| 1 | /* |
| 2 | * Copyright (c) 2015-2017 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #ifdef CONFIG_KDP_INTERACTIVE_DEBUGGING |
| 30 | |
| 31 | #include <mach/mach_types.h> |
| 32 | #include <mach/vm_attributes.h> |
| 33 | #include <mach/vm_param.h> |
| 34 | #include <mach/vm_map.h> |
| 35 | #include <vm/vm_protos.h> |
| 36 | #include <vm/vm_kern.h> |
| 37 | #include <vm/vm_map.h> |
| 38 | #include <machine/cpu_capabilities.h> |
| 39 | #include <libsa/types.h> |
| 40 | #include <libkern/kernel_mach_header.h> |
| 41 | #include <libkern/zlib.h> |
| 42 | #include <kdp/kdp_internal.h> |
| 43 | #include <kdp/kdp_core.h> |
| 44 | #include <kdp/processor_core.h> |
| 45 | #include <IOKit/IOPolledInterface.h> |
| 46 | #include <IOKit/IOBSD.h> |
| 47 | #include <sys/errno.h> |
| 48 | #include <sys/msgbuf.h> |
| 49 | #include <san/kasan.h> |
| 50 | |
| 51 | #if defined(__x86_64__) |
| 52 | #include <i386/pmap_internal.h> |
| 53 | #include <kdp/ml/i386/kdp_x86_common.h> |
| 54 | #include <kern/debug.h> |
| 55 | #endif /* defined(__x86_64__) */ |
| 56 | |
| 57 | #if CONFIG_EMBEDDED |
| 58 | #include <arm/cpuid.h> |
| 59 | #include <arm/caches_internal.h> |
| 60 | #include <pexpert/arm/consistent_debug.h> |
| 61 | |
| 62 | #if !defined(ROUNDUP) |
| 63 | #define ROUNDUP(a, b) (((a) + ((b) - 1)) & (~((b) - 1))) |
| 64 | #endif |
| 65 | |
| 66 | #if !defined(ROUNDDOWN) |
| 67 | #define ROUNDDOWN(a, b) ((a) & ~((b) - 1)) |
| 68 | #endif |
| 69 | #endif /* CONFIG_EMBEDDED */ |
| 70 | |
| 71 | typedef int (*pmap_traverse_callback)(vm_map_offset_t start, |
| 72 | vm_map_offset_t end, |
| 73 | void *context); |
| 74 | |
| 75 | extern int pmap_traverse_present_mappings(pmap_t pmap, |
| 76 | vm_map_offset_t start, |
| 77 | vm_map_offset_t end, |
| 78 | pmap_traverse_callback callback, |
| 79 | void *context); |
| 80 | |
| 81 | static int kern_dump_save_summary(void *refcon, core_save_summary_cb callback, void *context); |
| 82 | static int kern_dump_save_seg_descriptions(void *refcon, core_save_segment_descriptions_cb callback, void *context); |
| 83 | static int kern_dump_save_thread_state(void *refcon, void *buf, core_save_thread_state_cb callback, void *context); |
| 84 | static int kern_dump_save_sw_vers(void *refcon, core_save_sw_vers_cb callback, void *context); |
| 85 | static int kern_dump_save_segment_data(void *refcon, core_save_segment_data_cb callback, void *context); |
| 86 | |
| 87 | static int |
| 88 | kern_dump_pmap_traverse_preflight_callback(vm_map_offset_t start, |
| 89 | vm_map_offset_t end, |
| 90 | void *context); |
| 91 | static int |
| 92 | kern_dump_pmap_traverse_send_segdesc_callback(vm_map_offset_t start, |
| 93 | vm_map_offset_t end, |
| 94 | void *context); |
| 95 | |
| 96 | static int |
| 97 | kern_dump_pmap_traverse_send_segdata_callback(vm_map_offset_t start, |
| 98 | vm_map_offset_t end, |
| 99 | void *context); |
| 100 | |
| 101 | struct kdp_core_out_vars; |
| 102 | typedef int (*kern_dump_output_proc)(unsigned int request, char *corename, |
| 103 | uint64_t length, void *panic_data); |
| 104 | |
| 105 | struct kdp_core_out_vars |
| 106 | { |
| 107 | kern_dump_output_proc outproc; |
| 108 | z_output_func zoutput; |
| 109 | size_t zipped; |
| 110 | uint64_t totalbytes; |
| 111 | uint64_t lastpercent; |
| 112 | IOReturn error; |
| 113 | unsigned outremain; |
| 114 | unsigned outlen; |
| 115 | unsigned writes; |
| 116 | Bytef * outbuf; |
| 117 | }; |
| 118 | |
| 119 | extern uint32_t kdp_crashdump_pkt_size; |
| 120 | |
| 121 | static vm_offset_t kdp_core_zmem; |
| 122 | static size_t kdp_core_zsize; |
| 123 | static size_t kdp_core_zoffset; |
| 124 | static z_stream kdp_core_zs; |
| 125 | |
| 126 | static uint64_t kdp_core_total_size; |
| 127 | static uint64_t kdp_core_total_size_sent_uncomp; |
| 128 | #if CONFIG_EMBEDDED |
| 129 | struct xnu_hw_shmem_dbg_command_info *hwsd_info = NULL; |
| 130 | |
| 131 | #define KDP_CORE_HW_SHMEM_DBG_NUM_BUFFERS 2 |
| 132 | #define KDP_CORE_HW_SHMEM_DBG_TOTAL_BUF_SIZE 64 * 1024 |
| 133 | |
| 134 | /* |
| 135 | * Astris can read up to 4064 bytes at a time over |
| 136 | * the probe, so we should try to make our buffer |
| 137 | * size a multiple of this to make reads by astris |
| 138 | * (the bottleneck) most efficient. |
| 139 | */ |
| 140 | #define OPTIMAL_ASTRIS_READSIZE 4064 |
| 141 | |
| 142 | struct kdp_hw_shmem_dbg_buf_elm { |
| 143 | vm_offset_t khsd_buf; |
| 144 | uint32_t khsd_data_length; |
| 145 | STAILQ_ENTRY(kdp_hw_shmem_dbg_buf_elm) khsd_elms; |
| 146 | }; |
| 147 | |
| 148 | static STAILQ_HEAD(, kdp_hw_shmem_dbg_buf_elm) free_hw_shmem_dbg_bufs = |
| 149 | STAILQ_HEAD_INITIALIZER(free_hw_shmem_dbg_bufs); |
| 150 | static STAILQ_HEAD(, kdp_hw_shmem_dbg_buf_elm) hw_shmem_dbg_bufs_to_flush = |
| 151 | STAILQ_HEAD_INITIALIZER(hw_shmem_dbg_bufs_to_flush); |
| 152 | |
| 153 | static struct kdp_hw_shmem_dbg_buf_elm *currently_filling_buf = NULL; |
| 154 | static struct kdp_hw_shmem_dbg_buf_elm *currently_flushing_buf = NULL; |
| 155 | |
| 156 | static uint32_t kdp_hw_shmem_dbg_bufsize = 0; |
| 157 | |
| 158 | static uint32_t kdp_hw_shmem_dbg_seq_no = 0; |
| 159 | static uint64_t kdp_hw_shmem_dbg_contact_deadline = 0; |
| 160 | static uint64_t kdp_hw_shmem_dbg_contact_deadline_interval = 0; |
| 161 | |
| 162 | #define KDP_HW_SHMEM_DBG_TIMEOUT_DEADLINE_SECS 30 |
| 163 | #endif /* CONFIG_EMBEDDED */ |
| 164 | |
| 165 | static boolean_t kern_dump_successful = FALSE; |
| 166 | |
| 167 | struct mach_core_fileheader = { }; |
| 168 | |
| 169 | /* |
| 170 | * These variables will be modified by the BSD layer if the root device is |
| 171 | * a RAMDisk. |
| 172 | */ |
| 173 | uint64_t kdp_core_ramdisk_addr = 0; |
| 174 | uint64_t kdp_core_ramdisk_size = 0; |
| 175 | |
| 176 | boolean_t kdp_has_polled_corefile(void) |
| 177 | { |
| 178 | return (NULL != gIOPolledCoreFileVars); |
| 179 | } |
| 180 | |
| 181 | kern_return_t kdp_polled_corefile_error(void) |
| 182 | { |
| 183 | return gIOPolledCoreFileOpenRet; |
| 184 | } |
| 185 | #if CONFIG_EMBEDDED |
| 186 | /* |
| 187 | * Whenever we start a coredump, make sure the buffers |
| 188 | * are all on the free queue and the state is as expected. |
| 189 | * The buffers may have been left in a different state if |
| 190 | * a previous coredump attempt failed. |
| 191 | */ |
| 192 | static void |
| 193 | kern_dump_hw_shmem_dbg_reset() |
| 194 | { |
| 195 | struct kdp_hw_shmem_dbg_buf_elm *cur_elm = NULL, *tmp_elm = NULL; |
| 196 | |
| 197 | STAILQ_FOREACH(cur_elm, &free_hw_shmem_dbg_bufs, khsd_elms) { |
| 198 | cur_elm->khsd_data_length = 0; |
| 199 | } |
| 200 | |
| 201 | if (currently_filling_buf != NULL) { |
| 202 | currently_filling_buf->khsd_data_length = 0; |
| 203 | |
| 204 | STAILQ_INSERT_HEAD(&free_hw_shmem_dbg_bufs, currently_filling_buf, khsd_elms); |
| 205 | currently_filling_buf = NULL; |
| 206 | } |
| 207 | |
| 208 | if (currently_flushing_buf != NULL) { |
| 209 | currently_flushing_buf->khsd_data_length = 0; |
| 210 | |
| 211 | STAILQ_INSERT_HEAD(&free_hw_shmem_dbg_bufs, currently_flushing_buf, khsd_elms); |
| 212 | currently_flushing_buf = NULL; |
| 213 | } |
| 214 | |
| 215 | STAILQ_FOREACH_SAFE(cur_elm, &hw_shmem_dbg_bufs_to_flush, khsd_elms, tmp_elm) { |
| 216 | cur_elm->khsd_data_length = 0; |
| 217 | |
| 218 | STAILQ_REMOVE(&hw_shmem_dbg_bufs_to_flush, cur_elm, kdp_hw_shmem_dbg_buf_elm, khsd_elms); |
| 219 | STAILQ_INSERT_HEAD(&free_hw_shmem_dbg_bufs, cur_elm, khsd_elms); |
| 220 | } |
| 221 | |
| 222 | hwsd_info->xhsdci_status = XHSDCI_COREDUMP_BUF_EMPTY; |
| 223 | kdp_hw_shmem_dbg_seq_no = 0; |
| 224 | hwsd_info->xhsdci_buf_phys_addr = 0; |
| 225 | hwsd_info->xhsdci_buf_data_length = 0; |
| 226 | hwsd_info->xhsdci_coredump_total_size_uncomp = 0; |
| 227 | hwsd_info->xhsdci_coredump_total_size_sent_uncomp = 0; |
| 228 | hwsd_info->xhsdci_page_size = PAGE_SIZE; |
| 229 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 230 | |
| 231 | kdp_hw_shmem_dbg_contact_deadline = mach_absolute_time() + kdp_hw_shmem_dbg_contact_deadline_interval; |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * Tries to move buffers forward in 'progress'. If |
| 236 | * the hardware debugger is done consuming the current buffer, we |
| 237 | * can put the next one on it and move the current |
| 238 | * buffer back to the free queue. |
| 239 | */ |
| 240 | static int |
| 241 | kern_dump_hw_shmem_dbg_process_buffers() |
| 242 | { |
| 243 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 244 | if (hwsd_info->xhsdci_status == XHSDCI_COREDUMP_ERROR) { |
| 245 | kern_coredump_log(NULL, "Detected remote error, terminating...\n" ); |
| 246 | return -1; |
| 247 | } else if (hwsd_info->xhsdci_status == XHSDCI_COREDUMP_BUF_EMPTY) { |
| 248 | if (hwsd_info->xhsdci_seq_no != (kdp_hw_shmem_dbg_seq_no + 1)) { |
| 249 | kern_coredump_log(NULL, "Detected stale/invalid seq num. Expected: %d, received %d\n" , |
| 250 | (kdp_hw_shmem_dbg_seq_no + 1), hwsd_info->xhsdci_seq_no); |
| 251 | hwsd_info->xhsdci_status = XHSDCI_COREDUMP_ERROR; |
| 252 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 253 | return -1; |
| 254 | } |
| 255 | |
| 256 | kdp_hw_shmem_dbg_seq_no = hwsd_info->xhsdci_seq_no; |
| 257 | |
| 258 | if (currently_flushing_buf != NULL) { |
| 259 | currently_flushing_buf->khsd_data_length = 0; |
| 260 | STAILQ_INSERT_TAIL(&free_hw_shmem_dbg_bufs, currently_flushing_buf, khsd_elms); |
| 261 | } |
| 262 | |
| 263 | currently_flushing_buf = STAILQ_FIRST(&hw_shmem_dbg_bufs_to_flush); |
| 264 | if (currently_flushing_buf != NULL) { |
| 265 | STAILQ_REMOVE_HEAD(&hw_shmem_dbg_bufs_to_flush, khsd_elms); |
| 266 | |
| 267 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 268 | hwsd_info->xhsdci_buf_phys_addr = kvtophys(currently_flushing_buf->khsd_buf); |
| 269 | hwsd_info->xhsdci_buf_data_length = currently_flushing_buf->khsd_data_length; |
| 270 | hwsd_info->xhsdci_coredump_total_size_uncomp = kdp_core_total_size; |
| 271 | hwsd_info->xhsdci_coredump_total_size_sent_uncomp = kdp_core_total_size_sent_uncomp; |
| 272 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, KDP_CORE_HW_SHMEM_DBG_TOTAL_BUF_SIZE); |
| 273 | hwsd_info->xhsdci_seq_no = ++kdp_hw_shmem_dbg_seq_no; |
| 274 | hwsd_info->xhsdci_status = XHSDCI_COREDUMP_BUF_READY; |
| 275 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 276 | } |
| 277 | |
| 278 | kdp_hw_shmem_dbg_contact_deadline = mach_absolute_time() + |
| 279 | kdp_hw_shmem_dbg_contact_deadline_interval; |
| 280 | |
| 281 | return 0; |
| 282 | } else if (mach_absolute_time() > kdp_hw_shmem_dbg_contact_deadline) { |
| 283 | kern_coredump_log(NULL, "Kernel timed out waiting for hardware debugger to update handshake structure." ); |
| 284 | kern_coredump_log(NULL, "No contact in %d seconds\n" , KDP_HW_SHMEM_DBG_TIMEOUT_DEADLINE_SECS); |
| 285 | |
| 286 | hwsd_info->xhsdci_status = XHSDCI_COREDUMP_ERROR; |
| 287 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 288 | return -1; |
| 289 | } |
| 290 | |
| 291 | return 0; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Populates currently_filling_buf with a new buffer |
| 296 | * once one becomes available. Returns 0 on success |
| 297 | * or the value returned by kern_dump_hw_shmem_dbg_process_buffers() |
| 298 | * if it is non-zero (an error). |
| 299 | */ |
| 300 | static int |
| 301 | kern_dump_hw_shmem_dbg_get_buffer() |
| 302 | { |
| 303 | int ret = 0; |
| 304 | |
| 305 | assert(currently_filling_buf == NULL); |
| 306 | |
| 307 | while (STAILQ_EMPTY(&free_hw_shmem_dbg_bufs)) { |
| 308 | ret = kern_dump_hw_shmem_dbg_process_buffers(); |
| 309 | if (ret) { |
| 310 | return ret; |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | currently_filling_buf = STAILQ_FIRST(&free_hw_shmem_dbg_bufs); |
| 315 | STAILQ_REMOVE_HEAD(&free_hw_shmem_dbg_bufs, khsd_elms); |
| 316 | |
| 317 | assert(currently_filling_buf->khsd_data_length == 0); |
| 318 | return ret; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Output procedure for hardware shared memory core dumps |
| 323 | * |
| 324 | * Tries to fill up the buffer completely before flushing |
| 325 | */ |
| 326 | static int |
| 327 | kern_dump_hw_shmem_dbg_buffer_proc(unsigned int request, __unused char *corename, |
| 328 | uint64_t length, void * data) |
| 329 | { |
| 330 | int ret = 0; |
| 331 | |
| 332 | assert(length < UINT32_MAX); |
| 333 | uint32_t bytes_remaining = (uint32_t) length; |
| 334 | uint32_t bytes_to_copy; |
| 335 | |
| 336 | if (request == KDP_EOF) { |
| 337 | assert(currently_filling_buf == NULL); |
| 338 | |
| 339 | /* |
| 340 | * Wait until we've flushed all the buffers |
| 341 | * before setting the connection status to done. |
| 342 | */ |
| 343 | while (!STAILQ_EMPTY(&hw_shmem_dbg_bufs_to_flush) || |
| 344 | currently_flushing_buf != NULL) { |
| 345 | ret = kern_dump_hw_shmem_dbg_process_buffers(); |
| 346 | if (ret) { |
| 347 | return ret; |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * If the last status we saw indicates that the buffer was |
| 353 | * empty and we didn't flush any new data since then, we expect |
| 354 | * the sequence number to still match the last we saw. |
| 355 | */ |
| 356 | if (hwsd_info->xhsdci_seq_no < kdp_hw_shmem_dbg_seq_no) { |
| 357 | kern_coredump_log(NULL, "EOF Flush: Detected stale/invalid seq num. Expected: %d, received %d\n" , |
| 358 | kdp_hw_shmem_dbg_seq_no, hwsd_info->xhsdci_seq_no); |
| 359 | return -1; |
| 360 | } |
| 361 | |
| 362 | kdp_hw_shmem_dbg_seq_no = hwsd_info->xhsdci_seq_no; |
| 363 | |
| 364 | kern_coredump_log(NULL, "Setting coredump status as done!\n" ); |
| 365 | hwsd_info->xhsdci_seq_no = ++kdp_hw_shmem_dbg_seq_no; |
| 366 | hwsd_info->xhsdci_status = XHSDCI_COREDUMP_STATUS_DONE; |
| 367 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 368 | |
| 369 | return ret; |
| 370 | } |
| 371 | |
| 372 | assert(request == KDP_DATA); |
| 373 | |
| 374 | /* |
| 375 | * The output procedure is called with length == 0 and data == NULL |
| 376 | * to flush any remaining output at the end of the coredump before |
| 377 | * we call it a final time to mark the dump as done. |
| 378 | */ |
| 379 | if (length == 0) { |
| 380 | assert(data == NULL); |
| 381 | |
| 382 | if (currently_filling_buf != NULL) { |
| 383 | STAILQ_INSERT_TAIL(&hw_shmem_dbg_bufs_to_flush, currently_filling_buf, khsd_elms); |
| 384 | currently_filling_buf = NULL; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Move the current buffer along if possible. |
| 389 | */ |
| 390 | ret = kern_dump_hw_shmem_dbg_process_buffers(); |
| 391 | return ret; |
| 392 | } |
| 393 | |
| 394 | while (bytes_remaining != 0) { |
| 395 | /* |
| 396 | * Make sure we have a buffer to work with. |
| 397 | */ |
| 398 | while (currently_filling_buf == NULL) { |
| 399 | ret = kern_dump_hw_shmem_dbg_get_buffer(); |
| 400 | if (ret) { |
| 401 | return ret; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | assert(kdp_hw_shmem_dbg_bufsize >= currently_filling_buf->khsd_data_length); |
| 406 | bytes_to_copy = MIN(bytes_remaining, kdp_hw_shmem_dbg_bufsize - |
| 407 | currently_filling_buf->khsd_data_length); |
| 408 | bcopy(data, (void *)(currently_filling_buf->khsd_buf + currently_filling_buf->khsd_data_length), |
| 409 | bytes_to_copy); |
| 410 | |
| 411 | currently_filling_buf->khsd_data_length += bytes_to_copy; |
| 412 | |
| 413 | if (currently_filling_buf->khsd_data_length == kdp_hw_shmem_dbg_bufsize) { |
| 414 | STAILQ_INSERT_TAIL(&hw_shmem_dbg_bufs_to_flush, currently_filling_buf, khsd_elms); |
| 415 | currently_filling_buf = NULL; |
| 416 | |
| 417 | /* |
| 418 | * Move it along if possible. |
| 419 | */ |
| 420 | ret = kern_dump_hw_shmem_dbg_process_buffers(); |
| 421 | if (ret) { |
| 422 | return ret; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | bytes_remaining -= bytes_to_copy; |
| 427 | data = (void *) ((uintptr_t)data + bytes_to_copy); |
| 428 | } |
| 429 | |
| 430 | return ret; |
| 431 | } |
| 432 | #endif /* CONFIG_EMBEDDED */ |
| 433 | |
| 434 | static IOReturn |
| 435 | kern_dump_disk_proc(unsigned int request, __unused char *corename, |
| 436 | uint64_t length, void * data) |
| 437 | { |
| 438 | uint64_t noffset; |
| 439 | uint32_t err = kIOReturnSuccess; |
| 440 | |
| 441 | switch (request) |
| 442 | { |
| 443 | case KDP_WRQ: |
| 444 | err = IOPolledFileSeek(gIOPolledCoreFileVars, 0); |
| 445 | if (kIOReturnSuccess != err) { |
| 446 | kern_coredump_log(NULL, "IOPolledFileSeek(gIOPolledCoreFileVars, 0) returned 0x%x\n" , err); |
| 447 | break; |
| 448 | } |
| 449 | err = IOPolledFilePollersOpen(gIOPolledCoreFileVars, kIOPolledBeforeSleepState, false); |
| 450 | break; |
| 451 | |
| 452 | case KDP_SEEK: |
| 453 | noffset = *((uint64_t *) data); |
| 454 | err = IOPolledFileWrite(gIOPolledCoreFileVars, 0, 0, NULL); |
| 455 | if (kIOReturnSuccess != err) { |
| 456 | kern_coredump_log(NULL, "IOPolledFileWrite (during seek) returned 0x%x\n" , err); |
| 457 | break; |
| 458 | } |
| 459 | err = IOPolledFileSeek(gIOPolledCoreFileVars, noffset); |
| 460 | if (kIOReturnSuccess != err) { |
| 461 | kern_coredump_log(NULL, "IOPolledFileSeek(0x%llx) returned 0x%x\n" , noffset, err); |
| 462 | } |
| 463 | break; |
| 464 | |
| 465 | case KDP_DATA: |
| 466 | err = IOPolledFileWrite(gIOPolledCoreFileVars, data, length, NULL); |
| 467 | if (kIOReturnSuccess != err) { |
| 468 | kern_coredump_log(NULL, "IOPolledFileWrite(gIOPolledCoreFileVars, %p, 0x%llx, NULL) returned 0x%x\n" , |
| 469 | data, length, err); |
| 470 | break; |
| 471 | } |
| 472 | break; |
| 473 | |
| 474 | #if CONFIG_EMBEDDED |
| 475 | /* Only supported on embedded by the underlying polled mode driver */ |
| 476 | case KDP_FLUSH: |
| 477 | err = IOPolledFileFlush(gIOPolledCoreFileVars); |
| 478 | if (kIOReturnSuccess != err) { |
| 479 | kern_coredump_log(NULL, "IOPolledFileFlush() returned 0x%x\n" , err); |
| 480 | break; |
| 481 | } |
| 482 | break; |
| 483 | #endif |
| 484 | |
| 485 | case KDP_EOF: |
| 486 | err = IOPolledFileWrite(gIOPolledCoreFileVars, 0, 0, NULL); |
| 487 | if (kIOReturnSuccess != err) { |
| 488 | kern_coredump_log(NULL, "IOPolledFileWrite (during EOF) returned 0x%x\n" , err); |
| 489 | break; |
| 490 | } |
| 491 | err = IOPolledFilePollersClose(gIOPolledCoreFileVars, kIOPolledBeforeSleepState); |
| 492 | if (kIOReturnSuccess != err) { |
| 493 | kern_coredump_log(NULL, "IOPolledFilePollersClose (during EOF) returned 0x%x\n" , err); |
| 494 | break; |
| 495 | } |
| 496 | break; |
| 497 | } |
| 498 | |
| 499 | return (err); |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | * flushes any data to the output proc immediately |
| 504 | */ |
| 505 | static int |
| 506 | kdp_core_zoutput(z_streamp strm, Bytef *buf, unsigned len) |
| 507 | { |
| 508 | struct kdp_core_out_vars * vars = (typeof(vars)) strm->opaque; |
| 509 | IOReturn ret; |
| 510 | |
| 511 | vars->zipped += len; |
| 512 | |
| 513 | if (vars->error >= 0) |
| 514 | { |
| 515 | if ((ret = (*vars->outproc)(KDP_DATA, NULL, len, buf)) != kIOReturnSuccess) |
| 516 | { |
| 517 | kern_coredump_log(NULL, "(kdp_core_zoutput) outproc(KDP_DATA, NULL, 0x%x, %p) returned 0x%x\n" , |
| 518 | len, buf, ret); |
| 519 | vars->error = ret; |
| 520 | } |
| 521 | if (!buf && !len) kern_coredump_log(NULL, "100.." ); |
| 522 | } |
| 523 | return (len); |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * tries to fill the buffer with data before flushing it via the output proc. |
| 528 | */ |
| 529 | static int |
| 530 | kdp_core_zoutputbuf(z_streamp strm, Bytef *inbuf, unsigned inlen) |
| 531 | { |
| 532 | struct kdp_core_out_vars * vars = (typeof(vars)) strm->opaque; |
| 533 | unsigned remain; |
| 534 | IOReturn ret; |
| 535 | unsigned chunk; |
| 536 | boolean_t flush; |
| 537 | |
| 538 | remain = inlen; |
| 539 | vars->zipped += inlen; |
| 540 | flush = (!inbuf && !inlen); |
| 541 | |
| 542 | while ((vars->error >= 0) && (remain || flush)) |
| 543 | { |
| 544 | chunk = vars->outremain; |
| 545 | if (chunk > remain) chunk = remain; |
| 546 | if (!inbuf) bzero(&vars->outbuf[vars->outlen - vars->outremain], chunk); |
| 547 | else |
| 548 | { |
| 549 | bcopy(inbuf, &vars->outbuf[vars->outlen - vars->outremain], chunk); |
| 550 | inbuf += chunk; |
| 551 | } |
| 552 | vars->outremain -= chunk; |
| 553 | remain -= chunk; |
| 554 | |
| 555 | if (vars->outremain && !flush) break; |
| 556 | if ((ret = (*vars->outproc)(KDP_DATA, NULL, |
| 557 | vars->outlen - vars->outremain, |
| 558 | vars->outbuf)) != kIOReturnSuccess) |
| 559 | { |
| 560 | kern_coredump_log(NULL, "(kdp_core_zoutputbuf) outproc(KDP_DATA, NULL, 0x%x, %p) returned 0x%x\n" , |
| 561 | (vars->outlen - vars->outremain), vars->outbuf, ret); |
| 562 | vars->error = ret; |
| 563 | } |
| 564 | if (flush) |
| 565 | { |
| 566 | kern_coredump_log(NULL, "100.." ); |
| 567 | flush = false; |
| 568 | } |
| 569 | vars->outremain = vars->outlen; |
| 570 | } |
| 571 | return (inlen); |
| 572 | } |
| 573 | |
| 574 | static int |
| 575 | kdp_core_zinput(z_streamp strm, Bytef *buf, unsigned size) |
| 576 | { |
| 577 | struct kdp_core_out_vars * vars = (typeof(vars)) strm->opaque; |
| 578 | uint64_t percent, total_in = 0; |
| 579 | unsigned len; |
| 580 | |
| 581 | len = strm->avail_in; |
| 582 | if (len > size) len = size; |
| 583 | if (len == 0) return 0; |
| 584 | |
| 585 | if (strm->next_in != (Bytef *) strm) memcpy(buf, strm->next_in, len); |
| 586 | else bzero(buf, len); |
| 587 | strm->adler = z_crc32(strm->adler, buf, len); |
| 588 | |
| 589 | strm->avail_in -= len; |
| 590 | strm->next_in += len; |
| 591 | strm->total_in += len; |
| 592 | |
| 593 | if (0 == (511 & vars->writes++)) |
| 594 | { |
| 595 | total_in = strm->total_in; |
| 596 | kdp_core_total_size_sent_uncomp = strm->total_in; |
| 597 | |
| 598 | percent = (total_in * 100) / vars->totalbytes; |
| 599 | if ((percent - vars->lastpercent) >= 10) |
| 600 | { |
| 601 | vars->lastpercent = percent; |
| 602 | kern_coredump_log(NULL, "%lld..\n" , percent); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | return (int)len; |
| 607 | } |
| 608 | |
| 609 | static IOReturn |
| 610 | kdp_core_stream_output_chunk(struct kdp_core_out_vars * vars, unsigned length, void * data) |
| 611 | { |
| 612 | z_stream * zs; |
| 613 | int zr; |
| 614 | boolean_t flush; |
| 615 | |
| 616 | zs = &kdp_core_zs; |
| 617 | |
| 618 | if (kdp_corezip_disabled) |
| 619 | { |
| 620 | (*vars->zoutput)(zs, data, length); |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | |
| 625 | flush = (!length && !data); |
| 626 | zr = Z_OK; |
| 627 | |
| 628 | assert(!zs->avail_in); |
| 629 | |
| 630 | while (vars->error >= 0) |
| 631 | { |
| 632 | if (!zs->avail_in && !flush) |
| 633 | { |
| 634 | if (!length) break; |
| 635 | zs->next_in = data ? data : (Bytef *) zs /* zero marker */; |
| 636 | zs->avail_in = length; |
| 637 | length = 0; |
| 638 | } |
| 639 | if (!zs->avail_out) |
| 640 | { |
| 641 | zs->next_out = (Bytef *) zs; |
| 642 | zs->avail_out = UINT32_MAX; |
| 643 | } |
| 644 | zr = deflate(zs, flush ? Z_FINISH : Z_NO_FLUSH); |
| 645 | if (Z_STREAM_END == zr) break; |
| 646 | if (zr != Z_OK) |
| 647 | { |
| 648 | kern_coredump_log(NULL, "ZERR %d\n" , zr); |
| 649 | vars->error = zr; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | if (flush) (*vars->zoutput)(zs, NULL, 0); |
| 654 | } |
| 655 | |
| 656 | return (vars->error); |
| 657 | } |
| 658 | |
| 659 | kern_return_t |
| 660 | kdp_core_output(void *kdp_core_out_vars, uint64_t length, void * data) |
| 661 | { |
| 662 | IOReturn err; |
| 663 | unsigned int chunk; |
| 664 | enum { kMaxZLibChunk = 1024*1024*1024 }; |
| 665 | struct kdp_core_out_vars *vars = (struct kdp_core_out_vars *)kdp_core_out_vars; |
| 666 | |
| 667 | do |
| 668 | { |
| 669 | if (length <= kMaxZLibChunk) chunk = (typeof(chunk)) length; |
| 670 | else chunk = kMaxZLibChunk; |
| 671 | err = kdp_core_stream_output_chunk(vars, chunk, data); |
| 672 | |
| 673 | length -= chunk; |
| 674 | if (data) data = (void *) (((uintptr_t) data) + chunk); |
| 675 | } |
| 676 | while (length && (kIOReturnSuccess == err)); |
| 677 | |
| 678 | return (err); |
| 679 | } |
| 680 | |
| 681 | #if defined(__arm__) || defined(__arm64__) |
| 682 | extern pmap_paddr_t avail_start, avail_end; |
| 683 | extern struct vm_object pmap_object_store; |
| 684 | #endif |
| 685 | extern vm_offset_t c_buffers; |
| 686 | extern vm_size_t c_buffers_size; |
| 687 | |
| 688 | ppnum_t |
| 689 | kernel_pmap_present_mapping(uint64_t vaddr, uint64_t * pvincr, uintptr_t * pvphysaddr) |
| 690 | { |
| 691 | ppnum_t ppn = 0; |
| 692 | uint64_t vincr = PAGE_SIZE_64; |
| 693 | |
| 694 | assert(!(vaddr & PAGE_MASK_64)); |
| 695 | |
| 696 | /* VA ranges to exclude */ |
| 697 | if (vaddr == c_buffers) |
| 698 | { |
| 699 | /* compressor data */ |
| 700 | ppn = 0; |
| 701 | vincr = c_buffers_size; |
| 702 | } |
| 703 | else if (vaddr == kdp_core_zmem) |
| 704 | { |
| 705 | /* zlib working memory */ |
| 706 | ppn = 0; |
| 707 | vincr = kdp_core_zsize; |
| 708 | } |
| 709 | else if ((kdp_core_ramdisk_addr != 0) && (vaddr == kdp_core_ramdisk_addr)) |
| 710 | { |
| 711 | ppn = 0; |
| 712 | vincr = kdp_core_ramdisk_size; |
| 713 | } |
| 714 | else |
| 715 | #if defined(__arm64__) && defined(CONFIG_XNUPOST) |
| 716 | if (vaddr == _COMM_HIGH_PAGE64_BASE_ADDRESS) |
| 717 | { |
| 718 | /* not readable */ |
| 719 | ppn = 0; |
| 720 | vincr = _COMM_PAGE_AREA_LENGTH; |
| 721 | } |
| 722 | else |
| 723 | #endif /* defined(__arm64__) */ |
| 724 | #if defined(__arm__) || defined(__arm64__) |
| 725 | if (vaddr == phystokv(avail_start)) |
| 726 | { |
| 727 | /* physical memory map */ |
| 728 | ppn = 0; |
| 729 | vincr = (avail_end - avail_start); |
| 730 | } |
| 731 | else |
| 732 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 733 | ppn = pmap_find_phys(kernel_pmap, vaddr); |
| 734 | |
| 735 | *pvincr = round_page_64(vincr); |
| 736 | |
| 737 | if (ppn && pvphysaddr) |
| 738 | { |
| 739 | uint64_t phys = ptoa_64(ppn); |
| 740 | #if defined(__arm__) || defined(__arm64__) |
| 741 | if (isphysmem(phys)) *pvphysaddr = phystokv(phys); |
| 742 | #else |
| 743 | if (physmap_enclosed(phys)) *pvphysaddr = (uintptr_t)PHYSMAP_PTOV(phys); |
| 744 | #endif |
| 745 | else ppn = 0; |
| 746 | } |
| 747 | |
| 748 | return (ppn); |
| 749 | } |
| 750 | |
| 751 | int |
| 752 | pmap_traverse_present_mappings(pmap_t __unused pmap, |
| 753 | vm_map_offset_t start, |
| 754 | vm_map_offset_t end, |
| 755 | pmap_traverse_callback callback, |
| 756 | void *context) |
| 757 | { |
| 758 | IOReturn ret; |
| 759 | vm_map_offset_t vcurstart, vcur; |
| 760 | uint64_t vincr = 0; |
| 761 | vm_map_offset_t debug_start; |
| 762 | vm_map_offset_t debug_end; |
| 763 | boolean_t lastvavalid; |
| 764 | #if defined(__arm__) || defined(__arm64__) |
| 765 | vm_page_t m = VM_PAGE_NULL; |
| 766 | #endif |
| 767 | |
| 768 | debug_start = trunc_page((vm_map_offset_t) debug_buf_base); |
| 769 | debug_end = round_page((vm_map_offset_t) (debug_buf_base + debug_buf_size)); |
| 770 | |
| 771 | #if defined(__x86_64__) |
| 772 | assert(!is_ept_pmap(pmap)); |
| 773 | #endif |
| 774 | |
| 775 | /* Assumes pmap is locked, or being called from the kernel debugger */ |
| 776 | |
| 777 | if (start > end) return (KERN_INVALID_ARGUMENT); |
| 778 | |
| 779 | ret = KERN_SUCCESS; |
| 780 | lastvavalid = FALSE; |
| 781 | for (vcur = vcurstart = start; (ret == KERN_SUCCESS) && (vcur < end); ) { |
| 782 | ppnum_t ppn = 0; |
| 783 | |
| 784 | #if defined(__arm__) || defined(__arm64__) |
| 785 | /* We're at the start of the physmap, so pull out the pagetable pages that |
| 786 | * are accessed through that region.*/ |
| 787 | if (vcur == phystokv(avail_start) && vm_object_lock_try_shared(&pmap_object_store)) |
| 788 | m = (vm_page_t)vm_page_queue_first(&pmap_object_store.memq); |
| 789 | |
| 790 | if (m != VM_PAGE_NULL) |
| 791 | { |
| 792 | vm_map_offset_t vprev = vcur; |
| 793 | ppn = (ppnum_t)atop(avail_end); |
| 794 | while (!vm_page_queue_end(&pmap_object_store.memq, (vm_page_queue_entry_t)m)) |
| 795 | { |
| 796 | /* Ignore pages that come from the static region and have already been dumped.*/ |
| 797 | if (VM_PAGE_GET_PHYS_PAGE(m) >= atop(avail_start)) |
| 798 | { |
| 799 | ppn = VM_PAGE_GET_PHYS_PAGE(m); |
| 800 | break; |
| 801 | } |
| 802 | m = (vm_page_t)vm_page_queue_next(&m->vmp_listq); |
| 803 | } |
| 804 | vincr = PAGE_SIZE_64; |
| 805 | if (ppn == atop(avail_end)) |
| 806 | { |
| 807 | vm_object_unlock(&pmap_object_store); |
| 808 | m = VM_PAGE_NULL; |
| 809 | // avail_end is not a valid physical address, |
| 810 | // so phystokv(avail_end) may not produce the expected result. |
| 811 | vcur = phystokv(avail_start) + (avail_end - avail_start); |
| 812 | } else { |
| 813 | m = (vm_page_t)vm_page_queue_next(&m->vmp_listq); |
| 814 | vcur = phystokv(ptoa(ppn)); |
| 815 | } |
| 816 | if (vcur != vprev) |
| 817 | { |
| 818 | ret = callback(vcurstart, vprev, context); |
| 819 | lastvavalid = FALSE; |
| 820 | } |
| 821 | } |
| 822 | if (m == VM_PAGE_NULL) |
| 823 | ppn = kernel_pmap_present_mapping(vcur, &vincr, NULL); |
| 824 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 825 | ppn = kernel_pmap_present_mapping(vcur, &vincr, NULL); |
| 826 | #endif |
| 827 | if (ppn != 0) |
| 828 | { |
| 829 | if (((vcur < debug_start) || (vcur >= debug_end)) |
| 830 | && !(EFI_VALID_PAGE(ppn) || |
| 831 | pmap_valid_page(ppn))) |
| 832 | { |
| 833 | /* not something we want */ |
| 834 | ppn = 0; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | if (ppn != 0) { |
| 839 | if (!lastvavalid) { |
| 840 | /* Start of a new virtual region */ |
| 841 | vcurstart = vcur; |
| 842 | lastvavalid = TRUE; |
| 843 | } |
| 844 | } else { |
| 845 | if (lastvavalid) { |
| 846 | /* end of a virtual region */ |
| 847 | ret = callback(vcurstart, vcur, context); |
| 848 | lastvavalid = FALSE; |
| 849 | } |
| 850 | |
| 851 | #if defined(__x86_64__) |
| 852 | /* Try to skip by 2MB if possible */ |
| 853 | if (((vcur & PDMASK) == 0) && cpu_64bit) { |
| 854 | pd_entry_t *pde; |
| 855 | pde = pmap_pde(pmap, vcur); |
| 856 | if (0 == pde || ((*pde & INTEL_PTE_VALID) == 0)) { |
| 857 | /* Make sure we wouldn't overflow */ |
| 858 | if (vcur < (end - NBPD)) { |
| 859 | vincr = NBPD; |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | #endif /* defined(__x86_64__) */ |
| 864 | } |
| 865 | vcur += vincr; |
| 866 | } |
| 867 | |
| 868 | if ((ret == KERN_SUCCESS) && lastvavalid) { |
| 869 | /* send previous run */ |
| 870 | ret = callback(vcurstart, vcur, context); |
| 871 | } |
| 872 | |
| 873 | #if KASAN |
| 874 | if (ret == KERN_SUCCESS) { |
| 875 | ret = kasan_traverse_mappings(callback, context); |
| 876 | } |
| 877 | #endif |
| 878 | |
| 879 | return (ret); |
| 880 | } |
| 881 | |
| 882 | struct kern_dump_preflight_context |
| 883 | { |
| 884 | uint32_t region_count; |
| 885 | uint64_t dumpable_bytes; |
| 886 | }; |
| 887 | |
| 888 | int |
| 889 | kern_dump_pmap_traverse_preflight_callback(vm_map_offset_t start, |
| 890 | vm_map_offset_t end, |
| 891 | void *context) |
| 892 | { |
| 893 | struct kern_dump_preflight_context *kdc = (struct kern_dump_preflight_context *)context; |
| 894 | IOReturn ret = KERN_SUCCESS; |
| 895 | |
| 896 | kdc->region_count++; |
| 897 | kdc->dumpable_bytes += (end - start); |
| 898 | |
| 899 | return (ret); |
| 900 | } |
| 901 | |
| 902 | |
| 903 | struct kern_dump_send_seg_desc_context |
| 904 | { |
| 905 | core_save_segment_descriptions_cb callback; |
| 906 | void *context; |
| 907 | }; |
| 908 | |
| 909 | int |
| 910 | kern_dump_pmap_traverse_send_segdesc_callback(vm_map_offset_t start, |
| 911 | vm_map_offset_t end, |
| 912 | void *context) |
| 913 | { |
| 914 | struct kern_dump_send_seg_desc_context *kds_context = (struct kern_dump_send_seg_desc_context *)context; |
| 915 | uint64_t seg_start = (uint64_t) start; |
| 916 | uint64_t seg_end = (uint64_t) end; |
| 917 | |
| 918 | return kds_context->callback(seg_start, seg_end, kds_context->context); |
| 919 | } |
| 920 | |
| 921 | struct kern_dump_send_segdata_context |
| 922 | { |
| 923 | core_save_segment_data_cb callback; |
| 924 | void *context; |
| 925 | }; |
| 926 | |
| 927 | int |
| 928 | kern_dump_pmap_traverse_send_segdata_callback(vm_map_offset_t start, |
| 929 | vm_map_offset_t end, |
| 930 | void *context) |
| 931 | { |
| 932 | struct kern_dump_send_segdata_context *kds_context = (struct kern_dump_send_segdata_context *)context; |
| 933 | |
| 934 | return kds_context->callback((void *)start, (uint64_t)(end - start), kds_context->context); |
| 935 | } |
| 936 | |
| 937 | static int |
| 938 | kern_dump_save_summary(__unused void *refcon, core_save_summary_cb callback, void *context) |
| 939 | { |
| 940 | struct kern_dump_preflight_context kdc_preflight = { }; |
| 941 | uint64_t thread_state_size = 0, thread_count = 0; |
| 942 | kern_return_t ret; |
| 943 | |
| 944 | ret = pmap_traverse_present_mappings(kernel_pmap, |
| 945 | VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 946 | VM_MAX_KERNEL_ADDRESS, |
| 947 | kern_dump_pmap_traverse_preflight_callback, |
| 948 | &kdc_preflight); |
| 949 | if (ret != KERN_SUCCESS) { |
| 950 | kern_coredump_log(context, "save_summary: pmap traversal failed: %d\n" , ret); |
| 951 | return ret; |
| 952 | } |
| 953 | |
| 954 | kern_collectth_state_size(&thread_count, &thread_state_size); |
| 955 | |
| 956 | ret = callback(kdc_preflight.region_count, kdc_preflight.dumpable_bytes, |
| 957 | thread_count, thread_state_size, 0, context); |
| 958 | return ret; |
| 959 | } |
| 960 | |
| 961 | static int |
| 962 | kern_dump_save_seg_descriptions(__unused void *refcon, core_save_segment_descriptions_cb callback, void *context) |
| 963 | { |
| 964 | kern_return_t ret; |
| 965 | struct kern_dump_send_seg_desc_context kds_context; |
| 966 | |
| 967 | kds_context.callback = callback; |
| 968 | kds_context.context = context; |
| 969 | |
| 970 | ret = pmap_traverse_present_mappings(kernel_pmap, |
| 971 | VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 972 | VM_MAX_KERNEL_ADDRESS, |
| 973 | kern_dump_pmap_traverse_send_segdesc_callback, |
| 974 | &kds_context); |
| 975 | if (ret != KERN_SUCCESS) { |
| 976 | kern_coredump_log(context, "save_seg_desc: pmap traversal failed: %d\n" , ret); |
| 977 | return ret; |
| 978 | } |
| 979 | |
| 980 | return KERN_SUCCESS; |
| 981 | } |
| 982 | |
| 983 | static int |
| 984 | kern_dump_save_thread_state(__unused void *refcon, void *buf, core_save_thread_state_cb callback, void *context) |
| 985 | { |
| 986 | kern_return_t ret; |
| 987 | uint64_t thread_state_size = 0, thread_count = 0; |
| 988 | |
| 989 | kern_collectth_state_size(&thread_count, &thread_state_size); |
| 990 | |
| 991 | if (thread_state_size > 0) { |
| 992 | void * iter = NULL; |
| 993 | do { |
| 994 | kern_collectth_state (current_thread(), buf, thread_state_size, &iter); |
| 995 | |
| 996 | ret = callback(buf, context); |
| 997 | if (ret != KERN_SUCCESS) { |
| 998 | return ret; |
| 999 | } |
| 1000 | } while (iter); |
| 1001 | } |
| 1002 | |
| 1003 | return KERN_SUCCESS; |
| 1004 | } |
| 1005 | |
| 1006 | static int |
| 1007 | kern_dump_save_sw_vers(__unused void *refcon, core_save_sw_vers_cb callback, void *context) |
| 1008 | { |
| 1009 | return callback(&kdp_kernelversion_string, sizeof(kdp_kernelversion_string), context); |
| 1010 | } |
| 1011 | |
| 1012 | static int |
| 1013 | kern_dump_save_segment_data(__unused void *refcon, core_save_segment_data_cb callback, void *context) |
| 1014 | { |
| 1015 | kern_return_t ret; |
| 1016 | struct kern_dump_send_segdata_context kds_context; |
| 1017 | |
| 1018 | kds_context.callback = callback; |
| 1019 | kds_context.context = context; |
| 1020 | |
| 1021 | ret = pmap_traverse_present_mappings(kernel_pmap, |
| 1022 | VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 1023 | VM_MAX_KERNEL_ADDRESS, kern_dump_pmap_traverse_send_segdata_callback, &kds_context); |
| 1024 | if (ret != KERN_SUCCESS) { |
| 1025 | kern_coredump_log(context, "save_seg_data: pmap traversal failed: %d\n" , ret); |
| 1026 | return ret; |
| 1027 | } |
| 1028 | |
| 1029 | return KERN_SUCCESS; |
| 1030 | } |
| 1031 | |
| 1032 | kern_return_t |
| 1033 | kdp_reset_output_vars(void *kdp_core_out_vars, uint64_t totalbytes) |
| 1034 | { |
| 1035 | struct kdp_core_out_vars *outvars = (struct kdp_core_out_vars *)kdp_core_out_vars; |
| 1036 | |
| 1037 | /* Re-initialize kdp_outvars */ |
| 1038 | outvars->zipped = 0; |
| 1039 | outvars->totalbytes = totalbytes; |
| 1040 | outvars->lastpercent = 0; |
| 1041 | outvars->error = kIOReturnSuccess; |
| 1042 | outvars->outremain = 0; |
| 1043 | outvars->outlen = 0; |
| 1044 | outvars->writes = 0; |
| 1045 | outvars->outbuf = NULL; |
| 1046 | |
| 1047 | if (outvars->outproc == &kdp_send_crashdump_data) { |
| 1048 | /* KERN_DUMP_NET */ |
| 1049 | outvars->outbuf = (Bytef *) (kdp_core_zmem + kdp_core_zoffset); |
| 1050 | outvars->outremain = outvars->outlen = kdp_crashdump_pkt_size; |
| 1051 | } |
| 1052 | |
| 1053 | kdp_core_total_size = totalbytes; |
| 1054 | |
| 1055 | /* Re-initialize zstream variables */ |
| 1056 | kdp_core_zs.avail_in = 0; |
| 1057 | kdp_core_zs.next_in = NULL; |
| 1058 | kdp_core_zs.avail_out = 0; |
| 1059 | kdp_core_zs.next_out = NULL; |
| 1060 | kdp_core_zs.opaque = outvars; |
| 1061 | |
| 1062 | deflateResetWithIO(&kdp_core_zs, kdp_core_zinput, outvars->zoutput); |
| 1063 | |
| 1064 | return KERN_SUCCESS; |
| 1065 | } |
| 1066 | |
| 1067 | static int |
| 1068 | (struct kdp_core_out_vars *outvars) |
| 1069 | { |
| 1070 | uint64_t foffset; |
| 1071 | int ret; |
| 1072 | |
| 1073 | /* Write the file header -- first seek to the beginning of the file */ |
| 1074 | foffset = 0; |
| 1075 | if ((ret = (outvars->outproc)(KDP_SEEK, NULL, sizeof(foffset), &foffset)) != kIOReturnSuccess) { |
| 1076 | kern_coredump_log(NULL, "(kern_dump_update_header) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , |
| 1077 | sizeof(foffset), &foffset, foffset, ret); |
| 1078 | return ret; |
| 1079 | } |
| 1080 | |
| 1081 | if ((ret = (outvars->outproc)(KDP_DATA, NULL, sizeof(kdp_core_header), &kdp_core_header)) != kIOReturnSuccess) { |
| 1082 | kern_coredump_log(NULL, "(kern_dump_update_header) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , |
| 1083 | sizeof(kdp_core_header), &kdp_core_header, ret); |
| 1084 | return ret; |
| 1085 | } |
| 1086 | |
| 1087 | if ((ret = (outvars->outproc)(KDP_DATA, NULL, 0, NULL)) != kIOReturnSuccess) { |
| 1088 | kern_coredump_log(NULL, "(kern_dump_update_header) outproc data flush returned 0x%x\n" , ret); |
| 1089 | return ret; |
| 1090 | } |
| 1091 | |
| 1092 | #if CONFIG_EMBEDDED |
| 1093 | if ((ret = (outvars->outproc)(KDP_FLUSH, NULL, 0, NULL)) != kIOReturnSuccess) { |
| 1094 | kern_coredump_log(NULL, "(kern_dump_update_header) outproc explicit flush returned 0x%x\n" , ret); |
| 1095 | return ret; |
| 1096 | } |
| 1097 | #endif |
| 1098 | |
| 1099 | return KERN_SUCCESS; |
| 1100 | } |
| 1101 | |
| 1102 | int |
| 1103 | kern_dump_record_file(void *kdp_core_out_vars, const char *filename, uint64_t file_offset, uint64_t *out_file_length) |
| 1104 | { |
| 1105 | int ret = 0; |
| 1106 | struct kdp_core_out_vars *outvars = (struct kdp_core_out_vars *)kdp_core_out_vars; |
| 1107 | |
| 1108 | assert(kdp_core_header.num_files < KERN_COREDUMP_MAX_CORES); |
| 1109 | assert(out_file_length != NULL); |
| 1110 | *out_file_length = 0; |
| 1111 | |
| 1112 | kdp_core_header.files[kdp_core_header.num_files].gzip_offset = file_offset; |
| 1113 | kdp_core_header.files[kdp_core_header.num_files].gzip_length = outvars->zipped; |
| 1114 | strncpy((char *)&kdp_core_header.files[kdp_core_header.num_files].core_name, filename, |
| 1115 | MACH_CORE_FILEHEADER_NAMELEN); |
| 1116 | kdp_core_header.files[kdp_core_header.num_files].core_name[MACH_CORE_FILEHEADER_NAMELEN - 1] = '\0'; |
| 1117 | kdp_core_header.num_files++; |
| 1118 | kdp_core_header.signature = MACH_CORE_FILEHEADER_SIGNATURE; |
| 1119 | |
| 1120 | ret = kern_dump_update_header(outvars); |
| 1121 | if (ret == KERN_SUCCESS) { |
| 1122 | *out_file_length = outvars->zipped; |
| 1123 | } |
| 1124 | |
| 1125 | return ret; |
| 1126 | } |
| 1127 | |
| 1128 | int |
| 1129 | kern_dump_seek_to_next_file(void *kdp_core_out_vars, uint64_t next_file_offset) |
| 1130 | { |
| 1131 | struct kdp_core_out_vars *outvars = (struct kdp_core_out_vars *)kdp_core_out_vars; |
| 1132 | int ret; |
| 1133 | |
| 1134 | if ((ret = (outvars->outproc)(KDP_SEEK, NULL, sizeof(next_file_offset), &next_file_offset)) != kIOReturnSuccess) { |
| 1135 | kern_coredump_log(NULL, "(kern_dump_seek_to_next_file) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , |
| 1136 | sizeof(next_file_offset), &next_file_offset, next_file_offset, ret); |
| 1137 | } |
| 1138 | |
| 1139 | return ret; |
| 1140 | } |
| 1141 | |
| 1142 | static int |
| 1143 | do_kern_dump(kern_dump_output_proc outproc, enum kern_dump_type kd_variant) |
| 1144 | { |
| 1145 | struct kdp_core_out_vars outvars = { }; |
| 1146 | |
| 1147 | char *log_start = NULL, *buf = NULL; |
| 1148 | size_t existing_log_size = 0, new_log_len = 0; |
| 1149 | uint64_t foffset = 0; |
| 1150 | int ret = 0; |
| 1151 | boolean_t output_opened = FALSE, dump_succeeded = TRUE; |
| 1152 | |
| 1153 | /* |
| 1154 | * Record the initial panic log buffer length so we can dump the coredump log |
| 1155 | * and panic log to disk |
| 1156 | */ |
| 1157 | log_start = debug_buf_ptr; |
| 1158 | #if CONFIG_EMBEDDED |
| 1159 | assert(panic_info->eph_other_log_offset != 0); |
| 1160 | assert(panic_info->eph_panic_log_len != 0); |
| 1161 | /* Include any data from before the panic log as well */ |
| 1162 | existing_log_size = (panic_info->eph_panic_log_offset - sizeof(struct embedded_panic_header)) + |
| 1163 | panic_info->eph_panic_log_len + panic_info->eph_other_log_len; |
| 1164 | #else /* CONFIG_EMBEDDED */ |
| 1165 | if (panic_info->mph_panic_log_offset != 0) { |
| 1166 | existing_log_size = (panic_info->mph_panic_log_offset - sizeof(struct macos_panic_header)) + |
| 1167 | panic_info->mph_panic_log_len + panic_info->mph_other_log_len; |
| 1168 | } |
| 1169 | #endif /* CONFIG_EMBEDDED */ |
| 1170 | |
| 1171 | assert (existing_log_size <= debug_buf_size); |
| 1172 | |
| 1173 | if (kd_variant == KERN_DUMP_DISK) { |
| 1174 | /* Open the file for output */ |
| 1175 | if ((ret = (*outproc)(KDP_WRQ, NULL, 0, NULL)) != kIOReturnSuccess) { |
| 1176 | kern_coredump_log(NULL, "outproc(KDP_WRQ, NULL, 0, NULL) returned 0x%x\n" , ret); |
| 1177 | dump_succeeded = FALSE; |
| 1178 | goto exit; |
| 1179 | } |
| 1180 | } |
| 1181 | output_opened = true; |
| 1182 | |
| 1183 | /* Initialize gzip, output context */ |
| 1184 | bzero(&outvars, sizeof(outvars)); |
| 1185 | outvars.outproc = outproc; |
| 1186 | |
| 1187 | if (kd_variant == KERN_DUMP_DISK) { |
| 1188 | outvars.zoutput = kdp_core_zoutput; |
| 1189 | /* Space for file header, panic log, core log */ |
| 1190 | foffset = (KERN_COREDUMP_HEADERSIZE + existing_log_size + KERN_COREDUMP_MAXDEBUGLOGSIZE + |
| 1191 | KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN - 1) & ~(KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN - 1); |
| 1192 | kdp_core_header.log_offset = KERN_COREDUMP_HEADERSIZE; |
| 1193 | |
| 1194 | /* Seek the calculated offset (we'll scrollback later to flush the logs and header) */ |
| 1195 | if ((ret = (*outproc)(KDP_SEEK, NULL, sizeof(foffset), &foffset)) != kIOReturnSuccess) { |
| 1196 | kern_coredump_log(NULL, "(do_kern_dump seek begin) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , |
| 1197 | sizeof(foffset), &foffset, foffset, ret); |
| 1198 | dump_succeeded = FALSE; |
| 1199 | goto exit; |
| 1200 | } |
| 1201 | } else if (kd_variant == KERN_DUMP_NET) { |
| 1202 | assert((kdp_core_zoffset + kdp_crashdump_pkt_size) <= kdp_core_zsize); |
| 1203 | outvars.zoutput = kdp_core_zoutputbuf; |
| 1204 | #if CONFIG_EMBEDDED |
| 1205 | } else { /* KERN_DUMP_HW_SHMEM_DBG */ |
| 1206 | outvars.zoutput = kdp_core_zoutput; |
| 1207 | kern_dump_hw_shmem_dbg_reset(); |
| 1208 | #endif |
| 1209 | } |
| 1210 | |
| 1211 | #if defined(__arm__) || defined(__arm64__) |
| 1212 | flush_mmu_tlb(); |
| 1213 | #endif |
| 1214 | |
| 1215 | kern_coredump_log(NULL, "%s" , (kd_variant == KERN_DUMP_DISK) ? "Writing local cores..." : |
| 1216 | "Transmitting kernel state, please wait:\n" ); |
| 1217 | |
| 1218 | if (kd_variant == KERN_DUMP_DISK) { |
| 1219 | /* |
| 1220 | * Dump co-processors as well, foffset will be overwritten with the |
| 1221 | * offset of the next location in the file to be written to. |
| 1222 | */ |
| 1223 | if (kern_do_coredump(&outvars, FALSE, foffset, &foffset) != 0) { |
| 1224 | dump_succeeded = FALSE; |
| 1225 | } |
| 1226 | } else { |
| 1227 | /* Only the kernel */ |
| 1228 | if (kern_do_coredump(&outvars, TRUE, foffset, &foffset) != 0) { |
| 1229 | dump_succeeded = FALSE; |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | if (kd_variant == KERN_DUMP_DISK) { |
| 1234 | #if defined(__x86_64__) && (DEVELOPMENT || DEBUG) |
| 1235 | /* Write the macOS panic stackshot on its own to a separate 'corefile' */ |
| 1236 | if (panic_stackshot_buf && panic_stackshot_len) { |
| 1237 | uint64_t compressed_stackshot_len = 0; |
| 1238 | |
| 1239 | /* Seek to the offset of the next 'file' (foffset provided/updated from kern_do_coredump) */ |
| 1240 | if ((ret = kern_dump_seek_to_next_file(&outvars, foffset)) != kIOReturnSuccess) { |
| 1241 | kern_coredump_log(NULL, "Failed to seek to stackshot file offset 0x%llx, kern_dump_seek_to_next_file returned 0x%x\n" , foffset, ret); |
| 1242 | dump_succeeded = FALSE; |
| 1243 | } else if ((ret = kdp_reset_output_vars(&outvars, panic_stackshot_len)) != KERN_SUCCESS) { |
| 1244 | kern_coredump_log(NULL, "Failed to reset outvars for stackshot with len 0x%zx, returned 0x%x\n" , panic_stackshot_len, ret); |
| 1245 | dump_succeeded = FALSE; |
| 1246 | } else if ((ret = kdp_core_output(&outvars, panic_stackshot_len, (void *)panic_stackshot_buf)) != KERN_SUCCESS) { |
| 1247 | kern_coredump_log(NULL, "Failed to write panic stackshot to file, kdp_coreoutput(outvars, %lu, %p) returned 0x%x\n" , |
| 1248 | panic_stackshot_len, (void *) panic_stackshot_buf, ret); |
| 1249 | dump_succeeded = FALSE; |
| 1250 | } else if ((ret = kdp_core_output(&outvars, 0, NULL)) != KERN_SUCCESS) { |
| 1251 | kern_coredump_log(NULL, "Failed to flush stackshot data : kdp_core_output(%p, 0, NULL) returned 0x%x\n" , &outvars, ret); |
| 1252 | dump_succeeded = FALSE; |
| 1253 | } else if ((ret = kern_dump_record_file(&outvars, "panic_stackshot.kcdata" , foffset, &compressed_stackshot_len)) != KERN_SUCCESS) { |
| 1254 | kern_coredump_log(NULL, "Failed to record panic stackshot in corefile header, kern_dump_record_file returned 0x%x\n" , ret); |
| 1255 | dump_succeeded = FALSE; |
| 1256 | } else { |
| 1257 | kern_coredump_log(NULL, "Recorded panic stackshot in corefile at offset 0x%llx, compressed to %llu bytes\n" , foffset, compressed_stackshot_len); |
| 1258 | } |
| 1259 | } |
| 1260 | #endif /* defined(__x86_64__) && (DEVELOPMENT || DEBUG) */ |
| 1261 | |
| 1262 | /* Write the debug log -- first seek to the end of the corefile header */ |
| 1263 | foffset = KERN_COREDUMP_HEADERSIZE; |
| 1264 | if ((ret = (*outproc)(KDP_SEEK, NULL, sizeof(foffset), &foffset)) != kIOReturnSuccess) { |
| 1265 | kern_coredump_log(NULL, "(do_kern_dump seek logfile) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , |
| 1266 | sizeof(foffset), &foffset, foffset, ret); |
| 1267 | dump_succeeded = FALSE; |
| 1268 | goto exit; |
| 1269 | } |
| 1270 | |
| 1271 | new_log_len = debug_buf_ptr - log_start; |
| 1272 | if (new_log_len > KERN_COREDUMP_MAXDEBUGLOGSIZE) { |
| 1273 | new_log_len = KERN_COREDUMP_MAXDEBUGLOGSIZE; |
| 1274 | } |
| 1275 | |
| 1276 | /* This data is after the panic stackshot, we need to write it separately */ |
| 1277 | #if CONFIG_EMBEDDED |
| 1278 | existing_log_size -= panic_info->eph_other_log_len; |
| 1279 | #else |
| 1280 | if (existing_log_size) { |
| 1281 | existing_log_size -= panic_info->mph_other_log_len; |
| 1282 | } |
| 1283 | #endif |
| 1284 | |
| 1285 | /* |
| 1286 | * Write out the paniclog (from the beginning of the debug |
| 1287 | * buffer until the start of the stackshot) |
| 1288 | */ |
| 1289 | buf = debug_buf_base; |
| 1290 | if ((ret = (*outproc)(KDP_DATA, NULL, existing_log_size, buf)) != kIOReturnSuccess) { |
| 1291 | kern_coredump_log(NULL, "(do_kern_dump paniclog) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , |
| 1292 | existing_log_size, buf, ret); |
| 1293 | dump_succeeded = FALSE; |
| 1294 | goto exit; |
| 1295 | } |
| 1296 | |
| 1297 | /* |
| 1298 | * The next part of the log we're interested in is the beginning of the 'other' log. |
| 1299 | * Include any data after the panic stackshot but before we started the coredump log |
| 1300 | * (see above) |
| 1301 | */ |
| 1302 | #if CONFIG_EMBEDDED |
| 1303 | buf = (char *)(((char *)panic_info) + (uintptr_t) panic_info->eph_other_log_offset); |
| 1304 | new_log_len += panic_info->eph_other_log_len; |
| 1305 | #else /* CONFIG_EMBEDDED */ |
| 1306 | buf = (char *)(((char *)panic_info) + (uintptr_t) panic_info->mph_other_log_offset); |
| 1307 | new_log_len += panic_info->mph_other_log_len; |
| 1308 | #endif /* CONFIG_EMBEDDED */ |
| 1309 | |
| 1310 | /* Write the coredump log */ |
| 1311 | if ((ret = (*outproc)(KDP_DATA, NULL, new_log_len, buf)) != kIOReturnSuccess) { |
| 1312 | kern_coredump_log(NULL, "(do_kern_dump coredump log) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , |
| 1313 | new_log_len, buf, ret); |
| 1314 | dump_succeeded = FALSE; |
| 1315 | goto exit; |
| 1316 | } |
| 1317 | |
| 1318 | kdp_core_header.log_length = existing_log_size + new_log_len; |
| 1319 | kern_dump_update_header(&outvars); |
| 1320 | } |
| 1321 | |
| 1322 | exit: |
| 1323 | /* close / last packet */ |
| 1324 | if (output_opened && (ret = (*outproc)(KDP_EOF, NULL, 0, ((void *) 0))) != kIOReturnSuccess) { |
| 1325 | kern_coredump_log(NULL, "(do_kern_dump close) outproc(KDP_EOF, NULL, 0, 0) returned 0x%x\n" , ret); |
| 1326 | dump_succeeded = FALSE; |
| 1327 | } |
| 1328 | |
| 1329 | /* If applicable, update the panic header and flush it so we update the CRC */ |
| 1330 | #if CONFIG_EMBEDDED |
| 1331 | panic_info->eph_panic_flags |= (dump_succeeded ? EMBEDDED_PANIC_HEADER_FLAG_COREDUMP_COMPLETE : |
| 1332 | EMBEDDED_PANIC_HEADER_FLAG_COREDUMP_FAILED); |
| 1333 | paniclog_flush(); |
| 1334 | #else |
| 1335 | if (panic_info->mph_panic_log_offset != 0) { |
| 1336 | panic_info->mph_panic_flags |= (dump_succeeded ? MACOS_PANIC_HEADER_FLAG_COREDUMP_COMPLETE : |
| 1337 | MACOS_PANIC_HEADER_FLAG_COREDUMP_FAILED); |
| 1338 | paniclog_flush(); |
| 1339 | } |
| 1340 | #endif |
| 1341 | |
| 1342 | return (dump_succeeded ? 0 : -1); |
| 1343 | } |
| 1344 | |
| 1345 | boolean_t |
| 1346 | dumped_kernel_core() |
| 1347 | { |
| 1348 | return kern_dump_successful; |
| 1349 | } |
| 1350 | |
| 1351 | int |
| 1352 | kern_dump(enum kern_dump_type kd_variant) |
| 1353 | { |
| 1354 | static boolean_t local_dump_in_progress = FALSE, dumped_local = FALSE; |
| 1355 | int ret = -1; |
| 1356 | #if KASAN |
| 1357 | kasan_disable(); |
| 1358 | #endif |
| 1359 | if (kd_variant == KERN_DUMP_DISK) { |
| 1360 | if (dumped_local) return (0); |
| 1361 | if (local_dump_in_progress) return (-1); |
| 1362 | local_dump_in_progress = TRUE; |
| 1363 | #if CONFIG_EMBEDDED |
| 1364 | hwsd_info->xhsdci_status = XHSDCI_STATUS_KERNEL_BUSY; |
| 1365 | #endif |
| 1366 | ret = do_kern_dump(&kern_dump_disk_proc, KERN_DUMP_DISK); |
| 1367 | if (ret == 0) { |
| 1368 | dumped_local = TRUE; |
| 1369 | kern_dump_successful = TRUE; |
| 1370 | local_dump_in_progress = FALSE; |
| 1371 | } |
| 1372 | |
| 1373 | return ret; |
| 1374 | #if CONFIG_EMBEDDED |
| 1375 | } else if (kd_variant == KERN_DUMP_HW_SHMEM_DBG) { |
| 1376 | ret = do_kern_dump(&kern_dump_hw_shmem_dbg_buffer_proc, KERN_DUMP_HW_SHMEM_DBG); |
| 1377 | if (ret == 0) { |
| 1378 | kern_dump_successful = TRUE; |
| 1379 | } |
| 1380 | return ret; |
| 1381 | #endif |
| 1382 | } else { |
| 1383 | ret = do_kern_dump(&kdp_send_crashdump_data, KERN_DUMP_NET); |
| 1384 | if (ret == 0) { |
| 1385 | kern_dump_successful = TRUE; |
| 1386 | } |
| 1387 | return ret; |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | #if CONFIG_EMBEDDED |
| 1392 | void |
| 1393 | panic_spin_shmcon() |
| 1394 | { |
| 1395 | if (hwsd_info == NULL) { |
| 1396 | kern_coredump_log(NULL, "handshake structure not initialized\n" ); |
| 1397 | return; |
| 1398 | } |
| 1399 | |
| 1400 | kern_coredump_log(NULL, "\nPlease go to https://panic.apple.com to report this panic\n" ); |
| 1401 | kern_coredump_log(NULL, "Waiting for hardware shared memory debugger, handshake structure is at virt: %p, phys %p\n" , |
| 1402 | hwsd_info, (void *)kvtophys((vm_offset_t)hwsd_info)); |
| 1403 | |
| 1404 | hwsd_info->xhsdci_status = XHSDCI_STATUS_KERNEL_READY; |
| 1405 | hwsd_info->xhsdci_seq_no = 0; |
| 1406 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 1407 | |
| 1408 | for (;;) { |
| 1409 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 1410 | if (hwsd_info->xhsdci_status == XHSDCI_COREDUMP_BEGIN) { |
| 1411 | kern_dump(KERN_DUMP_HW_SHMEM_DBG); |
| 1412 | } |
| 1413 | |
| 1414 | if ((hwsd_info->xhsdci_status == XHSDCI_COREDUMP_REMOTE_DONE) || |
| 1415 | (hwsd_info->xhsdci_status == XHSDCI_COREDUMP_ERROR)) { |
| 1416 | hwsd_info->xhsdci_status = XHSDCI_STATUS_KERNEL_READY; |
| 1417 | hwsd_info->xhsdci_seq_no = 0; |
| 1418 | FlushPoC_DcacheRegion((vm_offset_t) hwsd_info, sizeof(*hwsd_info)); |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | #endif /* CONFIG_EMBEDDED */ |
| 1423 | |
| 1424 | static void * |
| 1425 | kdp_core_zalloc(void * __unused ref, u_int items, u_int size) |
| 1426 | { |
| 1427 | void * result; |
| 1428 | |
| 1429 | result = (void *) (kdp_core_zmem + kdp_core_zoffset); |
| 1430 | kdp_core_zoffset += ~31L & (31 + (items * size)); // 32b align for vector crc |
| 1431 | assert(kdp_core_zoffset <= kdp_core_zsize); |
| 1432 | |
| 1433 | return (result); |
| 1434 | } |
| 1435 | |
| 1436 | static void |
| 1437 | kdp_core_zfree(void * __unused ref, void * __unused ptr) {} |
| 1438 | |
| 1439 | |
| 1440 | #if CONFIG_EMBEDDED |
| 1441 | #define LEVEL Z_BEST_SPEED |
| 1442 | #define NETBUF 0 |
| 1443 | #else |
| 1444 | #define LEVEL Z_BEST_SPEED |
| 1445 | #define NETBUF 1440 |
| 1446 | #endif |
| 1447 | |
| 1448 | void |
| 1449 | kdp_core_init(void) |
| 1450 | { |
| 1451 | int wbits = 12; |
| 1452 | int memlevel = 3; |
| 1453 | kern_return_t kr; |
| 1454 | #if CONFIG_EMBEDDED |
| 1455 | int i = 0; |
| 1456 | vm_offset_t kdp_core_hw_shmem_buf = 0; |
| 1457 | struct kdp_hw_shmem_dbg_buf_elm *cur_elm = NULL; |
| 1458 | cache_info_t *cpuid_cache_info = NULL; |
| 1459 | #endif |
| 1460 | kern_coredump_callback_config core_config = { }; |
| 1461 | |
| 1462 | if (kdp_core_zs.zalloc) return; |
| 1463 | kdp_core_zsize = round_page(NETBUF + zlib_deflate_memory_size(wbits, memlevel)); |
| 1464 | printf("kdp_core zlib memory 0x%lx\n" , kdp_core_zsize); |
| 1465 | kr = kmem_alloc(kernel_map, &kdp_core_zmem, kdp_core_zsize, VM_KERN_MEMORY_DIAG); |
| 1466 | assert (KERN_SUCCESS == kr); |
| 1467 | |
| 1468 | kdp_core_zoffset = 0; |
| 1469 | kdp_core_zs.zalloc = kdp_core_zalloc; |
| 1470 | kdp_core_zs.zfree = kdp_core_zfree; |
| 1471 | |
| 1472 | if (deflateInit2(&kdp_core_zs, LEVEL, Z_DEFLATED, |
| 1473 | wbits + 16 /*gzip mode*/, memlevel, Z_DEFAULT_STRATEGY)) { |
| 1474 | /* Allocation failed */ |
| 1475 | bzero(&kdp_core_zs, sizeof(kdp_core_zs)); |
| 1476 | kdp_core_zoffset = 0; |
| 1477 | } |
| 1478 | |
| 1479 | bzero(&kdp_core_header, sizeof(kdp_core_header)); |
| 1480 | |
| 1481 | core_config.kcc_coredump_init = NULL; /* TODO: consider doing mmu flush from an init function */ |
| 1482 | core_config.kcc_coredump_get_summary = kern_dump_save_summary; |
| 1483 | core_config.kcc_coredump_save_segment_descriptions = kern_dump_save_seg_descriptions; |
| 1484 | core_config.kcc_coredump_save_thread_state = kern_dump_save_thread_state; |
| 1485 | core_config.kcc_coredump_save_sw_vers = kern_dump_save_sw_vers; |
| 1486 | core_config.kcc_coredump_save_segment_data = kern_dump_save_segment_data; |
| 1487 | core_config.kcc_coredump_save_misc_data = NULL; |
| 1488 | |
| 1489 | kr = kern_register_xnu_coredump_helper(&core_config); |
| 1490 | assert(KERN_SUCCESS == kr); |
| 1491 | |
| 1492 | #if CONFIG_EMBEDDED |
| 1493 | if (!PE_consistent_debug_enabled()) { |
| 1494 | return; |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * We need to allocate physically contiguous memory since astris isn't capable |
| 1499 | * of doing address translations while the CPUs are running. |
| 1500 | */ |
| 1501 | kdp_hw_shmem_dbg_bufsize = KDP_CORE_HW_SHMEM_DBG_TOTAL_BUF_SIZE; |
| 1502 | kr = kmem_alloc_contig(kernel_map, &kdp_core_hw_shmem_buf, kdp_hw_shmem_dbg_bufsize, VM_MAP_PAGE_MASK(kernel_map), |
| 1503 | 0, 0, KMA_KOBJECT, VM_KERN_MEMORY_DIAG); |
| 1504 | assert(KERN_SUCCESS == kr); |
| 1505 | |
| 1506 | /* |
| 1507 | * Put the connection info structure at the beginning of this buffer and adjust |
| 1508 | * the buffer size accordingly. |
| 1509 | */ |
| 1510 | hwsd_info = (struct xnu_hw_shmem_dbg_command_info *) kdp_core_hw_shmem_buf; |
| 1511 | hwsd_info->xhsdci_status = XHSDCI_STATUS_NONE; |
| 1512 | hwsd_info->xhsdci_seq_no = 0; |
| 1513 | hwsd_info->xhsdci_buf_phys_addr = 0; |
| 1514 | hwsd_info->xhsdci_buf_data_length = 0; |
| 1515 | hwsd_info->xhsdci_coredump_total_size_uncomp = 0; |
| 1516 | hwsd_info->xhsdci_coredump_total_size_sent_uncomp = 0; |
| 1517 | hwsd_info->xhsdci_page_size = PAGE_SIZE; |
| 1518 | |
| 1519 | cpuid_cache_info = cache_info(); |
| 1520 | assert(cpuid_cache_info != NULL); |
| 1521 | |
| 1522 | kdp_core_hw_shmem_buf += sizeof(*hwsd_info); |
| 1523 | /* Leave the handshake structure on its own cache line so buffer writes don't cause flushes of old handshake data */ |
| 1524 | kdp_core_hw_shmem_buf = ROUNDUP(kdp_core_hw_shmem_buf, (uint64_t) cpuid_cache_info->c_linesz); |
| 1525 | kdp_hw_shmem_dbg_bufsize -= (uint32_t) (kdp_core_hw_shmem_buf - (vm_offset_t) hwsd_info); |
| 1526 | kdp_hw_shmem_dbg_bufsize /= KDP_CORE_HW_SHMEM_DBG_NUM_BUFFERS; |
| 1527 | /* The buffer size should be a cache-line length multiple */ |
| 1528 | kdp_hw_shmem_dbg_bufsize -= (kdp_hw_shmem_dbg_bufsize % ROUNDDOWN(OPTIMAL_ASTRIS_READSIZE, cpuid_cache_info->c_linesz)); |
| 1529 | |
| 1530 | STAILQ_INIT(&free_hw_shmem_dbg_bufs); |
| 1531 | STAILQ_INIT(&hw_shmem_dbg_bufs_to_flush); |
| 1532 | |
| 1533 | for (i = 0; i < KDP_CORE_HW_SHMEM_DBG_NUM_BUFFERS; i++) { |
| 1534 | cur_elm = kalloc(sizeof(*cur_elm)); |
| 1535 | assert(cur_elm != NULL); |
| 1536 | |
| 1537 | cur_elm->khsd_buf = kdp_core_hw_shmem_buf; |
| 1538 | cur_elm->khsd_data_length = 0; |
| 1539 | |
| 1540 | kdp_core_hw_shmem_buf += kdp_hw_shmem_dbg_bufsize; |
| 1541 | |
| 1542 | STAILQ_INSERT_HEAD(&free_hw_shmem_dbg_bufs, cur_elm, khsd_elms); |
| 1543 | } |
| 1544 | |
| 1545 | nanoseconds_to_absolutetime(KDP_HW_SHMEM_DBG_TIMEOUT_DEADLINE_SECS * NSEC_PER_SEC, |
| 1546 | &kdp_hw_shmem_dbg_contact_deadline_interval); |
| 1547 | |
| 1548 | PE_consistent_debug_register(kDbgIdAstrisConnection, kvtophys((vm_offset_t) hwsd_info), sizeof(pmap_paddr_t)); |
| 1549 | PE_consistent_debug_register(kDbgIdAstrisConnectionVers, CUR_XNU_HWSDCI_STRUCT_VERS, sizeof(uint32_t)); |
| 1550 | #endif /* CONFIG_EMBEDDED */ |
| 1551 | |
| 1552 | #if defined(__x86_64__) && (DEVELOPMENT || DEBUG) |
| 1553 | /* Allocate space in the kernel map for the panic stackshot */ |
| 1554 | kr = kmem_alloc(kernel_map, &panic_stackshot_buf, PANIC_STACKSHOT_BUFSIZE, VM_KERN_MEMORY_DIAG); |
| 1555 | assert (KERN_SUCCESS == kr); |
| 1556 | #endif /* defined(__x86_64__) && (DEVELOPMENT || DEBUG) */ |
| 1557 | } |
| 1558 | |
| 1559 | #endif /* CONFIG_KDP_INTERACTIVE_DEBUGGING */ |
| 1560 | |