| 1 | /* |
| 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_kern.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * Date: 1985 |
| 62 | * |
| 63 | * Kernel memory management. |
| 64 | */ |
| 65 | |
| 66 | #include <mach/kern_return.h> |
| 67 | #include <mach/vm_param.h> |
| 68 | #include <kern/assert.h> |
| 69 | #include <kern/thread.h> |
| 70 | #include <vm/vm_kern.h> |
| 71 | #include <vm/vm_map.h> |
| 72 | #include <vm/vm_object.h> |
| 73 | #include <vm/vm_page.h> |
| 74 | #include <vm/vm_compressor.h> |
| 75 | #include <vm/vm_pageout.h> |
| 76 | #include <kern/misc_protos.h> |
| 77 | #include <vm/cpm.h> |
| 78 | |
| 79 | #include <string.h> |
| 80 | |
| 81 | #include <libkern/OSDebug.h> |
| 82 | #include <libkern/crypto/sha2.h> |
| 83 | #include <sys/kdebug.h> |
| 84 | |
| 85 | #include <san/kasan.h> |
| 86 | |
| 87 | /* |
| 88 | * Variables exported by this module. |
| 89 | */ |
| 90 | |
| 91 | vm_map_t kernel_map; |
| 92 | vm_map_t kernel_pageable_map; |
| 93 | |
| 94 | extern boolean_t vm_kernel_ready; |
| 95 | |
| 96 | /* |
| 97 | * Forward declarations for internal functions. |
| 98 | */ |
| 99 | extern kern_return_t kmem_alloc_pages( |
| 100 | vm_object_t object, |
| 101 | vm_object_offset_t offset, |
| 102 | vm_object_size_t size); |
| 103 | |
| 104 | kern_return_t |
| 105 | kmem_alloc_contig( |
| 106 | vm_map_t map, |
| 107 | vm_offset_t *addrp, |
| 108 | vm_size_t size, |
| 109 | vm_offset_t mask, |
| 110 | ppnum_t max_pnum, |
| 111 | ppnum_t pnum_mask, |
| 112 | int flags, |
| 113 | vm_tag_t tag) |
| 114 | { |
| 115 | vm_object_t object; |
| 116 | vm_object_offset_t offset; |
| 117 | vm_map_offset_t map_addr; |
| 118 | vm_map_offset_t map_mask; |
| 119 | vm_map_size_t map_size, i; |
| 120 | vm_map_entry_t entry; |
| 121 | vm_page_t m, pages; |
| 122 | kern_return_t kr; |
| 123 | |
| 124 | assert(VM_KERN_MEMORY_NONE != tag); |
| 125 | |
| 126 | if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT))) |
| 127 | return KERN_INVALID_ARGUMENT; |
| 128 | |
| 129 | map_size = vm_map_round_page(size, |
| 130 | VM_MAP_PAGE_MASK(map)); |
| 131 | map_mask = (vm_map_offset_t)mask; |
| 132 | |
| 133 | /* Check for zero allocation size (either directly or via overflow) */ |
| 134 | if (map_size == 0) { |
| 135 | *addrp = 0; |
| 136 | return KERN_INVALID_ARGUMENT; |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * Allocate a new object (if necessary) and the reference we |
| 141 | * will be donating to the map entry. We must do this before |
| 142 | * locking the map, or risk deadlock with the default pager. |
| 143 | */ |
| 144 | if ((flags & KMA_KOBJECT) != 0) { |
| 145 | object = kernel_object; |
| 146 | vm_object_reference(object); |
| 147 | } else { |
| 148 | object = vm_object_allocate(map_size); |
| 149 | } |
| 150 | |
| 151 | kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, |
| 152 | VM_MAP_KERNEL_FLAGS_NONE, tag, &entry); |
| 153 | if (KERN_SUCCESS != kr) { |
| 154 | vm_object_deallocate(object); |
| 155 | return kr; |
| 156 | } |
| 157 | |
| 158 | if (object == kernel_object) { |
| 159 | offset = map_addr; |
| 160 | } else { |
| 161 | offset = 0; |
| 162 | } |
| 163 | VME_OBJECT_SET(entry, object); |
| 164 | VME_OFFSET_SET(entry, offset); |
| 165 | |
| 166 | /* Take an extra object ref in case the map entry gets deleted */ |
| 167 | vm_object_reference(object); |
| 168 | vm_map_unlock(map); |
| 169 | |
| 170 | kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags); |
| 171 | |
| 172 | if (kr != KERN_SUCCESS) { |
| 173 | vm_map_remove(map, |
| 174 | vm_map_trunc_page(map_addr, |
| 175 | VM_MAP_PAGE_MASK(map)), |
| 176 | vm_map_round_page(map_addr + map_size, |
| 177 | VM_MAP_PAGE_MASK(map)), |
| 178 | VM_MAP_REMOVE_NO_FLAGS); |
| 179 | vm_object_deallocate(object); |
| 180 | *addrp = 0; |
| 181 | return kr; |
| 182 | } |
| 183 | |
| 184 | vm_object_lock(object); |
| 185 | for (i = 0; i < map_size; i += PAGE_SIZE) { |
| 186 | m = pages; |
| 187 | pages = NEXT_PAGE(m); |
| 188 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
| 189 | m->vmp_busy = FALSE; |
| 190 | vm_page_insert(m, object, offset + i); |
| 191 | } |
| 192 | vm_object_unlock(object); |
| 193 | |
| 194 | kr = vm_map_wire_kernel(map, |
| 195 | vm_map_trunc_page(map_addr, |
| 196 | VM_MAP_PAGE_MASK(map)), |
| 197 | vm_map_round_page(map_addr + map_size, |
| 198 | VM_MAP_PAGE_MASK(map)), |
| 199 | VM_PROT_DEFAULT, tag, |
| 200 | FALSE); |
| 201 | |
| 202 | if (kr != KERN_SUCCESS) { |
| 203 | if (object == kernel_object) { |
| 204 | vm_object_lock(object); |
| 205 | vm_object_page_remove(object, offset, offset + map_size); |
| 206 | vm_object_unlock(object); |
| 207 | } |
| 208 | vm_map_remove(map, |
| 209 | vm_map_trunc_page(map_addr, |
| 210 | VM_MAP_PAGE_MASK(map)), |
| 211 | vm_map_round_page(map_addr + map_size, |
| 212 | VM_MAP_PAGE_MASK(map)), |
| 213 | VM_MAP_REMOVE_NO_FLAGS); |
| 214 | vm_object_deallocate(object); |
| 215 | return kr; |
| 216 | } |
| 217 | vm_object_deallocate(object); |
| 218 | |
| 219 | if (object == kernel_object) { |
| 220 | vm_map_simplify(map, map_addr); |
| 221 | vm_tag_update_size(tag, map_size); |
| 222 | } |
| 223 | *addrp = (vm_offset_t) map_addr; |
| 224 | assert((vm_map_offset_t) *addrp == map_addr); |
| 225 | |
| 226 | return KERN_SUCCESS; |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * Master entry point for allocating kernel memory. |
| 231 | * NOTE: this routine is _never_ interrupt safe. |
| 232 | * |
| 233 | * map : map to allocate into |
| 234 | * addrp : pointer to start address of new memory |
| 235 | * size : size of memory requested |
| 236 | * flags : options |
| 237 | * KMA_HERE *addrp is base address, else "anywhere" |
| 238 | * KMA_NOPAGEWAIT don't wait for pages if unavailable |
| 239 | * KMA_KOBJECT use kernel_object |
| 240 | * KMA_LOMEM support for 32 bit devices in a 64 bit world |
| 241 | * if set and a lomemory pool is available |
| 242 | * grab pages from it... this also implies |
| 243 | * KMA_NOPAGEWAIT |
| 244 | */ |
| 245 | |
| 246 | kern_return_t |
| 247 | kernel_memory_allocate( |
| 248 | vm_map_t map, |
| 249 | vm_offset_t *addrp, |
| 250 | vm_size_t size, |
| 251 | vm_offset_t mask, |
| 252 | int flags, |
| 253 | vm_tag_t tag) |
| 254 | { |
| 255 | vm_object_t object; |
| 256 | vm_object_offset_t offset; |
| 257 | vm_object_offset_t pg_offset; |
| 258 | vm_map_entry_t entry = NULL; |
| 259 | vm_map_offset_t map_addr, fill_start; |
| 260 | vm_map_offset_t map_mask; |
| 261 | vm_map_size_t map_size, fill_size; |
| 262 | kern_return_t kr, pe_result; |
| 263 | vm_page_t mem; |
| 264 | vm_page_t guard_page_list = NULL; |
| 265 | vm_page_t wired_page_list = NULL; |
| 266 | int guard_page_count = 0; |
| 267 | int wired_page_count = 0; |
| 268 | int page_grab_count = 0; |
| 269 | int i; |
| 270 | int vm_alloc_flags; |
| 271 | vm_map_kernel_flags_t vmk_flags; |
| 272 | vm_prot_t kma_prot; |
| 273 | |
| 274 | if (! vm_kernel_ready) { |
| 275 | panic("kernel_memory_allocate: VM is not ready" ); |
| 276 | } |
| 277 | |
| 278 | map_size = vm_map_round_page(size, |
| 279 | VM_MAP_PAGE_MASK(map)); |
| 280 | map_mask = (vm_map_offset_t) mask; |
| 281 | |
| 282 | vm_alloc_flags = 0; //VM_MAKE_TAG(tag); |
| 283 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 284 | |
| 285 | /* Check for zero allocation size (either directly or via overflow) */ |
| 286 | if (map_size == 0) { |
| 287 | *addrp = 0; |
| 288 | return KERN_INVALID_ARGUMENT; |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * limit the size of a single extent of wired memory |
| 293 | * to try and limit the damage to the system if |
| 294 | * too many pages get wired down |
| 295 | * limit raised to 2GB with 128GB max physical limit, |
| 296 | * but scaled by installed memory above this |
| 297 | */ |
| 298 | if (!(flags & (KMA_VAONLY | KMA_PAGEABLE)) && |
| 299 | map_size > MAX(1ULL<<31, sane_size/64)) { |
| 300 | return KERN_RESOURCE_SHORTAGE; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Guard pages: |
| 305 | * |
| 306 | * Guard pages are implemented as ficticious pages. By placing guard pages |
| 307 | * on either end of a stack, they can help detect cases where a thread walks |
| 308 | * off either end of its stack. They are allocated and set up here and attempts |
| 309 | * to access those pages are trapped in vm_fault_page(). |
| 310 | * |
| 311 | * The map_size we were passed may include extra space for |
| 312 | * guard pages. If those were requested, then back it out of fill_size |
| 313 | * since vm_map_find_space() takes just the actual size not including |
| 314 | * guard pages. Similarly, fill_start indicates where the actual pages |
| 315 | * will begin in the range. |
| 316 | */ |
| 317 | |
| 318 | fill_start = 0; |
| 319 | fill_size = map_size; |
| 320 | |
| 321 | if (flags & KMA_GUARD_FIRST) { |
| 322 | vmk_flags.vmkf_guard_before = TRUE; |
| 323 | fill_start += PAGE_SIZE_64; |
| 324 | fill_size -= PAGE_SIZE_64; |
| 325 | if (map_size < fill_start + fill_size) { |
| 326 | /* no space for a guard page */ |
| 327 | *addrp = 0; |
| 328 | return KERN_INVALID_ARGUMENT; |
| 329 | } |
| 330 | guard_page_count++; |
| 331 | } |
| 332 | if (flags & KMA_GUARD_LAST) { |
| 333 | vmk_flags.vmkf_guard_after = TRUE; |
| 334 | fill_size -= PAGE_SIZE_64; |
| 335 | if (map_size <= fill_start + fill_size) { |
| 336 | /* no space for a guard page */ |
| 337 | *addrp = 0; |
| 338 | return KERN_INVALID_ARGUMENT; |
| 339 | } |
| 340 | guard_page_count++; |
| 341 | } |
| 342 | wired_page_count = (int) (fill_size / PAGE_SIZE_64); |
| 343 | assert(wired_page_count * PAGE_SIZE_64 == fill_size); |
| 344 | |
| 345 | #if DEBUG || DEVELOPMENT |
| 346 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, size, 0, 0, 0); |
| 347 | #endif |
| 348 | |
| 349 | for (i = 0; i < guard_page_count; i++) { |
| 350 | for (;;) { |
| 351 | mem = vm_page_grab_guard(); |
| 352 | |
| 353 | if (mem != VM_PAGE_NULL) |
| 354 | break; |
| 355 | if (flags & KMA_NOPAGEWAIT) { |
| 356 | kr = KERN_RESOURCE_SHORTAGE; |
| 357 | goto out; |
| 358 | } |
| 359 | vm_page_more_fictitious(); |
| 360 | } |
| 361 | mem->vmp_snext = guard_page_list; |
| 362 | guard_page_list = mem; |
| 363 | } |
| 364 | |
| 365 | if (!(flags & (KMA_VAONLY | KMA_PAGEABLE))) { |
| 366 | for (i = 0; i < wired_page_count; i++) { |
| 367 | uint64_t unavailable; |
| 368 | |
| 369 | for (;;) { |
| 370 | if (flags & KMA_LOMEM) |
| 371 | mem = vm_page_grablo(); |
| 372 | else |
| 373 | mem = vm_page_grab(); |
| 374 | |
| 375 | if (mem != VM_PAGE_NULL) |
| 376 | break; |
| 377 | |
| 378 | if (flags & KMA_NOPAGEWAIT) { |
| 379 | kr = KERN_RESOURCE_SHORTAGE; |
| 380 | goto out; |
| 381 | } |
| 382 | if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) { |
| 383 | kr = KERN_RESOURCE_SHORTAGE; |
| 384 | goto out; |
| 385 | } |
| 386 | unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE; |
| 387 | |
| 388 | if (unavailable > max_mem || map_size > (max_mem - unavailable)) { |
| 389 | kr = KERN_RESOURCE_SHORTAGE; |
| 390 | goto out; |
| 391 | } |
| 392 | VM_PAGE_WAIT(); |
| 393 | } |
| 394 | page_grab_count++; |
| 395 | if (KMA_ZERO & flags) vm_page_zero_fill(mem); |
| 396 | mem->vmp_snext = wired_page_list; |
| 397 | wired_page_list = mem; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Allocate a new object (if necessary). We must do this before |
| 403 | * locking the map, or risk deadlock with the default pager. |
| 404 | */ |
| 405 | if ((flags & KMA_KOBJECT) != 0) { |
| 406 | object = kernel_object; |
| 407 | vm_object_reference(object); |
| 408 | } else if ((flags & KMA_COMPRESSOR) != 0) { |
| 409 | object = compressor_object; |
| 410 | vm_object_reference(object); |
| 411 | } else { |
| 412 | object = vm_object_allocate(map_size); |
| 413 | } |
| 414 | |
| 415 | if (flags & KMA_ATOMIC) |
| 416 | vmk_flags.vmkf_atomic_entry = TRUE; |
| 417 | |
| 418 | kr = vm_map_find_space(map, &map_addr, |
| 419 | fill_size, map_mask, |
| 420 | vm_alloc_flags, vmk_flags, tag, &entry); |
| 421 | if (KERN_SUCCESS != kr) { |
| 422 | vm_object_deallocate(object); |
| 423 | goto out; |
| 424 | } |
| 425 | |
| 426 | if (object == kernel_object || object == compressor_object) { |
| 427 | offset = map_addr; |
| 428 | } else { |
| 429 | offset = 0; |
| 430 | } |
| 431 | VME_OBJECT_SET(entry, object); |
| 432 | VME_OFFSET_SET(entry, offset); |
| 433 | |
| 434 | if (!(flags & (KMA_COMPRESSOR | KMA_PAGEABLE))) |
| 435 | entry->wired_count++; |
| 436 | |
| 437 | if (flags & KMA_PERMANENT) |
| 438 | entry->permanent = TRUE; |
| 439 | |
| 440 | if (object != kernel_object && object != compressor_object) |
| 441 | vm_object_reference(object); |
| 442 | |
| 443 | vm_object_lock(object); |
| 444 | vm_map_unlock(map); |
| 445 | |
| 446 | pg_offset = 0; |
| 447 | |
| 448 | if (fill_start) { |
| 449 | if (guard_page_list == NULL) |
| 450 | panic("kernel_memory_allocate: guard_page_list == NULL" ); |
| 451 | |
| 452 | mem = guard_page_list; |
| 453 | guard_page_list = mem->vmp_snext; |
| 454 | mem->vmp_snext = NULL; |
| 455 | |
| 456 | vm_page_insert(mem, object, offset + pg_offset); |
| 457 | |
| 458 | mem->vmp_busy = FALSE; |
| 459 | pg_offset += PAGE_SIZE_64; |
| 460 | } |
| 461 | |
| 462 | kma_prot = VM_PROT_READ | VM_PROT_WRITE; |
| 463 | |
| 464 | #if KASAN |
| 465 | if (!(flags & KMA_VAONLY)) { |
| 466 | /* for VAONLY mappings we notify in populate only */ |
| 467 | kasan_notify_address(map_addr, size); |
| 468 | } |
| 469 | #endif |
| 470 | |
| 471 | if (flags & (KMA_VAONLY | KMA_PAGEABLE)) { |
| 472 | pg_offset = fill_start + fill_size; |
| 473 | } else { |
| 474 | for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) { |
| 475 | if (wired_page_list == NULL) |
| 476 | panic("kernel_memory_allocate: wired_page_list == NULL" ); |
| 477 | |
| 478 | mem = wired_page_list; |
| 479 | wired_page_list = mem->vmp_snext; |
| 480 | mem->vmp_snext = NULL; |
| 481 | |
| 482 | assert(mem->vmp_wire_count == 0); |
| 483 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 484 | |
| 485 | mem->vmp_q_state = VM_PAGE_IS_WIRED; |
| 486 | mem->vmp_wire_count++; |
| 487 | if (__improbable(mem->vmp_wire_count == 0)) { |
| 488 | panic("kernel_memory_allocate(%p): wire_count overflow" , |
| 489 | mem); |
| 490 | } |
| 491 | |
| 492 | vm_page_insert_wired(mem, object, offset + pg_offset, tag); |
| 493 | |
| 494 | mem->vmp_busy = FALSE; |
| 495 | mem->vmp_pmapped = TRUE; |
| 496 | mem->vmp_wpmapped = TRUE; |
| 497 | |
| 498 | PMAP_ENTER_OPTIONS(kernel_pmap, map_addr + pg_offset, mem, |
| 499 | kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE, |
| 500 | PMAP_OPTIONS_NOWAIT, pe_result); |
| 501 | |
| 502 | if (pe_result == KERN_RESOURCE_SHORTAGE) { |
| 503 | vm_object_unlock(object); |
| 504 | |
| 505 | PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem, |
| 506 | kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE, |
| 507 | pe_result); |
| 508 | |
| 509 | vm_object_lock(object); |
| 510 | } |
| 511 | |
| 512 | assert(pe_result == KERN_SUCCESS); |
| 513 | |
| 514 | if (flags & KMA_NOENCRYPT) { |
| 515 | bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE); |
| 516 | |
| 517 | pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 518 | } |
| 519 | } |
| 520 | if (kernel_object == object) vm_tag_update_size(tag, fill_size); |
| 521 | } |
| 522 | if ((fill_start + fill_size) < map_size) { |
| 523 | if (guard_page_list == NULL) |
| 524 | panic("kernel_memory_allocate: guard_page_list == NULL" ); |
| 525 | |
| 526 | mem = guard_page_list; |
| 527 | guard_page_list = mem->vmp_snext; |
| 528 | mem->vmp_snext = NULL; |
| 529 | |
| 530 | vm_page_insert(mem, object, offset + pg_offset); |
| 531 | |
| 532 | mem->vmp_busy = FALSE; |
| 533 | } |
| 534 | if (guard_page_list || wired_page_list) |
| 535 | panic("kernel_memory_allocate: non empty list\n" ); |
| 536 | |
| 537 | if (!(flags & (KMA_VAONLY | KMA_PAGEABLE))) { |
| 538 | vm_page_lockspin_queues(); |
| 539 | vm_page_wire_count += wired_page_count; |
| 540 | vm_page_unlock_queues(); |
| 541 | } |
| 542 | |
| 543 | vm_object_unlock(object); |
| 544 | |
| 545 | /* |
| 546 | * now that the pages are wired, we no longer have to fear coalesce |
| 547 | */ |
| 548 | if (object == kernel_object || object == compressor_object) |
| 549 | vm_map_simplify(map, map_addr); |
| 550 | else |
| 551 | vm_object_deallocate(object); |
| 552 | |
| 553 | #if DEBUG || DEVELOPMENT |
| 554 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 555 | #endif |
| 556 | |
| 557 | /* |
| 558 | * Return the memory, not zeroed. |
| 559 | */ |
| 560 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
| 561 | return KERN_SUCCESS; |
| 562 | |
| 563 | out: |
| 564 | if (guard_page_list) |
| 565 | vm_page_free_list(guard_page_list, FALSE); |
| 566 | |
| 567 | if (wired_page_list) |
| 568 | vm_page_free_list(wired_page_list, FALSE); |
| 569 | |
| 570 | #if DEBUG || DEVELOPMENT |
| 571 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 572 | #endif |
| 573 | |
| 574 | return kr; |
| 575 | } |
| 576 | |
| 577 | kern_return_t |
| 578 | kernel_memory_populate( |
| 579 | vm_map_t map, |
| 580 | vm_offset_t addr, |
| 581 | vm_size_t size, |
| 582 | int flags, |
| 583 | vm_tag_t tag) |
| 584 | { |
| 585 | vm_object_t object; |
| 586 | vm_object_offset_t offset, pg_offset; |
| 587 | kern_return_t kr, pe_result; |
| 588 | vm_page_t mem; |
| 589 | vm_page_t page_list = NULL; |
| 590 | int page_count = 0; |
| 591 | int page_grab_count = 0; |
| 592 | int i; |
| 593 | |
| 594 | #if DEBUG || DEVELOPMENT |
| 595 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, size, 0, 0, 0); |
| 596 | #endif |
| 597 | |
| 598 | page_count = (int) (size / PAGE_SIZE_64); |
| 599 | |
| 600 | assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT)); |
| 601 | |
| 602 | if (flags & KMA_COMPRESSOR) { |
| 603 | |
| 604 | pg_offset = page_count * PAGE_SIZE_64; |
| 605 | |
| 606 | do { |
| 607 | for (;;) { |
| 608 | mem = vm_page_grab(); |
| 609 | |
| 610 | if (mem != VM_PAGE_NULL) |
| 611 | break; |
| 612 | |
| 613 | VM_PAGE_WAIT(); |
| 614 | } |
| 615 | page_grab_count++; |
| 616 | if (KMA_ZERO & flags) vm_page_zero_fill(mem); |
| 617 | mem->vmp_snext = page_list; |
| 618 | page_list = mem; |
| 619 | |
| 620 | pg_offset -= PAGE_SIZE_64; |
| 621 | |
| 622 | kr = pmap_enter_options(kernel_pmap, |
| 623 | addr + pg_offset, VM_PAGE_GET_PHYS_PAGE(mem), |
| 624 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE, |
| 625 | PMAP_OPTIONS_INTERNAL, NULL); |
| 626 | assert(kr == KERN_SUCCESS); |
| 627 | |
| 628 | } while (pg_offset); |
| 629 | |
| 630 | offset = addr; |
| 631 | object = compressor_object; |
| 632 | |
| 633 | vm_object_lock(object); |
| 634 | |
| 635 | for (pg_offset = 0; |
| 636 | pg_offset < size; |
| 637 | pg_offset += PAGE_SIZE_64) { |
| 638 | |
| 639 | mem = page_list; |
| 640 | page_list = mem->vmp_snext; |
| 641 | mem->vmp_snext = NULL; |
| 642 | |
| 643 | vm_page_insert(mem, object, offset + pg_offset); |
| 644 | assert(mem->vmp_busy); |
| 645 | |
| 646 | mem->vmp_busy = FALSE; |
| 647 | mem->vmp_pmapped = TRUE; |
| 648 | mem->vmp_wpmapped = TRUE; |
| 649 | mem->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR; |
| 650 | } |
| 651 | vm_object_unlock(object); |
| 652 | |
| 653 | #if KASAN |
| 654 | if (map == compressor_map) { |
| 655 | kasan_notify_address_nopoison(addr, size); |
| 656 | } else { |
| 657 | kasan_notify_address(addr, size); |
| 658 | } |
| 659 | #endif |
| 660 | |
| 661 | #if DEBUG || DEVELOPMENT |
| 662 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 663 | #endif |
| 664 | return KERN_SUCCESS; |
| 665 | } |
| 666 | |
| 667 | for (i = 0; i < page_count; i++) { |
| 668 | for (;;) { |
| 669 | if (flags & KMA_LOMEM) |
| 670 | mem = vm_page_grablo(); |
| 671 | else |
| 672 | mem = vm_page_grab(); |
| 673 | |
| 674 | if (mem != VM_PAGE_NULL) |
| 675 | break; |
| 676 | |
| 677 | if (flags & KMA_NOPAGEWAIT) { |
| 678 | kr = KERN_RESOURCE_SHORTAGE; |
| 679 | goto out; |
| 680 | } |
| 681 | if ((flags & KMA_LOMEM) && |
| 682 | (vm_lopage_needed == TRUE)) { |
| 683 | kr = KERN_RESOURCE_SHORTAGE; |
| 684 | goto out; |
| 685 | } |
| 686 | VM_PAGE_WAIT(); |
| 687 | } |
| 688 | page_grab_count++; |
| 689 | if (KMA_ZERO & flags) vm_page_zero_fill(mem); |
| 690 | mem->vmp_snext = page_list; |
| 691 | page_list = mem; |
| 692 | } |
| 693 | if (flags & KMA_KOBJECT) { |
| 694 | offset = addr; |
| 695 | object = kernel_object; |
| 696 | |
| 697 | vm_object_lock(object); |
| 698 | } else { |
| 699 | /* |
| 700 | * If it's not the kernel object, we need to: |
| 701 | * lock map; |
| 702 | * lookup entry; |
| 703 | * lock object; |
| 704 | * take reference on object; |
| 705 | * unlock map; |
| 706 | */ |
| 707 | panic("kernel_memory_populate(%p,0x%llx,0x%llx,0x%x): " |
| 708 | "!KMA_KOBJECT" , |
| 709 | map, (uint64_t) addr, (uint64_t) size, flags); |
| 710 | } |
| 711 | |
| 712 | for (pg_offset = 0; |
| 713 | pg_offset < size; |
| 714 | pg_offset += PAGE_SIZE_64) { |
| 715 | |
| 716 | if (page_list == NULL) |
| 717 | panic("kernel_memory_populate: page_list == NULL" ); |
| 718 | |
| 719 | mem = page_list; |
| 720 | page_list = mem->vmp_snext; |
| 721 | mem->vmp_snext = NULL; |
| 722 | |
| 723 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 724 | mem->vmp_q_state = VM_PAGE_IS_WIRED; |
| 725 | mem->vmp_wire_count++; |
| 726 | if (__improbable(mem->vmp_wire_count == 0)) { |
| 727 | panic("kernel_memory_populate(%p): wire_count overflow" , mem); |
| 728 | } |
| 729 | |
| 730 | vm_page_insert_wired(mem, object, offset + pg_offset, tag); |
| 731 | |
| 732 | mem->vmp_busy = FALSE; |
| 733 | mem->vmp_pmapped = TRUE; |
| 734 | mem->vmp_wpmapped = TRUE; |
| 735 | |
| 736 | PMAP_ENTER_OPTIONS(kernel_pmap, addr + pg_offset, mem, |
| 737 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, |
| 738 | ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE, |
| 739 | PMAP_OPTIONS_NOWAIT, pe_result); |
| 740 | |
| 741 | if (pe_result == KERN_RESOURCE_SHORTAGE) { |
| 742 | |
| 743 | vm_object_unlock(object); |
| 744 | |
| 745 | PMAP_ENTER(kernel_pmap, addr + pg_offset, mem, |
| 746 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, |
| 747 | ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE, |
| 748 | pe_result); |
| 749 | |
| 750 | vm_object_lock(object); |
| 751 | } |
| 752 | |
| 753 | assert(pe_result == KERN_SUCCESS); |
| 754 | |
| 755 | if (flags & KMA_NOENCRYPT) { |
| 756 | bzero(CAST_DOWN(void *, (addr + pg_offset)), PAGE_SIZE); |
| 757 | pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 758 | } |
| 759 | } |
| 760 | vm_page_lockspin_queues(); |
| 761 | vm_page_wire_count += page_count; |
| 762 | vm_page_unlock_queues(); |
| 763 | |
| 764 | #if DEBUG || DEVELOPMENT |
| 765 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 766 | #endif |
| 767 | |
| 768 | if (kernel_object == object) vm_tag_update_size(tag, size); |
| 769 | |
| 770 | vm_object_unlock(object); |
| 771 | |
| 772 | #if KASAN |
| 773 | if (map == compressor_map) { |
| 774 | kasan_notify_address_nopoison(addr, size); |
| 775 | } else { |
| 776 | kasan_notify_address(addr, size); |
| 777 | } |
| 778 | #endif |
| 779 | return KERN_SUCCESS; |
| 780 | |
| 781 | out: |
| 782 | if (page_list) |
| 783 | vm_page_free_list(page_list, FALSE); |
| 784 | |
| 785 | #if DEBUG || DEVELOPMENT |
| 786 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 787 | #endif |
| 788 | |
| 789 | return kr; |
| 790 | } |
| 791 | |
| 792 | |
| 793 | void |
| 794 | kernel_memory_depopulate( |
| 795 | vm_map_t map, |
| 796 | vm_offset_t addr, |
| 797 | vm_size_t size, |
| 798 | int flags) |
| 799 | { |
| 800 | vm_object_t object; |
| 801 | vm_object_offset_t offset, pg_offset; |
| 802 | vm_page_t mem; |
| 803 | vm_page_t local_freeq = NULL; |
| 804 | |
| 805 | assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT)); |
| 806 | |
| 807 | if (flags & KMA_COMPRESSOR) { |
| 808 | offset = addr; |
| 809 | object = compressor_object; |
| 810 | |
| 811 | vm_object_lock(object); |
| 812 | } else if (flags & KMA_KOBJECT) { |
| 813 | offset = addr; |
| 814 | object = kernel_object; |
| 815 | vm_object_lock(object); |
| 816 | } else { |
| 817 | offset = 0; |
| 818 | object = NULL; |
| 819 | /* |
| 820 | * If it's not the kernel object, we need to: |
| 821 | * lock map; |
| 822 | * lookup entry; |
| 823 | * lock object; |
| 824 | * unlock map; |
| 825 | */ |
| 826 | panic("kernel_memory_depopulate(%p,0x%llx,0x%llx,0x%x): " |
| 827 | "!KMA_KOBJECT" , |
| 828 | map, (uint64_t) addr, (uint64_t) size, flags); |
| 829 | } |
| 830 | pmap_protect(kernel_map->pmap, offset, offset + size, VM_PROT_NONE); |
| 831 | |
| 832 | for (pg_offset = 0; |
| 833 | pg_offset < size; |
| 834 | pg_offset += PAGE_SIZE_64) { |
| 835 | |
| 836 | mem = vm_page_lookup(object, offset + pg_offset); |
| 837 | |
| 838 | assert(mem); |
| 839 | |
| 840 | if (mem->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR) |
| 841 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 842 | |
| 843 | mem->vmp_busy = TRUE; |
| 844 | |
| 845 | assert(mem->vmp_tabled); |
| 846 | vm_page_remove(mem, TRUE); |
| 847 | assert(mem->vmp_busy); |
| 848 | |
| 849 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 850 | assert((mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || |
| 851 | (mem->vmp_q_state == VM_PAGE_NOT_ON_Q)); |
| 852 | |
| 853 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 854 | mem->vmp_snext = local_freeq; |
| 855 | local_freeq = mem; |
| 856 | } |
| 857 | vm_object_unlock(object); |
| 858 | |
| 859 | if (local_freeq) |
| 860 | vm_page_free_list(local_freeq, TRUE); |
| 861 | } |
| 862 | |
| 863 | /* |
| 864 | * kmem_alloc: |
| 865 | * |
| 866 | * Allocate wired-down memory in the kernel's address map |
| 867 | * or a submap. The memory is not zero-filled. |
| 868 | */ |
| 869 | |
| 870 | kern_return_t |
| 871 | kmem_alloc_external( |
| 872 | vm_map_t map, |
| 873 | vm_offset_t *addrp, |
| 874 | vm_size_t size) |
| 875 | { |
| 876 | return (kmem_alloc(map, addrp, size, vm_tag_bt())); |
| 877 | } |
| 878 | |
| 879 | |
| 880 | kern_return_t |
| 881 | kmem_alloc( |
| 882 | vm_map_t map, |
| 883 | vm_offset_t *addrp, |
| 884 | vm_size_t size, |
| 885 | vm_tag_t tag) |
| 886 | { |
| 887 | return kmem_alloc_flags(map, addrp, size, tag, 0); |
| 888 | } |
| 889 | |
| 890 | kern_return_t |
| 891 | kmem_alloc_flags( |
| 892 | vm_map_t map, |
| 893 | vm_offset_t *addrp, |
| 894 | vm_size_t size, |
| 895 | vm_tag_t tag, |
| 896 | int flags) |
| 897 | { |
| 898 | kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, flags, tag); |
| 899 | TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp); |
| 900 | return kr; |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * kmem_realloc: |
| 905 | * |
| 906 | * Reallocate wired-down memory in the kernel's address map |
| 907 | * or a submap. Newly allocated pages are not zeroed. |
| 908 | * This can only be used on regions allocated with kmem_alloc. |
| 909 | * |
| 910 | * If successful, the pages in the old region are mapped twice. |
| 911 | * The old region is unchanged. Use kmem_free to get rid of it. |
| 912 | */ |
| 913 | kern_return_t |
| 914 | kmem_realloc( |
| 915 | vm_map_t map, |
| 916 | vm_offset_t oldaddr, |
| 917 | vm_size_t oldsize, |
| 918 | vm_offset_t *newaddrp, |
| 919 | vm_size_t newsize, |
| 920 | vm_tag_t tag) |
| 921 | { |
| 922 | vm_object_t object; |
| 923 | vm_object_offset_t offset; |
| 924 | vm_map_offset_t oldmapmin; |
| 925 | vm_map_offset_t oldmapmax; |
| 926 | vm_map_offset_t newmapaddr; |
| 927 | vm_map_size_t oldmapsize; |
| 928 | vm_map_size_t newmapsize; |
| 929 | vm_map_entry_t oldentry; |
| 930 | vm_map_entry_t newentry; |
| 931 | vm_page_t mem; |
| 932 | kern_return_t kr; |
| 933 | |
| 934 | oldmapmin = vm_map_trunc_page(oldaddr, |
| 935 | VM_MAP_PAGE_MASK(map)); |
| 936 | oldmapmax = vm_map_round_page(oldaddr + oldsize, |
| 937 | VM_MAP_PAGE_MASK(map)); |
| 938 | oldmapsize = oldmapmax - oldmapmin; |
| 939 | newmapsize = vm_map_round_page(newsize, |
| 940 | VM_MAP_PAGE_MASK(map)); |
| 941 | if (newmapsize < newsize) { |
| 942 | /* overflow */ |
| 943 | *newaddrp = 0; |
| 944 | return KERN_INVALID_ARGUMENT; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * Find the VM object backing the old region. |
| 949 | */ |
| 950 | |
| 951 | vm_map_lock(map); |
| 952 | |
| 953 | if (!vm_map_lookup_entry(map, oldmapmin, &oldentry)) |
| 954 | panic("kmem_realloc" ); |
| 955 | object = VME_OBJECT(oldentry); |
| 956 | |
| 957 | /* |
| 958 | * Increase the size of the object and |
| 959 | * fill in the new region. |
| 960 | */ |
| 961 | |
| 962 | vm_object_reference(object); |
| 963 | /* by grabbing the object lock before unlocking the map */ |
| 964 | /* we guarantee that we will panic if more than one */ |
| 965 | /* attempt is made to realloc a kmem_alloc'd area */ |
| 966 | vm_object_lock(object); |
| 967 | vm_map_unlock(map); |
| 968 | if (object->vo_size != oldmapsize) |
| 969 | panic("kmem_realloc" ); |
| 970 | object->vo_size = newmapsize; |
| 971 | vm_object_unlock(object); |
| 972 | |
| 973 | /* allocate the new pages while expanded portion of the */ |
| 974 | /* object is still not mapped */ |
| 975 | kmem_alloc_pages(object, vm_object_round_page(oldmapsize), |
| 976 | vm_object_round_page(newmapsize-oldmapsize)); |
| 977 | |
| 978 | /* |
| 979 | * Find space for the new region. |
| 980 | */ |
| 981 | |
| 982 | kr = vm_map_find_space(map, &newmapaddr, newmapsize, |
| 983 | (vm_map_offset_t) 0, 0, |
| 984 | VM_MAP_KERNEL_FLAGS_NONE, |
| 985 | tag, |
| 986 | &newentry); |
| 987 | if (kr != KERN_SUCCESS) { |
| 988 | vm_object_lock(object); |
| 989 | for(offset = oldmapsize; |
| 990 | offset < newmapsize; offset += PAGE_SIZE) { |
| 991 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 992 | VM_PAGE_FREE(mem); |
| 993 | } |
| 994 | } |
| 995 | object->vo_size = oldmapsize; |
| 996 | vm_object_unlock(object); |
| 997 | vm_object_deallocate(object); |
| 998 | return kr; |
| 999 | } |
| 1000 | VME_OBJECT_SET(newentry, object); |
| 1001 | VME_OFFSET_SET(newentry, 0); |
| 1002 | assert(newentry->wired_count == 0); |
| 1003 | |
| 1004 | |
| 1005 | /* add an extra reference in case we have someone doing an */ |
| 1006 | /* unexpected deallocate */ |
| 1007 | vm_object_reference(object); |
| 1008 | vm_map_unlock(map); |
| 1009 | |
| 1010 | kr = vm_map_wire_kernel(map, newmapaddr, newmapaddr + newmapsize, |
| 1011 | VM_PROT_DEFAULT, tag, FALSE); |
| 1012 | if (KERN_SUCCESS != kr) { |
| 1013 | vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, VM_MAP_REMOVE_NO_FLAGS); |
| 1014 | vm_object_lock(object); |
| 1015 | for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) { |
| 1016 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 1017 | VM_PAGE_FREE(mem); |
| 1018 | } |
| 1019 | } |
| 1020 | object->vo_size = oldmapsize; |
| 1021 | vm_object_unlock(object); |
| 1022 | vm_object_deallocate(object); |
| 1023 | return (kr); |
| 1024 | } |
| 1025 | vm_object_deallocate(object); |
| 1026 | |
| 1027 | if (kernel_object == object) vm_tag_update_size(tag, newmapsize); |
| 1028 | |
| 1029 | *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr); |
| 1030 | return KERN_SUCCESS; |
| 1031 | } |
| 1032 | |
| 1033 | /* |
| 1034 | * kmem_alloc_kobject: |
| 1035 | * |
| 1036 | * Allocate wired-down memory in the kernel's address map |
| 1037 | * or a submap. The memory is not zero-filled. |
| 1038 | * |
| 1039 | * The memory is allocated in the kernel_object. |
| 1040 | * It may not be copied with vm_map_copy, and |
| 1041 | * it may not be reallocated with kmem_realloc. |
| 1042 | */ |
| 1043 | |
| 1044 | kern_return_t |
| 1045 | kmem_alloc_kobject_external( |
| 1046 | vm_map_t map, |
| 1047 | vm_offset_t *addrp, |
| 1048 | vm_size_t size) |
| 1049 | { |
| 1050 | return (kmem_alloc_kobject(map, addrp, size, vm_tag_bt())); |
| 1051 | } |
| 1052 | |
| 1053 | kern_return_t |
| 1054 | kmem_alloc_kobject( |
| 1055 | vm_map_t map, |
| 1056 | vm_offset_t *addrp, |
| 1057 | vm_size_t size, |
| 1058 | vm_tag_t tag) |
| 1059 | { |
| 1060 | return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT, tag); |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * kmem_alloc_aligned: |
| 1065 | * |
| 1066 | * Like kmem_alloc_kobject, except that the memory is aligned. |
| 1067 | * The size should be a power-of-2. |
| 1068 | */ |
| 1069 | |
| 1070 | kern_return_t |
| 1071 | kmem_alloc_aligned( |
| 1072 | vm_map_t map, |
| 1073 | vm_offset_t *addrp, |
| 1074 | vm_size_t size, |
| 1075 | vm_tag_t tag) |
| 1076 | { |
| 1077 | if ((size & (size - 1)) != 0) |
| 1078 | panic("kmem_alloc_aligned: size not aligned" ); |
| 1079 | return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT, tag); |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * kmem_alloc_pageable: |
| 1084 | * |
| 1085 | * Allocate pageable memory in the kernel's address map. |
| 1086 | */ |
| 1087 | |
| 1088 | kern_return_t |
| 1089 | kmem_alloc_pageable_external( |
| 1090 | vm_map_t map, |
| 1091 | vm_offset_t *addrp, |
| 1092 | vm_size_t size) |
| 1093 | { |
| 1094 | return (kmem_alloc_pageable(map, addrp, size, vm_tag_bt())); |
| 1095 | } |
| 1096 | |
| 1097 | kern_return_t |
| 1098 | kmem_alloc_pageable( |
| 1099 | vm_map_t map, |
| 1100 | vm_offset_t *addrp, |
| 1101 | vm_size_t size, |
| 1102 | vm_tag_t tag) |
| 1103 | { |
| 1104 | vm_map_offset_t map_addr; |
| 1105 | vm_map_size_t map_size; |
| 1106 | kern_return_t kr; |
| 1107 | |
| 1108 | #ifndef normal |
| 1109 | map_addr = (vm_map_min(map)) + PAGE_SIZE; |
| 1110 | #else |
| 1111 | map_addr = vm_map_min(map); |
| 1112 | #endif |
| 1113 | map_size = vm_map_round_page(size, |
| 1114 | VM_MAP_PAGE_MASK(map)); |
| 1115 | if (map_size < size) { |
| 1116 | /* overflow */ |
| 1117 | *addrp = 0; |
| 1118 | return KERN_INVALID_ARGUMENT; |
| 1119 | } |
| 1120 | |
| 1121 | kr = vm_map_enter(map, &map_addr, map_size, |
| 1122 | (vm_map_offset_t) 0, |
| 1123 | VM_FLAGS_ANYWHERE, |
| 1124 | VM_MAP_KERNEL_FLAGS_NONE, |
| 1125 | tag, |
| 1126 | VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE, |
| 1127 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); |
| 1128 | |
| 1129 | if (kr != KERN_SUCCESS) |
| 1130 | return kr; |
| 1131 | |
| 1132 | #if KASAN |
| 1133 | kasan_notify_address(map_addr, map_size); |
| 1134 | #endif |
| 1135 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
| 1136 | return KERN_SUCCESS; |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * kmem_free: |
| 1141 | * |
| 1142 | * Release a region of kernel virtual memory allocated |
| 1143 | * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable, |
| 1144 | * and return the physical pages associated with that region. |
| 1145 | */ |
| 1146 | |
| 1147 | void |
| 1148 | kmem_free( |
| 1149 | vm_map_t map, |
| 1150 | vm_offset_t addr, |
| 1151 | vm_size_t size) |
| 1152 | { |
| 1153 | kern_return_t kr; |
| 1154 | |
| 1155 | assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS); |
| 1156 | |
| 1157 | TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr); |
| 1158 | |
| 1159 | if(size == 0) { |
| 1160 | #if MACH_ASSERT |
| 1161 | printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n" ,map,(uint64_t)addr); |
| 1162 | #endif |
| 1163 | return; |
| 1164 | } |
| 1165 | |
| 1166 | kr = vm_map_remove(map, |
| 1167 | vm_map_trunc_page(addr, |
| 1168 | VM_MAP_PAGE_MASK(map)), |
| 1169 | vm_map_round_page(addr + size, |
| 1170 | VM_MAP_PAGE_MASK(map)), |
| 1171 | VM_MAP_REMOVE_KUNWIRE); |
| 1172 | if (kr != KERN_SUCCESS) |
| 1173 | panic("kmem_free" ); |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * Allocate new pages in an object. |
| 1178 | */ |
| 1179 | |
| 1180 | kern_return_t |
| 1181 | kmem_alloc_pages( |
| 1182 | vm_object_t object, |
| 1183 | vm_object_offset_t offset, |
| 1184 | vm_object_size_t size) |
| 1185 | { |
| 1186 | vm_object_size_t alloc_size; |
| 1187 | |
| 1188 | alloc_size = vm_object_round_page(size); |
| 1189 | vm_object_lock(object); |
| 1190 | while (alloc_size) { |
| 1191 | vm_page_t mem; |
| 1192 | |
| 1193 | |
| 1194 | /* |
| 1195 | * Allocate a page |
| 1196 | */ |
| 1197 | while (VM_PAGE_NULL == |
| 1198 | (mem = vm_page_alloc(object, offset))) { |
| 1199 | vm_object_unlock(object); |
| 1200 | VM_PAGE_WAIT(); |
| 1201 | vm_object_lock(object); |
| 1202 | } |
| 1203 | mem->vmp_busy = FALSE; |
| 1204 | |
| 1205 | alloc_size -= PAGE_SIZE; |
| 1206 | offset += PAGE_SIZE; |
| 1207 | } |
| 1208 | vm_object_unlock(object); |
| 1209 | return KERN_SUCCESS; |
| 1210 | } |
| 1211 | |
| 1212 | /* |
| 1213 | * kmem_suballoc: |
| 1214 | * |
| 1215 | * Allocates a map to manage a subrange |
| 1216 | * of the kernel virtual address space. |
| 1217 | * |
| 1218 | * Arguments are as follows: |
| 1219 | * |
| 1220 | * parent Map to take range from |
| 1221 | * addr Address of start of range (IN/OUT) |
| 1222 | * size Size of range to find |
| 1223 | * pageable Can region be paged |
| 1224 | * anywhere Can region be located anywhere in map |
| 1225 | * new_map Pointer to new submap |
| 1226 | */ |
| 1227 | kern_return_t |
| 1228 | kmem_suballoc( |
| 1229 | vm_map_t parent, |
| 1230 | vm_offset_t *addr, |
| 1231 | vm_size_t size, |
| 1232 | boolean_t pageable, |
| 1233 | int flags, |
| 1234 | vm_map_kernel_flags_t vmk_flags, |
| 1235 | vm_tag_t tag, |
| 1236 | vm_map_t *new_map) |
| 1237 | { |
| 1238 | vm_map_t map; |
| 1239 | vm_map_offset_t map_addr; |
| 1240 | vm_map_size_t map_size; |
| 1241 | kern_return_t kr; |
| 1242 | |
| 1243 | map_size = vm_map_round_page(size, |
| 1244 | VM_MAP_PAGE_MASK(parent)); |
| 1245 | if (map_size < size) { |
| 1246 | /* overflow */ |
| 1247 | *addr = 0; |
| 1248 | return KERN_INVALID_ARGUMENT; |
| 1249 | } |
| 1250 | |
| 1251 | /* |
| 1252 | * Need reference on submap object because it is internal |
| 1253 | * to the vm_system. vm_object_enter will never be called |
| 1254 | * on it (usual source of reference for vm_map_enter). |
| 1255 | */ |
| 1256 | vm_object_reference(vm_submap_object); |
| 1257 | |
| 1258 | map_addr = ((flags & VM_FLAGS_ANYWHERE) |
| 1259 | ? vm_map_min(parent) |
| 1260 | : vm_map_trunc_page(*addr, |
| 1261 | VM_MAP_PAGE_MASK(parent))); |
| 1262 | |
| 1263 | kr = vm_map_enter(parent, &map_addr, map_size, |
| 1264 | (vm_map_offset_t) 0, flags, vmk_flags, tag, |
| 1265 | vm_submap_object, (vm_object_offset_t) 0, FALSE, |
| 1266 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); |
| 1267 | if (kr != KERN_SUCCESS) { |
| 1268 | vm_object_deallocate(vm_submap_object); |
| 1269 | return (kr); |
| 1270 | } |
| 1271 | |
| 1272 | pmap_reference(vm_map_pmap(parent)); |
| 1273 | map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable); |
| 1274 | if (map == VM_MAP_NULL) |
| 1275 | panic("kmem_suballoc: vm_map_create failed" ); /* "can't happen" */ |
| 1276 | /* inherit the parent map's page size */ |
| 1277 | vm_map_set_page_shift(map, VM_MAP_PAGE_SHIFT(parent)); |
| 1278 | |
| 1279 | kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE); |
| 1280 | if (kr != KERN_SUCCESS) { |
| 1281 | /* |
| 1282 | * See comment preceding vm_map_submap(). |
| 1283 | */ |
| 1284 | vm_map_remove(parent, map_addr, map_addr + map_size, |
| 1285 | VM_MAP_REMOVE_NO_FLAGS); |
| 1286 | vm_map_deallocate(map); /* also removes ref to pmap */ |
| 1287 | vm_object_deallocate(vm_submap_object); |
| 1288 | return (kr); |
| 1289 | } |
| 1290 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
| 1291 | *new_map = map; |
| 1292 | return (KERN_SUCCESS); |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * kmem_init: |
| 1297 | * |
| 1298 | * Initialize the kernel's virtual memory map, taking |
| 1299 | * into account all memory allocated up to this time. |
| 1300 | */ |
| 1301 | void |
| 1302 | kmem_init( |
| 1303 | vm_offset_t start, |
| 1304 | vm_offset_t end) |
| 1305 | { |
| 1306 | vm_map_offset_t map_start; |
| 1307 | vm_map_offset_t map_end; |
| 1308 | vm_map_kernel_flags_t vmk_flags; |
| 1309 | |
| 1310 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1311 | vmk_flags.vmkf_permanent = TRUE; |
| 1312 | vmk_flags.vmkf_no_pmap_check = TRUE; |
| 1313 | |
| 1314 | map_start = vm_map_trunc_page(start, |
| 1315 | VM_MAP_PAGE_MASK(kernel_map)); |
| 1316 | map_end = vm_map_round_page(end, |
| 1317 | VM_MAP_PAGE_MASK(kernel_map)); |
| 1318 | |
| 1319 | #if defined(__arm__) || defined(__arm64__) |
| 1320 | kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 1321 | VM_MAX_KERNEL_ADDRESS, FALSE); |
| 1322 | /* |
| 1323 | * Reserve virtual memory allocated up to this time. |
| 1324 | */ |
| 1325 | { |
| 1326 | unsigned int region_select = 0; |
| 1327 | vm_map_offset_t region_start; |
| 1328 | vm_map_size_t region_size; |
| 1329 | vm_map_offset_t map_addr; |
| 1330 | kern_return_t kr; |
| 1331 | |
| 1332 | while (pmap_virtual_region(region_select, ®ion_start, ®ion_size)) { |
| 1333 | |
| 1334 | map_addr = region_start; |
| 1335 | kr = vm_map_enter(kernel_map, &map_addr, |
| 1336 | vm_map_round_page(region_size, |
| 1337 | VM_MAP_PAGE_MASK(kernel_map)), |
| 1338 | (vm_map_offset_t) 0, |
| 1339 | VM_FLAGS_FIXED, |
| 1340 | vmk_flags, |
| 1341 | VM_KERN_MEMORY_NONE, |
| 1342 | VM_OBJECT_NULL, |
| 1343 | (vm_object_offset_t) 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, |
| 1344 | VM_INHERIT_DEFAULT); |
| 1345 | |
| 1346 | if (kr != KERN_SUCCESS) { |
| 1347 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n" , |
| 1348 | (uint64_t) start, (uint64_t) end, (uint64_t) region_start, |
| 1349 | (uint64_t) region_size, kr); |
| 1350 | } |
| 1351 | |
| 1352 | region_select++; |
| 1353 | } |
| 1354 | } |
| 1355 | #else |
| 1356 | kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 1357 | map_end, FALSE); |
| 1358 | /* |
| 1359 | * Reserve virtual memory allocated up to this time. |
| 1360 | */ |
| 1361 | if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
| 1362 | vm_map_offset_t map_addr; |
| 1363 | kern_return_t kr; |
| 1364 | |
| 1365 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1366 | vmk_flags.vmkf_no_pmap_check = TRUE; |
| 1367 | |
| 1368 | map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
| 1369 | kr = vm_map_enter(kernel_map, |
| 1370 | &map_addr, |
| 1371 | (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), |
| 1372 | (vm_map_offset_t) 0, |
| 1373 | VM_FLAGS_FIXED, |
| 1374 | vmk_flags, |
| 1375 | VM_KERN_MEMORY_NONE, |
| 1376 | VM_OBJECT_NULL, |
| 1377 | (vm_object_offset_t) 0, FALSE, |
| 1378 | VM_PROT_NONE, VM_PROT_NONE, |
| 1379 | VM_INHERIT_DEFAULT); |
| 1380 | |
| 1381 | if (kr != KERN_SUCCESS) { |
| 1382 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n" , |
| 1383 | (uint64_t) start, (uint64_t) end, |
| 1384 | (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 1385 | (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), |
| 1386 | kr); |
| 1387 | } |
| 1388 | } |
| 1389 | #endif |
| 1390 | |
| 1391 | /* |
| 1392 | * Set the default global user wire limit which limits the amount of |
| 1393 | * memory that can be locked via mlock(). We set this to the total |
| 1394 | * amount of memory that are potentially usable by a user app (max_mem) |
| 1395 | * minus a certain amount. This can be overridden via a sysctl. |
| 1396 | */ |
| 1397 | vm_global_no_user_wire_amount = MIN(max_mem*20/100, |
| 1398 | VM_NOT_USER_WIREABLE); |
| 1399 | vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount; |
| 1400 | |
| 1401 | /* the default per user limit is the same as the global limit */ |
| 1402 | vm_user_wire_limit = vm_global_user_wire_limit; |
| 1403 | } |
| 1404 | |
| 1405 | |
| 1406 | /* |
| 1407 | * Routine: copyinmap |
| 1408 | * Purpose: |
| 1409 | * Like copyin, except that fromaddr is an address |
| 1410 | * in the specified VM map. This implementation |
| 1411 | * is incomplete; it handles the current user map |
| 1412 | * and the kernel map/submaps. |
| 1413 | */ |
| 1414 | kern_return_t |
| 1415 | copyinmap( |
| 1416 | vm_map_t map, |
| 1417 | vm_map_offset_t fromaddr, |
| 1418 | void *todata, |
| 1419 | vm_size_t length) |
| 1420 | { |
| 1421 | kern_return_t kr = KERN_SUCCESS; |
| 1422 | vm_map_t oldmap; |
| 1423 | |
| 1424 | if (vm_map_pmap(map) == pmap_kernel()) |
| 1425 | { |
| 1426 | /* assume a correct copy */ |
| 1427 | memcpy(todata, CAST_DOWN(void *, fromaddr), length); |
| 1428 | } |
| 1429 | else if (current_map() == map) |
| 1430 | { |
| 1431 | if (copyin(fromaddr, todata, length) != 0) |
| 1432 | kr = KERN_INVALID_ADDRESS; |
| 1433 | } |
| 1434 | else |
| 1435 | { |
| 1436 | vm_map_reference(map); |
| 1437 | oldmap = vm_map_switch(map); |
| 1438 | if (copyin(fromaddr, todata, length) != 0) |
| 1439 | kr = KERN_INVALID_ADDRESS; |
| 1440 | vm_map_switch(oldmap); |
| 1441 | vm_map_deallocate(map); |
| 1442 | } |
| 1443 | return kr; |
| 1444 | } |
| 1445 | |
| 1446 | /* |
| 1447 | * Routine: copyoutmap |
| 1448 | * Purpose: |
| 1449 | * Like copyout, except that toaddr is an address |
| 1450 | * in the specified VM map. This implementation |
| 1451 | * is incomplete; it handles the current user map |
| 1452 | * and the kernel map/submaps. |
| 1453 | */ |
| 1454 | kern_return_t |
| 1455 | copyoutmap( |
| 1456 | vm_map_t map, |
| 1457 | void *fromdata, |
| 1458 | vm_map_address_t toaddr, |
| 1459 | vm_size_t length) |
| 1460 | { |
| 1461 | if (vm_map_pmap(map) == pmap_kernel()) { |
| 1462 | /* assume a correct copy */ |
| 1463 | memcpy(CAST_DOWN(void *, toaddr), fromdata, length); |
| 1464 | return KERN_SUCCESS; |
| 1465 | } |
| 1466 | |
| 1467 | if (current_map() != map) |
| 1468 | return KERN_NOT_SUPPORTED; |
| 1469 | |
| 1470 | if (copyout(fromdata, toaddr, length) != 0) |
| 1471 | return KERN_INVALID_ADDRESS; |
| 1472 | |
| 1473 | return KERN_SUCCESS; |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * |
| 1478 | * The following two functions are to be used when exposing kernel |
| 1479 | * addresses to userspace via any of the various debug or info |
| 1480 | * facilities that exist. These are basically the same as VM_KERNEL_ADDRPERM() |
| 1481 | * and VM_KERNEL_UNSLIDE_OR_PERM() except they use a different random seed and |
| 1482 | * are exported to KEXTs. |
| 1483 | * |
| 1484 | * NOTE: USE THE MACRO VERSIONS OF THESE FUNCTIONS (in vm_param.h) FROM WITHIN THE KERNEL |
| 1485 | */ |
| 1486 | |
| 1487 | static void |
| 1488 | vm_kernel_addrhash_internal( |
| 1489 | vm_offset_t addr, |
| 1490 | vm_offset_t *hash_addr, |
| 1491 | uint64_t salt) |
| 1492 | { |
| 1493 | assert(salt != 0); |
| 1494 | |
| 1495 | if (addr == 0) { |
| 1496 | *hash_addr = 0; |
| 1497 | return; |
| 1498 | } |
| 1499 | |
| 1500 | if (VM_KERNEL_IS_SLID(addr)) { |
| 1501 | *hash_addr = VM_KERNEL_UNSLIDE(addr); |
| 1502 | return; |
| 1503 | } |
| 1504 | |
| 1505 | vm_offset_t sha_digest[SHA256_DIGEST_LENGTH/sizeof(vm_offset_t)]; |
| 1506 | SHA256_CTX sha_ctx; |
| 1507 | |
| 1508 | SHA256_Init(&sha_ctx); |
| 1509 | SHA256_Update(&sha_ctx, &salt, sizeof(salt)); |
| 1510 | SHA256_Update(&sha_ctx, &addr, sizeof(addr)); |
| 1511 | SHA256_Final(sha_digest, &sha_ctx); |
| 1512 | |
| 1513 | *hash_addr = sha_digest[0]; |
| 1514 | } |
| 1515 | |
| 1516 | void |
| 1517 | vm_kernel_addrhash_external( |
| 1518 | vm_offset_t addr, |
| 1519 | vm_offset_t *hash_addr) |
| 1520 | { |
| 1521 | return vm_kernel_addrhash_internal(addr, hash_addr, vm_kernel_addrhash_salt_ext); |
| 1522 | } |
| 1523 | |
| 1524 | vm_offset_t |
| 1525 | vm_kernel_addrhash(vm_offset_t addr) |
| 1526 | { |
| 1527 | vm_offset_t hash_addr; |
| 1528 | vm_kernel_addrhash_internal(addr, &hash_addr, vm_kernel_addrhash_salt); |
| 1529 | return hash_addr; |
| 1530 | } |
| 1531 | |
| 1532 | void |
| 1533 | vm_kernel_addrhide( |
| 1534 | vm_offset_t addr, |
| 1535 | vm_offset_t *hide_addr) |
| 1536 | { |
| 1537 | *hide_addr = VM_KERNEL_ADDRHIDE(addr); |
| 1538 | } |
| 1539 | |
| 1540 | /* |
| 1541 | * vm_kernel_addrperm_external: |
| 1542 | * vm_kernel_unslide_or_perm_external: |
| 1543 | * |
| 1544 | * Use these macros when exposing an address to userspace that could come from |
| 1545 | * either kernel text/data *or* the heap. |
| 1546 | */ |
| 1547 | void |
| 1548 | vm_kernel_addrperm_external( |
| 1549 | vm_offset_t addr, |
| 1550 | vm_offset_t *perm_addr) |
| 1551 | { |
| 1552 | if (VM_KERNEL_IS_SLID(addr)) { |
| 1553 | *perm_addr = VM_KERNEL_UNSLIDE(addr); |
| 1554 | } else if (VM_KERNEL_ADDRESS(addr)) { |
| 1555 | *perm_addr = addr + vm_kernel_addrperm_ext; |
| 1556 | } else { |
| 1557 | *perm_addr = addr; |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | void |
| 1562 | vm_kernel_unslide_or_perm_external( |
| 1563 | vm_offset_t addr, |
| 1564 | vm_offset_t *up_addr) |
| 1565 | { |
| 1566 | vm_kernel_addrperm_external(addr, up_addr); |
| 1567 | } |
| 1568 | |