| 1 | /* |
| 2 | * Copyright (c) 2011 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* Collect kernel callstacks */ |
| 30 | |
| 31 | #include <mach/mach_types.h> |
| 32 | #include <kern/thread.h> |
| 33 | #include <kern/backtrace.h> |
| 34 | #include <vm/vm_map.h> |
| 35 | #include <kperf/buffer.h> |
| 36 | #include <kperf/context.h> |
| 37 | #include <kperf/callstack.h> |
| 38 | #include <kperf/ast.h> |
| 39 | #include <sys/errno.h> |
| 40 | |
| 41 | #if defined(__arm__) || defined(__arm64__) |
| 42 | #include <arm/cpu_data.h> |
| 43 | #include <arm/cpu_data_internal.h> |
| 44 | #endif |
| 45 | |
| 46 | static void |
| 47 | callstack_fixup_user(struct callstack *cs, thread_t thread) |
| 48 | { |
| 49 | uint64_t fixup_val = 0; |
| 50 | assert(cs->nframes < MAX_CALLSTACK_FRAMES); |
| 51 | |
| 52 | #if defined(__x86_64__) |
| 53 | user_addr_t sp_user; |
| 54 | bool user_64; |
| 55 | x86_saved_state_t *state; |
| 56 | |
| 57 | state = get_user_regs(thread); |
| 58 | if (!state) { |
| 59 | goto out; |
| 60 | } |
| 61 | |
| 62 | user_64 = is_saved_state64(state); |
| 63 | if (user_64) { |
| 64 | sp_user = saved_state64(state)->isf.rsp; |
| 65 | } else { |
| 66 | sp_user = saved_state32(state)->uesp; |
| 67 | } |
| 68 | |
| 69 | if (thread == current_thread()) { |
| 70 | (void)copyin(sp_user, (char *)&fixup_val, |
| 71 | user_64 ? sizeof(uint64_t) : sizeof(uint32_t)); |
| 72 | } else { |
| 73 | (void)vm_map_read_user(get_task_map(get_threadtask(thread)), sp_user, |
| 74 | &fixup_val, user_64 ? sizeof(uint64_t) : sizeof(uint32_t)); |
| 75 | } |
| 76 | |
| 77 | #elif defined(__arm64__) || defined(__arm__) |
| 78 | |
| 79 | struct arm_saved_state *state = get_user_regs(thread); |
| 80 | if (!state) { |
| 81 | goto out; |
| 82 | } |
| 83 | |
| 84 | /* encode thumb mode into low bit of PC */ |
| 85 | if (get_saved_state_cpsr(state) & PSR_TF) { |
| 86 | cs->frames[0] |= 1ULL; |
| 87 | } |
| 88 | |
| 89 | fixup_val = get_saved_state_lr(state); |
| 90 | |
| 91 | #else |
| 92 | #error "callstack_fixup_user: unsupported architecture" |
| 93 | #endif |
| 94 | |
| 95 | out: |
| 96 | cs->frames[cs->nframes++] = fixup_val; |
| 97 | } |
| 98 | |
| 99 | #if defined(__x86_64__) |
| 100 | |
| 101 | __attribute__((used)) |
| 102 | static kern_return_t |
| 103 | interrupted_kernel_sp_value(uintptr_t *sp_val) |
| 104 | { |
| 105 | x86_saved_state_t *state; |
| 106 | uintptr_t sp; |
| 107 | bool state_64; |
| 108 | uint64_t cs; |
| 109 | uintptr_t top, bottom; |
| 110 | |
| 111 | state = current_cpu_datap()->cpu_int_state; |
| 112 | if (!state) { |
| 113 | return KERN_FAILURE; |
| 114 | } |
| 115 | |
| 116 | state_64 = is_saved_state64(state); |
| 117 | |
| 118 | if (state_64) { |
| 119 | cs = saved_state64(state)->isf.cs; |
| 120 | } else { |
| 121 | cs = saved_state32(state)->cs; |
| 122 | } |
| 123 | /* return early if interrupted a thread in user space */ |
| 124 | if ((cs & SEL_PL) == SEL_PL_U) { |
| 125 | return KERN_FAILURE; |
| 126 | } |
| 127 | |
| 128 | if (state_64) { |
| 129 | sp = saved_state64(state)->isf.rsp; |
| 130 | } else { |
| 131 | sp = saved_state32(state)->uesp; |
| 132 | } |
| 133 | |
| 134 | /* make sure the stack pointer is pointing somewhere in this stack */ |
| 135 | bottom = current_thread()->kernel_stack; |
| 136 | top = bottom + kernel_stack_size; |
| 137 | if (sp >= bottom && sp < top) { |
| 138 | return KERN_FAILURE; |
| 139 | } |
| 140 | |
| 141 | *sp_val = *(uintptr_t *)sp; |
| 142 | return KERN_SUCCESS; |
| 143 | } |
| 144 | |
| 145 | #elif defined(__arm64__) |
| 146 | |
| 147 | __attribute__((used)) |
| 148 | static kern_return_t |
| 149 | interrupted_kernel_lr(uintptr_t *lr) |
| 150 | { |
| 151 | struct arm_saved_state *state; |
| 152 | |
| 153 | state = getCpuDatap()->cpu_int_state; |
| 154 | |
| 155 | /* return early if interrupted a thread in user space */ |
| 156 | if (PSR64_IS_USER(get_saved_state_cpsr(state))) { |
| 157 | return KERN_FAILURE; |
| 158 | } |
| 159 | |
| 160 | *lr = get_saved_state_lr(state); |
| 161 | return KERN_SUCCESS; |
| 162 | } |
| 163 | |
| 164 | #elif defined(__arm__) |
| 165 | |
| 166 | __attribute__((used)) |
| 167 | static kern_return_t |
| 168 | interrupted_kernel_lr(uintptr_t *lr) |
| 169 | { |
| 170 | struct arm_saved_state *state; |
| 171 | |
| 172 | state = getCpuDatap()->cpu_int_state; |
| 173 | |
| 174 | /* return early if interrupted a thread in user space */ |
| 175 | if (PSR_IS_USER(get_saved_state_cpsr(state))) { |
| 176 | return KERN_FAILURE; |
| 177 | } |
| 178 | |
| 179 | *lr = get_saved_state_lr(state); |
| 180 | return KERN_SUCCESS; |
| 181 | } |
| 182 | |
| 183 | #else /* defined(__arm__) */ |
| 184 | #error "interrupted_kernel_{sp,lr}: unsupported architecture" |
| 185 | #endif /* !defined(__arm__) */ |
| 186 | |
| 187 | |
| 188 | static void |
| 189 | callstack_fixup_interrupted(struct callstack *cs) |
| 190 | { |
| 191 | uintptr_t fixup_val = 0; |
| 192 | assert(cs->nframes < MAX_CALLSTACK_FRAMES); |
| 193 | |
| 194 | /* |
| 195 | * Only provide arbitrary data on development or debug kernels. |
| 196 | */ |
| 197 | #if DEVELOPMENT || DEBUG |
| 198 | #if defined(__x86_64__) |
| 199 | (void)interrupted_kernel_sp_value(&fixup_val); |
| 200 | #elif defined(__arm64__) || defined(__arm__) |
| 201 | (void)interrupted_kernel_lr(&fixup_val); |
| 202 | #endif /* defined(__x86_64__) */ |
| 203 | #endif /* DEVELOPMENT || DEBUG */ |
| 204 | |
| 205 | assert(cs->flags & CALLSTACK_KERNEL); |
| 206 | cs->frames[cs->nframes++] = fixup_val; |
| 207 | } |
| 208 | |
| 209 | void |
| 210 | kperf_continuation_sample(struct callstack *cs, struct kperf_context *context) |
| 211 | { |
| 212 | thread_t thread; |
| 213 | |
| 214 | assert(cs != NULL); |
| 215 | assert(context != NULL); |
| 216 | |
| 217 | thread = context->cur_thread; |
| 218 | assert(thread != NULL); |
| 219 | assert(thread->continuation != NULL); |
| 220 | |
| 221 | cs->flags = CALLSTACK_CONTINUATION | CALLSTACK_VALID | CALLSTACK_KERNEL; |
| 222 | #ifdef __LP64__ |
| 223 | cs->flags |= CALLSTACK_64BIT; |
| 224 | #endif |
| 225 | |
| 226 | cs->nframes = 1; |
| 227 | cs->frames[0] = VM_KERNEL_UNSLIDE(thread->continuation); |
| 228 | } |
| 229 | |
| 230 | void |
| 231 | kperf_backtrace_sample(struct callstack *cs, struct kperf_context *context) |
| 232 | { |
| 233 | assert(cs != NULL); |
| 234 | assert(context != NULL); |
| 235 | assert(context->cur_thread == current_thread()); |
| 236 | |
| 237 | cs->flags = CALLSTACK_KERNEL | CALLSTACK_KERNEL_WORDS; |
| 238 | #ifdef __LP64__ |
| 239 | cs->flags |= CALLSTACK_64BIT; |
| 240 | #endif |
| 241 | |
| 242 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, 1); |
| 243 | |
| 244 | cs->nframes = backtrace_frame((uintptr_t *)&(cs->frames), cs->nframes - 1, |
| 245 | context->starting_fp); |
| 246 | if (cs->nframes > 0) { |
| 247 | cs->flags |= CALLSTACK_VALID; |
| 248 | /* |
| 249 | * Fake the value pointed to by the stack pointer or the link |
| 250 | * register for symbolicators. |
| 251 | */ |
| 252 | cs->frames[cs->nframes + 1] = 0; |
| 253 | cs->nframes += 1; |
| 254 | } |
| 255 | |
| 256 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, cs->nframes); |
| 257 | } |
| 258 | |
| 259 | kern_return_t chudxnu_thread_get_callstack64_kperf(thread_t thread, |
| 260 | uint64_t *callStack, mach_msg_type_number_t *count, |
| 261 | boolean_t user_only); |
| 262 | |
| 263 | void |
| 264 | kperf_kcallstack_sample(struct callstack *cs, struct kperf_context *context) |
| 265 | { |
| 266 | thread_t thread; |
| 267 | |
| 268 | assert(cs != NULL); |
| 269 | assert(context != NULL); |
| 270 | assert(cs->nframes <= MAX_CALLSTACK_FRAMES); |
| 271 | |
| 272 | thread = context->cur_thread; |
| 273 | assert(thread != NULL); |
| 274 | |
| 275 | BUF_INFO(PERF_CS_KSAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread), |
| 276 | cs->nframes); |
| 277 | |
| 278 | cs->flags = CALLSTACK_KERNEL; |
| 279 | |
| 280 | #ifdef __LP64__ |
| 281 | cs->flags |= CALLSTACK_64BIT; |
| 282 | #endif |
| 283 | |
| 284 | if (ml_at_interrupt_context()) { |
| 285 | assert(thread == current_thread()); |
| 286 | cs->flags |= CALLSTACK_KERNEL_WORDS; |
| 287 | cs->nframes = backtrace_interrupted((uintptr_t *)cs->frames, |
| 288 | cs->nframes - 1); |
| 289 | if (cs->nframes != 0) { |
| 290 | callstack_fixup_interrupted(cs); |
| 291 | } |
| 292 | } else { |
| 293 | /* |
| 294 | * Rely on legacy CHUD backtracer to backtrace kernel stacks on |
| 295 | * other threads. |
| 296 | */ |
| 297 | kern_return_t kr; |
| 298 | kr = chudxnu_thread_get_callstack64_kperf(thread, cs->frames, |
| 299 | &cs->nframes, FALSE); |
| 300 | if (kr == KERN_SUCCESS) { |
| 301 | cs->flags |= CALLSTACK_VALID; |
| 302 | } else if (kr == KERN_RESOURCE_SHORTAGE) { |
| 303 | cs->flags |= CALLSTACK_VALID; |
| 304 | cs->flags |= CALLSTACK_TRUNCATED; |
| 305 | } else { |
| 306 | cs->nframes = 0; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | if (cs->nframes == 0) { |
| 311 | BUF_INFO(PERF_CS_ERROR, ERR_GETSTACK); |
| 312 | } |
| 313 | |
| 314 | BUF_INFO(PERF_CS_KSAMPLE | DBG_FUNC_END, (uintptr_t)thread_tid(thread), cs->flags, cs->nframes); |
| 315 | } |
| 316 | |
| 317 | void |
| 318 | kperf_ucallstack_sample(struct callstack *cs, struct kperf_context *context) |
| 319 | { |
| 320 | thread_t thread; |
| 321 | bool user_64 = false; |
| 322 | int err; |
| 323 | |
| 324 | assert(cs != NULL); |
| 325 | assert(context != NULL); |
| 326 | assert(cs->nframes <= MAX_CALLSTACK_FRAMES); |
| 327 | assert(ml_get_interrupts_enabled() == TRUE); |
| 328 | |
| 329 | thread = context->cur_thread; |
| 330 | assert(thread != NULL); |
| 331 | |
| 332 | BUF_INFO(PERF_CS_USAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread), |
| 333 | cs->nframes); |
| 334 | |
| 335 | cs->flags = 0; |
| 336 | |
| 337 | err = backtrace_thread_user(thread, (uintptr_t *)cs->frames, |
| 338 | cs->nframes - 1, &cs->nframes, &user_64); |
| 339 | cs->flags |= CALLSTACK_KERNEL_WORDS; |
| 340 | if (user_64) { |
| 341 | cs->flags |= CALLSTACK_64BIT; |
| 342 | } |
| 343 | |
| 344 | if (!err || err == EFAULT) { |
| 345 | callstack_fixup_user(cs, thread); |
| 346 | cs->flags |= CALLSTACK_VALID; |
| 347 | } else { |
| 348 | cs->nframes = 0; |
| 349 | BUF_INFO(PERF_CS_ERROR, ERR_GETSTACK, err); |
| 350 | } |
| 351 | |
| 352 | BUF_INFO(PERF_CS_USAMPLE | DBG_FUNC_END, (uintptr_t)thread_tid(thread), |
| 353 | cs->flags, cs->nframes); |
| 354 | } |
| 355 | |
| 356 | static inline uintptr_t |
| 357 | scrub_word(uintptr_t *bt, int n_frames, int frame, bool kern) |
| 358 | { |
| 359 | if (frame < n_frames) { |
| 360 | if (kern) { |
| 361 | return VM_KERNEL_UNSLIDE(bt[frame]); |
| 362 | } else { |
| 363 | return bt[frame]; |
| 364 | } |
| 365 | } else { |
| 366 | return 0; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | static inline uintptr_t |
| 371 | scrub_frame(uint64_t *bt, int n_frames, int frame) |
| 372 | { |
| 373 | if (frame < n_frames) { |
| 374 | return (uintptr_t)(bt[frame]); |
| 375 | } else { |
| 376 | return 0; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | static void |
| 381 | callstack_log(struct callstack *cs, uint32_t hcode, uint32_t dcode) |
| 382 | { |
| 383 | BUF_VERB(PERF_CS_LOG | DBG_FUNC_START, cs->flags, cs->nframes); |
| 384 | |
| 385 | /* framing information for the stack */ |
| 386 | BUF_DATA(hcode, cs->flags, cs->nframes); |
| 387 | |
| 388 | /* how many batches of 4 */ |
| 389 | unsigned int nframes = cs->nframes; |
| 390 | unsigned int n = nframes / 4; |
| 391 | unsigned int ovf = nframes % 4; |
| 392 | if (ovf != 0) { |
| 393 | n++; |
| 394 | } |
| 395 | |
| 396 | bool kern = cs->flags & CALLSTACK_KERNEL; |
| 397 | |
| 398 | if (cs->flags & CALLSTACK_KERNEL_WORDS) { |
| 399 | uintptr_t *frames = (uintptr_t *)cs->frames; |
| 400 | for (unsigned int i = 0; i < n; i++) { |
| 401 | unsigned int j = i * 4; |
| 402 | BUF_DATA(dcode, |
| 403 | scrub_word(frames, nframes, j + 0, kern), |
| 404 | scrub_word(frames, nframes, j + 1, kern), |
| 405 | scrub_word(frames, nframes, j + 2, kern), |
| 406 | scrub_word(frames, nframes, j + 3, kern)); |
| 407 | } |
| 408 | } else { |
| 409 | for (unsigned int i = 0; i < n; i++) { |
| 410 | uint64_t *frames = cs->frames; |
| 411 | unsigned int j = i * 4; |
| 412 | BUF_DATA(dcode, |
| 413 | scrub_frame(frames, nframes, j + 0), |
| 414 | scrub_frame(frames, nframes, j + 1), |
| 415 | scrub_frame(frames, nframes, j + 2), |
| 416 | scrub_frame(frames, nframes, j + 3)); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | BUF_VERB(PERF_CS_LOG | DBG_FUNC_END, cs->flags, cs->nframes); |
| 421 | } |
| 422 | |
| 423 | void |
| 424 | kperf_kcallstack_log( struct callstack *cs ) |
| 425 | { |
| 426 | callstack_log(cs, PERF_CS_KHDR, PERF_CS_KDATA); |
| 427 | } |
| 428 | |
| 429 | void |
| 430 | kperf_ucallstack_log( struct callstack *cs ) |
| 431 | { |
| 432 | callstack_log(cs, PERF_CS_UHDR, PERF_CS_UDATA); |
| 433 | } |
| 434 | |
| 435 | int |
| 436 | kperf_ucallstack_pend(struct kperf_context * context, uint32_t depth) |
| 437 | { |
| 438 | int did_pend = kperf_ast_pend(context->cur_thread, T_KPERF_AST_CALLSTACK); |
| 439 | kperf_ast_set_callstack_depth(context->cur_thread, depth); |
| 440 | |
| 441 | return did_pend; |
| 442 | } |
| 443 | |
| 444 | static kern_return_t |
| 445 | chudxnu_kern_read(void *dstaddr, vm_offset_t srcaddr, vm_size_t size) |
| 446 | { |
| 447 | return ((ml_nofault_copy(srcaddr, (vm_offset_t)dstaddr, size) == size) ? |
| 448 | KERN_SUCCESS : KERN_FAILURE); |
| 449 | } |
| 450 | |
| 451 | static kern_return_t |
| 452 | chudxnu_task_read( |
| 453 | task_t task, |
| 454 | void *kernaddr, |
| 455 | uint64_t usraddr, |
| 456 | vm_size_t size) |
| 457 | { |
| 458 | //ppc version ported to arm |
| 459 | kern_return_t ret = KERN_SUCCESS; |
| 460 | |
| 461 | if (ml_at_interrupt_context()) { |
| 462 | return KERN_FAILURE; // can't look at tasks on interrupt stack |
| 463 | } |
| 464 | |
| 465 | if (current_task() == task) { |
| 466 | thread_t cur_thr = current_thread(); |
| 467 | vm_offset_t recover_handler = cur_thr->recover; |
| 468 | |
| 469 | if (copyin(usraddr, kernaddr, size)) { |
| 470 | ret = KERN_FAILURE; |
| 471 | } |
| 472 | cur_thr->recover = recover_handler; |
| 473 | } else { |
| 474 | vm_map_t map = get_task_map(task); |
| 475 | ret = vm_map_read_user(map, usraddr, kernaddr, size); |
| 476 | } |
| 477 | |
| 478 | return ret; |
| 479 | } |
| 480 | |
| 481 | static inline uint64_t |
| 482 | chudxnu_vm_unslide( uint64_t ptr, int kaddr ) |
| 483 | { |
| 484 | if (!kaddr) |
| 485 | return ptr; |
| 486 | |
| 487 | return VM_KERNEL_UNSLIDE(ptr); |
| 488 | } |
| 489 | |
| 490 | #if __arm__ |
| 491 | #define ARM_SUPERVISOR_MODE(cpsr) ((((cpsr) & PSR_MODE_MASK) != PSR_USER_MODE) ? TRUE : FALSE) |
| 492 | #define CS_FLAG_EXTRASP 1 // capture extra sp register |
| 493 | static kern_return_t |
| 494 | chudxnu_thread_get_callstack64_internal( |
| 495 | thread_t thread, |
| 496 | uint64_t *callStack, |
| 497 | mach_msg_type_number_t *count, |
| 498 | boolean_t user_only, |
| 499 | int flags) |
| 500 | { |
| 501 | kern_return_t kr; |
| 502 | task_t task; |
| 503 | uint64_t currPC=0ULL, currLR=0ULL, currSP=0ULL; |
| 504 | uint64_t prevPC = 0ULL; |
| 505 | uint32_t kernStackMin = thread->kernel_stack; |
| 506 | uint32_t kernStackMax = kernStackMin + kernel_stack_size; |
| 507 | uint64_t *buffer = callStack; |
| 508 | uint32_t frame[2]; |
| 509 | int bufferIndex = 0; |
| 510 | int bufferMaxIndex = 0; |
| 511 | boolean_t supervisor = FALSE; |
| 512 | struct arm_saved_state *state = NULL; |
| 513 | uint32_t *fp=NULL, *nextFramePointer=NULL, *topfp=NULL; |
| 514 | uint64_t pc = 0ULL; |
| 515 | |
| 516 | task = get_threadtask(thread); |
| 517 | |
| 518 | bufferMaxIndex = *count; |
| 519 | //get thread state |
| 520 | if (user_only) |
| 521 | state = find_user_regs(thread); |
| 522 | else |
| 523 | state = find_kern_regs(thread); |
| 524 | |
| 525 | if (!state) { |
| 526 | *count = 0; |
| 527 | return KERN_FAILURE; |
| 528 | } |
| 529 | |
| 530 | /* make sure it is safe to dereference before you do it */ |
| 531 | supervisor = ARM_SUPERVISOR_MODE(state->cpsr); |
| 532 | |
| 533 | /* can't take a kernel callstack if we've got a user frame */ |
| 534 | if( !user_only && !supervisor ) |
| 535 | return KERN_FAILURE; |
| 536 | |
| 537 | /* |
| 538 | * Reserve space for saving LR (and sometimes SP) at the end of the |
| 539 | * backtrace. |
| 540 | */ |
| 541 | if (flags & CS_FLAG_EXTRASP) { |
| 542 | bufferMaxIndex -= 2; |
| 543 | } else { |
| 544 | bufferMaxIndex -= 1; |
| 545 | } |
| 546 | |
| 547 | if (bufferMaxIndex < 2) { |
| 548 | *count = 0; |
| 549 | return KERN_RESOURCE_SHORTAGE; |
| 550 | } |
| 551 | |
| 552 | currPC = (uint64_t)state->pc; /* r15 */ |
| 553 | if (state->cpsr & PSR_TF) |
| 554 | currPC |= 1ULL; /* encode thumb mode into low bit of PC */ |
| 555 | |
| 556 | currLR = (uint64_t)state->lr; /* r14 */ |
| 557 | currSP = (uint64_t)state->sp; /* r13 */ |
| 558 | |
| 559 | fp = (uint32_t *)state->r[7]; /* frame pointer */ |
| 560 | topfp = fp; |
| 561 | |
| 562 | bufferIndex = 0; // start with a stack of size zero |
| 563 | buffer[bufferIndex++] = chudxnu_vm_unslide(currPC, supervisor); // save PC in position 0. |
| 564 | |
| 565 | // Now, fill buffer with stack backtraces. |
| 566 | while (bufferIndex < bufferMaxIndex) { |
| 567 | pc = 0ULL; |
| 568 | /* |
| 569 | * Below the frame pointer, the following values are saved: |
| 570 | * -> FP |
| 571 | */ |
| 572 | |
| 573 | /* |
| 574 | * Note that we read the pc even for the first stack frame |
| 575 | * (which, in theory, is always empty because the callee fills |
| 576 | * it in just before it lowers the stack. However, if we |
| 577 | * catch the program in between filling in the return address |
| 578 | * and lowering the stack, we want to still have a valid |
| 579 | * backtrace. FixupStack correctly disregards this value if |
| 580 | * necessary. |
| 581 | */ |
| 582 | |
| 583 | if((uint32_t)fp == 0 || ((uint32_t)fp & 0x3) != 0) { |
| 584 | /* frame pointer is invalid - stop backtracing */ |
| 585 | pc = 0ULL; |
| 586 | break; |
| 587 | } |
| 588 | |
| 589 | if (supervisor) { |
| 590 | if (((uint32_t)fp > kernStackMax) || |
| 591 | ((uint32_t)fp < kernStackMin)) { |
| 592 | kr = KERN_FAILURE; |
| 593 | } else { |
| 594 | kr = chudxnu_kern_read(&frame, |
| 595 | (vm_offset_t)fp, |
| 596 | (vm_size_t)sizeof(frame)); |
| 597 | if (kr == KERN_SUCCESS) { |
| 598 | pc = (uint64_t)frame[1]; |
| 599 | nextFramePointer = (uint32_t *) (frame[0]); |
| 600 | } else { |
| 601 | pc = 0ULL; |
| 602 | nextFramePointer = 0ULL; |
| 603 | kr = KERN_FAILURE; |
| 604 | } |
| 605 | } |
| 606 | } else { |
| 607 | kr = chudxnu_task_read(task, |
| 608 | &frame, |
| 609 | (((uint64_t)(uint32_t)fp) & 0x00000000FFFFFFFFULL), |
| 610 | sizeof(frame)); |
| 611 | if (kr == KERN_SUCCESS) { |
| 612 | pc = (uint64_t) frame[1]; |
| 613 | nextFramePointer = (uint32_t *) (frame[0]); |
| 614 | } else { |
| 615 | pc = 0ULL; |
| 616 | nextFramePointer = 0ULL; |
| 617 | kr = KERN_FAILURE; |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | if (kr != KERN_SUCCESS) { |
| 622 | pc = 0ULL; |
| 623 | break; |
| 624 | } |
| 625 | |
| 626 | if (nextFramePointer) { |
| 627 | buffer[bufferIndex++] = chudxnu_vm_unslide(pc, supervisor); |
| 628 | prevPC = pc; |
| 629 | } |
| 630 | |
| 631 | if (nextFramePointer < fp) |
| 632 | break; |
| 633 | else |
| 634 | fp = nextFramePointer; |
| 635 | } |
| 636 | |
| 637 | if (bufferIndex >= bufferMaxIndex) { |
| 638 | bufferIndex = bufferMaxIndex; |
| 639 | kr = KERN_RESOURCE_SHORTAGE; |
| 640 | } else { |
| 641 | kr = KERN_SUCCESS; |
| 642 | } |
| 643 | |
| 644 | // Save link register and R13 (sp) at bottom of stack (used for later fixup). |
| 645 | buffer[bufferIndex++] = chudxnu_vm_unslide(currLR, supervisor); |
| 646 | if( flags & CS_FLAG_EXTRASP ) |
| 647 | buffer[bufferIndex++] = chudxnu_vm_unslide(currSP, supervisor); |
| 648 | |
| 649 | *count = bufferIndex; |
| 650 | return kr; |
| 651 | |
| 652 | |
| 653 | } |
| 654 | |
| 655 | kern_return_t |
| 656 | chudxnu_thread_get_callstack64_kperf( |
| 657 | thread_t thread, |
| 658 | uint64_t *callStack, |
| 659 | mach_msg_type_number_t *count, |
| 660 | boolean_t user_only) |
| 661 | { |
| 662 | return chudxnu_thread_get_callstack64_internal( thread, callStack, count, user_only, 0 ); |
| 663 | } |
| 664 | #elif __arm64__ |
| 665 | |
| 666 | |
| 667 | // chudxnu_thread_get_callstack gathers a raw callstack along with any information needed to |
| 668 | // fix it up later (in case we stopped program as it was saving values into prev stack frame, etc.) |
| 669 | // after sampling has finished. |
| 670 | // |
| 671 | // For an N-entry callstack: |
| 672 | // |
| 673 | // [0] current pc |
| 674 | // [1..N-3] stack frames (including current one) |
| 675 | // [N-2] current LR (return value if we're in a leaf function) |
| 676 | // [N-1] current r0 (in case we've saved LR in r0) (optional) |
| 677 | // |
| 678 | // |
| 679 | #define ARM_SUPERVISOR_MODE(cpsr) ((((cpsr) & PSR_MODE_MASK) != PSR_USER_MODE) ? TRUE : FALSE) |
| 680 | |
| 681 | #define CS_FLAG_EXTRASP 1 // capture extra sp register |
| 682 | |
| 683 | static kern_return_t |
| 684 | chudxnu_thread_get_callstack64_internal( |
| 685 | thread_t thread, |
| 686 | uint64_t *callStack, |
| 687 | mach_msg_type_number_t *count, |
| 688 | boolean_t user_only, |
| 689 | int flags) |
| 690 | { |
| 691 | kern_return_t kr = KERN_SUCCESS; |
| 692 | task_t task; |
| 693 | uint64_t currPC=0ULL, currLR=0ULL, currSP=0ULL; |
| 694 | uint64_t prevPC = 0ULL; |
| 695 | uint64_t kernStackMin = thread->kernel_stack; |
| 696 | uint64_t kernStackMax = kernStackMin + kernel_stack_size; |
| 697 | uint64_t *buffer = callStack; |
| 698 | int bufferIndex = 0; |
| 699 | int bufferMaxIndex = 0; |
| 700 | boolean_t kernel = FALSE; |
| 701 | struct arm_saved_state *sstate = NULL; |
| 702 | uint64_t pc = 0ULL; |
| 703 | |
| 704 | task = get_threadtask(thread); |
| 705 | bufferMaxIndex = *count; |
| 706 | //get thread state |
| 707 | if (user_only) |
| 708 | sstate = find_user_regs(thread); |
| 709 | else |
| 710 | sstate = find_kern_regs(thread); |
| 711 | |
| 712 | if (!sstate) { |
| 713 | *count = 0; |
| 714 | return KERN_FAILURE; |
| 715 | } |
| 716 | |
| 717 | if (is_saved_state64(sstate)) { |
| 718 | struct arm_saved_state64 *state = NULL; |
| 719 | uint64_t *fp=NULL, *nextFramePointer=NULL, *topfp=NULL; |
| 720 | uint64_t frame[2]; |
| 721 | |
| 722 | state = saved_state64(sstate); |
| 723 | |
| 724 | /* make sure it is safe to dereference before you do it */ |
| 725 | kernel = PSR64_IS_KERNEL(state->cpsr); |
| 726 | |
| 727 | /* can't take a kernel callstack if we've got a user frame */ |
| 728 | if( !user_only && !kernel ) |
| 729 | return KERN_FAILURE; |
| 730 | |
| 731 | /* |
| 732 | * Reserve space for saving LR (and sometimes SP) at the end of the |
| 733 | * backtrace. |
| 734 | */ |
| 735 | if (flags & CS_FLAG_EXTRASP) { |
| 736 | bufferMaxIndex -= 2; |
| 737 | } else { |
| 738 | bufferMaxIndex -= 1; |
| 739 | } |
| 740 | |
| 741 | if (bufferMaxIndex < 2) { |
| 742 | *count = 0; |
| 743 | return KERN_RESOURCE_SHORTAGE; |
| 744 | } |
| 745 | |
| 746 | currPC = state->pc; |
| 747 | currLR = state->lr; |
| 748 | currSP = state->sp; |
| 749 | |
| 750 | fp = (uint64_t *)state->fp; /* frame pointer */ |
| 751 | topfp = fp; |
| 752 | |
| 753 | bufferIndex = 0; // start with a stack of size zero |
| 754 | buffer[bufferIndex++] = chudxnu_vm_unslide(currPC, kernel); // save PC in position 0. |
| 755 | |
| 756 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, kernel, 0); |
| 757 | |
| 758 | // Now, fill buffer with stack backtraces. |
| 759 | while (bufferIndex < bufferMaxIndex) { |
| 760 | pc = 0ULL; |
| 761 | /* |
| 762 | * Below the frame pointer, the following values are saved: |
| 763 | * -> FP |
| 764 | */ |
| 765 | |
| 766 | /* |
| 767 | * Note that we read the pc even for the first stack frame |
| 768 | * (which, in theory, is always empty because the callee fills |
| 769 | * it in just before it lowers the stack. However, if we |
| 770 | * catch the program in between filling in the return address |
| 771 | * and lowering the stack, we want to still have a valid |
| 772 | * backtrace. FixupStack correctly disregards this value if |
| 773 | * necessary. |
| 774 | */ |
| 775 | |
| 776 | if((uint64_t)fp == 0 || ((uint64_t)fp & 0x3) != 0) { |
| 777 | /* frame pointer is invalid - stop backtracing */ |
| 778 | pc = 0ULL; |
| 779 | break; |
| 780 | } |
| 781 | |
| 782 | if (kernel) { |
| 783 | if (((uint64_t)fp > kernStackMax) || |
| 784 | ((uint64_t)fp < kernStackMin)) { |
| 785 | kr = KERN_FAILURE; |
| 786 | } else { |
| 787 | kr = chudxnu_kern_read(&frame, |
| 788 | (vm_offset_t)fp, |
| 789 | (vm_size_t)sizeof(frame)); |
| 790 | if (kr == KERN_SUCCESS) { |
| 791 | pc = frame[1]; |
| 792 | nextFramePointer = (uint64_t *)frame[0]; |
| 793 | } else { |
| 794 | pc = 0ULL; |
| 795 | nextFramePointer = 0ULL; |
| 796 | kr = KERN_FAILURE; |
| 797 | } |
| 798 | } |
| 799 | } else { |
| 800 | kr = chudxnu_task_read(task, |
| 801 | &frame, |
| 802 | (vm_offset_t)fp, |
| 803 | (vm_size_t)sizeof(frame)); |
| 804 | if (kr == KERN_SUCCESS) { |
| 805 | pc = frame[1]; |
| 806 | nextFramePointer = (uint64_t *)(frame[0]); |
| 807 | } else { |
| 808 | pc = 0ULL; |
| 809 | nextFramePointer = 0ULL; |
| 810 | kr = KERN_FAILURE; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | if (kr != KERN_SUCCESS) { |
| 815 | pc = 0ULL; |
| 816 | break; |
| 817 | } |
| 818 | |
| 819 | if (nextFramePointer) { |
| 820 | buffer[bufferIndex++] = chudxnu_vm_unslide(pc, kernel); |
| 821 | prevPC = pc; |
| 822 | } |
| 823 | |
| 824 | if (nextFramePointer < fp) |
| 825 | break; |
| 826 | else |
| 827 | fp = nextFramePointer; |
| 828 | } |
| 829 | |
| 830 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, bufferIndex); |
| 831 | |
| 832 | if (bufferIndex >= bufferMaxIndex) { |
| 833 | bufferIndex = bufferMaxIndex; |
| 834 | kr = KERN_RESOURCE_SHORTAGE; |
| 835 | } else { |
| 836 | kr = KERN_SUCCESS; |
| 837 | } |
| 838 | |
| 839 | // Save link register and SP at bottom of stack (used for later fixup). |
| 840 | buffer[bufferIndex++] = chudxnu_vm_unslide(currLR, kernel); |
| 841 | if( flags & CS_FLAG_EXTRASP ) |
| 842 | buffer[bufferIndex++] = chudxnu_vm_unslide(currSP, kernel); |
| 843 | } else { |
| 844 | struct arm_saved_state32 *state = NULL; |
| 845 | uint32_t *fp=NULL, *nextFramePointer=NULL, *topfp=NULL; |
| 846 | |
| 847 | /* 64-bit kernel stacks, 32-bit user stacks */ |
| 848 | uint64_t frame[2]; |
| 849 | uint32_t frame32[2]; |
| 850 | |
| 851 | state = saved_state32(sstate); |
| 852 | |
| 853 | /* make sure it is safe to dereference before you do it */ |
| 854 | kernel = ARM_SUPERVISOR_MODE(state->cpsr); |
| 855 | |
| 856 | /* can't take a kernel callstack if we've got a user frame */ |
| 857 | if( !user_only && !kernel ) |
| 858 | return KERN_FAILURE; |
| 859 | |
| 860 | /* |
| 861 | * Reserve space for saving LR (and sometimes SP) at the end of the |
| 862 | * backtrace. |
| 863 | */ |
| 864 | if (flags & CS_FLAG_EXTRASP) { |
| 865 | bufferMaxIndex -= 2; |
| 866 | } else { |
| 867 | bufferMaxIndex -= 1; |
| 868 | } |
| 869 | |
| 870 | if (bufferMaxIndex < 2) { |
| 871 | *count = 0; |
| 872 | return KERN_RESOURCE_SHORTAGE; |
| 873 | } |
| 874 | |
| 875 | currPC = (uint64_t)state->pc; /* r15 */ |
| 876 | if (state->cpsr & PSR_TF) |
| 877 | currPC |= 1ULL; /* encode thumb mode into low bit of PC */ |
| 878 | |
| 879 | currLR = (uint64_t)state->lr; /* r14 */ |
| 880 | currSP = (uint64_t)state->sp; /* r13 */ |
| 881 | |
| 882 | fp = (uint32_t *)(uintptr_t)state->r[7]; /* frame pointer */ |
| 883 | topfp = fp; |
| 884 | |
| 885 | bufferIndex = 0; // start with a stack of size zero |
| 886 | buffer[bufferIndex++] = chudxnu_vm_unslide(currPC, kernel); // save PC in position 0. |
| 887 | |
| 888 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, kernel, 1); |
| 889 | |
| 890 | // Now, fill buffer with stack backtraces. |
| 891 | while (bufferIndex < bufferMaxIndex) { |
| 892 | pc = 0ULL; |
| 893 | /* |
| 894 | * Below the frame pointer, the following values are saved: |
| 895 | * -> FP |
| 896 | */ |
| 897 | |
| 898 | /* |
| 899 | * Note that we read the pc even for the first stack frame |
| 900 | * (which, in theory, is always empty because the callee fills |
| 901 | * it in just before it lowers the stack. However, if we |
| 902 | * catch the program in between filling in the return address |
| 903 | * and lowering the stack, we want to still have a valid |
| 904 | * backtrace. FixupStack correctly disregards this value if |
| 905 | * necessary. |
| 906 | */ |
| 907 | |
| 908 | if((uint32_t)fp == 0 || ((uint32_t)fp & 0x3) != 0) { |
| 909 | /* frame pointer is invalid - stop backtracing */ |
| 910 | pc = 0ULL; |
| 911 | break; |
| 912 | } |
| 913 | |
| 914 | if (kernel) { |
| 915 | if (((uint32_t)fp > kernStackMax) || |
| 916 | ((uint32_t)fp < kernStackMin)) { |
| 917 | kr = KERN_FAILURE; |
| 918 | } else { |
| 919 | kr = chudxnu_kern_read(&frame, |
| 920 | (vm_offset_t)fp, |
| 921 | (vm_size_t)sizeof(frame)); |
| 922 | if (kr == KERN_SUCCESS) { |
| 923 | pc = (uint64_t)frame[1]; |
| 924 | nextFramePointer = (uint32_t *) (frame[0]); |
| 925 | } else { |
| 926 | pc = 0ULL; |
| 927 | nextFramePointer = 0ULL; |
| 928 | kr = KERN_FAILURE; |
| 929 | } |
| 930 | } |
| 931 | } else { |
| 932 | kr = chudxnu_task_read(task, |
| 933 | &frame32, |
| 934 | (((uint64_t)(uint32_t)fp) & 0x00000000FFFFFFFFULL), |
| 935 | sizeof(frame32)); |
| 936 | if (kr == KERN_SUCCESS) { |
| 937 | pc = (uint64_t)frame32[1]; |
| 938 | nextFramePointer = (uint32_t *)(uintptr_t)(frame32[0]); |
| 939 | } else { |
| 940 | pc = 0ULL; |
| 941 | nextFramePointer = 0ULL; |
| 942 | kr = KERN_FAILURE; |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | if (kr != KERN_SUCCESS) { |
| 947 | pc = 0ULL; |
| 948 | break; |
| 949 | } |
| 950 | |
| 951 | if (nextFramePointer) { |
| 952 | buffer[bufferIndex++] = chudxnu_vm_unslide(pc, kernel); |
| 953 | prevPC = pc; |
| 954 | } |
| 955 | |
| 956 | if (nextFramePointer < fp) |
| 957 | break; |
| 958 | else |
| 959 | fp = nextFramePointer; |
| 960 | } |
| 961 | |
| 962 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, bufferIndex); |
| 963 | |
| 964 | /* clamp callstack size to max */ |
| 965 | if (bufferIndex >= bufferMaxIndex) { |
| 966 | bufferIndex = bufferMaxIndex; |
| 967 | kr = KERN_RESOURCE_SHORTAGE; |
| 968 | } else { |
| 969 | /* ignore all other failures */ |
| 970 | kr = KERN_SUCCESS; |
| 971 | } |
| 972 | |
| 973 | // Save link register and R13 (sp) at bottom of stack (used for later fixup). |
| 974 | buffer[bufferIndex++] = chudxnu_vm_unslide(currLR, kernel); |
| 975 | if( flags & CS_FLAG_EXTRASP ) |
| 976 | buffer[bufferIndex++] = chudxnu_vm_unslide(currSP, kernel); |
| 977 | } |
| 978 | |
| 979 | *count = bufferIndex; |
| 980 | return kr; |
| 981 | } |
| 982 | |
| 983 | kern_return_t |
| 984 | chudxnu_thread_get_callstack64_kperf( |
| 985 | thread_t thread, |
| 986 | uint64_t *callStack, |
| 987 | mach_msg_type_number_t *count, |
| 988 | boolean_t user_only) |
| 989 | { |
| 990 | return chudxnu_thread_get_callstack64_internal( thread, callStack, count, user_only, 0 ); |
| 991 | } |
| 992 | #elif __x86_64__ |
| 993 | |
| 994 | #define VALID_STACK_ADDRESS(supervisor, addr, minKernAddr, maxKernAddr) (supervisor ? (addr>=minKernAddr && addr<=maxKernAddr) : TRUE) |
| 995 | // don't try to read in the hole |
| 996 | #define VALID_STACK_ADDRESS64(supervisor, addr, minKernAddr, maxKernAddr) \ |
| 997 | (supervisor ? ((uint64_t)addr >= minKernAddr && (uint64_t)addr <= maxKernAddr) : \ |
| 998 | ((uint64_t)addr != 0ULL && ((uint64_t)addr <= 0x00007FFFFFFFFFFFULL || (uint64_t)addr >= 0xFFFF800000000000ULL))) |
| 999 | |
| 1000 | typedef struct _cframe64_t { |
| 1001 | uint64_t prevFP; // can't use a real pointer here until we're a 64 bit kernel |
| 1002 | uint64_t caller; |
| 1003 | uint64_t args[0]; |
| 1004 | }cframe64_t; |
| 1005 | |
| 1006 | |
| 1007 | typedef struct _cframe_t { |
| 1008 | uint32_t prev; // this is really a user32-space pointer to the previous frame |
| 1009 | uint32_t caller; |
| 1010 | uint32_t args[0]; |
| 1011 | } cframe_t; |
| 1012 | |
| 1013 | extern void * find_user_regs(thread_t); |
| 1014 | extern x86_saved_state32_t *find_kern_regs(thread_t); |
| 1015 | |
| 1016 | static kern_return_t do_kernel_backtrace( |
| 1017 | thread_t thread, |
| 1018 | struct x86_kernel_state *regs, |
| 1019 | uint64_t *frames, |
| 1020 | mach_msg_type_number_t *start_idx, |
| 1021 | mach_msg_type_number_t max_idx) |
| 1022 | { |
| 1023 | uint64_t kernStackMin = (uint64_t)thread->kernel_stack; |
| 1024 | uint64_t kernStackMax = (uint64_t)kernStackMin + kernel_stack_size; |
| 1025 | mach_msg_type_number_t ct = *start_idx; |
| 1026 | kern_return_t kr = KERN_FAILURE; |
| 1027 | |
| 1028 | #if __LP64__ |
| 1029 | uint64_t currPC = 0ULL; |
| 1030 | uint64_t currFP = 0ULL; |
| 1031 | uint64_t prevPC = 0ULL; |
| 1032 | uint64_t prevFP = 0ULL; |
| 1033 | if(KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(regs->k_rip), sizeof(uint64_t))) { |
| 1034 | return KERN_FAILURE; |
| 1035 | } |
| 1036 | if(KERN_SUCCESS != chudxnu_kern_read(&currFP, (vm_offset_t)&(regs->k_rbp), sizeof(uint64_t))) { |
| 1037 | return KERN_FAILURE; |
| 1038 | } |
| 1039 | #else |
| 1040 | uint32_t currPC = 0U; |
| 1041 | uint32_t currFP = 0U; |
| 1042 | uint32_t prevPC = 0U; |
| 1043 | uint32_t prevFP = 0U; |
| 1044 | if(KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(regs->k_eip), sizeof(uint32_t))) { |
| 1045 | return KERN_FAILURE; |
| 1046 | } |
| 1047 | if(KERN_SUCCESS != chudxnu_kern_read(&currFP, (vm_offset_t)&(regs->k_ebp), sizeof(uint32_t))) { |
| 1048 | return KERN_FAILURE; |
| 1049 | } |
| 1050 | #endif |
| 1051 | |
| 1052 | if(*start_idx >= max_idx) |
| 1053 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 1054 | |
| 1055 | if(!currPC) { |
| 1056 | return KERN_FAILURE; |
| 1057 | } |
| 1058 | |
| 1059 | frames[ct++] = chudxnu_vm_unslide((uint64_t)currPC, 1); |
| 1060 | |
| 1061 | // build a backtrace of this kernel state |
| 1062 | #if __LP64__ |
| 1063 | while(VALID_STACK_ADDRESS64(TRUE, currFP, kernStackMin, kernStackMax)) { |
| 1064 | // this is the address where caller lives in the user thread |
| 1065 | uint64_t caller = currFP + sizeof(uint64_t); |
| 1066 | #else |
| 1067 | while(VALID_STACK_ADDRESS(TRUE, currFP, kernStackMin, kernStackMax)) { |
| 1068 | uint32_t caller = (uint32_t)currFP + sizeof(uint32_t); |
| 1069 | #endif |
| 1070 | |
| 1071 | if(!currFP || !currPC) { |
| 1072 | currPC = 0; |
| 1073 | break; |
| 1074 | } |
| 1075 | |
| 1076 | if(ct >= max_idx) { |
| 1077 | *start_idx = ct; |
| 1078 | return KERN_RESOURCE_SHORTAGE; |
| 1079 | } |
| 1080 | |
| 1081 | /* read our caller */ |
| 1082 | kr = chudxnu_kern_read(&currPC, (vm_offset_t)caller, sizeof(currPC)); |
| 1083 | |
| 1084 | if(kr != KERN_SUCCESS || !currPC) { |
| 1085 | currPC = 0UL; |
| 1086 | break; |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | * retrive contents of the frame pointer and advance to the next stack |
| 1091 | * frame if it's valid |
| 1092 | */ |
| 1093 | prevFP = 0; |
| 1094 | kr = chudxnu_kern_read(&prevFP, (vm_offset_t)currFP, sizeof(currPC)); |
| 1095 | |
| 1096 | #if __LP64__ |
| 1097 | if(VALID_STACK_ADDRESS64(TRUE, prevFP, kernStackMin, kernStackMax)) { |
| 1098 | #else |
| 1099 | if(VALID_STACK_ADDRESS(TRUE, prevFP, kernStackMin, kernStackMax)) { |
| 1100 | #endif |
| 1101 | frames[ct++] = chudxnu_vm_unslide((uint64_t)currPC, 1); |
| 1102 | prevPC = currPC; |
| 1103 | } |
| 1104 | if(prevFP <= currFP) { |
| 1105 | break; |
| 1106 | } else { |
| 1107 | currFP = prevFP; |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | *start_idx = ct; |
| 1112 | return KERN_SUCCESS; |
| 1113 | } |
| 1114 | |
| 1115 | |
| 1116 | |
| 1117 | static kern_return_t do_backtrace32( |
| 1118 | task_t task, |
| 1119 | thread_t thread, |
| 1120 | x86_saved_state32_t *regs, |
| 1121 | uint64_t *frames, |
| 1122 | mach_msg_type_number_t *start_idx, |
| 1123 | mach_msg_type_number_t max_idx, |
| 1124 | boolean_t supervisor) |
| 1125 | { |
| 1126 | uint32_t tmpWord = 0UL; |
| 1127 | uint64_t currPC = (uint64_t) regs->eip; |
| 1128 | uint64_t currFP = (uint64_t) regs->ebp; |
| 1129 | uint64_t prevPC = 0ULL; |
| 1130 | uint64_t prevFP = 0ULL; |
| 1131 | uint64_t kernStackMin = thread->kernel_stack; |
| 1132 | uint64_t kernStackMax = kernStackMin + kernel_stack_size; |
| 1133 | mach_msg_type_number_t ct = *start_idx; |
| 1134 | kern_return_t kr = KERN_FAILURE; |
| 1135 | |
| 1136 | if(ct >= max_idx) |
| 1137 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 1138 | |
| 1139 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1140 | |
| 1141 | // build a backtrace of this 32 bit state. |
| 1142 | while(VALID_STACK_ADDRESS(supervisor, currFP, kernStackMin, kernStackMax)) { |
| 1143 | cframe_t *fp = (cframe_t *) (uintptr_t) currFP; |
| 1144 | |
| 1145 | if(!currFP) { |
| 1146 | currPC = 0; |
| 1147 | break; |
| 1148 | } |
| 1149 | |
| 1150 | if(ct >= max_idx) { |
| 1151 | *start_idx = ct; |
| 1152 | return KERN_RESOURCE_SHORTAGE; |
| 1153 | } |
| 1154 | |
| 1155 | /* read our caller */ |
| 1156 | if(supervisor) { |
| 1157 | kr = chudxnu_kern_read(&tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); |
| 1158 | } else { |
| 1159 | kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); |
| 1160 | } |
| 1161 | |
| 1162 | if(kr != KERN_SUCCESS) { |
| 1163 | currPC = 0ULL; |
| 1164 | break; |
| 1165 | } |
| 1166 | |
| 1167 | currPC = (uint64_t) tmpWord; // promote 32 bit address |
| 1168 | |
| 1169 | /* |
| 1170 | * retrive contents of the frame pointer and advance to the next stack |
| 1171 | * frame if it's valid |
| 1172 | */ |
| 1173 | prevFP = 0; |
| 1174 | if(supervisor) { |
| 1175 | kr = chudxnu_kern_read(&tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); |
| 1176 | } else { |
| 1177 | kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); |
| 1178 | } |
| 1179 | prevFP = (uint64_t) tmpWord; // promote 32 bit address |
| 1180 | |
| 1181 | if(prevFP) { |
| 1182 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1183 | prevPC = currPC; |
| 1184 | } |
| 1185 | if(prevFP < currFP) { |
| 1186 | break; |
| 1187 | } else { |
| 1188 | currFP = prevFP; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | *start_idx = ct; |
| 1193 | return KERN_SUCCESS; |
| 1194 | } |
| 1195 | |
| 1196 | static kern_return_t do_backtrace64( |
| 1197 | task_t task, |
| 1198 | thread_t thread, |
| 1199 | x86_saved_state64_t *regs, |
| 1200 | uint64_t *frames, |
| 1201 | mach_msg_type_number_t *start_idx, |
| 1202 | mach_msg_type_number_t max_idx, |
| 1203 | boolean_t supervisor) |
| 1204 | { |
| 1205 | uint64_t currPC = regs->isf.rip; |
| 1206 | uint64_t currFP = regs->rbp; |
| 1207 | uint64_t prevPC = 0ULL; |
| 1208 | uint64_t prevFP = 0ULL; |
| 1209 | uint64_t kernStackMin = (uint64_t)thread->kernel_stack; |
| 1210 | uint64_t kernStackMax = (uint64_t)kernStackMin + kernel_stack_size; |
| 1211 | mach_msg_type_number_t ct = *start_idx; |
| 1212 | kern_return_t kr = KERN_FAILURE; |
| 1213 | |
| 1214 | if(*start_idx >= max_idx) |
| 1215 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 1216 | |
| 1217 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1218 | |
| 1219 | // build a backtrace of this 32 bit state. |
| 1220 | while(VALID_STACK_ADDRESS64(supervisor, currFP, kernStackMin, kernStackMax)) { |
| 1221 | // this is the address where caller lives in the user thread |
| 1222 | uint64_t caller = currFP + sizeof(uint64_t); |
| 1223 | |
| 1224 | if(!currFP) { |
| 1225 | currPC = 0; |
| 1226 | break; |
| 1227 | } |
| 1228 | |
| 1229 | if(ct >= max_idx) { |
| 1230 | *start_idx = ct; |
| 1231 | return KERN_RESOURCE_SHORTAGE; |
| 1232 | } |
| 1233 | |
| 1234 | /* read our caller */ |
| 1235 | if(supervisor) { |
| 1236 | kr = chudxnu_kern_read(&currPC, (vm_offset_t)caller, sizeof(uint64_t)); |
| 1237 | } else { |
| 1238 | kr = chudxnu_task_read(task, &currPC, caller, sizeof(uint64_t)); |
| 1239 | } |
| 1240 | |
| 1241 | if(kr != KERN_SUCCESS) { |
| 1242 | currPC = 0ULL; |
| 1243 | break; |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | * retrive contents of the frame pointer and advance to the next stack |
| 1248 | * frame if it's valid |
| 1249 | */ |
| 1250 | prevFP = 0; |
| 1251 | if(supervisor) { |
| 1252 | kr = chudxnu_kern_read(&prevFP, (vm_offset_t)currFP, sizeof(uint64_t)); |
| 1253 | } else { |
| 1254 | kr = chudxnu_task_read(task, &prevFP, currFP, sizeof(uint64_t)); |
| 1255 | } |
| 1256 | |
| 1257 | if(VALID_STACK_ADDRESS64(supervisor, prevFP, kernStackMin, kernStackMax)) { |
| 1258 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1259 | prevPC = currPC; |
| 1260 | } |
| 1261 | if(prevFP < currFP) { |
| 1262 | break; |
| 1263 | } else { |
| 1264 | currFP = prevFP; |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | *start_idx = ct; |
| 1269 | return KERN_SUCCESS; |
| 1270 | } |
| 1271 | |
| 1272 | static kern_return_t |
| 1273 | chudxnu_thread_get_callstack64_internal( |
| 1274 | thread_t thread, |
| 1275 | uint64_t *callstack, |
| 1276 | mach_msg_type_number_t *count, |
| 1277 | boolean_t user_only, |
| 1278 | boolean_t kern_only) |
| 1279 | { |
| 1280 | kern_return_t kr = KERN_FAILURE; |
| 1281 | task_t task = thread->task; |
| 1282 | uint64_t currPC = 0ULL; |
| 1283 | boolean_t supervisor = FALSE; |
| 1284 | mach_msg_type_number_t bufferIndex = 0; |
| 1285 | mach_msg_type_number_t bufferMaxIndex = *count; |
| 1286 | x86_saved_state_t *tagged_regs = NULL; // kernel register state |
| 1287 | x86_saved_state64_t *regs64 = NULL; |
| 1288 | x86_saved_state32_t *regs32 = NULL; |
| 1289 | x86_saved_state32_t *u_regs32 = NULL; |
| 1290 | x86_saved_state64_t *u_regs64 = NULL; |
| 1291 | struct x86_kernel_state *kregs = NULL; |
| 1292 | |
| 1293 | if(ml_at_interrupt_context()) { |
| 1294 | |
| 1295 | if(user_only) { |
| 1296 | /* can't backtrace user state on interrupt stack. */ |
| 1297 | return KERN_FAILURE; |
| 1298 | } |
| 1299 | |
| 1300 | /* backtracing at interrupt context? */ |
| 1301 | if(thread == current_thread() && current_cpu_datap()->cpu_int_state) { |
| 1302 | /* |
| 1303 | * Locate the registers for the interrupted thread, assuming it is |
| 1304 | * current_thread(). |
| 1305 | */ |
| 1306 | tagged_regs = current_cpu_datap()->cpu_int_state; |
| 1307 | |
| 1308 | if(is_saved_state64(tagged_regs)) { |
| 1309 | /* 64 bit registers */ |
| 1310 | regs64 = saved_state64(tagged_regs); |
| 1311 | supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); |
| 1312 | } else { |
| 1313 | /* 32 bit registers */ |
| 1314 | regs32 = saved_state32(tagged_regs); |
| 1315 | supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); |
| 1316 | } |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | if(!ml_at_interrupt_context() && kernel_task == task) { |
| 1321 | |
| 1322 | if(!thread->kernel_stack) { |
| 1323 | return KERN_FAILURE; |
| 1324 | } |
| 1325 | |
| 1326 | // Kernel thread not at interrupt context |
| 1327 | kregs = (struct x86_kernel_state *)NULL; |
| 1328 | |
| 1329 | // nofault read of the thread->kernel_stack pointer |
| 1330 | if(KERN_SUCCESS != chudxnu_kern_read(&kregs, (vm_offset_t)&(thread->kernel_stack), sizeof(void *))) { |
| 1331 | return KERN_FAILURE; |
| 1332 | } |
| 1333 | |
| 1334 | // Adjust to find the saved kernel state |
| 1335 | kregs = STACK_IKS((vm_offset_t)(uintptr_t)kregs); |
| 1336 | |
| 1337 | supervisor = TRUE; |
| 1338 | } else if(!tagged_regs) { |
| 1339 | /* |
| 1340 | * not at interrupt context, or tracing a different thread than |
| 1341 | * current_thread() at interrupt context |
| 1342 | */ |
| 1343 | tagged_regs = USER_STATE(thread); |
| 1344 | if(is_saved_state64(tagged_regs)) { |
| 1345 | /* 64 bit registers */ |
| 1346 | regs64 = saved_state64(tagged_regs); |
| 1347 | supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); |
| 1348 | } else { |
| 1349 | /* 32 bit registers */ |
| 1350 | regs32 = saved_state32(tagged_regs); |
| 1351 | supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); |
| 1352 | } |
| 1353 | } |
| 1354 | |
| 1355 | *count = 0; |
| 1356 | |
| 1357 | if(supervisor) { |
| 1358 | // the caller only wants a user callstack. |
| 1359 | if(user_only) { |
| 1360 | // bail - we've only got kernel state |
| 1361 | return KERN_FAILURE; |
| 1362 | } |
| 1363 | } else { |
| 1364 | // regs32(64) is not in supervisor mode. |
| 1365 | u_regs32 = regs32; |
| 1366 | u_regs64 = regs64; |
| 1367 | regs32 = NULL; |
| 1368 | regs64 = NULL; |
| 1369 | } |
| 1370 | |
| 1371 | if (user_only) { |
| 1372 | /* we only want to backtrace the user mode */ |
| 1373 | if(!(u_regs32 || u_regs64)) { |
| 1374 | /* no user state to look at */ |
| 1375 | return KERN_FAILURE; |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | /* |
| 1380 | * Order of preference for top of stack: |
| 1381 | * 64 bit kernel state (not likely) |
| 1382 | * 32 bit kernel state |
| 1383 | * 64 bit user land state |
| 1384 | * 32 bit user land state |
| 1385 | */ |
| 1386 | |
| 1387 | if(kregs) { |
| 1388 | /* |
| 1389 | * nofault read of the registers from the kernel stack (as they can |
| 1390 | * disappear on the fly). |
| 1391 | */ |
| 1392 | |
| 1393 | if(KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(kregs->k_rip), sizeof(uint64_t))) { |
| 1394 | return KERN_FAILURE; |
| 1395 | } |
| 1396 | } else if(regs64) { |
| 1397 | currPC = regs64->isf.rip; |
| 1398 | } else if(regs32) { |
| 1399 | currPC = (uint64_t) regs32->eip; |
| 1400 | } else if(u_regs64) { |
| 1401 | currPC = u_regs64->isf.rip; |
| 1402 | } else if(u_regs32) { |
| 1403 | currPC = (uint64_t) u_regs32->eip; |
| 1404 | } |
| 1405 | |
| 1406 | if(!currPC) { |
| 1407 | /* no top of the stack, bail out */ |
| 1408 | return KERN_FAILURE; |
| 1409 | } |
| 1410 | |
| 1411 | bufferIndex = 0; |
| 1412 | |
| 1413 | if(bufferMaxIndex < 1) { |
| 1414 | *count = 0; |
| 1415 | return KERN_RESOURCE_SHORTAGE; |
| 1416 | } |
| 1417 | |
| 1418 | /* backtrace kernel */ |
| 1419 | if(kregs) { |
| 1420 | addr64_t address = 0ULL; |
| 1421 | size_t size = 0UL; |
| 1422 | |
| 1423 | // do the backtrace |
| 1424 | kr = do_kernel_backtrace(thread, kregs, callstack, &bufferIndex, bufferMaxIndex); |
| 1425 | |
| 1426 | // and do a nofault read of (r|e)sp |
| 1427 | uint64_t rsp = 0ULL; |
| 1428 | size = sizeof(uint64_t); |
| 1429 | |
| 1430 | if(KERN_SUCCESS != chudxnu_kern_read(&address, (vm_offset_t)&(kregs->k_rsp), size)) { |
| 1431 | address = 0ULL; |
| 1432 | } |
| 1433 | |
| 1434 | if(address && KERN_SUCCESS == chudxnu_kern_read(&rsp, (vm_offset_t)address, size) && bufferIndex < bufferMaxIndex) { |
| 1435 | callstack[bufferIndex++] = (uint64_t)rsp; |
| 1436 | } |
| 1437 | } else if(regs64) { |
| 1438 | uint64_t rsp = 0ULL; |
| 1439 | |
| 1440 | // backtrace the 64bit side. |
| 1441 | kr = do_backtrace64(task, thread, regs64, callstack, &bufferIndex, |
| 1442 | bufferMaxIndex - 1, TRUE); |
| 1443 | |
| 1444 | if(KERN_SUCCESS == chudxnu_kern_read(&rsp, (vm_offset_t) regs64->isf.rsp, sizeof(uint64_t)) && |
| 1445 | bufferIndex < bufferMaxIndex) { |
| 1446 | callstack[bufferIndex++] = rsp; |
| 1447 | } |
| 1448 | |
| 1449 | } else if(regs32) { |
| 1450 | uint32_t esp = 0UL; |
| 1451 | |
| 1452 | // backtrace the 32bit side. |
| 1453 | kr = do_backtrace32(task, thread, regs32, callstack, &bufferIndex, |
| 1454 | bufferMaxIndex - 1, TRUE); |
| 1455 | |
| 1456 | if(KERN_SUCCESS == chudxnu_kern_read(&esp, (vm_offset_t) regs32->uesp, sizeof(uint32_t)) && |
| 1457 | bufferIndex < bufferMaxIndex) { |
| 1458 | callstack[bufferIndex++] = (uint64_t) esp; |
| 1459 | } |
| 1460 | } else if(u_regs64 && !kern_only) { |
| 1461 | /* backtrace user land */ |
| 1462 | uint64_t rsp = 0ULL; |
| 1463 | |
| 1464 | kr = do_backtrace64(task, thread, u_regs64, callstack, &bufferIndex, |
| 1465 | bufferMaxIndex - 1, FALSE); |
| 1466 | |
| 1467 | if(KERN_SUCCESS == chudxnu_task_read(task, &rsp, (addr64_t) u_regs64->isf.rsp, sizeof(uint64_t)) && |
| 1468 | bufferIndex < bufferMaxIndex) { |
| 1469 | callstack[bufferIndex++] = rsp; |
| 1470 | } |
| 1471 | |
| 1472 | } else if(u_regs32 && !kern_only) { |
| 1473 | uint32_t esp = 0UL; |
| 1474 | |
| 1475 | kr = do_backtrace32(task, thread, u_regs32, callstack, &bufferIndex, |
| 1476 | bufferMaxIndex - 1, FALSE); |
| 1477 | |
| 1478 | if(KERN_SUCCESS == chudxnu_task_read(task, &esp, (addr64_t) u_regs32->uesp, sizeof(uint32_t)) && |
| 1479 | bufferIndex < bufferMaxIndex) { |
| 1480 | callstack[bufferIndex++] = (uint64_t) esp; |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | *count = bufferIndex; |
| 1485 | return kr; |
| 1486 | } |
| 1487 | |
| 1488 | __private_extern__ |
| 1489 | kern_return_t chudxnu_thread_get_callstack64_kperf( |
| 1490 | thread_t thread, |
| 1491 | uint64_t *callstack, |
| 1492 | mach_msg_type_number_t *count, |
| 1493 | boolean_t is_user) |
| 1494 | { |
| 1495 | return chudxnu_thread_get_callstack64_internal(thread, callstack, count, is_user, !is_user); |
| 1496 | } |
| 1497 | #else /* !__arm__ && !__arm64__ && !__x86_64__ */ |
| 1498 | #error kperf: unsupported architecture |
| 1499 | #endif /* !__arm__ && !__arm64__ && !__x86_64__ */ |
| 1500 | |