1 | /* |
2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | */ |
58 | #include <mach_assert.h> |
59 | |
60 | #include <string.h> |
61 | #include <mach/boolean.h> |
62 | #include <mach/i386/vm_types.h> |
63 | #include <mach/i386/vm_param.h> |
64 | #include <kern/kern_types.h> |
65 | #include <kern/misc_protos.h> |
66 | #include <sys/errno.h> |
67 | #include <i386/param.h> |
68 | #include <i386/misc_protos.h> |
69 | #include <i386/cpu_data.h> |
70 | #include <i386/machine_routines.h> |
71 | #include <i386/cpuid.h> |
72 | #include <i386/vmx.h> |
73 | #include <vm/pmap.h> |
74 | #include <vm/vm_map.h> |
75 | #include <vm/vm_kern.h> |
76 | #include <vm/vm_fault.h> |
77 | |
78 | #include <libkern/OSAtomic.h> |
79 | #include <sys/kdebug.h> |
80 | |
81 | #if !MACH_KDP |
82 | #include <kdp/kdp_callout.h> |
83 | #endif /* !MACH_KDP */ |
84 | |
85 | #include <libkern/OSDebug.h> |
86 | #if CONFIG_DTRACE |
87 | #include <mach/sdt.h> |
88 | #endif |
89 | |
90 | #if 0 |
91 | |
92 | #undef KERNEL_DEBUG |
93 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT |
94 | #define KDEBUG 1 |
95 | |
96 | #endif |
97 | |
98 | /* prevent infinite recursion when memmove calls bcopy; in string.h, bcopy is defined to call memmove */ |
99 | #undef bcopy |
100 | |
101 | /* XXX - should be gone from here */ |
102 | extern void invalidate_icache64(addr64_t addr, unsigned cnt, int phys); |
103 | extern void flush_dcache64(addr64_t addr, unsigned count, int phys); |
104 | extern boolean_t phys_page_exists(ppnum_t); |
105 | extern void bcopy_no_overwrite(const char *from, char *to,vm_size_t bytes); |
106 | extern void pmap_set_reference(ppnum_t pn); |
107 | extern void mapping_set_mod(ppnum_t pa); |
108 | extern void mapping_set_ref(ppnum_t pn); |
109 | |
110 | extern void ovbcopy(const char *from, |
111 | char *to, |
112 | vm_size_t nbytes); |
113 | void machine_callstack(uintptr_t *buf, vm_size_t callstack_max); |
114 | |
115 | |
116 | #define value_64bit(value) ((value) & 0xFFFFFFFF00000000ULL) |
117 | #define low32(x) ((unsigned int)((x) & 0x00000000FFFFFFFFULL)) |
118 | |
119 | #define INT_SIZE (BYTE_SIZE * sizeof (int)) |
120 | |
121 | /* |
122 | * Set indicated bit in bit string. |
123 | */ |
124 | void |
125 | setbit(int bitno, int *s) |
126 | { |
127 | s[bitno / INT_SIZE] |= 1 << (bitno % INT_SIZE); |
128 | } |
129 | |
130 | /* |
131 | * Clear indicated bit in bit string. |
132 | */ |
133 | void |
134 | clrbit(int bitno, int *s) |
135 | { |
136 | s[bitno / INT_SIZE] &= ~(1 << (bitno % INT_SIZE)); |
137 | } |
138 | |
139 | /* |
140 | * Test if indicated bit is set in bit string. |
141 | */ |
142 | int |
143 | testbit(int bitno, int *s) |
144 | { |
145 | return s[bitno / INT_SIZE] & (1 << (bitno % INT_SIZE)); |
146 | } |
147 | |
148 | /* |
149 | * Find first bit set in bit string. |
150 | */ |
151 | int |
152 | ffsbit(int *s) |
153 | { |
154 | int offset; |
155 | |
156 | for (offset = 0; !*s; offset += (int)INT_SIZE, ++s); |
157 | return offset + __builtin_ctz(*s); |
158 | } |
159 | |
160 | int |
161 | ffs(unsigned int mask) |
162 | { |
163 | if (mask == 0) |
164 | return 0; |
165 | |
166 | /* |
167 | * NOTE: cannot use __builtin_ffs because it generates a call to |
168 | * 'ffs' |
169 | */ |
170 | return 1 + __builtin_ctz(mask); |
171 | } |
172 | |
173 | int |
174 | ffsll(unsigned long long mask) |
175 | { |
176 | if (mask == 0) |
177 | return 0; |
178 | |
179 | /* |
180 | * NOTE: cannot use __builtin_ffsll because it generates a call to |
181 | * 'ffsll' |
182 | */ |
183 | return 1 + __builtin_ctzll(mask); |
184 | } |
185 | |
186 | /* |
187 | * Find last bit set in bit string. |
188 | */ |
189 | int |
190 | fls(unsigned int mask) |
191 | { |
192 | if (mask == 0) |
193 | return 0; |
194 | |
195 | return (sizeof (mask) << 3) - __builtin_clz(mask); |
196 | } |
197 | |
198 | int |
199 | flsll(unsigned long long mask) |
200 | { |
201 | if (mask == 0) |
202 | return 0; |
203 | |
204 | return (sizeof (mask) << 3) - __builtin_clzll(mask); |
205 | } |
206 | |
207 | void |
208 | bzero_phys_nc( |
209 | addr64_t src64, |
210 | uint32_t bytes) |
211 | { |
212 | bzero_phys(src64,bytes); |
213 | } |
214 | |
215 | void |
216 | bzero_phys( |
217 | addr64_t src64, |
218 | uint32_t bytes) |
219 | { |
220 | bzero(PHYSMAP_PTOV(src64), bytes); |
221 | } |
222 | |
223 | |
224 | /* |
225 | * bcopy_phys - like bcopy but copies from/to physical addresses. |
226 | */ |
227 | |
228 | void |
229 | bcopy_phys( |
230 | addr64_t src64, |
231 | addr64_t dst64, |
232 | vm_size_t bytes) |
233 | { |
234 | /* Not necessary for K64 - but ensure we stay within a page */ |
235 | if (((((uint32_t)src64 & (NBPG-1)) + bytes) > NBPG) || |
236 | ((((uint32_t)dst64 & (NBPG-1)) + bytes) > NBPG) ) { |
237 | panic("bcopy_phys alignment" ); |
238 | } |
239 | bcopy(PHYSMAP_PTOV(src64), PHYSMAP_PTOV(dst64), bytes); |
240 | } |
241 | |
242 | /* |
243 | * allow a function to get a quick virtual mapping of a physical page |
244 | */ |
245 | |
246 | int |
247 | apply_func_phys( |
248 | addr64_t dst64, |
249 | vm_size_t bytes, |
250 | int (*func)(void * buffer, vm_size_t bytes, void * arg), |
251 | void * arg) |
252 | { |
253 | /* Not necessary for K64 - but ensure we stay within a page */ |
254 | if (((((uint32_t)dst64 & (NBPG-1)) + bytes) > NBPG) ) { |
255 | panic("apply_func_phys alignment" ); |
256 | } |
257 | |
258 | return func(PHYSMAP_PTOV(dst64), bytes, arg); |
259 | } |
260 | |
261 | /* |
262 | * ovbcopy - like bcopy, but recognizes overlapping ranges and handles |
263 | * them correctly. |
264 | */ |
265 | |
266 | void |
267 | ovbcopy( |
268 | const char *from, |
269 | char *to, |
270 | vm_size_t bytes) /* num bytes to copy */ |
271 | { |
272 | /* Assume that bcopy copies left-to-right (low addr first). */ |
273 | if (from + bytes <= to || to + bytes <= from || to == from) |
274 | bcopy_no_overwrite(from, to, bytes); /* non-overlapping or no-op*/ |
275 | else if (from > to) |
276 | bcopy_no_overwrite(from, to, bytes); /* overlapping but OK */ |
277 | else { |
278 | /* to > from: overlapping, and must copy right-to-left. */ |
279 | from += bytes - 1; |
280 | to += bytes - 1; |
281 | while (bytes-- > 0) |
282 | *to-- = *from--; |
283 | } |
284 | } |
285 | |
286 | |
287 | /* |
288 | * Read data from a physical address. Memory should not be cache inhibited. |
289 | */ |
290 | |
291 | uint64_t reportphyreaddelayabs; |
292 | uint32_t reportphyreadosbt; |
293 | |
294 | #if DEVELOPMENT || DEBUG |
295 | uint32_t phyreadpanic = 1; |
296 | #else |
297 | uint32_t phyreadpanic = 0; |
298 | #endif |
299 | |
300 | __private_extern__ uint64_t |
301 | ml_phys_read_data(pmap_paddr_t paddr, int size) { |
302 | uint64_t result = 0; |
303 | unsigned char s1; |
304 | unsigned short s2; |
305 | boolean_t istate = TRUE, timeread = FALSE; |
306 | uint64_t sabs = 0, eabs; |
307 | |
308 | if (__improbable(!physmap_enclosed(paddr))) |
309 | panic("%s: 0x%llx out of bounds\n" , __FUNCTION__, paddr); |
310 | |
311 | if (__improbable(reportphyreaddelayabs != 0)) { |
312 | istate = ml_set_interrupts_enabled(FALSE); |
313 | sabs = mach_absolute_time(); |
314 | timeread = TRUE; |
315 | } |
316 | |
317 | switch (size) { |
318 | case 1: |
319 | s1 = *(volatile unsigned char *)PHYSMAP_PTOV(paddr); |
320 | result = s1; |
321 | break; |
322 | case 2: |
323 | s2 = *(volatile unsigned short *)PHYSMAP_PTOV(paddr); |
324 | result = s2; |
325 | break; |
326 | case 4: |
327 | result = *(volatile unsigned int *)PHYSMAP_PTOV(paddr); |
328 | break; |
329 | case 8: |
330 | result = *(volatile unsigned long long *)PHYSMAP_PTOV(paddr); |
331 | break; |
332 | default: |
333 | panic("Invalid size %d for ml_phys_read_data\n" , size); |
334 | break; |
335 | } |
336 | |
337 | if (__improbable(timeread == TRUE)) { |
338 | eabs = mach_absolute_time(); |
339 | (void)ml_set_interrupts_enabled(istate); |
340 | |
341 | if (__improbable((eabs - sabs) > reportphyreaddelayabs)) { |
342 | if (phyreadpanic && (machine_timeout_suspended() == FALSE)) { |
343 | panic_io_port_read(); |
344 | panic("Read from physical addr 0x%llx took %llu ns, result: 0x%llx (start: %llu, end: %llu), ceiling: %llu" , paddr, (eabs - sabs), result, sabs, eabs, reportphyreaddelayabs); |
345 | } |
346 | |
347 | if (reportphyreadosbt) { |
348 | OSReportWithBacktrace("ml_phys_read_data took %lluus\n" , (eabs - sabs) / 1000); |
349 | } |
350 | #if CONFIG_DTRACE |
351 | DTRACE_PHYSLAT3(physread, uint64_t, (eabs - sabs), |
352 | pmap_paddr_t, paddr, uint32_t, size); |
353 | #endif |
354 | } |
355 | } |
356 | |
357 | return result; |
358 | } |
359 | |
360 | static unsigned long long |
361 | ml_phys_read_long_long(pmap_paddr_t paddr) { |
362 | return ml_phys_read_data(paddr, 8); |
363 | } |
364 | |
365 | unsigned int ml_phys_read( vm_offset_t paddr) |
366 | { |
367 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr, 4); |
368 | } |
369 | |
370 | unsigned int ml_phys_read_word(vm_offset_t paddr) { |
371 | |
372 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr, 4); |
373 | } |
374 | |
375 | unsigned int ml_phys_read_64(addr64_t paddr64) |
376 | { |
377 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr64, 4); |
378 | } |
379 | |
380 | unsigned int ml_phys_read_word_64(addr64_t paddr64) |
381 | { |
382 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr64, 4); |
383 | } |
384 | |
385 | unsigned int ml_phys_read_half(vm_offset_t paddr) |
386 | { |
387 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr, 2); |
388 | } |
389 | |
390 | unsigned int ml_phys_read_half_64(addr64_t paddr64) |
391 | { |
392 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr64, 2); |
393 | } |
394 | |
395 | unsigned int ml_phys_read_byte(vm_offset_t paddr) |
396 | { |
397 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr, 1); |
398 | } |
399 | |
400 | unsigned int ml_phys_read_byte_64(addr64_t paddr64) |
401 | { |
402 | return (unsigned int) ml_phys_read_data((pmap_paddr_t)paddr64, 1); |
403 | } |
404 | |
405 | unsigned long long ml_phys_read_double(vm_offset_t paddr) |
406 | { |
407 | return ml_phys_read_long_long((pmap_paddr_t)paddr); |
408 | } |
409 | |
410 | unsigned long long ml_phys_read_double_64(addr64_t paddr64) |
411 | { |
412 | return ml_phys_read_long_long((pmap_paddr_t)paddr64); |
413 | } |
414 | |
415 | |
416 | |
417 | /* |
418 | * Write data to a physical address. Memory should not be cache inhibited. |
419 | */ |
420 | |
421 | static inline void |
422 | ml_phys_write_data(pmap_paddr_t paddr, unsigned long data, int size) |
423 | { |
424 | if (!physmap_enclosed(paddr)) |
425 | panic("%s: 0x%llx out of bounds\n" , __FUNCTION__, paddr); |
426 | |
427 | switch (size) { |
428 | case 1: |
429 | *(volatile unsigned char *)PHYSMAP_PTOV(paddr) = (unsigned char)data; |
430 | break; |
431 | case 2: |
432 | *(volatile unsigned short *)PHYSMAP_PTOV(paddr) = (unsigned short)data; |
433 | break; |
434 | case 4: |
435 | *(volatile unsigned int *)PHYSMAP_PTOV(paddr) = (unsigned int)data; |
436 | break; |
437 | default: |
438 | panic("Invalid size %d for ml_phys_write_data\n" , size); |
439 | break; |
440 | } |
441 | } |
442 | |
443 | static void |
444 | ml_phys_write_long_long(pmap_paddr_t paddr, unsigned long long data) |
445 | { |
446 | if (!physmap_enclosed(paddr)) |
447 | panic("%s: 0x%llx out of bounds\n" , __FUNCTION__, paddr); |
448 | |
449 | *(volatile unsigned long long *)PHYSMAP_PTOV(paddr) = data; |
450 | } |
451 | |
452 | void ml_phys_write_byte(vm_offset_t paddr, unsigned int data) |
453 | { |
454 | ml_phys_write_data((pmap_paddr_t)paddr, data, 1); |
455 | } |
456 | |
457 | void ml_phys_write_byte_64(addr64_t paddr64, unsigned int data) |
458 | { |
459 | ml_phys_write_data((pmap_paddr_t)paddr64, data, 1); |
460 | } |
461 | |
462 | void ml_phys_write_half(vm_offset_t paddr, unsigned int data) |
463 | { |
464 | ml_phys_write_data((pmap_paddr_t)paddr, data, 2); |
465 | } |
466 | |
467 | void ml_phys_write_half_64(addr64_t paddr64, unsigned int data) |
468 | { |
469 | ml_phys_write_data((pmap_paddr_t)paddr64, data, 2); |
470 | } |
471 | |
472 | void ml_phys_write(vm_offset_t paddr, unsigned int data) |
473 | { |
474 | ml_phys_write_data((pmap_paddr_t)paddr, data, 4); |
475 | } |
476 | |
477 | void ml_phys_write_64(addr64_t paddr64, unsigned int data) |
478 | { |
479 | ml_phys_write_data((pmap_paddr_t)paddr64, data, 4); |
480 | } |
481 | |
482 | void ml_phys_write_word(vm_offset_t paddr, unsigned int data) |
483 | { |
484 | ml_phys_write_data((pmap_paddr_t)paddr, data, 4); |
485 | } |
486 | |
487 | void ml_phys_write_word_64(addr64_t paddr64, unsigned int data) |
488 | { |
489 | ml_phys_write_data((pmap_paddr_t)paddr64, data, 4); |
490 | } |
491 | |
492 | void ml_phys_write_double(vm_offset_t paddr, unsigned long long data) |
493 | { |
494 | ml_phys_write_long_long((pmap_paddr_t)paddr, data); |
495 | } |
496 | |
497 | void ml_phys_write_double_64(addr64_t paddr64, unsigned long long data) |
498 | { |
499 | ml_phys_write_long_long((pmap_paddr_t)paddr64, data); |
500 | } |
501 | |
502 | |
503 | /* PCI config cycle probing |
504 | * |
505 | * |
506 | * Read the memory location at physical address paddr. |
507 | * *Does not* recover from machine checks, unlike the PowerPC implementation. |
508 | * Should probably be deprecated. |
509 | */ |
510 | |
511 | boolean_t |
512 | ml_probe_read(vm_offset_t paddr, unsigned int *val) |
513 | { |
514 | if ((PAGE_SIZE - (paddr & PAGE_MASK)) < 4) |
515 | return FALSE; |
516 | |
517 | *val = ml_phys_read((pmap_paddr_t)paddr); |
518 | |
519 | return TRUE; |
520 | } |
521 | |
522 | /* |
523 | * Read the memory location at physical address paddr. |
524 | * This is a part of a device probe, so there is a good chance we will |
525 | * have a machine check here. So we have to be able to handle that. |
526 | * We assume that machine checks are enabled both in MSR and HIDs |
527 | */ |
528 | boolean_t |
529 | ml_probe_read_64(addr64_t paddr64, unsigned int *val) |
530 | { |
531 | if ((PAGE_SIZE - (paddr64 & PAGE_MASK)) < 4) |
532 | return FALSE; |
533 | |
534 | *val = ml_phys_read_64((pmap_paddr_t)paddr64); |
535 | return TRUE; |
536 | } |
537 | |
538 | |
539 | #undef bcmp |
540 | int bcmp( |
541 | const void *pa, |
542 | const void *pb, |
543 | size_t len) |
544 | { |
545 | const char *a = (const char *)pa; |
546 | const char *b = (const char *)pb; |
547 | |
548 | if (len == 0) |
549 | return 0; |
550 | |
551 | do |
552 | if (*a++ != *b++) |
553 | break; |
554 | while (--len); |
555 | |
556 | return (int)len; |
557 | } |
558 | |
559 | #undef memcmp |
560 | int |
561 | memcmp(const void *s1, const void *s2, size_t n) |
562 | { |
563 | if (n != 0) { |
564 | const unsigned char *p1 = s1, *p2 = s2; |
565 | |
566 | do { |
567 | if (*p1++ != *p2++) |
568 | return (*--p1 - *--p2); |
569 | } while (--n != 0); |
570 | } |
571 | return (0); |
572 | } |
573 | |
574 | #undef memmove |
575 | void * |
576 | memmove(void *dst, const void *src, size_t ulen) |
577 | { |
578 | bcopy(src, dst, ulen); |
579 | return dst; |
580 | } |
581 | |
582 | /* |
583 | * Abstract: |
584 | * strlen returns the number of characters in "string" preceeding |
585 | * the terminating null character. |
586 | */ |
587 | |
588 | #undef strlen |
589 | size_t |
590 | strlen( |
591 | const char *string) |
592 | { |
593 | const char *ret = string; |
594 | |
595 | while (*string++ != '\0') |
596 | continue; |
597 | return string - 1 - ret; |
598 | } |
599 | |
600 | #if MACH_ASSERT |
601 | |
602 | /* |
603 | * Machine-dependent routine to fill in an array with up to callstack_max |
604 | * levels of return pc information. |
605 | */ |
606 | void machine_callstack( |
607 | __unused uintptr_t *buf, |
608 | __unused vm_size_t callstack_max) |
609 | { |
610 | } |
611 | |
612 | #endif /* MACH_ASSERT */ |
613 | |
614 | void fillPage(ppnum_t pa, unsigned int fill) |
615 | { |
616 | pmap_paddr_t src; |
617 | int i; |
618 | int cnt = PAGE_SIZE / sizeof(unsigned int); |
619 | unsigned int *addr; |
620 | |
621 | src = i386_ptob(pa); |
622 | for (i = 0, addr = (unsigned int *)PHYSMAP_PTOV(src); i < cnt; i++) |
623 | *addr++ = fill; |
624 | } |
625 | |
626 | static inline void __clflush(void *ptr) |
627 | { |
628 | __asm__ volatile("clflush (%0)" : : "r" (ptr)); |
629 | } |
630 | |
631 | void dcache_incoherent_io_store64(addr64_t pa, unsigned int count) |
632 | { |
633 | addr64_t linesize = cpuid_info()->cache_linesize; |
634 | addr64_t bound = (pa + count + linesize - 1) & ~(linesize - 1); |
635 | |
636 | mfence(); |
637 | |
638 | while (pa < bound) { |
639 | __clflush(PHYSMAP_PTOV(pa)); |
640 | pa += linesize; |
641 | } |
642 | |
643 | mfence(); |
644 | } |
645 | |
646 | void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count) |
647 | { |
648 | return(dcache_incoherent_io_store64(pa,count)); |
649 | } |
650 | |
651 | void |
652 | flush_dcache64(addr64_t addr, unsigned count, int phys) |
653 | { |
654 | if (phys) { |
655 | dcache_incoherent_io_flush64(addr, count); |
656 | } |
657 | else { |
658 | uint64_t linesize = cpuid_info()->cache_linesize; |
659 | addr64_t bound = (addr + count + linesize -1) & ~(linesize - 1); |
660 | mfence(); |
661 | while (addr < bound) { |
662 | __clflush((void *) (uintptr_t) addr); |
663 | addr += linesize; |
664 | } |
665 | mfence(); |
666 | } |
667 | } |
668 | |
669 | void |
670 | invalidate_icache64(__unused addr64_t addr, |
671 | __unused unsigned count, |
672 | __unused int phys) |
673 | { |
674 | } |
675 | |
676 | |
677 | addr64_t vm_last_addr; |
678 | |
679 | void |
680 | mapping_set_mod(ppnum_t pn) |
681 | { |
682 | pmap_set_modify(pn); |
683 | } |
684 | |
685 | void |
686 | mapping_set_ref(ppnum_t pn) |
687 | { |
688 | pmap_set_reference(pn); |
689 | } |
690 | |
691 | extern i386_cpu_info_t cpuid_cpu_info; |
692 | void |
693 | cache_flush_page_phys(ppnum_t pa) |
694 | { |
695 | boolean_t istate; |
696 | unsigned char *cacheline_addr; |
697 | i386_cpu_info_t *cpuid_infop = cpuid_info(); |
698 | int cacheline_size; |
699 | int cachelines_to_flush; |
700 | |
701 | cacheline_size = cpuid_infop->cache_linesize; |
702 | if (cacheline_size == 0) |
703 | panic("cacheline_size=0 cpuid_infop=%p\n" , cpuid_infop); |
704 | cachelines_to_flush = PAGE_SIZE/cacheline_size; |
705 | |
706 | mfence(); |
707 | |
708 | istate = ml_set_interrupts_enabled(FALSE); |
709 | |
710 | for (cacheline_addr = (unsigned char *)PHYSMAP_PTOV(i386_ptob(pa)); |
711 | cachelines_to_flush > 0; |
712 | cachelines_to_flush--, cacheline_addr += cacheline_size) { |
713 | __clflush((void *) cacheline_addr); |
714 | } |
715 | |
716 | (void) ml_set_interrupts_enabled(istate); |
717 | |
718 | mfence(); |
719 | } |
720 | |
721 | |
722 | #if !MACH_KDP |
723 | void |
724 | kdp_register_callout(kdp_callout_fn_t fn, void *arg) |
725 | { |
726 | #pragma unused(fn,arg) |
727 | } |
728 | #endif |
729 | |
730 | #if !CONFIG_VMX |
731 | int host_vmxon(boolean_t exclusive __unused) |
732 | { |
733 | return VMX_UNSUPPORTED; |
734 | } |
735 | |
736 | void host_vmxoff(void) |
737 | { |
738 | return; |
739 | } |
740 | #endif |
741 | uint32_t xcpm_bios_mbox_cmd_read(uint32_t a); static uint32_t __xcpm_reg[64] = {}; |
742 | uint32_t xcpm_bios_mbox_cmd_read(uint32_t a) { return __xcpm_reg[a%64]; } |
743 | void xcpm_bios_mbox_cmd_write(uint32_t a, uint32_t b); |
744 | void xcpm_bios_mbox_cmd_write(uint32_t a, uint32_t b) { __xcpm_reg[a%64] = b; } |
745 | boolean_t xcpm_is_hwp_enabled(void); |
746 | boolean_t xcpm_is_hwp_enabled(void) { return 0; } |
747 | void xcpm_mbox_lock(void); |
748 | void xcpm_mbox_lock(void) {} |
749 | |