1 | /* Malloc implementation for multiple threads without lock contention. |
2 | Copyright (C) 1996-2016 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Wolfram Gloger <wg@malloc.de> |
5 | and Doug Lea <dl@cs.oswego.edu>, 2001. |
6 | |
7 | The GNU C Library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License as |
9 | published by the Free Software Foundation; either version 2.1 of the |
10 | License, or (at your option) any later version. |
11 | |
12 | The GNU C Library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public |
18 | License along with the GNU C Library; see the file COPYING.LIB. If |
19 | not, see <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* |
22 | This is a version (aka ptmalloc2) of malloc/free/realloc written by |
23 | Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger. |
24 | |
25 | There have been substantial changes made after the integration into |
26 | glibc in all parts of the code. Do not look for much commonality |
27 | with the ptmalloc2 version. |
28 | |
29 | * Version ptmalloc2-20011215 |
30 | based on: |
31 | VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) |
32 | |
33 | * Quickstart |
34 | |
35 | In order to compile this implementation, a Makefile is provided with |
36 | the ptmalloc2 distribution, which has pre-defined targets for some |
37 | popular systems (e.g. "make posix" for Posix threads). All that is |
38 | typically required with regard to compiler flags is the selection of |
39 | the thread package via defining one out of USE_PTHREADS, USE_THR or |
40 | USE_SPROC. Check the thread-m.h file for what effects this has. |
41 | Many/most systems will additionally require USE_TSD_DATA_HACK to be |
42 | defined, so this is the default for "make posix". |
43 | |
44 | * Why use this malloc? |
45 | |
46 | This is not the fastest, most space-conserving, most portable, or |
47 | most tunable malloc ever written. However it is among the fastest |
48 | while also being among the most space-conserving, portable and tunable. |
49 | Consistent balance across these factors results in a good general-purpose |
50 | allocator for malloc-intensive programs. |
51 | |
52 | The main properties of the algorithms are: |
53 | * For large (>= 512 bytes) requests, it is a pure best-fit allocator, |
54 | with ties normally decided via FIFO (i.e. least recently used). |
55 | * For small (<= 64 bytes by default) requests, it is a caching |
56 | allocator, that maintains pools of quickly recycled chunks. |
57 | * In between, and for combinations of large and small requests, it does |
58 | the best it can trying to meet both goals at once. |
59 | * For very large requests (>= 128KB by default), it relies on system |
60 | memory mapping facilities, if supported. |
61 | |
62 | For a longer but slightly out of date high-level description, see |
63 | http://gee.cs.oswego.edu/dl/html/malloc.html |
64 | |
65 | You may already by default be using a C library containing a malloc |
66 | that is based on some version of this malloc (for example in |
67 | linux). You might still want to use the one in this file in order to |
68 | customize settings or to avoid overheads associated with library |
69 | versions. |
70 | |
71 | * Contents, described in more detail in "description of public routines" below. |
72 | |
73 | Standard (ANSI/SVID/...) functions: |
74 | malloc(size_t n); |
75 | calloc(size_t n_elements, size_t element_size); |
76 | free(void* p); |
77 | realloc(void* p, size_t n); |
78 | memalign(size_t alignment, size_t n); |
79 | valloc(size_t n); |
80 | mallinfo() |
81 | mallopt(int parameter_number, int parameter_value) |
82 | |
83 | Additional functions: |
84 | independent_calloc(size_t n_elements, size_t size, void* chunks[]); |
85 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
86 | pvalloc(size_t n); |
87 | cfree(void* p); |
88 | malloc_trim(size_t pad); |
89 | malloc_usable_size(void* p); |
90 | malloc_stats(); |
91 | |
92 | * Vital statistics: |
93 | |
94 | Supported pointer representation: 4 or 8 bytes |
95 | Supported size_t representation: 4 or 8 bytes |
96 | Note that size_t is allowed to be 4 bytes even if pointers are 8. |
97 | You can adjust this by defining INTERNAL_SIZE_T |
98 | |
99 | Alignment: 2 * sizeof(size_t) (default) |
100 | (i.e., 8 byte alignment with 4byte size_t). This suffices for |
101 | nearly all current machines and C compilers. However, you can |
102 | define MALLOC_ALIGNMENT to be wider than this if necessary. |
103 | |
104 | Minimum overhead per allocated chunk: 4 or 8 bytes |
105 | Each malloced chunk has a hidden word of overhead holding size |
106 | and status information. |
107 | |
108 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) |
109 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
110 | |
111 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte |
112 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are |
113 | needed; 4 (8) for a trailing size field and 8 (16) bytes for |
114 | free list pointers. Thus, the minimum allocatable size is |
115 | 16/24/32 bytes. |
116 | |
117 | Even a request for zero bytes (i.e., malloc(0)) returns a |
118 | pointer to something of the minimum allocatable size. |
119 | |
120 | The maximum overhead wastage (i.e., number of extra bytes |
121 | allocated than were requested in malloc) is less than or equal |
122 | to the minimum size, except for requests >= mmap_threshold that |
123 | are serviced via mmap(), where the worst case wastage is 2 * |
124 | sizeof(size_t) bytes plus the remainder from a system page (the |
125 | minimal mmap unit); typically 4096 or 8192 bytes. |
126 | |
127 | Maximum allocated size: 4-byte size_t: 2^32 minus about two pages |
128 | 8-byte size_t: 2^64 minus about two pages |
129 | |
130 | It is assumed that (possibly signed) size_t values suffice to |
131 | represent chunk sizes. `Possibly signed' is due to the fact |
132 | that `size_t' may be defined on a system as either a signed or |
133 | an unsigned type. The ISO C standard says that it must be |
134 | unsigned, but a few systems are known not to adhere to this. |
135 | Additionally, even when size_t is unsigned, sbrk (which is by |
136 | default used to obtain memory from system) accepts signed |
137 | arguments, and may not be able to handle size_t-wide arguments |
138 | with negative sign bit. Generally, values that would |
139 | appear as negative after accounting for overhead and alignment |
140 | are supported only via mmap(), which does not have this |
141 | limitation. |
142 | |
143 | Requests for sizes outside the allowed range will perform an optional |
144 | failure action and then return null. (Requests may also |
145 | also fail because a system is out of memory.) |
146 | |
147 | Thread-safety: thread-safe |
148 | |
149 | Compliance: I believe it is compliant with the 1997 Single Unix Specification |
150 | Also SVID/XPG, ANSI C, and probably others as well. |
151 | |
152 | * Synopsis of compile-time options: |
153 | |
154 | People have reported using previous versions of this malloc on all |
155 | versions of Unix, sometimes by tweaking some of the defines |
156 | below. It has been tested most extensively on Solaris and Linux. |
157 | People also report using it in stand-alone embedded systems. |
158 | |
159 | The implementation is in straight, hand-tuned ANSI C. It is not |
160 | at all modular. (Sorry!) It uses a lot of macros. To be at all |
161 | usable, this code should be compiled using an optimizing compiler |
162 | (for example gcc -O3) that can simplify expressions and control |
163 | paths. (FAQ: some macros import variables as arguments rather than |
164 | declare locals because people reported that some debuggers |
165 | otherwise get confused.) |
166 | |
167 | OPTION DEFAULT VALUE |
168 | |
169 | Compilation Environment options: |
170 | |
171 | HAVE_MREMAP 0 |
172 | |
173 | Changing default word sizes: |
174 | |
175 | INTERNAL_SIZE_T size_t |
176 | MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T), |
177 | __alignof__ (long double)) |
178 | |
179 | Configuration and functionality options: |
180 | |
181 | USE_PUBLIC_MALLOC_WRAPPERS NOT defined |
182 | USE_MALLOC_LOCK NOT defined |
183 | MALLOC_DEBUG NOT defined |
184 | REALLOC_ZERO_BYTES_FREES 1 |
185 | TRIM_FASTBINS 0 |
186 | |
187 | Options for customizing MORECORE: |
188 | |
189 | MORECORE sbrk |
190 | MORECORE_FAILURE -1 |
191 | MORECORE_CONTIGUOUS 1 |
192 | MORECORE_CANNOT_TRIM NOT defined |
193 | MORECORE_CLEARS 1 |
194 | MMAP_AS_MORECORE_SIZE (1024 * 1024) |
195 | |
196 | Tuning options that are also dynamically changeable via mallopt: |
197 | |
198 | DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit) |
199 | DEFAULT_TRIM_THRESHOLD 128 * 1024 |
200 | DEFAULT_TOP_PAD 0 |
201 | DEFAULT_MMAP_THRESHOLD 128 * 1024 |
202 | DEFAULT_MMAP_MAX 65536 |
203 | |
204 | There are several other #defined constants and macros that you |
205 | probably don't want to touch unless you are extending or adapting malloc. */ |
206 | |
207 | /* |
208 | void* is the pointer type that malloc should say it returns |
209 | */ |
210 | |
211 | #ifndef void |
212 | #define void void |
213 | #endif /*void*/ |
214 | |
215 | #include <stddef.h> /* for size_t */ |
216 | #include <stdlib.h> /* for getenv(), abort() */ |
217 | #include <unistd.h> /* for __libc_enable_secure */ |
218 | |
219 | #include <malloc-machine.h> |
220 | #include <malloc-sysdep.h> |
221 | |
222 | #include <atomic.h> |
223 | #include <_itoa.h> |
224 | #include <bits/wordsize.h> |
225 | #include <sys/sysinfo.h> |
226 | |
227 | #include <ldsodefs.h> |
228 | |
229 | #include <unistd.h> |
230 | #include <stdio.h> /* needed for malloc_stats */ |
231 | #include <errno.h> |
232 | |
233 | #include <shlib-compat.h> |
234 | |
235 | /* For uintptr_t. */ |
236 | #include <stdint.h> |
237 | |
238 | /* For va_arg, va_start, va_end. */ |
239 | #include <stdarg.h> |
240 | |
241 | /* For MIN, MAX, powerof2. */ |
242 | #include <sys/param.h> |
243 | |
244 | /* For ALIGN_UP et. al. */ |
245 | #include <libc-internal.h> |
246 | |
247 | |
248 | /* |
249 | Debugging: |
250 | |
251 | Because freed chunks may be overwritten with bookkeeping fields, this |
252 | malloc will often die when freed memory is overwritten by user |
253 | programs. This can be very effective (albeit in an annoying way) |
254 | in helping track down dangling pointers. |
255 | |
256 | If you compile with -DMALLOC_DEBUG, a number of assertion checks are |
257 | enabled that will catch more memory errors. You probably won't be |
258 | able to make much sense of the actual assertion errors, but they |
259 | should help you locate incorrectly overwritten memory. The checking |
260 | is fairly extensive, and will slow down execution |
261 | noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set |
262 | will attempt to check every non-mmapped allocated and free chunk in |
263 | the course of computing the summmaries. (By nature, mmapped regions |
264 | cannot be checked very much automatically.) |
265 | |
266 | Setting MALLOC_DEBUG may also be helpful if you are trying to modify |
267 | this code. The assertions in the check routines spell out in more |
268 | detail the assumptions and invariants underlying the algorithms. |
269 | |
270 | Setting MALLOC_DEBUG does NOT provide an automated mechanism for |
271 | checking that all accesses to malloced memory stay within their |
272 | bounds. However, there are several add-ons and adaptations of this |
273 | or other mallocs available that do this. |
274 | */ |
275 | |
276 | #ifndef MALLOC_DEBUG |
277 | #define MALLOC_DEBUG 0 |
278 | #endif |
279 | |
280 | #ifdef NDEBUG |
281 | # define assert(expr) ((void) 0) |
282 | #else |
283 | # define assert(expr) \ |
284 | ((expr) \ |
285 | ? ((void) 0) \ |
286 | : __malloc_assert (#expr, __FILE__, __LINE__, __func__)) |
287 | |
288 | extern const char *__progname; |
289 | |
290 | static void |
291 | __malloc_assert (const char *assertion, const char *file, unsigned int line, |
292 | const char *function) |
293 | { |
294 | (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n" , |
295 | __progname, __progname[0] ? ": " : "" , |
296 | file, line, |
297 | function ? function : "" , function ? ": " : "" , |
298 | assertion); |
299 | fflush (stderr); |
300 | abort (); |
301 | } |
302 | #endif |
303 | |
304 | |
305 | /* |
306 | INTERNAL_SIZE_T is the word-size used for internal bookkeeping |
307 | of chunk sizes. |
308 | |
309 | The default version is the same as size_t. |
310 | |
311 | While not strictly necessary, it is best to define this as an |
312 | unsigned type, even if size_t is a signed type. This may avoid some |
313 | artificial size limitations on some systems. |
314 | |
315 | On a 64-bit machine, you may be able to reduce malloc overhead by |
316 | defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the |
317 | expense of not being able to handle more than 2^32 of malloced |
318 | space. If this limitation is acceptable, you are encouraged to set |
319 | this unless you are on a platform requiring 16byte alignments. In |
320 | this case the alignment requirements turn out to negate any |
321 | potential advantages of decreasing size_t word size. |
322 | |
323 | Implementors: Beware of the possible combinations of: |
324 | - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits, |
325 | and might be the same width as int or as long |
326 | - size_t might have different width and signedness as INTERNAL_SIZE_T |
327 | - int and long might be 32 or 64 bits, and might be the same width |
328 | To deal with this, most comparisons and difference computations |
329 | among INTERNAL_SIZE_Ts should cast them to unsigned long, being |
330 | aware of the fact that casting an unsigned int to a wider long does |
331 | not sign-extend. (This also makes checking for negative numbers |
332 | awkward.) Some of these casts result in harmless compiler warnings |
333 | on some systems. |
334 | */ |
335 | |
336 | #ifndef INTERNAL_SIZE_T |
337 | #define INTERNAL_SIZE_T size_t |
338 | #endif |
339 | |
340 | /* The corresponding word size */ |
341 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) |
342 | |
343 | |
344 | /* |
345 | MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks. |
346 | It must be a power of two at least 2 * SIZE_SZ, even on machines |
347 | for which smaller alignments would suffice. It may be defined as |
348 | larger than this though. Note however that code and data structures |
349 | are optimized for the case of 8-byte alignment. |
350 | */ |
351 | |
352 | |
353 | #ifndef MALLOC_ALIGNMENT |
354 | # if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16) |
355 | /* This is the correct definition when there is no past ABI to constrain it. |
356 | |
357 | Among configurations with a past ABI constraint, it differs from |
358 | 2*SIZE_SZ only on powerpc32. For the time being, changing this is |
359 | causing more compatibility problems due to malloc_get_state and |
360 | malloc_set_state than will returning blocks not adequately aligned for |
361 | long double objects under -mlong-double-128. */ |
362 | |
363 | # define MALLOC_ALIGNMENT (2 *SIZE_SZ < __alignof__ (long double) \ |
364 | ? __alignof__ (long double) : 2 *SIZE_SZ) |
365 | # else |
366 | # define MALLOC_ALIGNMENT (2 *SIZE_SZ) |
367 | # endif |
368 | #endif |
369 | |
370 | /* The corresponding bit mask value */ |
371 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) |
372 | |
373 | |
374 | |
375 | /* |
376 | REALLOC_ZERO_BYTES_FREES should be set if a call to |
377 | realloc with zero bytes should be the same as a call to free. |
378 | This is required by the C standard. Otherwise, since this malloc |
379 | returns a unique pointer for malloc(0), so does realloc(p, 0). |
380 | */ |
381 | |
382 | #ifndef REALLOC_ZERO_BYTES_FREES |
383 | #define REALLOC_ZERO_BYTES_FREES 1 |
384 | #endif |
385 | |
386 | /* |
387 | TRIM_FASTBINS controls whether free() of a very small chunk can |
388 | immediately lead to trimming. Setting to true (1) can reduce memory |
389 | footprint, but will almost always slow down programs that use a lot |
390 | of small chunks. |
391 | |
392 | Define this only if you are willing to give up some speed to more |
393 | aggressively reduce system-level memory footprint when releasing |
394 | memory in programs that use many small chunks. You can get |
395 | essentially the same effect by setting MXFAST to 0, but this can |
396 | lead to even greater slowdowns in programs using many small chunks. |
397 | TRIM_FASTBINS is an in-between compile-time option, that disables |
398 | only those chunks bordering topmost memory from being placed in |
399 | fastbins. |
400 | */ |
401 | |
402 | #ifndef TRIM_FASTBINS |
403 | #define TRIM_FASTBINS 0 |
404 | #endif |
405 | |
406 | |
407 | /* Definition for getting more memory from the OS. */ |
408 | #define MORECORE (*__morecore) |
409 | #define MORECORE_FAILURE 0 |
410 | void * __default_morecore (ptrdiff_t); |
411 | void *(*__morecore)(ptrdiff_t) = __default_morecore; |
412 | |
413 | |
414 | #include <string.h> |
415 | |
416 | /* |
417 | MORECORE-related declarations. By default, rely on sbrk |
418 | */ |
419 | |
420 | |
421 | /* |
422 | MORECORE is the name of the routine to call to obtain more memory |
423 | from the system. See below for general guidance on writing |
424 | alternative MORECORE functions, as well as a version for WIN32 and a |
425 | sample version for pre-OSX macos. |
426 | */ |
427 | |
428 | #ifndef MORECORE |
429 | #define MORECORE sbrk |
430 | #endif |
431 | |
432 | /* |
433 | MORECORE_FAILURE is the value returned upon failure of MORECORE |
434 | as well as mmap. Since it cannot be an otherwise valid memory address, |
435 | and must reflect values of standard sys calls, you probably ought not |
436 | try to redefine it. |
437 | */ |
438 | |
439 | #ifndef MORECORE_FAILURE |
440 | #define MORECORE_FAILURE (-1) |
441 | #endif |
442 | |
443 | /* |
444 | If MORECORE_CONTIGUOUS is true, take advantage of fact that |
445 | consecutive calls to MORECORE with positive arguments always return |
446 | contiguous increasing addresses. This is true of unix sbrk. Even |
447 | if not defined, when regions happen to be contiguous, malloc will |
448 | permit allocations spanning regions obtained from different |
449 | calls. But defining this when applicable enables some stronger |
450 | consistency checks and space efficiencies. |
451 | */ |
452 | |
453 | #ifndef MORECORE_CONTIGUOUS |
454 | #define MORECORE_CONTIGUOUS 1 |
455 | #endif |
456 | |
457 | /* |
458 | Define MORECORE_CANNOT_TRIM if your version of MORECORE |
459 | cannot release space back to the system when given negative |
460 | arguments. This is generally necessary only if you are using |
461 | a hand-crafted MORECORE function that cannot handle negative arguments. |
462 | */ |
463 | |
464 | /* #define MORECORE_CANNOT_TRIM */ |
465 | |
466 | /* MORECORE_CLEARS (default 1) |
467 | The degree to which the routine mapped to MORECORE zeroes out |
468 | memory: never (0), only for newly allocated space (1) or always |
469 | (2). The distinction between (1) and (2) is necessary because on |
470 | some systems, if the application first decrements and then |
471 | increments the break value, the contents of the reallocated space |
472 | are unspecified. |
473 | */ |
474 | |
475 | #ifndef MORECORE_CLEARS |
476 | # define MORECORE_CLEARS 1 |
477 | #endif |
478 | |
479 | |
480 | /* |
481 | MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if |
482 | sbrk fails, and mmap is used as a backup. The value must be a |
483 | multiple of page size. This backup strategy generally applies only |
484 | when systems have "holes" in address space, so sbrk cannot perform |
485 | contiguous expansion, but there is still space available on system. |
486 | On systems for which this is known to be useful (i.e. most linux |
487 | kernels), this occurs only when programs allocate huge amounts of |
488 | memory. Between this, and the fact that mmap regions tend to be |
489 | limited, the size should be large, to avoid too many mmap calls and |
490 | thus avoid running out of kernel resources. */ |
491 | |
492 | #ifndef MMAP_AS_MORECORE_SIZE |
493 | #define MMAP_AS_MORECORE_SIZE (1024 * 1024) |
494 | #endif |
495 | |
496 | /* |
497 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate |
498 | large blocks. |
499 | */ |
500 | |
501 | #ifndef HAVE_MREMAP |
502 | #define HAVE_MREMAP 0 |
503 | #endif |
504 | |
505 | |
506 | /* |
507 | This version of malloc supports the standard SVID/XPG mallinfo |
508 | routine that returns a struct containing usage properties and |
509 | statistics. It should work on any SVID/XPG compliant system that has |
510 | a /usr/include/malloc.h defining struct mallinfo. (If you'd like to |
511 | install such a thing yourself, cut out the preliminary declarations |
512 | as described above and below and save them in a malloc.h file. But |
513 | there's no compelling reason to bother to do this.) |
514 | |
515 | The main declaration needed is the mallinfo struct that is returned |
516 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a |
517 | bunch of fields that are not even meaningful in this version of |
518 | malloc. These fields are are instead filled by mallinfo() with |
519 | other numbers that might be of interest. |
520 | */ |
521 | |
522 | |
523 | /* ---------- description of public routines ------------ */ |
524 | |
525 | /* |
526 | malloc(size_t n) |
527 | Returns a pointer to a newly allocated chunk of at least n bytes, or null |
528 | if no space is available. Additionally, on failure, errno is |
529 | set to ENOMEM on ANSI C systems. |
530 | |
531 | If n is zero, malloc returns a minumum-sized chunk. (The minimum |
532 | size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit |
533 | systems.) On most systems, size_t is an unsigned type, so calls |
534 | with negative arguments are interpreted as requests for huge amounts |
535 | of space, which will often fail. The maximum supported value of n |
536 | differs across systems, but is in all cases less than the maximum |
537 | representable value of a size_t. |
538 | */ |
539 | void* __libc_malloc(size_t); |
540 | libc_hidden_proto (__libc_malloc) |
541 | |
542 | /* |
543 | free(void* p) |
544 | Releases the chunk of memory pointed to by p, that had been previously |
545 | allocated using malloc or a related routine such as realloc. |
546 | It has no effect if p is null. It can have arbitrary (i.e., bad!) |
547 | effects if p has already been freed. |
548 | |
549 | Unless disabled (using mallopt), freeing very large spaces will |
550 | when possible, automatically trigger operations that give |
551 | back unused memory to the system, thus reducing program footprint. |
552 | */ |
553 | void __libc_free(void*); |
554 | libc_hidden_proto (__libc_free) |
555 | |
556 | /* |
557 | calloc(size_t n_elements, size_t element_size); |
558 | Returns a pointer to n_elements * element_size bytes, with all locations |
559 | set to zero. |
560 | */ |
561 | void* __libc_calloc(size_t, size_t); |
562 | |
563 | /* |
564 | realloc(void* p, size_t n) |
565 | Returns a pointer to a chunk of size n that contains the same data |
566 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
567 | if no space is available. |
568 | |
569 | The returned pointer may or may not be the same as p. The algorithm |
570 | prefers extending p when possible, otherwise it employs the |
571 | equivalent of a malloc-copy-free sequence. |
572 | |
573 | If p is null, realloc is equivalent to malloc. |
574 | |
575 | If space is not available, realloc returns null, errno is set (if on |
576 | ANSI) and p is NOT freed. |
577 | |
578 | if n is for fewer bytes than already held by p, the newly unused |
579 | space is lopped off and freed if possible. Unless the #define |
580 | REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of |
581 | zero (re)allocates a minimum-sized chunk. |
582 | |
583 | Large chunks that were internally obtained via mmap will always |
584 | be reallocated using malloc-copy-free sequences unless |
585 | the system supports MREMAP (currently only linux). |
586 | |
587 | The old unix realloc convention of allowing the last-free'd chunk |
588 | to be used as an argument to realloc is not supported. |
589 | */ |
590 | void* __libc_realloc(void*, size_t); |
591 | libc_hidden_proto (__libc_realloc) |
592 | |
593 | /* |
594 | memalign(size_t alignment, size_t n); |
595 | Returns a pointer to a newly allocated chunk of n bytes, aligned |
596 | in accord with the alignment argument. |
597 | |
598 | The alignment argument should be a power of two. If the argument is |
599 | not a power of two, the nearest greater power is used. |
600 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
601 | bother calling memalign with an argument of 8 or less. |
602 | |
603 | Overreliance on memalign is a sure way to fragment space. |
604 | */ |
605 | void* __libc_memalign(size_t, size_t); |
606 | libc_hidden_proto (__libc_memalign) |
607 | |
608 | /* |
609 | valloc(size_t n); |
610 | Equivalent to memalign(pagesize, n), where pagesize is the page |
611 | size of the system. If the pagesize is unknown, 4096 is used. |
612 | */ |
613 | void* __libc_valloc(size_t); |
614 | |
615 | |
616 | |
617 | /* |
618 | mallopt(int parameter_number, int parameter_value) |
619 | Sets tunable parameters The format is to provide a |
620 | (parameter-number, parameter-value) pair. mallopt then sets the |
621 | corresponding parameter to the argument value if it can (i.e., so |
622 | long as the value is meaningful), and returns 1 if successful else |
623 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, |
624 | normally defined in malloc.h. Only one of these (M_MXFAST) is used |
625 | in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, |
626 | so setting them has no effect. But this malloc also supports four |
627 | other options in mallopt. See below for details. Briefly, supported |
628 | parameters are as follows (listed defaults are for "typical" |
629 | configurations). |
630 | |
631 | Symbol param # default allowed param values |
632 | M_MXFAST 1 64 0-80 (0 disables fastbins) |
633 | M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming) |
634 | M_TOP_PAD -2 0 any |
635 | M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support) |
636 | M_MMAP_MAX -4 65536 any (0 disables use of mmap) |
637 | */ |
638 | int __libc_mallopt(int, int); |
639 | libc_hidden_proto (__libc_mallopt) |
640 | |
641 | |
642 | /* |
643 | mallinfo() |
644 | Returns (by copy) a struct containing various summary statistics: |
645 | |
646 | arena: current total non-mmapped bytes allocated from system |
647 | ordblks: the number of free chunks |
648 | smblks: the number of fastbin blocks (i.e., small chunks that |
649 | have been freed but not use resused or consolidated) |
650 | hblks: current number of mmapped regions |
651 | hblkhd: total bytes held in mmapped regions |
652 | usmblks: the maximum total allocated space. This will be greater |
653 | than current total if trimming has occurred. |
654 | fsmblks: total bytes held in fastbin blocks |
655 | uordblks: current total allocated space (normal or mmapped) |
656 | fordblks: total free space |
657 | keepcost: the maximum number of bytes that could ideally be released |
658 | back to system via malloc_trim. ("ideally" means that |
659 | it ignores page restrictions etc.) |
660 | |
661 | Because these fields are ints, but internal bookkeeping may |
662 | be kept as longs, the reported values may wrap around zero and |
663 | thus be inaccurate. |
664 | */ |
665 | struct mallinfo __libc_mallinfo(void); |
666 | |
667 | |
668 | /* |
669 | pvalloc(size_t n); |
670 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
671 | round up n to nearest pagesize. |
672 | */ |
673 | void* __libc_pvalloc(size_t); |
674 | |
675 | /* |
676 | malloc_trim(size_t pad); |
677 | |
678 | If possible, gives memory back to the system (via negative |
679 | arguments to sbrk) if there is unused memory at the `high' end of |
680 | the malloc pool. You can call this after freeing large blocks of |
681 | memory to potentially reduce the system-level memory requirements |
682 | of a program. However, it cannot guarantee to reduce memory. Under |
683 | some allocation patterns, some large free blocks of memory will be |
684 | locked between two used chunks, so they cannot be given back to |
685 | the system. |
686 | |
687 | The `pad' argument to malloc_trim represents the amount of free |
688 | trailing space to leave untrimmed. If this argument is zero, |
689 | only the minimum amount of memory to maintain internal data |
690 | structures will be left (one page or less). Non-zero arguments |
691 | can be supplied to maintain enough trailing space to service |
692 | future expected allocations without having to re-obtain memory |
693 | from the system. |
694 | |
695 | Malloc_trim returns 1 if it actually released any memory, else 0. |
696 | On systems that do not support "negative sbrks", it will always |
697 | return 0. |
698 | */ |
699 | int __malloc_trim(size_t); |
700 | |
701 | /* |
702 | malloc_usable_size(void* p); |
703 | |
704 | Returns the number of bytes you can actually use in |
705 | an allocated chunk, which may be more than you requested (although |
706 | often not) due to alignment and minimum size constraints. |
707 | You can use this many bytes without worrying about |
708 | overwriting other allocated objects. This is not a particularly great |
709 | programming practice. malloc_usable_size can be more useful in |
710 | debugging and assertions, for example: |
711 | |
712 | p = malloc(n); |
713 | assert(malloc_usable_size(p) >= 256); |
714 | |
715 | */ |
716 | size_t __malloc_usable_size(void*); |
717 | |
718 | /* |
719 | malloc_stats(); |
720 | Prints on stderr the amount of space obtained from the system (both |
721 | via sbrk and mmap), the maximum amount (which may be more than |
722 | current if malloc_trim and/or munmap got called), and the current |
723 | number of bytes allocated via malloc (or realloc, etc) but not yet |
724 | freed. Note that this is the number of bytes allocated, not the |
725 | number requested. It will be larger than the number requested |
726 | because of alignment and bookkeeping overhead. Because it includes |
727 | alignment wastage as being in use, this figure may be greater than |
728 | zero even when no user-level chunks are allocated. |
729 | |
730 | The reported current and maximum system memory can be inaccurate if |
731 | a program makes other calls to system memory allocation functions |
732 | (normally sbrk) outside of malloc. |
733 | |
734 | malloc_stats prints only the most commonly interesting statistics. |
735 | More information can be obtained by calling mallinfo. |
736 | |
737 | */ |
738 | void __malloc_stats(void); |
739 | |
740 | /* |
741 | malloc_get_state(void); |
742 | |
743 | Returns the state of all malloc variables in an opaque data |
744 | structure. |
745 | */ |
746 | void* __malloc_get_state(void); |
747 | |
748 | /* |
749 | malloc_set_state(void* state); |
750 | |
751 | Restore the state of all malloc variables from data obtained with |
752 | malloc_get_state(). |
753 | */ |
754 | int __malloc_set_state(void*); |
755 | |
756 | /* |
757 | posix_memalign(void **memptr, size_t alignment, size_t size); |
758 | |
759 | POSIX wrapper like memalign(), checking for validity of size. |
760 | */ |
761 | int __posix_memalign(void **, size_t, size_t); |
762 | |
763 | /* mallopt tuning options */ |
764 | |
765 | /* |
766 | M_MXFAST is the maximum request size used for "fastbins", special bins |
767 | that hold returned chunks without consolidating their spaces. This |
768 | enables future requests for chunks of the same size to be handled |
769 | very quickly, but can increase fragmentation, and thus increase the |
770 | overall memory footprint of a program. |
771 | |
772 | This malloc manages fastbins very conservatively yet still |
773 | efficiently, so fragmentation is rarely a problem for values less |
774 | than or equal to the default. The maximum supported value of MXFAST |
775 | is 80. You wouldn't want it any higher than this anyway. Fastbins |
776 | are designed especially for use with many small structs, objects or |
777 | strings -- the default handles structs/objects/arrays with sizes up |
778 | to 8 4byte fields, or small strings representing words, tokens, |
779 | etc. Using fastbins for larger objects normally worsens |
780 | fragmentation without improving speed. |
781 | |
782 | M_MXFAST is set in REQUEST size units. It is internally used in |
783 | chunksize units, which adds padding and alignment. You can reduce |
784 | M_MXFAST to 0 to disable all use of fastbins. This causes the malloc |
785 | algorithm to be a closer approximation of fifo-best-fit in all cases, |
786 | not just for larger requests, but will generally cause it to be |
787 | slower. |
788 | */ |
789 | |
790 | |
791 | /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */ |
792 | #ifndef M_MXFAST |
793 | #define M_MXFAST 1 |
794 | #endif |
795 | |
796 | #ifndef DEFAULT_MXFAST |
797 | #define DEFAULT_MXFAST (64 * SIZE_SZ / 4) |
798 | #endif |
799 | |
800 | |
801 | /* |
802 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory |
803 | to keep before releasing via malloc_trim in free(). |
804 | |
805 | Automatic trimming is mainly useful in long-lived programs. |
806 | Because trimming via sbrk can be slow on some systems, and can |
807 | sometimes be wasteful (in cases where programs immediately |
808 | afterward allocate more large chunks) the value should be high |
809 | enough so that your overall system performance would improve by |
810 | releasing this much memory. |
811 | |
812 | The trim threshold and the mmap control parameters (see below) |
813 | can be traded off with one another. Trimming and mmapping are |
814 | two different ways of releasing unused memory back to the |
815 | system. Between these two, it is often possible to keep |
816 | system-level demands of a long-lived program down to a bare |
817 | minimum. For example, in one test suite of sessions measuring |
818 | the XF86 X server on Linux, using a trim threshold of 128K and a |
819 | mmap threshold of 192K led to near-minimal long term resource |
820 | consumption. |
821 | |
822 | If you are using this malloc in a long-lived program, it should |
823 | pay to experiment with these values. As a rough guide, you |
824 | might set to a value close to the average size of a process |
825 | (program) running on your system. Releasing this much memory |
826 | would allow such a process to run in memory. Generally, it's |
827 | worth it to tune for trimming rather tham memory mapping when a |
828 | program undergoes phases where several large chunks are |
829 | allocated and released in ways that can reuse each other's |
830 | storage, perhaps mixed with phases where there are no such |
831 | chunks at all. And in well-behaved long-lived programs, |
832 | controlling release of large blocks via trimming versus mapping |
833 | is usually faster. |
834 | |
835 | However, in most programs, these parameters serve mainly as |
836 | protection against the system-level effects of carrying around |
837 | massive amounts of unneeded memory. Since frequent calls to |
838 | sbrk, mmap, and munmap otherwise degrade performance, the default |
839 | parameters are set to relatively high values that serve only as |
840 | safeguards. |
841 | |
842 | The trim value It must be greater than page size to have any useful |
843 | effect. To disable trimming completely, you can set to |
844 | (unsigned long)(-1) |
845 | |
846 | Trim settings interact with fastbin (MXFAST) settings: Unless |
847 | TRIM_FASTBINS is defined, automatic trimming never takes place upon |
848 | freeing a chunk with size less than or equal to MXFAST. Trimming is |
849 | instead delayed until subsequent freeing of larger chunks. However, |
850 | you can still force an attempted trim by calling malloc_trim. |
851 | |
852 | Also, trimming is not generally possible in cases where |
853 | the main arena is obtained via mmap. |
854 | |
855 | Note that the trick some people use of mallocing a huge space and |
856 | then freeing it at program startup, in an attempt to reserve system |
857 | memory, doesn't have the intended effect under automatic trimming, |
858 | since that memory will immediately be returned to the system. |
859 | */ |
860 | |
861 | #define M_TRIM_THRESHOLD -1 |
862 | |
863 | #ifndef DEFAULT_TRIM_THRESHOLD |
864 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) |
865 | #endif |
866 | |
867 | /* |
868 | M_TOP_PAD is the amount of extra `padding' space to allocate or |
869 | retain whenever sbrk is called. It is used in two ways internally: |
870 | |
871 | * When sbrk is called to extend the top of the arena to satisfy |
872 | a new malloc request, this much padding is added to the sbrk |
873 | request. |
874 | |
875 | * When malloc_trim is called automatically from free(), |
876 | it is used as the `pad' argument. |
877 | |
878 | In both cases, the actual amount of padding is rounded |
879 | so that the end of the arena is always a system page boundary. |
880 | |
881 | The main reason for using padding is to avoid calling sbrk so |
882 | often. Having even a small pad greatly reduces the likelihood |
883 | that nearly every malloc request during program start-up (or |
884 | after trimming) will invoke sbrk, which needlessly wastes |
885 | time. |
886 | |
887 | Automatic rounding-up to page-size units is normally sufficient |
888 | to avoid measurable overhead, so the default is 0. However, in |
889 | systems where sbrk is relatively slow, it can pay to increase |
890 | this value, at the expense of carrying around more memory than |
891 | the program needs. |
892 | */ |
893 | |
894 | #define M_TOP_PAD -2 |
895 | |
896 | #ifndef DEFAULT_TOP_PAD |
897 | #define DEFAULT_TOP_PAD (0) |
898 | #endif |
899 | |
900 | /* |
901 | MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically |
902 | adjusted MMAP_THRESHOLD. |
903 | */ |
904 | |
905 | #ifndef DEFAULT_MMAP_THRESHOLD_MIN |
906 | #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024) |
907 | #endif |
908 | |
909 | #ifndef DEFAULT_MMAP_THRESHOLD_MAX |
910 | /* For 32-bit platforms we cannot increase the maximum mmap |
911 | threshold much because it is also the minimum value for the |
912 | maximum heap size and its alignment. Going above 512k (i.e., 1M |
913 | for new heaps) wastes too much address space. */ |
914 | # if __WORDSIZE == 32 |
915 | # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024) |
916 | # else |
917 | # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long)) |
918 | # endif |
919 | #endif |
920 | |
921 | /* |
922 | M_MMAP_THRESHOLD is the request size threshold for using mmap() |
923 | to service a request. Requests of at least this size that cannot |
924 | be allocated using already-existing space will be serviced via mmap. |
925 | (If enough normal freed space already exists it is used instead.) |
926 | |
927 | Using mmap segregates relatively large chunks of memory so that |
928 | they can be individually obtained and released from the host |
929 | system. A request serviced through mmap is never reused by any |
930 | other request (at least not directly; the system may just so |
931 | happen to remap successive requests to the same locations). |
932 | |
933 | Segregating space in this way has the benefits that: |
934 | |
935 | 1. Mmapped space can ALWAYS be individually released back |
936 | to the system, which helps keep the system level memory |
937 | demands of a long-lived program low. |
938 | 2. Mapped memory can never become `locked' between |
939 | other chunks, as can happen with normally allocated chunks, which |
940 | means that even trimming via malloc_trim would not release them. |
941 | 3. On some systems with "holes" in address spaces, mmap can obtain |
942 | memory that sbrk cannot. |
943 | |
944 | However, it has the disadvantages that: |
945 | |
946 | 1. The space cannot be reclaimed, consolidated, and then |
947 | used to service later requests, as happens with normal chunks. |
948 | 2. It can lead to more wastage because of mmap page alignment |
949 | requirements |
950 | 3. It causes malloc performance to be more dependent on host |
951 | system memory management support routines which may vary in |
952 | implementation quality and may impose arbitrary |
953 | limitations. Generally, servicing a request via normal |
954 | malloc steps is faster than going through a system's mmap. |
955 | |
956 | The advantages of mmap nearly always outweigh disadvantages for |
957 | "large" chunks, but the value of "large" varies across systems. The |
958 | default is an empirically derived value that works well in most |
959 | systems. |
960 | |
961 | |
962 | Update in 2006: |
963 | The above was written in 2001. Since then the world has changed a lot. |
964 | Memory got bigger. Applications got bigger. The virtual address space |
965 | layout in 32 bit linux changed. |
966 | |
967 | In the new situation, brk() and mmap space is shared and there are no |
968 | artificial limits on brk size imposed by the kernel. What is more, |
969 | applications have started using transient allocations larger than the |
970 | 128Kb as was imagined in 2001. |
971 | |
972 | The price for mmap is also high now; each time glibc mmaps from the |
973 | kernel, the kernel is forced to zero out the memory it gives to the |
974 | application. Zeroing memory is expensive and eats a lot of cache and |
975 | memory bandwidth. This has nothing to do with the efficiency of the |
976 | virtual memory system, by doing mmap the kernel just has no choice but |
977 | to zero. |
978 | |
979 | In 2001, the kernel had a maximum size for brk() which was about 800 |
980 | megabytes on 32 bit x86, at that point brk() would hit the first |
981 | mmaped shared libaries and couldn't expand anymore. With current 2.6 |
982 | kernels, the VA space layout is different and brk() and mmap |
983 | both can span the entire heap at will. |
984 | |
985 | Rather than using a static threshold for the brk/mmap tradeoff, |
986 | we are now using a simple dynamic one. The goal is still to avoid |
987 | fragmentation. The old goals we kept are |
988 | 1) try to get the long lived large allocations to use mmap() |
989 | 2) really large allocations should always use mmap() |
990 | and we're adding now: |
991 | 3) transient allocations should use brk() to avoid forcing the kernel |
992 | having to zero memory over and over again |
993 | |
994 | The implementation works with a sliding threshold, which is by default |
995 | limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts |
996 | out at 128Kb as per the 2001 default. |
997 | |
998 | This allows us to satisfy requirement 1) under the assumption that long |
999 | lived allocations are made early in the process' lifespan, before it has |
1000 | started doing dynamic allocations of the same size (which will |
1001 | increase the threshold). |
1002 | |
1003 | The upperbound on the threshold satisfies requirement 2) |
1004 | |
1005 | The threshold goes up in value when the application frees memory that was |
1006 | allocated with the mmap allocator. The idea is that once the application |
1007 | starts freeing memory of a certain size, it's highly probable that this is |
1008 | a size the application uses for transient allocations. This estimator |
1009 | is there to satisfy the new third requirement. |
1010 | |
1011 | */ |
1012 | |
1013 | #define M_MMAP_THRESHOLD -3 |
1014 | |
1015 | #ifndef DEFAULT_MMAP_THRESHOLD |
1016 | #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN |
1017 | #endif |
1018 | |
1019 | /* |
1020 | M_MMAP_MAX is the maximum number of requests to simultaneously |
1021 | service using mmap. This parameter exists because |
1022 | some systems have a limited number of internal tables for |
1023 | use by mmap, and using more than a few of them may degrade |
1024 | performance. |
1025 | |
1026 | The default is set to a value that serves only as a safeguard. |
1027 | Setting to 0 disables use of mmap for servicing large requests. |
1028 | */ |
1029 | |
1030 | #define M_MMAP_MAX -4 |
1031 | |
1032 | #ifndef DEFAULT_MMAP_MAX |
1033 | #define DEFAULT_MMAP_MAX (65536) |
1034 | #endif |
1035 | |
1036 | #include <malloc.h> |
1037 | |
1038 | #ifndef RETURN_ADDRESS |
1039 | #define RETURN_ADDRESS(X_) (NULL) |
1040 | #endif |
1041 | |
1042 | /* On some platforms we can compile internal, not exported functions better. |
1043 | Let the environment provide a macro and define it to be empty if it |
1044 | is not available. */ |
1045 | #ifndef internal_function |
1046 | # define internal_function |
1047 | #endif |
1048 | |
1049 | /* Forward declarations. */ |
1050 | struct malloc_chunk; |
1051 | typedef struct malloc_chunk* mchunkptr; |
1052 | |
1053 | /* Internal routines. */ |
1054 | |
1055 | static void* _int_malloc(mstate, size_t); |
1056 | static void _int_free(mstate, mchunkptr, int); |
1057 | static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T, |
1058 | INTERNAL_SIZE_T); |
1059 | static void* _int_memalign(mstate, size_t, size_t); |
1060 | static void* _mid_memalign(size_t, size_t, void *); |
1061 | |
1062 | static void malloc_printerr(int action, const char *str, void *ptr, mstate av); |
1063 | |
1064 | static void* internal_function mem2mem_check(void *p, size_t sz); |
1065 | static int internal_function top_check(void); |
1066 | static void internal_function munmap_chunk(mchunkptr p); |
1067 | #if HAVE_MREMAP |
1068 | static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size); |
1069 | #endif |
1070 | |
1071 | static void* malloc_check(size_t sz, const void *caller); |
1072 | static void free_check(void* mem, const void *caller); |
1073 | static void* realloc_check(void* oldmem, size_t bytes, |
1074 | const void *caller); |
1075 | static void* memalign_check(size_t alignment, size_t bytes, |
1076 | const void *caller); |
1077 | #ifndef NO_THREADS |
1078 | static void* malloc_atfork(size_t sz, const void *caller); |
1079 | static void free_atfork(void* mem, const void *caller); |
1080 | #endif |
1081 | |
1082 | /* ------------------ MMAP support ------------------ */ |
1083 | |
1084 | |
1085 | #include <fcntl.h> |
1086 | #include <sys/mman.h> |
1087 | |
1088 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
1089 | # define MAP_ANONYMOUS MAP_ANON |
1090 | #endif |
1091 | |
1092 | #ifndef MAP_NORESERVE |
1093 | # define MAP_NORESERVE 0 |
1094 | #endif |
1095 | |
1096 | #define MMAP(addr, size, prot, flags) \ |
1097 | __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0) |
1098 | |
1099 | |
1100 | /* |
1101 | ----------------------- Chunk representations ----------------------- |
1102 | */ |
1103 | |
1104 | |
1105 | /* |
1106 | This struct declaration is misleading (but accurate and necessary). |
1107 | It declares a "view" into memory allowing access to necessary |
1108 | fields at known offsets from a given base. See explanation below. |
1109 | */ |
1110 | |
1111 | struct malloc_chunk { |
1112 | |
1113 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ |
1114 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ |
1115 | |
1116 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
1117 | struct malloc_chunk* bk; |
1118 | |
1119 | /* Only used for large blocks: pointer to next larger size. */ |
1120 | struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ |
1121 | struct malloc_chunk* bk_nextsize; |
1122 | }; |
1123 | |
1124 | |
1125 | /* |
1126 | malloc_chunk details: |
1127 | |
1128 | (The following includes lightly edited explanations by Colin Plumb.) |
1129 | |
1130 | Chunks of memory are maintained using a `boundary tag' method as |
1131 | described in e.g., Knuth or Standish. (See the paper by Paul |
1132 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a |
1133 | survey of such techniques.) Sizes of free chunks are stored both |
1134 | in the front of each chunk and at the end. This makes |
1135 | consolidating fragmented chunks into bigger chunks very fast. The |
1136 | size fields also hold bits representing whether chunks are free or |
1137 | in use. |
1138 | |
1139 | An allocated chunk looks like this: |
1140 | |
1141 | |
1142 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1143 | | Size of previous chunk, if allocated | | |
1144 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1145 | | Size of chunk, in bytes |M|P| |
1146 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1147 | | User data starts here... . |
1148 | . . |
1149 | . (malloc_usable_size() bytes) . |
1150 | . | |
1151 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1152 | | Size of chunk | |
1153 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1154 | |
1155 | |
1156 | Where "chunk" is the front of the chunk for the purpose of most of |
1157 | the malloc code, but "mem" is the pointer that is returned to the |
1158 | user. "Nextchunk" is the beginning of the next contiguous chunk. |
1159 | |
1160 | Chunks always begin on even word boundaries, so the mem portion |
1161 | (which is returned to the user) is also on an even word boundary, and |
1162 | thus at least double-word aligned. |
1163 | |
1164 | Free chunks are stored in circular doubly-linked lists, and look like this: |
1165 | |
1166 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1167 | | Size of previous chunk | |
1168 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1169 | `head:' | Size of chunk, in bytes |P| |
1170 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1171 | | Forward pointer to next chunk in list | |
1172 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1173 | | Back pointer to previous chunk in list | |
1174 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1175 | | Unused space (may be 0 bytes long) . |
1176 | . . |
1177 | . | |
1178 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1179 | `foot:' | Size of chunk, in bytes | |
1180 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1181 | |
1182 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the |
1183 | chunk size (which is always a multiple of two words), is an in-use |
1184 | bit for the *previous* chunk. If that bit is *clear*, then the |
1185 | word before the current chunk size contains the previous chunk |
1186 | size, and can be used to find the front of the previous chunk. |
1187 | The very first chunk allocated always has this bit set, |
1188 | preventing access to non-existent (or non-owned) memory. If |
1189 | prev_inuse is set for any given chunk, then you CANNOT determine |
1190 | the size of the previous chunk, and might even get a memory |
1191 | addressing fault when trying to do so. |
1192 | |
1193 | Note that the `foot' of the current chunk is actually represented |
1194 | as the prev_size of the NEXT chunk. This makes it easier to |
1195 | deal with alignments etc but can be very confusing when trying |
1196 | to extend or adapt this code. |
1197 | |
1198 | The two exceptions to all this are |
1199 | |
1200 | 1. The special chunk `top' doesn't bother using the |
1201 | trailing size field since there is no next contiguous chunk |
1202 | that would have to index off it. After initialization, `top' |
1203 | is forced to always exist. If it would become less than |
1204 | MINSIZE bytes long, it is replenished. |
1205 | |
1206 | 2. Chunks allocated via mmap, which have the second-lowest-order |
1207 | bit M (IS_MMAPPED) set in their size fields. Because they are |
1208 | allocated one-by-one, each must contain its own trailing size field. |
1209 | |
1210 | */ |
1211 | |
1212 | /* |
1213 | ---------- Size and alignment checks and conversions ---------- |
1214 | */ |
1215 | |
1216 | /* conversion from malloc headers to user pointers, and back */ |
1217 | |
1218 | #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ)) |
1219 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) |
1220 | |
1221 | /* The smallest possible chunk */ |
1222 | #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize)) |
1223 | |
1224 | /* The smallest size we can malloc is an aligned minimal chunk */ |
1225 | |
1226 | #define MINSIZE \ |
1227 | (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)) |
1228 | |
1229 | /* Check if m has acceptable alignment */ |
1230 | |
1231 | #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0) |
1232 | |
1233 | #define misaligned_chunk(p) \ |
1234 | ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \ |
1235 | & MALLOC_ALIGN_MASK) |
1236 | |
1237 | |
1238 | /* |
1239 | Check if a request is so large that it would wrap around zero when |
1240 | padded and aligned. To simplify some other code, the bound is made |
1241 | low enough so that adding MINSIZE will also not wrap around zero. |
1242 | */ |
1243 | |
1244 | #define REQUEST_OUT_OF_RANGE(req) \ |
1245 | ((unsigned long) (req) >= \ |
1246 | (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE)) |
1247 | |
1248 | /* pad request bytes into a usable size -- internal version */ |
1249 | |
1250 | #define request2size(req) \ |
1251 | (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \ |
1252 | MINSIZE : \ |
1253 | ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK) |
1254 | |
1255 | /* Same, except also perform argument check */ |
1256 | |
1257 | #define checked_request2size(req, sz) \ |
1258 | if (REQUEST_OUT_OF_RANGE (req)) { \ |
1259 | __set_errno (ENOMEM); \ |
1260 | return 0; \ |
1261 | } \ |
1262 | (sz) = request2size (req); |
1263 | |
1264 | /* |
1265 | --------------- Physical chunk operations --------------- |
1266 | */ |
1267 | |
1268 | |
1269 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ |
1270 | #define PREV_INUSE 0x1 |
1271 | |
1272 | /* extract inuse bit of previous chunk */ |
1273 | #define prev_inuse(p) ((p)->size & PREV_INUSE) |
1274 | |
1275 | |
1276 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ |
1277 | #define IS_MMAPPED 0x2 |
1278 | |
1279 | /* check for mmap()'ed chunk */ |
1280 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) |
1281 | |
1282 | |
1283 | /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained |
1284 | from a non-main arena. This is only set immediately before handing |
1285 | the chunk to the user, if necessary. */ |
1286 | #define NON_MAIN_ARENA 0x4 |
1287 | |
1288 | /* check for chunk from non-main arena */ |
1289 | #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA) |
1290 | |
1291 | |
1292 | /* |
1293 | Bits to mask off when extracting size |
1294 | |
1295 | Note: IS_MMAPPED is intentionally not masked off from size field in |
1296 | macros for which mmapped chunks should never be seen. This should |
1297 | cause helpful core dumps to occur if it is tried by accident by |
1298 | people extending or adapting this malloc. |
1299 | */ |
1300 | #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA) |
1301 | |
1302 | /* Get size, ignoring use bits */ |
1303 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) |
1304 | |
1305 | |
1306 | /* Ptr to next physical malloc_chunk. */ |
1307 | #define next_chunk(p) ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS))) |
1308 | |
1309 | /* Ptr to previous physical malloc_chunk */ |
1310 | #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - ((p)->prev_size))) |
1311 | |
1312 | /* Treat space at ptr + offset as a chunk */ |
1313 | #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s))) |
1314 | |
1315 | /* extract p's inuse bit */ |
1316 | #define inuse(p) \ |
1317 | ((((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE) |
1318 | |
1319 | /* set/clear chunk as being inuse without otherwise disturbing */ |
1320 | #define set_inuse(p) \ |
1321 | ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE |
1322 | |
1323 | #define clear_inuse(p) \ |
1324 | ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE) |
1325 | |
1326 | |
1327 | /* check/set/clear inuse bits in known places */ |
1328 | #define inuse_bit_at_offset(p, s) \ |
1329 | (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE) |
1330 | |
1331 | #define set_inuse_bit_at_offset(p, s) \ |
1332 | (((mchunkptr) (((char *) (p)) + (s)))->size |= PREV_INUSE) |
1333 | |
1334 | #define clear_inuse_bit_at_offset(p, s) \ |
1335 | (((mchunkptr) (((char *) (p)) + (s)))->size &= ~(PREV_INUSE)) |
1336 | |
1337 | |
1338 | /* Set size at head, without disturbing its use bit */ |
1339 | #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s))) |
1340 | |
1341 | /* Set size/use field */ |
1342 | #define set_head(p, s) ((p)->size = (s)) |
1343 | |
1344 | /* Set size at footer (only when chunk is not in use) */ |
1345 | #define (p, s) (((mchunkptr) ((char *) (p) + (s)))->prev_size = (s)) |
1346 | |
1347 | |
1348 | /* |
1349 | -------------------- Internal data structures -------------------- |
1350 | |
1351 | All internal state is held in an instance of malloc_state defined |
1352 | below. There are no other static variables, except in two optional |
1353 | cases: |
1354 | * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. |
1355 | * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor |
1356 | for mmap. |
1357 | |
1358 | Beware of lots of tricks that minimize the total bookkeeping space |
1359 | requirements. The result is a little over 1K bytes (for 4byte |
1360 | pointers and size_t.) |
1361 | */ |
1362 | |
1363 | /* |
1364 | Bins |
1365 | |
1366 | An array of bin headers for free chunks. Each bin is doubly |
1367 | linked. The bins are approximately proportionally (log) spaced. |
1368 | There are a lot of these bins (128). This may look excessive, but |
1369 | works very well in practice. Most bins hold sizes that are |
1370 | unusual as malloc request sizes, but are more usual for fragments |
1371 | and consolidated sets of chunks, which is what these bins hold, so |
1372 | they can be found quickly. All procedures maintain the invariant |
1373 | that no consolidated chunk physically borders another one, so each |
1374 | chunk in a list is known to be preceeded and followed by either |
1375 | inuse chunks or the ends of memory. |
1376 | |
1377 | Chunks in bins are kept in size order, with ties going to the |
1378 | approximately least recently used chunk. Ordering isn't needed |
1379 | for the small bins, which all contain the same-sized chunks, but |
1380 | facilitates best-fit allocation for larger chunks. These lists |
1381 | are just sequential. Keeping them in order almost never requires |
1382 | enough traversal to warrant using fancier ordered data |
1383 | structures. |
1384 | |
1385 | Chunks of the same size are linked with the most |
1386 | recently freed at the front, and allocations are taken from the |
1387 | back. This results in LRU (FIFO) allocation order, which tends |
1388 | to give each chunk an equal opportunity to be consolidated with |
1389 | adjacent freed chunks, resulting in larger free chunks and less |
1390 | fragmentation. |
1391 | |
1392 | To simplify use in double-linked lists, each bin header acts |
1393 | as a malloc_chunk. This avoids special-casing for headers. |
1394 | But to conserve space and improve locality, we allocate |
1395 | only the fd/bk pointers of bins, and then use repositioning tricks |
1396 | to treat these as the fields of a malloc_chunk*. |
1397 | */ |
1398 | |
1399 | typedef struct malloc_chunk *mbinptr; |
1400 | |
1401 | /* addressing -- note that bin_at(0) does not exist */ |
1402 | #define bin_at(m, i) \ |
1403 | (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \ |
1404 | - offsetof (struct malloc_chunk, fd)) |
1405 | |
1406 | /* analog of ++bin */ |
1407 | #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1))) |
1408 | |
1409 | /* Reminders about list directionality within bins */ |
1410 | #define first(b) ((b)->fd) |
1411 | #define last(b) ((b)->bk) |
1412 | |
1413 | /* Take a chunk off a bin list */ |
1414 | #define unlink(AV, P, BK, FD) { \ |
1415 | FD = P->fd; \ |
1416 | BK = P->bk; \ |
1417 | if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \ |
1418 | malloc_printerr (check_action, "corrupted double-linked list", P, AV); \ |
1419 | else { \ |
1420 | FD->bk = BK; \ |
1421 | BK->fd = FD; \ |
1422 | if (!in_smallbin_range (P->size) \ |
1423 | && __builtin_expect (P->fd_nextsize != NULL, 0)) { \ |
1424 | if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \ |
1425 | || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \ |
1426 | malloc_printerr (check_action, \ |
1427 | "corrupted double-linked list (not small)", \ |
1428 | P, AV); \ |
1429 | if (FD->fd_nextsize == NULL) { \ |
1430 | if (P->fd_nextsize == P) \ |
1431 | FD->fd_nextsize = FD->bk_nextsize = FD; \ |
1432 | else { \ |
1433 | FD->fd_nextsize = P->fd_nextsize; \ |
1434 | FD->bk_nextsize = P->bk_nextsize; \ |
1435 | P->fd_nextsize->bk_nextsize = FD; \ |
1436 | P->bk_nextsize->fd_nextsize = FD; \ |
1437 | } \ |
1438 | } else { \ |
1439 | P->fd_nextsize->bk_nextsize = P->bk_nextsize; \ |
1440 | P->bk_nextsize->fd_nextsize = P->fd_nextsize; \ |
1441 | } \ |
1442 | } \ |
1443 | } \ |
1444 | } |
1445 | |
1446 | /* |
1447 | Indexing |
1448 | |
1449 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced |
1450 | 8 bytes apart. Larger bins are approximately logarithmically spaced: |
1451 | |
1452 | 64 bins of size 8 |
1453 | 32 bins of size 64 |
1454 | 16 bins of size 512 |
1455 | 8 bins of size 4096 |
1456 | 4 bins of size 32768 |
1457 | 2 bins of size 262144 |
1458 | 1 bin of size what's left |
1459 | |
1460 | There is actually a little bit of slop in the numbers in bin_index |
1461 | for the sake of speed. This makes no difference elsewhere. |
1462 | |
1463 | The bins top out around 1MB because we expect to service large |
1464 | requests via mmap. |
1465 | |
1466 | Bin 0 does not exist. Bin 1 is the unordered list; if that would be |
1467 | a valid chunk size the small bins are bumped up one. |
1468 | */ |
1469 | |
1470 | #define NBINS 128 |
1471 | #define NSMALLBINS 64 |
1472 | #define SMALLBIN_WIDTH MALLOC_ALIGNMENT |
1473 | #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ) |
1474 | #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH) |
1475 | |
1476 | #define in_smallbin_range(sz) \ |
1477 | ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE) |
1478 | |
1479 | #define smallbin_index(sz) \ |
1480 | ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\ |
1481 | + SMALLBIN_CORRECTION) |
1482 | |
1483 | #define largebin_index_32(sz) \ |
1484 | (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\ |
1485 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1486 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1487 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1488 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1489 | 126) |
1490 | |
1491 | #define largebin_index_32_big(sz) \ |
1492 | (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\ |
1493 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1494 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1495 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1496 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1497 | 126) |
1498 | |
1499 | // XXX It remains to be seen whether it is good to keep the widths of |
1500 | // XXX the buckets the same or whether it should be scaled by a factor |
1501 | // XXX of two as well. |
1502 | #define largebin_index_64(sz) \ |
1503 | (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\ |
1504 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1505 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1506 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1507 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1508 | 126) |
1509 | |
1510 | #define largebin_index(sz) \ |
1511 | (SIZE_SZ == 8 ? largebin_index_64 (sz) \ |
1512 | : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \ |
1513 | : largebin_index_32 (sz)) |
1514 | |
1515 | #define bin_index(sz) \ |
1516 | ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz)) |
1517 | |
1518 | |
1519 | /* |
1520 | Unsorted chunks |
1521 | |
1522 | All remainders from chunk splits, as well as all returned chunks, |
1523 | are first placed in the "unsorted" bin. They are then placed |
1524 | in regular bins after malloc gives them ONE chance to be used before |
1525 | binning. So, basically, the unsorted_chunks list acts as a queue, |
1526 | with chunks being placed on it in free (and malloc_consolidate), |
1527 | and taken off (to be either used or placed in bins) in malloc. |
1528 | |
1529 | The NON_MAIN_ARENA flag is never set for unsorted chunks, so it |
1530 | does not have to be taken into account in size comparisons. |
1531 | */ |
1532 | |
1533 | /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */ |
1534 | #define unsorted_chunks(M) (bin_at (M, 1)) |
1535 | |
1536 | /* |
1537 | Top |
1538 | |
1539 | The top-most available chunk (i.e., the one bordering the end of |
1540 | available memory) is treated specially. It is never included in |
1541 | any bin, is used only if no other chunk is available, and is |
1542 | released back to the system if it is very large (see |
1543 | M_TRIM_THRESHOLD). Because top initially |
1544 | points to its own bin with initial zero size, thus forcing |
1545 | extension on the first malloc request, we avoid having any special |
1546 | code in malloc to check whether it even exists yet. But we still |
1547 | need to do so when getting memory from system, so we make |
1548 | initial_top treat the bin as a legal but unusable chunk during the |
1549 | interval between initialization and the first call to |
1550 | sysmalloc. (This is somewhat delicate, since it relies on |
1551 | the 2 preceding words to be zero during this interval as well.) |
1552 | */ |
1553 | |
1554 | /* Conveniently, the unsorted bin can be used as dummy top on first call */ |
1555 | #define initial_top(M) (unsorted_chunks (M)) |
1556 | |
1557 | /* |
1558 | Binmap |
1559 | |
1560 | To help compensate for the large number of bins, a one-level index |
1561 | structure is used for bin-by-bin searching. `binmap' is a |
1562 | bitvector recording whether bins are definitely empty so they can |
1563 | be skipped over during during traversals. The bits are NOT always |
1564 | cleared as soon as bins are empty, but instead only |
1565 | when they are noticed to be empty during traversal in malloc. |
1566 | */ |
1567 | |
1568 | /* Conservatively use 32 bits per map word, even if on 64bit system */ |
1569 | #define BINMAPSHIFT 5 |
1570 | #define BITSPERMAP (1U << BINMAPSHIFT) |
1571 | #define BINMAPSIZE (NBINS / BITSPERMAP) |
1572 | |
1573 | #define idx2block(i) ((i) >> BINMAPSHIFT) |
1574 | #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1)))) |
1575 | |
1576 | #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i)) |
1577 | #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i))) |
1578 | #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i)) |
1579 | |
1580 | /* |
1581 | Fastbins |
1582 | |
1583 | An array of lists holding recently freed small chunks. Fastbins |
1584 | are not doubly linked. It is faster to single-link them, and |
1585 | since chunks are never removed from the middles of these lists, |
1586 | double linking is not necessary. Also, unlike regular bins, they |
1587 | are not even processed in FIFO order (they use faster LIFO) since |
1588 | ordering doesn't much matter in the transient contexts in which |
1589 | fastbins are normally used. |
1590 | |
1591 | Chunks in fastbins keep their inuse bit set, so they cannot |
1592 | be consolidated with other free chunks. malloc_consolidate |
1593 | releases all chunks in fastbins and consolidates them with |
1594 | other free chunks. |
1595 | */ |
1596 | |
1597 | typedef struct malloc_chunk *mfastbinptr; |
1598 | #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx]) |
1599 | |
1600 | /* offset 2 to use otherwise unindexable first 2 bins */ |
1601 | #define fastbin_index(sz) \ |
1602 | ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2) |
1603 | |
1604 | |
1605 | /* The maximum fastbin request size we support */ |
1606 | #define MAX_FAST_SIZE (80 * SIZE_SZ / 4) |
1607 | |
1608 | #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1) |
1609 | |
1610 | /* |
1611 | FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free() |
1612 | that triggers automatic consolidation of possibly-surrounding |
1613 | fastbin chunks. This is a heuristic, so the exact value should not |
1614 | matter too much. It is defined at half the default trim threshold as a |
1615 | compromise heuristic to only attempt consolidation if it is likely |
1616 | to lead to trimming. However, it is not dynamically tunable, since |
1617 | consolidation reduces fragmentation surrounding large chunks even |
1618 | if trimming is not used. |
1619 | */ |
1620 | |
1621 | #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL) |
1622 | |
1623 | /* |
1624 | Since the lowest 2 bits in max_fast don't matter in size comparisons, |
1625 | they are used as flags. |
1626 | */ |
1627 | |
1628 | /* |
1629 | FASTCHUNKS_BIT held in max_fast indicates that there are probably |
1630 | some fastbin chunks. It is set true on entering a chunk into any |
1631 | fastbin, and cleared only in malloc_consolidate. |
1632 | |
1633 | The truth value is inverted so that have_fastchunks will be true |
1634 | upon startup (since statics are zero-filled), simplifying |
1635 | initialization checks. |
1636 | */ |
1637 | |
1638 | #define FASTCHUNKS_BIT (1U) |
1639 | |
1640 | #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0) |
1641 | #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT) |
1642 | #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT) |
1643 | |
1644 | /* |
1645 | NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous |
1646 | regions. Otherwise, contiguity is exploited in merging together, |
1647 | when possible, results from consecutive MORECORE calls. |
1648 | |
1649 | The initial value comes from MORECORE_CONTIGUOUS, but is |
1650 | changed dynamically if mmap is ever used as an sbrk substitute. |
1651 | */ |
1652 | |
1653 | #define NONCONTIGUOUS_BIT (2U) |
1654 | |
1655 | #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0) |
1656 | #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0) |
1657 | #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT) |
1658 | #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT) |
1659 | |
1660 | /* ARENA_CORRUPTION_BIT is set if a memory corruption was detected on the |
1661 | arena. Such an arena is no longer used to allocate chunks. Chunks |
1662 | allocated in that arena before detecting corruption are not freed. */ |
1663 | |
1664 | #define ARENA_CORRUPTION_BIT (4U) |
1665 | |
1666 | #define arena_is_corrupt(A) (((A)->flags & ARENA_CORRUPTION_BIT)) |
1667 | #define set_arena_corrupt(A) ((A)->flags |= ARENA_CORRUPTION_BIT) |
1668 | |
1669 | /* |
1670 | Set value of max_fast. |
1671 | Use impossibly small value if 0. |
1672 | Precondition: there are no existing fastbin chunks. |
1673 | Setting the value clears fastchunk bit but preserves noncontiguous bit. |
1674 | */ |
1675 | |
1676 | #define set_max_fast(s) \ |
1677 | global_max_fast = (((s) == 0) \ |
1678 | ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK)) |
1679 | #define get_max_fast() global_max_fast |
1680 | |
1681 | |
1682 | /* |
1683 | ----------- Internal state representation and initialization ----------- |
1684 | */ |
1685 | |
1686 | struct malloc_state |
1687 | { |
1688 | /* Serialize access. */ |
1689 | mutex_t mutex; |
1690 | |
1691 | /* Flags (formerly in max_fast). */ |
1692 | int flags; |
1693 | |
1694 | /* Fastbins */ |
1695 | mfastbinptr fastbinsY[NFASTBINS]; |
1696 | |
1697 | /* Base of the topmost chunk -- not otherwise kept in a bin */ |
1698 | mchunkptr top; |
1699 | |
1700 | /* The remainder from the most recent split of a small request */ |
1701 | mchunkptr last_remainder; |
1702 | |
1703 | /* Normal bins packed as described above */ |
1704 | mchunkptr bins[NBINS * 2 - 2]; |
1705 | |
1706 | /* Bitmap of bins */ |
1707 | unsigned int binmap[BINMAPSIZE]; |
1708 | |
1709 | /* Linked list */ |
1710 | struct malloc_state *next; |
1711 | |
1712 | /* Linked list for free arenas. Access to this field is serialized |
1713 | by free_list_lock in arena.c. */ |
1714 | struct malloc_state *next_free; |
1715 | |
1716 | /* Number of threads attached to this arena. 0 if the arena is on |
1717 | the free list. Access to this field is serialized by |
1718 | free_list_lock in arena.c. */ |
1719 | INTERNAL_SIZE_T attached_threads; |
1720 | |
1721 | /* Memory allocated from the system in this arena. */ |
1722 | INTERNAL_SIZE_T system_mem; |
1723 | INTERNAL_SIZE_T max_system_mem; |
1724 | }; |
1725 | |
1726 | struct malloc_par |
1727 | { |
1728 | /* Tunable parameters */ |
1729 | unsigned long trim_threshold; |
1730 | INTERNAL_SIZE_T top_pad; |
1731 | INTERNAL_SIZE_T mmap_threshold; |
1732 | INTERNAL_SIZE_T arena_test; |
1733 | INTERNAL_SIZE_T arena_max; |
1734 | |
1735 | /* Memory map support */ |
1736 | int n_mmaps; |
1737 | int n_mmaps_max; |
1738 | int max_n_mmaps; |
1739 | /* the mmap_threshold is dynamic, until the user sets |
1740 | it manually, at which point we need to disable any |
1741 | dynamic behavior. */ |
1742 | int no_dyn_threshold; |
1743 | |
1744 | /* Statistics */ |
1745 | INTERNAL_SIZE_T mmapped_mem; |
1746 | /*INTERNAL_SIZE_T sbrked_mem;*/ |
1747 | /*INTERNAL_SIZE_T max_sbrked_mem;*/ |
1748 | INTERNAL_SIZE_T max_mmapped_mem; |
1749 | INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */ |
1750 | |
1751 | /* First address handed out by MORECORE/sbrk. */ |
1752 | char *sbrk_base; |
1753 | }; |
1754 | |
1755 | /* There are several instances of this struct ("arenas") in this |
1756 | malloc. If you are adapting this malloc in a way that does NOT use |
1757 | a static or mmapped malloc_state, you MUST explicitly zero-fill it |
1758 | before using. This malloc relies on the property that malloc_state |
1759 | is initialized to all zeroes (as is true of C statics). */ |
1760 | |
1761 | static struct malloc_state main_arena = |
1762 | { |
1763 | .mutex = _LIBC_LOCK_INITIALIZER, |
1764 | .next = &main_arena, |
1765 | .attached_threads = 1 |
1766 | }; |
1767 | |
1768 | /* There is only one instance of the malloc parameters. */ |
1769 | |
1770 | static struct malloc_par mp_ = |
1771 | { |
1772 | .top_pad = DEFAULT_TOP_PAD, |
1773 | .n_mmaps_max = DEFAULT_MMAP_MAX, |
1774 | .mmap_threshold = DEFAULT_MMAP_THRESHOLD, |
1775 | .trim_threshold = DEFAULT_TRIM_THRESHOLD, |
1776 | #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8)) |
1777 | .arena_test = NARENAS_FROM_NCORES (1) |
1778 | }; |
1779 | |
1780 | |
1781 | /* Non public mallopt parameters. */ |
1782 | #define M_ARENA_TEST -7 |
1783 | #define M_ARENA_MAX -8 |
1784 | |
1785 | |
1786 | /* Maximum size of memory handled in fastbins. */ |
1787 | static INTERNAL_SIZE_T global_max_fast; |
1788 | |
1789 | /* |
1790 | Initialize a malloc_state struct. |
1791 | |
1792 | This is called only from within malloc_consolidate, which needs |
1793 | be called in the same contexts anyway. It is never called directly |
1794 | outside of malloc_consolidate because some optimizing compilers try |
1795 | to inline it at all call points, which turns out not to be an |
1796 | optimization at all. (Inlining it in malloc_consolidate is fine though.) |
1797 | */ |
1798 | |
1799 | static void |
1800 | malloc_init_state (mstate av) |
1801 | { |
1802 | int i; |
1803 | mbinptr bin; |
1804 | |
1805 | /* Establish circular links for normal bins */ |
1806 | for (i = 1; i < NBINS; ++i) |
1807 | { |
1808 | bin = bin_at (av, i); |
1809 | bin->fd = bin->bk = bin; |
1810 | } |
1811 | |
1812 | #if MORECORE_CONTIGUOUS |
1813 | if (av != &main_arena) |
1814 | #endif |
1815 | set_noncontiguous (av); |
1816 | if (av == &main_arena) |
1817 | set_max_fast (DEFAULT_MXFAST); |
1818 | av->flags |= FASTCHUNKS_BIT; |
1819 | |
1820 | av->top = initial_top (av); |
1821 | } |
1822 | |
1823 | /* |
1824 | Other internal utilities operating on mstates |
1825 | */ |
1826 | |
1827 | static void *sysmalloc (INTERNAL_SIZE_T, mstate); |
1828 | static int systrim (size_t, mstate); |
1829 | static void malloc_consolidate (mstate); |
1830 | |
1831 | |
1832 | /* -------------- Early definitions for debugging hooks ---------------- */ |
1833 | |
1834 | /* Define and initialize the hook variables. These weak definitions must |
1835 | appear before any use of the variables in a function (arena.c uses one). */ |
1836 | #ifndef weak_variable |
1837 | /* In GNU libc we want the hook variables to be weak definitions to |
1838 | avoid a problem with Emacs. */ |
1839 | # define weak_variable weak_function |
1840 | #endif |
1841 | |
1842 | /* Forward declarations. */ |
1843 | static void *malloc_hook_ini (size_t sz, |
1844 | const void *caller) __THROW; |
1845 | static void *realloc_hook_ini (void *ptr, size_t sz, |
1846 | const void *caller) __THROW; |
1847 | static void *memalign_hook_ini (size_t alignment, size_t sz, |
1848 | const void *caller) __THROW; |
1849 | |
1850 | void weak_variable (*__malloc_initialize_hook) (void) = NULL; |
1851 | void weak_variable (*__free_hook) (void *__ptr, |
1852 | const void *) = NULL; |
1853 | void *weak_variable (*__malloc_hook) |
1854 | (size_t __size, const void *) = malloc_hook_ini; |
1855 | void *weak_variable (*__realloc_hook) |
1856 | (void *__ptr, size_t __size, const void *) |
1857 | = realloc_hook_ini; |
1858 | void *weak_variable (*__memalign_hook) |
1859 | (size_t __alignment, size_t __size, const void *) |
1860 | = memalign_hook_ini; |
1861 | void weak_variable (*__after_morecore_hook) (void) = NULL; |
1862 | |
1863 | |
1864 | /* ---------------- Error behavior ------------------------------------ */ |
1865 | |
1866 | #ifndef DEFAULT_CHECK_ACTION |
1867 | # define DEFAULT_CHECK_ACTION 3 |
1868 | #endif |
1869 | |
1870 | static int check_action = DEFAULT_CHECK_ACTION; |
1871 | |
1872 | |
1873 | /* ------------------ Testing support ----------------------------------*/ |
1874 | |
1875 | static int perturb_byte; |
1876 | |
1877 | static void |
1878 | alloc_perturb (char *p, size_t n) |
1879 | { |
1880 | if (__glibc_unlikely (perturb_byte)) |
1881 | memset (p, perturb_byte ^ 0xff, n); |
1882 | } |
1883 | |
1884 | static void |
1885 | free_perturb (char *p, size_t n) |
1886 | { |
1887 | if (__glibc_unlikely (perturb_byte)) |
1888 | memset (p, perturb_byte, n); |
1889 | } |
1890 | |
1891 | |
1892 | |
1893 | #include <stap-probe.h> |
1894 | |
1895 | /* ------------------- Support for multiple arenas -------------------- */ |
1896 | #include "arena.c" |
1897 | |
1898 | /* |
1899 | Debugging support |
1900 | |
1901 | These routines make a number of assertions about the states |
1902 | of data structures that should be true at all times. If any |
1903 | are not true, it's very likely that a user program has somehow |
1904 | trashed memory. (It's also possible that there is a coding error |
1905 | in malloc. In which case, please report it!) |
1906 | */ |
1907 | |
1908 | #if !MALLOC_DEBUG |
1909 | |
1910 | # define check_chunk(A, P) |
1911 | # define check_free_chunk(A, P) |
1912 | # define check_inuse_chunk(A, P) |
1913 | # define check_remalloced_chunk(A, P, N) |
1914 | # define check_malloced_chunk(A, P, N) |
1915 | # define check_malloc_state(A) |
1916 | |
1917 | #else |
1918 | |
1919 | # define check_chunk(A, P) do_check_chunk (A, P) |
1920 | # define check_free_chunk(A, P) do_check_free_chunk (A, P) |
1921 | # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P) |
1922 | # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N) |
1923 | # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N) |
1924 | # define check_malloc_state(A) do_check_malloc_state (A) |
1925 | |
1926 | /* |
1927 | Properties of all chunks |
1928 | */ |
1929 | |
1930 | static void |
1931 | do_check_chunk (mstate av, mchunkptr p) |
1932 | { |
1933 | unsigned long sz = chunksize (p); |
1934 | /* min and max possible addresses assuming contiguous allocation */ |
1935 | char *max_address = (char *) (av->top) + chunksize (av->top); |
1936 | char *min_address = max_address - av->system_mem; |
1937 | |
1938 | if (!chunk_is_mmapped (p)) |
1939 | { |
1940 | /* Has legal address ... */ |
1941 | if (p != av->top) |
1942 | { |
1943 | if (contiguous (av)) |
1944 | { |
1945 | assert (((char *) p) >= min_address); |
1946 | assert (((char *) p + sz) <= ((char *) (av->top))); |
1947 | } |
1948 | } |
1949 | else |
1950 | { |
1951 | /* top size is always at least MINSIZE */ |
1952 | assert ((unsigned long) (sz) >= MINSIZE); |
1953 | /* top predecessor always marked inuse */ |
1954 | assert (prev_inuse (p)); |
1955 | } |
1956 | } |
1957 | else |
1958 | { |
1959 | /* address is outside main heap */ |
1960 | if (contiguous (av) && av->top != initial_top (av)) |
1961 | { |
1962 | assert (((char *) p) < min_address || ((char *) p) >= max_address); |
1963 | } |
1964 | /* chunk is page-aligned */ |
1965 | assert (((p->prev_size + sz) & (GLRO (dl_pagesize) - 1)) == 0); |
1966 | /* mem is aligned */ |
1967 | assert (aligned_OK (chunk2mem (p))); |
1968 | } |
1969 | } |
1970 | |
1971 | /* |
1972 | Properties of free chunks |
1973 | */ |
1974 | |
1975 | static void |
1976 | do_check_free_chunk (mstate av, mchunkptr p) |
1977 | { |
1978 | INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA); |
1979 | mchunkptr next = chunk_at_offset (p, sz); |
1980 | |
1981 | do_check_chunk (av, p); |
1982 | |
1983 | /* Chunk must claim to be free ... */ |
1984 | assert (!inuse (p)); |
1985 | assert (!chunk_is_mmapped (p)); |
1986 | |
1987 | /* Unless a special marker, must have OK fields */ |
1988 | if ((unsigned long) (sz) >= MINSIZE) |
1989 | { |
1990 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
1991 | assert (aligned_OK (chunk2mem (p))); |
1992 | /* ... matching footer field */ |
1993 | assert (next->prev_size == sz); |
1994 | /* ... and is fully consolidated */ |
1995 | assert (prev_inuse (p)); |
1996 | assert (next == av->top || inuse (next)); |
1997 | |
1998 | /* ... and has minimally sane links */ |
1999 | assert (p->fd->bk == p); |
2000 | assert (p->bk->fd == p); |
2001 | } |
2002 | else /* markers are always of size SIZE_SZ */ |
2003 | assert (sz == SIZE_SZ); |
2004 | } |
2005 | |
2006 | /* |
2007 | Properties of inuse chunks |
2008 | */ |
2009 | |
2010 | static void |
2011 | do_check_inuse_chunk (mstate av, mchunkptr p) |
2012 | { |
2013 | mchunkptr next; |
2014 | |
2015 | do_check_chunk (av, p); |
2016 | |
2017 | if (chunk_is_mmapped (p)) |
2018 | return; /* mmapped chunks have no next/prev */ |
2019 | |
2020 | /* Check whether it claims to be in use ... */ |
2021 | assert (inuse (p)); |
2022 | |
2023 | next = next_chunk (p); |
2024 | |
2025 | /* ... and is surrounded by OK chunks. |
2026 | Since more things can be checked with free chunks than inuse ones, |
2027 | if an inuse chunk borders them and debug is on, it's worth doing them. |
2028 | */ |
2029 | if (!prev_inuse (p)) |
2030 | { |
2031 | /* Note that we cannot even look at prev unless it is not inuse */ |
2032 | mchunkptr prv = prev_chunk (p); |
2033 | assert (next_chunk (prv) == p); |
2034 | do_check_free_chunk (av, prv); |
2035 | } |
2036 | |
2037 | if (next == av->top) |
2038 | { |
2039 | assert (prev_inuse (next)); |
2040 | assert (chunksize (next) >= MINSIZE); |
2041 | } |
2042 | else if (!inuse (next)) |
2043 | do_check_free_chunk (av, next); |
2044 | } |
2045 | |
2046 | /* |
2047 | Properties of chunks recycled from fastbins |
2048 | */ |
2049 | |
2050 | static void |
2051 | do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2052 | { |
2053 | INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA); |
2054 | |
2055 | if (!chunk_is_mmapped (p)) |
2056 | { |
2057 | assert (av == arena_for_chunk (p)); |
2058 | if (chunk_non_main_arena (p)) |
2059 | assert (av != &main_arena); |
2060 | else |
2061 | assert (av == &main_arena); |
2062 | } |
2063 | |
2064 | do_check_inuse_chunk (av, p); |
2065 | |
2066 | /* Legal size ... */ |
2067 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
2068 | assert ((unsigned long) (sz) >= MINSIZE); |
2069 | /* ... and alignment */ |
2070 | assert (aligned_OK (chunk2mem (p))); |
2071 | /* chunk is less than MINSIZE more than request */ |
2072 | assert ((long) (sz) - (long) (s) >= 0); |
2073 | assert ((long) (sz) - (long) (s + MINSIZE) < 0); |
2074 | } |
2075 | |
2076 | /* |
2077 | Properties of nonrecycled chunks at the point they are malloced |
2078 | */ |
2079 | |
2080 | static void |
2081 | do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2082 | { |
2083 | /* same as recycled case ... */ |
2084 | do_check_remalloced_chunk (av, p, s); |
2085 | |
2086 | /* |
2087 | ... plus, must obey implementation invariant that prev_inuse is |
2088 | always true of any allocated chunk; i.e., that each allocated |
2089 | chunk borders either a previously allocated and still in-use |
2090 | chunk, or the base of its memory arena. This is ensured |
2091 | by making all allocations from the `lowest' part of any found |
2092 | chunk. This does not necessarily hold however for chunks |
2093 | recycled via fastbins. |
2094 | */ |
2095 | |
2096 | assert (prev_inuse (p)); |
2097 | } |
2098 | |
2099 | |
2100 | /* |
2101 | Properties of malloc_state. |
2102 | |
2103 | This may be useful for debugging malloc, as well as detecting user |
2104 | programmer errors that somehow write into malloc_state. |
2105 | |
2106 | If you are extending or experimenting with this malloc, you can |
2107 | probably figure out how to hack this routine to print out or |
2108 | display chunk addresses, sizes, bins, and other instrumentation. |
2109 | */ |
2110 | |
2111 | static void |
2112 | do_check_malloc_state (mstate av) |
2113 | { |
2114 | int i; |
2115 | mchunkptr p; |
2116 | mchunkptr q; |
2117 | mbinptr b; |
2118 | unsigned int idx; |
2119 | INTERNAL_SIZE_T size; |
2120 | unsigned long total = 0; |
2121 | int max_fast_bin; |
2122 | |
2123 | /* internal size_t must be no wider than pointer type */ |
2124 | assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *)); |
2125 | |
2126 | /* alignment is a power of 2 */ |
2127 | assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0); |
2128 | |
2129 | /* cannot run remaining checks until fully initialized */ |
2130 | if (av->top == 0 || av->top == initial_top (av)) |
2131 | return; |
2132 | |
2133 | /* pagesize is a power of 2 */ |
2134 | assert (powerof2(GLRO (dl_pagesize))); |
2135 | |
2136 | /* A contiguous main_arena is consistent with sbrk_base. */ |
2137 | if (av == &main_arena && contiguous (av)) |
2138 | assert ((char *) mp_.sbrk_base + av->system_mem == |
2139 | (char *) av->top + chunksize (av->top)); |
2140 | |
2141 | /* properties of fastbins */ |
2142 | |
2143 | /* max_fast is in allowed range */ |
2144 | assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE)); |
2145 | |
2146 | max_fast_bin = fastbin_index (get_max_fast ()); |
2147 | |
2148 | for (i = 0; i < NFASTBINS; ++i) |
2149 | { |
2150 | p = fastbin (av, i); |
2151 | |
2152 | /* The following test can only be performed for the main arena. |
2153 | While mallopt calls malloc_consolidate to get rid of all fast |
2154 | bins (especially those larger than the new maximum) this does |
2155 | only happen for the main arena. Trying to do this for any |
2156 | other arena would mean those arenas have to be locked and |
2157 | malloc_consolidate be called for them. This is excessive. And |
2158 | even if this is acceptable to somebody it still cannot solve |
2159 | the problem completely since if the arena is locked a |
2160 | concurrent malloc call might create a new arena which then |
2161 | could use the newly invalid fast bins. */ |
2162 | |
2163 | /* all bins past max_fast are empty */ |
2164 | if (av == &main_arena && i > max_fast_bin) |
2165 | assert (p == 0); |
2166 | |
2167 | while (p != 0) |
2168 | { |
2169 | /* each chunk claims to be inuse */ |
2170 | do_check_inuse_chunk (av, p); |
2171 | total += chunksize (p); |
2172 | /* chunk belongs in this bin */ |
2173 | assert (fastbin_index (chunksize (p)) == i); |
2174 | p = p->fd; |
2175 | } |
2176 | } |
2177 | |
2178 | if (total != 0) |
2179 | assert (have_fastchunks (av)); |
2180 | else if (!have_fastchunks (av)) |
2181 | assert (total == 0); |
2182 | |
2183 | /* check normal bins */ |
2184 | for (i = 1; i < NBINS; ++i) |
2185 | { |
2186 | b = bin_at (av, i); |
2187 | |
2188 | /* binmap is accurate (except for bin 1 == unsorted_chunks) */ |
2189 | if (i >= 2) |
2190 | { |
2191 | unsigned int binbit = get_binmap (av, i); |
2192 | int empty = last (b) == b; |
2193 | if (!binbit) |
2194 | assert (empty); |
2195 | else if (!empty) |
2196 | assert (binbit); |
2197 | } |
2198 | |
2199 | for (p = last (b); p != b; p = p->bk) |
2200 | { |
2201 | /* each chunk claims to be free */ |
2202 | do_check_free_chunk (av, p); |
2203 | size = chunksize (p); |
2204 | total += size; |
2205 | if (i >= 2) |
2206 | { |
2207 | /* chunk belongs in bin */ |
2208 | idx = bin_index (size); |
2209 | assert (idx == i); |
2210 | /* lists are sorted */ |
2211 | assert (p->bk == b || |
2212 | (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p)); |
2213 | |
2214 | if (!in_smallbin_range (size)) |
2215 | { |
2216 | if (p->fd_nextsize != NULL) |
2217 | { |
2218 | if (p->fd_nextsize == p) |
2219 | assert (p->bk_nextsize == p); |
2220 | else |
2221 | { |
2222 | if (p->fd_nextsize == first (b)) |
2223 | assert (chunksize (p) < chunksize (p->fd_nextsize)); |
2224 | else |
2225 | assert (chunksize (p) > chunksize (p->fd_nextsize)); |
2226 | |
2227 | if (p == first (b)) |
2228 | assert (chunksize (p) > chunksize (p->bk_nextsize)); |
2229 | else |
2230 | assert (chunksize (p) < chunksize (p->bk_nextsize)); |
2231 | } |
2232 | } |
2233 | else |
2234 | assert (p->bk_nextsize == NULL); |
2235 | } |
2236 | } |
2237 | else if (!in_smallbin_range (size)) |
2238 | assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL); |
2239 | /* chunk is followed by a legal chain of inuse chunks */ |
2240 | for (q = next_chunk (p); |
2241 | (q != av->top && inuse (q) && |
2242 | (unsigned long) (chunksize (q)) >= MINSIZE); |
2243 | q = next_chunk (q)) |
2244 | do_check_inuse_chunk (av, q); |
2245 | } |
2246 | } |
2247 | |
2248 | /* top chunk is OK */ |
2249 | check_chunk (av, av->top); |
2250 | } |
2251 | #endif |
2252 | |
2253 | |
2254 | /* ----------------- Support for debugging hooks -------------------- */ |
2255 | #include "hooks.c" |
2256 | |
2257 | |
2258 | /* ----------- Routines dealing with system allocation -------------- */ |
2259 | |
2260 | /* |
2261 | sysmalloc handles malloc cases requiring more memory from the system. |
2262 | On entry, it is assumed that av->top does not have enough |
2263 | space to service request for nb bytes, thus requiring that av->top |
2264 | be extended or replaced. |
2265 | */ |
2266 | |
2267 | static void * |
2268 | sysmalloc (INTERNAL_SIZE_T nb, mstate av) |
2269 | { |
2270 | mchunkptr old_top; /* incoming value of av->top */ |
2271 | INTERNAL_SIZE_T old_size; /* its size */ |
2272 | char *old_end; /* its end address */ |
2273 | |
2274 | long size; /* arg to first MORECORE or mmap call */ |
2275 | char *brk; /* return value from MORECORE */ |
2276 | |
2277 | long correction; /* arg to 2nd MORECORE call */ |
2278 | char *snd_brk; /* 2nd return val */ |
2279 | |
2280 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ |
2281 | INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ |
2282 | char *aligned_brk; /* aligned offset into brk */ |
2283 | |
2284 | mchunkptr p; /* the allocated/returned chunk */ |
2285 | mchunkptr remainder; /* remainder from allocation */ |
2286 | unsigned long remainder_size; /* its size */ |
2287 | |
2288 | |
2289 | size_t pagesize = GLRO (dl_pagesize); |
2290 | bool tried_mmap = false; |
2291 | |
2292 | |
2293 | /* |
2294 | If have mmap, and the request size meets the mmap threshold, and |
2295 | the system supports mmap, and there are few enough currently |
2296 | allocated mmapped regions, try to directly map this request |
2297 | rather than expanding top. |
2298 | */ |
2299 | |
2300 | if (av == NULL |
2301 | || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) |
2302 | && (mp_.n_mmaps < mp_.n_mmaps_max))) |
2303 | { |
2304 | char *mm; /* return value from mmap call*/ |
2305 | |
2306 | try_mmap: |
2307 | /* |
2308 | Round up size to nearest page. For mmapped chunks, the overhead |
2309 | is one SIZE_SZ unit larger than for normal chunks, because there |
2310 | is no following chunk whose prev_size field could be used. |
2311 | |
2312 | See the front_misalign handling below, for glibc there is no |
2313 | need for further alignments unless we have have high alignment. |
2314 | */ |
2315 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2316 | size = ALIGN_UP (nb + SIZE_SZ, pagesize); |
2317 | else |
2318 | size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize); |
2319 | tried_mmap = true; |
2320 | |
2321 | /* Don't try if size wraps around 0 */ |
2322 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2323 | { |
2324 | mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2325 | |
2326 | if (mm != MAP_FAILED) |
2327 | { |
2328 | /* |
2329 | The offset to the start of the mmapped region is stored |
2330 | in the prev_size field of the chunk. This allows us to adjust |
2331 | returned start address to meet alignment requirements here |
2332 | and in memalign(), and still be able to compute proper |
2333 | address argument for later munmap in free() and realloc(). |
2334 | */ |
2335 | |
2336 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2337 | { |
2338 | /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and |
2339 | MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page |
2340 | aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */ |
2341 | assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0); |
2342 | front_misalign = 0; |
2343 | } |
2344 | else |
2345 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK; |
2346 | if (front_misalign > 0) |
2347 | { |
2348 | correction = MALLOC_ALIGNMENT - front_misalign; |
2349 | p = (mchunkptr) (mm + correction); |
2350 | p->prev_size = correction; |
2351 | set_head (p, (size - correction) | IS_MMAPPED); |
2352 | } |
2353 | else |
2354 | { |
2355 | p = (mchunkptr) mm; |
2356 | set_head (p, size | IS_MMAPPED); |
2357 | } |
2358 | |
2359 | /* update statistics */ |
2360 | |
2361 | int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1; |
2362 | atomic_max (&mp_.max_n_mmaps, new); |
2363 | |
2364 | unsigned long sum; |
2365 | sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size; |
2366 | atomic_max (&mp_.max_mmapped_mem, sum); |
2367 | |
2368 | check_chunk (av, p); |
2369 | |
2370 | return chunk2mem (p); |
2371 | } |
2372 | } |
2373 | } |
2374 | |
2375 | /* There are no usable arenas and mmap also failed. */ |
2376 | if (av == NULL) |
2377 | return 0; |
2378 | |
2379 | /* Record incoming configuration of top */ |
2380 | |
2381 | old_top = av->top; |
2382 | old_size = chunksize (old_top); |
2383 | old_end = (char *) (chunk_at_offset (old_top, old_size)); |
2384 | |
2385 | brk = snd_brk = (char *) (MORECORE_FAILURE); |
2386 | |
2387 | /* |
2388 | If not the first time through, we require old_size to be |
2389 | at least MINSIZE and to have prev_inuse set. |
2390 | */ |
2391 | |
2392 | assert ((old_top == initial_top (av) && old_size == 0) || |
2393 | ((unsigned long) (old_size) >= MINSIZE && |
2394 | prev_inuse (old_top) && |
2395 | ((unsigned long) old_end & (pagesize - 1)) == 0)); |
2396 | |
2397 | /* Precondition: not enough current space to satisfy nb request */ |
2398 | assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE)); |
2399 | |
2400 | |
2401 | if (av != &main_arena) |
2402 | { |
2403 | heap_info *old_heap, *heap; |
2404 | size_t old_heap_size; |
2405 | |
2406 | /* First try to extend the current heap. */ |
2407 | old_heap = heap_for_ptr (old_top); |
2408 | old_heap_size = old_heap->size; |
2409 | if ((long) (MINSIZE + nb - old_size) > 0 |
2410 | && grow_heap (old_heap, MINSIZE + nb - old_size) == 0) |
2411 | { |
2412 | av->system_mem += old_heap->size - old_heap_size; |
2413 | arena_mem += old_heap->size - old_heap_size; |
2414 | set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top) |
2415 | | PREV_INUSE); |
2416 | } |
2417 | else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad))) |
2418 | { |
2419 | /* Use a newly allocated heap. */ |
2420 | heap->ar_ptr = av; |
2421 | heap->prev = old_heap; |
2422 | av->system_mem += heap->size; |
2423 | arena_mem += heap->size; |
2424 | /* Set up the new top. */ |
2425 | top (av) = chunk_at_offset (heap, sizeof (*heap)); |
2426 | set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE); |
2427 | |
2428 | /* Setup fencepost and free the old top chunk with a multiple of |
2429 | MALLOC_ALIGNMENT in size. */ |
2430 | /* The fencepost takes at least MINSIZE bytes, because it might |
2431 | become the top chunk again later. Note that a footer is set |
2432 | up, too, although the chunk is marked in use. */ |
2433 | old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK; |
2434 | set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE); |
2435 | if (old_size >= MINSIZE) |
2436 | { |
2437 | set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE); |
2438 | set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ)); |
2439 | set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA); |
2440 | _int_free (av, old_top, 1); |
2441 | } |
2442 | else |
2443 | { |
2444 | set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE); |
2445 | set_foot (old_top, (old_size + 2 * SIZE_SZ)); |
2446 | } |
2447 | } |
2448 | else if (!tried_mmap) |
2449 | /* We can at least try to use to mmap memory. */ |
2450 | goto try_mmap; |
2451 | } |
2452 | else /* av == main_arena */ |
2453 | |
2454 | |
2455 | { /* Request enough space for nb + pad + overhead */ |
2456 | size = nb + mp_.top_pad + MINSIZE; |
2457 | |
2458 | /* |
2459 | If contiguous, we can subtract out existing space that we hope to |
2460 | combine with new space. We add it back later only if |
2461 | we don't actually get contiguous space. |
2462 | */ |
2463 | |
2464 | if (contiguous (av)) |
2465 | size -= old_size; |
2466 | |
2467 | /* |
2468 | Round to a multiple of page size. |
2469 | If MORECORE is not contiguous, this ensures that we only call it |
2470 | with whole-page arguments. And if MORECORE is contiguous and |
2471 | this is not first time through, this preserves page-alignment of |
2472 | previous calls. Otherwise, we correct to page-align below. |
2473 | */ |
2474 | |
2475 | size = ALIGN_UP (size, pagesize); |
2476 | |
2477 | /* |
2478 | Don't try to call MORECORE if argument is so big as to appear |
2479 | negative. Note that since mmap takes size_t arg, it may succeed |
2480 | below even if we cannot call MORECORE. |
2481 | */ |
2482 | |
2483 | if (size > 0) |
2484 | { |
2485 | brk = (char *) (MORECORE (size)); |
2486 | LIBC_PROBE (memory_sbrk_more, 2, brk, size); |
2487 | } |
2488 | |
2489 | if (brk != (char *) (MORECORE_FAILURE)) |
2490 | { |
2491 | /* Call the `morecore' hook if necessary. */ |
2492 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2493 | if (__builtin_expect (hook != NULL, 0)) |
2494 | (*hook)(); |
2495 | } |
2496 | else |
2497 | { |
2498 | /* |
2499 | If have mmap, try using it as a backup when MORECORE fails or |
2500 | cannot be used. This is worth doing on systems that have "holes" in |
2501 | address space, so sbrk cannot extend to give contiguous space, but |
2502 | space is available elsewhere. Note that we ignore mmap max count |
2503 | and threshold limits, since the space will not be used as a |
2504 | segregated mmap region. |
2505 | */ |
2506 | |
2507 | /* Cannot merge with old top, so add its size back in */ |
2508 | if (contiguous (av)) |
2509 | size = ALIGN_UP (size + old_size, pagesize); |
2510 | |
2511 | /* If we are relying on mmap as backup, then use larger units */ |
2512 | if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE)) |
2513 | size = MMAP_AS_MORECORE_SIZE; |
2514 | |
2515 | /* Don't try if size wraps around 0 */ |
2516 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2517 | { |
2518 | char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2519 | |
2520 | if (mbrk != MAP_FAILED) |
2521 | { |
2522 | /* We do not need, and cannot use, another sbrk call to find end */ |
2523 | brk = mbrk; |
2524 | snd_brk = brk + size; |
2525 | |
2526 | /* |
2527 | Record that we no longer have a contiguous sbrk region. |
2528 | After the first time mmap is used as backup, we do not |
2529 | ever rely on contiguous space since this could incorrectly |
2530 | bridge regions. |
2531 | */ |
2532 | set_noncontiguous (av); |
2533 | } |
2534 | } |
2535 | } |
2536 | |
2537 | if (brk != (char *) (MORECORE_FAILURE)) |
2538 | { |
2539 | if (mp_.sbrk_base == 0) |
2540 | mp_.sbrk_base = brk; |
2541 | av->system_mem += size; |
2542 | |
2543 | /* |
2544 | If MORECORE extends previous space, we can likewise extend top size. |
2545 | */ |
2546 | |
2547 | if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE)) |
2548 | set_head (old_top, (size + old_size) | PREV_INUSE); |
2549 | |
2550 | else if (contiguous (av) && old_size && brk < old_end) |
2551 | { |
2552 | /* Oops! Someone else killed our space.. Can't touch anything. */ |
2553 | malloc_printerr (3, "break adjusted to free malloc space" , brk, |
2554 | av); |
2555 | } |
2556 | |
2557 | /* |
2558 | Otherwise, make adjustments: |
2559 | |
2560 | * If the first time through or noncontiguous, we need to call sbrk |
2561 | just to find out where the end of memory lies. |
2562 | |
2563 | * We need to ensure that all returned chunks from malloc will meet |
2564 | MALLOC_ALIGNMENT |
2565 | |
2566 | * If there was an intervening foreign sbrk, we need to adjust sbrk |
2567 | request size to account for fact that we will not be able to |
2568 | combine new space with existing space in old_top. |
2569 | |
2570 | * Almost all systems internally allocate whole pages at a time, in |
2571 | which case we might as well use the whole last page of request. |
2572 | So we allocate enough more memory to hit a page boundary now, |
2573 | which in turn causes future contiguous calls to page-align. |
2574 | */ |
2575 | |
2576 | else |
2577 | { |
2578 | front_misalign = 0; |
2579 | end_misalign = 0; |
2580 | correction = 0; |
2581 | aligned_brk = brk; |
2582 | |
2583 | /* handle contiguous cases */ |
2584 | if (contiguous (av)) |
2585 | { |
2586 | /* Count foreign sbrk as system_mem. */ |
2587 | if (old_size) |
2588 | av->system_mem += brk - old_end; |
2589 | |
2590 | /* Guarantee alignment of first new chunk made from this space */ |
2591 | |
2592 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2593 | if (front_misalign > 0) |
2594 | { |
2595 | /* |
2596 | Skip over some bytes to arrive at an aligned position. |
2597 | We don't need to specially mark these wasted front bytes. |
2598 | They will never be accessed anyway because |
2599 | prev_inuse of av->top (and any chunk created from its start) |
2600 | is always true after initialization. |
2601 | */ |
2602 | |
2603 | correction = MALLOC_ALIGNMENT - front_misalign; |
2604 | aligned_brk += correction; |
2605 | } |
2606 | |
2607 | /* |
2608 | If this isn't adjacent to existing space, then we will not |
2609 | be able to merge with old_top space, so must add to 2nd request. |
2610 | */ |
2611 | |
2612 | correction += old_size; |
2613 | |
2614 | /* Extend the end address to hit a page boundary */ |
2615 | end_misalign = (INTERNAL_SIZE_T) (brk + size + correction); |
2616 | correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign; |
2617 | |
2618 | assert (correction >= 0); |
2619 | snd_brk = (char *) (MORECORE (correction)); |
2620 | |
2621 | /* |
2622 | If can't allocate correction, try to at least find out current |
2623 | brk. It might be enough to proceed without failing. |
2624 | |
2625 | Note that if second sbrk did NOT fail, we assume that space |
2626 | is contiguous with first sbrk. This is a safe assumption unless |
2627 | program is multithreaded but doesn't use locks and a foreign sbrk |
2628 | occurred between our first and second calls. |
2629 | */ |
2630 | |
2631 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2632 | { |
2633 | correction = 0; |
2634 | snd_brk = (char *) (MORECORE (0)); |
2635 | } |
2636 | else |
2637 | { |
2638 | /* Call the `morecore' hook if necessary. */ |
2639 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2640 | if (__builtin_expect (hook != NULL, 0)) |
2641 | (*hook)(); |
2642 | } |
2643 | } |
2644 | |
2645 | /* handle non-contiguous cases */ |
2646 | else |
2647 | { |
2648 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2649 | /* MORECORE/mmap must correctly align */ |
2650 | assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0); |
2651 | else |
2652 | { |
2653 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2654 | if (front_misalign > 0) |
2655 | { |
2656 | /* |
2657 | Skip over some bytes to arrive at an aligned position. |
2658 | We don't need to specially mark these wasted front bytes. |
2659 | They will never be accessed anyway because |
2660 | prev_inuse of av->top (and any chunk created from its start) |
2661 | is always true after initialization. |
2662 | */ |
2663 | |
2664 | aligned_brk += MALLOC_ALIGNMENT - front_misalign; |
2665 | } |
2666 | } |
2667 | |
2668 | /* Find out current end of memory */ |
2669 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2670 | { |
2671 | snd_brk = (char *) (MORECORE (0)); |
2672 | } |
2673 | } |
2674 | |
2675 | /* Adjust top based on results of second sbrk */ |
2676 | if (snd_brk != (char *) (MORECORE_FAILURE)) |
2677 | { |
2678 | av->top = (mchunkptr) aligned_brk; |
2679 | set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); |
2680 | av->system_mem += correction; |
2681 | |
2682 | /* |
2683 | If not the first time through, we either have a |
2684 | gap due to foreign sbrk or a non-contiguous region. Insert a |
2685 | double fencepost at old_top to prevent consolidation with space |
2686 | we don't own. These fenceposts are artificial chunks that are |
2687 | marked as inuse and are in any case too small to use. We need |
2688 | two to make sizes and alignments work out. |
2689 | */ |
2690 | |
2691 | if (old_size != 0) |
2692 | { |
2693 | /* |
2694 | Shrink old_top to insert fenceposts, keeping size a |
2695 | multiple of MALLOC_ALIGNMENT. We know there is at least |
2696 | enough space in old_top to do this. |
2697 | */ |
2698 | old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK; |
2699 | set_head (old_top, old_size | PREV_INUSE); |
2700 | |
2701 | /* |
2702 | Note that the following assignments completely overwrite |
2703 | old_top when old_size was previously MINSIZE. This is |
2704 | intentional. We need the fencepost, even if old_top otherwise gets |
2705 | lost. |
2706 | */ |
2707 | chunk_at_offset (old_top, old_size)->size = |
2708 | (2 * SIZE_SZ) | PREV_INUSE; |
2709 | |
2710 | chunk_at_offset (old_top, old_size + 2 * SIZE_SZ)->size = |
2711 | (2 * SIZE_SZ) | PREV_INUSE; |
2712 | |
2713 | /* If possible, release the rest. */ |
2714 | if (old_size >= MINSIZE) |
2715 | { |
2716 | _int_free (av, old_top, 1); |
2717 | } |
2718 | } |
2719 | } |
2720 | } |
2721 | } |
2722 | } /* if (av != &main_arena) */ |
2723 | |
2724 | if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem)) |
2725 | av->max_system_mem = av->system_mem; |
2726 | check_malloc_state (av); |
2727 | |
2728 | /* finally, do the allocation */ |
2729 | p = av->top; |
2730 | size = chunksize (p); |
2731 | |
2732 | /* check that one of the above allocation paths succeeded */ |
2733 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
2734 | { |
2735 | remainder_size = size - nb; |
2736 | remainder = chunk_at_offset (p, nb); |
2737 | av->top = remainder; |
2738 | set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
2739 | set_head (remainder, remainder_size | PREV_INUSE); |
2740 | check_malloced_chunk (av, p, nb); |
2741 | return chunk2mem (p); |
2742 | } |
2743 | |
2744 | /* catch all failure paths */ |
2745 | __set_errno (ENOMEM); |
2746 | return 0; |
2747 | } |
2748 | |
2749 | |
2750 | /* |
2751 | systrim is an inverse of sorts to sysmalloc. It gives memory back |
2752 | to the system (via negative arguments to sbrk) if there is unused |
2753 | memory at the `high' end of the malloc pool. It is called |
2754 | automatically by free() when top space exceeds the trim |
2755 | threshold. It is also called by the public malloc_trim routine. It |
2756 | returns 1 if it actually released any memory, else 0. |
2757 | */ |
2758 | |
2759 | static int |
2760 | systrim (size_t pad, mstate av) |
2761 | { |
2762 | long top_size; /* Amount of top-most memory */ |
2763 | long ; /* Amount to release */ |
2764 | long released; /* Amount actually released */ |
2765 | char *current_brk; /* address returned by pre-check sbrk call */ |
2766 | char *new_brk; /* address returned by post-check sbrk call */ |
2767 | size_t pagesize; |
2768 | long top_area; |
2769 | |
2770 | pagesize = GLRO (dl_pagesize); |
2771 | top_size = chunksize (av->top); |
2772 | |
2773 | top_area = top_size - MINSIZE - 1; |
2774 | if (top_area <= pad) |
2775 | return 0; |
2776 | |
2777 | /* Release in pagesize units and round down to the nearest page. */ |
2778 | extra = ALIGN_DOWN(top_area - pad, pagesize); |
2779 | |
2780 | if (extra == 0) |
2781 | return 0; |
2782 | |
2783 | /* |
2784 | Only proceed if end of memory is where we last set it. |
2785 | This avoids problems if there were foreign sbrk calls. |
2786 | */ |
2787 | current_brk = (char *) (MORECORE (0)); |
2788 | if (current_brk == (char *) (av->top) + top_size) |
2789 | { |
2790 | /* |
2791 | Attempt to release memory. We ignore MORECORE return value, |
2792 | and instead call again to find out where new end of memory is. |
2793 | This avoids problems if first call releases less than we asked, |
2794 | of if failure somehow altered brk value. (We could still |
2795 | encounter problems if it altered brk in some very bad way, |
2796 | but the only thing we can do is adjust anyway, which will cause |
2797 | some downstream failure.) |
2798 | */ |
2799 | |
2800 | MORECORE (-extra); |
2801 | /* Call the `morecore' hook if necessary. */ |
2802 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2803 | if (__builtin_expect (hook != NULL, 0)) |
2804 | (*hook)(); |
2805 | new_brk = (char *) (MORECORE (0)); |
2806 | |
2807 | LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra); |
2808 | |
2809 | if (new_brk != (char *) MORECORE_FAILURE) |
2810 | { |
2811 | released = (long) (current_brk - new_brk); |
2812 | |
2813 | if (released != 0) |
2814 | { |
2815 | /* Success. Adjust top. */ |
2816 | av->system_mem -= released; |
2817 | set_head (av->top, (top_size - released) | PREV_INUSE); |
2818 | check_malloc_state (av); |
2819 | return 1; |
2820 | } |
2821 | } |
2822 | } |
2823 | return 0; |
2824 | } |
2825 | |
2826 | static void |
2827 | internal_function |
2828 | munmap_chunk (mchunkptr p) |
2829 | { |
2830 | INTERNAL_SIZE_T size = chunksize (p); |
2831 | |
2832 | assert (chunk_is_mmapped (p)); |
2833 | |
2834 | uintptr_t block = (uintptr_t) p - p->prev_size; |
2835 | size_t total_size = p->prev_size + size; |
2836 | /* Unfortunately we have to do the compilers job by hand here. Normally |
2837 | we would test BLOCK and TOTAL-SIZE separately for compliance with the |
2838 | page size. But gcc does not recognize the optimization possibility |
2839 | (in the moment at least) so we combine the two values into one before |
2840 | the bit test. */ |
2841 | if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0)) |
2842 | { |
2843 | malloc_printerr (check_action, "munmap_chunk(): invalid pointer" , |
2844 | chunk2mem (p), NULL); |
2845 | return; |
2846 | } |
2847 | |
2848 | atomic_decrement (&mp_.n_mmaps); |
2849 | atomic_add (&mp_.mmapped_mem, -total_size); |
2850 | |
2851 | /* If munmap failed the process virtual memory address space is in a |
2852 | bad shape. Just leave the block hanging around, the process will |
2853 | terminate shortly anyway since not much can be done. */ |
2854 | __munmap ((char *) block, total_size); |
2855 | } |
2856 | |
2857 | #if HAVE_MREMAP |
2858 | |
2859 | static mchunkptr |
2860 | internal_function |
2861 | mremap_chunk (mchunkptr p, size_t new_size) |
2862 | { |
2863 | size_t pagesize = GLRO (dl_pagesize); |
2864 | INTERNAL_SIZE_T offset = p->prev_size; |
2865 | INTERNAL_SIZE_T size = chunksize (p); |
2866 | char *cp; |
2867 | |
2868 | assert (chunk_is_mmapped (p)); |
2869 | assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0); |
2870 | |
2871 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ |
2872 | new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize); |
2873 | |
2874 | /* No need to remap if the number of pages does not change. */ |
2875 | if (size + offset == new_size) |
2876 | return p; |
2877 | |
2878 | cp = (char *) __mremap ((char *) p - offset, size + offset, new_size, |
2879 | MREMAP_MAYMOVE); |
2880 | |
2881 | if (cp == MAP_FAILED) |
2882 | return 0; |
2883 | |
2884 | p = (mchunkptr) (cp + offset); |
2885 | |
2886 | assert (aligned_OK (chunk2mem (p))); |
2887 | |
2888 | assert ((p->prev_size == offset)); |
2889 | set_head (p, (new_size - offset) | IS_MMAPPED); |
2890 | |
2891 | INTERNAL_SIZE_T new; |
2892 | new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset) |
2893 | + new_size - size - offset; |
2894 | atomic_max (&mp_.max_mmapped_mem, new); |
2895 | return p; |
2896 | } |
2897 | #endif /* HAVE_MREMAP */ |
2898 | |
2899 | /*------------------------ Public wrappers. --------------------------------*/ |
2900 | |
2901 | void * |
2902 | __libc_malloc (size_t bytes) |
2903 | { |
2904 | mstate ar_ptr; |
2905 | void *victim; |
2906 | |
2907 | void *(*hook) (size_t, const void *) |
2908 | = atomic_forced_read (__malloc_hook); |
2909 | if (__builtin_expect (hook != NULL, 0)) |
2910 | return (*hook)(bytes, RETURN_ADDRESS (0)); |
2911 | |
2912 | arena_get (ar_ptr, bytes); |
2913 | |
2914 | victim = _int_malloc (ar_ptr, bytes); |
2915 | /* Retry with another arena only if we were able to find a usable arena |
2916 | before. */ |
2917 | if (!victim && ar_ptr != NULL) |
2918 | { |
2919 | LIBC_PROBE (memory_malloc_retry, 1, bytes); |
2920 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
2921 | victim = _int_malloc (ar_ptr, bytes); |
2922 | } |
2923 | |
2924 | if (ar_ptr != NULL) |
2925 | (void) mutex_unlock (&ar_ptr->mutex); |
2926 | |
2927 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
2928 | ar_ptr == arena_for_chunk (mem2chunk (victim))); |
2929 | return victim; |
2930 | } |
2931 | libc_hidden_def (__libc_malloc) |
2932 | |
2933 | void |
2934 | __libc_free (void *mem) |
2935 | { |
2936 | mstate ar_ptr; |
2937 | mchunkptr p; /* chunk corresponding to mem */ |
2938 | |
2939 | void (*hook) (void *, const void *) |
2940 | = atomic_forced_read (__free_hook); |
2941 | if (__builtin_expect (hook != NULL, 0)) |
2942 | { |
2943 | (*hook)(mem, RETURN_ADDRESS (0)); |
2944 | return; |
2945 | } |
2946 | |
2947 | if (mem == 0) /* free(0) has no effect */ |
2948 | return; |
2949 | |
2950 | p = mem2chunk (mem); |
2951 | |
2952 | if (chunk_is_mmapped (p)) /* release mmapped memory. */ |
2953 | { |
2954 | /* see if the dynamic brk/mmap threshold needs adjusting */ |
2955 | if (!mp_.no_dyn_threshold |
2956 | && p->size > mp_.mmap_threshold |
2957 | && p->size <= DEFAULT_MMAP_THRESHOLD_MAX) |
2958 | { |
2959 | mp_.mmap_threshold = chunksize (p); |
2960 | mp_.trim_threshold = 2 * mp_.mmap_threshold; |
2961 | LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2, |
2962 | mp_.mmap_threshold, mp_.trim_threshold); |
2963 | } |
2964 | munmap_chunk (p); |
2965 | return; |
2966 | } |
2967 | |
2968 | ar_ptr = arena_for_chunk (p); |
2969 | _int_free (ar_ptr, p, 0); |
2970 | } |
2971 | libc_hidden_def (__libc_free) |
2972 | |
2973 | void * |
2974 | __libc_realloc (void *oldmem, size_t bytes) |
2975 | { |
2976 | mstate ar_ptr; |
2977 | INTERNAL_SIZE_T nb; /* padded request size */ |
2978 | |
2979 | void *newp; /* chunk to return */ |
2980 | |
2981 | void *(*hook) (void *, size_t, const void *) = |
2982 | atomic_forced_read (__realloc_hook); |
2983 | if (__builtin_expect (hook != NULL, 0)) |
2984 | return (*hook)(oldmem, bytes, RETURN_ADDRESS (0)); |
2985 | |
2986 | #if REALLOC_ZERO_BYTES_FREES |
2987 | if (bytes == 0 && oldmem != NULL) |
2988 | { |
2989 | __libc_free (oldmem); return 0; |
2990 | } |
2991 | #endif |
2992 | |
2993 | /* realloc of null is supposed to be same as malloc */ |
2994 | if (oldmem == 0) |
2995 | return __libc_malloc (bytes); |
2996 | |
2997 | /* chunk corresponding to oldmem */ |
2998 | const mchunkptr oldp = mem2chunk (oldmem); |
2999 | /* its size */ |
3000 | const INTERNAL_SIZE_T oldsize = chunksize (oldp); |
3001 | |
3002 | if (chunk_is_mmapped (oldp)) |
3003 | ar_ptr = NULL; |
3004 | else |
3005 | ar_ptr = arena_for_chunk (oldp); |
3006 | |
3007 | /* Little security check which won't hurt performance: the |
3008 | allocator never wrapps around at the end of the address space. |
3009 | Therefore we can exclude some size values which might appear |
3010 | here by accident or by "design" from some intruder. */ |
3011 | if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0) |
3012 | || __builtin_expect (misaligned_chunk (oldp), 0)) |
3013 | { |
3014 | malloc_printerr (check_action, "realloc(): invalid pointer" , oldmem, |
3015 | ar_ptr); |
3016 | return NULL; |
3017 | } |
3018 | |
3019 | checked_request2size (bytes, nb); |
3020 | |
3021 | if (chunk_is_mmapped (oldp)) |
3022 | { |
3023 | void *newmem; |
3024 | |
3025 | #if HAVE_MREMAP |
3026 | newp = mremap_chunk (oldp, nb); |
3027 | if (newp) |
3028 | return chunk2mem (newp); |
3029 | #endif |
3030 | /* Note the extra SIZE_SZ overhead. */ |
3031 | if (oldsize - SIZE_SZ >= nb) |
3032 | return oldmem; /* do nothing */ |
3033 | |
3034 | /* Must alloc, copy, free. */ |
3035 | newmem = __libc_malloc (bytes); |
3036 | if (newmem == 0) |
3037 | return 0; /* propagate failure */ |
3038 | |
3039 | memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ); |
3040 | munmap_chunk (oldp); |
3041 | return newmem; |
3042 | } |
3043 | |
3044 | (void) mutex_lock (&ar_ptr->mutex); |
3045 | |
3046 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
3047 | |
3048 | (void) mutex_unlock (&ar_ptr->mutex); |
3049 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
3050 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
3051 | |
3052 | if (newp == NULL) |
3053 | { |
3054 | /* Try harder to allocate memory in other arenas. */ |
3055 | LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem); |
3056 | newp = __libc_malloc (bytes); |
3057 | if (newp != NULL) |
3058 | { |
3059 | memcpy (newp, oldmem, oldsize - SIZE_SZ); |
3060 | _int_free (ar_ptr, oldp, 0); |
3061 | } |
3062 | } |
3063 | |
3064 | return newp; |
3065 | } |
3066 | libc_hidden_def (__libc_realloc) |
3067 | |
3068 | void * |
3069 | __libc_memalign (size_t alignment, size_t bytes) |
3070 | { |
3071 | void *address = RETURN_ADDRESS (0); |
3072 | return _mid_memalign (alignment, bytes, address); |
3073 | } |
3074 | |
3075 | static void * |
3076 | _mid_memalign (size_t alignment, size_t bytes, void *address) |
3077 | { |
3078 | mstate ar_ptr; |
3079 | void *p; |
3080 | |
3081 | void *(*hook) (size_t, size_t, const void *) = |
3082 | atomic_forced_read (__memalign_hook); |
3083 | if (__builtin_expect (hook != NULL, 0)) |
3084 | return (*hook)(alignment, bytes, address); |
3085 | |
3086 | /* If we need less alignment than we give anyway, just relay to malloc. */ |
3087 | if (alignment <= MALLOC_ALIGNMENT) |
3088 | return __libc_malloc (bytes); |
3089 | |
3090 | /* Otherwise, ensure that it is at least a minimum chunk size */ |
3091 | if (alignment < MINSIZE) |
3092 | alignment = MINSIZE; |
3093 | |
3094 | /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a |
3095 | power of 2 and will cause overflow in the check below. */ |
3096 | if (alignment > SIZE_MAX / 2 + 1) |
3097 | { |
3098 | __set_errno (EINVAL); |
3099 | return 0; |
3100 | } |
3101 | |
3102 | /* Check for overflow. */ |
3103 | if (bytes > SIZE_MAX - alignment - MINSIZE) |
3104 | { |
3105 | __set_errno (ENOMEM); |
3106 | return 0; |
3107 | } |
3108 | |
3109 | |
3110 | /* Make sure alignment is power of 2. */ |
3111 | if (!powerof2 (alignment)) |
3112 | { |
3113 | size_t a = MALLOC_ALIGNMENT * 2; |
3114 | while (a < alignment) |
3115 | a <<= 1; |
3116 | alignment = a; |
3117 | } |
3118 | |
3119 | arena_get (ar_ptr, bytes + alignment + MINSIZE); |
3120 | |
3121 | p = _int_memalign (ar_ptr, alignment, bytes); |
3122 | if (!p && ar_ptr != NULL) |
3123 | { |
3124 | LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment); |
3125 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
3126 | p = _int_memalign (ar_ptr, alignment, bytes); |
3127 | } |
3128 | |
3129 | if (ar_ptr != NULL) |
3130 | (void) mutex_unlock (&ar_ptr->mutex); |
3131 | |
3132 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
3133 | ar_ptr == arena_for_chunk (mem2chunk (p))); |
3134 | return p; |
3135 | } |
3136 | /* For ISO C11. */ |
3137 | weak_alias (__libc_memalign, aligned_alloc) |
3138 | libc_hidden_def (__libc_memalign) |
3139 | |
3140 | void * |
3141 | __libc_valloc (size_t bytes) |
3142 | { |
3143 | if (__malloc_initialized < 0) |
3144 | ptmalloc_init (); |
3145 | |
3146 | void *address = RETURN_ADDRESS (0); |
3147 | size_t pagesize = GLRO (dl_pagesize); |
3148 | return _mid_memalign (pagesize, bytes, address); |
3149 | } |
3150 | |
3151 | void * |
3152 | __libc_pvalloc (size_t bytes) |
3153 | { |
3154 | if (__malloc_initialized < 0) |
3155 | ptmalloc_init (); |
3156 | |
3157 | void *address = RETURN_ADDRESS (0); |
3158 | size_t pagesize = GLRO (dl_pagesize); |
3159 | size_t rounded_bytes = ALIGN_UP (bytes, pagesize); |
3160 | |
3161 | /* Check for overflow. */ |
3162 | if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE) |
3163 | { |
3164 | __set_errno (ENOMEM); |
3165 | return 0; |
3166 | } |
3167 | |
3168 | return _mid_memalign (pagesize, rounded_bytes, address); |
3169 | } |
3170 | |
3171 | void * |
3172 | __libc_calloc (size_t n, size_t elem_size) |
3173 | { |
3174 | mstate av; |
3175 | mchunkptr oldtop, p; |
3176 | INTERNAL_SIZE_T bytes, sz, csz, oldtopsize; |
3177 | void *mem; |
3178 | unsigned long clearsize; |
3179 | unsigned long nclears; |
3180 | INTERNAL_SIZE_T *d; |
3181 | |
3182 | /* size_t is unsigned so the behavior on overflow is defined. */ |
3183 | bytes = n * elem_size; |
3184 | #define HALF_INTERNAL_SIZE_T \ |
3185 | (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2)) |
3186 | if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) |
3187 | { |
3188 | if (elem_size != 0 && bytes / elem_size != n) |
3189 | { |
3190 | __set_errno (ENOMEM); |
3191 | return 0; |
3192 | } |
3193 | } |
3194 | |
3195 | void *(*hook) (size_t, const void *) = |
3196 | atomic_forced_read (__malloc_hook); |
3197 | if (__builtin_expect (hook != NULL, 0)) |
3198 | { |
3199 | sz = bytes; |
3200 | mem = (*hook)(sz, RETURN_ADDRESS (0)); |
3201 | if (mem == 0) |
3202 | return 0; |
3203 | |
3204 | return memset (mem, 0, sz); |
3205 | } |
3206 | |
3207 | sz = bytes; |
3208 | |
3209 | arena_get (av, sz); |
3210 | if (av) |
3211 | { |
3212 | /* Check if we hand out the top chunk, in which case there may be no |
3213 | need to clear. */ |
3214 | #if MORECORE_CLEARS |
3215 | oldtop = top (av); |
3216 | oldtopsize = chunksize (top (av)); |
3217 | # if MORECORE_CLEARS < 2 |
3218 | /* Only newly allocated memory is guaranteed to be cleared. */ |
3219 | if (av == &main_arena && |
3220 | oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop) |
3221 | oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop); |
3222 | # endif |
3223 | if (av != &main_arena) |
3224 | { |
3225 | heap_info *heap = heap_for_ptr (oldtop); |
3226 | if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop) |
3227 | oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop; |
3228 | } |
3229 | #endif |
3230 | } |
3231 | else |
3232 | { |
3233 | /* No usable arenas. */ |
3234 | oldtop = 0; |
3235 | oldtopsize = 0; |
3236 | } |
3237 | mem = _int_malloc (av, sz); |
3238 | |
3239 | |
3240 | assert (!mem || chunk_is_mmapped (mem2chunk (mem)) || |
3241 | av == arena_for_chunk (mem2chunk (mem))); |
3242 | |
3243 | if (mem == 0 && av != NULL) |
3244 | { |
3245 | LIBC_PROBE (memory_calloc_retry, 1, sz); |
3246 | av = arena_get_retry (av, sz); |
3247 | mem = _int_malloc (av, sz); |
3248 | } |
3249 | |
3250 | if (av != NULL) |
3251 | (void) mutex_unlock (&av->mutex); |
3252 | |
3253 | /* Allocation failed even after a retry. */ |
3254 | if (mem == 0) |
3255 | return 0; |
3256 | |
3257 | p = mem2chunk (mem); |
3258 | |
3259 | /* Two optional cases in which clearing not necessary */ |
3260 | if (chunk_is_mmapped (p)) |
3261 | { |
3262 | if (__builtin_expect (perturb_byte, 0)) |
3263 | return memset (mem, 0, sz); |
3264 | |
3265 | return mem; |
3266 | } |
3267 | |
3268 | csz = chunksize (p); |
3269 | |
3270 | #if MORECORE_CLEARS |
3271 | if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) |
3272 | { |
3273 | /* clear only the bytes from non-freshly-sbrked memory */ |
3274 | csz = oldtopsize; |
3275 | } |
3276 | #endif |
3277 | |
3278 | /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that |
3279 | contents have an odd number of INTERNAL_SIZE_T-sized words; |
3280 | minimally 3. */ |
3281 | d = (INTERNAL_SIZE_T *) mem; |
3282 | clearsize = csz - SIZE_SZ; |
3283 | nclears = clearsize / sizeof (INTERNAL_SIZE_T); |
3284 | assert (nclears >= 3); |
3285 | |
3286 | if (nclears > 9) |
3287 | return memset (d, 0, clearsize); |
3288 | |
3289 | else |
3290 | { |
3291 | *(d + 0) = 0; |
3292 | *(d + 1) = 0; |
3293 | *(d + 2) = 0; |
3294 | if (nclears > 4) |
3295 | { |
3296 | *(d + 3) = 0; |
3297 | *(d + 4) = 0; |
3298 | if (nclears > 6) |
3299 | { |
3300 | *(d + 5) = 0; |
3301 | *(d + 6) = 0; |
3302 | if (nclears > 8) |
3303 | { |
3304 | *(d + 7) = 0; |
3305 | *(d + 8) = 0; |
3306 | } |
3307 | } |
3308 | } |
3309 | } |
3310 | |
3311 | return mem; |
3312 | } |
3313 | |
3314 | /* |
3315 | ------------------------------ malloc ------------------------------ |
3316 | */ |
3317 | |
3318 | static void * |
3319 | _int_malloc (mstate av, size_t bytes) |
3320 | { |
3321 | INTERNAL_SIZE_T nb; /* normalized request size */ |
3322 | unsigned int idx; /* associated bin index */ |
3323 | mbinptr bin; /* associated bin */ |
3324 | |
3325 | mchunkptr victim; /* inspected/selected chunk */ |
3326 | INTERNAL_SIZE_T size; /* its size */ |
3327 | int victim_index; /* its bin index */ |
3328 | |
3329 | mchunkptr remainder; /* remainder from a split */ |
3330 | unsigned long remainder_size; /* its size */ |
3331 | |
3332 | unsigned int block; /* bit map traverser */ |
3333 | unsigned int bit; /* bit map traverser */ |
3334 | unsigned int map; /* current word of binmap */ |
3335 | |
3336 | mchunkptr fwd; /* misc temp for linking */ |
3337 | mchunkptr bck; /* misc temp for linking */ |
3338 | |
3339 | const char *errstr = NULL; |
3340 | |
3341 | /* |
3342 | Convert request size to internal form by adding SIZE_SZ bytes |
3343 | overhead plus possibly more to obtain necessary alignment and/or |
3344 | to obtain a size of at least MINSIZE, the smallest allocatable |
3345 | size. Also, checked_request2size traps (returning 0) request sizes |
3346 | that are so large that they wrap around zero when padded and |
3347 | aligned. |
3348 | */ |
3349 | |
3350 | checked_request2size (bytes, nb); |
3351 | |
3352 | /* There are no usable arenas. Fall back to sysmalloc to get a chunk from |
3353 | mmap. */ |
3354 | if (__glibc_unlikely (av == NULL)) |
3355 | { |
3356 | void *p = sysmalloc (nb, av); |
3357 | if (p != NULL) |
3358 | alloc_perturb (p, bytes); |
3359 | return p; |
3360 | } |
3361 | |
3362 | /* |
3363 | If the size qualifies as a fastbin, first check corresponding bin. |
3364 | This code is safe to execute even if av is not yet initialized, so we |
3365 | can try it without checking, which saves some time on this fast path. |
3366 | */ |
3367 | |
3368 | if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ())) |
3369 | { |
3370 | idx = fastbin_index (nb); |
3371 | mfastbinptr *fb = &fastbin (av, idx); |
3372 | mchunkptr pp = *fb; |
3373 | do |
3374 | { |
3375 | victim = pp; |
3376 | if (victim == NULL) |
3377 | break; |
3378 | } |
3379 | while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) |
3380 | != victim); |
3381 | if (victim != 0) |
3382 | { |
3383 | if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0)) |
3384 | { |
3385 | errstr = "malloc(): memory corruption (fast)" ; |
3386 | errout: |
3387 | malloc_printerr (check_action, errstr, chunk2mem (victim), av); |
3388 | return NULL; |
3389 | } |
3390 | check_remalloced_chunk (av, victim, nb); |
3391 | void *p = chunk2mem (victim); |
3392 | alloc_perturb (p, bytes); |
3393 | return p; |
3394 | } |
3395 | } |
3396 | |
3397 | /* |
3398 | If a small request, check regular bin. Since these "smallbins" |
3399 | hold one size each, no searching within bins is necessary. |
3400 | (For a large request, we need to wait until unsorted chunks are |
3401 | processed to find best fit. But for small ones, fits are exact |
3402 | anyway, so we can check now, which is faster.) |
3403 | */ |
3404 | |
3405 | if (in_smallbin_range (nb)) |
3406 | { |
3407 | idx = smallbin_index (nb); |
3408 | bin = bin_at (av, idx); |
3409 | |
3410 | if ((victim = last (bin)) != bin) |
3411 | { |
3412 | if (victim == 0) /* initialization check */ |
3413 | malloc_consolidate (av); |
3414 | else |
3415 | { |
3416 | bck = victim->bk; |
3417 | if (__glibc_unlikely (bck->fd != victim)) |
3418 | { |
3419 | errstr = "malloc(): smallbin double linked list corrupted" ; |
3420 | goto errout; |
3421 | } |
3422 | set_inuse_bit_at_offset (victim, nb); |
3423 | bin->bk = bck; |
3424 | bck->fd = bin; |
3425 | |
3426 | if (av != &main_arena) |
3427 | victim->size |= NON_MAIN_ARENA; |
3428 | check_malloced_chunk (av, victim, nb); |
3429 | void *p = chunk2mem (victim); |
3430 | alloc_perturb (p, bytes); |
3431 | return p; |
3432 | } |
3433 | } |
3434 | } |
3435 | |
3436 | /* |
3437 | If this is a large request, consolidate fastbins before continuing. |
3438 | While it might look excessive to kill all fastbins before |
3439 | even seeing if there is space available, this avoids |
3440 | fragmentation problems normally associated with fastbins. |
3441 | Also, in practice, programs tend to have runs of either small or |
3442 | large requests, but less often mixtures, so consolidation is not |
3443 | invoked all that often in most programs. And the programs that |
3444 | it is called frequently in otherwise tend to fragment. |
3445 | */ |
3446 | |
3447 | else |
3448 | { |
3449 | idx = largebin_index (nb); |
3450 | if (have_fastchunks (av)) |
3451 | malloc_consolidate (av); |
3452 | } |
3453 | |
3454 | /* |
3455 | Process recently freed or remaindered chunks, taking one only if |
3456 | it is exact fit, or, if this a small request, the chunk is remainder from |
3457 | the most recent non-exact fit. Place other traversed chunks in |
3458 | bins. Note that this step is the only place in any routine where |
3459 | chunks are placed in bins. |
3460 | |
3461 | The outer loop here is needed because we might not realize until |
3462 | near the end of malloc that we should have consolidated, so must |
3463 | do so and retry. This happens at most once, and only when we would |
3464 | otherwise need to expand memory to service a "small" request. |
3465 | */ |
3466 | |
3467 | for (;; ) |
3468 | { |
3469 | int iters = 0; |
3470 | while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av)) |
3471 | { |
3472 | bck = victim->bk; |
3473 | if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0) |
3474 | || __builtin_expect (victim->size > av->system_mem, 0)) |
3475 | malloc_printerr (check_action, "malloc(): memory corruption" , |
3476 | chunk2mem (victim), av); |
3477 | size = chunksize (victim); |
3478 | |
3479 | /* |
3480 | If a small request, try to use last remainder if it is the |
3481 | only chunk in unsorted bin. This helps promote locality for |
3482 | runs of consecutive small requests. This is the only |
3483 | exception to best-fit, and applies only when there is |
3484 | no exact fit for a small chunk. |
3485 | */ |
3486 | |
3487 | if (in_smallbin_range (nb) && |
3488 | bck == unsorted_chunks (av) && |
3489 | victim == av->last_remainder && |
3490 | (unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
3491 | { |
3492 | /* split and reattach remainder */ |
3493 | remainder_size = size - nb; |
3494 | remainder = chunk_at_offset (victim, nb); |
3495 | unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder; |
3496 | av->last_remainder = remainder; |
3497 | remainder->bk = remainder->fd = unsorted_chunks (av); |
3498 | if (!in_smallbin_range (remainder_size)) |
3499 | { |
3500 | remainder->fd_nextsize = NULL; |
3501 | remainder->bk_nextsize = NULL; |
3502 | } |
3503 | |
3504 | set_head (victim, nb | PREV_INUSE | |
3505 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3506 | set_head (remainder, remainder_size | PREV_INUSE); |
3507 | set_foot (remainder, remainder_size); |
3508 | |
3509 | check_malloced_chunk (av, victim, nb); |
3510 | void *p = chunk2mem (victim); |
3511 | alloc_perturb (p, bytes); |
3512 | return p; |
3513 | } |
3514 | |
3515 | /* remove from unsorted list */ |
3516 | unsorted_chunks (av)->bk = bck; |
3517 | bck->fd = unsorted_chunks (av); |
3518 | |
3519 | /* Take now instead of binning if exact fit */ |
3520 | |
3521 | if (size == nb) |
3522 | { |
3523 | set_inuse_bit_at_offset (victim, size); |
3524 | if (av != &main_arena) |
3525 | victim->size |= NON_MAIN_ARENA; |
3526 | check_malloced_chunk (av, victim, nb); |
3527 | void *p = chunk2mem (victim); |
3528 | alloc_perturb (p, bytes); |
3529 | return p; |
3530 | } |
3531 | |
3532 | /* place chunk in bin */ |
3533 | |
3534 | if (in_smallbin_range (size)) |
3535 | { |
3536 | victim_index = smallbin_index (size); |
3537 | bck = bin_at (av, victim_index); |
3538 | fwd = bck->fd; |
3539 | } |
3540 | else |
3541 | { |
3542 | victim_index = largebin_index (size); |
3543 | bck = bin_at (av, victim_index); |
3544 | fwd = bck->fd; |
3545 | |
3546 | /* maintain large bins in sorted order */ |
3547 | if (fwd != bck) |
3548 | { |
3549 | /* Or with inuse bit to speed comparisons */ |
3550 | size |= PREV_INUSE; |
3551 | /* if smaller than smallest, bypass loop below */ |
3552 | assert ((bck->bk->size & NON_MAIN_ARENA) == 0); |
3553 | if ((unsigned long) (size) < (unsigned long) (bck->bk->size)) |
3554 | { |
3555 | fwd = bck; |
3556 | bck = bck->bk; |
3557 | |
3558 | victim->fd_nextsize = fwd->fd; |
3559 | victim->bk_nextsize = fwd->fd->bk_nextsize; |
3560 | fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; |
3561 | } |
3562 | else |
3563 | { |
3564 | assert ((fwd->size & NON_MAIN_ARENA) == 0); |
3565 | while ((unsigned long) size < fwd->size) |
3566 | { |
3567 | fwd = fwd->fd_nextsize; |
3568 | assert ((fwd->size & NON_MAIN_ARENA) == 0); |
3569 | } |
3570 | |
3571 | if ((unsigned long) size == (unsigned long) fwd->size) |
3572 | /* Always insert in the second position. */ |
3573 | fwd = fwd->fd; |
3574 | else |
3575 | { |
3576 | victim->fd_nextsize = fwd; |
3577 | victim->bk_nextsize = fwd->bk_nextsize; |
3578 | fwd->bk_nextsize = victim; |
3579 | victim->bk_nextsize->fd_nextsize = victim; |
3580 | } |
3581 | bck = fwd->bk; |
3582 | } |
3583 | } |
3584 | else |
3585 | victim->fd_nextsize = victim->bk_nextsize = victim; |
3586 | } |
3587 | |
3588 | mark_bin (av, victim_index); |
3589 | victim->bk = bck; |
3590 | victim->fd = fwd; |
3591 | fwd->bk = victim; |
3592 | bck->fd = victim; |
3593 | |
3594 | #define MAX_ITERS 10000 |
3595 | if (++iters >= MAX_ITERS) |
3596 | break; |
3597 | } |
3598 | |
3599 | /* |
3600 | If a large request, scan through the chunks of current bin in |
3601 | sorted order to find smallest that fits. Use the skip list for this. |
3602 | */ |
3603 | |
3604 | if (!in_smallbin_range (nb)) |
3605 | { |
3606 | bin = bin_at (av, idx); |
3607 | |
3608 | /* skip scan if empty or largest chunk is too small */ |
3609 | if ((victim = first (bin)) != bin && |
3610 | (unsigned long) (victim->size) >= (unsigned long) (nb)) |
3611 | { |
3612 | victim = victim->bk_nextsize; |
3613 | while (((unsigned long) (size = chunksize (victim)) < |
3614 | (unsigned long) (nb))) |
3615 | victim = victim->bk_nextsize; |
3616 | |
3617 | /* Avoid removing the first entry for a size so that the skip |
3618 | list does not have to be rerouted. */ |
3619 | if (victim != last (bin) && victim->size == victim->fd->size) |
3620 | victim = victim->fd; |
3621 | |
3622 | remainder_size = size - nb; |
3623 | unlink (av, victim, bck, fwd); |
3624 | |
3625 | /* Exhaust */ |
3626 | if (remainder_size < MINSIZE) |
3627 | { |
3628 | set_inuse_bit_at_offset (victim, size); |
3629 | if (av != &main_arena) |
3630 | victim->size |= NON_MAIN_ARENA; |
3631 | } |
3632 | /* Split */ |
3633 | else |
3634 | { |
3635 | remainder = chunk_at_offset (victim, nb); |
3636 | /* We cannot assume the unsorted list is empty and therefore |
3637 | have to perform a complete insert here. */ |
3638 | bck = unsorted_chunks (av); |
3639 | fwd = bck->fd; |
3640 | if (__glibc_unlikely (fwd->bk != bck)) |
3641 | { |
3642 | errstr = "malloc(): corrupted unsorted chunks" ; |
3643 | goto errout; |
3644 | } |
3645 | remainder->bk = bck; |
3646 | remainder->fd = fwd; |
3647 | bck->fd = remainder; |
3648 | fwd->bk = remainder; |
3649 | if (!in_smallbin_range (remainder_size)) |
3650 | { |
3651 | remainder->fd_nextsize = NULL; |
3652 | remainder->bk_nextsize = NULL; |
3653 | } |
3654 | set_head (victim, nb | PREV_INUSE | |
3655 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3656 | set_head (remainder, remainder_size | PREV_INUSE); |
3657 | set_foot (remainder, remainder_size); |
3658 | } |
3659 | check_malloced_chunk (av, victim, nb); |
3660 | void *p = chunk2mem (victim); |
3661 | alloc_perturb (p, bytes); |
3662 | return p; |
3663 | } |
3664 | } |
3665 | |
3666 | /* |
3667 | Search for a chunk by scanning bins, starting with next largest |
3668 | bin. This search is strictly by best-fit; i.e., the smallest |
3669 | (with ties going to approximately the least recently used) chunk |
3670 | that fits is selected. |
3671 | |
3672 | The bitmap avoids needing to check that most blocks are nonempty. |
3673 | The particular case of skipping all bins during warm-up phases |
3674 | when no chunks have been returned yet is faster than it might look. |
3675 | */ |
3676 | |
3677 | ++idx; |
3678 | bin = bin_at (av, idx); |
3679 | block = idx2block (idx); |
3680 | map = av->binmap[block]; |
3681 | bit = idx2bit (idx); |
3682 | |
3683 | for (;; ) |
3684 | { |
3685 | /* Skip rest of block if there are no more set bits in this block. */ |
3686 | if (bit > map || bit == 0) |
3687 | { |
3688 | do |
3689 | { |
3690 | if (++block >= BINMAPSIZE) /* out of bins */ |
3691 | goto use_top; |
3692 | } |
3693 | while ((map = av->binmap[block]) == 0); |
3694 | |
3695 | bin = bin_at (av, (block << BINMAPSHIFT)); |
3696 | bit = 1; |
3697 | } |
3698 | |
3699 | /* Advance to bin with set bit. There must be one. */ |
3700 | while ((bit & map) == 0) |
3701 | { |
3702 | bin = next_bin (bin); |
3703 | bit <<= 1; |
3704 | assert (bit != 0); |
3705 | } |
3706 | |
3707 | /* Inspect the bin. It is likely to be non-empty */ |
3708 | victim = last (bin); |
3709 | |
3710 | /* If a false alarm (empty bin), clear the bit. */ |
3711 | if (victim == bin) |
3712 | { |
3713 | av->binmap[block] = map &= ~bit; /* Write through */ |
3714 | bin = next_bin (bin); |
3715 | bit <<= 1; |
3716 | } |
3717 | |
3718 | else |
3719 | { |
3720 | size = chunksize (victim); |
3721 | |
3722 | /* We know the first chunk in this bin is big enough to use. */ |
3723 | assert ((unsigned long) (size) >= (unsigned long) (nb)); |
3724 | |
3725 | remainder_size = size - nb; |
3726 | |
3727 | /* unlink */ |
3728 | unlink (av, victim, bck, fwd); |
3729 | |
3730 | /* Exhaust */ |
3731 | if (remainder_size < MINSIZE) |
3732 | { |
3733 | set_inuse_bit_at_offset (victim, size); |
3734 | if (av != &main_arena) |
3735 | victim->size |= NON_MAIN_ARENA; |
3736 | } |
3737 | |
3738 | /* Split */ |
3739 | else |
3740 | { |
3741 | remainder = chunk_at_offset (victim, nb); |
3742 | |
3743 | /* We cannot assume the unsorted list is empty and therefore |
3744 | have to perform a complete insert here. */ |
3745 | bck = unsorted_chunks (av); |
3746 | fwd = bck->fd; |
3747 | if (__glibc_unlikely (fwd->bk != bck)) |
3748 | { |
3749 | errstr = "malloc(): corrupted unsorted chunks 2" ; |
3750 | goto errout; |
3751 | } |
3752 | remainder->bk = bck; |
3753 | remainder->fd = fwd; |
3754 | bck->fd = remainder; |
3755 | fwd->bk = remainder; |
3756 | |
3757 | /* advertise as last remainder */ |
3758 | if (in_smallbin_range (nb)) |
3759 | av->last_remainder = remainder; |
3760 | if (!in_smallbin_range (remainder_size)) |
3761 | { |
3762 | remainder->fd_nextsize = NULL; |
3763 | remainder->bk_nextsize = NULL; |
3764 | } |
3765 | set_head (victim, nb | PREV_INUSE | |
3766 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3767 | set_head (remainder, remainder_size | PREV_INUSE); |
3768 | set_foot (remainder, remainder_size); |
3769 | } |
3770 | check_malloced_chunk (av, victim, nb); |
3771 | void *p = chunk2mem (victim); |
3772 | alloc_perturb (p, bytes); |
3773 | return p; |
3774 | } |
3775 | } |
3776 | |
3777 | use_top: |
3778 | /* |
3779 | If large enough, split off the chunk bordering the end of memory |
3780 | (held in av->top). Note that this is in accord with the best-fit |
3781 | search rule. In effect, av->top is treated as larger (and thus |
3782 | less well fitting) than any other available chunk since it can |
3783 | be extended to be as large as necessary (up to system |
3784 | limitations). |
3785 | |
3786 | We require that av->top always exists (i.e., has size >= |
3787 | MINSIZE) after initialization, so if it would otherwise be |
3788 | exhausted by current request, it is replenished. (The main |
3789 | reason for ensuring it exists is that we may need MINSIZE space |
3790 | to put in fenceposts in sysmalloc.) |
3791 | */ |
3792 | |
3793 | victim = av->top; |
3794 | size = chunksize (victim); |
3795 | |
3796 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
3797 | { |
3798 | remainder_size = size - nb; |
3799 | remainder = chunk_at_offset (victim, nb); |
3800 | av->top = remainder; |
3801 | set_head (victim, nb | PREV_INUSE | |
3802 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3803 | set_head (remainder, remainder_size | PREV_INUSE); |
3804 | |
3805 | check_malloced_chunk (av, victim, nb); |
3806 | void *p = chunk2mem (victim); |
3807 | alloc_perturb (p, bytes); |
3808 | return p; |
3809 | } |
3810 | |
3811 | /* When we are using atomic ops to free fast chunks we can get |
3812 | here for all block sizes. */ |
3813 | else if (have_fastchunks (av)) |
3814 | { |
3815 | malloc_consolidate (av); |
3816 | /* restore original bin index */ |
3817 | if (in_smallbin_range (nb)) |
3818 | idx = smallbin_index (nb); |
3819 | else |
3820 | idx = largebin_index (nb); |
3821 | } |
3822 | |
3823 | /* |
3824 | Otherwise, relay to handle system-dependent cases |
3825 | */ |
3826 | else |
3827 | { |
3828 | void *p = sysmalloc (nb, av); |
3829 | if (p != NULL) |
3830 | alloc_perturb (p, bytes); |
3831 | return p; |
3832 | } |
3833 | } |
3834 | } |
3835 | |
3836 | /* |
3837 | ------------------------------ free ------------------------------ |
3838 | */ |
3839 | |
3840 | static void |
3841 | _int_free (mstate av, mchunkptr p, int have_lock) |
3842 | { |
3843 | INTERNAL_SIZE_T size; /* its size */ |
3844 | mfastbinptr *fb; /* associated fastbin */ |
3845 | mchunkptr nextchunk; /* next contiguous chunk */ |
3846 | INTERNAL_SIZE_T nextsize; /* its size */ |
3847 | int nextinuse; /* true if nextchunk is used */ |
3848 | INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */ |
3849 | mchunkptr bck; /* misc temp for linking */ |
3850 | mchunkptr fwd; /* misc temp for linking */ |
3851 | |
3852 | const char *errstr = NULL; |
3853 | int locked = 0; |
3854 | |
3855 | size = chunksize (p); |
3856 | |
3857 | /* Little security check which won't hurt performance: the |
3858 | allocator never wrapps around at the end of the address space. |
3859 | Therefore we can exclude some size values which might appear |
3860 | here by accident or by "design" from some intruder. */ |
3861 | if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) |
3862 | || __builtin_expect (misaligned_chunk (p), 0)) |
3863 | { |
3864 | errstr = "free(): invalid pointer" ; |
3865 | errout: |
3866 | if (!have_lock && locked) |
3867 | (void) mutex_unlock (&av->mutex); |
3868 | malloc_printerr (check_action, errstr, chunk2mem (p), av); |
3869 | return; |
3870 | } |
3871 | /* We know that each chunk is at least MINSIZE bytes in size or a |
3872 | multiple of MALLOC_ALIGNMENT. */ |
3873 | if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size))) |
3874 | { |
3875 | errstr = "free(): invalid size" ; |
3876 | goto errout; |
3877 | } |
3878 | |
3879 | check_inuse_chunk(av, p); |
3880 | |
3881 | /* |
3882 | If eligible, place chunk on a fastbin so it can be found |
3883 | and used quickly in malloc. |
3884 | */ |
3885 | |
3886 | if ((unsigned long)(size) <= (unsigned long)(get_max_fast ()) |
3887 | |
3888 | #if TRIM_FASTBINS |
3889 | /* |
3890 | If TRIM_FASTBINS set, don't place chunks |
3891 | bordering top into fastbins |
3892 | */ |
3893 | && (chunk_at_offset(p, size) != av->top) |
3894 | #endif |
3895 | ) { |
3896 | |
3897 | if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0) |
3898 | || __builtin_expect (chunksize (chunk_at_offset (p, size)) |
3899 | >= av->system_mem, 0)) |
3900 | { |
3901 | /* We might not have a lock at this point and concurrent modifications |
3902 | of system_mem might have let to a false positive. Redo the test |
3903 | after getting the lock. */ |
3904 | if (have_lock |
3905 | || ({ assert (locked == 0); |
3906 | mutex_lock(&av->mutex); |
3907 | locked = 1; |
3908 | chunk_at_offset (p, size)->size <= 2 * SIZE_SZ |
3909 | || chunksize (chunk_at_offset (p, size)) >= av->system_mem; |
3910 | })) |
3911 | { |
3912 | errstr = "free(): invalid next size (fast)" ; |
3913 | goto errout; |
3914 | } |
3915 | if (! have_lock) |
3916 | { |
3917 | (void)mutex_unlock(&av->mutex); |
3918 | locked = 0; |
3919 | } |
3920 | } |
3921 | |
3922 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
3923 | |
3924 | set_fastchunks(av); |
3925 | unsigned int idx = fastbin_index(size); |
3926 | fb = &fastbin (av, idx); |
3927 | |
3928 | /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */ |
3929 | mchunkptr old = *fb, old2; |
3930 | unsigned int old_idx = ~0u; |
3931 | do |
3932 | { |
3933 | /* Check that the top of the bin is not the record we are going to add |
3934 | (i.e., double free). */ |
3935 | if (__builtin_expect (old == p, 0)) |
3936 | { |
3937 | errstr = "double free or corruption (fasttop)" ; |
3938 | goto errout; |
3939 | } |
3940 | /* Check that size of fastbin chunk at the top is the same as |
3941 | size of the chunk that we are adding. We can dereference OLD |
3942 | only if we have the lock, otherwise it might have already been |
3943 | deallocated. See use of OLD_IDX below for the actual check. */ |
3944 | if (have_lock && old != NULL) |
3945 | old_idx = fastbin_index(chunksize(old)); |
3946 | p->fd = old2 = old; |
3947 | } |
3948 | while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2); |
3949 | |
3950 | if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0)) |
3951 | { |
3952 | errstr = "invalid fastbin entry (free)" ; |
3953 | goto errout; |
3954 | } |
3955 | } |
3956 | |
3957 | /* |
3958 | Consolidate other non-mmapped chunks as they arrive. |
3959 | */ |
3960 | |
3961 | else if (!chunk_is_mmapped(p)) { |
3962 | if (! have_lock) { |
3963 | (void)mutex_lock(&av->mutex); |
3964 | locked = 1; |
3965 | } |
3966 | |
3967 | nextchunk = chunk_at_offset(p, size); |
3968 | |
3969 | /* Lightweight tests: check whether the block is already the |
3970 | top block. */ |
3971 | if (__glibc_unlikely (p == av->top)) |
3972 | { |
3973 | errstr = "double free or corruption (top)" ; |
3974 | goto errout; |
3975 | } |
3976 | /* Or whether the next chunk is beyond the boundaries of the arena. */ |
3977 | if (__builtin_expect (contiguous (av) |
3978 | && (char *) nextchunk |
3979 | >= ((char *) av->top + chunksize(av->top)), 0)) |
3980 | { |
3981 | errstr = "double free or corruption (out)" ; |
3982 | goto errout; |
3983 | } |
3984 | /* Or whether the block is actually not marked used. */ |
3985 | if (__glibc_unlikely (!prev_inuse(nextchunk))) |
3986 | { |
3987 | errstr = "double free or corruption (!prev)" ; |
3988 | goto errout; |
3989 | } |
3990 | |
3991 | nextsize = chunksize(nextchunk); |
3992 | if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0) |
3993 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
3994 | { |
3995 | errstr = "free(): invalid next size (normal)" ; |
3996 | goto errout; |
3997 | } |
3998 | |
3999 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
4000 | |
4001 | /* consolidate backward */ |
4002 | if (!prev_inuse(p)) { |
4003 | prevsize = p->prev_size; |
4004 | size += prevsize; |
4005 | p = chunk_at_offset(p, -((long) prevsize)); |
4006 | unlink(av, p, bck, fwd); |
4007 | } |
4008 | |
4009 | if (nextchunk != av->top) { |
4010 | /* get and clear inuse bit */ |
4011 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4012 | |
4013 | /* consolidate forward */ |
4014 | if (!nextinuse) { |
4015 | unlink(av, nextchunk, bck, fwd); |
4016 | size += nextsize; |
4017 | } else |
4018 | clear_inuse_bit_at_offset(nextchunk, 0); |
4019 | |
4020 | /* |
4021 | Place the chunk in unsorted chunk list. Chunks are |
4022 | not placed into regular bins until after they have |
4023 | been given one chance to be used in malloc. |
4024 | */ |
4025 | |
4026 | bck = unsorted_chunks(av); |
4027 | fwd = bck->fd; |
4028 | if (__glibc_unlikely (fwd->bk != bck)) |
4029 | { |
4030 | errstr = "free(): corrupted unsorted chunks" ; |
4031 | goto errout; |
4032 | } |
4033 | p->fd = fwd; |
4034 | p->bk = bck; |
4035 | if (!in_smallbin_range(size)) |
4036 | { |
4037 | p->fd_nextsize = NULL; |
4038 | p->bk_nextsize = NULL; |
4039 | } |
4040 | bck->fd = p; |
4041 | fwd->bk = p; |
4042 | |
4043 | set_head(p, size | PREV_INUSE); |
4044 | set_foot(p, size); |
4045 | |
4046 | check_free_chunk(av, p); |
4047 | } |
4048 | |
4049 | /* |
4050 | If the chunk borders the current high end of memory, |
4051 | consolidate into top |
4052 | */ |
4053 | |
4054 | else { |
4055 | size += nextsize; |
4056 | set_head(p, size | PREV_INUSE); |
4057 | av->top = p; |
4058 | check_chunk(av, p); |
4059 | } |
4060 | |
4061 | /* |
4062 | If freeing a large space, consolidate possibly-surrounding |
4063 | chunks. Then, if the total unused topmost memory exceeds trim |
4064 | threshold, ask malloc_trim to reduce top. |
4065 | |
4066 | Unless max_fast is 0, we don't know if there are fastbins |
4067 | bordering top, so we cannot tell for sure whether threshold |
4068 | has been reached unless fastbins are consolidated. But we |
4069 | don't want to consolidate on each free. As a compromise, |
4070 | consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD |
4071 | is reached. |
4072 | */ |
4073 | |
4074 | if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { |
4075 | if (have_fastchunks(av)) |
4076 | malloc_consolidate(av); |
4077 | |
4078 | if (av == &main_arena) { |
4079 | #ifndef MORECORE_CANNOT_TRIM |
4080 | if ((unsigned long)(chunksize(av->top)) >= |
4081 | (unsigned long)(mp_.trim_threshold)) |
4082 | systrim(mp_.top_pad, av); |
4083 | #endif |
4084 | } else { |
4085 | /* Always try heap_trim(), even if the top chunk is not |
4086 | large, because the corresponding heap might go away. */ |
4087 | heap_info *heap = heap_for_ptr(top(av)); |
4088 | |
4089 | assert(heap->ar_ptr == av); |
4090 | heap_trim(heap, mp_.top_pad); |
4091 | } |
4092 | } |
4093 | |
4094 | if (! have_lock) { |
4095 | assert (locked); |
4096 | (void)mutex_unlock(&av->mutex); |
4097 | } |
4098 | } |
4099 | /* |
4100 | If the chunk was allocated via mmap, release via munmap(). |
4101 | */ |
4102 | |
4103 | else { |
4104 | munmap_chunk (p); |
4105 | } |
4106 | } |
4107 | |
4108 | /* |
4109 | ------------------------- malloc_consolidate ------------------------- |
4110 | |
4111 | malloc_consolidate is a specialized version of free() that tears |
4112 | down chunks held in fastbins. Free itself cannot be used for this |
4113 | purpose since, among other things, it might place chunks back onto |
4114 | fastbins. So, instead, we need to use a minor variant of the same |
4115 | code. |
4116 | |
4117 | Also, because this routine needs to be called the first time through |
4118 | malloc anyway, it turns out to be the perfect place to trigger |
4119 | initialization code. |
4120 | */ |
4121 | |
4122 | static void malloc_consolidate(mstate av) |
4123 | { |
4124 | mfastbinptr* fb; /* current fastbin being consolidated */ |
4125 | mfastbinptr* maxfb; /* last fastbin (for loop control) */ |
4126 | mchunkptr p; /* current chunk being consolidated */ |
4127 | mchunkptr nextp; /* next chunk to consolidate */ |
4128 | mchunkptr unsorted_bin; /* bin header */ |
4129 | mchunkptr first_unsorted; /* chunk to link to */ |
4130 | |
4131 | /* These have same use as in free() */ |
4132 | mchunkptr nextchunk; |
4133 | INTERNAL_SIZE_T size; |
4134 | INTERNAL_SIZE_T nextsize; |
4135 | INTERNAL_SIZE_T prevsize; |
4136 | int nextinuse; |
4137 | mchunkptr bck; |
4138 | mchunkptr fwd; |
4139 | |
4140 | /* |
4141 | If max_fast is 0, we know that av hasn't |
4142 | yet been initialized, in which case do so below |
4143 | */ |
4144 | |
4145 | if (get_max_fast () != 0) { |
4146 | clear_fastchunks(av); |
4147 | |
4148 | unsorted_bin = unsorted_chunks(av); |
4149 | |
4150 | /* |
4151 | Remove each chunk from fast bin and consolidate it, placing it |
4152 | then in unsorted bin. Among other reasons for doing this, |
4153 | placing in unsorted bin avoids needing to calculate actual bins |
4154 | until malloc is sure that chunks aren't immediately going to be |
4155 | reused anyway. |
4156 | */ |
4157 | |
4158 | maxfb = &fastbin (av, NFASTBINS - 1); |
4159 | fb = &fastbin (av, 0); |
4160 | do { |
4161 | p = atomic_exchange_acq (fb, 0); |
4162 | if (p != 0) { |
4163 | do { |
4164 | check_inuse_chunk(av, p); |
4165 | nextp = p->fd; |
4166 | |
4167 | /* Slightly streamlined version of consolidation code in free() */ |
4168 | size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA); |
4169 | nextchunk = chunk_at_offset(p, size); |
4170 | nextsize = chunksize(nextchunk); |
4171 | |
4172 | if (!prev_inuse(p)) { |
4173 | prevsize = p->prev_size; |
4174 | size += prevsize; |
4175 | p = chunk_at_offset(p, -((long) prevsize)); |
4176 | unlink(av, p, bck, fwd); |
4177 | } |
4178 | |
4179 | if (nextchunk != av->top) { |
4180 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4181 | |
4182 | if (!nextinuse) { |
4183 | size += nextsize; |
4184 | unlink(av, nextchunk, bck, fwd); |
4185 | } else |
4186 | clear_inuse_bit_at_offset(nextchunk, 0); |
4187 | |
4188 | first_unsorted = unsorted_bin->fd; |
4189 | unsorted_bin->fd = p; |
4190 | first_unsorted->bk = p; |
4191 | |
4192 | if (!in_smallbin_range (size)) { |
4193 | p->fd_nextsize = NULL; |
4194 | p->bk_nextsize = NULL; |
4195 | } |
4196 | |
4197 | set_head(p, size | PREV_INUSE); |
4198 | p->bk = unsorted_bin; |
4199 | p->fd = first_unsorted; |
4200 | set_foot(p, size); |
4201 | } |
4202 | |
4203 | else { |
4204 | size += nextsize; |
4205 | set_head(p, size | PREV_INUSE); |
4206 | av->top = p; |
4207 | } |
4208 | |
4209 | } while ( (p = nextp) != 0); |
4210 | |
4211 | } |
4212 | } while (fb++ != maxfb); |
4213 | } |
4214 | else { |
4215 | malloc_init_state(av); |
4216 | check_malloc_state(av); |
4217 | } |
4218 | } |
4219 | |
4220 | /* |
4221 | ------------------------------ realloc ------------------------------ |
4222 | */ |
4223 | |
4224 | void* |
4225 | _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize, |
4226 | INTERNAL_SIZE_T nb) |
4227 | { |
4228 | mchunkptr newp; /* chunk to return */ |
4229 | INTERNAL_SIZE_T newsize; /* its size */ |
4230 | void* newmem; /* corresponding user mem */ |
4231 | |
4232 | mchunkptr next; /* next contiguous chunk after oldp */ |
4233 | |
4234 | mchunkptr remainder; /* extra space at end of newp */ |
4235 | unsigned long remainder_size; /* its size */ |
4236 | |
4237 | mchunkptr bck; /* misc temp for linking */ |
4238 | mchunkptr fwd; /* misc temp for linking */ |
4239 | |
4240 | unsigned long copysize; /* bytes to copy */ |
4241 | unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */ |
4242 | INTERNAL_SIZE_T* s; /* copy source */ |
4243 | INTERNAL_SIZE_T* d; /* copy destination */ |
4244 | |
4245 | const char *errstr = NULL; |
4246 | |
4247 | /* oldmem size */ |
4248 | if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0) |
4249 | || __builtin_expect (oldsize >= av->system_mem, 0)) |
4250 | { |
4251 | errstr = "realloc(): invalid old size" ; |
4252 | errout: |
4253 | malloc_printerr (check_action, errstr, chunk2mem (oldp), av); |
4254 | return NULL; |
4255 | } |
4256 | |
4257 | check_inuse_chunk (av, oldp); |
4258 | |
4259 | /* All callers already filter out mmap'ed chunks. */ |
4260 | assert (!chunk_is_mmapped (oldp)); |
4261 | |
4262 | next = chunk_at_offset (oldp, oldsize); |
4263 | INTERNAL_SIZE_T nextsize = chunksize (next); |
4264 | if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0) |
4265 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
4266 | { |
4267 | errstr = "realloc(): invalid next size" ; |
4268 | goto errout; |
4269 | } |
4270 | |
4271 | if ((unsigned long) (oldsize) >= (unsigned long) (nb)) |
4272 | { |
4273 | /* already big enough; split below */ |
4274 | newp = oldp; |
4275 | newsize = oldsize; |
4276 | } |
4277 | |
4278 | else |
4279 | { |
4280 | /* Try to expand forward into top */ |
4281 | if (next == av->top && |
4282 | (unsigned long) (newsize = oldsize + nextsize) >= |
4283 | (unsigned long) (nb + MINSIZE)) |
4284 | { |
4285 | set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4286 | av->top = chunk_at_offset (oldp, nb); |
4287 | set_head (av->top, (newsize - nb) | PREV_INUSE); |
4288 | check_inuse_chunk (av, oldp); |
4289 | return chunk2mem (oldp); |
4290 | } |
4291 | |
4292 | /* Try to expand forward into next chunk; split off remainder below */ |
4293 | else if (next != av->top && |
4294 | !inuse (next) && |
4295 | (unsigned long) (newsize = oldsize + nextsize) >= |
4296 | (unsigned long) (nb)) |
4297 | { |
4298 | newp = oldp; |
4299 | unlink (av, next, bck, fwd); |
4300 | } |
4301 | |
4302 | /* allocate, copy, free */ |
4303 | else |
4304 | { |
4305 | newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK); |
4306 | if (newmem == 0) |
4307 | return 0; /* propagate failure */ |
4308 | |
4309 | newp = mem2chunk (newmem); |
4310 | newsize = chunksize (newp); |
4311 | |
4312 | /* |
4313 | Avoid copy if newp is next chunk after oldp. |
4314 | */ |
4315 | if (newp == next) |
4316 | { |
4317 | newsize += oldsize; |
4318 | newp = oldp; |
4319 | } |
4320 | else |
4321 | { |
4322 | /* |
4323 | Unroll copy of <= 36 bytes (72 if 8byte sizes) |
4324 | We know that contents have an odd number of |
4325 | INTERNAL_SIZE_T-sized words; minimally 3. |
4326 | */ |
4327 | |
4328 | copysize = oldsize - SIZE_SZ; |
4329 | s = (INTERNAL_SIZE_T *) (chunk2mem (oldp)); |
4330 | d = (INTERNAL_SIZE_T *) (newmem); |
4331 | ncopies = copysize / sizeof (INTERNAL_SIZE_T); |
4332 | assert (ncopies >= 3); |
4333 | |
4334 | if (ncopies > 9) |
4335 | memcpy (d, s, copysize); |
4336 | |
4337 | else |
4338 | { |
4339 | *(d + 0) = *(s + 0); |
4340 | *(d + 1) = *(s + 1); |
4341 | *(d + 2) = *(s + 2); |
4342 | if (ncopies > 4) |
4343 | { |
4344 | *(d + 3) = *(s + 3); |
4345 | *(d + 4) = *(s + 4); |
4346 | if (ncopies > 6) |
4347 | { |
4348 | *(d + 5) = *(s + 5); |
4349 | *(d + 6) = *(s + 6); |
4350 | if (ncopies > 8) |
4351 | { |
4352 | *(d + 7) = *(s + 7); |
4353 | *(d + 8) = *(s + 8); |
4354 | } |
4355 | } |
4356 | } |
4357 | } |
4358 | |
4359 | _int_free (av, oldp, 1); |
4360 | check_inuse_chunk (av, newp); |
4361 | return chunk2mem (newp); |
4362 | } |
4363 | } |
4364 | } |
4365 | |
4366 | /* If possible, free extra space in old or extended chunk */ |
4367 | |
4368 | assert ((unsigned long) (newsize) >= (unsigned long) (nb)); |
4369 | |
4370 | remainder_size = newsize - nb; |
4371 | |
4372 | if (remainder_size < MINSIZE) /* not enough extra to split off */ |
4373 | { |
4374 | set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4375 | set_inuse_bit_at_offset (newp, newsize); |
4376 | } |
4377 | else /* split remainder */ |
4378 | { |
4379 | remainder = chunk_at_offset (newp, nb); |
4380 | set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4381 | set_head (remainder, remainder_size | PREV_INUSE | |
4382 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4383 | /* Mark remainder as inuse so free() won't complain */ |
4384 | set_inuse_bit_at_offset (remainder, remainder_size); |
4385 | _int_free (av, remainder, 1); |
4386 | } |
4387 | |
4388 | check_inuse_chunk (av, newp); |
4389 | return chunk2mem (newp); |
4390 | } |
4391 | |
4392 | /* |
4393 | ------------------------------ memalign ------------------------------ |
4394 | */ |
4395 | |
4396 | static void * |
4397 | _int_memalign (mstate av, size_t alignment, size_t bytes) |
4398 | { |
4399 | INTERNAL_SIZE_T nb; /* padded request size */ |
4400 | char *m; /* memory returned by malloc call */ |
4401 | mchunkptr p; /* corresponding chunk */ |
4402 | char *brk; /* alignment point within p */ |
4403 | mchunkptr newp; /* chunk to return */ |
4404 | INTERNAL_SIZE_T newsize; /* its size */ |
4405 | INTERNAL_SIZE_T leadsize; /* leading space before alignment point */ |
4406 | mchunkptr remainder; /* spare room at end to split off */ |
4407 | unsigned long remainder_size; /* its size */ |
4408 | INTERNAL_SIZE_T size; |
4409 | |
4410 | |
4411 | |
4412 | checked_request2size (bytes, nb); |
4413 | |
4414 | /* |
4415 | Strategy: find a spot within that chunk that meets the alignment |
4416 | request, and then possibly free the leading and trailing space. |
4417 | */ |
4418 | |
4419 | |
4420 | /* Call malloc with worst case padding to hit alignment. */ |
4421 | |
4422 | m = (char *) (_int_malloc (av, nb + alignment + MINSIZE)); |
4423 | |
4424 | if (m == 0) |
4425 | return 0; /* propagate failure */ |
4426 | |
4427 | p = mem2chunk (m); |
4428 | |
4429 | if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */ |
4430 | |
4431 | { /* |
4432 | Find an aligned spot inside chunk. Since we need to give back |
4433 | leading space in a chunk of at least MINSIZE, if the first |
4434 | calculation places us at a spot with less than MINSIZE leader, |
4435 | we can move to the next aligned spot -- we've allocated enough |
4436 | total room so that this is always possible. |
4437 | */ |
4438 | brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) & |
4439 | - ((signed long) alignment)); |
4440 | if ((unsigned long) (brk - (char *) (p)) < MINSIZE) |
4441 | brk += alignment; |
4442 | |
4443 | newp = (mchunkptr) brk; |
4444 | leadsize = brk - (char *) (p); |
4445 | newsize = chunksize (p) - leadsize; |
4446 | |
4447 | /* For mmapped chunks, just adjust offset */ |
4448 | if (chunk_is_mmapped (p)) |
4449 | { |
4450 | newp->prev_size = p->prev_size + leadsize; |
4451 | set_head (newp, newsize | IS_MMAPPED); |
4452 | return chunk2mem (newp); |
4453 | } |
4454 | |
4455 | /* Otherwise, give back leader, use the rest */ |
4456 | set_head (newp, newsize | PREV_INUSE | |
4457 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4458 | set_inuse_bit_at_offset (newp, newsize); |
4459 | set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4460 | _int_free (av, p, 1); |
4461 | p = newp; |
4462 | |
4463 | assert (newsize >= nb && |
4464 | (((unsigned long) (chunk2mem (p))) % alignment) == 0); |
4465 | } |
4466 | |
4467 | /* Also give back spare room at the end */ |
4468 | if (!chunk_is_mmapped (p)) |
4469 | { |
4470 | size = chunksize (p); |
4471 | if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
4472 | { |
4473 | remainder_size = size - nb; |
4474 | remainder = chunk_at_offset (p, nb); |
4475 | set_head (remainder, remainder_size | PREV_INUSE | |
4476 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4477 | set_head_size (p, nb); |
4478 | _int_free (av, remainder, 1); |
4479 | } |
4480 | } |
4481 | |
4482 | check_inuse_chunk (av, p); |
4483 | return chunk2mem (p); |
4484 | } |
4485 | |
4486 | |
4487 | /* |
4488 | ------------------------------ malloc_trim ------------------------------ |
4489 | */ |
4490 | |
4491 | static int |
4492 | mtrim (mstate av, size_t pad) |
4493 | { |
4494 | /* Don't touch corrupt arenas. */ |
4495 | if (arena_is_corrupt (av)) |
4496 | return 0; |
4497 | |
4498 | /* Ensure initialization/consolidation */ |
4499 | malloc_consolidate (av); |
4500 | |
4501 | const size_t ps = GLRO (dl_pagesize); |
4502 | int psindex = bin_index (ps); |
4503 | const size_t psm1 = ps - 1; |
4504 | |
4505 | int result = 0; |
4506 | for (int i = 1; i < NBINS; ++i) |
4507 | if (i == 1 || i >= psindex) |
4508 | { |
4509 | mbinptr bin = bin_at (av, i); |
4510 | |
4511 | for (mchunkptr p = last (bin); p != bin; p = p->bk) |
4512 | { |
4513 | INTERNAL_SIZE_T size = chunksize (p); |
4514 | |
4515 | if (size > psm1 + sizeof (struct malloc_chunk)) |
4516 | { |
4517 | /* See whether the chunk contains at least one unused page. */ |
4518 | char *paligned_mem = (char *) (((uintptr_t) p |
4519 | + sizeof (struct malloc_chunk) |
4520 | + psm1) & ~psm1); |
4521 | |
4522 | assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem); |
4523 | assert ((char *) p + size > paligned_mem); |
4524 | |
4525 | /* This is the size we could potentially free. */ |
4526 | size -= paligned_mem - (char *) p; |
4527 | |
4528 | if (size > psm1) |
4529 | { |
4530 | #if MALLOC_DEBUG |
4531 | /* When debugging we simulate destroying the memory |
4532 | content. */ |
4533 | memset (paligned_mem, 0x89, size & ~psm1); |
4534 | #endif |
4535 | __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED); |
4536 | |
4537 | result = 1; |
4538 | } |
4539 | } |
4540 | } |
4541 | } |
4542 | |
4543 | #ifndef MORECORE_CANNOT_TRIM |
4544 | return result | (av == &main_arena ? systrim (pad, av) : 0); |
4545 | |
4546 | #else |
4547 | return result; |
4548 | #endif |
4549 | } |
4550 | |
4551 | |
4552 | int |
4553 | __malloc_trim (size_t s) |
4554 | { |
4555 | int result = 0; |
4556 | |
4557 | if (__malloc_initialized < 0) |
4558 | ptmalloc_init (); |
4559 | |
4560 | mstate ar_ptr = &main_arena; |
4561 | do |
4562 | { |
4563 | (void) mutex_lock (&ar_ptr->mutex); |
4564 | result |= mtrim (ar_ptr, s); |
4565 | (void) mutex_unlock (&ar_ptr->mutex); |
4566 | |
4567 | ar_ptr = ar_ptr->next; |
4568 | } |
4569 | while (ar_ptr != &main_arena); |
4570 | |
4571 | return result; |
4572 | } |
4573 | |
4574 | |
4575 | /* |
4576 | ------------------------- malloc_usable_size ------------------------- |
4577 | */ |
4578 | |
4579 | static size_t |
4580 | musable (void *mem) |
4581 | { |
4582 | mchunkptr p; |
4583 | if (mem != 0) |
4584 | { |
4585 | p = mem2chunk (mem); |
4586 | |
4587 | if (__builtin_expect (using_malloc_checking == 1, 0)) |
4588 | return malloc_check_get_size (p); |
4589 | |
4590 | if (chunk_is_mmapped (p)) |
4591 | return chunksize (p) - 2 * SIZE_SZ; |
4592 | else if (inuse (p)) |
4593 | return chunksize (p) - SIZE_SZ; |
4594 | } |
4595 | return 0; |
4596 | } |
4597 | |
4598 | |
4599 | size_t |
4600 | __malloc_usable_size (void *m) |
4601 | { |
4602 | size_t result; |
4603 | |
4604 | result = musable (m); |
4605 | return result; |
4606 | } |
4607 | |
4608 | /* |
4609 | ------------------------------ mallinfo ------------------------------ |
4610 | Accumulate malloc statistics for arena AV into M. |
4611 | */ |
4612 | |
4613 | static void |
4614 | int_mallinfo (mstate av, struct mallinfo *m) |
4615 | { |
4616 | size_t i; |
4617 | mbinptr b; |
4618 | mchunkptr p; |
4619 | INTERNAL_SIZE_T avail; |
4620 | INTERNAL_SIZE_T fastavail; |
4621 | int nblocks; |
4622 | int nfastblocks; |
4623 | |
4624 | /* Ensure initialization */ |
4625 | if (av->top == 0) |
4626 | malloc_consolidate (av); |
4627 | |
4628 | check_malloc_state (av); |
4629 | |
4630 | /* Account for top */ |
4631 | avail = chunksize (av->top); |
4632 | nblocks = 1; /* top always exists */ |
4633 | |
4634 | /* traverse fastbins */ |
4635 | nfastblocks = 0; |
4636 | fastavail = 0; |
4637 | |
4638 | for (i = 0; i < NFASTBINS; ++i) |
4639 | { |
4640 | for (p = fastbin (av, i); p != 0; p = p->fd) |
4641 | { |
4642 | ++nfastblocks; |
4643 | fastavail += chunksize (p); |
4644 | } |
4645 | } |
4646 | |
4647 | avail += fastavail; |
4648 | |
4649 | /* traverse regular bins */ |
4650 | for (i = 1; i < NBINS; ++i) |
4651 | { |
4652 | b = bin_at (av, i); |
4653 | for (p = last (b); p != b; p = p->bk) |
4654 | { |
4655 | ++nblocks; |
4656 | avail += chunksize (p); |
4657 | } |
4658 | } |
4659 | |
4660 | m->smblks += nfastblocks; |
4661 | m->ordblks += nblocks; |
4662 | m->fordblks += avail; |
4663 | m->uordblks += av->system_mem - avail; |
4664 | m->arena += av->system_mem; |
4665 | m->fsmblks += fastavail; |
4666 | if (av == &main_arena) |
4667 | { |
4668 | m->hblks = mp_.n_mmaps; |
4669 | m->hblkhd = mp_.mmapped_mem; |
4670 | m->usmblks = mp_.max_total_mem; |
4671 | m->keepcost = chunksize (av->top); |
4672 | } |
4673 | } |
4674 | |
4675 | |
4676 | struct mallinfo |
4677 | __libc_mallinfo (void) |
4678 | { |
4679 | struct mallinfo m; |
4680 | mstate ar_ptr; |
4681 | |
4682 | if (__malloc_initialized < 0) |
4683 | ptmalloc_init (); |
4684 | |
4685 | memset (&m, 0, sizeof (m)); |
4686 | ar_ptr = &main_arena; |
4687 | do |
4688 | { |
4689 | (void) mutex_lock (&ar_ptr->mutex); |
4690 | int_mallinfo (ar_ptr, &m); |
4691 | (void) mutex_unlock (&ar_ptr->mutex); |
4692 | |
4693 | ar_ptr = ar_ptr->next; |
4694 | } |
4695 | while (ar_ptr != &main_arena); |
4696 | |
4697 | return m; |
4698 | } |
4699 | |
4700 | /* |
4701 | ------------------------------ malloc_stats ------------------------------ |
4702 | */ |
4703 | |
4704 | void |
4705 | __malloc_stats (void) |
4706 | { |
4707 | int i; |
4708 | mstate ar_ptr; |
4709 | unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b; |
4710 | |
4711 | if (__malloc_initialized < 0) |
4712 | ptmalloc_init (); |
4713 | _IO_flockfile (stderr); |
4714 | int old_flags2 = ((_IO_FILE *) stderr)->_flags2; |
4715 | ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL; |
4716 | for (i = 0, ar_ptr = &main_arena;; i++) |
4717 | { |
4718 | struct mallinfo mi; |
4719 | |
4720 | memset (&mi, 0, sizeof (mi)); |
4721 | (void) mutex_lock (&ar_ptr->mutex); |
4722 | int_mallinfo (ar_ptr, &mi); |
4723 | fprintf (stderr, "Arena %d:\n" , i); |
4724 | fprintf (stderr, "system bytes = %10u\n" , (unsigned int) mi.arena); |
4725 | fprintf (stderr, "in use bytes = %10u\n" , (unsigned int) mi.uordblks); |
4726 | #if MALLOC_DEBUG > 1 |
4727 | if (i > 0) |
4728 | dump_heap (heap_for_ptr (top (ar_ptr))); |
4729 | #endif |
4730 | system_b += mi.arena; |
4731 | in_use_b += mi.uordblks; |
4732 | (void) mutex_unlock (&ar_ptr->mutex); |
4733 | ar_ptr = ar_ptr->next; |
4734 | if (ar_ptr == &main_arena) |
4735 | break; |
4736 | } |
4737 | fprintf (stderr, "Total (incl. mmap):\n" ); |
4738 | fprintf (stderr, "system bytes = %10u\n" , system_b); |
4739 | fprintf (stderr, "in use bytes = %10u\n" , in_use_b); |
4740 | fprintf (stderr, "max mmap regions = %10u\n" , (unsigned int) mp_.max_n_mmaps); |
4741 | fprintf (stderr, "max mmap bytes = %10lu\n" , |
4742 | (unsigned long) mp_.max_mmapped_mem); |
4743 | ((_IO_FILE *) stderr)->_flags2 |= old_flags2; |
4744 | _IO_funlockfile (stderr); |
4745 | } |
4746 | |
4747 | |
4748 | /* |
4749 | ------------------------------ mallopt ------------------------------ |
4750 | */ |
4751 | |
4752 | int |
4753 | __libc_mallopt (int param_number, int value) |
4754 | { |
4755 | mstate av = &main_arena; |
4756 | int res = 1; |
4757 | |
4758 | if (__malloc_initialized < 0) |
4759 | ptmalloc_init (); |
4760 | (void) mutex_lock (&av->mutex); |
4761 | /* Ensure initialization/consolidation */ |
4762 | malloc_consolidate (av); |
4763 | |
4764 | LIBC_PROBE (memory_mallopt, 2, param_number, value); |
4765 | |
4766 | switch (param_number) |
4767 | { |
4768 | case M_MXFAST: |
4769 | if (value >= 0 && value <= MAX_FAST_SIZE) |
4770 | { |
4771 | LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ()); |
4772 | set_max_fast (value); |
4773 | } |
4774 | else |
4775 | res = 0; |
4776 | break; |
4777 | |
4778 | case M_TRIM_THRESHOLD: |
4779 | LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, |
4780 | mp_.trim_threshold, mp_.no_dyn_threshold); |
4781 | mp_.trim_threshold = value; |
4782 | mp_.no_dyn_threshold = 1; |
4783 | break; |
4784 | |
4785 | case M_TOP_PAD: |
4786 | LIBC_PROBE (memory_mallopt_top_pad, 3, value, |
4787 | mp_.top_pad, mp_.no_dyn_threshold); |
4788 | mp_.top_pad = value; |
4789 | mp_.no_dyn_threshold = 1; |
4790 | break; |
4791 | |
4792 | case M_MMAP_THRESHOLD: |
4793 | /* Forbid setting the threshold too high. */ |
4794 | if ((unsigned long) value > HEAP_MAX_SIZE / 2) |
4795 | res = 0; |
4796 | else |
4797 | { |
4798 | LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, |
4799 | mp_.mmap_threshold, mp_.no_dyn_threshold); |
4800 | mp_.mmap_threshold = value; |
4801 | mp_.no_dyn_threshold = 1; |
4802 | } |
4803 | break; |
4804 | |
4805 | case M_MMAP_MAX: |
4806 | LIBC_PROBE (memory_mallopt_mmap_max, 3, value, |
4807 | mp_.n_mmaps_max, mp_.no_dyn_threshold); |
4808 | mp_.n_mmaps_max = value; |
4809 | mp_.no_dyn_threshold = 1; |
4810 | break; |
4811 | |
4812 | case M_CHECK_ACTION: |
4813 | LIBC_PROBE (memory_mallopt_check_action, 2, value, check_action); |
4814 | check_action = value; |
4815 | break; |
4816 | |
4817 | case M_PERTURB: |
4818 | LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte); |
4819 | perturb_byte = value; |
4820 | break; |
4821 | |
4822 | case M_ARENA_TEST: |
4823 | if (value > 0) |
4824 | { |
4825 | LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test); |
4826 | mp_.arena_test = value; |
4827 | } |
4828 | break; |
4829 | |
4830 | case M_ARENA_MAX: |
4831 | if (value > 0) |
4832 | { |
4833 | LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max); |
4834 | mp_.arena_max = value; |
4835 | } |
4836 | break; |
4837 | } |
4838 | (void) mutex_unlock (&av->mutex); |
4839 | return res; |
4840 | } |
4841 | libc_hidden_def (__libc_mallopt) |
4842 | |
4843 | |
4844 | /* |
4845 | -------------------- Alternative MORECORE functions -------------------- |
4846 | */ |
4847 | |
4848 | |
4849 | /* |
4850 | General Requirements for MORECORE. |
4851 | |
4852 | The MORECORE function must have the following properties: |
4853 | |
4854 | If MORECORE_CONTIGUOUS is false: |
4855 | |
4856 | * MORECORE must allocate in multiples of pagesize. It will |
4857 | only be called with arguments that are multiples of pagesize. |
4858 | |
4859 | * MORECORE(0) must return an address that is at least |
4860 | MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.) |
4861 | |
4862 | else (i.e. If MORECORE_CONTIGUOUS is true): |
4863 | |
4864 | * Consecutive calls to MORECORE with positive arguments |
4865 | return increasing addresses, indicating that space has been |
4866 | contiguously extended. |
4867 | |
4868 | * MORECORE need not allocate in multiples of pagesize. |
4869 | Calls to MORECORE need not have args of multiples of pagesize. |
4870 | |
4871 | * MORECORE need not page-align. |
4872 | |
4873 | In either case: |
4874 | |
4875 | * MORECORE may allocate more memory than requested. (Or even less, |
4876 | but this will generally result in a malloc failure.) |
4877 | |
4878 | * MORECORE must not allocate memory when given argument zero, but |
4879 | instead return one past the end address of memory from previous |
4880 | nonzero call. This malloc does NOT call MORECORE(0) |
4881 | until at least one call with positive arguments is made, so |
4882 | the initial value returned is not important. |
4883 | |
4884 | * Even though consecutive calls to MORECORE need not return contiguous |
4885 | addresses, it must be OK for malloc'ed chunks to span multiple |
4886 | regions in those cases where they do happen to be contiguous. |
4887 | |
4888 | * MORECORE need not handle negative arguments -- it may instead |
4889 | just return MORECORE_FAILURE when given negative arguments. |
4890 | Negative arguments are always multiples of pagesize. MORECORE |
4891 | must not misinterpret negative args as large positive unsigned |
4892 | args. You can suppress all such calls from even occurring by defining |
4893 | MORECORE_CANNOT_TRIM, |
4894 | |
4895 | There is some variation across systems about the type of the |
4896 | argument to sbrk/MORECORE. If size_t is unsigned, then it cannot |
4897 | actually be size_t, because sbrk supports negative args, so it is |
4898 | normally the signed type of the same width as size_t (sometimes |
4899 | declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much |
4900 | matter though. Internally, we use "long" as arguments, which should |
4901 | work across all reasonable possibilities. |
4902 | |
4903 | Additionally, if MORECORE ever returns failure for a positive |
4904 | request, then mmap is used as a noncontiguous system allocator. This |
4905 | is a useful backup strategy for systems with holes in address spaces |
4906 | -- in this case sbrk cannot contiguously expand the heap, but mmap |
4907 | may be able to map noncontiguous space. |
4908 | |
4909 | If you'd like mmap to ALWAYS be used, you can define MORECORE to be |
4910 | a function that always returns MORECORE_FAILURE. |
4911 | |
4912 | If you are using this malloc with something other than sbrk (or its |
4913 | emulation) to supply memory regions, you probably want to set |
4914 | MORECORE_CONTIGUOUS as false. As an example, here is a custom |
4915 | allocator kindly contributed for pre-OSX macOS. It uses virtually |
4916 | but not necessarily physically contiguous non-paged memory (locked |
4917 | in, present and won't get swapped out). You can use it by |
4918 | uncommenting this section, adding some #includes, and setting up the |
4919 | appropriate defines above: |
4920 | |
4921 | *#define MORECORE osMoreCore |
4922 | *#define MORECORE_CONTIGUOUS 0 |
4923 | |
4924 | There is also a shutdown routine that should somehow be called for |
4925 | cleanup upon program exit. |
4926 | |
4927 | *#define MAX_POOL_ENTRIES 100 |
4928 | *#define MINIMUM_MORECORE_SIZE (64 * 1024) |
4929 | static int next_os_pool; |
4930 | void *our_os_pools[MAX_POOL_ENTRIES]; |
4931 | |
4932 | void *osMoreCore(int size) |
4933 | { |
4934 | void *ptr = 0; |
4935 | static void *sbrk_top = 0; |
4936 | |
4937 | if (size > 0) |
4938 | { |
4939 | if (size < MINIMUM_MORECORE_SIZE) |
4940 | size = MINIMUM_MORECORE_SIZE; |
4941 | if (CurrentExecutionLevel() == kTaskLevel) |
4942 | ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); |
4943 | if (ptr == 0) |
4944 | { |
4945 | return (void *) MORECORE_FAILURE; |
4946 | } |
4947 | // save ptrs so they can be freed during cleanup |
4948 | our_os_pools[next_os_pool] = ptr; |
4949 | next_os_pool++; |
4950 | ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); |
4951 | sbrk_top = (char *) ptr + size; |
4952 | return ptr; |
4953 | } |
4954 | else if (size < 0) |
4955 | { |
4956 | // we don't currently support shrink behavior |
4957 | return (void *) MORECORE_FAILURE; |
4958 | } |
4959 | else |
4960 | { |
4961 | return sbrk_top; |
4962 | } |
4963 | } |
4964 | |
4965 | // cleanup any allocated memory pools |
4966 | // called as last thing before shutting down driver |
4967 | |
4968 | void osCleanupMem(void) |
4969 | { |
4970 | void **ptr; |
4971 | |
4972 | for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) |
4973 | if (*ptr) |
4974 | { |
4975 | PoolDeallocate(*ptr); |
4976 | * ptr = 0; |
4977 | } |
4978 | } |
4979 | |
4980 | */ |
4981 | |
4982 | |
4983 | /* Helper code. */ |
4984 | |
4985 | extern char **__libc_argv attribute_hidden; |
4986 | |
4987 | static void |
4988 | malloc_printerr (int action, const char *str, void *ptr, mstate ar_ptr) |
4989 | { |
4990 | /* Avoid using this arena in future. We do not attempt to synchronize this |
4991 | with anything else because we minimally want to ensure that __libc_message |
4992 | gets its resources safely without stumbling on the current corruption. */ |
4993 | if (ar_ptr) |
4994 | set_arena_corrupt (ar_ptr); |
4995 | |
4996 | if ((action & 5) == 5) |
4997 | __libc_message (action & 2, "%s\n" , str); |
4998 | else if (action & 1) |
4999 | { |
5000 | char buf[2 * sizeof (uintptr_t) + 1]; |
5001 | |
5002 | buf[sizeof (buf) - 1] = '\0'; |
5003 | char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0); |
5004 | while (cp > buf) |
5005 | *--cp = '0'; |
5006 | |
5007 | __libc_message (action & 2, "*** Error in `%s': %s: 0x%s ***\n" , |
5008 | __libc_argv[0] ? : "<unknown>" , str, cp); |
5009 | } |
5010 | else if (action & 2) |
5011 | abort (); |
5012 | } |
5013 | |
5014 | /* We need a wrapper function for one of the additions of POSIX. */ |
5015 | int |
5016 | __posix_memalign (void **memptr, size_t alignment, size_t size) |
5017 | { |
5018 | void *mem; |
5019 | |
5020 | /* Test whether the SIZE argument is valid. It must be a power of |
5021 | two multiple of sizeof (void *). */ |
5022 | if (alignment % sizeof (void *) != 0 |
5023 | || !powerof2 (alignment / sizeof (void *)) |
5024 | || alignment == 0) |
5025 | return EINVAL; |
5026 | |
5027 | |
5028 | void *address = RETURN_ADDRESS (0); |
5029 | mem = _mid_memalign (alignment, size, address); |
5030 | |
5031 | if (mem != NULL) |
5032 | { |
5033 | *memptr = mem; |
5034 | return 0; |
5035 | } |
5036 | |
5037 | return ENOMEM; |
5038 | } |
5039 | weak_alias (__posix_memalign, posix_memalign) |
5040 | |
5041 | |
5042 | int |
5043 | __malloc_info (int options, FILE *fp) |
5044 | { |
5045 | /* For now, at least. */ |
5046 | if (options != 0) |
5047 | return EINVAL; |
5048 | |
5049 | int n = 0; |
5050 | size_t total_nblocks = 0; |
5051 | size_t total_nfastblocks = 0; |
5052 | size_t total_avail = 0; |
5053 | size_t total_fastavail = 0; |
5054 | size_t total_system = 0; |
5055 | size_t total_max_system = 0; |
5056 | size_t total_aspace = 0; |
5057 | size_t total_aspace_mprotect = 0; |
5058 | |
5059 | |
5060 | |
5061 | if (__malloc_initialized < 0) |
5062 | ptmalloc_init (); |
5063 | |
5064 | fputs ("<malloc version=\"1\">\n" , fp); |
5065 | |
5066 | /* Iterate over all arenas currently in use. */ |
5067 | mstate ar_ptr = &main_arena; |
5068 | do |
5069 | { |
5070 | fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n" , n++); |
5071 | |
5072 | size_t nblocks = 0; |
5073 | size_t nfastblocks = 0; |
5074 | size_t avail = 0; |
5075 | size_t fastavail = 0; |
5076 | struct |
5077 | { |
5078 | size_t from; |
5079 | size_t to; |
5080 | size_t total; |
5081 | size_t count; |
5082 | } sizes[NFASTBINS + NBINS - 1]; |
5083 | #define nsizes (sizeof (sizes) / sizeof (sizes[0])) |
5084 | |
5085 | mutex_lock (&ar_ptr->mutex); |
5086 | |
5087 | for (size_t i = 0; i < NFASTBINS; ++i) |
5088 | { |
5089 | mchunkptr p = fastbin (ar_ptr, i); |
5090 | if (p != NULL) |
5091 | { |
5092 | size_t nthissize = 0; |
5093 | size_t thissize = chunksize (p); |
5094 | |
5095 | while (p != NULL) |
5096 | { |
5097 | ++nthissize; |
5098 | p = p->fd; |
5099 | } |
5100 | |
5101 | fastavail += nthissize * thissize; |
5102 | nfastblocks += nthissize; |
5103 | sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1); |
5104 | sizes[i].to = thissize; |
5105 | sizes[i].count = nthissize; |
5106 | } |
5107 | else |
5108 | sizes[i].from = sizes[i].to = sizes[i].count = 0; |
5109 | |
5110 | sizes[i].total = sizes[i].count * sizes[i].to; |
5111 | } |
5112 | |
5113 | |
5114 | mbinptr bin; |
5115 | struct malloc_chunk *r; |
5116 | |
5117 | for (size_t i = 1; i < NBINS; ++i) |
5118 | { |
5119 | bin = bin_at (ar_ptr, i); |
5120 | r = bin->fd; |
5121 | sizes[NFASTBINS - 1 + i].from = ~((size_t) 0); |
5122 | sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total |
5123 | = sizes[NFASTBINS - 1 + i].count = 0; |
5124 | |
5125 | if (r != NULL) |
5126 | while (r != bin) |
5127 | { |
5128 | ++sizes[NFASTBINS - 1 + i].count; |
5129 | sizes[NFASTBINS - 1 + i].total += r->size; |
5130 | sizes[NFASTBINS - 1 + i].from |
5131 | = MIN (sizes[NFASTBINS - 1 + i].from, r->size); |
5132 | sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to, |
5133 | r->size); |
5134 | |
5135 | r = r->fd; |
5136 | } |
5137 | |
5138 | if (sizes[NFASTBINS - 1 + i].count == 0) |
5139 | sizes[NFASTBINS - 1 + i].from = 0; |
5140 | nblocks += sizes[NFASTBINS - 1 + i].count; |
5141 | avail += sizes[NFASTBINS - 1 + i].total; |
5142 | } |
5143 | |
5144 | mutex_unlock (&ar_ptr->mutex); |
5145 | |
5146 | total_nfastblocks += nfastblocks; |
5147 | total_fastavail += fastavail; |
5148 | |
5149 | total_nblocks += nblocks; |
5150 | total_avail += avail; |
5151 | |
5152 | for (size_t i = 0; i < nsizes; ++i) |
5153 | if (sizes[i].count != 0 && i != NFASTBINS) |
5154 | fprintf (fp, " \ |
5155 | <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
5156 | sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count); |
5157 | |
5158 | if (sizes[NFASTBINS].count != 0) |
5159 | fprintf (fp, "\ |
5160 | <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n" , |
5161 | sizes[NFASTBINS].from, sizes[NFASTBINS].to, |
5162 | sizes[NFASTBINS].total, sizes[NFASTBINS].count); |
5163 | |
5164 | total_system += ar_ptr->system_mem; |
5165 | total_max_system += ar_ptr->max_system_mem; |
5166 | |
5167 | fprintf (fp, |
5168 | "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
5169 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
5170 | "<system type=\"current\" size=\"%zu\"/>\n" |
5171 | "<system type=\"max\" size=\"%zu\"/>\n" , |
5172 | nfastblocks, fastavail, nblocks, avail, |
5173 | ar_ptr->system_mem, ar_ptr->max_system_mem); |
5174 | |
5175 | if (ar_ptr != &main_arena) |
5176 | { |
5177 | heap_info *heap = heap_for_ptr (top (ar_ptr)); |
5178 | fprintf (fp, |
5179 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5180 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" , |
5181 | heap->size, heap->mprotect_size); |
5182 | total_aspace += heap->size; |
5183 | total_aspace_mprotect += heap->mprotect_size; |
5184 | } |
5185 | else |
5186 | { |
5187 | fprintf (fp, |
5188 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5189 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" , |
5190 | ar_ptr->system_mem, ar_ptr->system_mem); |
5191 | total_aspace += ar_ptr->system_mem; |
5192 | total_aspace_mprotect += ar_ptr->system_mem; |
5193 | } |
5194 | |
5195 | fputs ("</heap>\n" , fp); |
5196 | ar_ptr = ar_ptr->next; |
5197 | } |
5198 | while (ar_ptr != &main_arena); |
5199 | |
5200 | fprintf (fp, |
5201 | "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n" |
5202 | "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n" |
5203 | "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n" |
5204 | "<system type=\"current\" size=\"%zu\"/>\n" |
5205 | "<system type=\"max\" size=\"%zu\"/>\n" |
5206 | "<aspace type=\"total\" size=\"%zu\"/>\n" |
5207 | "<aspace type=\"mprotect\" size=\"%zu\"/>\n" |
5208 | "</malloc>\n" , |
5209 | total_nfastblocks, total_fastavail, total_nblocks, total_avail, |
5210 | mp_.n_mmaps, mp_.mmapped_mem, |
5211 | total_system, total_max_system, |
5212 | total_aspace, total_aspace_mprotect); |
5213 | |
5214 | return 0; |
5215 | } |
5216 | weak_alias (__malloc_info, malloc_info) |
5217 | |
5218 | |
5219 | strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc) |
5220 | strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree) |
5221 | strong_alias (__libc_free, __free) strong_alias (__libc_free, free) |
5222 | strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc) |
5223 | strong_alias (__libc_memalign, __memalign) |
5224 | weak_alias (__libc_memalign, memalign) |
5225 | strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc) |
5226 | strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc) |
5227 | strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc) |
5228 | strong_alias (__libc_mallinfo, __mallinfo) |
5229 | weak_alias (__libc_mallinfo, mallinfo) |
5230 | strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt) |
5231 | |
5232 | weak_alias (__malloc_stats, malloc_stats) |
5233 | weak_alias (__malloc_usable_size, malloc_usable_size) |
5234 | weak_alias (__malloc_trim, malloc_trim) |
5235 | weak_alias (__malloc_get_state, malloc_get_state) |
5236 | weak_alias (__malloc_set_state, malloc_set_state) |
5237 | |
5238 | |
5239 | /* ------------------------------------------------------------ |
5240 | History: |
5241 | |
5242 | [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc] |
5243 | |
5244 | */ |
5245 | /* |
5246 | * Local variables: |
5247 | * c-basic-offset: 2 |
5248 | * End: |
5249 | */ |
5250 | |