocated memory is guaranteed to be cleared. */
3406 if (av == &main_arena &&
3407 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3408 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3409# endif
3410 if (av != &main_arena)
3411 {
3412 heap_info *heap = heap_for_ptr (oldtop);
3413 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3414 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3415 }
3416#endif
3417 }
3418 else
3419 {
3420 /* No usable arenas. */
3421 oldtop = 0;
3422 oldtopsize = 0;
3423 }
3424 mem = _int_malloc (av, sz);
3425
3426
3427 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3428 av == arena_for_chunk (mem2chunk (mem)));
3429
3430 if (mem == 0 && av != NULL)
3431 {
3432 LIBC_PROBE (memory_calloc_retry, 1, sz);
3433 av = arena_get_retry (av, sz);
3434 mem = _int_malloc (av, sz);
3435 }
3436
3437 if (av != NULL)
3438 __libc_lock_unlock (av->mutex);
3439
3440 /* Allocation failed even after a retry. */
3441 if (mem == 0)
3442 return 0;
3443
3444 p = mem2chunk (mem);
3445
3446 /* Two optional cases in which clearing not necessary */
3447 if (chunk_is_mmapped (p))
3448 {
3449 if (__builtin_expect (perturb_byte, 0))
3450 return memset (mem, 0, sz);
3451
3452 return mem;
3453 }
3454
3455 csz = chunksize (p);
3456
3457#if MORECORE_CLEARS
3458 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3459 {
3460 /* clear only the bytes from non-freshly-sbrked memory */
3461 csz = oldtopsize;
3462 }
3463#endif
3464
3465 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3466 contents have an odd number of INTERNAL_SIZE_T-sized words;
3467 minimally 3. */
3468 d = (INTERNAL_SIZE_T *) mem;
3469 clearsize = csz - SIZE_SZ;
3470 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3471 assert (nclears >= 3);
3472
3473 if (nclears > 9)
3474 return memset (d, 0, clearsize);
3475
3476 else
3477 {
3478 *(d + 0) = 0;
3479 *(d + 1) = 0;
3480 *(d + 2) = 0;
3481 if (nclears > 4)
3482 {
3483 *(d + 3) = 0;
3484 *(d + 4) = 0;
3485 if (nclears > 6)
3486 {
3487 *(d + 5) = 0;
3488 *(d + 6) = 0;
3489 if (nclears > 8)
3490 {
3491 *(d + 7) = 0;
3492 *(d + 8) = 0;
3493 }
3494 }
3495 }
3496 }
3497
3498 return mem;
3499}
3500
3501/*
3502 ------------------------------ malloc ------------------------------
3503 */
3504
3505static void *
3506_int_malloc (mstate av, size_t bytes)
3507{
3508 INTERNAL_SIZE_T nb; /* normalized request size */
3509 unsigned int idx; /* associated bin index */
3510 mbinptr bin; /* associated bin */
3511
3512 mchunkptr victim; /* inspected/selected chunk */
3513 INTERNAL_SIZE_T size; /* its size */
3514 int victim_index; /* its bin index */
3515
3516 mchunkptr remainder; /* remainder from a split */
3517 unsigned long remainder_size; /* its size */
3518
3519 unsigned int block; /* bit map traverser */
3520 unsigned int bit; /* bit map traverser */
3521 unsigned int map; /* current word of binmap */
3522
3523 mchunkptr fwd; /* misc temp for linking */
3524 mchunkptr bck; /* misc temp for linking */
3525
3526#if USE_TCACHE
3527 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3528#endif
3529
3530 const char *errstr = NULL;
3531
3532 /*
3533 Convert request size to internal form by adding SIZE_SZ bytes
3534 overhead plus possibly more to obtain necessary alignment and/or
3535 to obtain a size of at least MINSIZE, the smallest allocatable
3536 size. Also, checked_request2size traps (returning 0) request sizes
3537 that are so large that they wrap around zero when padded and
3538 aligned.
3539 */
3540
3541 checked_request2size (bytes, nb);
3542
3543 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3544 mmap. */
3545 if (__glibc_unlikely (av == NULL))
3546 {
3547 void *p = sysmalloc (nb, av);
3548 if (p != NULL)
3549 alloc_perturb (p, bytes);
3550 return p;
3551 }
3552
3553 /*
3554 If the size qualifies as a fastbin, first check corresponding bin.
3555 This code is safe to execute even if av is not yet initialized, so we
3556 can try it without checking, which saves some time on this fast path.
3557 */
3558
3559#define REMOVE_FB(fb, victim, pp) \
3560 do \
3561 { \
3562 victim = pp; \
3563 if (victim == NULL) \
3564 break; \
3565 } \
3566 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) \
3567 != victim); \
3568
3569 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3570 {
3571 idx = fastbin_index (nb);
3572 mfastbinptr *fb = &fastbin (av, idx);
3573 mchunkptr pp = *fb;
3574 REMOVE_FB (fb, victim, pp);
3575 if (victim != 0)
3576 {
3577 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3578 {
3579 errstr = "malloc(): memory corruption (fast)";
3580 errout:
3581 malloc_printerr (check_action, errstr, chunk2mem (victim), av);
3582 return NULL;
3583 }
3584 check_remalloced_chunk (av, victim, nb);
3585#if USE_TCACHE
3586 /* While we're here, if we see other chunks of the same size,
3587 stash them in the tcache. */
3588 size_t tc_idx = csize2tidx (nb);
3589 if (tcache && tc_idx < mp_.tcache_bins)
3590 {
3591 mchunkptr tc_victim;
3592
3593 /* While bin not empty and tcache not full, copy chunks over. */
3594 while (tcache->counts[tc_idx] < mp_.tcache_count
3595 && (pp = *fb) != NULL)
3596 {
3597 REMOVE_FB (fb, tc_victim, pp);
3598 if (tc_victim != 0)
3599 {
3600 tcache_put (tc_victim, tc_idx);
3601 }
3602 }
3603 }
3604#endif
3605 void *p = chunk2mem (victim);
3606 alloc_perturb (p, bytes);
3607 return p;
3608 }
3609 }
3610
3611 /*
3612 If a small request, check regular bin. Since these "smallbins"
3613 hold one size each, no searching within bins is necessary.
3614 (For a large request, we need to wait until unsorted chunks are
3615 processed to find best fit. But for small ones, fits are exact
3616 anyway, so we can check now, which is faster.)
3617 */
3618
3619 if (in_smallbin_range (nb))
3620 {
3621 idx = smallbin_index (nb);
3622 bin = bin_at (av, idx);
3623
3624 if ((victim = last (bin)) != bin)
3625 {
3626 if (victim == 0) /* initialization check */
3627 malloc_consolidate (av);
3628 else
3629 {
3630 bck = victim->bk;
3631 if (__glibc_unlikely (bck->fd != victim))
3632 {
3633 errstr = "malloc(): smallbin double linked list corrupted";
3634 goto errout;
3635 }
3636 set_inuse_bit_at_offset (victim, nb);
3637 bin->bk = bck;
3638 bck->fd = bin;
3639
3640 if (av != &main_arena)
3641 set_non_main_arena (victim);
3642 check_malloced_chunk (av, victim, nb);
3643#if USE_TCACHE
3644 /* While we're here, if we see other chunks of the same size,
3645 stash them in the tcache. */
3646 size_t tc_idx = csize2tidx (nb);
3647 if (tcache && tc_idx < mp_.tcache_bins)
3648 {
3649 mchunkptr tc_victim;
3650
3651 /* While bin not empty and tcache not full, copy chunks over. */
3652 while (tcache->counts[tc_idx] < mp_.tcache_count
3653 && (tc_victim = last (bin)) != bin)
3654 {
3655 if (tc_victim != 0)
3656 {
3657 bck = tc_victim->bk;
3658 set_inuse_bit_at_offset (tc_victim, nb);
3659 if (av != &main_arena)
3660 set_non_main_arena (tc_victim);
3661 bin->bk = bck;
3662 bck->fd = bin;
3663
3664 tcache_put (tc_victim, tc_idx);
3665 }
3666 }
3667 }
3668#endif
3669 void *p = chunk2mem (victim);
3670 alloc_perturb (p, bytes);
3671 return p;
3672 }
3673 }
3674 }
3675
3676 /*
3677 If this is a large request, consolidate fastbins before continuing.
3678 While it might look excessive to kill all fastbins before
3679 even seeing if there is space available, this avoids
3680 fragmentation problems normally associated with fastbins.
3681 Also, in practice, programs tend to have runs of either small or
3682 large requests, but less often mixtures, so consolidation is not
3683 invoked all that often in most programs. And the programs that
3684 it is called frequently in otherwise tend to fragment.
3685 */
3686
3687 else
3688 {
3689 idx = largebin_index (nb);
3690 if (have_fastchunks (av))
3691 malloc_consolidate (av);
3692 }
3693
3694 /*
3695 Process recently freed or remaindered chunks, taking one only if
3696 it is exact fit, or, if this a small request, the chunk is remainder from
3697 the most recent non-exact fit. Place other traversed chunks in
3698 bins. Note that this step is the only place in any routine where
3699 chunks are placed in bins.
3700
3701 The outer loop here is needed because we might not realize until
3702 near the end of malloc that we should have consolidated, so must
3703 do so and retry. This happens at most once, and only when we would
3704 otherwise need to expand memory to service a "small" request.
3705 */
3706
3707#if USE_TCACHE
3708 INTERNAL_SIZE_T tcache_nb = 0;
3709 size_t tc_idx = csize2tidx (nb);
3710 if (tcache && tc_idx < mp_.tcache_bins)
3711 tcache_nb = nb;
3712 int return_cached = 0;
3713
3714 tcache_unsorted_count = 0;
3715#endif
3716
3717 for (;; )
3718 {
3719 int iters = 0;
3720 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3721 {
3722 bck = victim->bk;
3723 if (__builtin_expect (chunksize_nomask (victim) <= 2 * SIZE_SZ, 0)
3724 || __builtin_expect (chunksize_nomask (victim)
3725 > av->system_mem, 0))
3726 malloc_printerr (check_action, "malloc(): memory corruption",
3727 chunk2mem (victim), av);
3728 size = chunksize (victim);
3729
3730 /*
3731 If a small request, try to use last remainder if it is the
3732 only chunk in unsorted bin. This helps promote locality for
3733 runs of consecutive small requests. This is the only
3734 exception to best-fit, and applies only when there is
3735 no exact fit for a small chunk.
3736 */
3737
3738 if (in_smallbin_range (nb) &&
3739 bck == unsorted_chunks (av) &&
3740 victim == av->last_remainder &&
3741 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3742 {
3743 /* split and reattach remainder */
3744 remainder_size = size - nb;
3745 remainder = chunk_at_offset (victim, nb);
3746 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3747 av->last_remainder = remainder;
3748 remainder->bk = remainder->fd = unsorted_chunks (av);
3749 if (!in_smallbin_range (remainder_size))
3750 {
3751 remainder->fd_nextsize = NULL;
3752 remainder->bk_nextsize = NULL;
3753 }
3754
3755 set_head (victim, nb | PREV_INUSE |
3756 (av != &main_arena ? NON_MAIN_ARENA : 0));
3757 set_head (remainder, remainder_size | PREV_INUSE);
3758 set_foot (remainder, remainder_size);
3759
3760 check_malloced_chunk (av, victim, nb);
3761 void *p = chunk2mem (victim);
3762 alloc_perturb (p, bytes);
3763 return p;
3764 }
3765
3766 /* remove from unsorted list */
3767 unsorted_chunks (av)->bk = bck;
3768 bck->fd = unsorted_chunks (av);
3769
3770 /* Take now instead of binning if exact fit */
3771
3772 if (size == nb)
3773 {
3774 set_inuse_bit_at_offset (victim, size);
3775 if (av != &main_arena)
3776 set_non_main_arena (victim);
3777#if USE_TCACHE
3778 /* Fill cache first, return to user only if cache fills.
3779 We may return one of these chunks later. */
3780 if (tcache_nb
3781 && tcache->counts[tc_idx] < mp_.tcache_count)
3782 {
3783 tcache_put (victim, tc_idx);
3784 return_cached = 1;
3785 continue;
3786 }
3787 else
3788 {
3789#endif
3790 check_malloced_chunk (av, victim, nb);
3791 void *p = chunk2mem (victim);
3792 alloc_perturb (p, bytes);
3793 return p;
3794#if USE_TCACHE
3795 }
3796#endif
3797 }
3798
3799 /* place chunk in bin */
3800
3801 if (in_smallbin_range (size))
3802 {
3803 victim_index = smallbin_index (size);
3804 bck = bin_at (av, victim_index);
3805 fwd = bck->fd;
3806 }
3807 else
3808 {
3809 victim_index = largebin_index (size);
3810 bck = bin_at (av, victim_index);
3811 fwd = bck->fd;
3812
3813 /* maintain large bins in sorted order */
3814 if (fwd != bck)
3815 {
3816 /* Or with inuse bit to speed comparisons */
3817 size |= PREV_INUSE;
3818 /* if smaller than smallest, bypass loop below */
3819 assert (chunk_main_arena (bck->bk));
3820 if ((unsigned long) (size)
3821 < (unsigned long) chunksize_nomask (bck->bk))
3822 {
3823 fwd = bck;
3824 bck = bck->bk;
3825
3826 victim->fd_nextsize = fwd->fd;
3827 victim->bk_nextsize = fwd->fd->bk_nextsize;
3828 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3829 }
3830 else
3831 {
3832 assert (chunk_main_arena (fwd));
3833 while ((unsigned long) size < chunksize_nomask (fwd))
3834 {
3835 fwd = fwd->fd_nextsize;
3836 assert (chunk_main_arena (fwd));
3837 }
3838
3839 if ((unsigned long) size
3840 == (unsigned long) chunksize_nomask (fwd))
3841 /* Always insert in the second position. */
3842 fwd = fwd->fd;
3843 else
3844 {
3845 victim->fd_nextsize = fwd;
3846 victim->bk_nextsize = fwd->bk_nextsize;
3847 fwd->bk_nextsize = victim;
3848 victim->bk_nextsize->fd_nextsize = victim;
3849 }
3850 bck = fwd->bk;
3851 }
3852 }
3853 else
3854 victim->fd_nextsize = victim->bk_nextsize = victim;
3855 }
3856
3857 mark_bin (av, victim_index);
3858 victim->bk = bck;
3859 victim->fd = fwd;
3860 fwd->bk = victim;
3861 bck->fd = victim;
3862
3863#if USE_TCACHE
3864 /* If we've processed as many chunks as we're allowed while
3865 filling the cache, return one of the cached ones. */
3866 ++tcache_unsorted_count;
3867 if (return_cached
3868 && mp_.tcache_unsorted_limit > 0
3869 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
3870 {
3871 return tcache_get (tc_idx);
3872 }
3873#endif
3874
3875#define MAX_ITERS 10000
3876 if (++iters >= MAX_ITERS)
3877 break;
3878 }
3879
3880#if USE_TCACHE
3881 /* If all the small chunks we found ended up cached, return one now. */
3882 if (return_cached)
3883 {
3884 return tcache_get (tc_idx);
3885 }
3886#endif
3887
3888 /*
3889 If a large request, scan through the chunks of current bin in
3890 sorted order to find smallest that fits. Use the skip list for this.
3891 */
3892
3893 if (!in_smallbin_range (nb))
3894 {
3895 bin = bin_at (av, idx);
3896
3897 /* skip scan if empty or largest chunk is too small */
3898 if ((victim = first (bin)) != bin
3899 && (unsigned long) chunksize_nomask (victim)
3900 >= (unsigned long) (nb))
3901 {
3902 victim = victim->bk_nextsize;
3903 while (((unsigned long) (size = chunksize (victim)) <
3904 (unsigned long) (nb)))
3905 victim = victim->bk_nextsize;
3906
3907 /* Avoid removing the first entry for a size so that the skip
3908 list does not have to be rerouted. */
3909 if (victim != last (bin)
3910 && chunksize_nomask (victim)
3911 == chunksize_nomask (victim->fd))
3912 victim = victim->fd;
3913
3914 remainder_size = size - nb;
3915 unlink (av, victim, bck, fwd);
3916
3917 /* Exhaust */
3918 if (remainder_size < MINSIZE)
3919 {
3920 set_inuse_bit_at_offset (victim, size);
3921 if (av != &main_arena)
3922 set_non_main_arena (victim);
3923 }
3924 /* Split */
3925 else
3926 {
3927 remainder = chunk_at_offset (victim, nb);
3928 /* We cannot assume the unsorted list is empty and therefore
3929 have to perform a complete insert here. */
3930 bck = unsorted_chunks (av);
3931 fwd = bck->fd;
3932 if (__glibc_unlikely (fwd->bk != bck))
3933 {
3934 errstr = "malloc(): corrupted unsorted chunks";
3935 goto errout;
3936 }
3937 remainder->bk = bck;
3938 remainder->fd = fwd;
3939 bck->fd = remainder;
3940 fwd->bk = remainder;
3941 if (!in_smallbin_range (remainder_size))
3942 {
3943 remainder->fd_nextsize = NULL;
3944 remainder->bk_nextsize = NULL;
3945 }
3946 set_head (victim, nb | PREV_INUSE |
3947 (av != &main_arena ? NON_MAIN_ARENA : 0));
3948 set_head (remainder, remainder_size | PREV_INUSE);
3949 set_foot (remainder, remainder_size);
3950 }
3951 check_malloced_chunk (av, victim, nb);
3952 void *p = chunk2mem (victim);
3953 alloc_perturb (p, bytes);
3954 return p;
3955 }
3956 }
3957
3958 /*
3959 Search for a chunk by scanning bins, starting with next largest
3960 bin. This search is strictly by best-fit; i.e., the smallest
3961 (with ties going to approximately the least recently used) chunk
3962 that fits is selected.
3963
3964 The bitmap avoids needing to check that most blocks are nonempty.
3965 The particular case of skipping all bins during warm-up phases
3966 when no chunks have been returned yet is faster than it might look.
3967 */
3968
3969 ++idx;
3970 bin = bin_at (av, idx);
3971 block = idx2block (idx);
3972 map = av->binmap[block];
3973 bit = idx2bit (idx);
3974
3975 for (;; )
3976 {
3977 /* Skip rest of block if there are no more set bits in this block. */
3978 if (bit > map || bit == 0)
3979 {
3980 do
3981 {
3982 if (++block >= BINMAPSIZE) /* out of bins */
3983 goto use_top;
3984 }
3985 while ((map = av->binmap[block]) == 0);
3986
3987 bin = bin_at (av, (block << BINMAPSHIFT));
3988 bit = 1;
3989 }
3990
3991 /* Advance to bin with set bit. There must be one. */
3992 while ((bit & map) == 0)
3993 {
3994 bin = next_bin (bin);
3995 bit <<= 1;
3996 assert (bit != 0);
3997 }
3998
3999 /* Inspect the bin. It is likely to be non-empty */
4000 victim = last (bin);
4001
4002 /* If a false alarm (empty bin), clear the bit. */
4003 if (victim == bin)
4004 {
4005 av->binmap[block] = map &= ~bit; /* Write through */
4006 bin = next_bin (bin);
4007 bit <<= 1;
4008 }
4009
4010 else
4011 {
4012 size = chunksize (victim);
4013
4014 /* We know the first chunk in this bin is big enough to use. */
4015 assert ((unsigned long) (size) >= (unsigned long) (nb));
4016
4017 remainder_size = size - nb;
4018
4019 /* unlink */
4020 unlink (av, victim, bck, fwd);
4021
4022 /* Exhaust */
4023 if (remainder_size < MINSIZE)
4024 {
4025 set_inuse_bit_at_offset (victim, size);
4026 if (av != &main_arena)
4027 set_non_main_arena (victim);
4028 }
4029
4030 /* Split */
4031 else
4032 {
4033 remainder = chunk_at_offset (victim, nb);
4034
4035 /* We cannot assume the unsorted list is empty and therefore
4036 have to perform a complete insert here. */
4037 bck = unsorted_chunks (av);
4038 fwd = bck->fd;
4039 if (__glibc_unlikely (fwd->bk != bck))
4040 {
4041 errstr = "malloc(): corrupted unsorted chunks 2";
4042 goto errout;
4043 }
4044 remainder->bk = bck;
4045 remainder->fd = fwd;
4046 bck->fd = remainder;
4047 fwd->bk = remainder;
4048
4049 /* advertise as last remainder */
4050 if (in_smallbin_range (nb))
4051 av->last_remainder = remainder;
4052 if (!in_smallbin_range (remainder_size))
4053 {
4054 remainder->fd_nextsize = NULL;
4055 remainder->bk_nextsize = NULL;
4056 }
4057 set_head (victim, nb | PREV_INUSE |
4058 (av != &main_arena ? NON_MAIN_ARENA : 0));
4059 set_head (remainder, remainder_size | PREV_INUSE);
4060 set_foot (remainder, remainder_size);
4061 }
4062 check_malloced_chunk (av, victim, nb);
4063 void *p = chunk2mem (victim);
4064 alloc_perturb (p, bytes);
4065 return p;
4066 }
4067 }
4068
4069 use_top:
4070 /*
4071 If large enough, split off the chunk bordering the end of memory
4072 (held in av->top). Note that this is in accord with the best-fit
4073 search rule. In effect, av->top is treated as larger (and thus
4074 less well fitting) than any other available chunk since it can
4075 be extended to be as large as necessary (up to system
4076 limitations).
4077
4078 We require that av->top always exists (i.e., has size >=
4079 MINSIZE) after initialization, so if it would otherwise be
4080 exhausted by current request, it is replenished. (The main
4081 reason for ensuring it exists is that we may need MINSIZE space
4082 to put in fenceposts in sysmalloc.)
4083 */
4084
4085 victim = av->top;
4086 size = chunksize (victim);
4087
4088 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4089 {
4090 remainder_size = size - nb;
4091 remainder = chunk_at_offset (victim, nb);
4092 av->top = remainder;
4093 set_head (victim, nb | PREV_INUSE |
4094 (av != &main_arena ? NON_MAIN_ARENA : 0));
4095 set_head (remainder, remainder_size | PREV_INUSE);
4096
4097 check_malloced_chunk (av, victim, nb);
4098 void *p = chunk2mem (victim);
4099 alloc_perturb (p, bytes);
4100 return p;
4101 }
4102
4103 /* When we are using atomic ops to free fast chunks we can get
4104 here for all block sizes. */
4105 else if (have_fastchunks (av))
4106 {
4107 malloc_consolidate (av);
4108 /* restore original bin index */
4109 if (in_smallbin_range (nb))
4110 idx = smallbin_index (nb);
4111 else
4112 idx = largebin_index (nb);
4113 }
4114
4115 /*
4116 Otherwise, relay to handle system-dependent cases
4117 */
4118 else
4119 {
4120 void *p = sysmalloc (nb, av);
4121 if (p != NULL)
4122 alloc_perturb (p, bytes);
4123 return p;
4124 }
4125 }
4126}
4127
4128/*
4129 ------------------------------ free ------------------------------
4130 */
4131
4132static void
4133_int_free (mstate av, mchunkptr p, int have_lock)
4134{
4135 INTERNAL_SIZE_T size; /* its size */
4136 mfastbinptr *fb; /* associated fastbin */
4137 mchunkptr nextchunk; /* next contiguous chunk */
4138 INTERNAL_SIZE_T nextsize; /* its size */
4139 int nextinuse; /* true if nextchunk is used */
4140 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4141 mchunkptr bck; /* misc temp for linking */
4142 mchunkptr fwd; /* misc temp for linking */
4143
4144 const char *errstr = NULL;
4145 int locked = 0;
4146
4147 size = chunksize (p);
4148
4149 /* Little security check which won't hurt performance: the
4150 allocator never wrapps around at the end of the address space.
4151 Therefore we can exclude some size values which might appear
4152 here by accident or by "design" from some intruder. */
4153 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4154 || __builtin_expect (misaligned_chunk (p), 0))
4155 {
4156 errstr = "free(): invalid pointer";
4157 errout:
4158 if (!have_lock && locked)
4159 __libc_lock_unlock (av->mutex);
4160 malloc_printerr (check_action, errstr, chunk2mem (p), av);
4161 return;
4162 }
4163 /* We know that each chunk is at least MINSIZE bytes in size or a
4164 multiple of MALLOC_ALIGNMENT. */
4165 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4166 {
4167 errstr = "free(): invalid size";
4168 goto errout;
4169 }
4170
4171 check_inuse_chunk(av, p);
4172
4173#if USE_TCACHE
4174 {
4175 size_t tc_idx = csize2tidx (size);
4176
4177 if (tcache
4178 && tc_idx < mp_.tcache_bins
4179 && tcache->counts[tc_idx] < mp_.tcache_count)
4180 {
4181 tcache_put (p, tc_idx);
4182 return;
4183 }
4184 }
4185#endif
4186
4187 /*
4188 If eligible, place chunk on a fastbin so it can be found
4189 and used quickly in malloc.
4190 */
4191
4192 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4193
4194#if TRIM_FASTBINS
4195 /*
4196 If TRIM_FASTBINS set, don't place chunks
4197 bordering top into fastbins
4198 */
4199 && (chunk_at_offset(p, size) != av->top)
4200#endif
4201 ) {
4202
4203 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4204 <= 2 * SIZE_SZ, 0)
4205 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4206 >= av->system_mem, 0))
4207 {
4208 /* We might not have a lock at this point and concurrent modifications
4209 of system_mem might have let to a false positive. Redo the test
4210 after getting the lock. */
4211 if (have_lock
4212 || ({ assert (locked == 0);
4213 __libc_lock_lock (av->mutex);
4214 locked = 1;
4215 chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ
4216 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
4217 }))
4218 {
4219 errstr = "free(): invalid next size (fast)";
4220 goto errout;
4221 }
4222 if (! have_lock)
4223 {
4224 __libc_lock_unlock (av->mutex);
4225 locked = 0;
4226 }
4227 }
4228
4229 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4230
4231 set_fastchunks(av);
4232 unsigned int idx = fastbin_index(size);
4233 fb = &fastbin (av, idx);
4234
4235 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4236 mchunkptr old = *fb, old2;
4237 unsigned int old_idx = ~0u;
4238 do
4239 {
4240 /* Check that the top of the bin is not the record we are going to add
4241 (i.e., double free). */
4242 if (__builtin_expect (old == p, 0))
4243 {
4244 errstr = "double free or corruption (fasttop)";
4245 goto errout;
4246 }
4247 /* Check that size of fastbin chunk at the top is the same as
4248 size of the chunk that we are adding. We can dereference OLD
4249 only if we have the lock, otherwise it might have already been
4250 deallocated. See use of OLD_IDX below for the actual check. */
4251 if (have_lock && old != NULL)
4252 old_idx = fastbin_index(chunksize(old));
4253 p->fd = old2 = old;
4254 }
4255 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
4256
4257 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
4258 {
4259 errstr = "invalid fastbin entry (free)";
4260 goto errout;
4261 }
4262 }
4263
4264 /*
4265 Consolidate other non-mmapped chunks as they arrive.
4266 */
4267
4268 else if (!chunk_is_mmapped(p)) {
4269 if (! have_lock) {
4270 __libc_lock_lock (av->mutex);
4271 locked = 1;
4272 }
4273
4274 nextchunk = chunk_at_offset(p, size);
4275
4276 /* Lightweight tests: check whether the block is already the
4277 top block. */
4278 if (__glibc_unlikely (p == av->top))
4279 {
4280 errstr = "double free or corruption (top)";
4281 goto errout;
4282 }
4283 /* Or whether the next chunk is beyond the boundaries of the arena. */
4284 if (__builtin_expect (contiguous (av)
4285 && (char *) nextchunk
4286 >= ((char *) av->top + chunksize(av->top)), 0))
4287 {
4288 errstr = "double free or corruption (out)";
4289 goto errout;
4290 }
4291 /* Or whether the block is actually not marked used. */
4292 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4293 {
4294 errstr = "double free or corruption (!prev)";
4295 goto errout;
4296 }
4297
4298 nextsize = chunksize(nextchunk);
4299 if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0)
4300 || __builtin_expect (nextsize >= av->system_mem, 0))
4301 {
4302 errstr = "free(): invalid next size (normal)";
4303 goto errout;
4304 }
4305
4306 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4307
4308 /* consolidate backward */
4309 if (!prev_inuse(p)) {
4310 prevsize = prev_size (p);
4311 size += prevsize;
4312 p = chunk_at_offset(p, -((long) prevsize));
4313 unlink(av, p, bck, fwd);
4314 }
4315
4316 if (nextchunk != av->top) {
4317 /* get and clear inuse bit */
4318 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4319
4320 /* consolidate forward */
4321 if (!nextinuse) {
4322 unlink(av, nextchunk, bck, fwd);
4323 size += nextsize;
4324 } else
4325 clear_inuse_bit_at_offset(nextchunk, 0);
4326
4327 /*
4328 Place the chunk in unsorted chunk list. Chunks are
4329 not placed into regular bins until after they have
4330 been given one chance to be used in malloc.
4331 */
4332
4333 bck = unsorted_chunks(av);
4334 fwd = bck->fd;
4335 if (__glibc_unlikely (fwd->bk != bck))
4336 {
4337 errstr = "free(): corrupted unsorted chunks";
4338 goto errout;
4339 }
4340 p->fd = fwd;
4341 p->bk = bck;
4342 if (!in_smallbin_range(size))
4343 {
4344 p->fd_nextsize = NULL;
4345 p->bk_nextsize = NULL;
4346 }
4347 bck->fd = p;
4348 fwd->bk = p;
4349
4350 set_head(p, size | PREV_INUSE);
4351 set_foot(p, size);
4352
4353 check_free_chunk(av, p);
4354 }
4355
4356 /*
4357 If the chunk borders the current high end of memory,
4358 consolidate into top
4359 */
4360
4361 else {
4362 size += nextsize;
4363 set_head(p, size | PREV_INUSE);
4364 av->top = p;
4365 check_chunk(av, p);
4366 }
4367
4368 /*
4369 If freeing a large space, consolidate possibly-surrounding
4370 chunks. Then, if the total unused topmost memory exceeds trim
4371 threshold, ask malloc_trim to reduce top.
4372
4373 Unless max_fast is 0, we don't know if there are fastbins
4374 bordering top, so we cannot tell for sure whether threshold
4375 has been reached unless fastbins are consolidated. But we
4376 don't want to consolidate on each free. As a compromise,
4377 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4378 is reached.
4379 */
4380
4381 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4382 if (have_fastchunks(av))
4383 malloc_consolidate(av);
4384
4385 if (av == &main_arena) {
4386#ifndef MORECORE_CANNOT_TRIM
4387 if ((unsigned long)(chunksize(av->top)) >=
4388 (unsigned long)(mp_.trim_threshold))
4389 systrim(mp_.top_pad, av);
4390#endif
4391 } else {
4392 /* Always try heap_trim(), even if the top chunk is not
4393 large, because the corresponding heap might go away. */
4394 heap_info *heap = heap_for_ptr(top(av));
4395
4396 assert(heap->ar_ptr == av);
4397 heap_trim(heap, mp_.top_pad);
4398 }
4399 }
4400
4401 if (! have_lock) {
4402 assert (locked);
4403 __libc_lock_unlock (av->mutex);
4404 }
4405 }
4406 /*
4407 If the chunk was allocated via mmap, release via munmap().
4408 */
4409
4410 else {
4411 munmap_chunk (p);
4412 }
4413}
4414
4415/*
4416 ------------------------- malloc_consolidate -------------------------
4417
4418 malloc_consolidate is a specialized version of free() that tears
4419 down chunks held in fastbins. Free itself cannot be used for this
4420 purpose since, among other things, it might place chunks back onto
4421 fastbins. So, instead, we need to use a minor variant of the same
4422 code.
4423
4424 Also, because this routine needs to be called the first time through
4425 malloc anyway, it turns out to be the perfect place to trigger
4426 initialization code.
4427*/
4428
4429static void malloc_consolidate(mstate av)
4430{
4431 mfastbinptr* fb; /* current fastbin being consolidated */
4432 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4433 mchunkptr p; /* current chunk being consolidated */
4434 mchunkptr nextp; /* next chunk to consolidate */
4435 mchunkptr unsorted_bin; /* bin header */
4436 mchunkptr first_unsorted; /* chunk to link to */
4437
4438 /* These have same use as in free() */
4439 mchunkptr nextchunk;
4440 INTERNAL_SIZE_T size;
4441 INTERNAL_SIZE_T nextsize;
4442 INTERNAL_SIZE_T prevsize;
4443 int nextinuse;
4444 mchunkptr bck;
4445 mchunkptr fwd;
4446
4447 /*
4448 If max_fast is 0, we know that av hasn't
4449 yet been initialized, in which case do so below
4450 */
4451
4452 if (get_max_fast () != 0) {
4453 clear_fastchunks(av);
4454
4455 unsorted_bin = unsorted_chunks(av);
4456
4457 /*
4458 Remove each chunk from fast bin and consolidate it, placing it
4459 then in unsorted bin. Among other reasons for doing this,
4460 placing in unsorted bin avoids needing to calculate actual bins
4461 until malloc is sure that chunks aren't immediately going to be
4462 reused anyway.
4463 */
4464
4465 maxfb = &fastbin (av, NFASTBINS - 1);
4466 fb = &fastbin (av, 0);
4467 do {
4468 p = atomic_exchange_acq (fb, NULL);
4469 if (p != 0) {
4470 do {
4471 check_inuse_chunk(av, p);
4472 nextp = p->fd;
4473
4474 /* Slightly streamlined version of consolidation code in free() */
4475 size = chunksize (p);
4476 nextchunk = chunk_at_offset(p, size);
4477 nextsize = chunksize(nextchunk);
4478
4479 if (!prev_inuse(p)) {
4480 prevsize = prev_size (p);
4481 size += prevsize;
4482 p = chunk_at_offset(p, -((long) prevsize));
4483 unlink(av, p, bck, fwd);
4484 }
4485
4486 if (nextchunk != av->top) {
4487 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4488
4489 if (!nextinuse) {
4490 size += nextsize;
4491 unlink(av, nextchunk, bck, fwd);
4492 } else
4493 clear_inuse_bit_at_offset(nextchunk, 0);
4494
4495 first_unsorted = unsorted_bin->fd;
4496 unsorted_bin->fd = p;
4497 first_unsorted->bk = p;
4498
4499 if (!in_smallbin_range (size)) {
4500 p->fd_nextsize = NULL;
4501 p->bk_nextsize = NULL;
4502 }
4503
4504 set_head(p, size | PREV_INUSE);
4505 p->bk = unsorted_bin;
4506 p->fd = first_unsorted;
4507 set_foot(p, size);
4508 }
4509
4510 else {
4511 size += nextsize;
4512 set_head(p, size | PREV_INUSE);
4513 av->top = p;
4514 }
4515
4516 } while ( (p = nextp) != 0);
4517
4518 }
4519 } while (fb++ != maxfb);
4520 }
4521 else {
4522 malloc_init_state(av);
4523 check_malloc_state(av);
4524 }
4525}
4526
4527/*
4528 ------------------------------ realloc ------------------------------
4529*/
4530
4531void*
4532_int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4533 INTERNAL_SIZE_T nb)
4534{
4535 mchunkptr newp; /* chunk to return */
4536 INTERNAL_SIZE_T newsize; /* its size */
4537 void* newmem; /* corresponding user mem */
4538
4539 mchunkptr next; /* next contiguous chunk after oldp */
4540
4541 mchunkptr remainder; /* extra space at end of newp */
4542 unsigned long remainder_size; /* its size */
4543
4544 mchunkptr bck; /* misc temp for linking */
4545 mchunkptr fwd; /* misc temp for linking */
4546
4547 unsigned long copysize; /* bytes to copy */
4548 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4549 INTERNAL_SIZE_T* s; /* copy source */
4550 INTERNAL_SIZE_T* d; /* copy destination */
4551
4552 const char *errstr = NULL;
4553
4554 /* oldmem size */
4555 if (__builtin_expect (chunksize_nomask (oldp) <= 2 * SIZE_SZ, 0)
4556 || __builtin_expect (oldsize >= av->system_mem, 0))
4557 {
4558 errstr = "realloc(): invalid old size";
4559 errout:
4560 malloc_printerr (check_action, errstr, chunk2mem (oldp), av);
4561 return NULL;
4562 }
4563
4564 check_inuse_chunk (av, oldp);
4565
4566 /* All callers already filter out mmap'ed chunks. */
4567 assert (!chunk_is_mmapped (oldp));
4568
4569 next = chunk_at_offset (oldp, oldsize);
4570 INTERNAL_SIZE_T nextsize = chunksize (next);
4571 if (__builtin_expect (chunksize_nomask (next) <= 2 * SIZE_SZ, 0)
4572 || __builtin_expect (nextsize >= av->system_mem, 0))
4573 {
4574 errstr = "realloc(): invalid next size";
4575 goto errout;
4576 }
4577
4578 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4579 {
4580 /* already big enough; split below */
4581 newp = oldp;
4582 newsize = oldsize;
4583 }
4584
4585 else
4586 {
4587 /* Try to expand forward into top */
4588 if (next == av->top &&
4589 (unsigned long) (newsize = oldsize + nextsize) >=
4590 (unsigned long) (nb + MINSIZE))
4591 {
4592 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4593 av->top = chunk_at_offset (oldp, nb);
4594 set_head (av->top, (newsize - nb) | PREV_INUSE);
4595 check_inuse_chunk (av, oldp);
4596 return chunk2mem (oldp);
4597 }
4598
4599 /* Try to expand forward into next chunk; split off remainder below */
4600 else if (next != av->top &&
4601 !inuse (next) &&
4602 (unsigned long) (newsize = oldsize + nextsize) >=
4603 (unsigned long) (nb))
4604 {
4605 newp = oldp;
4606 unlink (av, next, bck, fwd);
4607 }
4608
4609 /* allocate, copy, free */
4610 else
4611 {
4612 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4613 if (newmem == 0)
4614 return 0; /* propagate failure */
4615
4616 newp = mem2chunk (newmem);
4617 newsize = chunksize (newp);
4618
4619 /*
4620 Avoid copy if newp is next chunk after oldp.
4621 */
4622 if (newp == next)
4623 {
4624 newsize += oldsize;
4625 newp = oldp;
4626 }
4627 else
4628 {
4629 /*
4630 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4631 We know that contents have an odd number of
4632 INTERNAL_SIZE_T-sized words; minimally 3.
4633 */
4634
4635 copysize = oldsize - SIZE_SZ;
4636 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4637 d = (INTERNAL_SIZE_T *) (newmem);
4638 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4639 assert (ncopies >= 3);
4640
4641 if (ncopies > 9)
4642 memcpy (d, s, copysize);
4643
4644 else
4645 {
4646 *(d + 0) = *(s + 0);
4647 *(d + 1) = *(s + 1);
4648 *(d + 2) = *(s + 2);
4649 if (ncopies > 4)
4650 {
4651 *(d + 3) = *(s + 3);
4652 *(d + 4) = *(s + 4);
4653 if (ncopies > 6)
4654 {
4655 *(d + 5) = *(s + 5);
4656 *(d + 6) = *(s + 6);
4657 if (ncopies > 8)
4658 {
4659 *(d + 7) = *(s + 7);
4660 *(d + 8) = *(s + 8);
4661 }
4662 }
4663 }
4664 }
4665
4666 _int_free (av, oldp, 1);
4667 check_inuse_chunk (av, newp);
4668 return chunk2mem (newp);
4669 }
4670 }
4671 }
4672
4673 /* If possible, free extra space in old or extended chunk */
4674
4675 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4676
4677 remainder_size = newsize - nb;
4678
4679 if (remainder_size < MINSIZE) /* not enough extra to split off */
4680 {
4681 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4682 set_inuse_bit_at_offset (newp, newsize);
4683 }
4684 else /* split remainder */
4685 {
4686 remainder = chunk_at_offset (newp, nb);
4687 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4688 set_head (remainder, remainder_size | PREV_INUSE |
4689 (av != &main_arena ? NON_MAIN_ARENA : 0));
4690 /* Mark remainder as inuse so free() won't complain */
4691 set_inuse_bit_at_offset (remainder, remainder_size);
4692 _int_free (av, remainder, 1);
4693 }
4694
4695 check_inuse_chunk (av, newp);
4696 return chunk2mem (newp);
4697}
4698
4699/*
4700 ------------------------------ memalign ------------------------------
4701 */
4702
4703static void *
4704_int_memalign (mstate av, size_t alignment, size_t bytes)
4705{
4706 INTERNAL_SIZE_T nb; /* padded request size */
4707 char *m; /* memory returned by malloc call */
4708 mchunkptr p; /* corresponding chunk */
4709 char *brk; /* alignment point within p */
4710 mchunkptr newp; /* chunk to return */
4711 INTERNAL_SIZE_T newsize; /* its size */
4712 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4713 mchunkptr remainder; /* spare room at end to split off */
4714 unsigned long remainder_size; /* its size */
4715 INTERNAL_SIZE_T size;
4716
4717
4718
4719 checked_request2size (bytes, nb);
4720
4721 /*
4722 Strategy: find a spot within that chunk that meets the alignment
4723 request, and then possibly free the leading and trailing space.
4724 */
4725
4726
4727 /* Call malloc with worst case padding to hit alignment. */
4728
4729 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4730
4731 if (m == 0)
4732 return 0; /* propagate failure */
4733
4734 p = mem2chunk (m);
4735
4736 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4737
4738 { /*
4739 Find an aligned spot inside chunk. Since we need to give back
4740 leading space in a chunk of at least MINSIZE, if the first
4741 calculation places us at a spot with less than MINSIZE leader,
4742 we can move to the next aligned spot -- we've allocated enough
4743 total room so that this is always possible.
4744 */
4745 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4746 - ((signed long) alignment));
4747 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4748 brk += alignment;
4749
4750 newp = (mchunkptr) brk;
4751 leadsize = brk - (char *) (p);
4752 newsize = chunksize (p) - leadsize;
4753
4754 /* For mmapped chunks, just adjust offset */
4755 if (chunk_is_mmapped (p))
4756 {
4757 set_prev_size (newp, prev_size (p) + leadsize);
4758 set_head (newp, newsize | IS_MMAPPED);
4759 return chunk2mem (newp);
4760 }
4761
4762 /* Otherwise, give back leader, use the rest */
4763 set_head (newp, newsize | PREV_INUSE |
4764 (av != &main_arena ? NON_MAIN_ARENA : 0));
4765 set_inuse_bit_at_offset (newp, newsize);
4766 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4767 _int_free (av, p, 1);
4768 p = newp;
4769
4770 assert (newsize >= nb &&
4771 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4772 }
4773
4774 /* Also give back spare room at the end */
4775 if (!chunk_is_mmapped (p))
4776 {
4777 size = chunksize (p);
4778 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4779 {
4780 remainder_size = size - nb;
4781 remainder = chunk_at_offset (p, nb);
4782 set_head (remainder, remainder_size | PREV_INUSE |
4783 (av != &main_arena ? NON_MAIN_ARENA : 0));
4784 set_head_size (p, nb);
4785 _int_free (av, remainder, 1);
4786 }
4787 }
4788
4789 check_inuse_chunk (av, p);
4790 return chunk2mem (p);
4791}
4792
4793
4794/*
4795 ------------------------------ malloc_trim ------------------------------
4796 */
4797
4798static int
4799mtrim (mstate av, size_t pad)
4800{
4801 /* Don't touch corrupt arenas. */
4802 if (arena_is_corrupt (av))
4803 return 0;
4804
4805 /* Ensure initialization/consolidation */
4806 malloc_consolidate (av);
4807
4808 const size_t ps = GLRO (dl_pagesize);
4809 int psindex = bin_index (ps);
4810 const size_t psm1 = ps - 1;
4811
4812 int result = 0;
4813 for (int i = 1; i < NBINS; ++i)
4814 if (i == 1 || i >= psindex)
4815 {
4816 mbinptr bin = bin_at (av, i);
4817
4818 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4819 {
4820 INTERNAL_SIZE_T size = chunksize (p);
4821
4822 if (size > psm1 + sizeof (struct malloc_chunk))
4823 {
4824 /* See whether the chunk contains at least one unused page. */
4825 char *paligned_mem = (char *) (((uintptr_t) p
4826 + sizeof (struct malloc_chunk)
4827 + psm1) & ~psm1);
4828
4829 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4830 assert ((char *) p + size > paligned_mem);
4831
4832 /* This is the size we could potentially free. */
4833 size -= paligned_mem - (char *) p;
4834
4835 if (size > psm1)
4836 {
4837#if MALLOC_DEBUG
4838 /* When debugging we simulate destroying the memory
4839 content. */
4840 memset (paligned_mem, 0x89, size & ~psm1);
4841#endif
4842 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4843
4844 result = 1;
4845 }
4846 }
4847 }
4848 }
4849
4850#ifndef MORECORE_CANNOT_TRIM
4851 return result | (av == &main_arena ? systrim (pad, av) : 0);
4852
4853#else
4854 return result;
4855#endif
4856}
4857
4858
4859int
4860__malloc_trim (size_t s)
4861{
4862 int result = 0;
4863
4864 if (__malloc_initialized < 0)
4865 ptmalloc_init ();
4866
4867 mstate ar_ptr = &main_arena;
4868 do
4869 {
4870 __libc_lock_lock (ar_ptr->mutex);
4871 result |= mtrim (ar_ptr, s);
4872 __libc_lock_unlock (ar_ptr->mutex);
4873
4874 ar_ptr = ar_ptr->next;
4875 }
4876 while (ar_ptr != &main_arena);
4877
4878 return result;
4879}
4880
4881
4882/*
4883 ------------------------- malloc_usable_size -------------------------
4884 */
4885
4886static size_t
4887musable (void *mem)
4888{
4889 mchunkptr p;
4890 if (mem != 0)
4891 {
4892 p = mem2chunk (mem);
4893
4894 if (__builtin_expect (using_malloc_checking == 1, 0))
4895 return malloc_check_get_size (p);
4896
4897 if (chunk_is_mmapped (p))
4898 {
4899 if (DUMPED_MAIN_ARENA_CHUNK (p))
4900 return chunksize (p) - SIZE_SZ;
4901 else
4902 return chunksize (p) - 2 * SIZE_SZ;
4903 }
4904 else if (inuse (p))
4905 return chunksize (p) - SIZE_SZ;
4906 }
4907 return 0;
4908}
4909
4910
4911size_t
4912__malloc_usable_size (void *m)
4913{
4914 size_t result;
4915
4916 result = musable (m);
4917 return result;
4918}
4919
4920/*
4921 ------------------------------ mallinfo ------------------------------
4922 Accumulate malloc statistics for arena AV into M.
4923 */
4924
4925static void
4926int_mallinfo (mstate av, struct mallinfo *m)
4927{
4928 size_t i;
4929 mbinptr b;
4930 mchunkptr p;
4931 INTERNAL_SIZE_T avail;
4932 INTERNAL_SIZE_T fastavail;
4933 int nblocks;
4934 int nfastblocks;
4935
4936 /* Ensure initialization */
4937 if (av->top == 0)
4938 malloc_consolidate (av);
4939
4940 check_malloc_state (av);
4941
4942 /* Account for top */
4943 avail = chunksize (av->top);
4944 nblocks = 1; /* top always exists */
4945
4946 /* traverse fastbins */
4947 nfastblocks = 0;
4948 fastavail = 0;
4949
4950 for (i = 0; i < NFASTBINS; ++i)
4951 {
4952 for (p = fastbin (av, i); p != 0; p = p->fd)
4953 {
4954 ++nfastblocks;
4955 fastavail += chunksize (p);
4956 }
4957 }
4958
4959 avail += fastavail;
4960
4961 /* traverse regular bins */
4962 for (i = 1; i < NBINS; ++i)
4963 {
4964 b = bin_at (av, i);
4965 for (p = last (b); p != b; p = p->bk)
4966 {
4967 ++nblocks;
4968 avail += chunksize (p);
4969 }
4970 }
4971
4972 m->smblks += nfastblocks;
4973 m->ordblks += nblocks;
4974 m->fordblks += avail;
4975 m->uordblks += av->system_mem - avail;
4976 m->arena += av->system_mem;
4977 m->fsmblks += fastavail;
4978 if (av == &main_arena)
4979 {
4980 m->hblks = mp_.n_mmaps;
4981 m->hblkhd = mp_.mmapped_mem;
4982 m->usmblks = 0;
4983 m->keepcost = chunksize (av->top);
4984 }
4985}
4986
4987
4988struct mallinfo
4989__libc_mallinfo (void)
4990{
4991 struct mallinfo m;
4992 mstate ar_ptr;
4993
4994 if (__malloc_initialized < 0)
4995 ptmalloc_init ();
4996
4997 memset (&m, 0, sizeof (m));
4998 ar_ptr = &main_arena;
4999 do
5000 {
5001 __libc_lock_lock (ar_ptr->mutex);
5002 int_mallinfo (ar_ptr, &m);
5003 __libc_lock_unlock (ar_ptr->mutex);
5004
5005 ar_ptr = ar_ptr->next;
5006 }
5007 while (ar_ptr != &main_arena);
5008
5009 return m;
5010}
5011
5012/*
5013 ------------------------------ malloc_stats ------------------------------
5014 */
5015
5016void
5017__malloc_stats (void)
5018{
5019 int i;
5020 mstate ar_ptr;
5021 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5022
5023 if (__malloc_initialized < 0)
5024 ptmalloc_init ();
5025 _IO_flockfile (stderr);
5026 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
5027 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5028 for (i = 0, ar_ptr = &main_arena;; i++)
5029 {
5030 struct mallinfo mi;
5031
5032 memset (&mi, 0, sizeof (mi));
5033 __libc_lock_lock (ar_ptr->mutex);
5034 int_mallinfo (ar_ptr, &mi);
5035 fprintf (stderr, "Arena %d:\n", i);
5036 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
5037 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
5038#if MALLOC_DEBUG > 1
5039 if (i > 0)
5040 dump_heap (heap_for_ptr (top (ar_ptr)));
5041#endif
5042 system_b += mi.arena;
5043 in_use_b += mi.uordblks;
5044 __libc_lock_unlock (ar_ptr->mutex);
5045 ar_ptr = ar_ptr->next;
5046 if (ar_ptr == &main_arena)
5047 break;
5048 }
5049 fprintf (stderr, "Total (incl. mmap):\n");
5050 fprintf (stderr, "system bytes = %10u\n", system_b);
5051 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
5052 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
5053 fprintf (stderr, "max mmap bytes = %10lu\n",
5054 (unsigned long) mp_.max_mmapped_mem);
5055 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
5056 _IO_funlockfile (stderr);
5057}
5058
5059
5060/*
5061 ------------------------------ mallopt ------------------------------
5062 */
5063static inline int
5064__always_inline
5065do_set_trim_threshold (size_t value)
5066{
5067 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
5068 mp_.no_dyn_threshold);
5069 mp_.trim_threshold = value;
5070 mp_.no_dyn_threshold = 1;
5071 return 1;
5072}
5073
5074static inline int
5075__always_inline
5076do_set_top_pad (size_t value)
5077{
5078 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
5079 mp_.no_dyn_threshold);
5080 mp_.top_pad = value;
5081 mp_.no_dyn_threshold = 1;
5082 return 1;
5083}
5084
5085static inline int
5086__always_inline
5087do_set_mmap_threshold (size_t value)
5088{
5089 /* Forbid setting the threshold too high. */
5090 if (value <= HEAP_MAX_SIZE / 2)
5091 {
5092 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
5093 mp_.no_dyn_threshold);
5094 mp_.mmap_threshold = value;
5095 mp_.no_dyn_threshold = 1;
5096 return 1;
5097 }
5098 return 0;
5099}
5100
5101static inline int
5102__always_inline
5103do_set_mmaps_max (int32_t value)
5104{
5105 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
5106 mp_.no_dyn_threshold);
5107 mp_.n_mmaps_max = value;
5108 mp_.no_dyn_threshold = 1;
5109 return 1;
5110}
5111
5112static inline int
5113__always_inline
5114do_set_mallopt_check (int32_t value)
5115{
5116 LIBC_PROBE (memory_mallopt_check_action, 2, value, check_action);
5117 check_action = value;
5118 return 1;
5119}
5120
5121static inline int
5122__always_inline
5123do_set_perturb_byte (int32_t value)
5124{
5125 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5126 perturb_byte = value;
5127 return 1;
5128}
5129
5130static inline int
5131__always_inline
5132do_set_arena_test (size_t value)
5133{
5134 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5135 mp_.arena_test = value;
5136 return 1;
5137}
5138
5139static inline int
5140__always_inline
5141do_set_arena_max (size_t value)
5142{
5143 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5144 mp_.arena_max = value;
5145 return 1;
5146}
5147
5148#if USE_TCACHE
5149static inline int
5150__always_inline
5151do_set_tcache_max (size_t value)
5152{
5153 if (value >= 0 && value <= MAX_TCACHE_SIZE)
5154 {
5155 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5156 mp_.tcache_max_bytes = value;
5157 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5158 }
5159 return 1;
5160}
5161
5162static inline int
5163__always_inline
5164do_set_tcache_count (size_t value)
5165{
5166 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5167 mp_.tcache_count = value;
5168 return 1;
5169}
5170
5171static inline int
5172__always_inline
5173do_set_tcache_unsorted_limit (size_t value)
5174{
5175 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5176 mp_.tcache_unsorted_limit = value;
5177 return 1;
5178}
5179#endif
5180
5181int
5182__libc_mallopt (int param_number, int value)
5183{
5184 mstate av = &main_arena;
5185 int res = 1;
5186
5187 if (__malloc_initialized < 0)
5188 ptmalloc_init ();
5189 __libc_lock_lock (av->mutex);
5190 /* Ensure initialization/consolidation */
5191 malloc_consolidate (av);
5192
5193 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5194
5195 switch (param_number)
5196 {
5197 case M_MXFAST:
5198 if (value >= 0 && value <= MAX_FAST_SIZE)
5199 {
5200 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5201 set_max_fast (value);
5202 }
5203 else
5204 res = 0;
5205 break;
5206
5207 case M_TRIM_THRESHOLD:
5208 do_set_trim_threshold (value);
5209 break;
5210
5211 case M_TOP_PAD:
5212 do_set_top_pad (value);
5213 break;
5214
5215 case M_MMAP_THRESHOLD:
5216 res = do_set_mmap_threshold (value);
5217 break;
5218
5219 case M_MMAP_MAX:
5220 do_set_mmaps_max (value);
5221 break;
5222
5223 case M_CHECK_ACTION:
5224 do_set_mallopt_check (value);
5225 break;
5226
5227 case M_PERTURB:
5228 do_set_perturb_byte (value);
5229 break;
5230
5231 case M_ARENA_TEST:
5232 if (value > 0)
5233 do_set_arena_test (value);
5234 break;
5235
5236 case M_ARENA_MAX:
5237 if (value > 0)
5238 do_set_arena_max (value);
5239 break;
5240 }
5241 __libc_lock_unlock (av->mutex);
5242 return res;
5243}
5244libc_hidden_def (__libc_mallopt)
5245
5246
5247/*
5248 -------------------- Alternative MORECORE functions --------------------
5249 */
5250
5251
5252/*
5253 General Requirements for MORECORE.
5254
5255 The MORECORE function must have the following properties:
5256
5257 If MORECORE_CONTIGUOUS is false:
5258
5259 * MORECORE must allocate in multiples of pagesize. It will
5260 only be called with arguments that are multiples of pagesize.
5261
5262 * MORECORE(0) must return an address that is at least
5263 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5264
5265 else (i.e. If MORECORE_CONTIGUOUS is true):
5266
5267 * Consecutive calls to MORECORE with positive arguments
5268 return increasing addresses, indicating that space has been
5269 contiguously extended.
5270
5271 * MORECORE need not allocate in multiples of pagesize.
5272 Calls to MORECORE need not have args of multiples of pagesize.
5273
5274 * MORECORE need not page-align.
5275
5276 In either case:
5277
5278 * MORECORE may allocate more memory than requested. (Or even less,
5279 but this will generally result in a malloc failure.)
5280
5281 * MORECORE must not allocate memory when given argument zero, but
5282 instead return one past the end address of memory from previous
5283 nonzero call. This malloc does NOT call MORECORE(0)
5284 until at least one call with positive arguments is made, so
5285 the initial value returned is not important.
5286
5287 * Even though consecutive calls to MORECORE need not return contiguous
5288 addresses, it must be OK for malloc'ed chunks to span multiple
5289 regions in those cases where they do happen to be contiguous.
5290
5291 * MORECORE need not handle negative arguments -- it may instead
5292 just return MORECORE_FAILURE when given negative arguments.
5293 Negative arguments are always multiples of pagesize. MORECORE
5294 must not misinterpret negative args as large positive unsigned
5295 args. You can suppress all such calls from even occurring by defining
5296 MORECORE_CANNOT_TRIM,
5297
5298 There is some variation across systems about the type of the
5299 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5300 actually be size_t, because sbrk supports negative args, so it is
5301 normally the signed type of the same width as size_t (sometimes
5302 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5303 matter though. Internally, we use "long" as arguments, which should
5304 work across all reasonable possibilities.
5305
5306 Additionally, if MORECORE ever returns failure for a positive
5307 request, then mmap is used as a noncontiguous system allocator. This
5308 is a useful backup strategy for systems with holes in address spaces
5309 -- in this case sbrk cannot contiguously expand the heap, but mmap
5310 may be able to map noncontiguous space.
5311
5312 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5313 a function that always returns MORECORE_FAILURE.
5314
5315 If you are using this malloc with something other than sbrk (or its
5316 emulation) to supply memory regions, you probably want to set
5317 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5318 allocator kindly contributed for pre-OSX macOS. It uses virtually
5319 but not necessarily physically contiguous non-paged memory (locked
5320 in, present and won't get swapped out). You can use it by
5321 uncommenting this section, adding some #includes, and setting up the
5322 appropriate defines above:
5323
5324 *#define MORECORE osMoreCore
5325 *#define MORECORE_CONTIGUOUS 0
5326
5327 There is also a shutdown routine that should somehow be called for
5328 cleanup upon program exit.
5329
5330 *#define MAX_POOL_ENTRIES 100
5331 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5332 static int next_os_pool;
5333 void *our_os_pools[MAX_POOL_ENTRIES];
5334
5335 void *osMoreCore(int size)
5336 {
5337 void *ptr = 0;
5338 static void *sbrk_top = 0;
5339
5340 if (size > 0)
5341 {
5342 if (size < MINIMUM_MORECORE_SIZE)
5343 size = MINIMUM_MORECORE_SIZE;
5344 if (CurrentExecutionLevel() == kTaskLevel)
5345 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5346 if (ptr == 0)
5347 {
5348 return (void *) MORECORE_FAILURE;
5349 }
5350 // save ptrs so they can be freed during cleanup
5351 our_os_pools[next_os_pool] = ptr;
5352 next_os_pool++;
5353 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5354 sbrk_top = (char *) ptr + size;
5355 return ptr;
5356 }
5357 else if (size < 0)
5358 {
5359 // we don't currently support shrink behavior
5360 return (void *) MORECORE_FAILURE;
5361 }
5362 else
5363 {
5364 return sbrk_top;
5365 }
5366 }
5367
5368 // cleanup any allocated memory pools
5369 // called as last thing before shutting down driver
5370
5371 void osCleanupMem(void)
5372 {
5373 void **ptr;
5374
5375 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5376 if (*ptr)
5377 {
5378 PoolDeallocate(*ptr);
5379 * ptr = 0;
5380 }
5381 }
5382
5383 */
5384
5385
5386/* Helper code. */
5387
5388extern char **__libc_argv attribute_hidden;
5389
5390static void
5391malloc_printerr (int action, const char *str, void *ptr, mstate ar_ptr)
5392{
5393 /* Avoid using this arena in future. We do not attempt to synchronize this
5394 with anything else because we minimally want to ensure that __libc_message
5395 gets its resources safely without stumbling on the current corruption. */
5396 if (ar_ptr)
5397 set_arena_corrupt (ar_ptr);
5398
5399 if ((action & 5) == 5)
5400 __libc_message ((action & 2) ? (do_abort | do_backtrace) : do_message,
5401 "%s\n", str);
5402 else if (action & 1)
5403 {
5404 char buf[2 * sizeof (uintptr_t) + 1];
5405
5406 buf[sizeof (buf) - 1] = '\0';
5407 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
5408 while (cp > buf)
5409 *--cp = '0';
5410
5411 __libc_message ((action & 2) ? (do_abort | do_backtrace) : do_message,
5412 "*** Error in `%s': %s: 0x%s ***\n",
5413 __libc_argv[0] ? : "<unknown>", str, cp);
5414 }
5415 else if (action & 2)
5416 abort ();
5417}
5418
5419/* We need a wrapper function for one of the additions of POSIX. */
5420int
5421__posix_memalign (void **memptr, size_t alignment, size_t size)
5422{
5423 void *mem;
5424
5425 /* Test whether the SIZE argument is valid. It must be a power of
5426 two multiple of sizeof (void *). */
5427 if (alignment % sizeof (void *) != 0
5428 || !powerof2 (alignment / sizeof (void *))
5429 || alignment == 0)
5430 return EINVAL;
5431
5432
5433 void *address = RETURN_ADDRESS (0);
5434 mem = _mid_memalign (alignment, size, address);
5435
5436 if (mem != NULL)
5437 {
5438 *memptr = mem;
5439 return 0;
5440 }
5441
5442 return ENOMEM;
5443}
5444weak_alias (__posix_memalign, posix_memalign)
5445
5446
5447int
5448__malloc_info (int options, FILE *fp)
5449{
5450 /* For now, at least. */
5451 if (options != 0)
5452 return EINVAL;
5453
5454 int n = 0;
5455 size_t total_nblocks = 0;
5456 size_t total_nfastblocks = 0;
5457 size_t total_avail = 0;
5458 size_t total_fastavail = 0;
5459 size_t total_system = 0;
5460 size_t total_max_system = 0;
5461 size_t total_aspace = 0;
5462 size_t total_aspace_mprotect = 0;
5463
5464
5465
5466 if (__malloc_initialized < 0)
5467 ptmalloc_init ();
5468
5469 fputs ("<malloc version=\"1\">\n", fp);
5470
5471 /* Iterate over all arenas currently in use. */
5472 mstate ar_ptr = &main_arena;
5473 do
5474 {
5475 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5476
5477 size_t nblocks = 0;
5478 size_t nfastblocks = 0;
5479 size_t avail = 0;
5480 size_t fastavail = 0;
5481 struct
5482 {
5483 size_t from;
5484 size_t to;
5485 size_t total;
5486 size_t count;
5487 } sizes[NFASTBINS + NBINS - 1];
5488#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5489
5490 __libc_lock_lock (ar_ptr->mutex);
5491
5492 for (size_t i = 0; i < NFASTBINS; ++i)
5493 {
5494 mchunkptr p = fastbin (ar_ptr, i);
5495 if (p != NULL)
5496 {
5497 size_t nthissize = 0;
5498 size_t thissize = chunksize (p);
5499
5500 while (p != NULL)
5501 {
5502 ++nthissize;
5503 p = p->fd;
5504 }
5505
5506 fastavail += nthissize * thissize;
5507 nfastblocks += nthissize;
5508 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5509 sizes[i].to = thissize;
5510 sizes[i].count = nthissize;
5511 }
5512 else
5513 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5514
5515 sizes[i].total = sizes[i].count * sizes[i].to;
5516 }
5517
5518
5519 mbinptr bin;
5520 struct malloc_chunk *r;
5521
5522 for (size_t i = 1; i < NBINS; ++i)
5523 {
5524 bin = bin_at (ar_ptr, i);
5525 r = bin->fd;
5526 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5527 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5528 = sizes[NFASTBINS - 1 + i].count = 0;
5529
5530 if (r != NULL)
5531 while (r != bin)
5532 {
5533 size_t r_size = chunksize_nomask (r);
5534 ++sizes[NFASTBINS - 1 + i].count;
5535 sizes[NFASTBINS - 1 + i].total += r_size;
5536 sizes[NFASTBINS - 1 + i].from
5537 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5538 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5539 r_size);
5540
5541 r = r->fd;
5542 }
5543
5544 if (sizes[NFASTBINS - 1 + i].count == 0)
5545 sizes[NFASTBINS - 1 + i].from = 0;
5546 nblocks += sizes[NFASTBINS - 1 + i].count;
5547 avail += sizes[NFASTBINS - 1 + i].total;
5548 }
5549
5550 __libc_lock_unlock (ar_ptr->mutex);
5551
5552 total_nfastblocks += nfastblocks;
5553 total_fastavail += fastavail;
5554
5555 total_nblocks += nblocks;
5556 total_avail += avail;
5557
5558 for (size_t i = 0; i < nsizes; ++i)
5559 if (sizes[i].count != 0 && i != NFASTBINS)
5560 fprintf (fp, " \
5561 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5562 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5563
5564 if (sizes[NFASTBINS].count != 0)
5565 fprintf (fp, "\
5566 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5567 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5568 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5569
5570 total_system += ar_ptr->system_mem;
5571 total_max_system += ar_ptr->max_system_mem;
5572
5573 fprintf (fp,
5574 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5575 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5576 "<system type=\"current\" size=\"%zu\"/>\n"
5577 "<system type=\"max\" size=\"%zu\"/>\n",
5578 nfastblocks, fastavail, nblocks, avail,
5579 ar_ptr->system_mem, ar_ptr->max_system_mem);
5580
5581 if (ar_ptr != &main_arena)
5582 {
5583 heap_info *heap = heap_for_ptr (top (ar_ptr));
5584 fprintf (fp,
5585 "<aspace type=\"total\" size=\"%zu\"/>\n"
5586 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5587 heap->size, heap->mprotect_size);
5588 total_aspace += heap->size;
5589 total_aspace_mprotect += heap->mprotect_size;
5590 }
5591 else
5592 {
5593 fprintf (fp,
5594 "<aspace type=\"total\" size=\"%zu\"/>\n"
5595 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5596 ar_ptr->system_mem, ar_ptr->system_mem);
5597 total_aspace += ar_ptr->system_mem;
5598 total_aspace_mprotect += ar_ptr->system_mem;
5599 }
5600
5601 fputs ("</heap>\n", fp);
5602 ar_ptr = ar_ptr->next;
5603 }
5604 while (ar_ptr != &main_arena);
5605
5606 fprintf (fp,
5607 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5608 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5609 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5610 "<system type=\"current\" size=\"%zu\"/>\n"
5611 "<system type=\"max\" size=\"%zu\"/>\n"
5612 "<aspace type=\"total\" size=\"%zu\"/>\n"
5613 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5614 "</malloc>\n",
5615 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5616 mp_.n_mmaps, mp_.mmapped_mem,
5617 total_system, total_max_system,
5618 total_aspace, total_aspace_mprotect);
5619
5620 return 0;
5621}
5622weak_alias (__malloc_info, malloc_info)
5623
5624
5625strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5626strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5627strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5628strong_alias (__libc_memalign, __memalign)
5629weak_alias (__libc_memalign, memalign)
5630strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5631strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5632strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5633strong_alias (__libc_mallinfo, __mallinfo)
5634weak_alias (__libc_mallinfo, mallinfo)
5635strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5636
5637weak_alias (__malloc_stats, malloc_stats)
5638weak_alias (__malloc_usable_size, malloc_usable_size)
5639weak_alias (__malloc_trim, malloc_trim)
5640
5641#if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5642compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5643#endif
5644
5645/* ------------------------------------------------------------
5646 History:
5647
5648 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5649
5650 */
5651/*
5652 * Local variables:
5653 * c-basic-offset: 2
5654 * End:
5655 */
5656