| 1 | /* |
| 2 | * Copyright (c) 2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <stddef.h> |
| 30 | #include <stdint.h> |
| 31 | |
| 32 | #include <kern/assert.h> |
| 33 | #include <kern/backtrace.h> |
| 34 | #include <kern/thread.h> |
| 35 | #include <sys/errno.h> |
| 36 | #include <vm/vm_map.h> |
| 37 | |
| 38 | #if defined(__arm__) || defined(__arm64__) |
| 39 | #include <arm/cpu_data.h> |
| 40 | #include <arm/cpu_data_internal.h> |
| 41 | #endif |
| 42 | |
| 43 | |
| 44 | |
| 45 | uint32_t __attribute__((noinline)) |
| 46 | backtrace(uintptr_t *bt, uint32_t max_frames) |
| 47 | { |
| 48 | return backtrace_frame(bt, max_frames, __builtin_frame_address(0)); |
| 49 | } |
| 50 | |
| 51 | /* |
| 52 | * This function captures a backtrace from the current stack and returns the |
| 53 | * number of frames captured, limited by max_frames and starting at start_frame. |
| 54 | * It's fast because it does no checking to make sure there isn't bad data. |
| 55 | * Since it's only called from threads that we're going to keep executing, |
| 56 | * if there's bad data we were going to die eventually. If this function is |
| 57 | * inlined, it doesn't record the frame of the function it's inside (because |
| 58 | * there's no stack frame). |
| 59 | */ |
| 60 | uint32_t __attribute__((noinline,not_tail_called)) |
| 61 | backtrace_frame(uintptr_t *bt, uint32_t max_frames, void *start_frame) |
| 62 | { |
| 63 | thread_t thread = current_thread(); |
| 64 | uintptr_t *fp; |
| 65 | uint32_t frame_index = 0; |
| 66 | uintptr_t top, bottom; |
| 67 | bool in_valid_stack; |
| 68 | |
| 69 | assert(bt != NULL); |
| 70 | assert(max_frames > 0); |
| 71 | |
| 72 | fp = start_frame; |
| 73 | bottom = thread->kernel_stack; |
| 74 | top = bottom + kernel_stack_size; |
| 75 | |
| 76 | #define IN_STK_BOUNDS(__addr) \ |
| 77 | (((uintptr_t)(__addr) >= (uintptr_t)bottom) && \ |
| 78 | ((uintptr_t)(__addr) < (uintptr_t)top)) |
| 79 | |
| 80 | in_valid_stack = IN_STK_BOUNDS(fp); |
| 81 | |
| 82 | if (!in_valid_stack) { |
| 83 | fp = NULL; |
| 84 | } |
| 85 | |
| 86 | while (fp != NULL && frame_index < max_frames) { |
| 87 | uintptr_t *next_fp = (uintptr_t *)*fp; |
| 88 | uintptr_t ret_addr = *(fp + 1); /* return address is one word higher than frame pointer */ |
| 89 | |
| 90 | /* |
| 91 | * If the frame pointer is 0, backtracing has reached the top of |
| 92 | * the stack and there is no return address. Some stacks might not |
| 93 | * have set this up, so bounds check, as well. |
| 94 | */ |
| 95 | in_valid_stack = IN_STK_BOUNDS(next_fp); |
| 96 | |
| 97 | if (next_fp == NULL || !in_valid_stack) |
| 98 | { |
| 99 | break; |
| 100 | } |
| 101 | |
| 102 | bt[frame_index++] = ret_addr; |
| 103 | |
| 104 | /* stacks grow down; backtracing should be moving to higher addresses */ |
| 105 | if (next_fp <= fp) { |
| 106 | break; |
| 107 | } |
| 108 | fp = next_fp; |
| 109 | } |
| 110 | |
| 111 | return frame_index; |
| 112 | #undef IN_STK_BOUNDS |
| 113 | } |
| 114 | |
| 115 | #if defined(__x86_64__) |
| 116 | |
| 117 | static kern_return_t |
| 118 | interrupted_kernel_pc_fp(uintptr_t *pc, uintptr_t *fp) |
| 119 | { |
| 120 | x86_saved_state_t *state; |
| 121 | bool state_64; |
| 122 | uint64_t cs; |
| 123 | |
| 124 | state = current_cpu_datap()->cpu_int_state; |
| 125 | if (!state) { |
| 126 | return KERN_FAILURE; |
| 127 | } |
| 128 | |
| 129 | state_64 = is_saved_state64(state); |
| 130 | |
| 131 | if (state_64) { |
| 132 | cs = saved_state64(state)->isf.cs; |
| 133 | } else { |
| 134 | cs = saved_state32(state)->cs; |
| 135 | } |
| 136 | /* return early if interrupted a thread in user space */ |
| 137 | if ((cs & SEL_PL) == SEL_PL_U) { |
| 138 | return KERN_FAILURE; |
| 139 | } |
| 140 | |
| 141 | if (state_64) { |
| 142 | *pc = saved_state64(state)->isf.rip; |
| 143 | *fp = saved_state64(state)->rbp; |
| 144 | } else { |
| 145 | *pc = saved_state32(state)->eip; |
| 146 | *fp = saved_state32(state)->ebp; |
| 147 | } |
| 148 | return KERN_SUCCESS; |
| 149 | } |
| 150 | |
| 151 | #elif defined(__arm64__) |
| 152 | |
| 153 | static kern_return_t |
| 154 | interrupted_kernel_pc_fp(uintptr_t *pc, uintptr_t *fp) |
| 155 | { |
| 156 | struct arm_saved_state *state; |
| 157 | bool state_64; |
| 158 | |
| 159 | state = getCpuDatap()->cpu_int_state; |
| 160 | if (!state) { |
| 161 | return KERN_FAILURE; |
| 162 | } |
| 163 | state_64 = is_saved_state64(state); |
| 164 | |
| 165 | /* return early if interrupted a thread in user space */ |
| 166 | if (PSR64_IS_USER(get_saved_state_cpsr(state))) { |
| 167 | return KERN_FAILURE; |
| 168 | } |
| 169 | |
| 170 | *pc = get_saved_state_pc(state); |
| 171 | *fp = get_saved_state_fp(state); |
| 172 | return KERN_SUCCESS; |
| 173 | } |
| 174 | |
| 175 | #elif defined(__arm__) |
| 176 | |
| 177 | static kern_return_t |
| 178 | interrupted_kernel_pc_fp(uintptr_t *pc, uintptr_t *fp) |
| 179 | { |
| 180 | struct arm_saved_state *state; |
| 181 | |
| 182 | state = getCpuDatap()->cpu_int_state; |
| 183 | if (!state) { |
| 184 | return KERN_FAILURE; |
| 185 | } |
| 186 | |
| 187 | /* return early if interrupted a thread in user space */ |
| 188 | if (PSR_IS_USER(get_saved_state_cpsr(state))) { |
| 189 | return KERN_FAILURE; |
| 190 | } |
| 191 | |
| 192 | *pc = get_saved_state_pc(state); |
| 193 | *fp = get_saved_state_fp(state); |
| 194 | return KERN_SUCCESS; |
| 195 | } |
| 196 | |
| 197 | #else /* defined(__arm__) */ |
| 198 | #error "interrupted_kernel_pc_fp: unsupported architecture" |
| 199 | #endif /* !defined(__arm__) */ |
| 200 | |
| 201 | uint32_t |
| 202 | backtrace_interrupted(uintptr_t *bt, uint32_t max_frames) |
| 203 | { |
| 204 | uintptr_t pc; |
| 205 | uintptr_t fp; |
| 206 | kern_return_t kr; |
| 207 | |
| 208 | assert(bt != NULL); |
| 209 | assert(max_frames > 0); |
| 210 | assert(ml_at_interrupt_context() == TRUE); |
| 211 | |
| 212 | kr = interrupted_kernel_pc_fp(&pc, &fp); |
| 213 | if (kr != KERN_SUCCESS) { |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | bt[0] = pc; |
| 218 | if (max_frames == 1) { |
| 219 | return 1; |
| 220 | } |
| 221 | |
| 222 | return backtrace_frame(bt + 1, max_frames - 1, (void *)fp) + 1; |
| 223 | } |
| 224 | |
| 225 | int |
| 226 | backtrace_user(uintptr_t *bt, uint32_t max_frames, uint32_t *frames_out, |
| 227 | bool *user_64_out) |
| 228 | { |
| 229 | return backtrace_thread_user(current_thread(), bt, max_frames, frames_out, |
| 230 | user_64_out); |
| 231 | } |
| 232 | |
| 233 | int |
| 234 | backtrace_thread_user(void *thread, uintptr_t *bt, uint32_t max_frames, |
| 235 | uint32_t *frames_out, bool *user_64_out) |
| 236 | { |
| 237 | bool user_64; |
| 238 | uintptr_t pc, fp, next_fp; |
| 239 | vm_map_t map = NULL, old_map = NULL; |
| 240 | uint32_t frame_index = 0; |
| 241 | int err = 0; |
| 242 | size_t frame_size; |
| 243 | |
| 244 | assert(bt != NULL); |
| 245 | assert(max_frames > 0); |
| 246 | assert(frames_out != NULL); |
| 247 | assert(user_64_out != NULL); |
| 248 | |
| 249 | #if defined(__x86_64__) |
| 250 | |
| 251 | /* don't allow a malformed user stack to copyin arbitrary kernel data */ |
| 252 | #define INVALID_USER_FP(FP) ((FP) == 0 || !IS_USERADDR64_CANONICAL((FP))) |
| 253 | |
| 254 | x86_saved_state_t *state = get_user_regs(thread); |
| 255 | |
| 256 | if (!state) { |
| 257 | return EINVAL; |
| 258 | } |
| 259 | |
| 260 | user_64 = is_saved_state64(state); |
| 261 | if (user_64) { |
| 262 | pc = saved_state64(state)->isf.rip; |
| 263 | fp = saved_state64(state)->rbp; |
| 264 | } else { |
| 265 | pc = saved_state32(state)->eip; |
| 266 | fp = saved_state32(state)->ebp; |
| 267 | } |
| 268 | |
| 269 | #elif defined(__arm64__) |
| 270 | |
| 271 | /* ARM expects stack frames to be aligned to 16 bytes */ |
| 272 | #define INVALID_USER_FP(FP) ((FP) == 0 || ((FP) & 0x3UL) != 0UL) |
| 273 | |
| 274 | struct arm_saved_state *state = get_user_regs(thread); |
| 275 | if (!state) { |
| 276 | return EINVAL; |
| 277 | } |
| 278 | |
| 279 | user_64 = is_saved_state64(state); |
| 280 | pc = get_saved_state_pc(state); |
| 281 | fp = get_saved_state_fp(state); |
| 282 | |
| 283 | #elif defined(__arm__) |
| 284 | |
| 285 | /* ARM expects stack frames to be aligned to 16 bytes */ |
| 286 | #define INVALID_USER_FP(FP) ((FP) == 0 || ((FP) & 0x3UL) != 0UL) |
| 287 | |
| 288 | struct arm_saved_state *state = get_user_regs(thread); |
| 289 | if (!state) { |
| 290 | return EINVAL; |
| 291 | } |
| 292 | |
| 293 | user_64 = false; |
| 294 | pc = get_saved_state_pc(state); |
| 295 | fp = get_saved_state_fp(state); |
| 296 | |
| 297 | #else /* defined(__arm__) */ |
| 298 | #error "backtrace_thread_user: unsupported architecture" |
| 299 | #endif /* !defined(__arm__) */ |
| 300 | |
| 301 | if (max_frames == 0) { |
| 302 | goto out; |
| 303 | } |
| 304 | |
| 305 | bt[frame_index++] = pc; |
| 306 | |
| 307 | if (frame_index >= max_frames) { |
| 308 | goto out; |
| 309 | } |
| 310 | |
| 311 | if (INVALID_USER_FP(fp)) { |
| 312 | goto out; |
| 313 | } |
| 314 | |
| 315 | assert(ml_get_interrupts_enabled() == TRUE); |
| 316 | if (!ml_get_interrupts_enabled()) { |
| 317 | return EINVAL; |
| 318 | } |
| 319 | |
| 320 | union { |
| 321 | struct { |
| 322 | uint64_t fp; |
| 323 | uint64_t ret; |
| 324 | } u64; |
| 325 | struct { |
| 326 | uint32_t fp; |
| 327 | uint32_t ret; |
| 328 | } u32; |
| 329 | } frame; |
| 330 | |
| 331 | frame_size = 2 * (user_64 ? sizeof(uint64_t) : sizeof(uint32_t)); |
| 332 | |
| 333 | /* switch to the correct map, for copyin */ |
| 334 | if (thread != current_thread()) { |
| 335 | map = get_task_map_reference(get_threadtask(thread)); |
| 336 | if (map == NULL) { |
| 337 | return EINVAL; |
| 338 | } |
| 339 | old_map = vm_map_switch(map); |
| 340 | } else { |
| 341 | map = NULL; |
| 342 | } |
| 343 | |
| 344 | while (fp != 0 && frame_index < max_frames) { |
| 345 | err = copyin(fp, (char *)&frame, frame_size); |
| 346 | if (err) { |
| 347 | goto out; |
| 348 | } |
| 349 | |
| 350 | next_fp = user_64 ? frame.u64.fp : frame.u32.fp; |
| 351 | |
| 352 | if (INVALID_USER_FP(next_fp)) { |
| 353 | break; |
| 354 | } |
| 355 | |
| 356 | uintptr_t ret_addr = user_64 ? frame.u64.ret : frame.u32.ret; |
| 357 | bt[frame_index++] = ret_addr; |
| 358 | |
| 359 | /* stacks grow down; backtracing should be moving to higher addresses */ |
| 360 | if (next_fp <= fp) { |
| 361 | break; |
| 362 | } |
| 363 | fp = next_fp; |
| 364 | } |
| 365 | |
| 366 | out: |
| 367 | if (map) { |
| 368 | (void)vm_map_switch(old_map); |
| 369 | vm_map_deallocate(map); |
| 370 | } |
| 371 | |
| 372 | *user_64_out = user_64; |
| 373 | *frames_out = frame_index; |
| 374 | return err; |
| 375 | #undef INVALID_USER_FP |
| 376 | } |
| 377 | |