| 1 | /* |
| 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_user.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * |
| 62 | * User-exported virtual memory functions. |
| 63 | */ |
| 64 | |
| 65 | /* |
| 66 | * There are three implementations of the "XXX_allocate" functionality in |
| 67 | * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate |
| 68 | * (for a task with the same address space size, especially the current task), |
| 69 | * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate |
| 70 | * in the kernel should only be used on the kernel_task. vm32_vm_allocate only |
| 71 | * makes sense on platforms where a user task can either be 32 or 64, or the kernel |
| 72 | * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred |
| 73 | * for new code. |
| 74 | * |
| 75 | * The entrypoints into the kernel are more complex. All platforms support a |
| 76 | * mach_vm_allocate-style API (subsystem 4800) which operates with the largest |
| 77 | * size types for the platform. On platforms that only support U32/K32, |
| 78 | * subsystem 4800 is all you need. On platforms that support both U32 and U64, |
| 79 | * subsystem 3800 is used disambiguate the size of parameters, and they will |
| 80 | * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms, |
| 81 | * the MIG glue should never call into vm_allocate directly, because the calling |
| 82 | * task and kernel_task are unlikely to use the same size parameters |
| 83 | * |
| 84 | * New VM call implementations should be added here and to mach_vm.defs |
| 85 | * (subsystem 4800), and use mach_vm_* "wide" types. |
| 86 | */ |
| 87 | |
| 88 | #include <debug.h> |
| 89 | |
| 90 | #include <vm_cpm.h> |
| 91 | #include <mach/boolean.h> |
| 92 | #include <mach/kern_return.h> |
| 93 | #include <mach/mach_types.h> /* to get vm_address_t */ |
| 94 | #include <mach/memory_object.h> |
| 95 | #include <mach/std_types.h> /* to get pointer_t */ |
| 96 | #include <mach/upl.h> |
| 97 | #include <mach/vm_attributes.h> |
| 98 | #include <mach/vm_param.h> |
| 99 | #include <mach/vm_statistics.h> |
| 100 | #include <mach/mach_syscalls.h> |
| 101 | #include <mach/sdt.h> |
| 102 | |
| 103 | #include <mach/host_priv_server.h> |
| 104 | #include <mach/mach_vm_server.h> |
| 105 | #include <mach/memory_entry_server.h> |
| 106 | #include <mach/vm_map_server.h> |
| 107 | |
| 108 | #include <kern/host.h> |
| 109 | #include <kern/kalloc.h> |
| 110 | #include <kern/task.h> |
| 111 | #include <kern/misc_protos.h> |
| 112 | #include <vm/vm_fault.h> |
| 113 | #include <vm/vm_map.h> |
| 114 | #include <vm/vm_object.h> |
| 115 | #include <vm/vm_page.h> |
| 116 | #include <vm/memory_object.h> |
| 117 | #include <vm/vm_pageout.h> |
| 118 | #include <vm/vm_protos.h> |
| 119 | #include <vm/vm_purgeable_internal.h> |
| 120 | #include <vm/vm_init.h> |
| 121 | |
| 122 | #include <san/kasan.h> |
| 123 | |
| 124 | #include <libkern/OSDebug.h> |
| 125 | |
| 126 | vm_size_t upl_offset_to_pagelist = 0; |
| 127 | |
| 128 | #if VM_CPM |
| 129 | #include <vm/cpm.h> |
| 130 | #endif /* VM_CPM */ |
| 131 | |
| 132 | /* |
| 133 | * mach_vm_allocate allocates "zero fill" memory in the specfied |
| 134 | * map. |
| 135 | */ |
| 136 | kern_return_t |
| 137 | mach_vm_allocate_external( |
| 138 | vm_map_t map, |
| 139 | mach_vm_offset_t *addr, |
| 140 | mach_vm_size_t size, |
| 141 | int flags) |
| 142 | { |
| 143 | vm_tag_t tag; |
| 144 | |
| 145 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 146 | return (mach_vm_allocate_kernel(map, addr, size, flags, tag)); |
| 147 | } |
| 148 | |
| 149 | kern_return_t |
| 150 | mach_vm_allocate_kernel( |
| 151 | vm_map_t map, |
| 152 | mach_vm_offset_t *addr, |
| 153 | mach_vm_size_t size, |
| 154 | int flags, |
| 155 | vm_tag_t tag) |
| 156 | { |
| 157 | vm_map_offset_t map_addr; |
| 158 | vm_map_size_t map_size; |
| 159 | kern_return_t result; |
| 160 | boolean_t anywhere; |
| 161 | |
| 162 | /* filter out any kernel-only flags */ |
| 163 | if (flags & ~VM_FLAGS_USER_ALLOCATE) |
| 164 | return KERN_INVALID_ARGUMENT; |
| 165 | |
| 166 | if (map == VM_MAP_NULL) |
| 167 | return(KERN_INVALID_ARGUMENT); |
| 168 | if (size == 0) { |
| 169 | *addr = 0; |
| 170 | return(KERN_SUCCESS); |
| 171 | } |
| 172 | |
| 173 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); |
| 174 | if (anywhere) { |
| 175 | /* |
| 176 | * No specific address requested, so start candidate address |
| 177 | * search at the minimum address in the map. However, if that |
| 178 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit |
| 179 | * allocations of PAGEZERO to explicit requests since its |
| 180 | * normal use is to catch dereferences of NULL and many |
| 181 | * applications also treat pointers with a value of 0 as |
| 182 | * special and suddenly having address 0 contain useable |
| 183 | * memory would tend to confuse those applications. |
| 184 | */ |
| 185 | map_addr = vm_map_min(map); |
| 186 | if (map_addr == 0) |
| 187 | map_addr += VM_MAP_PAGE_SIZE(map); |
| 188 | } else |
| 189 | map_addr = vm_map_trunc_page(*addr, |
| 190 | VM_MAP_PAGE_MASK(map)); |
| 191 | map_size = vm_map_round_page(size, |
| 192 | VM_MAP_PAGE_MASK(map)); |
| 193 | if (map_size == 0) { |
| 194 | return(KERN_INVALID_ARGUMENT); |
| 195 | } |
| 196 | |
| 197 | result = vm_map_enter( |
| 198 | map, |
| 199 | &map_addr, |
| 200 | map_size, |
| 201 | (vm_map_offset_t)0, |
| 202 | flags, |
| 203 | VM_MAP_KERNEL_FLAGS_NONE, |
| 204 | tag, |
| 205 | VM_OBJECT_NULL, |
| 206 | (vm_object_offset_t)0, |
| 207 | FALSE, |
| 208 | VM_PROT_DEFAULT, |
| 209 | VM_PROT_ALL, |
| 210 | VM_INHERIT_DEFAULT); |
| 211 | |
| 212 | *addr = map_addr; |
| 213 | return(result); |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * vm_allocate |
| 218 | * Legacy routine that allocates "zero fill" memory in the specfied |
| 219 | * map (which is limited to the same size as the kernel). |
| 220 | */ |
| 221 | kern_return_t |
| 222 | vm_allocate_external( |
| 223 | vm_map_t map, |
| 224 | vm_offset_t *addr, |
| 225 | vm_size_t size, |
| 226 | int flags) |
| 227 | { |
| 228 | vm_tag_t tag; |
| 229 | |
| 230 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 231 | return (vm_allocate_kernel(map, addr, size, flags, tag)); |
| 232 | } |
| 233 | |
| 234 | kern_return_t |
| 235 | vm_allocate_kernel( |
| 236 | vm_map_t map, |
| 237 | vm_offset_t *addr, |
| 238 | vm_size_t size, |
| 239 | int flags, |
| 240 | vm_tag_t tag) |
| 241 | { |
| 242 | vm_map_offset_t map_addr; |
| 243 | vm_map_size_t map_size; |
| 244 | kern_return_t result; |
| 245 | boolean_t anywhere; |
| 246 | |
| 247 | /* filter out any kernel-only flags */ |
| 248 | if (flags & ~VM_FLAGS_USER_ALLOCATE) |
| 249 | return KERN_INVALID_ARGUMENT; |
| 250 | |
| 251 | if (map == VM_MAP_NULL) |
| 252 | return(KERN_INVALID_ARGUMENT); |
| 253 | if (size == 0) { |
| 254 | *addr = 0; |
| 255 | return(KERN_SUCCESS); |
| 256 | } |
| 257 | |
| 258 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); |
| 259 | if (anywhere) { |
| 260 | /* |
| 261 | * No specific address requested, so start candidate address |
| 262 | * search at the minimum address in the map. However, if that |
| 263 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit |
| 264 | * allocations of PAGEZERO to explicit requests since its |
| 265 | * normal use is to catch dereferences of NULL and many |
| 266 | * applications also treat pointers with a value of 0 as |
| 267 | * special and suddenly having address 0 contain useable |
| 268 | * memory would tend to confuse those applications. |
| 269 | */ |
| 270 | map_addr = vm_map_min(map); |
| 271 | if (map_addr == 0) |
| 272 | map_addr += VM_MAP_PAGE_SIZE(map); |
| 273 | } else |
| 274 | map_addr = vm_map_trunc_page(*addr, |
| 275 | VM_MAP_PAGE_MASK(map)); |
| 276 | map_size = vm_map_round_page(size, |
| 277 | VM_MAP_PAGE_MASK(map)); |
| 278 | if (map_size == 0) { |
| 279 | return(KERN_INVALID_ARGUMENT); |
| 280 | } |
| 281 | |
| 282 | result = vm_map_enter( |
| 283 | map, |
| 284 | &map_addr, |
| 285 | map_size, |
| 286 | (vm_map_offset_t)0, |
| 287 | flags, |
| 288 | VM_MAP_KERNEL_FLAGS_NONE, |
| 289 | tag, |
| 290 | VM_OBJECT_NULL, |
| 291 | (vm_object_offset_t)0, |
| 292 | FALSE, |
| 293 | VM_PROT_DEFAULT, |
| 294 | VM_PROT_ALL, |
| 295 | VM_INHERIT_DEFAULT); |
| 296 | |
| 297 | #if KASAN |
| 298 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { |
| 299 | kasan_notify_address(map_addr, map_size); |
| 300 | } |
| 301 | #endif |
| 302 | |
| 303 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
| 304 | return(result); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * mach_vm_deallocate - |
| 309 | * deallocates the specified range of addresses in the |
| 310 | * specified address map. |
| 311 | */ |
| 312 | kern_return_t |
| 313 | mach_vm_deallocate( |
| 314 | vm_map_t map, |
| 315 | mach_vm_offset_t start, |
| 316 | mach_vm_size_t size) |
| 317 | { |
| 318 | if ((map == VM_MAP_NULL) || (start + size < start)) |
| 319 | return(KERN_INVALID_ARGUMENT); |
| 320 | |
| 321 | if (size == (mach_vm_offset_t) 0) |
| 322 | return(KERN_SUCCESS); |
| 323 | |
| 324 | return vm_map_remove(map, |
| 325 | vm_map_trunc_page(start, |
| 326 | VM_MAP_PAGE_MASK(map)), |
| 327 | vm_map_round_page(start+size, |
| 328 | VM_MAP_PAGE_MASK(map)), |
| 329 | VM_MAP_REMOVE_NO_FLAGS); |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * vm_deallocate - |
| 334 | * deallocates the specified range of addresses in the |
| 335 | * specified address map (limited to addresses the same |
| 336 | * size as the kernel). |
| 337 | */ |
| 338 | kern_return_t |
| 339 | vm_deallocate( |
| 340 | vm_map_t map, |
| 341 | vm_offset_t start, |
| 342 | vm_size_t size) |
| 343 | { |
| 344 | if ((map == VM_MAP_NULL) || (start + size < start)) |
| 345 | return(KERN_INVALID_ARGUMENT); |
| 346 | |
| 347 | if (size == (vm_offset_t) 0) |
| 348 | return(KERN_SUCCESS); |
| 349 | |
| 350 | return vm_map_remove(map, |
| 351 | vm_map_trunc_page(start, |
| 352 | VM_MAP_PAGE_MASK(map)), |
| 353 | vm_map_round_page(start+size, |
| 354 | VM_MAP_PAGE_MASK(map)), |
| 355 | VM_MAP_REMOVE_NO_FLAGS); |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * mach_vm_inherit - |
| 360 | * Sets the inheritance of the specified range in the |
| 361 | * specified map. |
| 362 | */ |
| 363 | kern_return_t |
| 364 | mach_vm_inherit( |
| 365 | vm_map_t map, |
| 366 | mach_vm_offset_t start, |
| 367 | mach_vm_size_t size, |
| 368 | vm_inherit_t new_inheritance) |
| 369 | { |
| 370 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 371 | (new_inheritance > VM_INHERIT_LAST_VALID)) |
| 372 | return(KERN_INVALID_ARGUMENT); |
| 373 | |
| 374 | if (size == 0) |
| 375 | return KERN_SUCCESS; |
| 376 | |
| 377 | return(vm_map_inherit(map, |
| 378 | vm_map_trunc_page(start, |
| 379 | VM_MAP_PAGE_MASK(map)), |
| 380 | vm_map_round_page(start+size, |
| 381 | VM_MAP_PAGE_MASK(map)), |
| 382 | new_inheritance)); |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * vm_inherit - |
| 387 | * Sets the inheritance of the specified range in the |
| 388 | * specified map (range limited to addresses |
| 389 | */ |
| 390 | kern_return_t |
| 391 | vm_inherit( |
| 392 | vm_map_t map, |
| 393 | vm_offset_t start, |
| 394 | vm_size_t size, |
| 395 | vm_inherit_t new_inheritance) |
| 396 | { |
| 397 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 398 | (new_inheritance > VM_INHERIT_LAST_VALID)) |
| 399 | return(KERN_INVALID_ARGUMENT); |
| 400 | |
| 401 | if (size == 0) |
| 402 | return KERN_SUCCESS; |
| 403 | |
| 404 | return(vm_map_inherit(map, |
| 405 | vm_map_trunc_page(start, |
| 406 | VM_MAP_PAGE_MASK(map)), |
| 407 | vm_map_round_page(start+size, |
| 408 | VM_MAP_PAGE_MASK(map)), |
| 409 | new_inheritance)); |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * mach_vm_protect - |
| 414 | * Sets the protection of the specified range in the |
| 415 | * specified map. |
| 416 | */ |
| 417 | |
| 418 | kern_return_t |
| 419 | mach_vm_protect( |
| 420 | vm_map_t map, |
| 421 | mach_vm_offset_t start, |
| 422 | mach_vm_size_t size, |
| 423 | boolean_t set_maximum, |
| 424 | vm_prot_t new_protection) |
| 425 | { |
| 426 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 427 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) |
| 428 | return(KERN_INVALID_ARGUMENT); |
| 429 | |
| 430 | if (size == 0) |
| 431 | return KERN_SUCCESS; |
| 432 | |
| 433 | return(vm_map_protect(map, |
| 434 | vm_map_trunc_page(start, |
| 435 | VM_MAP_PAGE_MASK(map)), |
| 436 | vm_map_round_page(start+size, |
| 437 | VM_MAP_PAGE_MASK(map)), |
| 438 | new_protection, |
| 439 | set_maximum)); |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * vm_protect - |
| 444 | * Sets the protection of the specified range in the |
| 445 | * specified map. Addressability of the range limited |
| 446 | * to the same size as the kernel. |
| 447 | */ |
| 448 | |
| 449 | kern_return_t |
| 450 | vm_protect( |
| 451 | vm_map_t map, |
| 452 | vm_offset_t start, |
| 453 | vm_size_t size, |
| 454 | boolean_t set_maximum, |
| 455 | vm_prot_t new_protection) |
| 456 | { |
| 457 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 458 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) |
| 459 | return(KERN_INVALID_ARGUMENT); |
| 460 | |
| 461 | if (size == 0) |
| 462 | return KERN_SUCCESS; |
| 463 | |
| 464 | return(vm_map_protect(map, |
| 465 | vm_map_trunc_page(start, |
| 466 | VM_MAP_PAGE_MASK(map)), |
| 467 | vm_map_round_page(start+size, |
| 468 | VM_MAP_PAGE_MASK(map)), |
| 469 | new_protection, |
| 470 | set_maximum)); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * mach_vm_machine_attributes - |
| 475 | * Handle machine-specific attributes for a mapping, such |
| 476 | * as cachability, migrability, etc. |
| 477 | */ |
| 478 | kern_return_t |
| 479 | mach_vm_machine_attribute( |
| 480 | vm_map_t map, |
| 481 | mach_vm_address_t addr, |
| 482 | mach_vm_size_t size, |
| 483 | vm_machine_attribute_t attribute, |
| 484 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 485 | { |
| 486 | if ((map == VM_MAP_NULL) || (addr + size < addr)) |
| 487 | return(KERN_INVALID_ARGUMENT); |
| 488 | |
| 489 | if (size == 0) |
| 490 | return KERN_SUCCESS; |
| 491 | |
| 492 | return vm_map_machine_attribute( |
| 493 | map, |
| 494 | vm_map_trunc_page(addr, |
| 495 | VM_MAP_PAGE_MASK(map)), |
| 496 | vm_map_round_page(addr+size, |
| 497 | VM_MAP_PAGE_MASK(map)), |
| 498 | attribute, |
| 499 | value); |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | * vm_machine_attribute - |
| 504 | * Handle machine-specific attributes for a mapping, such |
| 505 | * as cachability, migrability, etc. Limited addressability |
| 506 | * (same range limits as for the native kernel map). |
| 507 | */ |
| 508 | kern_return_t |
| 509 | vm_machine_attribute( |
| 510 | vm_map_t map, |
| 511 | vm_address_t addr, |
| 512 | vm_size_t size, |
| 513 | vm_machine_attribute_t attribute, |
| 514 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 515 | { |
| 516 | if ((map == VM_MAP_NULL) || (addr + size < addr)) |
| 517 | return(KERN_INVALID_ARGUMENT); |
| 518 | |
| 519 | if (size == 0) |
| 520 | return KERN_SUCCESS; |
| 521 | |
| 522 | return vm_map_machine_attribute( |
| 523 | map, |
| 524 | vm_map_trunc_page(addr, |
| 525 | VM_MAP_PAGE_MASK(map)), |
| 526 | vm_map_round_page(addr+size, |
| 527 | VM_MAP_PAGE_MASK(map)), |
| 528 | attribute, |
| 529 | value); |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * mach_vm_read - |
| 534 | * Read/copy a range from one address space and return it to the caller. |
| 535 | * |
| 536 | * It is assumed that the address for the returned memory is selected by |
| 537 | * the IPC implementation as part of receiving the reply to this call. |
| 538 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
| 539 | * that gets returned. |
| 540 | * |
| 541 | * JMM - because of mach_msg_type_number_t, this call is limited to a |
| 542 | * single 4GB region at this time. |
| 543 | * |
| 544 | */ |
| 545 | kern_return_t |
| 546 | mach_vm_read( |
| 547 | vm_map_t map, |
| 548 | mach_vm_address_t addr, |
| 549 | mach_vm_size_t size, |
| 550 | pointer_t *data, |
| 551 | mach_msg_type_number_t *data_size) |
| 552 | { |
| 553 | kern_return_t error; |
| 554 | vm_map_copy_t ipc_address; |
| 555 | |
| 556 | if (map == VM_MAP_NULL) |
| 557 | return(KERN_INVALID_ARGUMENT); |
| 558 | |
| 559 | if ((mach_msg_type_number_t) size != size) |
| 560 | return KERN_INVALID_ARGUMENT; |
| 561 | |
| 562 | error = vm_map_copyin(map, |
| 563 | (vm_map_address_t)addr, |
| 564 | (vm_map_size_t)size, |
| 565 | FALSE, /* src_destroy */ |
| 566 | &ipc_address); |
| 567 | |
| 568 | if (KERN_SUCCESS == error) { |
| 569 | *data = (pointer_t) ipc_address; |
| 570 | *data_size = (mach_msg_type_number_t) size; |
| 571 | assert(*data_size == size); |
| 572 | } |
| 573 | return(error); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * vm_read - |
| 578 | * Read/copy a range from one address space and return it to the caller. |
| 579 | * Limited addressability (same range limits as for the native kernel map). |
| 580 | * |
| 581 | * It is assumed that the address for the returned memory is selected by |
| 582 | * the IPC implementation as part of receiving the reply to this call. |
| 583 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
| 584 | * that gets returned. |
| 585 | */ |
| 586 | kern_return_t |
| 587 | vm_read( |
| 588 | vm_map_t map, |
| 589 | vm_address_t addr, |
| 590 | vm_size_t size, |
| 591 | pointer_t *data, |
| 592 | mach_msg_type_number_t *data_size) |
| 593 | { |
| 594 | kern_return_t error; |
| 595 | vm_map_copy_t ipc_address; |
| 596 | |
| 597 | if (map == VM_MAP_NULL) |
| 598 | return(KERN_INVALID_ARGUMENT); |
| 599 | |
| 600 | mach_msg_type_number_t dsize; |
| 601 | if (os_convert_overflow(size, &dsize)) { |
| 602 | /* |
| 603 | * The kernel could handle a 64-bit "size" value, but |
| 604 | * it could not return the size of the data in "*data_size" |
| 605 | * without overflowing. |
| 606 | * Let's reject this "size" as invalid. |
| 607 | */ |
| 608 | return KERN_INVALID_ARGUMENT; |
| 609 | } |
| 610 | |
| 611 | error = vm_map_copyin(map, |
| 612 | (vm_map_address_t)addr, |
| 613 | (vm_map_size_t)size, |
| 614 | FALSE, /* src_destroy */ |
| 615 | &ipc_address); |
| 616 | |
| 617 | if (KERN_SUCCESS == error) { |
| 618 | *data = (pointer_t) ipc_address; |
| 619 | *data_size = dsize; |
| 620 | assert(*data_size == size); |
| 621 | } |
| 622 | return(error); |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * mach_vm_read_list - |
| 627 | * Read/copy a list of address ranges from specified map. |
| 628 | * |
| 629 | * MIG does not know how to deal with a returned array of |
| 630 | * vm_map_copy_t structures, so we have to do the copyout |
| 631 | * manually here. |
| 632 | */ |
| 633 | kern_return_t |
| 634 | mach_vm_read_list( |
| 635 | vm_map_t map, |
| 636 | mach_vm_read_entry_t data_list, |
| 637 | natural_t count) |
| 638 | { |
| 639 | mach_msg_type_number_t i; |
| 640 | kern_return_t error; |
| 641 | vm_map_copy_t copy; |
| 642 | |
| 643 | if (map == VM_MAP_NULL || |
| 644 | count > VM_MAP_ENTRY_MAX) |
| 645 | return(KERN_INVALID_ARGUMENT); |
| 646 | |
| 647 | error = KERN_SUCCESS; |
| 648 | for(i=0; i<count; i++) { |
| 649 | vm_map_address_t map_addr; |
| 650 | vm_map_size_t map_size; |
| 651 | |
| 652 | map_addr = (vm_map_address_t)(data_list[i].address); |
| 653 | map_size = (vm_map_size_t)(data_list[i].size); |
| 654 | |
| 655 | if(map_size != 0) { |
| 656 | error = vm_map_copyin(map, |
| 657 | map_addr, |
| 658 | map_size, |
| 659 | FALSE, /* src_destroy */ |
| 660 | ©); |
| 661 | if (KERN_SUCCESS == error) { |
| 662 | error = vm_map_copyout( |
| 663 | current_task()->map, |
| 664 | &map_addr, |
| 665 | copy); |
| 666 | if (KERN_SUCCESS == error) { |
| 667 | data_list[i].address = map_addr; |
| 668 | continue; |
| 669 | } |
| 670 | vm_map_copy_discard(copy); |
| 671 | } |
| 672 | } |
| 673 | data_list[i].address = (mach_vm_address_t)0; |
| 674 | data_list[i].size = (mach_vm_size_t)0; |
| 675 | } |
| 676 | return(error); |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * vm_read_list - |
| 681 | * Read/copy a list of address ranges from specified map. |
| 682 | * |
| 683 | * MIG does not know how to deal with a returned array of |
| 684 | * vm_map_copy_t structures, so we have to do the copyout |
| 685 | * manually here. |
| 686 | * |
| 687 | * The source and destination ranges are limited to those |
| 688 | * that can be described with a vm_address_t (i.e. same |
| 689 | * size map as the kernel). |
| 690 | * |
| 691 | * JMM - If the result of the copyout is an address range |
| 692 | * that cannot be described with a vm_address_t (i.e. the |
| 693 | * caller had a larger address space but used this call |
| 694 | * anyway), it will result in a truncated address being |
| 695 | * returned (and a likely confused caller). |
| 696 | */ |
| 697 | |
| 698 | kern_return_t |
| 699 | vm_read_list( |
| 700 | vm_map_t map, |
| 701 | vm_read_entry_t data_list, |
| 702 | natural_t count) |
| 703 | { |
| 704 | mach_msg_type_number_t i; |
| 705 | kern_return_t error; |
| 706 | vm_map_copy_t copy; |
| 707 | |
| 708 | if (map == VM_MAP_NULL || |
| 709 | count > VM_MAP_ENTRY_MAX) |
| 710 | return(KERN_INVALID_ARGUMENT); |
| 711 | |
| 712 | error = KERN_SUCCESS; |
| 713 | for(i=0; i<count; i++) { |
| 714 | vm_map_address_t map_addr; |
| 715 | vm_map_size_t map_size; |
| 716 | |
| 717 | map_addr = (vm_map_address_t)(data_list[i].address); |
| 718 | map_size = (vm_map_size_t)(data_list[i].size); |
| 719 | |
| 720 | if(map_size != 0) { |
| 721 | error = vm_map_copyin(map, |
| 722 | map_addr, |
| 723 | map_size, |
| 724 | FALSE, /* src_destroy */ |
| 725 | ©); |
| 726 | if (KERN_SUCCESS == error) { |
| 727 | error = vm_map_copyout(current_task()->map, |
| 728 | &map_addr, |
| 729 | copy); |
| 730 | if (KERN_SUCCESS == error) { |
| 731 | data_list[i].address = |
| 732 | CAST_DOWN(vm_offset_t, map_addr); |
| 733 | continue; |
| 734 | } |
| 735 | vm_map_copy_discard(copy); |
| 736 | } |
| 737 | } |
| 738 | data_list[i].address = (mach_vm_address_t)0; |
| 739 | data_list[i].size = (mach_vm_size_t)0; |
| 740 | } |
| 741 | return(error); |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * mach_vm_read_overwrite - |
| 746 | * Overwrite a range of the current map with data from the specified |
| 747 | * map/address range. |
| 748 | * |
| 749 | * In making an assumption that the current thread is local, it is |
| 750 | * no longer cluster-safe without a fully supportive local proxy |
| 751 | * thread/task (but we don't support cluster's anymore so this is moot). |
| 752 | */ |
| 753 | |
| 754 | kern_return_t |
| 755 | mach_vm_read_overwrite( |
| 756 | vm_map_t map, |
| 757 | mach_vm_address_t address, |
| 758 | mach_vm_size_t size, |
| 759 | mach_vm_address_t data, |
| 760 | mach_vm_size_t *data_size) |
| 761 | { |
| 762 | kern_return_t error; |
| 763 | vm_map_copy_t copy; |
| 764 | |
| 765 | if (map == VM_MAP_NULL) |
| 766 | return(KERN_INVALID_ARGUMENT); |
| 767 | |
| 768 | error = vm_map_copyin(map, (vm_map_address_t)address, |
| 769 | (vm_map_size_t)size, FALSE, ©); |
| 770 | |
| 771 | if (KERN_SUCCESS == error) { |
| 772 | error = vm_map_copy_overwrite(current_thread()->map, |
| 773 | (vm_map_address_t)data, |
| 774 | copy, FALSE); |
| 775 | if (KERN_SUCCESS == error) { |
| 776 | *data_size = size; |
| 777 | return error; |
| 778 | } |
| 779 | vm_map_copy_discard(copy); |
| 780 | } |
| 781 | return(error); |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * vm_read_overwrite - |
| 786 | * Overwrite a range of the current map with data from the specified |
| 787 | * map/address range. |
| 788 | * |
| 789 | * This routine adds the additional limitation that the source and |
| 790 | * destination ranges must be describable with vm_address_t values |
| 791 | * (i.e. the same size address spaces as the kernel, or at least the |
| 792 | * the ranges are in that first portion of the respective address |
| 793 | * spaces). |
| 794 | */ |
| 795 | |
| 796 | kern_return_t |
| 797 | vm_read_overwrite( |
| 798 | vm_map_t map, |
| 799 | vm_address_t address, |
| 800 | vm_size_t size, |
| 801 | vm_address_t data, |
| 802 | vm_size_t *data_size) |
| 803 | { |
| 804 | kern_return_t error; |
| 805 | vm_map_copy_t copy; |
| 806 | |
| 807 | if (map == VM_MAP_NULL) |
| 808 | return(KERN_INVALID_ARGUMENT); |
| 809 | |
| 810 | error = vm_map_copyin(map, (vm_map_address_t)address, |
| 811 | (vm_map_size_t)size, FALSE, ©); |
| 812 | |
| 813 | if (KERN_SUCCESS == error) { |
| 814 | error = vm_map_copy_overwrite(current_thread()->map, |
| 815 | (vm_map_address_t)data, |
| 816 | copy, FALSE); |
| 817 | if (KERN_SUCCESS == error) { |
| 818 | *data_size = size; |
| 819 | return error; |
| 820 | } |
| 821 | vm_map_copy_discard(copy); |
| 822 | } |
| 823 | return(error); |
| 824 | } |
| 825 | |
| 826 | |
| 827 | /* |
| 828 | * mach_vm_write - |
| 829 | * Overwrite the specified address range with the data provided |
| 830 | * (from the current map). |
| 831 | */ |
| 832 | kern_return_t |
| 833 | mach_vm_write( |
| 834 | vm_map_t map, |
| 835 | mach_vm_address_t address, |
| 836 | pointer_t data, |
| 837 | __unused mach_msg_type_number_t size) |
| 838 | { |
| 839 | if (map == VM_MAP_NULL) |
| 840 | return KERN_INVALID_ARGUMENT; |
| 841 | |
| 842 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, |
| 843 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | * vm_write - |
| 848 | * Overwrite the specified address range with the data provided |
| 849 | * (from the current map). |
| 850 | * |
| 851 | * The addressability of the range of addresses to overwrite is |
| 852 | * limited bu the use of a vm_address_t (same size as kernel map). |
| 853 | * Either the target map is also small, or the range is in the |
| 854 | * low addresses within it. |
| 855 | */ |
| 856 | kern_return_t |
| 857 | vm_write( |
| 858 | vm_map_t map, |
| 859 | vm_address_t address, |
| 860 | pointer_t data, |
| 861 | __unused mach_msg_type_number_t size) |
| 862 | { |
| 863 | if (map == VM_MAP_NULL) |
| 864 | return KERN_INVALID_ARGUMENT; |
| 865 | |
| 866 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, |
| 867 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * mach_vm_copy - |
| 872 | * Overwrite one range of the specified map with the contents of |
| 873 | * another range within that same map (i.e. both address ranges |
| 874 | * are "over there"). |
| 875 | */ |
| 876 | kern_return_t |
| 877 | mach_vm_copy( |
| 878 | vm_map_t map, |
| 879 | mach_vm_address_t source_address, |
| 880 | mach_vm_size_t size, |
| 881 | mach_vm_address_t dest_address) |
| 882 | { |
| 883 | vm_map_copy_t copy; |
| 884 | kern_return_t kr; |
| 885 | |
| 886 | if (map == VM_MAP_NULL) |
| 887 | return KERN_INVALID_ARGUMENT; |
| 888 | |
| 889 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, |
| 890 | (vm_map_size_t)size, FALSE, ©); |
| 891 | |
| 892 | if (KERN_SUCCESS == kr) { |
| 893 | kr = vm_map_copy_overwrite(map, |
| 894 | (vm_map_address_t)dest_address, |
| 895 | copy, FALSE /* interruptible XXX */); |
| 896 | |
| 897 | if (KERN_SUCCESS != kr) |
| 898 | vm_map_copy_discard(copy); |
| 899 | } |
| 900 | return kr; |
| 901 | } |
| 902 | |
| 903 | kern_return_t |
| 904 | vm_copy( |
| 905 | vm_map_t map, |
| 906 | vm_address_t source_address, |
| 907 | vm_size_t size, |
| 908 | vm_address_t dest_address) |
| 909 | { |
| 910 | vm_map_copy_t copy; |
| 911 | kern_return_t kr; |
| 912 | |
| 913 | if (map == VM_MAP_NULL) |
| 914 | return KERN_INVALID_ARGUMENT; |
| 915 | |
| 916 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, |
| 917 | (vm_map_size_t)size, FALSE, ©); |
| 918 | |
| 919 | if (KERN_SUCCESS == kr) { |
| 920 | kr = vm_map_copy_overwrite(map, |
| 921 | (vm_map_address_t)dest_address, |
| 922 | copy, FALSE /* interruptible XXX */); |
| 923 | |
| 924 | if (KERN_SUCCESS != kr) |
| 925 | vm_map_copy_discard(copy); |
| 926 | } |
| 927 | return kr; |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * mach_vm_map - |
| 932 | * Map some range of an object into an address space. |
| 933 | * |
| 934 | * The object can be one of several types of objects: |
| 935 | * NULL - anonymous memory |
| 936 | * a named entry - a range within another address space |
| 937 | * or a range within a memory object |
| 938 | * a whole memory object |
| 939 | * |
| 940 | */ |
| 941 | kern_return_t |
| 942 | mach_vm_map_external( |
| 943 | vm_map_t target_map, |
| 944 | mach_vm_offset_t *address, |
| 945 | mach_vm_size_t initial_size, |
| 946 | mach_vm_offset_t mask, |
| 947 | int flags, |
| 948 | ipc_port_t port, |
| 949 | vm_object_offset_t offset, |
| 950 | boolean_t copy, |
| 951 | vm_prot_t cur_protection, |
| 952 | vm_prot_t max_protection, |
| 953 | vm_inherit_t inheritance) |
| 954 | { |
| 955 | vm_tag_t tag; |
| 956 | |
| 957 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 958 | return (mach_vm_map_kernel(target_map, address, initial_size, mask, |
| 959 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, |
| 960 | port, offset, copy, |
| 961 | cur_protection, max_protection, |
| 962 | inheritance)); |
| 963 | } |
| 964 | |
| 965 | kern_return_t |
| 966 | mach_vm_map_kernel( |
| 967 | vm_map_t target_map, |
| 968 | mach_vm_offset_t *address, |
| 969 | mach_vm_size_t initial_size, |
| 970 | mach_vm_offset_t mask, |
| 971 | int flags, |
| 972 | vm_map_kernel_flags_t vmk_flags, |
| 973 | vm_tag_t tag, |
| 974 | ipc_port_t port, |
| 975 | vm_object_offset_t offset, |
| 976 | boolean_t copy, |
| 977 | vm_prot_t cur_protection, |
| 978 | vm_prot_t max_protection, |
| 979 | vm_inherit_t inheritance) |
| 980 | { |
| 981 | kern_return_t kr; |
| 982 | vm_map_offset_t vmmaddr; |
| 983 | |
| 984 | vmmaddr = (vm_map_offset_t) *address; |
| 985 | |
| 986 | /* filter out any kernel-only flags */ |
| 987 | if (flags & ~VM_FLAGS_USER_MAP) |
| 988 | return KERN_INVALID_ARGUMENT; |
| 989 | |
| 990 | kr = vm_map_enter_mem_object(target_map, |
| 991 | &vmmaddr, |
| 992 | initial_size, |
| 993 | mask, |
| 994 | flags, |
| 995 | vmk_flags, |
| 996 | tag, |
| 997 | port, |
| 998 | offset, |
| 999 | copy, |
| 1000 | cur_protection, |
| 1001 | max_protection, |
| 1002 | inheritance); |
| 1003 | |
| 1004 | #if KASAN |
| 1005 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { |
| 1006 | kasan_notify_address(vmmaddr, initial_size); |
| 1007 | } |
| 1008 | #endif |
| 1009 | |
| 1010 | *address = vmmaddr; |
| 1011 | return kr; |
| 1012 | } |
| 1013 | |
| 1014 | |
| 1015 | /* legacy interface */ |
| 1016 | kern_return_t |
| 1017 | vm_map_64_external( |
| 1018 | vm_map_t target_map, |
| 1019 | vm_offset_t *address, |
| 1020 | vm_size_t size, |
| 1021 | vm_offset_t mask, |
| 1022 | int flags, |
| 1023 | ipc_port_t port, |
| 1024 | vm_object_offset_t offset, |
| 1025 | boolean_t copy, |
| 1026 | vm_prot_t cur_protection, |
| 1027 | vm_prot_t max_protection, |
| 1028 | vm_inherit_t inheritance) |
| 1029 | { |
| 1030 | vm_tag_t tag; |
| 1031 | |
| 1032 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 1033 | return (vm_map_64_kernel(target_map, address, size, mask, |
| 1034 | flags, VM_MAP_KERNEL_FLAGS_NONE, |
| 1035 | tag, port, offset, copy, |
| 1036 | cur_protection, max_protection, |
| 1037 | inheritance)); |
| 1038 | } |
| 1039 | |
| 1040 | kern_return_t |
| 1041 | vm_map_64_kernel( |
| 1042 | vm_map_t target_map, |
| 1043 | vm_offset_t *address, |
| 1044 | vm_size_t size, |
| 1045 | vm_offset_t mask, |
| 1046 | int flags, |
| 1047 | vm_map_kernel_flags_t vmk_flags, |
| 1048 | vm_tag_t tag, |
| 1049 | ipc_port_t port, |
| 1050 | vm_object_offset_t offset, |
| 1051 | boolean_t copy, |
| 1052 | vm_prot_t cur_protection, |
| 1053 | vm_prot_t max_protection, |
| 1054 | vm_inherit_t inheritance) |
| 1055 | { |
| 1056 | mach_vm_address_t map_addr; |
| 1057 | mach_vm_size_t map_size; |
| 1058 | mach_vm_offset_t map_mask; |
| 1059 | kern_return_t kr; |
| 1060 | |
| 1061 | map_addr = (mach_vm_address_t)*address; |
| 1062 | map_size = (mach_vm_size_t)size; |
| 1063 | map_mask = (mach_vm_offset_t)mask; |
| 1064 | |
| 1065 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, |
| 1066 | flags, vmk_flags, tag, |
| 1067 | port, offset, copy, |
| 1068 | cur_protection, max_protection, inheritance); |
| 1069 | *address = CAST_DOWN(vm_offset_t, map_addr); |
| 1070 | return kr; |
| 1071 | } |
| 1072 | |
| 1073 | /* temporary, until world build */ |
| 1074 | kern_return_t |
| 1075 | vm_map_external( |
| 1076 | vm_map_t target_map, |
| 1077 | vm_offset_t *address, |
| 1078 | vm_size_t size, |
| 1079 | vm_offset_t mask, |
| 1080 | int flags, |
| 1081 | ipc_port_t port, |
| 1082 | vm_offset_t offset, |
| 1083 | boolean_t copy, |
| 1084 | vm_prot_t cur_protection, |
| 1085 | vm_prot_t max_protection, |
| 1086 | vm_inherit_t inheritance) |
| 1087 | { |
| 1088 | vm_tag_t tag; |
| 1089 | |
| 1090 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 1091 | return (vm_map_kernel(target_map, address, size, mask, |
| 1092 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, |
| 1093 | port, offset, copy, |
| 1094 | cur_protection, max_protection, inheritance)); |
| 1095 | } |
| 1096 | |
| 1097 | kern_return_t |
| 1098 | vm_map_kernel( |
| 1099 | vm_map_t target_map, |
| 1100 | vm_offset_t *address, |
| 1101 | vm_size_t size, |
| 1102 | vm_offset_t mask, |
| 1103 | int flags, |
| 1104 | vm_map_kernel_flags_t vmk_flags, |
| 1105 | vm_tag_t tag, |
| 1106 | ipc_port_t port, |
| 1107 | vm_offset_t offset, |
| 1108 | boolean_t copy, |
| 1109 | vm_prot_t cur_protection, |
| 1110 | vm_prot_t max_protection, |
| 1111 | vm_inherit_t inheritance) |
| 1112 | { |
| 1113 | mach_vm_address_t map_addr; |
| 1114 | mach_vm_size_t map_size; |
| 1115 | mach_vm_offset_t map_mask; |
| 1116 | vm_object_offset_t obj_offset; |
| 1117 | kern_return_t kr; |
| 1118 | |
| 1119 | map_addr = (mach_vm_address_t)*address; |
| 1120 | map_size = (mach_vm_size_t)size; |
| 1121 | map_mask = (mach_vm_offset_t)mask; |
| 1122 | obj_offset = (vm_object_offset_t)offset; |
| 1123 | |
| 1124 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, |
| 1125 | flags, vmk_flags, tag, |
| 1126 | port, obj_offset, copy, |
| 1127 | cur_protection, max_protection, inheritance); |
| 1128 | *address = CAST_DOWN(vm_offset_t, map_addr); |
| 1129 | return kr; |
| 1130 | } |
| 1131 | |
| 1132 | /* |
| 1133 | * mach_vm_remap - |
| 1134 | * Remap a range of memory from one task into another, |
| 1135 | * to another address range within the same task, or |
| 1136 | * over top of itself (with altered permissions and/or |
| 1137 | * as an in-place copy of itself). |
| 1138 | */ |
| 1139 | kern_return_t |
| 1140 | mach_vm_remap_external( |
| 1141 | vm_map_t target_map, |
| 1142 | mach_vm_offset_t *address, |
| 1143 | mach_vm_size_t size, |
| 1144 | mach_vm_offset_t mask, |
| 1145 | int flags, |
| 1146 | vm_map_t src_map, |
| 1147 | mach_vm_offset_t memory_address, |
| 1148 | boolean_t copy, |
| 1149 | vm_prot_t *cur_protection, |
| 1150 | vm_prot_t *max_protection, |
| 1151 | vm_inherit_t inheritance) |
| 1152 | { |
| 1153 | vm_tag_t tag; |
| 1154 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 1155 | |
| 1156 | return (mach_vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, memory_address, |
| 1157 | copy, cur_protection, max_protection, inheritance)); |
| 1158 | } |
| 1159 | |
| 1160 | kern_return_t |
| 1161 | mach_vm_remap_kernel( |
| 1162 | vm_map_t target_map, |
| 1163 | mach_vm_offset_t *address, |
| 1164 | mach_vm_size_t size, |
| 1165 | mach_vm_offset_t mask, |
| 1166 | int flags, |
| 1167 | vm_tag_t tag, |
| 1168 | vm_map_t src_map, |
| 1169 | mach_vm_offset_t memory_address, |
| 1170 | boolean_t copy, |
| 1171 | vm_prot_t *cur_protection, |
| 1172 | vm_prot_t *max_protection, |
| 1173 | vm_inherit_t inheritance) |
| 1174 | { |
| 1175 | vm_map_offset_t map_addr; |
| 1176 | kern_return_t kr; |
| 1177 | |
| 1178 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) |
| 1179 | return KERN_INVALID_ARGUMENT; |
| 1180 | |
| 1181 | /* filter out any kernel-only flags */ |
| 1182 | if (flags & ~VM_FLAGS_USER_REMAP) |
| 1183 | return KERN_INVALID_ARGUMENT; |
| 1184 | |
| 1185 | map_addr = (vm_map_offset_t)*address; |
| 1186 | |
| 1187 | kr = vm_map_remap(target_map, |
| 1188 | &map_addr, |
| 1189 | size, |
| 1190 | mask, |
| 1191 | flags, |
| 1192 | VM_MAP_KERNEL_FLAGS_NONE, |
| 1193 | tag, |
| 1194 | src_map, |
| 1195 | memory_address, |
| 1196 | copy, |
| 1197 | cur_protection, |
| 1198 | max_protection, |
| 1199 | inheritance); |
| 1200 | *address = map_addr; |
| 1201 | return kr; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * vm_remap - |
| 1206 | * Remap a range of memory from one task into another, |
| 1207 | * to another address range within the same task, or |
| 1208 | * over top of itself (with altered permissions and/or |
| 1209 | * as an in-place copy of itself). |
| 1210 | * |
| 1211 | * The addressability of the source and target address |
| 1212 | * range is limited by the size of vm_address_t (in the |
| 1213 | * kernel context). |
| 1214 | */ |
| 1215 | kern_return_t |
| 1216 | vm_remap_external( |
| 1217 | vm_map_t target_map, |
| 1218 | vm_offset_t *address, |
| 1219 | vm_size_t size, |
| 1220 | vm_offset_t mask, |
| 1221 | int flags, |
| 1222 | vm_map_t src_map, |
| 1223 | vm_offset_t memory_address, |
| 1224 | boolean_t copy, |
| 1225 | vm_prot_t *cur_protection, |
| 1226 | vm_prot_t *max_protection, |
| 1227 | vm_inherit_t inheritance) |
| 1228 | { |
| 1229 | vm_tag_t tag; |
| 1230 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 1231 | |
| 1232 | return (vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, |
| 1233 | memory_address, copy, cur_protection, max_protection, inheritance)); |
| 1234 | } |
| 1235 | |
| 1236 | kern_return_t |
| 1237 | vm_remap_kernel( |
| 1238 | vm_map_t target_map, |
| 1239 | vm_offset_t *address, |
| 1240 | vm_size_t size, |
| 1241 | vm_offset_t mask, |
| 1242 | int flags, |
| 1243 | vm_tag_t tag, |
| 1244 | vm_map_t src_map, |
| 1245 | vm_offset_t memory_address, |
| 1246 | boolean_t copy, |
| 1247 | vm_prot_t *cur_protection, |
| 1248 | vm_prot_t *max_protection, |
| 1249 | vm_inherit_t inheritance) |
| 1250 | { |
| 1251 | vm_map_offset_t map_addr; |
| 1252 | kern_return_t kr; |
| 1253 | |
| 1254 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) |
| 1255 | return KERN_INVALID_ARGUMENT; |
| 1256 | |
| 1257 | /* filter out any kernel-only flags */ |
| 1258 | if (flags & ~VM_FLAGS_USER_REMAP) |
| 1259 | return KERN_INVALID_ARGUMENT; |
| 1260 | |
| 1261 | map_addr = (vm_map_offset_t)*address; |
| 1262 | |
| 1263 | kr = vm_map_remap(target_map, |
| 1264 | &map_addr, |
| 1265 | size, |
| 1266 | mask, |
| 1267 | flags, |
| 1268 | VM_MAP_KERNEL_FLAGS_NONE, |
| 1269 | tag, |
| 1270 | src_map, |
| 1271 | memory_address, |
| 1272 | copy, |
| 1273 | cur_protection, |
| 1274 | max_protection, |
| 1275 | inheritance); |
| 1276 | *address = CAST_DOWN(vm_offset_t, map_addr); |
| 1277 | return kr; |
| 1278 | } |
| 1279 | |
| 1280 | /* |
| 1281 | * NOTE: these routine (and this file) will no longer require mach_host_server.h |
| 1282 | * when mach_vm_wire and vm_wire are changed to use ledgers. |
| 1283 | */ |
| 1284 | #include <mach/mach_host_server.h> |
| 1285 | /* |
| 1286 | * mach_vm_wire |
| 1287 | * Specify that the range of the virtual address space |
| 1288 | * of the target task must not cause page faults for |
| 1289 | * the indicated accesses. |
| 1290 | * |
| 1291 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
| 1292 | */ |
| 1293 | kern_return_t |
| 1294 | mach_vm_wire_external( |
| 1295 | host_priv_t host_priv, |
| 1296 | vm_map_t map, |
| 1297 | mach_vm_offset_t start, |
| 1298 | mach_vm_size_t size, |
| 1299 | vm_prot_t access) |
| 1300 | { |
| 1301 | return (mach_vm_wire_kernel(host_priv, map, start, size, access, VM_KERN_MEMORY_MLOCK)); |
| 1302 | } |
| 1303 | |
| 1304 | kern_return_t |
| 1305 | mach_vm_wire_kernel( |
| 1306 | host_priv_t host_priv, |
| 1307 | vm_map_t map, |
| 1308 | mach_vm_offset_t start, |
| 1309 | mach_vm_size_t size, |
| 1310 | vm_prot_t access, |
| 1311 | vm_tag_t tag) |
| 1312 | { |
| 1313 | kern_return_t rc; |
| 1314 | |
| 1315 | if (host_priv == HOST_PRIV_NULL) |
| 1316 | return KERN_INVALID_HOST; |
| 1317 | |
| 1318 | assert(host_priv == &realhost); |
| 1319 | |
| 1320 | if (map == VM_MAP_NULL) |
| 1321 | return KERN_INVALID_TASK; |
| 1322 | |
| 1323 | if (access & ~VM_PROT_ALL || (start + size < start)) |
| 1324 | return KERN_INVALID_ARGUMENT; |
| 1325 | |
| 1326 | if (access != VM_PROT_NONE) { |
| 1327 | rc = vm_map_wire_kernel(map, |
| 1328 | vm_map_trunc_page(start, |
| 1329 | VM_MAP_PAGE_MASK(map)), |
| 1330 | vm_map_round_page(start+size, |
| 1331 | VM_MAP_PAGE_MASK(map)), |
| 1332 | access, tag, |
| 1333 | TRUE); |
| 1334 | } else { |
| 1335 | rc = vm_map_unwire(map, |
| 1336 | vm_map_trunc_page(start, |
| 1337 | VM_MAP_PAGE_MASK(map)), |
| 1338 | vm_map_round_page(start+size, |
| 1339 | VM_MAP_PAGE_MASK(map)), |
| 1340 | TRUE); |
| 1341 | } |
| 1342 | return rc; |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * vm_wire - |
| 1347 | * Specify that the range of the virtual address space |
| 1348 | * of the target task must not cause page faults for |
| 1349 | * the indicated accesses. |
| 1350 | * |
| 1351 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
| 1352 | */ |
| 1353 | kern_return_t |
| 1354 | vm_wire( |
| 1355 | host_priv_t host_priv, |
| 1356 | vm_map_t map, |
| 1357 | vm_offset_t start, |
| 1358 | vm_size_t size, |
| 1359 | vm_prot_t access) |
| 1360 | { |
| 1361 | kern_return_t rc; |
| 1362 | |
| 1363 | if (host_priv == HOST_PRIV_NULL) |
| 1364 | return KERN_INVALID_HOST; |
| 1365 | |
| 1366 | assert(host_priv == &realhost); |
| 1367 | |
| 1368 | if (map == VM_MAP_NULL) |
| 1369 | return KERN_INVALID_TASK; |
| 1370 | |
| 1371 | if ((access & ~VM_PROT_ALL) || (start + size < start)) |
| 1372 | return KERN_INVALID_ARGUMENT; |
| 1373 | |
| 1374 | if (size == 0) { |
| 1375 | rc = KERN_SUCCESS; |
| 1376 | } else if (access != VM_PROT_NONE) { |
| 1377 | rc = vm_map_wire_kernel(map, |
| 1378 | vm_map_trunc_page(start, |
| 1379 | VM_MAP_PAGE_MASK(map)), |
| 1380 | vm_map_round_page(start+size, |
| 1381 | VM_MAP_PAGE_MASK(map)), |
| 1382 | access, VM_KERN_MEMORY_OSFMK, |
| 1383 | TRUE); |
| 1384 | } else { |
| 1385 | rc = vm_map_unwire(map, |
| 1386 | vm_map_trunc_page(start, |
| 1387 | VM_MAP_PAGE_MASK(map)), |
| 1388 | vm_map_round_page(start+size, |
| 1389 | VM_MAP_PAGE_MASK(map)), |
| 1390 | TRUE); |
| 1391 | } |
| 1392 | return rc; |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * vm_msync |
| 1397 | * |
| 1398 | * Synchronises the memory range specified with its backing store |
| 1399 | * image by either flushing or cleaning the contents to the appropriate |
| 1400 | * memory manager. |
| 1401 | * |
| 1402 | * interpretation of sync_flags |
| 1403 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 1404 | * pages to manager. |
| 1405 | * |
| 1406 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 1407 | * - discard pages, write dirty or precious |
| 1408 | * pages back to memory manager. |
| 1409 | * |
| 1410 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 1411 | * - write dirty or precious pages back to |
| 1412 | * the memory manager. |
| 1413 | * |
| 1414 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 1415 | * is a hole in the region, and we would |
| 1416 | * have returned KERN_SUCCESS, return |
| 1417 | * KERN_INVALID_ADDRESS instead. |
| 1418 | * |
| 1419 | * RETURNS |
| 1420 | * KERN_INVALID_TASK Bad task parameter |
| 1421 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 1422 | * KERN_SUCCESS The usual. |
| 1423 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 1424 | */ |
| 1425 | |
| 1426 | kern_return_t |
| 1427 | mach_vm_msync( |
| 1428 | vm_map_t map, |
| 1429 | mach_vm_address_t address, |
| 1430 | mach_vm_size_t size, |
| 1431 | vm_sync_t sync_flags) |
| 1432 | { |
| 1433 | |
| 1434 | if (map == VM_MAP_NULL) |
| 1435 | return(KERN_INVALID_TASK); |
| 1436 | |
| 1437 | return vm_map_msync(map, (vm_map_address_t)address, |
| 1438 | (vm_map_size_t)size, sync_flags); |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * vm_msync |
| 1443 | * |
| 1444 | * Synchronises the memory range specified with its backing store |
| 1445 | * image by either flushing or cleaning the contents to the appropriate |
| 1446 | * memory manager. |
| 1447 | * |
| 1448 | * interpretation of sync_flags |
| 1449 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 1450 | * pages to manager. |
| 1451 | * |
| 1452 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 1453 | * - discard pages, write dirty or precious |
| 1454 | * pages back to memory manager. |
| 1455 | * |
| 1456 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 1457 | * - write dirty or precious pages back to |
| 1458 | * the memory manager. |
| 1459 | * |
| 1460 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 1461 | * is a hole in the region, and we would |
| 1462 | * have returned KERN_SUCCESS, return |
| 1463 | * KERN_INVALID_ADDRESS instead. |
| 1464 | * |
| 1465 | * The addressability of the range is limited to that which can |
| 1466 | * be described by a vm_address_t. |
| 1467 | * |
| 1468 | * RETURNS |
| 1469 | * KERN_INVALID_TASK Bad task parameter |
| 1470 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 1471 | * KERN_SUCCESS The usual. |
| 1472 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 1473 | */ |
| 1474 | |
| 1475 | kern_return_t |
| 1476 | vm_msync( |
| 1477 | vm_map_t map, |
| 1478 | vm_address_t address, |
| 1479 | vm_size_t size, |
| 1480 | vm_sync_t sync_flags) |
| 1481 | { |
| 1482 | |
| 1483 | if (map == VM_MAP_NULL) |
| 1484 | return(KERN_INVALID_TASK); |
| 1485 | |
| 1486 | return vm_map_msync(map, (vm_map_address_t)address, |
| 1487 | (vm_map_size_t)size, sync_flags); |
| 1488 | } |
| 1489 | |
| 1490 | |
| 1491 | int |
| 1492 | vm_toggle_entry_reuse(int toggle, int *old_value) |
| 1493 | { |
| 1494 | vm_map_t map = current_map(); |
| 1495 | |
| 1496 | assert(!map->is_nested_map); |
| 1497 | if(toggle == VM_TOGGLE_GETVALUE && old_value != NULL){ |
| 1498 | *old_value = map->disable_vmentry_reuse; |
| 1499 | } else if(toggle == VM_TOGGLE_SET){ |
| 1500 | vm_map_entry_t map_to_entry; |
| 1501 | |
| 1502 | vm_map_lock(map); |
| 1503 | vm_map_disable_hole_optimization(map); |
| 1504 | map->disable_vmentry_reuse = TRUE; |
| 1505 | __IGNORE_WCASTALIGN(map_to_entry = vm_map_to_entry(map)); |
| 1506 | if (map->first_free == map_to_entry) { |
| 1507 | map->highest_entry_end = vm_map_min(map); |
| 1508 | } else { |
| 1509 | map->highest_entry_end = map->first_free->vme_end; |
| 1510 | } |
| 1511 | vm_map_unlock(map); |
| 1512 | } else if (toggle == VM_TOGGLE_CLEAR){ |
| 1513 | vm_map_lock(map); |
| 1514 | map->disable_vmentry_reuse = FALSE; |
| 1515 | vm_map_unlock(map); |
| 1516 | } else |
| 1517 | return KERN_INVALID_ARGUMENT; |
| 1518 | |
| 1519 | return KERN_SUCCESS; |
| 1520 | } |
| 1521 | |
| 1522 | /* |
| 1523 | * mach_vm_behavior_set |
| 1524 | * |
| 1525 | * Sets the paging behavior attribute for the specified range |
| 1526 | * in the specified map. |
| 1527 | * |
| 1528 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
| 1529 | * in [start,start+size) is not a valid allocated memory region. |
| 1530 | */ |
| 1531 | kern_return_t |
| 1532 | mach_vm_behavior_set( |
| 1533 | vm_map_t map, |
| 1534 | mach_vm_offset_t start, |
| 1535 | mach_vm_size_t size, |
| 1536 | vm_behavior_t new_behavior) |
| 1537 | { |
| 1538 | vm_map_offset_t align_mask; |
| 1539 | |
| 1540 | if ((map == VM_MAP_NULL) || (start + size < start)) |
| 1541 | return(KERN_INVALID_ARGUMENT); |
| 1542 | |
| 1543 | if (size == 0) |
| 1544 | return KERN_SUCCESS; |
| 1545 | |
| 1546 | switch (new_behavior) { |
| 1547 | case VM_BEHAVIOR_REUSABLE: |
| 1548 | case VM_BEHAVIOR_REUSE: |
| 1549 | case VM_BEHAVIOR_CAN_REUSE: |
| 1550 | /* |
| 1551 | * Align to the hardware page size, to allow |
| 1552 | * malloc() to maximize the amount of re-usability, |
| 1553 | * even on systems with larger software page size. |
| 1554 | */ |
| 1555 | align_mask = PAGE_MASK; |
| 1556 | break; |
| 1557 | default: |
| 1558 | align_mask = VM_MAP_PAGE_MASK(map); |
| 1559 | break; |
| 1560 | } |
| 1561 | |
| 1562 | return vm_map_behavior_set(map, |
| 1563 | vm_map_trunc_page(start, align_mask), |
| 1564 | vm_map_round_page(start+size, align_mask), |
| 1565 | new_behavior); |
| 1566 | } |
| 1567 | |
| 1568 | /* |
| 1569 | * vm_behavior_set |
| 1570 | * |
| 1571 | * Sets the paging behavior attribute for the specified range |
| 1572 | * in the specified map. |
| 1573 | * |
| 1574 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
| 1575 | * in [start,start+size) is not a valid allocated memory region. |
| 1576 | * |
| 1577 | * This routine is potentially limited in addressibility by the |
| 1578 | * use of vm_offset_t (if the map provided is larger than the |
| 1579 | * kernel's). |
| 1580 | */ |
| 1581 | kern_return_t |
| 1582 | vm_behavior_set( |
| 1583 | vm_map_t map, |
| 1584 | vm_offset_t start, |
| 1585 | vm_size_t size, |
| 1586 | vm_behavior_t new_behavior) |
| 1587 | { |
| 1588 | if (start + size < start) |
| 1589 | return KERN_INVALID_ARGUMENT; |
| 1590 | |
| 1591 | return mach_vm_behavior_set(map, |
| 1592 | (mach_vm_offset_t) start, |
| 1593 | (mach_vm_size_t) size, |
| 1594 | new_behavior); |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * mach_vm_region: |
| 1599 | * |
| 1600 | * User call to obtain information about a region in |
| 1601 | * a task's address map. Currently, only one flavor is |
| 1602 | * supported. |
| 1603 | * |
| 1604 | * XXX The reserved and behavior fields cannot be filled |
| 1605 | * in until the vm merge from the IK is completed, and |
| 1606 | * vm_reserve is implemented. |
| 1607 | * |
| 1608 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
| 1609 | */ |
| 1610 | |
| 1611 | kern_return_t |
| 1612 | mach_vm_region( |
| 1613 | vm_map_t map, |
| 1614 | mach_vm_offset_t *address, /* IN/OUT */ |
| 1615 | mach_vm_size_t *size, /* OUT */ |
| 1616 | vm_region_flavor_t flavor, /* IN */ |
| 1617 | vm_region_info_t info, /* OUT */ |
| 1618 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1619 | mach_port_t *object_name) /* OUT */ |
| 1620 | { |
| 1621 | vm_map_offset_t map_addr; |
| 1622 | vm_map_size_t map_size; |
| 1623 | kern_return_t kr; |
| 1624 | |
| 1625 | if (VM_MAP_NULL == map) |
| 1626 | return KERN_INVALID_ARGUMENT; |
| 1627 | |
| 1628 | map_addr = (vm_map_offset_t)*address; |
| 1629 | map_size = (vm_map_size_t)*size; |
| 1630 | |
| 1631 | /* legacy conversion */ |
| 1632 | if (VM_REGION_BASIC_INFO == flavor) |
| 1633 | flavor = VM_REGION_BASIC_INFO_64; |
| 1634 | |
| 1635 | kr = vm_map_region(map, |
| 1636 | &map_addr, &map_size, |
| 1637 | flavor, info, count, |
| 1638 | object_name); |
| 1639 | |
| 1640 | *address = map_addr; |
| 1641 | *size = map_size; |
| 1642 | return kr; |
| 1643 | } |
| 1644 | |
| 1645 | /* |
| 1646 | * vm_region_64 and vm_region: |
| 1647 | * |
| 1648 | * User call to obtain information about a region in |
| 1649 | * a task's address map. Currently, only one flavor is |
| 1650 | * supported. |
| 1651 | * |
| 1652 | * XXX The reserved and behavior fields cannot be filled |
| 1653 | * in until the vm merge from the IK is completed, and |
| 1654 | * vm_reserve is implemented. |
| 1655 | * |
| 1656 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
| 1657 | */ |
| 1658 | |
| 1659 | kern_return_t |
| 1660 | vm_region_64( |
| 1661 | vm_map_t map, |
| 1662 | vm_offset_t *address, /* IN/OUT */ |
| 1663 | vm_size_t *size, /* OUT */ |
| 1664 | vm_region_flavor_t flavor, /* IN */ |
| 1665 | vm_region_info_t info, /* OUT */ |
| 1666 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1667 | mach_port_t *object_name) /* OUT */ |
| 1668 | { |
| 1669 | vm_map_offset_t map_addr; |
| 1670 | vm_map_size_t map_size; |
| 1671 | kern_return_t kr; |
| 1672 | |
| 1673 | if (VM_MAP_NULL == map) |
| 1674 | return KERN_INVALID_ARGUMENT; |
| 1675 | |
| 1676 | map_addr = (vm_map_offset_t)*address; |
| 1677 | map_size = (vm_map_size_t)*size; |
| 1678 | |
| 1679 | /* legacy conversion */ |
| 1680 | if (VM_REGION_BASIC_INFO == flavor) |
| 1681 | flavor = VM_REGION_BASIC_INFO_64; |
| 1682 | |
| 1683 | kr = vm_map_region(map, |
| 1684 | &map_addr, &map_size, |
| 1685 | flavor, info, count, |
| 1686 | object_name); |
| 1687 | |
| 1688 | *address = CAST_DOWN(vm_offset_t, map_addr); |
| 1689 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1690 | |
| 1691 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) |
| 1692 | return KERN_INVALID_ADDRESS; |
| 1693 | return kr; |
| 1694 | } |
| 1695 | |
| 1696 | kern_return_t |
| 1697 | vm_region( |
| 1698 | vm_map_t map, |
| 1699 | vm_address_t *address, /* IN/OUT */ |
| 1700 | vm_size_t *size, /* OUT */ |
| 1701 | vm_region_flavor_t flavor, /* IN */ |
| 1702 | vm_region_info_t info, /* OUT */ |
| 1703 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1704 | mach_port_t *object_name) /* OUT */ |
| 1705 | { |
| 1706 | vm_map_address_t map_addr; |
| 1707 | vm_map_size_t map_size; |
| 1708 | kern_return_t kr; |
| 1709 | |
| 1710 | if (VM_MAP_NULL == map) |
| 1711 | return KERN_INVALID_ARGUMENT; |
| 1712 | |
| 1713 | map_addr = (vm_map_address_t)*address; |
| 1714 | map_size = (vm_map_size_t)*size; |
| 1715 | |
| 1716 | kr = vm_map_region(map, |
| 1717 | &map_addr, &map_size, |
| 1718 | flavor, info, count, |
| 1719 | object_name); |
| 1720 | |
| 1721 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 1722 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1723 | |
| 1724 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) |
| 1725 | return KERN_INVALID_ADDRESS; |
| 1726 | return kr; |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * vm_region_recurse: A form of vm_region which follows the |
| 1731 | * submaps in a target map |
| 1732 | * |
| 1733 | */ |
| 1734 | kern_return_t |
| 1735 | mach_vm_region_recurse( |
| 1736 | vm_map_t map, |
| 1737 | mach_vm_address_t *address, |
| 1738 | mach_vm_size_t *size, |
| 1739 | uint32_t *depth, |
| 1740 | vm_region_recurse_info_t info, |
| 1741 | mach_msg_type_number_t *infoCnt) |
| 1742 | { |
| 1743 | vm_map_address_t map_addr; |
| 1744 | vm_map_size_t map_size; |
| 1745 | kern_return_t kr; |
| 1746 | |
| 1747 | if (VM_MAP_NULL == map) |
| 1748 | return KERN_INVALID_ARGUMENT; |
| 1749 | |
| 1750 | map_addr = (vm_map_address_t)*address; |
| 1751 | map_size = (vm_map_size_t)*size; |
| 1752 | |
| 1753 | kr = vm_map_region_recurse_64( |
| 1754 | map, |
| 1755 | &map_addr, |
| 1756 | &map_size, |
| 1757 | depth, |
| 1758 | (vm_region_submap_info_64_t)info, |
| 1759 | infoCnt); |
| 1760 | |
| 1761 | *address = map_addr; |
| 1762 | *size = map_size; |
| 1763 | return kr; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * vm_region_recurse: A form of vm_region which follows the |
| 1768 | * submaps in a target map |
| 1769 | * |
| 1770 | */ |
| 1771 | kern_return_t |
| 1772 | vm_region_recurse_64( |
| 1773 | vm_map_t map, |
| 1774 | vm_address_t *address, |
| 1775 | vm_size_t *size, |
| 1776 | uint32_t *depth, |
| 1777 | vm_region_recurse_info_64_t info, |
| 1778 | mach_msg_type_number_t *infoCnt) |
| 1779 | { |
| 1780 | vm_map_address_t map_addr; |
| 1781 | vm_map_size_t map_size; |
| 1782 | kern_return_t kr; |
| 1783 | |
| 1784 | if (VM_MAP_NULL == map) |
| 1785 | return KERN_INVALID_ARGUMENT; |
| 1786 | |
| 1787 | map_addr = (vm_map_address_t)*address; |
| 1788 | map_size = (vm_map_size_t)*size; |
| 1789 | |
| 1790 | kr = vm_map_region_recurse_64( |
| 1791 | map, |
| 1792 | &map_addr, |
| 1793 | &map_size, |
| 1794 | depth, |
| 1795 | (vm_region_submap_info_64_t)info, |
| 1796 | infoCnt); |
| 1797 | |
| 1798 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 1799 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1800 | |
| 1801 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) |
| 1802 | return KERN_INVALID_ADDRESS; |
| 1803 | return kr; |
| 1804 | } |
| 1805 | |
| 1806 | kern_return_t |
| 1807 | vm_region_recurse( |
| 1808 | vm_map_t map, |
| 1809 | vm_offset_t *address, /* IN/OUT */ |
| 1810 | vm_size_t *size, /* OUT */ |
| 1811 | natural_t *depth, /* IN/OUT */ |
| 1812 | vm_region_recurse_info_t info32, /* IN/OUT */ |
| 1813 | mach_msg_type_number_t *infoCnt) /* IN/OUT */ |
| 1814 | { |
| 1815 | vm_region_submap_info_data_64_t info64; |
| 1816 | vm_region_submap_info_t info; |
| 1817 | vm_map_address_t map_addr; |
| 1818 | vm_map_size_t map_size; |
| 1819 | kern_return_t kr; |
| 1820 | |
| 1821 | if (VM_MAP_NULL == map || *infoCnt < VM_REGION_SUBMAP_INFO_COUNT) |
| 1822 | return KERN_INVALID_ARGUMENT; |
| 1823 | |
| 1824 | |
| 1825 | map_addr = (vm_map_address_t)*address; |
| 1826 | map_size = (vm_map_size_t)*size; |
| 1827 | info = (vm_region_submap_info_t)info32; |
| 1828 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT_64; |
| 1829 | |
| 1830 | kr = vm_map_region_recurse_64(map, &map_addr,&map_size, |
| 1831 | depth, &info64, infoCnt); |
| 1832 | |
| 1833 | info->protection = info64.protection; |
| 1834 | info->max_protection = info64.max_protection; |
| 1835 | info->inheritance = info64.inheritance; |
| 1836 | info->offset = (uint32_t)info64.offset; /* trouble-maker */ |
| 1837 | info->user_tag = info64.user_tag; |
| 1838 | info->pages_resident = info64.pages_resident; |
| 1839 | info->pages_shared_now_private = info64.pages_shared_now_private; |
| 1840 | info->pages_swapped_out = info64.pages_swapped_out; |
| 1841 | info->pages_dirtied = info64.pages_dirtied; |
| 1842 | info->ref_count = info64.ref_count; |
| 1843 | info->shadow_depth = info64.shadow_depth; |
| 1844 | info->external_pager = info64.external_pager; |
| 1845 | info->share_mode = info64.share_mode; |
| 1846 | info->is_submap = info64.is_submap; |
| 1847 | info->behavior = info64.behavior; |
| 1848 | info->object_id = info64.object_id; |
| 1849 | info->user_wired_count = info64.user_wired_count; |
| 1850 | |
| 1851 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 1852 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1853 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT; |
| 1854 | |
| 1855 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) |
| 1856 | return KERN_INVALID_ADDRESS; |
| 1857 | return kr; |
| 1858 | } |
| 1859 | |
| 1860 | kern_return_t |
| 1861 | mach_vm_purgable_control( |
| 1862 | vm_map_t map, |
| 1863 | mach_vm_offset_t address, |
| 1864 | vm_purgable_t control, |
| 1865 | int *state) |
| 1866 | { |
| 1867 | if (VM_MAP_NULL == map) |
| 1868 | return KERN_INVALID_ARGUMENT; |
| 1869 | |
| 1870 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 1871 | /* not allowed from user-space */ |
| 1872 | return KERN_INVALID_ARGUMENT; |
| 1873 | } |
| 1874 | |
| 1875 | return vm_map_purgable_control(map, |
| 1876 | vm_map_trunc_page(address, PAGE_MASK), |
| 1877 | control, |
| 1878 | state); |
| 1879 | } |
| 1880 | |
| 1881 | kern_return_t |
| 1882 | vm_purgable_control( |
| 1883 | vm_map_t map, |
| 1884 | vm_offset_t address, |
| 1885 | vm_purgable_t control, |
| 1886 | int *state) |
| 1887 | { |
| 1888 | if (VM_MAP_NULL == map) |
| 1889 | return KERN_INVALID_ARGUMENT; |
| 1890 | |
| 1891 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 1892 | /* not allowed from user-space */ |
| 1893 | return KERN_INVALID_ARGUMENT; |
| 1894 | } |
| 1895 | |
| 1896 | return vm_map_purgable_control(map, |
| 1897 | vm_map_trunc_page(address, PAGE_MASK), |
| 1898 | control, |
| 1899 | state); |
| 1900 | } |
| 1901 | |
| 1902 | |
| 1903 | /* |
| 1904 | * Ordinarily, the right to allocate CPM is restricted |
| 1905 | * to privileged applications (those that can gain access |
| 1906 | * to the host priv port). Set this variable to zero if |
| 1907 | * you want to let any application allocate CPM. |
| 1908 | */ |
| 1909 | unsigned int vm_allocate_cpm_privileged = 0; |
| 1910 | |
| 1911 | /* |
| 1912 | * Allocate memory in the specified map, with the caveat that |
| 1913 | * the memory is physically contiguous. This call may fail |
| 1914 | * if the system can't find sufficient contiguous memory. |
| 1915 | * This call may cause or lead to heart-stopping amounts of |
| 1916 | * paging activity. |
| 1917 | * |
| 1918 | * Memory obtained from this call should be freed in the |
| 1919 | * normal way, viz., via vm_deallocate. |
| 1920 | */ |
| 1921 | kern_return_t |
| 1922 | vm_allocate_cpm( |
| 1923 | host_priv_t host_priv, |
| 1924 | vm_map_t map, |
| 1925 | vm_address_t *addr, |
| 1926 | vm_size_t size, |
| 1927 | int flags) |
| 1928 | { |
| 1929 | vm_map_address_t map_addr; |
| 1930 | vm_map_size_t map_size; |
| 1931 | kern_return_t kr; |
| 1932 | |
| 1933 | if (vm_allocate_cpm_privileged && HOST_PRIV_NULL == host_priv) |
| 1934 | return KERN_INVALID_HOST; |
| 1935 | |
| 1936 | if (VM_MAP_NULL == map) |
| 1937 | return KERN_INVALID_ARGUMENT; |
| 1938 | |
| 1939 | map_addr = (vm_map_address_t)*addr; |
| 1940 | map_size = (vm_map_size_t)size; |
| 1941 | |
| 1942 | kr = vm_map_enter_cpm(map, |
| 1943 | &map_addr, |
| 1944 | map_size, |
| 1945 | flags); |
| 1946 | |
| 1947 | *addr = CAST_DOWN(vm_address_t, map_addr); |
| 1948 | return kr; |
| 1949 | } |
| 1950 | |
| 1951 | |
| 1952 | kern_return_t |
| 1953 | mach_vm_page_query( |
| 1954 | vm_map_t map, |
| 1955 | mach_vm_offset_t offset, |
| 1956 | int *disposition, |
| 1957 | int *ref_count) |
| 1958 | { |
| 1959 | if (VM_MAP_NULL == map) |
| 1960 | return KERN_INVALID_ARGUMENT; |
| 1961 | |
| 1962 | return vm_map_page_query_internal( |
| 1963 | map, |
| 1964 | vm_map_trunc_page(offset, PAGE_MASK), |
| 1965 | disposition, ref_count); |
| 1966 | } |
| 1967 | |
| 1968 | kern_return_t |
| 1969 | vm_map_page_query( |
| 1970 | vm_map_t map, |
| 1971 | vm_offset_t offset, |
| 1972 | int *disposition, |
| 1973 | int *ref_count) |
| 1974 | { |
| 1975 | if (VM_MAP_NULL == map) |
| 1976 | return KERN_INVALID_ARGUMENT; |
| 1977 | |
| 1978 | return vm_map_page_query_internal( |
| 1979 | map, |
| 1980 | vm_map_trunc_page(offset, PAGE_MASK), |
| 1981 | disposition, ref_count); |
| 1982 | } |
| 1983 | |
| 1984 | kern_return_t |
| 1985 | mach_vm_page_range_query( |
| 1986 | vm_map_t map, |
| 1987 | mach_vm_offset_t address, |
| 1988 | mach_vm_size_t size, |
| 1989 | mach_vm_address_t dispositions_addr, |
| 1990 | mach_vm_size_t *dispositions_count) |
| 1991 | { |
| 1992 | kern_return_t kr = KERN_SUCCESS; |
| 1993 | int num_pages = 0, i = 0; |
| 1994 | mach_vm_size_t curr_sz = 0, copy_sz = 0; |
| 1995 | mach_vm_size_t disp_buf_req_size = 0, disp_buf_total_size = 0; |
| 1996 | mach_msg_type_number_t count = 0; |
| 1997 | |
| 1998 | void *info = NULL; |
| 1999 | void *local_disp = NULL;; |
| 2000 | vm_map_size_t info_size = 0, local_disp_size = 0; |
| 2001 | mach_vm_offset_t start = 0, end = 0; |
| 2002 | |
| 2003 | if (map == VM_MAP_NULL || dispositions_count == NULL) { |
| 2004 | return KERN_INVALID_ARGUMENT; |
| 2005 | } |
| 2006 | |
| 2007 | disp_buf_req_size = ( *dispositions_count * sizeof(int)); |
| 2008 | start = mach_vm_trunc_page(address); |
| 2009 | end = mach_vm_round_page(address + size); |
| 2010 | |
| 2011 | if (end < start) { |
| 2012 | return KERN_INVALID_ARGUMENT; |
| 2013 | } |
| 2014 | |
| 2015 | if (disp_buf_req_size == 0 || (end == start)) { |
| 2016 | return KERN_SUCCESS; |
| 2017 | } |
| 2018 | |
| 2019 | /* |
| 2020 | * For large requests, we will go through them |
| 2021 | * MAX_PAGE_RANGE_QUERY chunk at a time. |
| 2022 | */ |
| 2023 | |
| 2024 | curr_sz = MIN(end - start, MAX_PAGE_RANGE_QUERY); |
| 2025 | num_pages = (int) (curr_sz >> PAGE_SHIFT); |
| 2026 | |
| 2027 | info_size = num_pages * sizeof(vm_page_info_basic_data_t); |
| 2028 | info = kalloc(info_size); |
| 2029 | |
| 2030 | if (info == NULL) { |
| 2031 | return KERN_RESOURCE_SHORTAGE; |
| 2032 | } |
| 2033 | |
| 2034 | local_disp_size = num_pages * sizeof(int); |
| 2035 | local_disp = kalloc(local_disp_size); |
| 2036 | |
| 2037 | if (local_disp == NULL) { |
| 2038 | |
| 2039 | kfree(info, info_size); |
| 2040 | info = NULL; |
| 2041 | return KERN_RESOURCE_SHORTAGE; |
| 2042 | } |
| 2043 | |
| 2044 | while (size) { |
| 2045 | |
| 2046 | count = VM_PAGE_INFO_BASIC_COUNT; |
| 2047 | kr = vm_map_page_range_info_internal( |
| 2048 | map, |
| 2049 | start, |
| 2050 | mach_vm_round_page(start + curr_sz), |
| 2051 | VM_PAGE_INFO_BASIC, |
| 2052 | (vm_page_info_t) info, |
| 2053 | &count); |
| 2054 | |
| 2055 | assert(kr == KERN_SUCCESS); |
| 2056 | |
| 2057 | for (i = 0; i < num_pages; i++) { |
| 2058 | |
| 2059 | ((int*)local_disp)[i] = ((vm_page_info_basic_t)info)[i].disposition; |
| 2060 | } |
| 2061 | |
| 2062 | copy_sz = MIN(disp_buf_req_size, num_pages * sizeof(int)/* an int per page */); |
| 2063 | kr = copyout(local_disp, (mach_vm_address_t)dispositions_addr, copy_sz); |
| 2064 | |
| 2065 | start += curr_sz; |
| 2066 | disp_buf_req_size -= copy_sz; |
| 2067 | disp_buf_total_size += copy_sz; |
| 2068 | |
| 2069 | if (kr != 0) { |
| 2070 | break; |
| 2071 | } |
| 2072 | |
| 2073 | if ((disp_buf_req_size == 0) || (curr_sz >= size)) { |
| 2074 | |
| 2075 | /* |
| 2076 | * We might have inspected the full range OR |
| 2077 | * more than it esp. if the user passed in |
| 2078 | * non-page aligned start/size and/or if we |
| 2079 | * descended into a submap. We are done here. |
| 2080 | */ |
| 2081 | |
| 2082 | size = 0; |
| 2083 | |
| 2084 | } else { |
| 2085 | |
| 2086 | dispositions_addr += copy_sz; |
| 2087 | |
| 2088 | size -= curr_sz; |
| 2089 | |
| 2090 | curr_sz = MIN(mach_vm_round_page(size), MAX_PAGE_RANGE_QUERY); |
| 2091 | num_pages = (int)(curr_sz >> PAGE_SHIFT); |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | *dispositions_count = disp_buf_total_size / sizeof(int); |
| 2096 | |
| 2097 | kfree(local_disp, local_disp_size); |
| 2098 | local_disp = NULL; |
| 2099 | |
| 2100 | kfree(info, info_size); |
| 2101 | info = NULL; |
| 2102 | |
| 2103 | return kr; |
| 2104 | } |
| 2105 | |
| 2106 | kern_return_t |
| 2107 | mach_vm_page_info( |
| 2108 | vm_map_t map, |
| 2109 | mach_vm_address_t address, |
| 2110 | vm_page_info_flavor_t flavor, |
| 2111 | vm_page_info_t info, |
| 2112 | mach_msg_type_number_t *count) |
| 2113 | { |
| 2114 | kern_return_t kr; |
| 2115 | |
| 2116 | if (map == VM_MAP_NULL) { |
| 2117 | return KERN_INVALID_ARGUMENT; |
| 2118 | } |
| 2119 | |
| 2120 | kr = vm_map_page_info(map, address, flavor, info, count); |
| 2121 | return kr; |
| 2122 | } |
| 2123 | |
| 2124 | /* map a (whole) upl into an address space */ |
| 2125 | kern_return_t |
| 2126 | vm_upl_map( |
| 2127 | vm_map_t map, |
| 2128 | upl_t upl, |
| 2129 | vm_address_t *dst_addr) |
| 2130 | { |
| 2131 | vm_map_offset_t map_addr; |
| 2132 | kern_return_t kr; |
| 2133 | |
| 2134 | if (VM_MAP_NULL == map) |
| 2135 | return KERN_INVALID_ARGUMENT; |
| 2136 | |
| 2137 | kr = vm_map_enter_upl(map, upl, &map_addr); |
| 2138 | *dst_addr = CAST_DOWN(vm_address_t, map_addr); |
| 2139 | return kr; |
| 2140 | } |
| 2141 | |
| 2142 | kern_return_t |
| 2143 | vm_upl_unmap( |
| 2144 | vm_map_t map, |
| 2145 | upl_t upl) |
| 2146 | { |
| 2147 | if (VM_MAP_NULL == map) |
| 2148 | return KERN_INVALID_ARGUMENT; |
| 2149 | |
| 2150 | return (vm_map_remove_upl(map, upl)); |
| 2151 | } |
| 2152 | |
| 2153 | /* Retrieve a upl for an object underlying an address range in a map */ |
| 2154 | |
| 2155 | kern_return_t |
| 2156 | vm_map_get_upl( |
| 2157 | vm_map_t map, |
| 2158 | vm_map_offset_t map_offset, |
| 2159 | upl_size_t *upl_size, |
| 2160 | upl_t *upl, |
| 2161 | upl_page_info_array_t page_list, |
| 2162 | unsigned int *count, |
| 2163 | upl_control_flags_t *flags, |
| 2164 | vm_tag_t tag, |
| 2165 | int force_data_sync) |
| 2166 | { |
| 2167 | upl_control_flags_t map_flags; |
| 2168 | kern_return_t kr; |
| 2169 | |
| 2170 | if (VM_MAP_NULL == map) |
| 2171 | return KERN_INVALID_ARGUMENT; |
| 2172 | |
| 2173 | map_flags = *flags & ~UPL_NOZEROFILL; |
| 2174 | if (force_data_sync) |
| 2175 | map_flags |= UPL_FORCE_DATA_SYNC; |
| 2176 | |
| 2177 | kr = vm_map_create_upl(map, |
| 2178 | map_offset, |
| 2179 | upl_size, |
| 2180 | upl, |
| 2181 | page_list, |
| 2182 | count, |
| 2183 | &map_flags, |
| 2184 | tag); |
| 2185 | |
| 2186 | *flags = (map_flags & ~UPL_FORCE_DATA_SYNC); |
| 2187 | return kr; |
| 2188 | } |
| 2189 | |
| 2190 | #if CONFIG_EMBEDDED |
| 2191 | extern int proc_selfpid(void); |
| 2192 | extern char *proc_name_address(void *p); |
| 2193 | int cs_executable_mem_entry = 0; |
| 2194 | int log_executable_mem_entry = 0; |
| 2195 | #endif /* CONFIG_EMBEDDED */ |
| 2196 | |
| 2197 | /* |
| 2198 | * mach_make_memory_entry_64 |
| 2199 | * |
| 2200 | * Think of it as a two-stage vm_remap() operation. First |
| 2201 | * you get a handle. Second, you get map that handle in |
| 2202 | * somewhere else. Rather than doing it all at once (and |
| 2203 | * without needing access to the other whole map). |
| 2204 | */ |
| 2205 | kern_return_t |
| 2206 | mach_make_memory_entry_64( |
| 2207 | vm_map_t target_map, |
| 2208 | memory_object_size_t *size, |
| 2209 | memory_object_offset_t offset, |
| 2210 | vm_prot_t permission, |
| 2211 | ipc_port_t *object_handle, |
| 2212 | ipc_port_t parent_handle) |
| 2213 | { |
| 2214 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_USER) { |
| 2215 | /* |
| 2216 | * Unknown flag: reject for forward compatibility. |
| 2217 | */ |
| 2218 | return KERN_INVALID_VALUE; |
| 2219 | } |
| 2220 | |
| 2221 | return mach_make_memory_entry_internal(target_map, |
| 2222 | size, |
| 2223 | offset, |
| 2224 | permission, |
| 2225 | object_handle, |
| 2226 | parent_handle); |
| 2227 | } |
| 2228 | |
| 2229 | kern_return_t |
| 2230 | mach_make_memory_entry_internal( |
| 2231 | vm_map_t target_map, |
| 2232 | memory_object_size_t *size, |
| 2233 | memory_object_offset_t offset, |
| 2234 | vm_prot_t permission, |
| 2235 | ipc_port_t *object_handle, |
| 2236 | ipc_port_t parent_handle) |
| 2237 | { |
| 2238 | vm_map_version_t version; |
| 2239 | vm_named_entry_t parent_entry; |
| 2240 | vm_named_entry_t user_entry; |
| 2241 | ipc_port_t user_handle; |
| 2242 | kern_return_t kr; |
| 2243 | vm_map_t real_map; |
| 2244 | |
| 2245 | /* needed for call to vm_map_lookup_locked */ |
| 2246 | boolean_t wired; |
| 2247 | boolean_t iskernel; |
| 2248 | vm_object_offset_t obj_off; |
| 2249 | vm_prot_t prot; |
| 2250 | struct vm_object_fault_info fault_info = {}; |
| 2251 | vm_object_t object; |
| 2252 | vm_object_t shadow_object; |
| 2253 | |
| 2254 | /* needed for direct map entry manipulation */ |
| 2255 | vm_map_entry_t map_entry; |
| 2256 | vm_map_entry_t next_entry; |
| 2257 | vm_map_t local_map; |
| 2258 | vm_map_t original_map = target_map; |
| 2259 | vm_map_size_t total_size, map_size; |
| 2260 | vm_map_offset_t map_start, map_end; |
| 2261 | vm_map_offset_t local_offset; |
| 2262 | vm_object_size_t mappable_size; |
| 2263 | |
| 2264 | /* |
| 2265 | * Stash the offset in the page for use by vm_map_enter_mem_object() |
| 2266 | * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case. |
| 2267 | */ |
| 2268 | vm_object_offset_t offset_in_page; |
| 2269 | |
| 2270 | unsigned int access; |
| 2271 | vm_prot_t protections; |
| 2272 | vm_prot_t original_protections, mask_protections; |
| 2273 | unsigned int wimg_mode; |
| 2274 | |
| 2275 | boolean_t force_shadow = FALSE; |
| 2276 | boolean_t use_data_addr; |
| 2277 | boolean_t use_4K_compat; |
| 2278 | #if VM_NAMED_ENTRY_LIST |
| 2279 | int alias = -1; |
| 2280 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 2281 | |
| 2282 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_ALL) { |
| 2283 | /* |
| 2284 | * Unknown flag: reject for forward compatibility. |
| 2285 | */ |
| 2286 | return KERN_INVALID_VALUE; |
| 2287 | } |
| 2288 | |
| 2289 | if (IP_VALID(parent_handle) && |
| 2290 | ip_kotype(parent_handle) == IKOT_NAMED_ENTRY) { |
| 2291 | parent_entry = (vm_named_entry_t) parent_handle->ip_kobject; |
| 2292 | } else { |
| 2293 | parent_entry = NULL; |
| 2294 | } |
| 2295 | |
| 2296 | if (parent_entry && parent_entry->is_copy) { |
| 2297 | return KERN_INVALID_ARGUMENT; |
| 2298 | } |
| 2299 | |
| 2300 | original_protections = permission & VM_PROT_ALL; |
| 2301 | protections = original_protections; |
| 2302 | mask_protections = permission & VM_PROT_IS_MASK; |
| 2303 | access = GET_MAP_MEM(permission); |
| 2304 | use_data_addr = ((permission & MAP_MEM_USE_DATA_ADDR) != 0); |
| 2305 | use_4K_compat = ((permission & MAP_MEM_4K_DATA_ADDR) != 0); |
| 2306 | |
| 2307 | user_handle = IP_NULL; |
| 2308 | user_entry = NULL; |
| 2309 | |
| 2310 | map_start = vm_map_trunc_page(offset, PAGE_MASK); |
| 2311 | |
| 2312 | if (permission & MAP_MEM_ONLY) { |
| 2313 | boolean_t parent_is_object; |
| 2314 | |
| 2315 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 2316 | map_size = map_end - map_start; |
| 2317 | |
| 2318 | if (use_data_addr || use_4K_compat || parent_entry == NULL) { |
| 2319 | return KERN_INVALID_ARGUMENT; |
| 2320 | } |
| 2321 | |
| 2322 | parent_is_object = !parent_entry->is_sub_map; |
| 2323 | object = parent_entry->backing.object; |
| 2324 | if(parent_is_object && object != VM_OBJECT_NULL) |
| 2325 | wimg_mode = object->wimg_bits; |
| 2326 | else |
| 2327 | wimg_mode = VM_WIMG_USE_DEFAULT; |
| 2328 | if((access != GET_MAP_MEM(parent_entry->protection)) && |
| 2329 | !(parent_entry->protection & VM_PROT_WRITE)) { |
| 2330 | return KERN_INVALID_RIGHT; |
| 2331 | } |
| 2332 | vm_prot_to_wimg(access, &wimg_mode); |
| 2333 | if (access != MAP_MEM_NOOP) |
| 2334 | SET_MAP_MEM(access, parent_entry->protection); |
| 2335 | if (parent_is_object && object && |
| 2336 | (access != MAP_MEM_NOOP) && |
| 2337 | (!(object->nophyscache))) { |
| 2338 | |
| 2339 | if (object->wimg_bits != wimg_mode) { |
| 2340 | vm_object_lock(object); |
| 2341 | vm_object_change_wimg_mode(object, wimg_mode); |
| 2342 | vm_object_unlock(object); |
| 2343 | } |
| 2344 | } |
| 2345 | if (object_handle) |
| 2346 | *object_handle = IP_NULL; |
| 2347 | return KERN_SUCCESS; |
| 2348 | } else if (permission & MAP_MEM_NAMED_CREATE) { |
| 2349 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 2350 | map_size = map_end - map_start; |
| 2351 | |
| 2352 | if (use_data_addr || use_4K_compat) { |
| 2353 | return KERN_INVALID_ARGUMENT; |
| 2354 | } |
| 2355 | |
| 2356 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); |
| 2357 | if (kr != KERN_SUCCESS) { |
| 2358 | return KERN_FAILURE; |
| 2359 | } |
| 2360 | |
| 2361 | /* |
| 2362 | * Force the creation of the VM object now. |
| 2363 | */ |
| 2364 | if (map_size > (vm_map_size_t) ANON_MAX_SIZE) { |
| 2365 | /* |
| 2366 | * LP64todo - for now, we can only allocate 4GB-4096 |
| 2367 | * internal objects because the default pager can't |
| 2368 | * page bigger ones. Remove this when it can. |
| 2369 | */ |
| 2370 | kr = KERN_FAILURE; |
| 2371 | goto make_mem_done; |
| 2372 | } |
| 2373 | |
| 2374 | object = vm_object_allocate(map_size); |
| 2375 | assert(object != VM_OBJECT_NULL); |
| 2376 | |
| 2377 | if (permission & MAP_MEM_PURGABLE) { |
| 2378 | task_t owner; |
| 2379 | |
| 2380 | if (! (permission & VM_PROT_WRITE)) { |
| 2381 | /* if we can't write, we can't purge */ |
| 2382 | vm_object_deallocate(object); |
| 2383 | kr = KERN_INVALID_ARGUMENT; |
| 2384 | goto make_mem_done; |
| 2385 | } |
| 2386 | object->purgable = VM_PURGABLE_NONVOLATILE; |
| 2387 | if (permission & MAP_MEM_PURGABLE_KERNEL_ONLY) { |
| 2388 | object->purgeable_only_by_kernel = TRUE; |
| 2389 | } |
| 2390 | assert(object->vo_owner == NULL); |
| 2391 | assert(object->resident_page_count == 0); |
| 2392 | assert(object->wired_page_count == 0); |
| 2393 | vm_object_lock(object); |
| 2394 | owner = current_task(); |
| 2395 | #if __arm64__ |
| 2396 | if (owner->task_legacy_footprint) { |
| 2397 | /* |
| 2398 | * For ios11, we failed to account for |
| 2399 | * this memory. Keep doing that for |
| 2400 | * legacy apps (built before ios12), |
| 2401 | * for backwards compatibility's sake... |
| 2402 | */ |
| 2403 | owner = kernel_task; |
| 2404 | } |
| 2405 | #endif /* __arm64__ */ |
| 2406 | vm_purgeable_nonvolatile_enqueue(object, owner); |
| 2407 | vm_object_unlock(object); |
| 2408 | } |
| 2409 | |
| 2410 | if (permission & MAP_MEM_LEDGER_TAG_NETWORK) { |
| 2411 | /* make this object owned by the calling task */ |
| 2412 | vm_object_lock(object); |
| 2413 | vm_object_ownership_change( |
| 2414 | object, |
| 2415 | VM_OBJECT_LEDGER_TAG_NETWORK, |
| 2416 | current_task(), /* new owner */ |
| 2417 | FALSE); /* task_objq locked? */ |
| 2418 | vm_object_unlock(object); |
| 2419 | } |
| 2420 | |
| 2421 | #if CONFIG_SECLUDED_MEMORY |
| 2422 | if (secluded_for_iokit && /* global boot-arg */ |
| 2423 | ((permission & MAP_MEM_GRAB_SECLUDED) |
| 2424 | #if 11 |
| 2425 | /* XXX FBDP for my testing only */ |
| 2426 | || (secluded_for_fbdp && map_size == 97550336) |
| 2427 | #endif |
| 2428 | )) { |
| 2429 | #if 11 |
| 2430 | if (!(permission & MAP_MEM_GRAB_SECLUDED) && |
| 2431 | secluded_for_fbdp) { |
| 2432 | printf("FBDP: object %p size %lld can grab secluded\n" , object, (uint64_t) map_size); |
| 2433 | } |
| 2434 | #endif |
| 2435 | object->can_grab_secluded = TRUE; |
| 2436 | assert(!object->eligible_for_secluded); |
| 2437 | } |
| 2438 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2439 | |
| 2440 | /* |
| 2441 | * The VM object is brand new and nobody else knows about it, |
| 2442 | * so we don't need to lock it. |
| 2443 | */ |
| 2444 | |
| 2445 | wimg_mode = object->wimg_bits; |
| 2446 | vm_prot_to_wimg(access, &wimg_mode); |
| 2447 | if (access != MAP_MEM_NOOP) { |
| 2448 | object->wimg_bits = wimg_mode; |
| 2449 | } |
| 2450 | |
| 2451 | /* the object has no pages, so no WIMG bits to update here */ |
| 2452 | |
| 2453 | /* |
| 2454 | * XXX |
| 2455 | * We use this path when we want to make sure that |
| 2456 | * nobody messes with the object (coalesce, for |
| 2457 | * example) before we map it. |
| 2458 | * We might want to use these objects for transposition via |
| 2459 | * vm_object_transpose() too, so we don't want any copy or |
| 2460 | * shadow objects either... |
| 2461 | */ |
| 2462 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 2463 | object->true_share = TRUE; |
| 2464 | |
| 2465 | user_entry->backing.object = object; |
| 2466 | user_entry->internal = TRUE; |
| 2467 | user_entry->is_sub_map = FALSE; |
| 2468 | user_entry->offset = 0; |
| 2469 | user_entry->data_offset = 0; |
| 2470 | user_entry->protection = protections; |
| 2471 | SET_MAP_MEM(access, user_entry->protection); |
| 2472 | user_entry->size = map_size; |
| 2473 | |
| 2474 | /* user_object pager and internal fields are not used */ |
| 2475 | /* when the object field is filled in. */ |
| 2476 | |
| 2477 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 2478 | user_entry->data_offset)); |
| 2479 | *object_handle = user_handle; |
| 2480 | return KERN_SUCCESS; |
| 2481 | } |
| 2482 | |
| 2483 | if (permission & MAP_MEM_VM_COPY) { |
| 2484 | vm_map_copy_t copy; |
| 2485 | |
| 2486 | if (target_map == VM_MAP_NULL) { |
| 2487 | return KERN_INVALID_TASK; |
| 2488 | } |
| 2489 | |
| 2490 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 2491 | map_size = map_end - map_start; |
| 2492 | if (use_data_addr || use_4K_compat) { |
| 2493 | offset_in_page = offset - map_start; |
| 2494 | if (use_4K_compat) |
| 2495 | offset_in_page &= ~((signed)(0xFFF)); |
| 2496 | } else { |
| 2497 | offset_in_page = 0; |
| 2498 | } |
| 2499 | |
| 2500 | kr = vm_map_copyin_internal(target_map, |
| 2501 | map_start, |
| 2502 | map_size, |
| 2503 | VM_MAP_COPYIN_ENTRY_LIST, |
| 2504 | ©); |
| 2505 | if (kr != KERN_SUCCESS) { |
| 2506 | return kr; |
| 2507 | } |
| 2508 | |
| 2509 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); |
| 2510 | if (kr != KERN_SUCCESS) { |
| 2511 | vm_map_copy_discard(copy); |
| 2512 | return KERN_FAILURE; |
| 2513 | } |
| 2514 | |
| 2515 | user_entry->backing.copy = copy; |
| 2516 | user_entry->internal = FALSE; |
| 2517 | user_entry->is_sub_map = FALSE; |
| 2518 | user_entry->is_copy = TRUE; |
| 2519 | user_entry->offset = 0; |
| 2520 | user_entry->protection = protections; |
| 2521 | user_entry->size = map_size; |
| 2522 | user_entry->data_offset = offset_in_page; |
| 2523 | |
| 2524 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 2525 | user_entry->data_offset)); |
| 2526 | *object_handle = user_handle; |
| 2527 | return KERN_SUCCESS; |
| 2528 | } |
| 2529 | |
| 2530 | if (permission & MAP_MEM_VM_SHARE) { |
| 2531 | vm_map_copy_t copy; |
| 2532 | vm_prot_t cur_prot, max_prot; |
| 2533 | |
| 2534 | if (target_map == VM_MAP_NULL) { |
| 2535 | return KERN_INVALID_TASK; |
| 2536 | } |
| 2537 | |
| 2538 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 2539 | map_size = map_end - map_start; |
| 2540 | if (use_data_addr || use_4K_compat) { |
| 2541 | offset_in_page = offset - map_start; |
| 2542 | if (use_4K_compat) |
| 2543 | offset_in_page &= ~((signed)(0xFFF)); |
| 2544 | } else { |
| 2545 | offset_in_page = 0; |
| 2546 | } |
| 2547 | |
| 2548 | cur_prot = VM_PROT_ALL; |
| 2549 | kr = vm_map_copy_extract(target_map, |
| 2550 | map_start, |
| 2551 | map_size, |
| 2552 | ©, |
| 2553 | &cur_prot, |
| 2554 | &max_prot); |
| 2555 | if (kr != KERN_SUCCESS) { |
| 2556 | return kr; |
| 2557 | } |
| 2558 | |
| 2559 | if (mask_protections) { |
| 2560 | /* |
| 2561 | * We just want as much of "original_protections" |
| 2562 | * as we can get out of the actual "cur_prot". |
| 2563 | */ |
| 2564 | protections &= cur_prot; |
| 2565 | if (protections == VM_PROT_NONE) { |
| 2566 | /* no access at all: fail */ |
| 2567 | vm_map_copy_discard(copy); |
| 2568 | return KERN_PROTECTION_FAILURE; |
| 2569 | } |
| 2570 | } else { |
| 2571 | /* |
| 2572 | * We want exactly "original_protections" |
| 2573 | * out of "cur_prot". |
| 2574 | */ |
| 2575 | if ((cur_prot & protections) != protections) { |
| 2576 | vm_map_copy_discard(copy); |
| 2577 | return KERN_PROTECTION_FAILURE; |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); |
| 2582 | if (kr != KERN_SUCCESS) { |
| 2583 | vm_map_copy_discard(copy); |
| 2584 | return KERN_FAILURE; |
| 2585 | } |
| 2586 | |
| 2587 | user_entry->backing.copy = copy; |
| 2588 | user_entry->internal = FALSE; |
| 2589 | user_entry->is_sub_map = FALSE; |
| 2590 | user_entry->is_copy = TRUE; |
| 2591 | user_entry->offset = 0; |
| 2592 | user_entry->protection = protections; |
| 2593 | user_entry->size = map_size; |
| 2594 | user_entry->data_offset = offset_in_page; |
| 2595 | |
| 2596 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 2597 | user_entry->data_offset)); |
| 2598 | *object_handle = user_handle; |
| 2599 | return KERN_SUCCESS; |
| 2600 | } |
| 2601 | |
| 2602 | if (parent_entry == NULL || |
| 2603 | (permission & MAP_MEM_NAMED_REUSE)) { |
| 2604 | |
| 2605 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 2606 | map_size = map_end - map_start; |
| 2607 | if (use_data_addr || use_4K_compat) { |
| 2608 | offset_in_page = offset - map_start; |
| 2609 | if (use_4K_compat) |
| 2610 | offset_in_page &= ~((signed)(0xFFF)); |
| 2611 | } else { |
| 2612 | offset_in_page = 0; |
| 2613 | } |
| 2614 | |
| 2615 | /* Create a named object based on address range within the task map */ |
| 2616 | /* Go find the object at given address */ |
| 2617 | |
| 2618 | if (target_map == VM_MAP_NULL) { |
| 2619 | return KERN_INVALID_TASK; |
| 2620 | } |
| 2621 | |
| 2622 | redo_lookup: |
| 2623 | protections = original_protections; |
| 2624 | vm_map_lock_read(target_map); |
| 2625 | |
| 2626 | /* get the object associated with the target address */ |
| 2627 | /* note we check the permission of the range against */ |
| 2628 | /* that requested by the caller */ |
| 2629 | |
| 2630 | kr = vm_map_lookup_locked(&target_map, map_start, |
| 2631 | protections | mask_protections, |
| 2632 | OBJECT_LOCK_EXCLUSIVE, &version, |
| 2633 | &object, &obj_off, &prot, &wired, |
| 2634 | &fault_info, |
| 2635 | &real_map); |
| 2636 | if (kr != KERN_SUCCESS) { |
| 2637 | vm_map_unlock_read(target_map); |
| 2638 | goto make_mem_done; |
| 2639 | } |
| 2640 | if (mask_protections) { |
| 2641 | /* |
| 2642 | * The caller asked us to use the "protections" as |
| 2643 | * a mask, so restrict "protections" to what this |
| 2644 | * mapping actually allows. |
| 2645 | */ |
| 2646 | protections &= prot; |
| 2647 | } |
| 2648 | #if CONFIG_EMBEDDED |
| 2649 | /* |
| 2650 | * Wiring would copy the pages to a shadow object. |
| 2651 | * The shadow object would not be code-signed so |
| 2652 | * attempting to execute code from these copied pages |
| 2653 | * would trigger a code-signing violation. |
| 2654 | */ |
| 2655 | if (prot & VM_PROT_EXECUTE) { |
| 2656 | if (log_executable_mem_entry) { |
| 2657 | void *bsd_info; |
| 2658 | bsd_info = current_task()->bsd_info; |
| 2659 | printf("pid %d[%s] making memory entry out of " |
| 2660 | "executable range from 0x%llx to 0x%llx:" |
| 2661 | "might cause code-signing issues " |
| 2662 | "later\n" , |
| 2663 | proc_selfpid(), |
| 2664 | (bsd_info != NULL |
| 2665 | ? proc_name_address(bsd_info) |
| 2666 | : "?" ), |
| 2667 | (uint64_t) map_start, |
| 2668 | (uint64_t) map_end); |
| 2669 | } |
| 2670 | DTRACE_VM2(cs_executable_mem_entry, |
| 2671 | uint64_t, (uint64_t)map_start, |
| 2672 | uint64_t, (uint64_t)map_end); |
| 2673 | cs_executable_mem_entry++; |
| 2674 | |
| 2675 | #if 11 |
| 2676 | /* |
| 2677 | * We don't know how the memory entry will be used. |
| 2678 | * It might never get wired and might not cause any |
| 2679 | * trouble, so let's not reject this request... |
| 2680 | */ |
| 2681 | #else /* 11 */ |
| 2682 | kr = KERN_PROTECTION_FAILURE; |
| 2683 | vm_object_unlock(object); |
| 2684 | vm_map_unlock_read(target_map); |
| 2685 | if(real_map != target_map) |
| 2686 | vm_map_unlock_read(real_map); |
| 2687 | goto make_mem_done; |
| 2688 | #endif /* 11 */ |
| 2689 | |
| 2690 | } |
| 2691 | #endif /* CONFIG_EMBEDDED */ |
| 2692 | |
| 2693 | if (((prot & protections) != protections) |
| 2694 | || (object == kernel_object)) { |
| 2695 | kr = KERN_INVALID_RIGHT; |
| 2696 | vm_object_unlock(object); |
| 2697 | vm_map_unlock_read(target_map); |
| 2698 | if(real_map != target_map) |
| 2699 | vm_map_unlock_read(real_map); |
| 2700 | if(object == kernel_object) { |
| 2701 | printf("Warning: Attempt to create a named" |
| 2702 | " entry from the kernel_object\n" ); |
| 2703 | } |
| 2704 | goto make_mem_done; |
| 2705 | } |
| 2706 | |
| 2707 | /* We have an object, now check to see if this object */ |
| 2708 | /* is suitable. If not, create a shadow and share that */ |
| 2709 | |
| 2710 | /* |
| 2711 | * We have to unlock the VM object to avoid deadlocking with |
| 2712 | * a VM map lock (the lock ordering is map, the object), if we |
| 2713 | * need to modify the VM map to create a shadow object. Since |
| 2714 | * we might release the VM map lock below anyway, we have |
| 2715 | * to release the VM map lock now. |
| 2716 | * XXX FBDP There must be a way to avoid this double lookup... |
| 2717 | * |
| 2718 | * Take an extra reference on the VM object to make sure it's |
| 2719 | * not going to disappear. |
| 2720 | */ |
| 2721 | vm_object_reference_locked(object); /* extra ref to hold obj */ |
| 2722 | vm_object_unlock(object); |
| 2723 | |
| 2724 | local_map = original_map; |
| 2725 | local_offset = map_start; |
| 2726 | if(target_map != local_map) { |
| 2727 | vm_map_unlock_read(target_map); |
| 2728 | if(real_map != target_map) |
| 2729 | vm_map_unlock_read(real_map); |
| 2730 | vm_map_lock_read(local_map); |
| 2731 | target_map = local_map; |
| 2732 | real_map = local_map; |
| 2733 | } |
| 2734 | while(TRUE) { |
| 2735 | if(!vm_map_lookup_entry(local_map, |
| 2736 | local_offset, &map_entry)) { |
| 2737 | kr = KERN_INVALID_ARGUMENT; |
| 2738 | vm_map_unlock_read(target_map); |
| 2739 | if(real_map != target_map) |
| 2740 | vm_map_unlock_read(real_map); |
| 2741 | vm_object_deallocate(object); /* release extra ref */ |
| 2742 | object = VM_OBJECT_NULL; |
| 2743 | goto make_mem_done; |
| 2744 | } |
| 2745 | iskernel = (local_map->pmap == kernel_pmap); |
| 2746 | if(!(map_entry->is_sub_map)) { |
| 2747 | if (VME_OBJECT(map_entry) != object) { |
| 2748 | kr = KERN_INVALID_ARGUMENT; |
| 2749 | vm_map_unlock_read(target_map); |
| 2750 | if(real_map != target_map) |
| 2751 | vm_map_unlock_read(real_map); |
| 2752 | vm_object_deallocate(object); /* release extra ref */ |
| 2753 | object = VM_OBJECT_NULL; |
| 2754 | goto make_mem_done; |
| 2755 | } |
| 2756 | break; |
| 2757 | } else { |
| 2758 | vm_map_t tmap; |
| 2759 | tmap = local_map; |
| 2760 | local_map = VME_SUBMAP(map_entry); |
| 2761 | |
| 2762 | vm_map_lock_read(local_map); |
| 2763 | vm_map_unlock_read(tmap); |
| 2764 | target_map = local_map; |
| 2765 | real_map = local_map; |
| 2766 | local_offset = local_offset - map_entry->vme_start; |
| 2767 | local_offset += VME_OFFSET(map_entry); |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | #if VM_NAMED_ENTRY_LIST |
| 2772 | alias = VME_ALIAS(map_entry); |
| 2773 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 2774 | |
| 2775 | /* |
| 2776 | * We found the VM map entry, lock the VM object again. |
| 2777 | */ |
| 2778 | vm_object_lock(object); |
| 2779 | if(map_entry->wired_count) { |
| 2780 | /* JMM - The check below should be reworked instead. */ |
| 2781 | object->true_share = TRUE; |
| 2782 | } |
| 2783 | if (mask_protections) { |
| 2784 | /* |
| 2785 | * The caller asked us to use the "protections" as |
| 2786 | * a mask, so restrict "protections" to what this |
| 2787 | * mapping actually allows. |
| 2788 | */ |
| 2789 | protections &= map_entry->max_protection; |
| 2790 | } |
| 2791 | if(((map_entry->max_protection) & protections) != protections) { |
| 2792 | kr = KERN_INVALID_RIGHT; |
| 2793 | vm_object_unlock(object); |
| 2794 | vm_map_unlock_read(target_map); |
| 2795 | if(real_map != target_map) |
| 2796 | vm_map_unlock_read(real_map); |
| 2797 | vm_object_deallocate(object); |
| 2798 | object = VM_OBJECT_NULL; |
| 2799 | goto make_mem_done; |
| 2800 | } |
| 2801 | |
| 2802 | mappable_size = fault_info.hi_offset - obj_off; |
| 2803 | total_size = map_entry->vme_end - map_entry->vme_start; |
| 2804 | if(map_size > mappable_size) { |
| 2805 | /* try to extend mappable size if the entries */ |
| 2806 | /* following are from the same object and are */ |
| 2807 | /* compatible */ |
| 2808 | next_entry = map_entry->vme_next; |
| 2809 | /* lets see if the next map entry is still */ |
| 2810 | /* pointing at this object and is contiguous */ |
| 2811 | while(map_size > mappable_size) { |
| 2812 | if ((VME_OBJECT(next_entry) == object) && |
| 2813 | (next_entry->vme_start == |
| 2814 | next_entry->vme_prev->vme_end) && |
| 2815 | (VME_OFFSET(next_entry) == |
| 2816 | (VME_OFFSET(next_entry->vme_prev) + |
| 2817 | (next_entry->vme_prev->vme_end - |
| 2818 | next_entry->vme_prev->vme_start)))) { |
| 2819 | if (mask_protections) { |
| 2820 | /* |
| 2821 | * The caller asked us to use |
| 2822 | * the "protections" as a mask, |
| 2823 | * so restrict "protections" to |
| 2824 | * what this mapping actually |
| 2825 | * allows. |
| 2826 | */ |
| 2827 | protections &= next_entry->max_protection; |
| 2828 | } |
| 2829 | if ((next_entry->wired_count) && |
| 2830 | (map_entry->wired_count == 0)) { |
| 2831 | break; |
| 2832 | } |
| 2833 | if(((next_entry->max_protection) |
| 2834 | & protections) != protections) { |
| 2835 | break; |
| 2836 | } |
| 2837 | if (next_entry->needs_copy != |
| 2838 | map_entry->needs_copy) |
| 2839 | break; |
| 2840 | mappable_size += next_entry->vme_end |
| 2841 | - next_entry->vme_start; |
| 2842 | total_size += next_entry->vme_end |
| 2843 | - next_entry->vme_start; |
| 2844 | next_entry = next_entry->vme_next; |
| 2845 | } else { |
| 2846 | break; |
| 2847 | } |
| 2848 | |
| 2849 | } |
| 2850 | } |
| 2851 | |
| 2852 | /* vm_map_entry_should_cow_for_true_share() checks for malloc tags, |
| 2853 | * never true in kernel */ |
| 2854 | if (!iskernel && vm_map_entry_should_cow_for_true_share(map_entry) && |
| 2855 | object->vo_size > map_size && |
| 2856 | map_size != 0) { |
| 2857 | /* |
| 2858 | * Set up the targeted range for copy-on-write to |
| 2859 | * limit the impact of "true_share"/"copy_delay" to |
| 2860 | * that range instead of the entire VM object... |
| 2861 | */ |
| 2862 | |
| 2863 | vm_object_unlock(object); |
| 2864 | if (vm_map_lock_read_to_write(target_map)) { |
| 2865 | vm_object_deallocate(object); |
| 2866 | target_map = original_map; |
| 2867 | goto redo_lookup; |
| 2868 | } |
| 2869 | |
| 2870 | vm_map_clip_start(target_map, |
| 2871 | map_entry, |
| 2872 | vm_map_trunc_page(map_start, |
| 2873 | VM_MAP_PAGE_MASK(target_map))); |
| 2874 | vm_map_clip_end(target_map, |
| 2875 | map_entry, |
| 2876 | (vm_map_round_page(map_end, |
| 2877 | VM_MAP_PAGE_MASK(target_map)))); |
| 2878 | force_shadow = TRUE; |
| 2879 | |
| 2880 | if ((map_entry->vme_end - offset) < map_size) { |
| 2881 | map_size = map_entry->vme_end - map_start; |
| 2882 | } |
| 2883 | total_size = map_entry->vme_end - map_entry->vme_start; |
| 2884 | |
| 2885 | vm_map_lock_write_to_read(target_map); |
| 2886 | vm_object_lock(object); |
| 2887 | } |
| 2888 | |
| 2889 | if (object->internal) { |
| 2890 | /* vm_map_lookup_locked will create a shadow if */ |
| 2891 | /* needs_copy is set but does not check for the */ |
| 2892 | /* other two conditions shown. It is important to */ |
| 2893 | /* set up an object which will not be pulled from */ |
| 2894 | /* under us. */ |
| 2895 | |
| 2896 | if (force_shadow || |
| 2897 | ((map_entry->needs_copy || |
| 2898 | object->shadowed || |
| 2899 | (object->vo_size > total_size && |
| 2900 | (VME_OFFSET(map_entry) != 0 || |
| 2901 | object->vo_size > |
| 2902 | vm_map_round_page(total_size, |
| 2903 | VM_MAP_PAGE_MASK(target_map))))) |
| 2904 | && !object->true_share |
| 2905 | && object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)) { |
| 2906 | /* |
| 2907 | * We have to unlock the VM object before |
| 2908 | * trying to upgrade the VM map lock, to |
| 2909 | * honor lock ordering (map then object). |
| 2910 | * Otherwise, we would deadlock if another |
| 2911 | * thread holds a read lock on the VM map and |
| 2912 | * is trying to acquire the VM object's lock. |
| 2913 | * We still hold an extra reference on the |
| 2914 | * VM object, guaranteeing that it won't |
| 2915 | * disappear. |
| 2916 | */ |
| 2917 | vm_object_unlock(object); |
| 2918 | |
| 2919 | if (vm_map_lock_read_to_write(target_map)) { |
| 2920 | /* |
| 2921 | * We couldn't upgrade our VM map lock |
| 2922 | * from "read" to "write" and we lost |
| 2923 | * our "read" lock. |
| 2924 | * Start all over again... |
| 2925 | */ |
| 2926 | vm_object_deallocate(object); /* extra ref */ |
| 2927 | target_map = original_map; |
| 2928 | goto redo_lookup; |
| 2929 | } |
| 2930 | #if 00 |
| 2931 | vm_object_lock(object); |
| 2932 | #endif |
| 2933 | |
| 2934 | /* |
| 2935 | * JMM - We need to avoid coming here when the object |
| 2936 | * is wired by anybody, not just the current map. Why |
| 2937 | * couldn't we use the standard vm_object_copy_quickly() |
| 2938 | * approach here? |
| 2939 | */ |
| 2940 | |
| 2941 | /* create a shadow object */ |
| 2942 | VME_OBJECT_SHADOW(map_entry, total_size); |
| 2943 | shadow_object = VME_OBJECT(map_entry); |
| 2944 | #if 00 |
| 2945 | vm_object_unlock(object); |
| 2946 | #endif |
| 2947 | |
| 2948 | prot = map_entry->protection & ~VM_PROT_WRITE; |
| 2949 | |
| 2950 | if (override_nx(target_map, |
| 2951 | VME_ALIAS(map_entry)) |
| 2952 | && prot) |
| 2953 | prot |= VM_PROT_EXECUTE; |
| 2954 | |
| 2955 | vm_object_pmap_protect( |
| 2956 | object, VME_OFFSET(map_entry), |
| 2957 | total_size, |
| 2958 | ((map_entry->is_shared |
| 2959 | || target_map->mapped_in_other_pmaps) |
| 2960 | ? PMAP_NULL : |
| 2961 | target_map->pmap), |
| 2962 | map_entry->vme_start, |
| 2963 | prot); |
| 2964 | total_size -= (map_entry->vme_end |
| 2965 | - map_entry->vme_start); |
| 2966 | next_entry = map_entry->vme_next; |
| 2967 | map_entry->needs_copy = FALSE; |
| 2968 | |
| 2969 | vm_object_lock(shadow_object); |
| 2970 | while (total_size) { |
| 2971 | assert((next_entry->wired_count == 0) || |
| 2972 | (map_entry->wired_count)); |
| 2973 | |
| 2974 | if (VME_OBJECT(next_entry) == object) { |
| 2975 | vm_object_reference_locked(shadow_object); |
| 2976 | VME_OBJECT_SET(next_entry, |
| 2977 | shadow_object); |
| 2978 | vm_object_deallocate(object); |
| 2979 | VME_OFFSET_SET( |
| 2980 | next_entry, |
| 2981 | (VME_OFFSET(next_entry->vme_prev) + |
| 2982 | (next_entry->vme_prev->vme_end |
| 2983 | - next_entry->vme_prev->vme_start))); |
| 2984 | next_entry->use_pmap = TRUE; |
| 2985 | next_entry->needs_copy = FALSE; |
| 2986 | } else { |
| 2987 | panic("mach_make_memory_entry_64:" |
| 2988 | " map entries out of sync\n" ); |
| 2989 | } |
| 2990 | total_size -= |
| 2991 | next_entry->vme_end |
| 2992 | - next_entry->vme_start; |
| 2993 | next_entry = next_entry->vme_next; |
| 2994 | } |
| 2995 | |
| 2996 | /* |
| 2997 | * Transfer our extra reference to the |
| 2998 | * shadow object. |
| 2999 | */ |
| 3000 | vm_object_reference_locked(shadow_object); |
| 3001 | vm_object_deallocate(object); /* extra ref */ |
| 3002 | object = shadow_object; |
| 3003 | |
| 3004 | obj_off = ((local_offset - map_entry->vme_start) |
| 3005 | + VME_OFFSET(map_entry)); |
| 3006 | |
| 3007 | vm_map_lock_write_to_read(target_map); |
| 3008 | } |
| 3009 | } |
| 3010 | |
| 3011 | /* note: in the future we can (if necessary) allow for */ |
| 3012 | /* memory object lists, this will better support */ |
| 3013 | /* fragmentation, but is it necessary? The user should */ |
| 3014 | /* be encouraged to create address space oriented */ |
| 3015 | /* shared objects from CLEAN memory regions which have */ |
| 3016 | /* a known and defined history. i.e. no inheritence */ |
| 3017 | /* share, make this call before making the region the */ |
| 3018 | /* target of ipc's, etc. The code above, protecting */ |
| 3019 | /* against delayed copy, etc. is mostly defensive. */ |
| 3020 | |
| 3021 | wimg_mode = object->wimg_bits; |
| 3022 | if(!(object->nophyscache)) |
| 3023 | vm_prot_to_wimg(access, &wimg_mode); |
| 3024 | |
| 3025 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
| 3026 | if (!object->true_share && |
| 3027 | vm_object_tracking_inited) { |
| 3028 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; |
| 3029 | int num = 0; |
| 3030 | |
| 3031 | num = OSBacktrace(bt, |
| 3032 | VM_OBJECT_TRACKING_BTDEPTH); |
| 3033 | btlog_add_entry(vm_object_tracking_btlog, |
| 3034 | object, |
| 3035 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
| 3036 | bt, |
| 3037 | num); |
| 3038 | } |
| 3039 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
| 3040 | |
| 3041 | vm_object_lock_assert_exclusive(object); |
| 3042 | object->true_share = TRUE; |
| 3043 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) |
| 3044 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3045 | |
| 3046 | /* |
| 3047 | * The memory entry now points to this VM object and we |
| 3048 | * need to hold a reference on the VM object. Use the extra |
| 3049 | * reference we took earlier to keep the object alive when we |
| 3050 | * had to unlock it. |
| 3051 | */ |
| 3052 | |
| 3053 | vm_map_unlock_read(target_map); |
| 3054 | if(real_map != target_map) |
| 3055 | vm_map_unlock_read(real_map); |
| 3056 | |
| 3057 | if (object->wimg_bits != wimg_mode) |
| 3058 | vm_object_change_wimg_mode(object, wimg_mode); |
| 3059 | |
| 3060 | /* the size of mapped entry that overlaps with our region */ |
| 3061 | /* which is targeted for share. */ |
| 3062 | /* (entry_end - entry_start) - */ |
| 3063 | /* offset of our beg addr within entry */ |
| 3064 | /* it corresponds to this: */ |
| 3065 | |
| 3066 | if(map_size > mappable_size) |
| 3067 | map_size = mappable_size; |
| 3068 | |
| 3069 | if (permission & MAP_MEM_NAMED_REUSE) { |
| 3070 | /* |
| 3071 | * Compare what we got with the "parent_entry". |
| 3072 | * If they match, re-use the "parent_entry" instead |
| 3073 | * of creating a new one. |
| 3074 | */ |
| 3075 | if (parent_entry != NULL && |
| 3076 | parent_entry->backing.object == object && |
| 3077 | parent_entry->internal == object->internal && |
| 3078 | parent_entry->is_sub_map == FALSE && |
| 3079 | parent_entry->offset == obj_off && |
| 3080 | parent_entry->protection == protections && |
| 3081 | parent_entry->size == map_size && |
| 3082 | ((!(use_data_addr || use_4K_compat) && |
| 3083 | (parent_entry->data_offset == 0)) || |
| 3084 | ((use_data_addr || use_4K_compat) && |
| 3085 | (parent_entry->data_offset == offset_in_page)))) { |
| 3086 | /* |
| 3087 | * We have a match: re-use "parent_entry". |
| 3088 | */ |
| 3089 | /* release our extra reference on object */ |
| 3090 | vm_object_unlock(object); |
| 3091 | vm_object_deallocate(object); |
| 3092 | /* parent_entry->ref_count++; XXX ? */ |
| 3093 | /* Get an extra send-right on handle */ |
| 3094 | ipc_port_copy_send(parent_handle); |
| 3095 | |
| 3096 | *size = CAST_DOWN(vm_size_t, |
| 3097 | (parent_entry->size - |
| 3098 | parent_entry->data_offset)); |
| 3099 | *object_handle = parent_handle; |
| 3100 | return KERN_SUCCESS; |
| 3101 | } else { |
| 3102 | /* |
| 3103 | * No match: we need to create a new entry. |
| 3104 | * fall through... |
| 3105 | */ |
| 3106 | } |
| 3107 | } |
| 3108 | |
| 3109 | vm_object_unlock(object); |
| 3110 | if (mach_memory_entry_allocate(&user_entry, &user_handle) |
| 3111 | != KERN_SUCCESS) { |
| 3112 | /* release our unused reference on the object */ |
| 3113 | vm_object_deallocate(object); |
| 3114 | return KERN_FAILURE; |
| 3115 | } |
| 3116 | |
| 3117 | user_entry->backing.object = object; |
| 3118 | user_entry->internal = object->internal; |
| 3119 | user_entry->is_sub_map = FALSE; |
| 3120 | user_entry->offset = obj_off; |
| 3121 | user_entry->data_offset = offset_in_page; |
| 3122 | user_entry->protection = protections; |
| 3123 | SET_MAP_MEM(GET_MAP_MEM(permission), user_entry->protection); |
| 3124 | user_entry->size = map_size; |
| 3125 | #if VM_NAMED_ENTRY_LIST |
| 3126 | user_entry->named_entry_alias = alias; |
| 3127 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 3128 | |
| 3129 | /* user_object pager and internal fields are not used */ |
| 3130 | /* when the object field is filled in. */ |
| 3131 | |
| 3132 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 3133 | user_entry->data_offset)); |
| 3134 | *object_handle = user_handle; |
| 3135 | return KERN_SUCCESS; |
| 3136 | |
| 3137 | } else { |
| 3138 | /* The new object will be base on an existing named object */ |
| 3139 | if (parent_entry == NULL) { |
| 3140 | kr = KERN_INVALID_ARGUMENT; |
| 3141 | goto make_mem_done; |
| 3142 | } |
| 3143 | |
| 3144 | if (use_data_addr || use_4K_compat) { |
| 3145 | /* |
| 3146 | * submaps and pagers should only be accessible from within |
| 3147 | * the kernel, which shouldn't use the data address flag, so can fail here. |
| 3148 | */ |
| 3149 | if (parent_entry->is_sub_map) { |
| 3150 | panic("Shouldn't be using data address with a parent entry that is a submap." ); |
| 3151 | } |
| 3152 | /* |
| 3153 | * Account for offset to data in parent entry and |
| 3154 | * compute our own offset to data. |
| 3155 | */ |
| 3156 | if((offset + *size + parent_entry->data_offset) > parent_entry->size) { |
| 3157 | kr = KERN_INVALID_ARGUMENT; |
| 3158 | goto make_mem_done; |
| 3159 | } |
| 3160 | |
| 3161 | map_start = vm_map_trunc_page(offset + parent_entry->data_offset, PAGE_MASK); |
| 3162 | offset_in_page = (offset + parent_entry->data_offset) - map_start; |
| 3163 | if (use_4K_compat) |
| 3164 | offset_in_page &= ~((signed)(0xFFF)); |
| 3165 | map_end = vm_map_round_page(offset + parent_entry->data_offset + *size, PAGE_MASK); |
| 3166 | map_size = map_end - map_start; |
| 3167 | } else { |
| 3168 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); |
| 3169 | map_size = map_end - map_start; |
| 3170 | offset_in_page = 0; |
| 3171 | |
| 3172 | if((offset + map_size) > parent_entry->size) { |
| 3173 | kr = KERN_INVALID_ARGUMENT; |
| 3174 | goto make_mem_done; |
| 3175 | } |
| 3176 | } |
| 3177 | |
| 3178 | if (mask_protections) { |
| 3179 | /* |
| 3180 | * The caller asked us to use the "protections" as |
| 3181 | * a mask, so restrict "protections" to what this |
| 3182 | * mapping actually allows. |
| 3183 | */ |
| 3184 | protections &= parent_entry->protection; |
| 3185 | } |
| 3186 | if((protections & parent_entry->protection) != protections) { |
| 3187 | kr = KERN_PROTECTION_FAILURE; |
| 3188 | goto make_mem_done; |
| 3189 | } |
| 3190 | |
| 3191 | if (mach_memory_entry_allocate(&user_entry, &user_handle) |
| 3192 | != KERN_SUCCESS) { |
| 3193 | kr = KERN_FAILURE; |
| 3194 | goto make_mem_done; |
| 3195 | } |
| 3196 | |
| 3197 | user_entry->size = map_size; |
| 3198 | user_entry->offset = parent_entry->offset + map_start; |
| 3199 | user_entry->data_offset = offset_in_page; |
| 3200 | user_entry->is_sub_map = parent_entry->is_sub_map; |
| 3201 | user_entry->is_copy = parent_entry->is_copy; |
| 3202 | user_entry->internal = parent_entry->internal; |
| 3203 | user_entry->protection = protections; |
| 3204 | |
| 3205 | if(access != MAP_MEM_NOOP) { |
| 3206 | SET_MAP_MEM(access, user_entry->protection); |
| 3207 | } |
| 3208 | |
| 3209 | if(parent_entry->is_sub_map) { |
| 3210 | user_entry->backing.map = parent_entry->backing.map; |
| 3211 | vm_map_lock(user_entry->backing.map); |
| 3212 | user_entry->backing.map->map_refcnt++; |
| 3213 | vm_map_unlock(user_entry->backing.map); |
| 3214 | } else { |
| 3215 | object = parent_entry->backing.object; |
| 3216 | assert(object != VM_OBJECT_NULL); |
| 3217 | user_entry->backing.object = object; |
| 3218 | /* we now point to this object, hold on */ |
| 3219 | vm_object_lock(object); |
| 3220 | vm_object_reference_locked(object); |
| 3221 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
| 3222 | if (!object->true_share && |
| 3223 | vm_object_tracking_inited) { |
| 3224 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; |
| 3225 | int num = 0; |
| 3226 | |
| 3227 | num = OSBacktrace(bt, |
| 3228 | VM_OBJECT_TRACKING_BTDEPTH); |
| 3229 | btlog_add_entry(vm_object_tracking_btlog, |
| 3230 | object, |
| 3231 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
| 3232 | bt, |
| 3233 | num); |
| 3234 | } |
| 3235 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
| 3236 | |
| 3237 | object->true_share = TRUE; |
| 3238 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) |
| 3239 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3240 | vm_object_unlock(object); |
| 3241 | } |
| 3242 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 3243 | user_entry->data_offset)); |
| 3244 | *object_handle = user_handle; |
| 3245 | return KERN_SUCCESS; |
| 3246 | } |
| 3247 | |
| 3248 | make_mem_done: |
| 3249 | if (user_handle != IP_NULL) { |
| 3250 | /* |
| 3251 | * Releasing "user_handle" causes the kernel object |
| 3252 | * associated with it ("user_entry" here) to also be |
| 3253 | * released and freed. |
| 3254 | */ |
| 3255 | mach_memory_entry_port_release(user_handle); |
| 3256 | } |
| 3257 | return kr; |
| 3258 | } |
| 3259 | |
| 3260 | kern_return_t |
| 3261 | _mach_make_memory_entry( |
| 3262 | vm_map_t target_map, |
| 3263 | memory_object_size_t *size, |
| 3264 | memory_object_offset_t offset, |
| 3265 | vm_prot_t permission, |
| 3266 | ipc_port_t *object_handle, |
| 3267 | ipc_port_t parent_entry) |
| 3268 | { |
| 3269 | memory_object_size_t mo_size; |
| 3270 | kern_return_t kr; |
| 3271 | |
| 3272 | mo_size = (memory_object_size_t)*size; |
| 3273 | kr = mach_make_memory_entry_64(target_map, &mo_size, |
| 3274 | (memory_object_offset_t)offset, permission, object_handle, |
| 3275 | parent_entry); |
| 3276 | *size = mo_size; |
| 3277 | return kr; |
| 3278 | } |
| 3279 | |
| 3280 | kern_return_t |
| 3281 | mach_make_memory_entry( |
| 3282 | vm_map_t target_map, |
| 3283 | vm_size_t *size, |
| 3284 | vm_offset_t offset, |
| 3285 | vm_prot_t permission, |
| 3286 | ipc_port_t *object_handle, |
| 3287 | ipc_port_t parent_entry) |
| 3288 | { |
| 3289 | memory_object_size_t mo_size; |
| 3290 | kern_return_t kr; |
| 3291 | |
| 3292 | mo_size = (memory_object_size_t)*size; |
| 3293 | kr = mach_make_memory_entry_64(target_map, &mo_size, |
| 3294 | (memory_object_offset_t)offset, permission, object_handle, |
| 3295 | parent_entry); |
| 3296 | *size = CAST_DOWN(vm_size_t, mo_size); |
| 3297 | return kr; |
| 3298 | } |
| 3299 | |
| 3300 | /* |
| 3301 | * task_wire |
| 3302 | * |
| 3303 | * Set or clear the map's wiring_required flag. This flag, if set, |
| 3304 | * will cause all future virtual memory allocation to allocate |
| 3305 | * user wired memory. Unwiring pages wired down as a result of |
| 3306 | * this routine is done with the vm_wire interface. |
| 3307 | */ |
| 3308 | kern_return_t |
| 3309 | task_wire( |
| 3310 | vm_map_t map, |
| 3311 | boolean_t must_wire) |
| 3312 | { |
| 3313 | if (map == VM_MAP_NULL) |
| 3314 | return(KERN_INVALID_ARGUMENT); |
| 3315 | |
| 3316 | vm_map_lock(map); |
| 3317 | map->wiring_required = (must_wire == TRUE); |
| 3318 | vm_map_unlock(map); |
| 3319 | |
| 3320 | return(KERN_SUCCESS); |
| 3321 | } |
| 3322 | |
| 3323 | kern_return_t |
| 3324 | vm_map_exec_lockdown( |
| 3325 | vm_map_t map) |
| 3326 | { |
| 3327 | if (map == VM_MAP_NULL) |
| 3328 | return(KERN_INVALID_ARGUMENT); |
| 3329 | |
| 3330 | vm_map_lock(map); |
| 3331 | map->map_disallow_new_exec = TRUE; |
| 3332 | vm_map_unlock(map); |
| 3333 | |
| 3334 | return(KERN_SUCCESS); |
| 3335 | } |
| 3336 | |
| 3337 | #if VM_NAMED_ENTRY_LIST |
| 3338 | queue_head_t vm_named_entry_list; |
| 3339 | int vm_named_entry_count = 0; |
| 3340 | lck_mtx_t vm_named_entry_list_lock_data; |
| 3341 | lck_mtx_ext_t vm_named_entry_list_lock_data_ext; |
| 3342 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 3343 | |
| 3344 | void vm_named_entry_init(void); |
| 3345 | void |
| 3346 | vm_named_entry_init(void) |
| 3347 | { |
| 3348 | #if VM_NAMED_ENTRY_LIST |
| 3349 | queue_init(&vm_named_entry_list); |
| 3350 | vm_named_entry_count = 0; |
| 3351 | lck_mtx_init_ext(&vm_named_entry_list_lock_data, |
| 3352 | &vm_named_entry_list_lock_data_ext, |
| 3353 | &vm_object_lck_grp, |
| 3354 | &vm_object_lck_attr); |
| 3355 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 3356 | } |
| 3357 | |
| 3358 | __private_extern__ kern_return_t |
| 3359 | mach_memory_entry_allocate( |
| 3360 | vm_named_entry_t *user_entry_p, |
| 3361 | ipc_port_t *user_handle_p) |
| 3362 | { |
| 3363 | vm_named_entry_t user_entry; |
| 3364 | ipc_port_t user_handle; |
| 3365 | ipc_port_t previous; |
| 3366 | |
| 3367 | user_entry = (vm_named_entry_t) kalloc(sizeof *user_entry); |
| 3368 | if (user_entry == NULL) |
| 3369 | return KERN_FAILURE; |
| 3370 | bzero(user_entry, sizeof (*user_entry)); |
| 3371 | |
| 3372 | named_entry_lock_init(user_entry); |
| 3373 | |
| 3374 | user_handle = ipc_port_alloc_kernel(); |
| 3375 | if (user_handle == IP_NULL) { |
| 3376 | kfree(user_entry, sizeof *user_entry); |
| 3377 | return KERN_FAILURE; |
| 3378 | } |
| 3379 | ip_lock(user_handle); |
| 3380 | |
| 3381 | /* make a sonce right */ |
| 3382 | user_handle->ip_sorights++; |
| 3383 | ip_reference(user_handle); |
| 3384 | |
| 3385 | /* make a send right */ |
| 3386 | user_handle->ip_mscount++; |
| 3387 | user_handle->ip_srights++; |
| 3388 | ip_reference(user_handle); |
| 3389 | |
| 3390 | ipc_port_nsrequest(user_handle, 1, user_handle, &previous); |
| 3391 | /* nsrequest unlocks user_handle */ |
| 3392 | |
| 3393 | user_entry->backing.object = NULL; |
| 3394 | user_entry->is_sub_map = FALSE; |
| 3395 | user_entry->is_copy = FALSE; |
| 3396 | user_entry->internal = FALSE; |
| 3397 | user_entry->size = 0; |
| 3398 | user_entry->offset = 0; |
| 3399 | user_entry->data_offset = 0; |
| 3400 | user_entry->protection = VM_PROT_NONE; |
| 3401 | user_entry->ref_count = 1; |
| 3402 | |
| 3403 | ipc_kobject_set(user_handle, (ipc_kobject_t) user_entry, |
| 3404 | IKOT_NAMED_ENTRY); |
| 3405 | |
| 3406 | *user_entry_p = user_entry; |
| 3407 | *user_handle_p = user_handle; |
| 3408 | |
| 3409 | #if VM_NAMED_ENTRY_LIST |
| 3410 | /* keep a loose (no reference) pointer to the Mach port, for debugging only */ |
| 3411 | user_entry->named_entry_port = user_handle; |
| 3412 | /* backtrace at allocation time, for debugging only */ |
| 3413 | OSBacktrace(&user_entry->named_entry_bt[0], |
| 3414 | NAMED_ENTRY_BT_DEPTH); |
| 3415 | |
| 3416 | /* add this new named entry to the global list */ |
| 3417 | lck_mtx_lock_spin(&vm_named_entry_list_lock_data); |
| 3418 | queue_enter(&vm_named_entry_list, user_entry, |
| 3419 | vm_named_entry_t, named_entry_list); |
| 3420 | vm_named_entry_count++; |
| 3421 | lck_mtx_unlock(&vm_named_entry_list_lock_data); |
| 3422 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 3423 | |
| 3424 | return KERN_SUCCESS; |
| 3425 | } |
| 3426 | |
| 3427 | /* |
| 3428 | * mach_memory_object_memory_entry_64 |
| 3429 | * |
| 3430 | * Create a named entry backed by the provided pager. |
| 3431 | * |
| 3432 | */ |
| 3433 | kern_return_t |
| 3434 | mach_memory_object_memory_entry_64( |
| 3435 | host_t host, |
| 3436 | boolean_t internal, |
| 3437 | vm_object_offset_t size, |
| 3438 | vm_prot_t permission, |
| 3439 | memory_object_t , |
| 3440 | ipc_port_t *entry_handle) |
| 3441 | { |
| 3442 | unsigned int access; |
| 3443 | vm_named_entry_t user_entry; |
| 3444 | ipc_port_t user_handle; |
| 3445 | vm_object_t object; |
| 3446 | |
| 3447 | if (host == HOST_NULL) |
| 3448 | return(KERN_INVALID_HOST); |
| 3449 | |
| 3450 | if (pager == MEMORY_OBJECT_NULL && internal) { |
| 3451 | object = vm_object_allocate(size); |
| 3452 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 3453 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3454 | } |
| 3455 | } else { |
| 3456 | object = memory_object_to_vm_object(pager); |
| 3457 | if (object != VM_OBJECT_NULL) { |
| 3458 | vm_object_reference(object); |
| 3459 | } |
| 3460 | } |
| 3461 | if (object == VM_OBJECT_NULL) { |
| 3462 | return KERN_INVALID_ARGUMENT; |
| 3463 | } |
| 3464 | |
| 3465 | if (mach_memory_entry_allocate(&user_entry, &user_handle) |
| 3466 | != KERN_SUCCESS) { |
| 3467 | vm_object_deallocate(object); |
| 3468 | return KERN_FAILURE; |
| 3469 | } |
| 3470 | |
| 3471 | user_entry->size = size; |
| 3472 | user_entry->offset = 0; |
| 3473 | user_entry->protection = permission & VM_PROT_ALL; |
| 3474 | access = GET_MAP_MEM(permission); |
| 3475 | SET_MAP_MEM(access, user_entry->protection); |
| 3476 | user_entry->is_sub_map = FALSE; |
| 3477 | assert(user_entry->ref_count == 1); |
| 3478 | |
| 3479 | user_entry->backing.object = object; |
| 3480 | user_entry->internal = object->internal; |
| 3481 | assert(object->internal == internal); |
| 3482 | |
| 3483 | *entry_handle = user_handle; |
| 3484 | return KERN_SUCCESS; |
| 3485 | } |
| 3486 | |
| 3487 | kern_return_t |
| 3488 | mach_memory_object_memory_entry( |
| 3489 | host_t host, |
| 3490 | boolean_t internal, |
| 3491 | vm_size_t size, |
| 3492 | vm_prot_t permission, |
| 3493 | memory_object_t , |
| 3494 | ipc_port_t *entry_handle) |
| 3495 | { |
| 3496 | return mach_memory_object_memory_entry_64( host, internal, |
| 3497 | (vm_object_offset_t)size, permission, pager, entry_handle); |
| 3498 | } |
| 3499 | |
| 3500 | |
| 3501 | kern_return_t |
| 3502 | mach_memory_entry_purgable_control( |
| 3503 | ipc_port_t entry_port, |
| 3504 | vm_purgable_t control, |
| 3505 | int *state) |
| 3506 | { |
| 3507 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 3508 | /* not allowed from user-space */ |
| 3509 | return KERN_INVALID_ARGUMENT; |
| 3510 | } |
| 3511 | |
| 3512 | return memory_entry_purgeable_control_internal(entry_port, control, state); |
| 3513 | } |
| 3514 | |
| 3515 | kern_return_t |
| 3516 | memory_entry_purgeable_control_internal( |
| 3517 | ipc_port_t entry_port, |
| 3518 | vm_purgable_t control, |
| 3519 | int *state) |
| 3520 | { |
| 3521 | kern_return_t kr; |
| 3522 | vm_named_entry_t mem_entry; |
| 3523 | vm_object_t object; |
| 3524 | |
| 3525 | if (!IP_VALID(entry_port) || |
| 3526 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { |
| 3527 | return KERN_INVALID_ARGUMENT; |
| 3528 | } |
| 3529 | if (control != VM_PURGABLE_SET_STATE && |
| 3530 | control != VM_PURGABLE_GET_STATE && |
| 3531 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) |
| 3532 | return(KERN_INVALID_ARGUMENT); |
| 3533 | |
| 3534 | if ((control == VM_PURGABLE_SET_STATE || |
| 3535 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && |
| 3536 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || |
| 3537 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) |
| 3538 | return(KERN_INVALID_ARGUMENT); |
| 3539 | |
| 3540 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; |
| 3541 | |
| 3542 | named_entry_lock(mem_entry); |
| 3543 | |
| 3544 | if (mem_entry->is_sub_map || |
| 3545 | mem_entry->is_copy) { |
| 3546 | named_entry_unlock(mem_entry); |
| 3547 | return KERN_INVALID_ARGUMENT; |
| 3548 | } |
| 3549 | |
| 3550 | object = mem_entry->backing.object; |
| 3551 | if (object == VM_OBJECT_NULL) { |
| 3552 | named_entry_unlock(mem_entry); |
| 3553 | return KERN_INVALID_ARGUMENT; |
| 3554 | } |
| 3555 | |
| 3556 | vm_object_lock(object); |
| 3557 | |
| 3558 | /* check that named entry covers entire object ? */ |
| 3559 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { |
| 3560 | vm_object_unlock(object); |
| 3561 | named_entry_unlock(mem_entry); |
| 3562 | return KERN_INVALID_ARGUMENT; |
| 3563 | } |
| 3564 | |
| 3565 | named_entry_unlock(mem_entry); |
| 3566 | |
| 3567 | kr = vm_object_purgable_control(object, control, state); |
| 3568 | |
| 3569 | vm_object_unlock(object); |
| 3570 | |
| 3571 | return kr; |
| 3572 | } |
| 3573 | |
| 3574 | kern_return_t |
| 3575 | mach_memory_entry_access_tracking( |
| 3576 | ipc_port_t entry_port, |
| 3577 | int *access_tracking, |
| 3578 | uint32_t *access_tracking_reads, |
| 3579 | uint32_t *access_tracking_writes) |
| 3580 | { |
| 3581 | return memory_entry_access_tracking_internal(entry_port, |
| 3582 | access_tracking, |
| 3583 | access_tracking_reads, |
| 3584 | access_tracking_writes); |
| 3585 | } |
| 3586 | |
| 3587 | kern_return_t |
| 3588 | memory_entry_access_tracking_internal( |
| 3589 | ipc_port_t entry_port, |
| 3590 | int *access_tracking, |
| 3591 | uint32_t *access_tracking_reads, |
| 3592 | uint32_t *access_tracking_writes) |
| 3593 | { |
| 3594 | vm_named_entry_t mem_entry; |
| 3595 | vm_object_t object; |
| 3596 | kern_return_t kr; |
| 3597 | |
| 3598 | if (!IP_VALID(entry_port) || |
| 3599 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { |
| 3600 | return KERN_INVALID_ARGUMENT; |
| 3601 | } |
| 3602 | |
| 3603 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; |
| 3604 | |
| 3605 | named_entry_lock(mem_entry); |
| 3606 | |
| 3607 | if (mem_entry->is_sub_map || |
| 3608 | mem_entry->is_copy) { |
| 3609 | named_entry_unlock(mem_entry); |
| 3610 | return KERN_INVALID_ARGUMENT; |
| 3611 | } |
| 3612 | |
| 3613 | object = mem_entry->backing.object; |
| 3614 | if (object == VM_OBJECT_NULL) { |
| 3615 | named_entry_unlock(mem_entry); |
| 3616 | return KERN_INVALID_ARGUMENT; |
| 3617 | } |
| 3618 | |
| 3619 | #if VM_OBJECT_ACCESS_TRACKING |
| 3620 | vm_object_access_tracking(object, |
| 3621 | access_tracking, |
| 3622 | access_tracking_reads, |
| 3623 | access_tracking_writes); |
| 3624 | kr = KERN_SUCCESS; |
| 3625 | #else /* VM_OBJECT_ACCESS_TRACKING */ |
| 3626 | (void) access_tracking; |
| 3627 | (void) access_tracking_reads; |
| 3628 | (void) access_tracking_writes; |
| 3629 | kr = KERN_NOT_SUPPORTED; |
| 3630 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 3631 | |
| 3632 | named_entry_unlock(mem_entry); |
| 3633 | |
| 3634 | return kr; |
| 3635 | } |
| 3636 | |
| 3637 | kern_return_t |
| 3638 | mach_memory_entry_get_page_counts( |
| 3639 | ipc_port_t entry_port, |
| 3640 | unsigned int *resident_page_count, |
| 3641 | unsigned int *dirty_page_count) |
| 3642 | { |
| 3643 | kern_return_t kr; |
| 3644 | vm_named_entry_t mem_entry; |
| 3645 | vm_object_t object; |
| 3646 | vm_object_offset_t offset; |
| 3647 | vm_object_size_t size; |
| 3648 | |
| 3649 | if (!IP_VALID(entry_port) || |
| 3650 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { |
| 3651 | return KERN_INVALID_ARGUMENT; |
| 3652 | } |
| 3653 | |
| 3654 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; |
| 3655 | |
| 3656 | named_entry_lock(mem_entry); |
| 3657 | |
| 3658 | if (mem_entry->is_sub_map || |
| 3659 | mem_entry->is_copy) { |
| 3660 | named_entry_unlock(mem_entry); |
| 3661 | return KERN_INVALID_ARGUMENT; |
| 3662 | } |
| 3663 | |
| 3664 | object = mem_entry->backing.object; |
| 3665 | if (object == VM_OBJECT_NULL) { |
| 3666 | named_entry_unlock(mem_entry); |
| 3667 | return KERN_INVALID_ARGUMENT; |
| 3668 | } |
| 3669 | |
| 3670 | vm_object_lock(object); |
| 3671 | |
| 3672 | offset = mem_entry->offset; |
| 3673 | size = mem_entry->size; |
| 3674 | |
| 3675 | named_entry_unlock(mem_entry); |
| 3676 | |
| 3677 | kr = vm_object_get_page_counts(object, offset, size, resident_page_count, dirty_page_count); |
| 3678 | |
| 3679 | vm_object_unlock(object); |
| 3680 | |
| 3681 | return kr; |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * mach_memory_entry_port_release: |
| 3686 | * |
| 3687 | * Release a send right on a named entry port. This is the correct |
| 3688 | * way to destroy a named entry. When the last right on the port is |
| 3689 | * released, ipc_kobject_destroy() will call mach_destroy_memory_entry(). |
| 3690 | */ |
| 3691 | void |
| 3692 | mach_memory_entry_port_release( |
| 3693 | ipc_port_t port) |
| 3694 | { |
| 3695 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); |
| 3696 | ipc_port_release_send(port); |
| 3697 | } |
| 3698 | |
| 3699 | /* |
| 3700 | * mach_destroy_memory_entry: |
| 3701 | * |
| 3702 | * Drops a reference on a memory entry and destroys the memory entry if |
| 3703 | * there are no more references on it. |
| 3704 | * NOTE: This routine should not be called to destroy a memory entry from the |
| 3705 | * kernel, as it will not release the Mach port associated with the memory |
| 3706 | * entry. The proper way to destroy a memory entry in the kernel is to |
| 3707 | * call mach_memort_entry_port_release() to release the kernel's send-right on |
| 3708 | * the memory entry's port. When the last send right is released, the memory |
| 3709 | * entry will be destroyed via ipc_kobject_destroy(). |
| 3710 | */ |
| 3711 | void |
| 3712 | mach_destroy_memory_entry( |
| 3713 | ipc_port_t port) |
| 3714 | { |
| 3715 | vm_named_entry_t named_entry; |
| 3716 | #if MACH_ASSERT |
| 3717 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); |
| 3718 | #endif /* MACH_ASSERT */ |
| 3719 | named_entry = (vm_named_entry_t)port->ip_kobject; |
| 3720 | |
| 3721 | named_entry_lock(named_entry); |
| 3722 | named_entry->ref_count -= 1; |
| 3723 | |
| 3724 | if(named_entry->ref_count == 0) { |
| 3725 | if (named_entry->is_sub_map) { |
| 3726 | vm_map_deallocate(named_entry->backing.map); |
| 3727 | } else if (named_entry->is_copy) { |
| 3728 | vm_map_copy_discard(named_entry->backing.copy); |
| 3729 | } else { |
| 3730 | /* release the VM object we've been pointing to */ |
| 3731 | vm_object_deallocate(named_entry->backing.object); |
| 3732 | } |
| 3733 | |
| 3734 | named_entry_unlock(named_entry); |
| 3735 | named_entry_lock_destroy(named_entry); |
| 3736 | |
| 3737 | #if VM_NAMED_ENTRY_LIST |
| 3738 | lck_mtx_lock_spin(&vm_named_entry_list_lock_data); |
| 3739 | queue_remove(&vm_named_entry_list, named_entry, |
| 3740 | vm_named_entry_t, named_entry_list); |
| 3741 | assert(vm_named_entry_count > 0); |
| 3742 | vm_named_entry_count--; |
| 3743 | lck_mtx_unlock(&vm_named_entry_list_lock_data); |
| 3744 | #endif /* VM_NAMED_ENTRY_LIST */ |
| 3745 | |
| 3746 | kfree((void *) port->ip_kobject, |
| 3747 | sizeof (struct vm_named_entry)); |
| 3748 | } else |
| 3749 | named_entry_unlock(named_entry); |
| 3750 | } |
| 3751 | |
| 3752 | /* Allow manipulation of individual page state. This is actually part of */ |
| 3753 | /* the UPL regimen but takes place on the memory entry rather than on a UPL */ |
| 3754 | |
| 3755 | kern_return_t |
| 3756 | mach_memory_entry_page_op( |
| 3757 | ipc_port_t entry_port, |
| 3758 | vm_object_offset_t offset, |
| 3759 | int ops, |
| 3760 | ppnum_t *phys_entry, |
| 3761 | int *flags) |
| 3762 | { |
| 3763 | vm_named_entry_t mem_entry; |
| 3764 | vm_object_t object; |
| 3765 | kern_return_t kr; |
| 3766 | |
| 3767 | if (!IP_VALID(entry_port) || |
| 3768 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { |
| 3769 | return KERN_INVALID_ARGUMENT; |
| 3770 | } |
| 3771 | |
| 3772 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; |
| 3773 | |
| 3774 | named_entry_lock(mem_entry); |
| 3775 | |
| 3776 | if (mem_entry->is_sub_map || |
| 3777 | mem_entry->is_copy) { |
| 3778 | named_entry_unlock(mem_entry); |
| 3779 | return KERN_INVALID_ARGUMENT; |
| 3780 | } |
| 3781 | |
| 3782 | object = mem_entry->backing.object; |
| 3783 | if (object == VM_OBJECT_NULL) { |
| 3784 | named_entry_unlock(mem_entry); |
| 3785 | return KERN_INVALID_ARGUMENT; |
| 3786 | } |
| 3787 | |
| 3788 | vm_object_reference(object); |
| 3789 | named_entry_unlock(mem_entry); |
| 3790 | |
| 3791 | kr = vm_object_page_op(object, offset, ops, phys_entry, flags); |
| 3792 | |
| 3793 | vm_object_deallocate(object); |
| 3794 | |
| 3795 | return kr; |
| 3796 | } |
| 3797 | |
| 3798 | /* |
| 3799 | * mach_memory_entry_range_op offers performance enhancement over |
| 3800 | * mach_memory_entry_page_op for page_op functions which do not require page |
| 3801 | * level state to be returned from the call. Page_op was created to provide |
| 3802 | * a low-cost alternative to page manipulation via UPLs when only a single |
| 3803 | * page was involved. The range_op call establishes the ability in the _op |
| 3804 | * family of functions to work on multiple pages where the lack of page level |
| 3805 | * state handling allows the caller to avoid the overhead of the upl structures. |
| 3806 | */ |
| 3807 | |
| 3808 | kern_return_t |
| 3809 | mach_memory_entry_range_op( |
| 3810 | ipc_port_t entry_port, |
| 3811 | vm_object_offset_t offset_beg, |
| 3812 | vm_object_offset_t offset_end, |
| 3813 | int ops, |
| 3814 | int *range) |
| 3815 | { |
| 3816 | vm_named_entry_t mem_entry; |
| 3817 | vm_object_t object; |
| 3818 | kern_return_t kr; |
| 3819 | |
| 3820 | if (!IP_VALID(entry_port) || |
| 3821 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { |
| 3822 | return KERN_INVALID_ARGUMENT; |
| 3823 | } |
| 3824 | |
| 3825 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; |
| 3826 | |
| 3827 | named_entry_lock(mem_entry); |
| 3828 | |
| 3829 | if (mem_entry->is_sub_map || |
| 3830 | mem_entry->is_copy) { |
| 3831 | named_entry_unlock(mem_entry); |
| 3832 | return KERN_INVALID_ARGUMENT; |
| 3833 | } |
| 3834 | |
| 3835 | object = mem_entry->backing.object; |
| 3836 | if (object == VM_OBJECT_NULL) { |
| 3837 | named_entry_unlock(mem_entry); |
| 3838 | return KERN_INVALID_ARGUMENT; |
| 3839 | } |
| 3840 | |
| 3841 | vm_object_reference(object); |
| 3842 | named_entry_unlock(mem_entry); |
| 3843 | |
| 3844 | kr = vm_object_range_op(object, |
| 3845 | offset_beg, |
| 3846 | offset_end, |
| 3847 | ops, |
| 3848 | (uint32_t *) range); |
| 3849 | |
| 3850 | vm_object_deallocate(object); |
| 3851 | |
| 3852 | return kr; |
| 3853 | } |
| 3854 | |
| 3855 | /* ******* Temporary Internal calls to UPL for BSD ***** */ |
| 3856 | |
| 3857 | extern int kernel_upl_map( |
| 3858 | vm_map_t map, |
| 3859 | upl_t upl, |
| 3860 | vm_offset_t *dst_addr); |
| 3861 | |
| 3862 | extern int kernel_upl_unmap( |
| 3863 | vm_map_t map, |
| 3864 | upl_t upl); |
| 3865 | |
| 3866 | extern int kernel_upl_commit( |
| 3867 | upl_t upl, |
| 3868 | upl_page_info_t *pl, |
| 3869 | mach_msg_type_number_t count); |
| 3870 | |
| 3871 | extern int kernel_upl_commit_range( |
| 3872 | upl_t upl, |
| 3873 | upl_offset_t offset, |
| 3874 | upl_size_t size, |
| 3875 | int flags, |
| 3876 | upl_page_info_array_t pl, |
| 3877 | mach_msg_type_number_t count); |
| 3878 | |
| 3879 | extern int kernel_upl_abort( |
| 3880 | upl_t upl, |
| 3881 | int abort_type); |
| 3882 | |
| 3883 | extern int kernel_upl_abort_range( |
| 3884 | upl_t upl, |
| 3885 | upl_offset_t offset, |
| 3886 | upl_size_t size, |
| 3887 | int abort_flags); |
| 3888 | |
| 3889 | |
| 3890 | kern_return_t |
| 3891 | kernel_upl_map( |
| 3892 | vm_map_t map, |
| 3893 | upl_t upl, |
| 3894 | vm_offset_t *dst_addr) |
| 3895 | { |
| 3896 | return vm_upl_map(map, upl, dst_addr); |
| 3897 | } |
| 3898 | |
| 3899 | |
| 3900 | kern_return_t |
| 3901 | kernel_upl_unmap( |
| 3902 | vm_map_t map, |
| 3903 | upl_t upl) |
| 3904 | { |
| 3905 | return vm_upl_unmap(map, upl); |
| 3906 | } |
| 3907 | |
| 3908 | kern_return_t |
| 3909 | kernel_upl_commit( |
| 3910 | upl_t upl, |
| 3911 | upl_page_info_t *pl, |
| 3912 | mach_msg_type_number_t count) |
| 3913 | { |
| 3914 | kern_return_t kr; |
| 3915 | |
| 3916 | kr = upl_commit(upl, pl, count); |
| 3917 | upl_deallocate(upl); |
| 3918 | return kr; |
| 3919 | } |
| 3920 | |
| 3921 | |
| 3922 | kern_return_t |
| 3923 | kernel_upl_commit_range( |
| 3924 | upl_t upl, |
| 3925 | upl_offset_t offset, |
| 3926 | upl_size_t size, |
| 3927 | int flags, |
| 3928 | upl_page_info_array_t pl, |
| 3929 | mach_msg_type_number_t count) |
| 3930 | { |
| 3931 | boolean_t finished = FALSE; |
| 3932 | kern_return_t kr; |
| 3933 | |
| 3934 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) |
| 3935 | flags |= UPL_COMMIT_NOTIFY_EMPTY; |
| 3936 | |
| 3937 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { |
| 3938 | return KERN_INVALID_ARGUMENT; |
| 3939 | } |
| 3940 | |
| 3941 | kr = upl_commit_range(upl, offset, size, flags, pl, count, &finished); |
| 3942 | |
| 3943 | if ((flags & UPL_COMMIT_NOTIFY_EMPTY) && finished) |
| 3944 | upl_deallocate(upl); |
| 3945 | |
| 3946 | return kr; |
| 3947 | } |
| 3948 | |
| 3949 | kern_return_t |
| 3950 | kernel_upl_abort_range( |
| 3951 | upl_t upl, |
| 3952 | upl_offset_t offset, |
| 3953 | upl_size_t size, |
| 3954 | int abort_flags) |
| 3955 | { |
| 3956 | kern_return_t kr; |
| 3957 | boolean_t finished = FALSE; |
| 3958 | |
| 3959 | if (abort_flags & UPL_COMMIT_FREE_ON_EMPTY) |
| 3960 | abort_flags |= UPL_COMMIT_NOTIFY_EMPTY; |
| 3961 | |
| 3962 | kr = upl_abort_range(upl, offset, size, abort_flags, &finished); |
| 3963 | |
| 3964 | if ((abort_flags & UPL_COMMIT_FREE_ON_EMPTY) && finished) |
| 3965 | upl_deallocate(upl); |
| 3966 | |
| 3967 | return kr; |
| 3968 | } |
| 3969 | |
| 3970 | kern_return_t |
| 3971 | kernel_upl_abort( |
| 3972 | upl_t upl, |
| 3973 | int abort_type) |
| 3974 | { |
| 3975 | kern_return_t kr; |
| 3976 | |
| 3977 | kr = upl_abort(upl, abort_type); |
| 3978 | upl_deallocate(upl); |
| 3979 | return kr; |
| 3980 | } |
| 3981 | |
| 3982 | /* |
| 3983 | * Now a kernel-private interface (for BootCache |
| 3984 | * use only). Need a cleaner way to create an |
| 3985 | * empty vm_map() and return a handle to it. |
| 3986 | */ |
| 3987 | |
| 3988 | kern_return_t |
| 3989 | vm_region_object_create( |
| 3990 | __unused vm_map_t target_map, |
| 3991 | vm_size_t size, |
| 3992 | ipc_port_t *object_handle) |
| 3993 | { |
| 3994 | vm_named_entry_t user_entry; |
| 3995 | ipc_port_t user_handle; |
| 3996 | |
| 3997 | vm_map_t new_map; |
| 3998 | |
| 3999 | if (mach_memory_entry_allocate(&user_entry, &user_handle) |
| 4000 | != KERN_SUCCESS) { |
| 4001 | return KERN_FAILURE; |
| 4002 | } |
| 4003 | |
| 4004 | /* Create a named object based on a submap of specified size */ |
| 4005 | |
| 4006 | new_map = vm_map_create(PMAP_NULL, VM_MAP_MIN_ADDRESS, |
| 4007 | vm_map_round_page(size, |
| 4008 | VM_MAP_PAGE_MASK(target_map)), |
| 4009 | TRUE); |
| 4010 | vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(target_map)); |
| 4011 | |
| 4012 | user_entry->backing.map = new_map; |
| 4013 | user_entry->internal = TRUE; |
| 4014 | user_entry->is_sub_map = TRUE; |
| 4015 | user_entry->offset = 0; |
| 4016 | user_entry->protection = VM_PROT_ALL; |
| 4017 | user_entry->size = size; |
| 4018 | assert(user_entry->ref_count == 1); |
| 4019 | |
| 4020 | *object_handle = user_handle; |
| 4021 | return KERN_SUCCESS; |
| 4022 | |
| 4023 | } |
| 4024 | |
| 4025 | ppnum_t vm_map_get_phys_page( /* forward */ |
| 4026 | vm_map_t map, |
| 4027 | vm_offset_t offset); |
| 4028 | |
| 4029 | ppnum_t |
| 4030 | vm_map_get_phys_page( |
| 4031 | vm_map_t map, |
| 4032 | vm_offset_t addr) |
| 4033 | { |
| 4034 | vm_object_offset_t offset; |
| 4035 | vm_object_t object; |
| 4036 | vm_map_offset_t map_offset; |
| 4037 | vm_map_entry_t entry; |
| 4038 | ppnum_t phys_page = 0; |
| 4039 | |
| 4040 | map_offset = vm_map_trunc_page(addr, PAGE_MASK); |
| 4041 | |
| 4042 | vm_map_lock(map); |
| 4043 | while (vm_map_lookup_entry(map, map_offset, &entry)) { |
| 4044 | |
| 4045 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 4046 | vm_map_unlock(map); |
| 4047 | return (ppnum_t) 0; |
| 4048 | } |
| 4049 | if (entry->is_sub_map) { |
| 4050 | vm_map_t old_map; |
| 4051 | vm_map_lock(VME_SUBMAP(entry)); |
| 4052 | old_map = map; |
| 4053 | map = VME_SUBMAP(entry); |
| 4054 | map_offset = (VME_OFFSET(entry) + |
| 4055 | (map_offset - entry->vme_start)); |
| 4056 | vm_map_unlock(old_map); |
| 4057 | continue; |
| 4058 | } |
| 4059 | if (VME_OBJECT(entry)->phys_contiguous) { |
| 4060 | /* These are not standard pageable memory mappings */ |
| 4061 | /* If they are not present in the object they will */ |
| 4062 | /* have to be picked up from the pager through the */ |
| 4063 | /* fault mechanism. */ |
| 4064 | if (VME_OBJECT(entry)->vo_shadow_offset == 0) { |
| 4065 | /* need to call vm_fault */ |
| 4066 | vm_map_unlock(map); |
| 4067 | vm_fault(map, map_offset, VM_PROT_NONE, |
| 4068 | FALSE /* change_wiring */, VM_KERN_MEMORY_NONE, |
| 4069 | THREAD_UNINT, NULL, 0); |
| 4070 | vm_map_lock(map); |
| 4071 | continue; |
| 4072 | } |
| 4073 | offset = (VME_OFFSET(entry) + |
| 4074 | (map_offset - entry->vme_start)); |
| 4075 | phys_page = (ppnum_t) |
| 4076 | ((VME_OBJECT(entry)->vo_shadow_offset |
| 4077 | + offset) >> PAGE_SHIFT); |
| 4078 | break; |
| 4079 | |
| 4080 | } |
| 4081 | offset = (VME_OFFSET(entry) + (map_offset - entry->vme_start)); |
| 4082 | object = VME_OBJECT(entry); |
| 4083 | vm_object_lock(object); |
| 4084 | while (TRUE) { |
| 4085 | vm_page_t dst_page = vm_page_lookup(object,offset); |
| 4086 | if(dst_page == VM_PAGE_NULL) { |
| 4087 | if(object->shadow) { |
| 4088 | vm_object_t old_object; |
| 4089 | vm_object_lock(object->shadow); |
| 4090 | old_object = object; |
| 4091 | offset = offset + object->vo_shadow_offset; |
| 4092 | object = object->shadow; |
| 4093 | vm_object_unlock(old_object); |
| 4094 | } else { |
| 4095 | vm_object_unlock(object); |
| 4096 | break; |
| 4097 | } |
| 4098 | } else { |
| 4099 | phys_page = (ppnum_t)(VM_PAGE_GET_PHYS_PAGE(dst_page)); |
| 4100 | vm_object_unlock(object); |
| 4101 | break; |
| 4102 | } |
| 4103 | } |
| 4104 | break; |
| 4105 | |
| 4106 | } |
| 4107 | |
| 4108 | vm_map_unlock(map); |
| 4109 | return phys_page; |
| 4110 | } |
| 4111 | |
| 4112 | #if 0 |
| 4113 | kern_return_t kernel_object_iopl_request( /* forward */ |
| 4114 | vm_named_entry_t named_entry, |
| 4115 | memory_object_offset_t offset, |
| 4116 | upl_size_t *upl_size, |
| 4117 | upl_t *upl_ptr, |
| 4118 | upl_page_info_array_t user_page_list, |
| 4119 | unsigned int *page_list_count, |
| 4120 | int *flags); |
| 4121 | |
| 4122 | kern_return_t |
| 4123 | kernel_object_iopl_request( |
| 4124 | vm_named_entry_t named_entry, |
| 4125 | memory_object_offset_t offset, |
| 4126 | upl_size_t *upl_size, |
| 4127 | upl_t *upl_ptr, |
| 4128 | upl_page_info_array_t user_page_list, |
| 4129 | unsigned int *page_list_count, |
| 4130 | int *flags) |
| 4131 | { |
| 4132 | vm_object_t object; |
| 4133 | kern_return_t ret; |
| 4134 | |
| 4135 | int caller_flags; |
| 4136 | |
| 4137 | caller_flags = *flags; |
| 4138 | |
| 4139 | if (caller_flags & ~UPL_VALID_FLAGS) { |
| 4140 | /* |
| 4141 | * For forward compatibility's sake, |
| 4142 | * reject any unknown flag. |
| 4143 | */ |
| 4144 | return KERN_INVALID_VALUE; |
| 4145 | } |
| 4146 | |
| 4147 | /* a few checks to make sure user is obeying rules */ |
| 4148 | if(*upl_size == 0) { |
| 4149 | if(offset >= named_entry->size) |
| 4150 | return(KERN_INVALID_RIGHT); |
| 4151 | *upl_size = (upl_size_t) (named_entry->size - offset); |
| 4152 | if (*upl_size != named_entry->size - offset) |
| 4153 | return KERN_INVALID_ARGUMENT; |
| 4154 | } |
| 4155 | if(caller_flags & UPL_COPYOUT_FROM) { |
| 4156 | if((named_entry->protection & VM_PROT_READ) |
| 4157 | != VM_PROT_READ) { |
| 4158 | return(KERN_INVALID_RIGHT); |
| 4159 | } |
| 4160 | } else { |
| 4161 | if((named_entry->protection & |
| 4162 | (VM_PROT_READ | VM_PROT_WRITE)) |
| 4163 | != (VM_PROT_READ | VM_PROT_WRITE)) { |
| 4164 | return(KERN_INVALID_RIGHT); |
| 4165 | } |
| 4166 | } |
| 4167 | if(named_entry->size < (offset + *upl_size)) |
| 4168 | return(KERN_INVALID_ARGUMENT); |
| 4169 | |
| 4170 | /* the callers parameter offset is defined to be the */ |
| 4171 | /* offset from beginning of named entry offset in object */ |
| 4172 | offset = offset + named_entry->offset; |
| 4173 | |
| 4174 | if (named_entry->is_sub_map || |
| 4175 | named_entry->is_copy) |
| 4176 | return KERN_INVALID_ARGUMENT; |
| 4177 | |
| 4178 | named_entry_lock(named_entry); |
| 4179 | |
| 4180 | /* This is the case where we are going to operate */ |
| 4181 | /* on an already known object. If the object is */ |
| 4182 | /* not ready it is internal. An external */ |
| 4183 | /* object cannot be mapped until it is ready */ |
| 4184 | /* we can therefore avoid the ready check */ |
| 4185 | /* in this case. */ |
| 4186 | object = named_entry->backing.object; |
| 4187 | vm_object_reference(object); |
| 4188 | named_entry_unlock(named_entry); |
| 4189 | |
| 4190 | if (!object->private) { |
| 4191 | if (*upl_size > MAX_UPL_TRANSFER_BYTES) |
| 4192 | *upl_size = MAX_UPL_TRANSFER_BYTES; |
| 4193 | if (object->phys_contiguous) { |
| 4194 | *flags = UPL_PHYS_CONTIG; |
| 4195 | } else { |
| 4196 | *flags = 0; |
| 4197 | } |
| 4198 | } else { |
| 4199 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; |
| 4200 | } |
| 4201 | |
| 4202 | ret = vm_object_iopl_request(object, |
| 4203 | offset, |
| 4204 | *upl_size, |
| 4205 | upl_ptr, |
| 4206 | user_page_list, |
| 4207 | page_list_count, |
| 4208 | (upl_control_flags_t)(unsigned int)caller_flags); |
| 4209 | vm_object_deallocate(object); |
| 4210 | return ret; |
| 4211 | } |
| 4212 | #endif |
| 4213 | |
| 4214 | /* |
| 4215 | * These symbols are looked up at runtime by vmware, VirtualBox, |
| 4216 | * despite not being exported in the symbol sets. |
| 4217 | */ |
| 4218 | |
| 4219 | #if defined(__x86_64__) |
| 4220 | |
| 4221 | kern_return_t |
| 4222 | mach_vm_map( |
| 4223 | vm_map_t target_map, |
| 4224 | mach_vm_offset_t *address, |
| 4225 | mach_vm_size_t initial_size, |
| 4226 | mach_vm_offset_t mask, |
| 4227 | int flags, |
| 4228 | ipc_port_t port, |
| 4229 | vm_object_offset_t offset, |
| 4230 | boolean_t copy, |
| 4231 | vm_prot_t cur_protection, |
| 4232 | vm_prot_t max_protection, |
| 4233 | vm_inherit_t inheritance); |
| 4234 | |
| 4235 | kern_return_t |
| 4236 | mach_vm_remap( |
| 4237 | vm_map_t target_map, |
| 4238 | mach_vm_offset_t *address, |
| 4239 | mach_vm_size_t size, |
| 4240 | mach_vm_offset_t mask, |
| 4241 | int flags, |
| 4242 | vm_map_t src_map, |
| 4243 | mach_vm_offset_t memory_address, |
| 4244 | boolean_t copy, |
| 4245 | vm_prot_t *cur_protection, |
| 4246 | vm_prot_t *max_protection, |
| 4247 | vm_inherit_t inheritance); |
| 4248 | |
| 4249 | kern_return_t |
| 4250 | mach_vm_map( |
| 4251 | vm_map_t target_map, |
| 4252 | mach_vm_offset_t *address, |
| 4253 | mach_vm_size_t initial_size, |
| 4254 | mach_vm_offset_t mask, |
| 4255 | int flags, |
| 4256 | ipc_port_t port, |
| 4257 | vm_object_offset_t offset, |
| 4258 | boolean_t copy, |
| 4259 | vm_prot_t cur_protection, |
| 4260 | vm_prot_t max_protection, |
| 4261 | vm_inherit_t inheritance) |
| 4262 | { |
| 4263 | return (mach_vm_map_external(target_map, address, initial_size, mask, flags, port, |
| 4264 | offset, copy, cur_protection, max_protection, inheritance)); |
| 4265 | } |
| 4266 | |
| 4267 | kern_return_t |
| 4268 | mach_vm_remap( |
| 4269 | vm_map_t target_map, |
| 4270 | mach_vm_offset_t *address, |
| 4271 | mach_vm_size_t size, |
| 4272 | mach_vm_offset_t mask, |
| 4273 | int flags, |
| 4274 | vm_map_t src_map, |
| 4275 | mach_vm_offset_t memory_address, |
| 4276 | boolean_t copy, |
| 4277 | vm_prot_t *cur_protection, |
| 4278 | vm_prot_t *max_protection, |
| 4279 | vm_inherit_t inheritance) |
| 4280 | { |
| 4281 | return (mach_vm_remap_external(target_map, address, size, mask, flags, src_map, memory_address, |
| 4282 | copy, cur_protection, max_protection, inheritance)); |
| 4283 | } |
| 4284 | |
| 4285 | kern_return_t |
| 4286 | vm_map( |
| 4287 | vm_map_t target_map, |
| 4288 | vm_offset_t *address, |
| 4289 | vm_size_t size, |
| 4290 | vm_offset_t mask, |
| 4291 | int flags, |
| 4292 | ipc_port_t port, |
| 4293 | vm_offset_t offset, |
| 4294 | boolean_t copy, |
| 4295 | vm_prot_t cur_protection, |
| 4296 | vm_prot_t max_protection, |
| 4297 | vm_inherit_t inheritance); |
| 4298 | |
| 4299 | kern_return_t |
| 4300 | vm_map( |
| 4301 | vm_map_t target_map, |
| 4302 | vm_offset_t *address, |
| 4303 | vm_size_t size, |
| 4304 | vm_offset_t mask, |
| 4305 | int flags, |
| 4306 | ipc_port_t port, |
| 4307 | vm_offset_t offset, |
| 4308 | boolean_t copy, |
| 4309 | vm_prot_t cur_protection, |
| 4310 | vm_prot_t max_protection, |
| 4311 | vm_inherit_t inheritance) |
| 4312 | { |
| 4313 | vm_tag_t tag; |
| 4314 | |
| 4315 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 4316 | return vm_map_kernel(target_map, address, size, mask, |
| 4317 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, |
| 4318 | port, offset, copy, |
| 4319 | cur_protection, max_protection, inheritance); |
| 4320 | } |
| 4321 | |
| 4322 | #endif /* __x86_64__ */ |
| 4323 | |