| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/mach_types.h> |
| 29 | #include <mach/machine/vm_param.h> |
| 30 | #include <mach/task.h> |
| 31 | |
| 32 | #include <kern/kern_types.h> |
| 33 | #include <kern/ledger.h> |
| 34 | #include <kern/processor.h> |
| 35 | #include <kern/thread.h> |
| 36 | #include <kern/task.h> |
| 37 | #include <kern/spl.h> |
| 38 | #include <kern/ast.h> |
| 39 | #include <ipc/ipc_port.h> |
| 40 | #include <ipc/ipc_object.h> |
| 41 | #include <vm/vm_map.h> |
| 42 | #include <vm/vm_kern.h> |
| 43 | #include <vm/pmap.h> |
| 44 | #include <vm/vm_protos.h> /* last */ |
| 45 | #include <sys/resource.h> |
| 46 | #include <sys/signal.h> |
| 47 | |
| 48 | #if MONOTONIC |
| 49 | #include <kern/monotonic.h> |
| 50 | #include <machine/monotonic.h> |
| 51 | #endif /* MONOTONIC */ |
| 52 | |
| 53 | #include <machine/limits.h> |
| 54 | |
| 55 | #undef thread_should_halt |
| 56 | |
| 57 | /* BSD KERN COMPONENT INTERFACE */ |
| 58 | |
| 59 | extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */ |
| 60 | |
| 61 | thread_t get_firstthread(task_t); |
| 62 | int get_task_userstop(task_t); |
| 63 | int get_thread_userstop(thread_t); |
| 64 | boolean_t current_thread_aborted(void); |
| 65 | void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *); |
| 66 | kern_return_t get_signalact(task_t , thread_t *, int); |
| 67 | int fill_task_rusage(task_t task, rusage_info_current *ri); |
| 68 | int fill_task_io_rusage(task_t task, rusage_info_current *ri); |
| 69 | int fill_task_qos_rusage(task_t task, rusage_info_current *ri); |
| 70 | void fill_task_monotonic_rusage(task_t task, rusage_info_current *ri); |
| 71 | uint64_t get_task_logical_writes(task_t task); |
| 72 | void fill_task_billed_usage(task_t task, rusage_info_current *ri); |
| 73 | void task_bsdtask_kill(task_t); |
| 74 | |
| 75 | extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p); |
| 76 | extern uint64_t proc_uniqueid(void *p); |
| 77 | extern int proc_pidversion(void *p); |
| 78 | |
| 79 | #if MACH_BSD |
| 80 | extern void psignal(void *, int); |
| 81 | #endif |
| 82 | |
| 83 | /* |
| 84 | * |
| 85 | */ |
| 86 | void *get_bsdtask_info(task_t t) |
| 87 | { |
| 88 | return(t->bsd_info); |
| 89 | } |
| 90 | |
| 91 | void task_bsdtask_kill(task_t t) |
| 92 | { |
| 93 | void * bsd_info = get_bsdtask_info(t); |
| 94 | if (bsd_info != NULL) { |
| 95 | psignal(bsd_info, SIGKILL); |
| 96 | } |
| 97 | } |
| 98 | /* |
| 99 | * |
| 100 | */ |
| 101 | void *get_bsdthreadtask_info(thread_t th) |
| 102 | { |
| 103 | return(th->task != TASK_NULL ? th->task->bsd_info : NULL); |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * |
| 108 | */ |
| 109 | void set_bsdtask_info(task_t t,void * v) |
| 110 | { |
| 111 | t->bsd_info=v; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * |
| 116 | */ |
| 117 | void *get_bsdthread_info(thread_t th) |
| 118 | { |
| 119 | return(th->uthread); |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * XXX |
| 124 | */ |
| 125 | int get_thread_lock_count(thread_t th); /* forced forward */ |
| 126 | int get_thread_lock_count(thread_t th) |
| 127 | { |
| 128 | return(th->mutex_count); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * XXX: wait for BSD to fix signal code |
| 133 | * Until then, we cannot block here. We know the task |
| 134 | * can't go away, so we make sure it is still active after |
| 135 | * retrieving the first thread for extra safety. |
| 136 | */ |
| 137 | thread_t get_firstthread(task_t task) |
| 138 | { |
| 139 | thread_t thread = (thread_t)(void *)queue_first(&task->threads); |
| 140 | |
| 141 | if (queue_end(&task->threads, (queue_entry_t)thread)) |
| 142 | thread = THREAD_NULL; |
| 143 | |
| 144 | if (!task->active) |
| 145 | return (THREAD_NULL); |
| 146 | |
| 147 | return (thread); |
| 148 | } |
| 149 | |
| 150 | kern_return_t |
| 151 | get_signalact( |
| 152 | task_t task, |
| 153 | thread_t *result_out, |
| 154 | int setast) |
| 155 | { |
| 156 | kern_return_t result = KERN_SUCCESS; |
| 157 | thread_t inc, thread = THREAD_NULL; |
| 158 | |
| 159 | task_lock(task); |
| 160 | |
| 161 | if (!task->active) { |
| 162 | task_unlock(task); |
| 163 | |
| 164 | return (KERN_FAILURE); |
| 165 | } |
| 166 | |
| 167 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 168 | !queue_end(&task->threads, (queue_entry_t)inc); ) { |
| 169 | thread_mtx_lock(inc); |
| 170 | if (inc->active && |
| 171 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { |
| 172 | thread = inc; |
| 173 | break; |
| 174 | } |
| 175 | thread_mtx_unlock(inc); |
| 176 | |
| 177 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 178 | } |
| 179 | |
| 180 | if (result_out) |
| 181 | *result_out = thread; |
| 182 | |
| 183 | if (thread) { |
| 184 | if (setast) |
| 185 | act_set_astbsd(thread); |
| 186 | |
| 187 | thread_mtx_unlock(thread); |
| 188 | } |
| 189 | else |
| 190 | result = KERN_FAILURE; |
| 191 | |
| 192 | task_unlock(task); |
| 193 | |
| 194 | return (result); |
| 195 | } |
| 196 | |
| 197 | |
| 198 | kern_return_t |
| 199 | check_actforsig( |
| 200 | task_t task, |
| 201 | thread_t thread, |
| 202 | int setast) |
| 203 | { |
| 204 | kern_return_t result = KERN_FAILURE; |
| 205 | thread_t inc; |
| 206 | |
| 207 | task_lock(task); |
| 208 | |
| 209 | if (!task->active) { |
| 210 | task_unlock(task); |
| 211 | |
| 212 | return (KERN_FAILURE); |
| 213 | } |
| 214 | |
| 215 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 216 | !queue_end(&task->threads, (queue_entry_t)inc); ) { |
| 217 | if (inc == thread) { |
| 218 | thread_mtx_lock(inc); |
| 219 | |
| 220 | if (inc->active && |
| 221 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { |
| 222 | result = KERN_SUCCESS; |
| 223 | break; |
| 224 | } |
| 225 | |
| 226 | thread_mtx_unlock(inc); |
| 227 | break; |
| 228 | } |
| 229 | |
| 230 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 231 | } |
| 232 | |
| 233 | if (result == KERN_SUCCESS) { |
| 234 | if (setast) |
| 235 | act_set_astbsd(thread); |
| 236 | |
| 237 | thread_mtx_unlock(thread); |
| 238 | } |
| 239 | |
| 240 | task_unlock(task); |
| 241 | |
| 242 | return (result); |
| 243 | } |
| 244 | |
| 245 | ledger_t get_task_ledger(task_t t) |
| 246 | { |
| 247 | return(t->ledger); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * This is only safe to call from a thread executing in |
| 252 | * in the task's context or if the task is locked. Otherwise, |
| 253 | * the map could be switched for the task (and freed) before |
| 254 | * we go to return it here. |
| 255 | */ |
| 256 | vm_map_t get_task_map(task_t t) |
| 257 | { |
| 258 | return(t->map); |
| 259 | } |
| 260 | |
| 261 | vm_map_t get_task_map_reference(task_t t) |
| 262 | { |
| 263 | vm_map_t m; |
| 264 | |
| 265 | if (t == NULL) |
| 266 | return VM_MAP_NULL; |
| 267 | |
| 268 | task_lock(t); |
| 269 | if (!t->active) { |
| 270 | task_unlock(t); |
| 271 | return VM_MAP_NULL; |
| 272 | } |
| 273 | m = t->map; |
| 274 | vm_map_reference_swap(m); |
| 275 | task_unlock(t); |
| 276 | return m; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * |
| 281 | */ |
| 282 | ipc_space_t get_task_ipcspace(task_t t) |
| 283 | { |
| 284 | return(t->itk_space); |
| 285 | } |
| 286 | |
| 287 | int get_task_numactivethreads(task_t task) |
| 288 | { |
| 289 | thread_t inc; |
| 290 | int num_active_thr=0; |
| 291 | task_lock(task); |
| 292 | |
| 293 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 294 | !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads)) |
| 295 | { |
| 296 | if(inc->active) |
| 297 | num_active_thr++; |
| 298 | } |
| 299 | task_unlock(task); |
| 300 | return num_active_thr; |
| 301 | } |
| 302 | |
| 303 | int get_task_numacts(task_t t) |
| 304 | { |
| 305 | return(t->thread_count); |
| 306 | } |
| 307 | |
| 308 | /* does this machine need 64bit register set for signal handler */ |
| 309 | int is_64signalregset(void) |
| 310 | { |
| 311 | if (task_has_64Bit_data(current_task())) { |
| 312 | return(1); |
| 313 | } |
| 314 | |
| 315 | return(0); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * Swap in a new map for the task/thread pair; the old map reference is |
| 320 | * returned. Also does a pmap switch if thread provided is current thread. |
| 321 | */ |
| 322 | vm_map_t |
| 323 | swap_task_map(task_t task, thread_t thread, vm_map_t map) |
| 324 | { |
| 325 | vm_map_t old_map; |
| 326 | boolean_t doswitch = (thread == current_thread()) ? TRUE : FALSE; |
| 327 | |
| 328 | if (task != thread->task) |
| 329 | panic("swap_task_map" ); |
| 330 | |
| 331 | task_lock(task); |
| 332 | mp_disable_preemption(); |
| 333 | |
| 334 | old_map = task->map; |
| 335 | thread->map = task->map = map; |
| 336 | vm_commit_pagezero_status(map); |
| 337 | |
| 338 | if (doswitch) { |
| 339 | #if defined(__arm__) || defined(__arm64__) |
| 340 | PMAP_SWITCH_USER(thread, map, cpu_number()) |
| 341 | #else |
| 342 | pmap_switch(map->pmap); |
| 343 | #endif |
| 344 | } |
| 345 | mp_enable_preemption(); |
| 346 | task_unlock(task); |
| 347 | |
| 348 | #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0 |
| 349 | inval_copy_windows(thread); |
| 350 | #endif |
| 351 | |
| 352 | return old_map; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * |
| 357 | * This is only safe to call from a thread executing in |
| 358 | * in the task's context or if the task is locked. Otherwise, |
| 359 | * the map could be switched for the task (and freed) before |
| 360 | * we go to return it here. |
| 361 | */ |
| 362 | pmap_t get_task_pmap(task_t t) |
| 363 | { |
| 364 | return(t->map->pmap); |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * |
| 369 | */ |
| 370 | uint64_t get_task_resident_size(task_t task) |
| 371 | { |
| 372 | vm_map_t map; |
| 373 | |
| 374 | map = (task == kernel_task) ? kernel_map: task->map; |
| 375 | return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64); |
| 376 | } |
| 377 | |
| 378 | uint64_t get_task_compressed(task_t task) |
| 379 | { |
| 380 | vm_map_t map; |
| 381 | |
| 382 | map = (task == kernel_task) ? kernel_map: task->map; |
| 383 | return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64); |
| 384 | } |
| 385 | |
| 386 | uint64_t get_task_resident_max(task_t task) |
| 387 | { |
| 388 | vm_map_t map; |
| 389 | |
| 390 | map = (task == kernel_task) ? kernel_map: task->map; |
| 391 | return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64); |
| 392 | } |
| 393 | |
| 394 | uint64_t get_task_purgeable_size(task_t task) |
| 395 | { |
| 396 | kern_return_t ret; |
| 397 | ledger_amount_t credit, debit; |
| 398 | uint64_t volatile_size = 0; |
| 399 | |
| 400 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile, &credit, &debit); |
| 401 | if (ret != KERN_SUCCESS) { |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | volatile_size += (credit - debit); |
| 406 | |
| 407 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile_compressed, &credit, &debit); |
| 408 | if (ret != KERN_SUCCESS) { |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | volatile_size += (credit - debit); |
| 413 | |
| 414 | return volatile_size; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * |
| 419 | */ |
| 420 | uint64_t (task_t task) |
| 421 | { |
| 422 | kern_return_t ret; |
| 423 | ledger_amount_t credit, debit; |
| 424 | |
| 425 | ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit); |
| 426 | if (KERN_SUCCESS == ret) { |
| 427 | return (credit - debit); |
| 428 | } |
| 429 | |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 434 | /* |
| 435 | * |
| 436 | */ |
| 437 | uint64_t get_task_phys_footprint_interval_max(task_t task, int reset) |
| 438 | { |
| 439 | kern_return_t ret; |
| 440 | ledger_amount_t max; |
| 441 | |
| 442 | ret = ledger_get_interval_max(task->ledger, task_ledgers.phys_footprint, &max, reset); |
| 443 | |
| 444 | if(KERN_SUCCESS == ret) { |
| 445 | return max; |
| 446 | } |
| 447 | |
| 448 | return 0; |
| 449 | } |
| 450 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 451 | |
| 452 | /* |
| 453 | * |
| 454 | */ |
| 455 | uint64_t (task_t task) |
| 456 | { |
| 457 | kern_return_t ret; |
| 458 | ledger_amount_t max; |
| 459 | |
| 460 | ret = ledger_get_lifetime_max(task->ledger, task_ledgers.phys_footprint, &max); |
| 461 | |
| 462 | if(KERN_SUCCESS == ret) { |
| 463 | return max; |
| 464 | } |
| 465 | |
| 466 | return 0; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * |
| 471 | */ |
| 472 | uint64_t (task_t task) |
| 473 | { |
| 474 | kern_return_t ret; |
| 475 | ledger_amount_t max; |
| 476 | |
| 477 | ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max); |
| 478 | if (KERN_SUCCESS == ret) { |
| 479 | return max; |
| 480 | } |
| 481 | |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | uint64_t get_task_internal(task_t task) |
| 486 | { |
| 487 | kern_return_t ret; |
| 488 | ledger_amount_t credit, debit; |
| 489 | |
| 490 | ret = ledger_get_entries(task->ledger, task_ledgers.internal, &credit, &debit); |
| 491 | if (KERN_SUCCESS == ret) { |
| 492 | return (credit - debit); |
| 493 | } |
| 494 | |
| 495 | return 0; |
| 496 | } |
| 497 | |
| 498 | uint64_t get_task_internal_compressed(task_t task) |
| 499 | { |
| 500 | kern_return_t ret; |
| 501 | ledger_amount_t credit, debit; |
| 502 | |
| 503 | ret = ledger_get_entries(task->ledger, task_ledgers.internal_compressed, &credit, &debit); |
| 504 | if (KERN_SUCCESS == ret) { |
| 505 | return (credit - debit); |
| 506 | } |
| 507 | |
| 508 | return 0; |
| 509 | } |
| 510 | |
| 511 | uint64_t get_task_purgeable_nonvolatile(task_t task) |
| 512 | { |
| 513 | kern_return_t ret; |
| 514 | ledger_amount_t credit, debit; |
| 515 | |
| 516 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile, &credit, &debit); |
| 517 | if (KERN_SUCCESS == ret) { |
| 518 | return (credit - debit); |
| 519 | } |
| 520 | |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | uint64_t get_task_purgeable_nonvolatile_compressed(task_t task) |
| 525 | { |
| 526 | kern_return_t ret; |
| 527 | ledger_amount_t credit, debit; |
| 528 | |
| 529 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile_compressed, &credit, &debit); |
| 530 | if (KERN_SUCCESS == ret) { |
| 531 | return (credit - debit); |
| 532 | } |
| 533 | |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | uint64_t get_task_alternate_accounting(task_t task) |
| 538 | { |
| 539 | kern_return_t ret; |
| 540 | ledger_amount_t credit, debit; |
| 541 | |
| 542 | ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting, &credit, &debit); |
| 543 | if (KERN_SUCCESS == ret) { |
| 544 | return (credit - debit); |
| 545 | } |
| 546 | |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | uint64_t get_task_alternate_accounting_compressed(task_t task) |
| 551 | { |
| 552 | kern_return_t ret; |
| 553 | ledger_amount_t credit, debit; |
| 554 | |
| 555 | ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting_compressed, &credit, &debit); |
| 556 | if (KERN_SUCCESS == ret) { |
| 557 | return (credit - debit); |
| 558 | } |
| 559 | |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | uint64_t get_task_page_table(task_t task) |
| 564 | { |
| 565 | kern_return_t ret; |
| 566 | ledger_amount_t credit, debit; |
| 567 | |
| 568 | ret = ledger_get_entries(task->ledger, task_ledgers.page_table, &credit, &debit); |
| 569 | if (KERN_SUCCESS == ret) { |
| 570 | return (credit - debit); |
| 571 | } |
| 572 | |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | uint64_t get_task_iokit_mapped(task_t task) |
| 577 | { |
| 578 | kern_return_t ret; |
| 579 | ledger_amount_t credit, debit; |
| 580 | |
| 581 | ret = ledger_get_entries(task->ledger, task_ledgers.iokit_mapped, &credit, &debit); |
| 582 | if (KERN_SUCCESS == ret) { |
| 583 | return (credit - debit); |
| 584 | } |
| 585 | |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | uint64_t get_task_network_nonvolatile(task_t task) |
| 590 | { |
| 591 | kern_return_t ret; |
| 592 | ledger_amount_t credit, debit; |
| 593 | |
| 594 | ret = ledger_get_entries(task->ledger, task_ledgers.network_nonvolatile, &credit, &debit); |
| 595 | if (KERN_SUCCESS == ret) { |
| 596 | return (credit - debit); |
| 597 | } |
| 598 | |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | uint64_t get_task_network_nonvolatile_compressed(task_t task) |
| 603 | { |
| 604 | kern_return_t ret; |
| 605 | ledger_amount_t credit, debit; |
| 606 | |
| 607 | ret = ledger_get_entries(task->ledger, task_ledgers.network_nonvolatile_compressed, &credit, &debit); |
| 608 | if (KERN_SUCCESS == ret) { |
| 609 | return (credit - debit); |
| 610 | } |
| 611 | |
| 612 | return 0; |
| 613 | } |
| 614 | |
| 615 | uint64_t get_task_wired_mem(task_t task) |
| 616 | { |
| 617 | kern_return_t ret; |
| 618 | ledger_amount_t credit, debit; |
| 619 | |
| 620 | ret = ledger_get_entries(task->ledger, task_ledgers.wired_mem, &credit, &debit); |
| 621 | if (KERN_SUCCESS == ret) { |
| 622 | return (credit - debit); |
| 623 | } |
| 624 | |
| 625 | return 0; |
| 626 | } |
| 627 | |
| 628 | |
| 629 | uint64_t get_task_cpu_time(task_t task) |
| 630 | { |
| 631 | kern_return_t ret; |
| 632 | ledger_amount_t credit, debit; |
| 633 | |
| 634 | ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit); |
| 635 | if (KERN_SUCCESS == ret) { |
| 636 | return (credit - debit); |
| 637 | } |
| 638 | |
| 639 | return 0; |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * |
| 644 | */ |
| 645 | task_t get_threadtask(thread_t th) |
| 646 | { |
| 647 | return(th->task); |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * |
| 652 | */ |
| 653 | vm_map_offset_t |
| 654 | get_map_min( |
| 655 | vm_map_t map) |
| 656 | { |
| 657 | return(vm_map_min(map)); |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * |
| 662 | */ |
| 663 | vm_map_offset_t |
| 664 | get_map_max( |
| 665 | vm_map_t map) |
| 666 | { |
| 667 | return(vm_map_max(map)); |
| 668 | } |
| 669 | vm_map_size_t |
| 670 | get_vmmap_size( |
| 671 | vm_map_t map) |
| 672 | { |
| 673 | return(map->size); |
| 674 | } |
| 675 | |
| 676 | #if CONFIG_COREDUMP |
| 677 | |
| 678 | static int |
| 679 | get_vmsubmap_entries( |
| 680 | vm_map_t map, |
| 681 | vm_object_offset_t start, |
| 682 | vm_object_offset_t end) |
| 683 | { |
| 684 | int total_entries = 0; |
| 685 | vm_map_entry_t entry; |
| 686 | |
| 687 | if (not_in_kdp) |
| 688 | vm_map_lock(map); |
| 689 | entry = vm_map_first_entry(map); |
| 690 | while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) { |
| 691 | entry = entry->vme_next; |
| 692 | } |
| 693 | |
| 694 | while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 695 | if(entry->is_sub_map) { |
| 696 | total_entries += |
| 697 | get_vmsubmap_entries(VME_SUBMAP(entry), |
| 698 | VME_OFFSET(entry), |
| 699 | (VME_OFFSET(entry) + |
| 700 | entry->vme_end - |
| 701 | entry->vme_start)); |
| 702 | } else { |
| 703 | total_entries += 1; |
| 704 | } |
| 705 | entry = entry->vme_next; |
| 706 | } |
| 707 | if (not_in_kdp) |
| 708 | vm_map_unlock(map); |
| 709 | return(total_entries); |
| 710 | } |
| 711 | |
| 712 | int |
| 713 | get_vmmap_entries( |
| 714 | vm_map_t map) |
| 715 | { |
| 716 | int total_entries = 0; |
| 717 | vm_map_entry_t entry; |
| 718 | |
| 719 | if (not_in_kdp) |
| 720 | vm_map_lock(map); |
| 721 | entry = vm_map_first_entry(map); |
| 722 | |
| 723 | while(entry != vm_map_to_entry(map)) { |
| 724 | if(entry->is_sub_map) { |
| 725 | total_entries += |
| 726 | get_vmsubmap_entries(VME_SUBMAP(entry), |
| 727 | VME_OFFSET(entry), |
| 728 | (VME_OFFSET(entry) + |
| 729 | entry->vme_end - |
| 730 | entry->vme_start)); |
| 731 | } else { |
| 732 | total_entries += 1; |
| 733 | } |
| 734 | entry = entry->vme_next; |
| 735 | } |
| 736 | if (not_in_kdp) |
| 737 | vm_map_unlock(map); |
| 738 | return(total_entries); |
| 739 | } |
| 740 | #endif /* CONFIG_COREDUMP */ |
| 741 | |
| 742 | /* |
| 743 | * |
| 744 | */ |
| 745 | /* |
| 746 | * |
| 747 | */ |
| 748 | int |
| 749 | get_task_userstop( |
| 750 | task_t task) |
| 751 | { |
| 752 | return(task->user_stop_count); |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * |
| 757 | */ |
| 758 | int |
| 759 | get_thread_userstop( |
| 760 | thread_t th) |
| 761 | { |
| 762 | return(th->user_stop_count); |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * |
| 767 | */ |
| 768 | boolean_t |
| 769 | get_task_pidsuspended( |
| 770 | task_t task) |
| 771 | { |
| 772 | return (task->pidsuspended); |
| 773 | } |
| 774 | |
| 775 | /* |
| 776 | * |
| 777 | */ |
| 778 | boolean_t |
| 779 | get_task_frozen( |
| 780 | task_t task) |
| 781 | { |
| 782 | return (task->frozen); |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * |
| 787 | */ |
| 788 | boolean_t |
| 789 | thread_should_abort( |
| 790 | thread_t th) |
| 791 | { |
| 792 | return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT); |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * This routine is like thread_should_abort() above. It checks to |
| 797 | * see if the current thread is aborted. But unlike above, it also |
| 798 | * checks to see if thread is safely aborted. If so, it returns |
| 799 | * that fact, and clears the condition (safe aborts only should |
| 800 | * have a single effect, and a poll of the abort status |
| 801 | * qualifies. |
| 802 | */ |
| 803 | boolean_t |
| 804 | current_thread_aborted ( |
| 805 | void) |
| 806 | { |
| 807 | thread_t th = current_thread(); |
| 808 | spl_t s; |
| 809 | |
| 810 | if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT && |
| 811 | (th->options & TH_OPT_INTMASK) != THREAD_UNINT) |
| 812 | return (TRUE); |
| 813 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) { |
| 814 | s = splsched(); |
| 815 | thread_lock(th); |
| 816 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) |
| 817 | th->sched_flags &= ~TH_SFLAG_ABORTED_MASK; |
| 818 | thread_unlock(th); |
| 819 | splx(s); |
| 820 | } |
| 821 | return FALSE; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * |
| 826 | */ |
| 827 | void |
| 828 | task_act_iterate_wth_args( |
| 829 | task_t task, |
| 830 | void (*func_callback)(thread_t, void *), |
| 831 | void *func_arg) |
| 832 | { |
| 833 | thread_t inc; |
| 834 | |
| 835 | task_lock(task); |
| 836 | |
| 837 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 838 | !queue_end(&task->threads, (queue_entry_t)inc); ) { |
| 839 | (void) (*func_callback)(inc, func_arg); |
| 840 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 841 | } |
| 842 | |
| 843 | task_unlock(task); |
| 844 | } |
| 845 | |
| 846 | |
| 847 | #include <sys/bsdtask_info.h> |
| 848 | |
| 849 | void |
| 850 | fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo) |
| 851 | { |
| 852 | vm_map_t map; |
| 853 | task_absolutetime_info_data_t tinfo; |
| 854 | thread_t thread; |
| 855 | uint32_t cswitch = 0, numrunning = 0; |
| 856 | uint32_t syscalls_unix = 0; |
| 857 | uint32_t syscalls_mach = 0; |
| 858 | |
| 859 | task_lock(task); |
| 860 | |
| 861 | map = (task == kernel_task)? kernel_map: task->map; |
| 862 | |
| 863 | ptinfo->pti_virtual_size = map->size; |
| 864 | ptinfo->pti_resident_size = |
| 865 | (mach_vm_size_t)(pmap_resident_count(map->pmap)) |
| 866 | * PAGE_SIZE_64; |
| 867 | |
| 868 | ptinfo->pti_policy = ((task != kernel_task)? |
| 869 | POLICY_TIMESHARE: POLICY_RR); |
| 870 | |
| 871 | tinfo.threads_user = tinfo.threads_system = 0; |
| 872 | tinfo.total_user = task->total_user_time; |
| 873 | tinfo.total_system = task->total_system_time; |
| 874 | |
| 875 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 876 | uint64_t tval; |
| 877 | spl_t x; |
| 878 | |
| 879 | if (thread->options & TH_OPT_IDLE_THREAD) |
| 880 | continue; |
| 881 | |
| 882 | x = splsched(); |
| 883 | thread_lock(thread); |
| 884 | |
| 885 | if ((thread->state & TH_RUN) == TH_RUN) |
| 886 | numrunning++; |
| 887 | cswitch += thread->c_switch; |
| 888 | tval = timer_grab(&thread->user_timer); |
| 889 | tinfo.threads_user += tval; |
| 890 | tinfo.total_user += tval; |
| 891 | |
| 892 | tval = timer_grab(&thread->system_timer); |
| 893 | |
| 894 | if (thread->precise_user_kernel_time) { |
| 895 | tinfo.threads_system += tval; |
| 896 | tinfo.total_system += tval; |
| 897 | } else { |
| 898 | /* system_timer may represent either sys or user */ |
| 899 | tinfo.threads_user += tval; |
| 900 | tinfo.total_user += tval; |
| 901 | } |
| 902 | |
| 903 | syscalls_unix += thread->syscalls_unix; |
| 904 | syscalls_mach += thread->syscalls_mach; |
| 905 | |
| 906 | thread_unlock(thread); |
| 907 | splx(x); |
| 908 | } |
| 909 | |
| 910 | ptinfo->pti_total_system = tinfo.total_system; |
| 911 | ptinfo->pti_total_user = tinfo.total_user; |
| 912 | ptinfo->pti_threads_system = tinfo.threads_system; |
| 913 | ptinfo->pti_threads_user = tinfo.threads_user; |
| 914 | |
| 915 | ptinfo->pti_faults = task->faults; |
| 916 | ptinfo->pti_pageins = task->pageins; |
| 917 | ptinfo->pti_cow_faults = task->cow_faults; |
| 918 | ptinfo->pti_messages_sent = task->messages_sent; |
| 919 | ptinfo->pti_messages_received = task->messages_received; |
| 920 | ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach; |
| 921 | ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix; |
| 922 | ptinfo->pti_csw = task->c_switch + cswitch; |
| 923 | ptinfo->pti_threadnum = task->thread_count; |
| 924 | ptinfo->pti_numrunning = numrunning; |
| 925 | ptinfo->pti_priority = task->priority; |
| 926 | |
| 927 | task_unlock(task); |
| 928 | } |
| 929 | |
| 930 | int |
| 931 | fill_taskthreadinfo(task_t task, uint64_t thaddr, bool thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp) |
| 932 | { |
| 933 | thread_t thact; |
| 934 | int err=0; |
| 935 | mach_msg_type_number_t count; |
| 936 | thread_basic_info_data_t basic_info; |
| 937 | kern_return_t kret; |
| 938 | uint64_t addr = 0; |
| 939 | |
| 940 | task_lock(task); |
| 941 | |
| 942 | for (thact = (thread_t)(void *)queue_first(&task->threads); |
| 943 | !queue_end(&task->threads, (queue_entry_t)thact); ) { |
| 944 | addr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self; |
| 945 | if (addr == thaddr) |
| 946 | { |
| 947 | |
| 948 | count = THREAD_BASIC_INFO_COUNT; |
| 949 | if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) { |
| 950 | err = 1; |
| 951 | goto out; |
| 952 | } |
| 953 | ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC)); |
| 954 | ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC)); |
| 955 | |
| 956 | ptinfo->pth_cpu_usage = basic_info.cpu_usage; |
| 957 | ptinfo->pth_policy = basic_info.policy; |
| 958 | ptinfo->pth_run_state = basic_info.run_state; |
| 959 | ptinfo->pth_flags = basic_info.flags; |
| 960 | ptinfo->pth_sleep_time = basic_info.sleep_time; |
| 961 | ptinfo->pth_curpri = thact->sched_pri; |
| 962 | ptinfo->pth_priority = thact->base_pri; |
| 963 | ptinfo->pth_maxpriority = thact->max_priority; |
| 964 | |
| 965 | if ((vpp != NULL) && (thact->uthread != NULL)) |
| 966 | bsd_threadcdir(thact->uthread, vpp, vidp); |
| 967 | bsd_getthreadname(thact->uthread,ptinfo->pth_name); |
| 968 | err = 0; |
| 969 | goto out; |
| 970 | } |
| 971 | thact = (thread_t)(void *)queue_next(&thact->task_threads); |
| 972 | } |
| 973 | err = 1; |
| 974 | |
| 975 | out: |
| 976 | task_unlock(task); |
| 977 | return(err); |
| 978 | } |
| 979 | |
| 980 | int |
| 981 | fill_taskthreadlist(task_t task, void * buffer, int thcount, bool thuniqueid) |
| 982 | { |
| 983 | int numthr=0; |
| 984 | thread_t thact; |
| 985 | uint64_t * uptr; |
| 986 | uint64_t thaddr; |
| 987 | |
| 988 | uptr = (uint64_t *)buffer; |
| 989 | |
| 990 | task_lock(task); |
| 991 | |
| 992 | for (thact = (thread_t)(void *)queue_first(&task->threads); |
| 993 | !queue_end(&task->threads, (queue_entry_t)thact); ) { |
| 994 | thaddr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self; |
| 995 | *uptr++ = thaddr; |
| 996 | numthr++; |
| 997 | if (numthr >= thcount) |
| 998 | goto out; |
| 999 | thact = (thread_t)(void *)queue_next(&thact->task_threads); |
| 1000 | } |
| 1001 | |
| 1002 | out: |
| 1003 | task_unlock(task); |
| 1004 | return (int)(numthr * sizeof(uint64_t)); |
| 1005 | |
| 1006 | } |
| 1007 | |
| 1008 | int |
| 1009 | get_numthreads(task_t task) |
| 1010 | { |
| 1011 | return(task->thread_count); |
| 1012 | } |
| 1013 | |
| 1014 | /* |
| 1015 | * Gather the various pieces of info about the designated task, |
| 1016 | * and collect it all into a single rusage_info. |
| 1017 | */ |
| 1018 | int |
| 1019 | fill_task_rusage(task_t task, rusage_info_current *ri) |
| 1020 | { |
| 1021 | struct task_power_info powerinfo; |
| 1022 | |
| 1023 | assert(task != TASK_NULL); |
| 1024 | task_lock(task); |
| 1025 | |
| 1026 | task_power_info_locked(task, &powerinfo, NULL, NULL); |
| 1027 | ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups; |
| 1028 | ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups; |
| 1029 | ri->ri_user_time = powerinfo.total_user; |
| 1030 | ri->ri_system_time = powerinfo.total_system; |
| 1031 | |
| 1032 | ledger_get_balance(task->ledger, task_ledgers.phys_footprint, |
| 1033 | (ledger_amount_t *)&ri->ri_phys_footprint); |
| 1034 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, |
| 1035 | (ledger_amount_t *)&ri->ri_resident_size); |
| 1036 | ledger_get_balance(task->ledger, task_ledgers.wired_mem, |
| 1037 | (ledger_amount_t *)&ri->ri_wired_size); |
| 1038 | |
| 1039 | ri->ri_pageins = task->pageins; |
| 1040 | |
| 1041 | task_unlock(task); |
| 1042 | return (0); |
| 1043 | } |
| 1044 | |
| 1045 | void |
| 1046 | fill_task_billed_usage(task_t task __unused, rusage_info_current *ri) |
| 1047 | { |
| 1048 | bank_billed_balance_safe(task, &ri->ri_billed_system_time, &ri->ri_billed_energy); |
| 1049 | bank_serviced_balance_safe(task, &ri->ri_serviced_system_time, &ri->ri_serviced_energy); |
| 1050 | } |
| 1051 | |
| 1052 | int |
| 1053 | fill_task_io_rusage(task_t task, rusage_info_current *ri) |
| 1054 | { |
| 1055 | assert(task != TASK_NULL); |
| 1056 | task_lock(task); |
| 1057 | |
| 1058 | if (task->task_io_stats) { |
| 1059 | ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size; |
| 1060 | ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); |
| 1061 | } else { |
| 1062 | /* I/O Stats unavailable */ |
| 1063 | ri->ri_diskio_bytesread = 0; |
| 1064 | ri->ri_diskio_byteswritten = 0; |
| 1065 | } |
| 1066 | task_unlock(task); |
| 1067 | return (0); |
| 1068 | } |
| 1069 | |
| 1070 | int |
| 1071 | fill_task_qos_rusage(task_t task, rusage_info_current *ri) |
| 1072 | { |
| 1073 | thread_t thread; |
| 1074 | |
| 1075 | assert(task != TASK_NULL); |
| 1076 | task_lock(task); |
| 1077 | |
| 1078 | /* Rollup QoS time of all the threads to task */ |
| 1079 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 1080 | if (thread->options & TH_OPT_IDLE_THREAD) |
| 1081 | continue; |
| 1082 | |
| 1083 | thread_update_qos_cpu_time(thread); |
| 1084 | } |
| 1085 | ri->ri_cpu_time_qos_default = task->cpu_time_eqos_stats.cpu_time_qos_default; |
| 1086 | ri->ri_cpu_time_qos_maintenance = task->cpu_time_eqos_stats.cpu_time_qos_maintenance; |
| 1087 | ri->ri_cpu_time_qos_background = task->cpu_time_eqos_stats.cpu_time_qos_background; |
| 1088 | ri->ri_cpu_time_qos_utility = task->cpu_time_eqos_stats.cpu_time_qos_utility; |
| 1089 | ri->ri_cpu_time_qos_legacy = task->cpu_time_eqos_stats.cpu_time_qos_legacy; |
| 1090 | ri->ri_cpu_time_qos_user_initiated = task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; |
| 1091 | ri->ri_cpu_time_qos_user_interactive = task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; |
| 1092 | |
| 1093 | task_unlock(task); |
| 1094 | return (0); |
| 1095 | } |
| 1096 | |
| 1097 | void |
| 1098 | fill_task_monotonic_rusage(task_t task, rusage_info_current *ri) |
| 1099 | { |
| 1100 | #if MONOTONIC |
| 1101 | if (!mt_core_supported) { |
| 1102 | return; |
| 1103 | } |
| 1104 | |
| 1105 | assert(task != TASK_NULL); |
| 1106 | |
| 1107 | uint64_t counts[MT_CORE_NFIXED] = {}; |
| 1108 | mt_fixed_task_counts(task, counts); |
| 1109 | #ifdef MT_CORE_INSTRS |
| 1110 | ri->ri_instructions = counts[MT_CORE_INSTRS]; |
| 1111 | #endif /* defined(MT_CORE_INSTRS) */ |
| 1112 | ri->ri_cycles = counts[MT_CORE_CYCLES]; |
| 1113 | #else /* MONOTONIC */ |
| 1114 | #pragma unused(task, ri) |
| 1115 | #endif /* !MONOTONIC */ |
| 1116 | } |
| 1117 | |
| 1118 | uint64_t |
| 1119 | get_task_logical_writes(task_t task) |
| 1120 | { |
| 1121 | assert(task != TASK_NULL); |
| 1122 | struct ledger_entry_info lei; |
| 1123 | |
| 1124 | task_lock(task); |
| 1125 | ledger_get_entry_info(task->ledger, task_ledgers.logical_writes, &lei); |
| 1126 | |
| 1127 | task_unlock(task); |
| 1128 | return lei.lei_balance; |
| 1129 | } |
| 1130 | |
| 1131 | uint64_t |
| 1132 | get_task_dispatchqueue_serialno_offset(task_t task) |
| 1133 | { |
| 1134 | uint64_t dq_serialno_offset = 0; |
| 1135 | |
| 1136 | if (task->bsd_info) { |
| 1137 | dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info); |
| 1138 | } |
| 1139 | |
| 1140 | return dq_serialno_offset; |
| 1141 | } |
| 1142 | |
| 1143 | uint64_t |
| 1144 | get_task_uniqueid(task_t task) |
| 1145 | { |
| 1146 | if (task->bsd_info) { |
| 1147 | return proc_uniqueid(task->bsd_info); |
| 1148 | } else { |
| 1149 | return UINT64_MAX; |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | int |
| 1154 | get_task_version(task_t task) |
| 1155 | { |
| 1156 | if (task->bsd_info) { |
| 1157 | return proc_pidversion(task->bsd_info); |
| 1158 | } else { |
| 1159 | return INT_MAX; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | #if CONFIG_MACF |
| 1164 | struct label * |
| 1165 | get_task_crash_label(task_t task) |
| 1166 | { |
| 1167 | return task->crash_label; |
| 1168 | } |
| 1169 | #endif |
| 1170 | |