| 1 | /* |
| 2 | * Copyright (c) 2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/mach_types.h> |
| 29 | #include <kern/assert.h> |
| 30 | #include <kern/clock.h> |
| 31 | #include <kern/coalition.h> |
| 32 | #include <kern/debug.h> |
| 33 | #include <kern/host.h> |
| 34 | #include <kern/kalloc.h> |
| 35 | #include <kern/kern_types.h> |
| 36 | #include <kern/machine.h> |
| 37 | #include <kern/simple_lock.h> |
| 38 | #include <kern/misc_protos.h> |
| 39 | #include <kern/sched.h> |
| 40 | #include <kern/sched_prim.h> |
| 41 | #include <kern/sfi.h> |
| 42 | #include <kern/timer_call.h> |
| 43 | #include <kern/waitq.h> |
| 44 | #include <kern/ledger.h> |
| 45 | #include <kern/policy_internal.h> |
| 46 | |
| 47 | #include <machine/atomic.h> |
| 48 | |
| 49 | #include <pexpert/pexpert.h> |
| 50 | |
| 51 | #include <libkern/kernel_mach_header.h> |
| 52 | |
| 53 | #include <sys/kdebug.h> |
| 54 | |
| 55 | #if CONFIG_SCHED_SFI |
| 56 | |
| 57 | #define SFI_DEBUG 0 |
| 58 | |
| 59 | #if SFI_DEBUG |
| 60 | #define dprintf(...) kprintf(__VA_ARGS__) |
| 61 | #else |
| 62 | #define dprintf(...) do { } while(0) |
| 63 | #endif |
| 64 | |
| 65 | /* |
| 66 | * SFI (Selective Forced Idle) operates by enabling a global |
| 67 | * timer on the SFI window interval. When it fires, all processors |
| 68 | * running a thread that should be SFI-ed are sent an AST. |
| 69 | * As threads become runnable while in their "off phase", they |
| 70 | * are placed on a deferred ready queue. When a per-class |
| 71 | * "on timer" fires, the ready threads for that class are |
| 72 | * re-enqueued for running. As an optimization to avoid spurious |
| 73 | * wakeups, the timer may be lazily programmed. |
| 74 | */ |
| 75 | |
| 76 | /* |
| 77 | * The "sfi_lock" simple lock guards access to static configuration |
| 78 | * parameters (as specified by userspace), dynamic state changes |
| 79 | * (as updated by the timer event routine), and timer data structures. |
| 80 | * Since it can be taken with interrupts disabled in some cases, all |
| 81 | * uses should be taken with interrupts disabled at splsched(). The |
| 82 | * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and |
| 83 | * must only be accessed with it held. |
| 84 | * |
| 85 | * When an "on timer" fires, we must deterministically be able to drain |
| 86 | * the wait queue, since if any threads are added to the queue afterwards, |
| 87 | * they may never get woken out of SFI wait. So sfi_lock must be |
| 88 | * taken before the wait queue's own spinlock. |
| 89 | * |
| 90 | * The wait queue will take the thread's scheduling lock. We may also take |
| 91 | * the thread_lock directly to update the "sfi_class" field and determine |
| 92 | * if the thread should block in the wait queue, but the lock will be |
| 93 | * released before doing so. |
| 94 | * |
| 95 | * The pset lock may also be taken, but not while any other locks are held. |
| 96 | * |
| 97 | * The task and thread mutex may also be held while reevaluating sfi state. |
| 98 | * |
| 99 | * splsched ---> sfi_lock ---> waitq ---> thread_lock |
| 100 | * \ \ \__ thread_lock (*) |
| 101 | * \ \__ pset_lock |
| 102 | * \ |
| 103 | * \__ thread_lock |
| 104 | */ |
| 105 | |
| 106 | decl_simple_lock_data(static,sfi_lock); |
| 107 | static timer_call_data_t sfi_timer_call_entry; |
| 108 | volatile boolean_t sfi_is_enabled; |
| 109 | |
| 110 | boolean_t sfi_window_is_set; |
| 111 | uint64_t sfi_window_usecs; |
| 112 | uint64_t sfi_window_interval; |
| 113 | uint64_t sfi_next_off_deadline; |
| 114 | |
| 115 | typedef struct { |
| 116 | sfi_class_id_t class_id; |
| 117 | thread_continue_t class_continuation; |
| 118 | const char * class_name; |
| 119 | const char * class_ledger_name; |
| 120 | } sfi_class_registration_t; |
| 121 | |
| 122 | /* |
| 123 | * To add a new SFI class: |
| 124 | * |
| 125 | * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h |
| 126 | * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness. |
| 127 | * 3) Add a call to SFI_CLASS_REGISTER below |
| 128 | * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible. |
| 129 | * 5) Modify thermald to use the SFI class |
| 130 | */ |
| 131 | |
| 132 | static inline void _sfi_wait_cleanup(void); |
| 133 | |
| 134 | #define SFI_CLASS_REGISTER(clsid, ledger_name) \ |
| 135 | static void __attribute__((noinline, noreturn)) \ |
| 136 | SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \ |
| 137 | { \ |
| 138 | _sfi_wait_cleanup(); \ |
| 139 | thread_exception_return(); \ |
| 140 | } \ |
| 141 | \ |
| 142 | _Static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \ |
| 143 | \ |
| 144 | __attribute__((section("__DATA,__sfi_class_reg"), used)) \ |
| 145 | static sfi_class_registration_t SFI_ ## clsid ## _registration = { \ |
| 146 | .class_id = SFI_CLASS_ ## clsid, \ |
| 147 | .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \ |
| 148 | .class_name = "SFI_CLASS_" # clsid, \ |
| 149 | .class_ledger_name = "SFI_CLASS_" # ledger_name, \ |
| 150 | } |
| 151 | |
| 152 | /* SFI_CLASS_UNSPECIFIED not included here */ |
| 153 | SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE); |
| 154 | SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG); |
| 155 | SFI_CLASS_REGISTER(APP_NAP, APP_NAP); |
| 156 | SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED); |
| 157 | SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED); |
| 158 | SFI_CLASS_REGISTER(UTILITY, UTILITY); |
| 159 | SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT); |
| 160 | SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT); |
| 161 | SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY); |
| 162 | SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY); |
| 163 | SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED); |
| 164 | SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED); |
| 165 | SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE); |
| 166 | SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE); |
| 167 | SFI_CLASS_REGISTER(KERNEL, OPTED_OUT); |
| 168 | SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT); |
| 169 | |
| 170 | struct sfi_class_state { |
| 171 | uint64_t off_time_usecs; |
| 172 | uint64_t off_time_interval; |
| 173 | |
| 174 | timer_call_data_t on_timer; |
| 175 | uint64_t on_timer_deadline; |
| 176 | boolean_t on_timer_programmed; |
| 177 | |
| 178 | boolean_t class_sfi_is_enabled; |
| 179 | volatile boolean_t class_in_on_phase; |
| 180 | |
| 181 | struct waitq waitq; /* threads in ready state */ |
| 182 | thread_continue_t continuation; |
| 183 | |
| 184 | const char * class_name; |
| 185 | const char * class_ledger_name; |
| 186 | }; |
| 187 | |
| 188 | /* Static configuration performed in sfi_early_init() */ |
| 189 | struct sfi_class_state sfi_classes[MAX_SFI_CLASS_ID]; |
| 190 | |
| 191 | int sfi_enabled_class_count; |
| 192 | |
| 193 | static void sfi_timer_global_off( |
| 194 | timer_call_param_t param0, |
| 195 | timer_call_param_t param1); |
| 196 | |
| 197 | static void sfi_timer_per_class_on( |
| 198 | timer_call_param_t param0, |
| 199 | timer_call_param_t param1); |
| 200 | |
| 201 | static sfi_class_registration_t * |
| 202 | sfi_get_registration_data(unsigned long *count) |
| 203 | { |
| 204 | unsigned long sectlen = 0; |
| 205 | void *sectdata; |
| 206 | |
| 207 | sectdata = getsectdatafromheader(&_mh_execute_header, "__DATA" , "__sfi_class_reg" , §len); |
| 208 | if (sectdata) { |
| 209 | |
| 210 | if (sectlen % sizeof(sfi_class_registration_t) != 0) { |
| 211 | /* corrupt data? */ |
| 212 | panic("__sfi_class_reg section has invalid size %lu" , sectlen); |
| 213 | __builtin_unreachable(); |
| 214 | } |
| 215 | |
| 216 | *count = sectlen / sizeof(sfi_class_registration_t); |
| 217 | return (sfi_class_registration_t *)sectdata; |
| 218 | } else { |
| 219 | panic("__sfi_class_reg section not found" ); |
| 220 | __builtin_unreachable(); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | /* Called early in boot, when kernel is single-threaded */ |
| 225 | void sfi_early_init(void) |
| 226 | { |
| 227 | unsigned long i, count; |
| 228 | sfi_class_registration_t *registrations; |
| 229 | |
| 230 | registrations = sfi_get_registration_data(&count); |
| 231 | for (i=0; i < count; i++) { |
| 232 | sfi_class_id_t class_id = registrations[i].class_id; |
| 233 | |
| 234 | assert(class_id < MAX_SFI_CLASS_ID); /* should be caught at compile-time */ |
| 235 | if (class_id < MAX_SFI_CLASS_ID) { |
| 236 | if (sfi_classes[class_id].continuation != NULL) { |
| 237 | panic("Duplicate SFI registration for class 0x%x" , class_id); |
| 238 | } |
| 239 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; |
| 240 | sfi_classes[class_id].class_in_on_phase = TRUE; |
| 241 | sfi_classes[class_id].continuation = registrations[i].class_continuation; |
| 242 | sfi_classes[class_id].class_name = registrations[i].class_name; |
| 243 | sfi_classes[class_id].class_ledger_name = registrations[i].class_ledger_name; |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | void sfi_init(void) |
| 249 | { |
| 250 | sfi_class_id_t i; |
| 251 | kern_return_t kret; |
| 252 | |
| 253 | simple_lock_init(&sfi_lock, 0); |
| 254 | timer_call_setup(&sfi_timer_call_entry, sfi_timer_global_off, NULL); |
| 255 | sfi_window_is_set = FALSE; |
| 256 | sfi_enabled_class_count = 0; |
| 257 | sfi_is_enabled = FALSE; |
| 258 | |
| 259 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 260 | /* If the class was set up in sfi_early_init(), initialize remaining fields */ |
| 261 | if (sfi_classes[i].continuation) { |
| 262 | timer_call_setup(&sfi_classes[i].on_timer, sfi_timer_per_class_on, (void *)(uintptr_t)i); |
| 263 | sfi_classes[i].on_timer_programmed = FALSE; |
| 264 | |
| 265 | kret = waitq_init(&sfi_classes[i].waitq, SYNC_POLICY_FIFO|SYNC_POLICY_DISABLE_IRQ); |
| 266 | assert(kret == KERN_SUCCESS); |
| 267 | } else { |
| 268 | /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */ |
| 269 | if(i != SFI_CLASS_UNSPECIFIED) { |
| 270 | panic("Gap in registered SFI classes" ); |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */ |
| 277 | sfi_class_id_t |
| 278 | sfi_get_ledger_alias_for_class(sfi_class_id_t class_id) |
| 279 | { |
| 280 | sfi_class_id_t i; |
| 281 | const char *ledger_name = NULL; |
| 282 | |
| 283 | ledger_name = sfi_classes[class_id].class_ledger_name; |
| 284 | |
| 285 | /* Find the first class in the registration table with this ledger name */ |
| 286 | if (ledger_name) { |
| 287 | for (i = SFI_CLASS_UNSPECIFIED + 1; i < class_id; i++) { |
| 288 | if (0 == strcmp(sfi_classes[i].class_ledger_name, ledger_name)) { |
| 289 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n" , class_id, i); |
| 290 | return i; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* This class is the primary one for the ledger, so there is no alias */ |
| 295 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n" , class_id, SFI_CLASS_UNSPECIFIED); |
| 296 | return SFI_CLASS_UNSPECIFIED; |
| 297 | } |
| 298 | |
| 299 | /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */ |
| 300 | return SFI_CLASS_UNSPECIFIED; |
| 301 | } |
| 302 | |
| 303 | int |
| 304 | sfi_ledger_entry_add(ledger_template_t template, sfi_class_id_t class_id) |
| 305 | { |
| 306 | const char *ledger_name = NULL; |
| 307 | |
| 308 | ledger_name = sfi_classes[class_id].class_ledger_name; |
| 309 | |
| 310 | dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n" , template, class_id, ledger_name); |
| 311 | return ledger_entry_add(template, ledger_name, "sfi" , "MATUs" ); |
| 312 | } |
| 313 | |
| 314 | static void sfi_timer_global_off( |
| 315 | timer_call_param_t param0 __unused, |
| 316 | timer_call_param_t param1 __unused) |
| 317 | { |
| 318 | uint64_t now = mach_absolute_time(); |
| 319 | sfi_class_id_t i; |
| 320 | processor_set_t pset, nset; |
| 321 | processor_t processor; |
| 322 | uint32_t needs_cause_ast_mask = 0x0; |
| 323 | spl_t s; |
| 324 | |
| 325 | s = splsched(); |
| 326 | |
| 327 | simple_lock(&sfi_lock); |
| 328 | if (!sfi_is_enabled) { |
| 329 | /* If SFI has been disabled, let all "on" timers drain naturally */ |
| 330 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_NONE, 1, 0, 0, 0, 0); |
| 331 | |
| 332 | simple_unlock(&sfi_lock); |
| 333 | splx(s); |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 338 | |
| 339 | /* First set all configured classes into the off state, and program their "on" timer */ |
| 340 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 341 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 342 | uint64_t on_timer_deadline; |
| 343 | |
| 344 | sfi_classes[i].class_in_on_phase = FALSE; |
| 345 | sfi_classes[i].on_timer_programmed = TRUE; |
| 346 | |
| 347 | /* Push out on-timer */ |
| 348 | on_timer_deadline = now + sfi_classes[i].off_time_interval; |
| 349 | sfi_classes[i].on_timer_deadline = on_timer_deadline; |
| 350 | |
| 351 | timer_call_enter1(&sfi_classes[i].on_timer, NULL, on_timer_deadline, TIMER_CALL_SYS_CRITICAL); |
| 352 | } else { |
| 353 | /* If this class no longer needs SFI, make sure the timer is cancelled */ |
| 354 | sfi_classes[i].class_in_on_phase = TRUE; |
| 355 | if (sfi_classes[i].on_timer_programmed) { |
| 356 | sfi_classes[i].on_timer_programmed = FALSE; |
| 357 | sfi_classes[i].on_timer_deadline = ~0ULL; |
| 358 | timer_call_cancel(&sfi_classes[i].on_timer); |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | simple_unlock(&sfi_lock); |
| 363 | |
| 364 | /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */ |
| 365 | processor = processor_list; |
| 366 | pset = processor->processor_set; |
| 367 | |
| 368 | pset_lock(pset); |
| 369 | |
| 370 | do { |
| 371 | nset = processor->processor_set; |
| 372 | if (nset != pset) { |
| 373 | pset_unlock(pset); |
| 374 | pset = nset; |
| 375 | pset_lock(pset); |
| 376 | } |
| 377 | |
| 378 | /* "processor" and its pset are locked */ |
| 379 | if (processor->state == PROCESSOR_RUNNING) { |
| 380 | if (AST_NONE != sfi_processor_needs_ast(processor)) { |
| 381 | needs_cause_ast_mask |= (1U << processor->cpu_id); |
| 382 | } |
| 383 | } |
| 384 | } while ((processor = processor->processor_list) != NULL); |
| 385 | |
| 386 | pset_unlock(pset); |
| 387 | |
| 388 | for (int cpuid = lsb_first(needs_cause_ast_mask); cpuid >= 0; cpuid = lsb_next(needs_cause_ast_mask, cpuid)) { |
| 389 | processor = processor_array[cpuid]; |
| 390 | if (processor == current_processor()) { |
| 391 | ast_on(AST_SFI); |
| 392 | } else { |
| 393 | cause_ast_check(processor); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /* Re-arm timer if still enabled */ |
| 398 | simple_lock(&sfi_lock); |
| 399 | if (sfi_is_enabled) { |
| 400 | clock_deadline_for_periodic_event(sfi_window_interval, |
| 401 | now, |
| 402 | &sfi_next_off_deadline); |
| 403 | timer_call_enter1(&sfi_timer_call_entry, |
| 404 | NULL, |
| 405 | sfi_next_off_deadline, |
| 406 | TIMER_CALL_SYS_CRITICAL); |
| 407 | } |
| 408 | |
| 409 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 410 | |
| 411 | simple_unlock(&sfi_lock); |
| 412 | |
| 413 | splx(s); |
| 414 | } |
| 415 | |
| 416 | static void sfi_timer_per_class_on( |
| 417 | timer_call_param_t param0, |
| 418 | timer_call_param_t param1 __unused) |
| 419 | { |
| 420 | sfi_class_id_t sfi_class_id = (sfi_class_id_t)(uintptr_t)param0; |
| 421 | struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id]; |
| 422 | kern_return_t kret; |
| 423 | spl_t s; |
| 424 | |
| 425 | s = splsched(); |
| 426 | |
| 427 | simple_lock(&sfi_lock); |
| 428 | |
| 429 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_START, sfi_class_id, 0, 0, 0, 0); |
| 430 | |
| 431 | /* |
| 432 | * Any threads that may have accumulated in the ready queue for this class should get re-enqueued. |
| 433 | * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect |
| 434 | * no new threads to be put on this wait queue until the global "off timer" has fired. |
| 435 | */ |
| 436 | |
| 437 | sfi_class->class_in_on_phase = TRUE; |
| 438 | sfi_class->on_timer_programmed = FALSE; |
| 439 | |
| 440 | kret = waitq_wakeup64_all(&sfi_class->waitq, |
| 441 | CAST_EVENT64_T(sfi_class_id), |
| 442 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); |
| 443 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); |
| 444 | |
| 445 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 446 | |
| 447 | simple_unlock(&sfi_lock); |
| 448 | |
| 449 | splx(s); |
| 450 | } |
| 451 | |
| 452 | |
| 453 | kern_return_t sfi_set_window(uint64_t window_usecs) |
| 454 | { |
| 455 | uint64_t interval, deadline; |
| 456 | uint64_t now = mach_absolute_time(); |
| 457 | sfi_class_id_t i; |
| 458 | spl_t s; |
| 459 | uint64_t largest_class_off_interval = 0; |
| 460 | |
| 461 | if (window_usecs < MIN_SFI_WINDOW_USEC) |
| 462 | window_usecs = MIN_SFI_WINDOW_USEC; |
| 463 | |
| 464 | if (window_usecs > UINT32_MAX) |
| 465 | return (KERN_INVALID_ARGUMENT); |
| 466 | |
| 467 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_WINDOW), window_usecs, 0, 0, 0, 0); |
| 468 | |
| 469 | clock_interval_to_absolutetime_interval((uint32_t)window_usecs, NSEC_PER_USEC, &interval); |
| 470 | deadline = now + interval; |
| 471 | |
| 472 | s = splsched(); |
| 473 | |
| 474 | simple_lock(&sfi_lock); |
| 475 | |
| 476 | /* Check that we are not bringing in the SFI window smaller than any class */ |
| 477 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 478 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 479 | largest_class_off_interval = MAX(largest_class_off_interval, sfi_classes[i].off_time_interval); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Off window must be strictly greater than all enabled classes, |
| 485 | * otherwise threads would build up on ready queue and never be able to run. |
| 486 | */ |
| 487 | if (interval <= largest_class_off_interval) { |
| 488 | simple_unlock(&sfi_lock); |
| 489 | splx(s); |
| 490 | return (KERN_INVALID_ARGUMENT); |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * If the new "off" deadline is further out than the current programmed timer, |
| 495 | * just let the current one expire (and the new cadence will be established thereafter). |
| 496 | * If the new "off" deadline is nearer than the current one, bring it in, so we |
| 497 | * can start the new behavior sooner. Note that this may cause the "off" timer to |
| 498 | * fire before some of the class "on" timers have fired. |
| 499 | */ |
| 500 | sfi_window_usecs = window_usecs; |
| 501 | sfi_window_interval = interval; |
| 502 | sfi_window_is_set = TRUE; |
| 503 | |
| 504 | if (sfi_enabled_class_count == 0) { |
| 505 | /* Can't program timer yet */ |
| 506 | } else if (!sfi_is_enabled) { |
| 507 | sfi_is_enabled = TRUE; |
| 508 | sfi_next_off_deadline = deadline; |
| 509 | timer_call_enter1(&sfi_timer_call_entry, |
| 510 | NULL, |
| 511 | sfi_next_off_deadline, |
| 512 | TIMER_CALL_SYS_CRITICAL); |
| 513 | } else if (deadline >= sfi_next_off_deadline) { |
| 514 | sfi_next_off_deadline = deadline; |
| 515 | } else { |
| 516 | sfi_next_off_deadline = deadline; |
| 517 | timer_call_enter1(&sfi_timer_call_entry, |
| 518 | NULL, |
| 519 | sfi_next_off_deadline, |
| 520 | TIMER_CALL_SYS_CRITICAL); |
| 521 | } |
| 522 | |
| 523 | simple_unlock(&sfi_lock); |
| 524 | splx(s); |
| 525 | |
| 526 | return (KERN_SUCCESS); |
| 527 | } |
| 528 | |
| 529 | kern_return_t sfi_window_cancel(void) |
| 530 | { |
| 531 | spl_t s; |
| 532 | |
| 533 | s = splsched(); |
| 534 | |
| 535 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_WINDOW), 0, 0, 0, 0, 0); |
| 536 | |
| 537 | /* Disable globals so that global "off-timer" is not re-armed */ |
| 538 | simple_lock(&sfi_lock); |
| 539 | sfi_window_is_set = FALSE; |
| 540 | sfi_window_usecs = 0; |
| 541 | sfi_window_interval = 0; |
| 542 | sfi_next_off_deadline = 0; |
| 543 | sfi_is_enabled = FALSE; |
| 544 | simple_unlock(&sfi_lock); |
| 545 | |
| 546 | splx(s); |
| 547 | |
| 548 | return (KERN_SUCCESS); |
| 549 | } |
| 550 | |
| 551 | /* Defers SFI off and per-class on timers (if live) by the specified interval |
| 552 | * in Mach Absolute Time Units. Currently invoked to align with the global |
| 553 | * forced idle mechanism. Making some simplifying assumptions, the iterative GFI |
| 554 | * induced SFI on+off deferrals form a geometric series that converges to yield |
| 555 | * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase |
| 556 | * alignment and congruency of the SFI/GFI periods can distort this to some extent. |
| 557 | */ |
| 558 | |
| 559 | kern_return_t sfi_defer(uint64_t sfi_defer_matus) |
| 560 | { |
| 561 | spl_t s; |
| 562 | kern_return_t kr = KERN_FAILURE; |
| 563 | s = splsched(); |
| 564 | |
| 565 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_GLOBAL_DEFER), sfi_defer_matus, 0, 0, 0, 0); |
| 566 | |
| 567 | simple_lock(&sfi_lock); |
| 568 | if (!sfi_is_enabled) { |
| 569 | goto sfi_defer_done; |
| 570 | } |
| 571 | |
| 572 | assert(sfi_next_off_deadline != 0); |
| 573 | |
| 574 | sfi_next_off_deadline += sfi_defer_matus; |
| 575 | timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); |
| 576 | |
| 577 | int i; |
| 578 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 579 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 580 | if (sfi_classes[i].on_timer_programmed) { |
| 581 | uint64_t new_on_deadline = sfi_classes[i].on_timer_deadline + sfi_defer_matus; |
| 582 | sfi_classes[i].on_timer_deadline = new_on_deadline; |
| 583 | timer_call_enter1(&sfi_classes[i].on_timer, NULL, new_on_deadline, TIMER_CALL_SYS_CRITICAL); |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | kr = KERN_SUCCESS; |
| 589 | sfi_defer_done: |
| 590 | simple_unlock(&sfi_lock); |
| 591 | |
| 592 | splx(s); |
| 593 | |
| 594 | return (kr); |
| 595 | } |
| 596 | |
| 597 | |
| 598 | kern_return_t sfi_get_window(uint64_t *window_usecs) |
| 599 | { |
| 600 | spl_t s; |
| 601 | uint64_t off_window_us; |
| 602 | |
| 603 | s = splsched(); |
| 604 | simple_lock(&sfi_lock); |
| 605 | |
| 606 | off_window_us = sfi_window_usecs; |
| 607 | |
| 608 | simple_unlock(&sfi_lock); |
| 609 | splx(s); |
| 610 | |
| 611 | *window_usecs = off_window_us; |
| 612 | |
| 613 | return (KERN_SUCCESS); |
| 614 | } |
| 615 | |
| 616 | |
| 617 | kern_return_t sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs) |
| 618 | { |
| 619 | uint64_t interval; |
| 620 | spl_t s; |
| 621 | uint64_t off_window_interval; |
| 622 | |
| 623 | if (offtime_usecs < MIN_SFI_WINDOW_USEC) |
| 624 | offtime_usecs = MIN_SFI_WINDOW_USEC; |
| 625 | |
| 626 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) |
| 627 | return (KERN_INVALID_ARGUMENT); |
| 628 | |
| 629 | if (offtime_usecs > UINT32_MAX) |
| 630 | return (KERN_INVALID_ARGUMENT); |
| 631 | |
| 632 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_CLASS_OFFTIME), offtime_usecs, class_id, 0, 0, 0); |
| 633 | |
| 634 | clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs, NSEC_PER_USEC, &interval); |
| 635 | |
| 636 | s = splsched(); |
| 637 | |
| 638 | simple_lock(&sfi_lock); |
| 639 | off_window_interval = sfi_window_interval; |
| 640 | |
| 641 | /* Check that we are not bringing in class off-time larger than the SFI window */ |
| 642 | if (off_window_interval && (interval >= off_window_interval)) { |
| 643 | simple_unlock(&sfi_lock); |
| 644 | splx(s); |
| 645 | return (KERN_INVALID_ARGUMENT); |
| 646 | } |
| 647 | |
| 648 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ |
| 649 | if (!sfi_classes[class_id].class_sfi_is_enabled) { |
| 650 | sfi_enabled_class_count++; |
| 651 | } |
| 652 | sfi_classes[class_id].off_time_usecs = offtime_usecs; |
| 653 | sfi_classes[class_id].off_time_interval = interval; |
| 654 | sfi_classes[class_id].class_sfi_is_enabled = TRUE; |
| 655 | |
| 656 | if (sfi_window_is_set && !sfi_is_enabled) { |
| 657 | /* start global off timer */ |
| 658 | sfi_is_enabled = TRUE; |
| 659 | sfi_next_off_deadline = mach_absolute_time() + sfi_window_interval; |
| 660 | timer_call_enter1(&sfi_timer_call_entry, |
| 661 | NULL, |
| 662 | sfi_next_off_deadline, |
| 663 | TIMER_CALL_SYS_CRITICAL); |
| 664 | } |
| 665 | |
| 666 | simple_unlock(&sfi_lock); |
| 667 | |
| 668 | splx(s); |
| 669 | |
| 670 | return (KERN_SUCCESS); |
| 671 | } |
| 672 | |
| 673 | kern_return_t sfi_class_offtime_cancel(sfi_class_id_t class_id) |
| 674 | { |
| 675 | spl_t s; |
| 676 | |
| 677 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) |
| 678 | return (KERN_INVALID_ARGUMENT); |
| 679 | |
| 680 | s = splsched(); |
| 681 | |
| 682 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_CLASS_OFFTIME), class_id, 0, 0, 0, 0); |
| 683 | |
| 684 | simple_lock(&sfi_lock); |
| 685 | |
| 686 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ |
| 687 | if (sfi_classes[class_id].class_sfi_is_enabled) { |
| 688 | sfi_enabled_class_count--; |
| 689 | } |
| 690 | sfi_classes[class_id].off_time_usecs = 0; |
| 691 | sfi_classes[class_id].off_time_interval = 0; |
| 692 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; |
| 693 | |
| 694 | if (sfi_enabled_class_count == 0) { |
| 695 | sfi_is_enabled = FALSE; |
| 696 | } |
| 697 | |
| 698 | simple_unlock(&sfi_lock); |
| 699 | |
| 700 | splx(s); |
| 701 | |
| 702 | return (KERN_SUCCESS); |
| 703 | } |
| 704 | |
| 705 | kern_return_t sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs) |
| 706 | { |
| 707 | uint64_t off_time_us; |
| 708 | spl_t s; |
| 709 | |
| 710 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) |
| 711 | return (0); |
| 712 | |
| 713 | s = splsched(); |
| 714 | |
| 715 | simple_lock(&sfi_lock); |
| 716 | off_time_us = sfi_classes[class_id].off_time_usecs; |
| 717 | simple_unlock(&sfi_lock); |
| 718 | |
| 719 | splx(s); |
| 720 | |
| 721 | *offtime_usecs = off_time_us; |
| 722 | |
| 723 | return (KERN_SUCCESS); |
| 724 | } |
| 725 | |
| 726 | /* |
| 727 | * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical |
| 728 | * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be |
| 729 | * set. As the thread is unwinding to userspace, sfi_ast() performs full locking |
| 730 | * and determines whether the thread should enter an SFI wait state. Because of |
| 731 | * the inherent races between the time the AST is set and when it is evaluated, |
| 732 | * thread classification can be inaccurate (but should always be safe). This is |
| 733 | * especially the case for sfi_processor_active_thread_classify, which must |
| 734 | * classify the active thread on a remote processor without taking the thread lock. |
| 735 | * When in doubt, classification should err on the side of *not* classifying a |
| 736 | * thread at all, and wait for the thread itself to either hit a quantum expiration |
| 737 | * or block inside the kernel. |
| 738 | */ |
| 739 | |
| 740 | /* |
| 741 | * Thread must be locked. Ultimately, the real decision to enter |
| 742 | * SFI wait happens at the AST boundary. |
| 743 | */ |
| 744 | sfi_class_id_t sfi_thread_classify(thread_t thread) |
| 745 | { |
| 746 | task_t task = thread->task; |
| 747 | boolean_t is_kernel_thread = (task == kernel_task); |
| 748 | sched_mode_t thmode = thread->sched_mode; |
| 749 | boolean_t focal = FALSE; |
| 750 | |
| 751 | int task_role = proc_get_effective_task_policy(task, TASK_POLICY_ROLE); |
| 752 | int latency_qos = proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS); |
| 753 | int managed_task = proc_get_effective_task_policy(task, TASK_POLICY_SFI_MANAGED); |
| 754 | |
| 755 | int thread_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
| 756 | int thread_bg = proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG); |
| 757 | |
| 758 | /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */ |
| 759 | if (is_kernel_thread) { |
| 760 | return SFI_CLASS_KERNEL; |
| 761 | } |
| 762 | |
| 763 | if (thread_qos == THREAD_QOS_MAINTENANCE) |
| 764 | return SFI_CLASS_MAINTENANCE; |
| 765 | |
| 766 | if (thread_bg || thread_qos == THREAD_QOS_BACKGROUND) { |
| 767 | return SFI_CLASS_DARWIN_BG; |
| 768 | } |
| 769 | |
| 770 | if (latency_qos != 0) { |
| 771 | int latency_qos_wtf = latency_qos - 1; |
| 772 | |
| 773 | if ((latency_qos_wtf >= 4) && (latency_qos_wtf <= 5)) { |
| 774 | return SFI_CLASS_APP_NAP; |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * Realtime and fixed priority threads express their duty cycle constraints |
| 780 | * via other mechanisms, and are opted out of (most) forms of SFI |
| 781 | */ |
| 782 | if (thmode == TH_MODE_REALTIME || thmode == TH_MODE_FIXED || task_role == TASK_GRAPHICS_SERVER) { |
| 783 | return SFI_CLASS_OPTED_OUT; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed. |
| 788 | */ |
| 789 | switch (task_role) { |
| 790 | case TASK_CONTROL_APPLICATION: |
| 791 | case TASK_FOREGROUND_APPLICATION: |
| 792 | focal = TRUE; |
| 793 | break; |
| 794 | case TASK_BACKGROUND_APPLICATION: |
| 795 | case TASK_DEFAULT_APPLICATION: |
| 796 | case TASK_UNSPECIFIED: |
| 797 | /* Focal if the task is in a coalition with a FG/focal app */ |
| 798 | if (task_coalition_focal_count(thread->task) > 0) |
| 799 | focal = TRUE; |
| 800 | break; |
| 801 | case TASK_THROTTLE_APPLICATION: |
| 802 | case TASK_DARWINBG_APPLICATION: |
| 803 | case TASK_NONUI_APPLICATION: |
| 804 | /* Definitely not focal */ |
| 805 | default: |
| 806 | break; |
| 807 | } |
| 808 | |
| 809 | if (managed_task) { |
| 810 | switch (thread_qos) { |
| 811 | case THREAD_QOS_UNSPECIFIED: |
| 812 | case THREAD_QOS_LEGACY: |
| 813 | case THREAD_QOS_USER_INITIATED: |
| 814 | if (focal) |
| 815 | return SFI_CLASS_MANAGED_FOCAL; |
| 816 | else |
| 817 | return SFI_CLASS_MANAGED_NONFOCAL; |
| 818 | default: |
| 819 | break; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | if (thread_qos == THREAD_QOS_UTILITY) |
| 824 | return SFI_CLASS_UTILITY; |
| 825 | |
| 826 | /* |
| 827 | * Classify threads in non-managed tasks |
| 828 | */ |
| 829 | if (focal) { |
| 830 | switch (thread_qos) { |
| 831 | case THREAD_QOS_USER_INTERACTIVE: |
| 832 | return SFI_CLASS_USER_INTERACTIVE_FOCAL; |
| 833 | case THREAD_QOS_USER_INITIATED: |
| 834 | return SFI_CLASS_USER_INITIATED_FOCAL; |
| 835 | case THREAD_QOS_LEGACY: |
| 836 | return SFI_CLASS_LEGACY_FOCAL; |
| 837 | default: |
| 838 | return SFI_CLASS_DEFAULT_FOCAL; |
| 839 | } |
| 840 | } else { |
| 841 | switch (thread_qos) { |
| 842 | case THREAD_QOS_USER_INTERACTIVE: |
| 843 | return SFI_CLASS_USER_INTERACTIVE_NONFOCAL; |
| 844 | case THREAD_QOS_USER_INITIATED: |
| 845 | return SFI_CLASS_USER_INITIATED_NONFOCAL; |
| 846 | case THREAD_QOS_LEGACY: |
| 847 | return SFI_CLASS_LEGACY_NONFOCAL; |
| 848 | default: |
| 849 | return SFI_CLASS_DEFAULT_NONFOCAL; |
| 850 | } |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * pset must be locked. |
| 856 | */ |
| 857 | sfi_class_id_t sfi_processor_active_thread_classify(processor_t processor) |
| 858 | { |
| 859 | return processor->current_sfi_class; |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * thread must be locked. This is inherently racy, with the intent that |
| 864 | * at the AST boundary, it will be fully evaluated whether we need to |
| 865 | * perform an AST wait |
| 866 | */ |
| 867 | ast_t sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class) |
| 868 | { |
| 869 | sfi_class_id_t class_id; |
| 870 | |
| 871 | class_id = sfi_thread_classify(thread); |
| 872 | |
| 873 | if (out_class) |
| 874 | *out_class = class_id; |
| 875 | |
| 876 | /* No lock taken, so a stale value may be used. */ |
| 877 | if (!sfi_classes[class_id].class_in_on_phase) |
| 878 | return AST_SFI; |
| 879 | else |
| 880 | return AST_NONE; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * pset must be locked. We take the SFI class for |
| 885 | * the currently running thread which is cached on |
| 886 | * the processor_t, and assume it is accurate. In the |
| 887 | * worst case, the processor will get an IPI and be asked |
| 888 | * to evaluate if the current running thread at that |
| 889 | * later point in time should be in an SFI wait. |
| 890 | */ |
| 891 | ast_t sfi_processor_needs_ast(processor_t processor) |
| 892 | { |
| 893 | sfi_class_id_t class_id; |
| 894 | |
| 895 | class_id = sfi_processor_active_thread_classify(processor); |
| 896 | |
| 897 | /* No lock taken, so a stale value may be used. */ |
| 898 | if (!sfi_classes[class_id].class_in_on_phase) |
| 899 | return AST_SFI; |
| 900 | else |
| 901 | return AST_NONE; |
| 902 | |
| 903 | } |
| 904 | |
| 905 | static inline void _sfi_wait_cleanup(void) |
| 906 | { |
| 907 | thread_t self = current_thread(); |
| 908 | |
| 909 | spl_t s = splsched(); |
| 910 | simple_lock(&sfi_lock); |
| 911 | |
| 912 | sfi_class_id_t current_sfi_wait_class = self->sfi_wait_class; |
| 913 | |
| 914 | assert((SFI_CLASS_UNSPECIFIED < current_sfi_wait_class) && |
| 915 | (current_sfi_wait_class < MAX_SFI_CLASS_ID)); |
| 916 | |
| 917 | self->sfi_wait_class = SFI_CLASS_UNSPECIFIED; |
| 918 | |
| 919 | simple_unlock(&sfi_lock); |
| 920 | splx(s); |
| 921 | |
| 922 | /* |
| 923 | * It's possible for the thread to be woken up due to the SFI period |
| 924 | * ending *before* it finishes blocking. In that case, |
| 925 | * wait_sfi_begin_time won't be set. |
| 926 | * |
| 927 | * Derive the time sacrificed to SFI by looking at when this thread was |
| 928 | * awoken by the on-timer, to avoid counting the time this thread spent |
| 929 | * waiting to get scheduled. |
| 930 | * |
| 931 | * Note that last_made_runnable_time could be reset if this thread |
| 932 | * gets preempted before we read the value. To fix that, we'd need to |
| 933 | * track wait time in a thread timer, sample the timer before blocking, |
| 934 | * pass the value through thread->parameter, and subtract that. |
| 935 | */ |
| 936 | |
| 937 | if (self->wait_sfi_begin_time != 0) { |
| 938 | #if !CONFIG_EMBEDDED |
| 939 | uint64_t made_runnable = os_atomic_load(&self->last_made_runnable_time, relaxed); |
| 940 | int64_t sfi_wait_time = made_runnable - self->wait_sfi_begin_time; |
| 941 | assert(sfi_wait_time >= 0); |
| 942 | |
| 943 | ledger_credit(self->task->ledger, task_ledgers.sfi_wait_times[current_sfi_wait_class], |
| 944 | sfi_wait_time); |
| 945 | #endif /* !CONFIG_EMBEDDED */ |
| 946 | |
| 947 | self->wait_sfi_begin_time = 0; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Called at AST context to fully evaluate if the current thread |
| 953 | * (which is obviously running) should instead block in an SFI wait. |
| 954 | * We must take the sfi_lock to check whether we are in the "off" period |
| 955 | * for the class, and if so, block. |
| 956 | */ |
| 957 | void sfi_ast(thread_t thread) |
| 958 | { |
| 959 | sfi_class_id_t class_id; |
| 960 | spl_t s; |
| 961 | struct sfi_class_state *sfi_class; |
| 962 | wait_result_t waitret; |
| 963 | boolean_t did_wait = FALSE; |
| 964 | thread_continue_t continuation; |
| 965 | |
| 966 | s = splsched(); |
| 967 | |
| 968 | simple_lock(&sfi_lock); |
| 969 | |
| 970 | if (!sfi_is_enabled) { |
| 971 | /* |
| 972 | * SFI is not enabled, or has recently been disabled. |
| 973 | * There is no point putting this thread on a deferred ready |
| 974 | * queue, even if it were classified as needing it, since |
| 975 | * SFI will truly be off at the next global off timer |
| 976 | */ |
| 977 | simple_unlock(&sfi_lock); |
| 978 | splx(s); |
| 979 | |
| 980 | return; |
| 981 | } |
| 982 | |
| 983 | thread_lock(thread); |
| 984 | thread->sfi_class = class_id = sfi_thread_classify(thread); |
| 985 | thread_unlock(thread); |
| 986 | |
| 987 | /* |
| 988 | * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we |
| 989 | * are committed to transitioning to whatever state is indicated by "->class_in_on_phase". |
| 990 | * If another thread tries to call sfi_reevaluate() after this point, it will take the |
| 991 | * sfi_lock and see the thread in this wait state. If another thread calls |
| 992 | * sfi_reevaluate() before this point, it would see a runnable thread and at most |
| 993 | * attempt to send an AST to this processor, but we would have the most accurate |
| 994 | * classification. |
| 995 | */ |
| 996 | |
| 997 | sfi_class = &sfi_classes[class_id]; |
| 998 | if (!sfi_class->class_in_on_phase) { |
| 999 | /* Need to block thread in wait queue */ |
| 1000 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER), |
| 1001 | thread_tid(thread), class_id, 0, 0, 0); |
| 1002 | |
| 1003 | waitret = waitq_assert_wait64(&sfi_class->waitq, |
| 1004 | CAST_EVENT64_T(class_id), |
| 1005 | THREAD_INTERRUPTIBLE | THREAD_WAIT_NOREPORT, 0); |
| 1006 | if (waitret == THREAD_WAITING) { |
| 1007 | thread->sfi_wait_class = class_id; |
| 1008 | did_wait = TRUE; |
| 1009 | continuation = sfi_class->continuation; |
| 1010 | } else { |
| 1011 | /* thread may be exiting already, all other errors are unexpected */ |
| 1012 | assert(waitret == THREAD_INTERRUPTED); |
| 1013 | } |
| 1014 | } |
| 1015 | simple_unlock(&sfi_lock); |
| 1016 | |
| 1017 | splx(s); |
| 1018 | |
| 1019 | if (did_wait) { |
| 1020 | assert(thread->wait_sfi_begin_time == 0); |
| 1021 | |
| 1022 | thread_block_reason(continuation, NULL, AST_SFI); |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | /* Thread must be unlocked */ |
| 1027 | void sfi_reevaluate(thread_t thread) |
| 1028 | { |
| 1029 | kern_return_t kret; |
| 1030 | spl_t s; |
| 1031 | sfi_class_id_t class_id, current_class_id; |
| 1032 | ast_t sfi_ast; |
| 1033 | |
| 1034 | s = splsched(); |
| 1035 | |
| 1036 | simple_lock(&sfi_lock); |
| 1037 | |
| 1038 | thread_lock(thread); |
| 1039 | sfi_ast = sfi_thread_needs_ast(thread, &class_id); |
| 1040 | thread->sfi_class = class_id; |
| 1041 | |
| 1042 | /* |
| 1043 | * This routine chiefly exists to boost threads out of an SFI wait |
| 1044 | * if their classification changes before the "on" timer fires. |
| 1045 | * |
| 1046 | * If we calculate that a thread is in a different ->sfi_wait_class |
| 1047 | * than we think it should be (including no-SFI-wait), we need to |
| 1048 | * correct that: |
| 1049 | * |
| 1050 | * If the thread is in SFI wait and should not be (or should be waiting |
| 1051 | * on a different class' "on" timer), we wake it up. If needed, the |
| 1052 | * thread may immediately block again in the different SFI wait state. |
| 1053 | * |
| 1054 | * If the thread is not in an SFI wait state and it should be, we need |
| 1055 | * to get that thread's attention, possibly by sending an AST to another |
| 1056 | * processor. |
| 1057 | */ |
| 1058 | |
| 1059 | if ((current_class_id = thread->sfi_wait_class) != SFI_CLASS_UNSPECIFIED) { |
| 1060 | |
| 1061 | thread_unlock(thread); /* not needed anymore */ |
| 1062 | |
| 1063 | assert(current_class_id < MAX_SFI_CLASS_ID); |
| 1064 | |
| 1065 | if ((sfi_ast == AST_NONE) || (class_id != current_class_id)) { |
| 1066 | struct sfi_class_state *sfi_class = &sfi_classes[current_class_id]; |
| 1067 | |
| 1068 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_WAIT_CANCELED), thread_tid(thread), current_class_id, class_id, 0, 0); |
| 1069 | |
| 1070 | kret = waitq_wakeup64_thread(&sfi_class->waitq, |
| 1071 | CAST_EVENT64_T(current_class_id), |
| 1072 | thread, |
| 1073 | THREAD_AWAKENED); |
| 1074 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); |
| 1075 | } |
| 1076 | } else { |
| 1077 | /* |
| 1078 | * Thread's current SFI wait class is not set, and because we |
| 1079 | * have the sfi_lock, it won't get set. |
| 1080 | */ |
| 1081 | |
| 1082 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { |
| 1083 | if (sfi_ast != AST_NONE) { |
| 1084 | if (thread == current_thread()) |
| 1085 | ast_on(sfi_ast); |
| 1086 | else { |
| 1087 | processor_t processor = thread->last_processor; |
| 1088 | |
| 1089 | if (processor != PROCESSOR_NULL && |
| 1090 | processor->state == PROCESSOR_RUNNING && |
| 1091 | processor->active_thread == thread) { |
| 1092 | cause_ast_check(processor); |
| 1093 | } else { |
| 1094 | /* |
| 1095 | * Runnable thread that's not on a CPU currently. When a processor |
| 1096 | * does context switch to it, the AST will get set based on whether |
| 1097 | * the thread is in its "off time". |
| 1098 | */ |
| 1099 | } |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | thread_unlock(thread); |
| 1105 | } |
| 1106 | |
| 1107 | simple_unlock(&sfi_lock); |
| 1108 | splx(s); |
| 1109 | } |
| 1110 | |
| 1111 | #else /* !CONFIG_SCHED_SFI */ |
| 1112 | |
| 1113 | kern_return_t sfi_set_window(uint64_t window_usecs __unused) |
| 1114 | { |
| 1115 | return (KERN_NOT_SUPPORTED); |
| 1116 | } |
| 1117 | |
| 1118 | kern_return_t sfi_window_cancel(void) |
| 1119 | { |
| 1120 | return (KERN_NOT_SUPPORTED); |
| 1121 | } |
| 1122 | |
| 1123 | |
| 1124 | kern_return_t sfi_get_window(uint64_t *window_usecs __unused) |
| 1125 | { |
| 1126 | return (KERN_NOT_SUPPORTED); |
| 1127 | } |
| 1128 | |
| 1129 | |
| 1130 | kern_return_t sfi_set_class_offtime(sfi_class_id_t class_id __unused, uint64_t offtime_usecs __unused) |
| 1131 | { |
| 1132 | return (KERN_NOT_SUPPORTED); |
| 1133 | } |
| 1134 | |
| 1135 | kern_return_t sfi_class_offtime_cancel(sfi_class_id_t class_id __unused) |
| 1136 | { |
| 1137 | return (KERN_NOT_SUPPORTED); |
| 1138 | } |
| 1139 | |
| 1140 | kern_return_t sfi_get_class_offtime(sfi_class_id_t class_id __unused, uint64_t *offtime_usecs __unused) |
| 1141 | { |
| 1142 | return (KERN_NOT_SUPPORTED); |
| 1143 | } |
| 1144 | |
| 1145 | void sfi_reevaluate(thread_t thread __unused) |
| 1146 | { |
| 1147 | return; |
| 1148 | } |
| 1149 | |
| 1150 | sfi_class_id_t sfi_thread_classify(thread_t thread) |
| 1151 | { |
| 1152 | task_t task = thread->task; |
| 1153 | boolean_t is_kernel_thread = (task == kernel_task); |
| 1154 | |
| 1155 | if (is_kernel_thread) { |
| 1156 | return SFI_CLASS_KERNEL; |
| 1157 | } |
| 1158 | |
| 1159 | return SFI_CLASS_OPTED_OUT; |
| 1160 | } |
| 1161 | |
| 1162 | #endif /* !CONFIG_SCHED_SFI */ |
| 1163 | |