1 | /* |
2 | * Copyright (c) 2012 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #include <mach/mach_types.h> |
30 | #include <machine/machine_routines.h> |
31 | #include <kern/processor.h> |
32 | #include <kern/kalloc.h> |
33 | #include <i386/cpuid.h> |
34 | #include <i386/proc_reg.h> |
35 | #include <i386/mp.h> |
36 | #include <sys/errno.h> |
37 | #include <kperf/buffer.h> |
38 | |
39 | #include <kern/kpc.h> |
40 | |
41 | #include <kperf/kperf.h> |
42 | #include <kperf/sample.h> |
43 | #include <kperf/context.h> |
44 | #include <kperf/action.h> |
45 | |
46 | /* Fixed counter mask -- three counters, each with OS and USER */ |
47 | #define IA32_FIXED_CTR_ENABLE_ALL_CTRS_ALL_RINGS (0x333) |
48 | #define IA32_FIXED_CTR_ENABLE_ALL_PMI (0x888) |
49 | |
50 | #define IA32_PERFEVTSEL_PMI (1ull << 20) |
51 | #define IA32_PERFEVTSEL_EN (1ull << 22) |
52 | |
53 | /* Non-serialising */ |
54 | #define USE_RDPMC |
55 | |
56 | #define RDPMC_FIXED_COUNTER_SELECTOR (1ULL<<30) |
57 | |
58 | /* track the last config we enabled */ |
59 | static uint64_t kpc_running_cfg_pmc_mask = 0; |
60 | static uint32_t kpc_running_classes = 0; |
61 | |
62 | /* PMC / MSR accesses */ |
63 | |
64 | static uint64_t |
65 | IA32_FIXED_CTR_CTRL(void) |
66 | { |
67 | return rdmsr64( MSR_IA32_PERF_FIXED_CTR_CTRL ); |
68 | } |
69 | |
70 | static uint64_t |
71 | IA32_FIXED_CTRx(uint32_t ctr) |
72 | { |
73 | #ifdef USE_RDPMC |
74 | return rdpmc64(RDPMC_FIXED_COUNTER_SELECTOR | ctr); |
75 | #else /* !USE_RDPMC */ |
76 | return rdmsr64(MSR_IA32_PERF_FIXED_CTR0 + ctr); |
77 | #endif /* !USE_RDPMC */ |
78 | } |
79 | |
80 | #ifdef FIXED_COUNTER_RELOAD |
81 | static void |
82 | wrIA32_FIXED_CTRx(uint32_t ctr, uint64_t value) |
83 | { |
84 | return wrmsr64(MSR_IA32_PERF_FIXED_CTR0 + ctr, value); |
85 | } |
86 | #endif |
87 | |
88 | static uint64_t |
89 | IA32_PMCx(uint32_t ctr) |
90 | { |
91 | #ifdef USE_RDPMC |
92 | return rdpmc64(ctr); |
93 | #else /* !USE_RDPMC */ |
94 | return rdmsr64(MSR_IA32_PERFCTR0 + ctr); |
95 | #endif /* !USE_RDPMC */ |
96 | } |
97 | |
98 | static void |
99 | wrIA32_PMCx(uint32_t ctr, uint64_t value) |
100 | { |
101 | return wrmsr64(MSR_IA32_PERFCTR0 + ctr, value); |
102 | } |
103 | |
104 | static uint64_t |
105 | IA32_PERFEVTSELx(uint32_t ctr) |
106 | { |
107 | return rdmsr64(MSR_IA32_EVNTSEL0 + ctr); |
108 | } |
109 | |
110 | static void |
111 | wrIA32_PERFEVTSELx(uint32_t ctr, uint64_t value) |
112 | { |
113 | wrmsr64(MSR_IA32_EVNTSEL0 + ctr, value); |
114 | } |
115 | |
116 | |
117 | /* internal functions */ |
118 | |
119 | boolean_t |
120 | kpc_is_running_fixed(void) |
121 | { |
122 | return (kpc_running_classes & KPC_CLASS_FIXED_MASK) == KPC_CLASS_FIXED_MASK; |
123 | } |
124 | |
125 | boolean_t |
126 | kpc_is_running_configurable(uint64_t pmc_mask) |
127 | { |
128 | assert(kpc_popcount(pmc_mask) <= kpc_configurable_count()); |
129 | return ((kpc_running_classes & KPC_CLASS_CONFIGURABLE_MASK) == KPC_CLASS_CONFIGURABLE_MASK) && |
130 | ((kpc_running_cfg_pmc_mask & pmc_mask) == pmc_mask); |
131 | } |
132 | |
133 | uint32_t |
134 | kpc_fixed_count(void) |
135 | { |
136 | i386_cpu_info_t *info = NULL; |
137 | info = cpuid_info(); |
138 | return info->cpuid_arch_perf_leaf.fixed_number; |
139 | } |
140 | |
141 | uint32_t |
142 | kpc_configurable_count(void) |
143 | { |
144 | i386_cpu_info_t *info = NULL; |
145 | info = cpuid_info(); |
146 | return info->cpuid_arch_perf_leaf.number; |
147 | } |
148 | |
149 | uint32_t |
150 | kpc_fixed_config_count(void) |
151 | { |
152 | return KPC_X86_64_FIXED_CONFIGS; |
153 | } |
154 | |
155 | uint32_t |
156 | kpc_configurable_config_count(uint64_t pmc_mask) |
157 | { |
158 | assert(kpc_popcount(pmc_mask) <= kpc_configurable_count()); |
159 | return kpc_popcount(pmc_mask); |
160 | } |
161 | |
162 | uint32_t |
163 | kpc_rawpmu_config_count(void) |
164 | { |
165 | // RAW PMU access not implemented. |
166 | return 0; |
167 | } |
168 | |
169 | int |
170 | kpc_get_rawpmu_config(__unused kpc_config_t *configv) |
171 | { |
172 | return 0; |
173 | } |
174 | |
175 | static uint8_t |
176 | kpc_fixed_width(void) |
177 | { |
178 | i386_cpu_info_t *info = NULL; |
179 | |
180 | info = cpuid_info(); |
181 | |
182 | return info->cpuid_arch_perf_leaf.fixed_width; |
183 | } |
184 | |
185 | static uint8_t |
186 | kpc_configurable_width(void) |
187 | { |
188 | i386_cpu_info_t *info = NULL; |
189 | |
190 | info = cpuid_info(); |
191 | |
192 | return info->cpuid_arch_perf_leaf.width; |
193 | } |
194 | |
195 | uint64_t |
196 | kpc_fixed_max(void) |
197 | { |
198 | return (1ULL << kpc_fixed_width()) - 1; |
199 | } |
200 | |
201 | uint64_t |
202 | kpc_configurable_max(void) |
203 | { |
204 | return (1ULL << kpc_configurable_width()) - 1; |
205 | } |
206 | |
207 | #ifdef FIXED_COUNTER_SHADOW |
208 | static uint64_t |
209 | kpc_reload_fixed(int ctr) |
210 | { |
211 | uint64_t old = IA32_FIXED_CTRx(ctr); |
212 | wrIA32_FIXED_CTRx(ctr, FIXED_RELOAD(ctr)); |
213 | return old; |
214 | } |
215 | #endif |
216 | |
217 | static uint64_t |
218 | kpc_reload_configurable(int ctr) |
219 | { |
220 | uint64_t cfg = IA32_PERFEVTSELx(ctr); |
221 | |
222 | /* counters must be disabled before they can be written to */ |
223 | uint64_t old = IA32_PMCx(ctr); |
224 | wrIA32_PERFEVTSELx(ctr, cfg & ~IA32_PERFEVTSEL_EN); |
225 | wrIA32_PMCx(ctr, CONFIGURABLE_RELOAD(ctr)); |
226 | wrIA32_PERFEVTSELx(ctr, cfg); |
227 | return old; |
228 | } |
229 | |
230 | void kpc_pmi_handler(x86_saved_state_t *state); |
231 | |
232 | static void |
233 | set_running_fixed(boolean_t on) |
234 | { |
235 | uint64_t global = 0, mask = 0, fixed_ctrl = 0; |
236 | int i; |
237 | boolean_t enabled; |
238 | |
239 | if( on ) |
240 | /* these are per-thread in SMT */ |
241 | fixed_ctrl = IA32_FIXED_CTR_ENABLE_ALL_CTRS_ALL_RINGS | IA32_FIXED_CTR_ENABLE_ALL_PMI; |
242 | else |
243 | /* don't allow disabling fixed counters */ |
244 | return; |
245 | |
246 | wrmsr64( MSR_IA32_PERF_FIXED_CTR_CTRL, fixed_ctrl ); |
247 | |
248 | enabled = ml_set_interrupts_enabled(FALSE); |
249 | |
250 | /* rmw the global control */ |
251 | global = rdmsr64(MSR_IA32_PERF_GLOBAL_CTRL); |
252 | for( i = 0; i < (int) kpc_fixed_count(); i++ ) |
253 | mask |= (1ULL<<(32+i)); |
254 | |
255 | if( on ) |
256 | global |= mask; |
257 | else |
258 | global &= ~mask; |
259 | |
260 | wrmsr64(MSR_IA32_PERF_GLOBAL_CTRL, global); |
261 | |
262 | ml_set_interrupts_enabled(enabled); |
263 | } |
264 | |
265 | static void |
266 | set_running_configurable(uint64_t target_mask, uint64_t state_mask) |
267 | { |
268 | uint32_t cfg_count = kpc_configurable_count(); |
269 | uint64_t global = 0ULL, cfg = 0ULL, save = 0ULL; |
270 | boolean_t enabled; |
271 | |
272 | enabled = ml_set_interrupts_enabled(FALSE); |
273 | |
274 | /* rmw the global control */ |
275 | global = rdmsr64(MSR_IA32_PERF_GLOBAL_CTRL); |
276 | |
277 | /* need to save and restore counter since it resets when reconfigured */ |
278 | for (uint32_t i = 0; i < cfg_count; ++i) { |
279 | cfg = IA32_PERFEVTSELx(i); |
280 | save = IA32_PMCx(i); |
281 | wrIA32_PERFEVTSELx(i, cfg | IA32_PERFEVTSEL_PMI | IA32_PERFEVTSEL_EN); |
282 | wrIA32_PMCx(i, save); |
283 | } |
284 | |
285 | /* update the global control value */ |
286 | global &= ~target_mask; /* clear the targeted PMCs bits */ |
287 | global |= state_mask; /* update the targeted PMCs bits with their new states */ |
288 | wrmsr64(MSR_IA32_PERF_GLOBAL_CTRL, global); |
289 | |
290 | ml_set_interrupts_enabled(enabled); |
291 | } |
292 | |
293 | static void |
294 | kpc_set_running_mp_call( void *vstate ) |
295 | { |
296 | struct kpc_running_remote *mp_config = (struct kpc_running_remote*) vstate; |
297 | assert(mp_config); |
298 | |
299 | if (kpc_controls_fixed_counters()) |
300 | set_running_fixed(mp_config->classes & KPC_CLASS_FIXED_MASK); |
301 | |
302 | set_running_configurable(mp_config->cfg_target_mask, |
303 | mp_config->cfg_state_mask); |
304 | } |
305 | |
306 | int |
307 | kpc_get_fixed_config(kpc_config_t *configv) |
308 | { |
309 | configv[0] = IA32_FIXED_CTR_CTRL(); |
310 | return 0; |
311 | } |
312 | |
313 | static int |
314 | kpc_set_fixed_config(kpc_config_t *configv) |
315 | { |
316 | (void) configv; |
317 | |
318 | /* NYI */ |
319 | return -1; |
320 | } |
321 | |
322 | int |
323 | kpc_get_fixed_counters(uint64_t *counterv) |
324 | { |
325 | int i, n = kpc_fixed_count(); |
326 | |
327 | #ifdef FIXED_COUNTER_SHADOW |
328 | uint64_t status; |
329 | |
330 | /* snap the counters */ |
331 | for( i = 0; i < n; i++ ) { |
332 | counterv[i] = FIXED_SHADOW(ctr) + |
333 | (IA32_FIXED_CTRx(i) - FIXED_RELOAD(ctr)); |
334 | } |
335 | |
336 | /* Grab the overflow bits */ |
337 | status = rdmsr64(MSR_IA32_PERF_GLOBAL_STATUS); |
338 | |
339 | /* If the overflow bit is set for a counter, our previous read may or may not have been |
340 | * before the counter overflowed. Re-read any counter with it's overflow bit set so |
341 | * we know for sure that it has overflowed. The reason this matters is that the math |
342 | * is different for a counter that has overflowed. */ |
343 | for( i = 0; i < n; i++ ) { |
344 | if ((1ull << (i + 32)) & status) |
345 | counterv[i] = FIXED_SHADOW(ctr) + |
346 | (kpc_fixed_max() - FIXED_RELOAD(ctr) + 1 /* Wrap */) + IA32_FIXED_CTRx(i); |
347 | } |
348 | #else |
349 | for( i = 0; i < n; i++ ) |
350 | counterv[i] = IA32_FIXED_CTRx(i); |
351 | #endif |
352 | |
353 | return 0; |
354 | } |
355 | |
356 | int |
357 | kpc_get_configurable_config(kpc_config_t *configv, uint64_t pmc_mask) |
358 | { |
359 | uint32_t cfg_count = kpc_configurable_count(); |
360 | |
361 | assert(configv); |
362 | |
363 | for (uint32_t i = 0; i < cfg_count; ++i) |
364 | if ((1ULL << i) & pmc_mask) |
365 | *configv++ = IA32_PERFEVTSELx(i); |
366 | return 0; |
367 | } |
368 | |
369 | static int |
370 | kpc_set_configurable_config(kpc_config_t *configv, uint64_t pmc_mask) |
371 | { |
372 | uint32_t cfg_count = kpc_configurable_count(); |
373 | uint64_t save; |
374 | |
375 | for (uint32_t i = 0; i < cfg_count; i++ ) { |
376 | if (((1ULL << i) & pmc_mask) == 0) |
377 | continue; |
378 | |
379 | /* need to save and restore counter since it resets when reconfigured */ |
380 | save = IA32_PMCx(i); |
381 | |
382 | /* |
383 | * Some bits are not safe to set from user space. |
384 | * Allow these bits to be set: |
385 | * |
386 | * 0-7 Event select |
387 | * 8-15 UMASK |
388 | * 16 USR |
389 | * 17 OS |
390 | * 18 E |
391 | * 22 EN |
392 | * 23 INV |
393 | * 24-31 CMASK |
394 | * |
395 | * Excluding: |
396 | * |
397 | * 19 PC |
398 | * 20 INT |
399 | * 21 AnyThread |
400 | * 32 IN_TX |
401 | * 33 IN_TXCP |
402 | * 34-63 Reserved |
403 | */ |
404 | wrIA32_PERFEVTSELx(i, *configv & 0xffc7ffffull); |
405 | wrIA32_PMCx(i, save); |
406 | |
407 | /* next configuration word */ |
408 | configv++; |
409 | } |
410 | |
411 | return 0; |
412 | } |
413 | |
414 | int |
415 | kpc_get_configurable_counters(uint64_t *counterv, uint64_t pmc_mask) |
416 | { |
417 | uint32_t cfg_count = kpc_configurable_count(); |
418 | uint64_t status, *it_counterv = counterv; |
419 | |
420 | /* snap the counters */ |
421 | for (uint32_t i = 0; i < cfg_count; ++i) { |
422 | if ((1ULL << i) & pmc_mask) { |
423 | *it_counterv++ = CONFIGURABLE_SHADOW(i) + |
424 | (IA32_PMCx(i) - CONFIGURABLE_RELOAD(i)); |
425 | } |
426 | } |
427 | |
428 | /* Grab the overflow bits */ |
429 | status = rdmsr64(MSR_IA32_PERF_GLOBAL_STATUS); |
430 | |
431 | /* reset the iterator */ |
432 | it_counterv = counterv; |
433 | |
434 | /* |
435 | * If the overflow bit is set for a counter, our previous read may or may not have been |
436 | * before the counter overflowed. Re-read any counter with it's overflow bit set so |
437 | * we know for sure that it has overflowed. The reason this matters is that the math |
438 | * is different for a counter that has overflowed. |
439 | */ |
440 | for (uint32_t i = 0; i < cfg_count; ++i) { |
441 | if (((1ULL << i) & pmc_mask) && |
442 | ((1ULL << i) & status)) |
443 | { |
444 | *it_counterv++ = CONFIGURABLE_SHADOW(i) + |
445 | (kpc_configurable_max() - CONFIGURABLE_RELOAD(i)) + IA32_PMCx(i); |
446 | } |
447 | } |
448 | |
449 | return 0; |
450 | } |
451 | |
452 | static void |
453 | kpc_get_curcpu_counters_mp_call(void *args) |
454 | { |
455 | struct kpc_get_counters_remote *handler = args; |
456 | int offset=0, r=0; |
457 | |
458 | assert(handler); |
459 | assert(handler->buf); |
460 | |
461 | offset = cpu_number() * handler->buf_stride; |
462 | r = kpc_get_curcpu_counters(handler->classes, NULL, &handler->buf[offset]); |
463 | |
464 | /* number of counters added by this CPU, needs to be atomic */ |
465 | hw_atomic_add(&(handler->nb_counters), r); |
466 | } |
467 | |
468 | int |
469 | kpc_get_all_cpus_counters(uint32_t classes, int *curcpu, uint64_t *buf) |
470 | { |
471 | int enabled = 0; |
472 | |
473 | struct kpc_get_counters_remote hdl = { |
474 | .classes = classes, .nb_counters = 0, |
475 | .buf_stride = kpc_get_counter_count(classes), .buf = buf |
476 | }; |
477 | |
478 | assert(buf); |
479 | |
480 | enabled = ml_set_interrupts_enabled(FALSE); |
481 | |
482 | if (curcpu) |
483 | *curcpu = current_processor()->cpu_id; |
484 | mp_cpus_call(CPUMASK_ALL, ASYNC, kpc_get_curcpu_counters_mp_call, &hdl); |
485 | |
486 | ml_set_interrupts_enabled(enabled); |
487 | |
488 | return hdl.nb_counters; |
489 | } |
490 | |
491 | static void |
492 | kpc_set_config_mp_call(void *vmp_config) |
493 | { |
494 | |
495 | struct kpc_config_remote *mp_config = vmp_config; |
496 | kpc_config_t *new_config = NULL; |
497 | uint32_t classes = 0, count = 0; |
498 | boolean_t enabled; |
499 | |
500 | assert(mp_config); |
501 | assert(mp_config->configv); |
502 | classes = mp_config->classes; |
503 | new_config = mp_config->configv; |
504 | |
505 | enabled = ml_set_interrupts_enabled(FALSE); |
506 | |
507 | if (classes & KPC_CLASS_FIXED_MASK) |
508 | { |
509 | kpc_set_fixed_config(&new_config[count]); |
510 | count += kpc_get_config_count(KPC_CLASS_FIXED_MASK); |
511 | } |
512 | |
513 | if (classes & KPC_CLASS_CONFIGURABLE_MASK) { |
514 | kpc_set_configurable_config(&new_config[count], mp_config->pmc_mask); |
515 | count += kpc_popcount(mp_config->pmc_mask); |
516 | } |
517 | |
518 | ml_set_interrupts_enabled(enabled); |
519 | } |
520 | |
521 | static void |
522 | kpc_set_reload_mp_call(void *vmp_config) |
523 | { |
524 | struct kpc_config_remote *mp_config = vmp_config; |
525 | uint64_t *new_period = NULL, max = kpc_configurable_max(); |
526 | uint32_t classes = 0, count = 0; |
527 | boolean_t enabled; |
528 | |
529 | assert(mp_config); |
530 | assert(mp_config->configv); |
531 | classes = mp_config->classes; |
532 | new_period = mp_config->configv; |
533 | |
534 | enabled = ml_set_interrupts_enabled(FALSE); |
535 | |
536 | if (classes & KPC_CLASS_CONFIGURABLE_MASK) { |
537 | /* |
538 | * Update _all_ shadow counters, this cannot be done for only |
539 | * selected PMCs. Otherwise, we would corrupt the configurable |
540 | * shadow buffer since the PMCs are muxed according to the pmc |
541 | * mask. |
542 | */ |
543 | uint64_t all_cfg_mask = (1ULL << kpc_configurable_count()) - 1; |
544 | kpc_get_configurable_counters(&CONFIGURABLE_SHADOW(0), all_cfg_mask); |
545 | |
546 | /* set the new period */ |
547 | count = kpc_configurable_count(); |
548 | for (uint32_t i = 0; i < count; ++i) { |
549 | /* ignore the counter */ |
550 | if (((1ULL << i) & mp_config->pmc_mask) == 0) |
551 | continue; |
552 | |
553 | if (*new_period == 0) |
554 | *new_period = kpc_configurable_max(); |
555 | |
556 | CONFIGURABLE_RELOAD(i) = max - *new_period; |
557 | |
558 | /* reload the counter */ |
559 | kpc_reload_configurable(i); |
560 | |
561 | /* clear overflow bit just in case */ |
562 | wrmsr64(MSR_IA32_PERF_GLOBAL_OVF_CTRL, 1ull << i); |
563 | |
564 | /* next period value */ |
565 | new_period++; |
566 | } |
567 | } |
568 | |
569 | ml_set_interrupts_enabled(enabled); |
570 | } |
571 | |
572 | int |
573 | kpc_set_period_arch( struct kpc_config_remote *mp_config ) |
574 | { |
575 | mp_cpus_call( CPUMASK_ALL, ASYNC, kpc_set_reload_mp_call, mp_config ); |
576 | |
577 | return 0; |
578 | } |
579 | |
580 | |
581 | /* interface functions */ |
582 | |
583 | void |
584 | kpc_arch_init(void) |
585 | { |
586 | i386_cpu_info_t *info = cpuid_info(); |
587 | uint8_t version_id = info->cpuid_arch_perf_leaf.version; |
588 | /* |
589 | * kpc only supports Intel PMU versions 2 and above. |
590 | */ |
591 | if (version_id < 2) { |
592 | kpc_supported = false; |
593 | } |
594 | } |
595 | |
596 | uint32_t |
597 | kpc_get_classes(void) |
598 | { |
599 | return KPC_CLASS_FIXED_MASK | KPC_CLASS_CONFIGURABLE_MASK; |
600 | } |
601 | |
602 | int |
603 | kpc_set_running_arch(struct kpc_running_remote *mp_config) |
604 | { |
605 | assert(mp_config); |
606 | |
607 | /* dispatch to all CPUs */ |
608 | mp_cpus_call(CPUMASK_ALL, ASYNC, kpc_set_running_mp_call, mp_config); |
609 | |
610 | kpc_running_cfg_pmc_mask = mp_config->cfg_state_mask; |
611 | kpc_running_classes = mp_config->classes; |
612 | |
613 | return 0; |
614 | } |
615 | |
616 | int |
617 | kpc_set_config_arch(struct kpc_config_remote *mp_config) |
618 | { |
619 | mp_cpus_call( CPUMASK_ALL, ASYNC, kpc_set_config_mp_call, mp_config ); |
620 | |
621 | return 0; |
622 | } |
623 | |
624 | /* PMI stuff */ |
625 | void kpc_pmi_handler(__unused x86_saved_state_t *state) |
626 | { |
627 | uint64_t status, ; |
628 | uint32_t ctr; |
629 | int enabled; |
630 | |
631 | enabled = ml_set_interrupts_enabled(FALSE); |
632 | |
633 | status = rdmsr64(MSR_IA32_PERF_GLOBAL_STATUS); |
634 | |
635 | #ifdef FIXED_COUNTER_SHADOW |
636 | for (ctr = 0; ctr < kpc_fixed_count(); ctr++) { |
637 | if ((1ULL << (ctr + 32)) & status) { |
638 | extra = kpc_reload_fixed(ctr); |
639 | |
640 | FIXED_SHADOW(ctr) |
641 | += (kpc_fixed_max() - FIXED_RELOAD(ctr) + 1 /* Wrap */) + extra; |
642 | |
643 | BUF_INFO(PERF_KPC_FCOUNTER, ctr, FIXED_SHADOW(ctr), extra, FIXED_ACTIONID(ctr)); |
644 | |
645 | if (FIXED_ACTIONID(ctr)) |
646 | kpc_sample_kperf(FIXED_ACTIONID(ctr)); |
647 | } |
648 | } |
649 | #endif |
650 | |
651 | for (ctr = 0; ctr < kpc_configurable_count(); ctr++) { |
652 | if ((1ULL << ctr) & status) { |
653 | extra = kpc_reload_configurable(ctr); |
654 | |
655 | CONFIGURABLE_SHADOW(ctr) |
656 | += kpc_configurable_max() - CONFIGURABLE_RELOAD(ctr) + extra; |
657 | |
658 | /* kperf can grab the PMCs when it samples so we need to make sure the overflow |
659 | * bits are in the correct state before the call to kperf_sample */ |
660 | wrmsr64(MSR_IA32_PERF_GLOBAL_OVF_CTRL, 1ull << ctr); |
661 | |
662 | BUF_INFO(PERF_KPC_COUNTER, ctr, CONFIGURABLE_SHADOW(ctr), extra, CONFIGURABLE_ACTIONID(ctr)); |
663 | |
664 | if (CONFIGURABLE_ACTIONID(ctr)) |
665 | kpc_sample_kperf(CONFIGURABLE_ACTIONID(ctr)); |
666 | } |
667 | } |
668 | |
669 | ml_set_interrupts_enabled(enabled); |
670 | } |
671 | |
672 | int |
673 | kpc_set_sw_inc( uint32_t mask __unused ) |
674 | { |
675 | return ENOTSUP; |
676 | } |
677 | |
678 | int |
679 | kpc_get_pmu_version(void) |
680 | { |
681 | i386_cpu_info_t *info = cpuid_info(); |
682 | |
683 | uint8_t version_id = info->cpuid_arch_perf_leaf.version; |
684 | |
685 | if (version_id == 3) { |
686 | return KPC_PMU_INTEL_V3; |
687 | } else if (version_id == 2) { |
688 | return KPC_PMU_INTEL_V2; |
689 | } |
690 | |
691 | return KPC_PMU_ERROR; |
692 | } |
693 | |
694 | |